WO2020036006A1 - 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置 - Google Patents

絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置 Download PDF

Info

Publication number
WO2020036006A1
WO2020036006A1 PCT/JP2019/025634 JP2019025634W WO2020036006A1 WO 2020036006 A1 WO2020036006 A1 WO 2020036006A1 JP 2019025634 W JP2019025634 W JP 2019025634W WO 2020036006 A1 WO2020036006 A1 WO 2020036006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
mol
producing
insulating film
metal compound
Prior art date
Application number
PCT/JP2019/025634
Other languages
English (en)
French (fr)
Inventor
敬 寺島
花梨 國府
渡邉 誠
俊人 ▲高▼宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201980053049.4A priority Critical patent/CN112567073B/zh
Priority to RU2021103853A priority patent/RU2753539C1/ru
Priority to JP2019554707A priority patent/JP6642782B1/ja
Priority to EP22185359.1A priority patent/EP4095285A1/en
Priority to EP19850486.2A priority patent/EP3839093B1/en
Priority to KR1020217004038A priority patent/KR102604342B1/ko
Priority to US17/269,183 priority patent/US20210269921A1/en
Publication of WO2020036006A1 publication Critical patent/WO2020036006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/811Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow with the inflow from one side only, e.g. stirrers placed on the bottom of the receptacle, or used as a bottom discharge pump
    • B01F27/8111Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow with the inflow from one side only, e.g. stirrers placed on the bottom of the receptacle, or used as a bottom discharge pump the stirrers co-operating with stationary guiding elements, e.g. surrounding stators or intermeshing stators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a method for producing an insulating film treatment liquid containing a phosphate ion and a metal compound, a method for producing a steel sheet with an insulation film, and an apparatus for producing an insulation film forming treatment liquid.
  • a phosphate coating based on a phosphate of a polyvalent metal such as Al, Mg, and Ca is known as a heat-resistant insulating coating.
  • a base coating mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based coating formed thereon It is common to apply a topcoat.
  • Patent Document 1 proposes a coating mainly composed of magnesium phosphate and colloidal silica.
  • Patent Literature 2 proposes a coating mainly composed of one or more of aluminum phosphate, colloidal silica, and chromic anhydride and chromate.
  • chromic acids such as chromic anhydride, chromate, dichromate, etc. are used in order to avoid the deterioration of the hygroscopicity peculiar to the phosphate coating and to reduce the coefficient of thermal expansion. It is used.
  • Patent Document 3 discloses a method of adding an oxide colloidal substance to phosphate or colloidal silica.
  • Patent Document 4 discloses a technique in which a phosphate or colloidal silica contains a colloidal compound containing a metal element such as Fe, Al, Ga, Ti, or Zr.
  • Patent Document 5 discloses a technique in which particles such as Al 2 O 3 , TiO 2 , and ZrO 2 are contained in phosphate and silica.
  • Patent Literature 6 discloses a technique in which fine particles of a zirconium phosphate compound are contained in phosphate or colloidal silica.
  • Patent Literature 7 discloses a technique for containing metal phosphate, colloidal silica nanoparticles, hollow nanoparticles, ceramics nanofibers, and mesoporous nanoparticles.
  • Patent Literatures 3 to 7 have large variations in moisture absorption resistance and applied tension, failing to obtain stable and good characteristics.
  • the present invention has been developed in view of the above circumstances, and is a technique for improving moisture absorption resistance and applied tension in a treatment liquid for forming an insulating film containing phosphoric acid and / or a phosphate and a particulate metal compound.
  • a treatment liquid for forming an insulating film capable of stably applying the method, a method for producing a steel sheet with an insulation film using the treatment liquid for forming an insulation film, and a device for producing a treatment liquid for forming an insulation film The purpose is to provide.
  • the present inventors have added a particulate metal compound (ZrO 2 : average particle diameter of 100 nm) to a treatment solution for forming an insulating film based on phosphoric acid and / or phosphate.
  • ZrO 2 average particle diameter of 100 nm
  • a steel sheet sample having good properties (coating tension of 8.0 MPa or more and phosphorus elution amount of 150 ⁇ g / 150 cm 2 or less) was compared with a steel sheet sample in which good properties were not obtained. Then, the following findings were obtained.
  • FIG. 1 shows the result of observing the surface of the steel sheet sample having good characteristics obtained by SEM
  • FIG. 2 shows the result of observing the surface of the steel sheet sample which did not obtain good results by SEM.
  • the present inventors investigated the cause of the formation of the convex portions, and found large aggregates of ZrO 2 in the convex portions.
  • coating treatment on the particle surface of the particulate metal compound may be considered depending on the properties of the components in the treatment liquid to be prepared.
  • the present invention was devised as an inexpensive method of producing an insulating coating treatment liquid capable of stably reducing the density of aggregates on the steel sheet surface after coating and baking so as not to lower the insulating coating performance.
  • the density of agglomerates on the surface of the steel sheet after coating and baking to such an extent that the performance of the insulating film is not reduced is 1.0 pieces / 10,000 ⁇ m 2 or less.
  • the gist configuration of the present invention is as follows.
  • a method for producing a treatment liquid for forming an insulating film containing phosphoric acid and / or a phosphate and a particulate metal compound A liquid A containing phosphoric acid and / or a phosphate in an amount of 0.20 mol / L or more and 10 mol / L or less in terms of PO 4 3- , and containing a particulate metal compound in less than 0.50 mol / L in terms of metal;
  • Method for producing a treatment liquid for forming an insulating coating wherein stirring is performed within 60 seconds after the start of mixing of the liquid A and the liquid B with a turbine stator type high-speed stirrer so
  • a method for producing a steel sheet with an insulating film comprising applying the treatment liquid for forming an insulating film obtained by the method according to any one of [1] to [7] to the surface of the steel sheet and then performing a baking treatment.
  • Liquid B containing 0.50 mol / L or more and 20.0 mol / L or less in terms of metal and containing phosphoric acid and / or phosphate in less than 0.20 mol / L in terms of PO 4 3-
  • a mixing tank Equipped with a turbine stator type high-speed stirrer, Apparatus for producing a treatment liquid for forming an insulating film, which is stirred within 60 seconds after the start of mixing of the liquid A and the liquid B by a turbine stator type high-speed stirrer so that the peripheral speed of the turbine outer peripheral portion becomes 10 m / s or more.
  • FIG. 1 shows the results of SEM observation of the surface of a steel sheet sample having good characteristics.
  • FIG. 2 shows the result of observing the surface of the steel sheet sample from which good characteristics could not be obtained by SEM.
  • FIG. 3 is a schematic view showing an apparatus for producing a treatment liquid for forming an insulating film according to the present invention.
  • a grain-oriented electrical steel sheet manufactured by a known method and having a finish-annealed forsterite film having a thickness of 0.23 mm was used as a raw material for applying and baking a treatment liquid for forming an insulating film.
  • the processing solution for forming an insulating film was manufactured by the following method. First, as a liquid A, 30 g of an aqueous solution of magnesium phosphate in terms of solid content and 20 g of colloidal silica in terms of solid content were mixed in 250 ml of pure water. At this time, the phosphate ion in the liquid A was 1.10 mol / L, and the particulate metal compound was not added.
  • a 15 mass% ZrO 2 sol in terms of solid content (ZrO 2 ) was prepared as a liquid metal B as a particulate metal compound.
  • the particulate metal compound in the liquid B was 1.36 mol / L in terms of metal (Zr), and no phosphate ion was added.
  • the liquid A and the liquid B were mixed by the two types of stirring methods shown in Table 1 to produce a treatment liquid for forming an insulating film.
  • the propeller stirrer As the propeller stirrer, a one with a propeller type stirring blade of ⁇ 100 mm attached to an ASONE tornado stirrer at 3000 rpm was used. As a turbine-stator-type stirrer, a Silverson lab mixer L5MA was used at 5000 rpm. In addition, these stirrers differ in the size of the rotating object, but the rotation speed of each stirrer was set such that the peripheral speed of the rotating object tip became 15.7 m / s.
  • the prepared treatment liquid was applied so that the basis weight after drying on both sides was 10 g / m 2 .
  • the resultant was dried in a drying furnace at 300 ° C. for 1 minute, and then subjected to a heat treatment (800 ° C., 2 minutes, 100% N 2 ) that served as both flattening annealing and baking of the insulating film. Thereafter, a test piece for testing described later was sampled by shearing. Further, the test piece for the applied tension test was further subjected to strain relief annealing (800 ° C., 2 hours, 100% N 2 atmosphere).
  • the thus obtained sample was examined for applied tension and moisture absorption resistance.
  • the applied tension was a tension in the rolling direction.
  • One side of the test piece having a length of 280 mm in the rolling direction ⁇ 30 mm in a direction perpendicular to the rolling direction was masked with an adhesive tape so that the insulating film on one side was not removed, and one side of the insulating film was peeled off using an aqueous sodium hydroxide solution.
  • one end of the test piece was fixed at 30 mm, the amount of warpage was measured using the 250 mm portion of the test piece as the measurement length, and the applied tension was calculated using the following equation (I).
  • the moisture absorption resistance was evaluated by a phosphorus dissolution test.
  • three 50 mm ⁇ 50 mm test pieces were boiled in distilled water at 100 ° C. for 5 minutes, and the amount of phosphorus eluted [ ⁇ g / 150 cm 2 ] was measured to evaluate the ease of dissolution of the insulating coating in water. did.
  • the elution amount of P (phosphorus) was 150 [ ⁇ g / 150 cm 2 ] or less, it was regarded as good (excellent in moisture absorption resistance).
  • the method for measuring the amount of P eluted is not particularly limited.
  • the amount of P eluted can be measured by quantitative analysis using ICP emission analysis.
  • Table 1 shows the measurement results of applied tension and phosphorus elution amount.
  • the treatment liquid for forming an insulating film of the present invention contains phosphate ions (phosphate and / or phosphate) and a particulate metal compound.
  • Phosphate ion phosphoric acid and / or phosphate
  • the polymerized phosphoric acid is easily hydrolyzed by reacting with moisture in the atmosphere and the like, and has poor moisture absorption resistance.
  • the inclusion of a particulate metal compound can suppress the hydrolysis reaction. Therefore, in the present invention, the particulate metal compound is an essential component.
  • Phosphate ions are likely to be physically and chemically adsorbed on the surface of the particulate metal compound, and if the two are mixed carelessly, the particulate metal compound will agglomerate. Need to be restricted.
  • phosphate ions to obtain take several forms in aqueous solution, PO 4 3-, of course HPO 4 2-, H 2 PO 4 - including also such hydrogen phosphate ions, such as.
  • Liquid B containing A and 0.50 mol / L or more and 20.0 mol / L or less in terms of metal, and containing phosphoric acid and / or phosphate in less than 0.20 mol / L in terms of PO 4 3- Are liquids before mixing (raw material liquids).
  • the coating after the stirring, mixing and dispersion treatment described below has a small amount of phosphate ions and has a sufficient thickness. Cannot be formed, the insulation is degraded.
  • the amount of phosphoric acid and / or phosphate exceeds 10.0 mol / L in terms of PO 4 3- , phosphate ions are excessively present, so that the particulate metal compound can be dispersed even by the stirring treatment of the present application. Becomes difficult.
  • the phosphoric acid and / or phosphate is adjusted to 0.20 mol / L to 10.0 mol / L in terms of PO 4 3 ⁇ .
  • the particulate metal compound needs to be less than 0.50 mol / L in terms of metal.
  • the particulate metal compound is contained in an amount of 0.50 mol / L or more in terms of metal, an aggregate is generated. Preferably it is less than 0.30 mol / L.
  • the phosphoric acid and / or phosphate needs to be less than 0.20 mol / L in terms of PO 4 3- .
  • the amount of the particulate metal compound is less than 0.50 mol / L, the amount of the liquid for mixing a sufficient amount of the particulate metal compound with respect to the phosphate ions increases, and the mixed liquid The concentration of the phosphate ions therein becomes too low, so that a film having a sufficient thickness cannot be formed, and the insulating property deteriorates.
  • the amount of the particulate metal compound exceeds 20.0 mol / L, the distance between the particulate metal compounds in the treatment liquid becomes too short, and the particles are easily aggregated. For this reason, in the liquid B, the amount of the particulate metal compound is 20.0 mol / L or less, preferably 18.0 mol / L or less.
  • the phosphoric acid and / or the phosphate and the particulate metal compound are separated from each other in a state where the stirring is not controlled.
  • phosphoric acid and / or phosphate is less than 0.20 mol / L in terms of PO 4 3-
  • the particulate metal compound is less than 0.50 mol / L in terms of metal
  • mixing and stirring methods may be used. And may not be aggregated, and may be mixed in the same liquid.
  • the particulate metal compound is less than 0.30 mol / L in terms of metal.
  • the liquid A and the liquid B are prepared and mixed by the following method, thereby preventing the aggregation of the particulate metal compound due to the phosphate ion and generating an aggregate which lowers the coating performance on the surface after coating and baking. Dispersion to the extent that it is not allowed can be made possible.
  • the liquid A and the liquid B may each be prepared in advance with a substance having no fear of aggregation.
  • colloidal silica or the like can be mixed in advance with the liquid A or the liquid B, and the stirring method in that case is not particularly limited.
  • a general-purpose mixing method is sufficient.
  • a tank for liquid A (liquid tank A) and a tank for liquid B (liquid tank B) are prepared, and the liquid A and the liquid B are mixed independently or intermittently. What is necessary is just to send to a high-speed stirrer.
  • the mixed liquid tank after mixing the liquid A and the liquid B may be connected to, for example, a turbine stator type high-speed stirrer via a pipe or the like. When connecting parts such as pipes are provided, the flow rate and the flow path may be appropriately designed so that the liquid A and the liquid B are stirred by a high-speed stirrer within 60 seconds from the start of mixing.
  • a circulation path may be further provided in which the liquid after being stirred by the high-speed stirrer is again introduced from the mixing tank into the high-speed stirrer and circulated.
  • the coating solution is allowed to stand still, stir by a normal method, and stir with a turbine-stator-type high-speed stirrer until coating.
  • a media disperser such as a bead mill is not suitable as an apparatus used for dispersing the particulate metal compound by mixing, since there is a possibility that impurities are mixed therein.
  • the peripheral speed of the tip of the stirring blade is preferably as fast as possible.
  • the peripheral speed of the outer peripheral portion of the turbine is set to 10 m / s or more.
  • the peripheral speed of the outer peripheral portion of the turbine is 40 m / s or more.
  • turbine-stator type high-speed stirrer examples include a high shear mixer manufactured by Silverson, a Cavitron manufactured by Taiyo Kiko Co., Ltd., and a quadro Waitron Z manufactured by Powrex.
  • the start of mixing of the liquid A and the liquid B means that the liquid A and the liquid B have started to come into contact with each other.
  • a high-pressure disperser is a device that applies a high pressure to a liquid to be treated and then disperses solids by applying a shear force or the like to the liquid when the pressure is released.
  • a device called a wet jet mill is commercially available.
  • the apparatus include Starburst manufactured by Sugino Machine Co., Ltd., Nanobeta manufactured by Yoshida Kikai Kogyo Co., Ltd., and Nanojet Pal manufactured by Joko Co., Ltd.
  • a particle size distribution measuring device for measuring the particle size distribution of the liquid after being stirred by the high-speed stirrer may be further provided.
  • the particle size distribution measuring device is not particularly limited, but in the case of measuring the particle size distribution in-line, for example, a particle size distribution measuring device using ultrasonic waves may be mentioned.
  • a particle size distribution measuring device may be installed so as to measure the particle size distribution of the liquid after the treatment by the high-speed disperser. It is more preferable to feed back to the operating conditions of the high-speed stirrer or the high-pressure disperser so that the measured value of the particle size distribution falls within the set range (see FIG. 3).
  • the treatment liquid for forming an insulating film may further contain colloidal silica for increasing applied tension.
  • the colloidal silica may be contained in the liquid A and / or the liquid B, or may be contained when the liquid A and the liquid B are mixed. Alternatively, it may be contained after mixing of the liquid A and the liquid B (either before or after the dispersion treatment). Further, there may be a timing at which the colloidal silica is included plural times.
  • As the content of the colloidal silica it is preferable that phosphoric acid and / or a phosphate be contained in an amount of 60 to 200 parts by mass in terms of SiO 2 solids based on 100 parts by mass in terms of PO 4 3 .
  • a particulate metal compound of a metal element having a large valence or a small ionic radius is preferable from the viewpoint of the ability to capture phosphate ions.
  • the form of the particulate metal compound is preferably an oxide or a nitride, and among them, a compound that does not easily react with water is more preferable.
  • boron (B), silicon (Si), germanium (Ge) arsenic (As) antimony (Sb), and tellurium (Te) are semimetals and are not included in metals.
  • the particle diameter of the particulate metal compound is not less than 3.0 nm and not more than 2.0 ⁇ m.
  • the particle diameter is not the particle diameter when the metal compound is agglomerated in the processing solution, but is observed and photographed by SEM or TEM for each particle, and the area is defined as a circle. It is an average particle size.
  • what integrated the primary particle by sintering is considered as one particle.
  • the treatment liquid for forming an insulating film obtained as described above is applied to the surface of a steel sheet and baked to form an insulating film.
  • the basis weight of the insulating coating after baking is preferably 4.0 to 30 g / m 2 in total on both sides. If it is less than 4.0 g / m 2 , the interlayer resistance decreases, and if it exceeds 30 g / m 2 , the space factor decreases. More preferably, it is 4.0 to 15 g / m 2 .
  • the baking of the insulating film is preferably performed at a temperature in the range of 800 to 1000 ° C. for a soaking time of 10 to 300 seconds, also for flattening annealing. If the baking temperature is too low or the soaking time is too short, the flattening is insufficient and the yield is reduced due to poor shape. On the other hand, if the baking temperature is too high or the soaking time is too long, the effect of the flattening annealing is too strong to cause creep deformation and deteriorate magnetic properties.
  • the steel sheet to which the treatment liquid for forming an insulating film of the present invention is applied may be any type of carbon steel, high-tensile steel sheet, stainless steel sheet, and the like. Electromagnetic steel sheets are preferred.
  • a preferred composition of a steel sheet to which the treatment liquid for forming an insulating film is applied will be described by taking a method of manufacturing a grain-oriented electrical steel sheet as an example.
  • C 0.001 to 0.10 mass%
  • C is a component useful for the generation of Goss-oriented crystal grains, and in order to effectively exhibit such an effect, the content of 0.001 mass% or more is required. If the C content exceeds 0.10 mass%, decarburization failure occurs even by decarburization annealing, so C is preferably in the range of 0.001 to 0.10 mass%.
  • Si 1.0 to 5.0 mass%
  • Si is a component necessary for increasing electric resistance to reduce iron loss, stabilizing the BCC structure of iron and enabling high-temperature heat treatment, and requires at least 1.0 mass%. If the Si content exceeds 5.0 mass%, it becomes difficult to perform cold rolling. Therefore, the Si content is preferably 1.0 to 5.0 mass%.
  • Mn 0.01 to 1.0 mass% Mn not only effectively contributes to the improvement of hot brittleness of steel, but also when S and Se are mixed, forms a precipitate such as MnS and MnSe to exhibit a function as an inhibitor. If the content of Mn is less than 0.01 mass%, the above effect is insufficient. On the other hand, if it exceeds 1.0 mass%, the particle size of precipitates such as MnSe becomes coarse and the effect as an inhibitor is lost. , Mn are preferably in the range of 0.01 to 1.0 mass%.
  • Al 0.003 to 0.050 mass%
  • Al is a useful component that forms AlN in the steel and acts as an inhibitor as a dispersed second phase. However, if the addition amount is less than 0.003 mass%, a sufficient precipitation amount cannot be secured. On the other hand, if the addition exceeds 0.050 mass%, AlN is coarsely precipitated and the action as an inhibitor is lost. Al is preferably in the range of 0.003 to 0.050 mass%.
  • N 0.001 to 0.020 mass% N is also a component necessary for forming AlN like Al. If the amount is less than 0.001 mass%, the precipitation of AlN is insufficient. On the other hand, if added in excess of 0.020 mass%, swelling and the like will occur during slab heating, so N is preferably in the range of 0.001 to 0.020 mass%.
  • S or Se is a useful component that combines with Mn and Cu to form MnSe, MnS, Cu 2 -xSe, and Cu 2 -xS, and acts as an inhibitor as a dispersed second phase in steel. If the total content of these S and Se is less than 0.001 mass%, the effect of the addition is poor. On the other hand, when the content exceeds 0.05 mass%, not only incomplete solid solution at the time of heating the slab but also a defect of the product surface is caused. The range of 05 mass% is preferable.
  • B 0.001 to 0.01 mass%
  • Ge 0.001 to 0.1 mass%
  • P 0.005 to 0. 1 mass%
  • Te 0.005 to 0.1 mass%
  • Nb 0.005 to 0.1 mass%
  • Ti 0.005 to 0.1 mass%
  • V 0.005 to 0.1 mass%
  • the balance is Fe and inevitable impurities.
  • Steel having the above-mentioned preferred composition is melted by a conventionally known refining process, and is made into a steel material (steel slab) by using a continuous casting method or an ingot-bulking rolling method. Thereafter, the steel slab is hot-rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing as necessary, and then subjected to one or two or more cold-rolling steps with intermediate annealing to obtain a cold-rolled sheet having a final thickness.
  • Rolled sheet is melted by a conventionally known refining process, and is made into a steel material (steel slab) by using a continuous casting method or an ingot-bulking rolling method. Thereafter, the steel slab is hot-rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing as necessary, and then subjected to one or two or more cold-rolling steps with intermediate annealing to obtain a cold-rolled sheet having a final thickness.
  • Rolled sheet is
  • the treatment liquid for forming an insulating film obtained by the production method of the present invention is applied, and it can be produced by a production method comprising a series of steps through flattening annealing also serving as baking.
  • Conventionally known conditions can be adopted for the manufacturing conditions of the processing solution for forming an insulating film and the manufacturing conditions other than the baking conditions of the processing solution for forming an insulating film described above, and there is no particular limitation.
  • a separating agent mainly composed of Al 2 O 3 or the like after decarburizing annealing, forsterite is not formed after final finishing annealing, and then the crystalline material is formed by a method such as CVD, PVD, sol-gel method, and steel sheet oxidation. Is formed, and then a treatment liquid for forming an insulating film obtained by the production method of the present invention is applied to form an insulating film.
  • a zirconia sol was prepared by using an aqueous solution of magnesium monophosphate (Mg (H 2 PO 4 ) 2 ) and 85% phosphoric acid (H 3 PO 4 ) as shown in Table 2 as a phosphate ion source.
  • Liquid A shown in Table 2 was prepared using (Taiki Chemical's Biral Zr-C20) as a particulate metal compound source (metal element: Zr).
  • a liquid B shown in Table 2 was prepared using a zirconia sol and an 85% phosphoric acid aqueous solution. In addition, the liquid volume was adjusted using pure water.
  • a finish-annealed grain-oriented electrical steel sheet having a thickness of 0.23 mm was prepared.
  • each of the treatment liquids for forming an insulating coating shown in Table 2 was applied so that the basis weight after drying on both surfaces was 30 g / m 2, and then the coating was performed at 850 ° C. and 30 ° C.
  • the baking process was performed under the conditions of 100% N 2 atmosphere for 2 seconds. Thereafter, a test piece for testing described later was sampled by shearing. Thereafter, for the applied tension test, strain relief annealing was performed at 800 ° C. for 2 hours in an N 2 100% atmosphere.
  • the applied tension to the steel sheet was defined as the tension in the rolling direction, and was calculated using the following equation (1) from the amount of warpage of the steel sheet after the coating on one surface was peeled off using an alkali, an acid or the like.
  • the applied tension was determined to be 8.0 MPa.
  • the space factor was measured by the method specified in JIS C2550. The value of the space factor varies depending on the thickness of the sheet, but 96.0% or more of the steel sheet having a thickness of 0.23 mm according to the present embodiment was determined to be good.
  • Interlayer insulation is measured according to the method A among the measurement methods of the interlayer resistance test described in JIS C 2550, and the total current value flowing through the contact is defined as the interlayer resistance current. A value of 0.20A or less was judged to be good.
  • each of the phosphates shown in Table 3 and an aqueous solution of 85% phosphoric acid (H 3 PO 4 ) were used as a phosphate ion source, and colloidal silica (ST-C manufactured by Nissan Chemical Industries, Ltd.) Liquid A was prepared.
  • liquid B shown in Table 3 was prepared using titania sol (NTB-100 manufactured by Showa Denko) and magnesium oxide (vapor phase MgO (500A) manufactured by Ube Materials) as a particulate metal compound source.
  • the liquid volume was adjusted to a total of 1000 L using pure water.
  • the concentration of the particulate metal compound in the liquid A and the concentration of the phosphate ion in the liquid B are both 0 mol / L.
  • a finish-annealed grain-oriented electrical steel sheet having a thickness of 0.20 mm was prepared.
  • each of the insulating coating treatment liquids shown in Table 3 was applied so that the basis weight of the insulating coating after drying was 15 g / m 2 on both sides, and then 900 ° C.
  • the baking treatment was performed for 30 seconds under an atmosphere of 100% N 2 .
  • a test piece for testing described later was sampled by shearing.
  • strain relief annealing was performed at 800 ° C. for 2 hours in an N 2 100% atmosphere.
  • ⁇ ⁇ The characteristics of the insulating coating of the grain-oriented electrical steel sheet thus obtained were investigated.
  • the applied tension, the moisture absorption resistance, the appearance, and the space factor were evaluated, and the evaluation was performed in the same manner as in Example 1.
  • the value of the space factor differs depending on the plate thickness, 95.0% or more was determined to be good in the present example in which the plate thickness was 0.20 mm.
  • Colloidal silica ST-O manufactured by Nissan Chemical Industries, Ltd. was used as a raw material of the treatment liquid for forming an insulating film, using each phosphate listed in Table 3 and an aqueous solution of 85% phosphoric acid (H 3 PO 4 ) as a phosphate ion source. Liquid A containing was prepared.
  • Liquid B shown in Table 4 was prepared using 2 (all of which were obtained by pulverizing a commercially available reagent and having a particle size of 0.5 ⁇ m) as a source of a particulate metal compound. In addition, the liquid volume was adjusted to a total of 1000 L using pure water.
  • a finish-annealed grain-oriented electrical steel sheet having a thickness of 0.27 mm was prepared.
  • various insulating coating treatment liquids shown in Table 4 were applied so that the basis weight of the insulating coating after drying was 8.0 g / m 2 on both sides, and then 820.
  • the baking treatment was performed at 30 ° C. for 30 seconds in an atmosphere of 100% N 2 .
  • a test piece for testing described later was sampled by shearing.
  • strain relief annealing was performed at 800 ° C. for 2 hours in an N 2 100% atmosphere.
  • the present invention can obtain good insulating film properties. Further, it can be seen that by performing the treatment with the high-pressure disperser, each characteristic of the applied tension, the phosphorus elution amount, and the space factor is significantly improved.
  • any of the examples of the present invention can be shipped as a final product, leading to an improvement in productivity.
  • the particle size distribution of the treatment liquid for forming an insulating film of No. 11 was measured.
  • the particle size distribution was measured using an ultrasonic particle size distribution analyzer (OPUS, manufactured by Japan Laser Corporation).
  • OPO ultrasonic particle size distribution analyzer
  • the particle size (D50, median type) was 0.087 ⁇ m.
  • this treatment liquid was subjected to additional stirring for 1 minute using a turbine stator type disperser (L5MA, manufactured by Silverson).
  • L5MA turbine stator type disperser
  • the average particle size (D50, median type) was 0.0083 ⁇ m and the degree of dispersion was advanced.
  • the properties of the insulating film were evaluated in the same manner as in Example 1.
  • the applied tension was 12.6 MPa
  • the amount of phosphorus eluted was 11 ⁇ g / 150 cm 2 , indicating that the properties were better than before the additional stirring treatment. It was confirmed.
  • the present invention relates to the production of a treatment solution for forming an insulating film containing phosphate ions and a particulate metal compound, in order to effectively prevent a decrease in moisture absorption resistance due to dissolution of phosphate ions.
  • a problem arises when applying a method using various kinds of particulate metal compounds to the treatment liquid for forming the insulating film of the particulate metal compound.
  • Dispersion can be stably dispersed at a low cost compared to a high-cost method such as surface treatment of a metal compound, and as a result, an insulating film having a large moisture absorption resistance and a large applied tension can be obtained.
  • a treatment liquid can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

リン酸イオンおよび金属化合物を含むリン酸塩被膜を形成する絶縁被膜形成用処理液において、耐吸湿性、付与張力を向上する技術を安定的に適用することができる絶縁被膜形成用処理液の製造方法、および、絶縁被膜形成用処理液を用いた絶縁被膜付き電磁鋼板の製造方法を提供することを目的とする。 リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合し、液Aと液Bの混合開始後60秒以内にタービンステータ型の高速撹拌機にてタービン外周部の周速が10m/s以上になるように撹拌することを特徴とする。

Description

絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
 本発明は、リン酸イオンおよび金属化合物を含む絶縁被膜処理液の製造方法、および、絶縁被膜付き鋼板の製造方法、ならびに、絶縁被膜形成用処理液の製造装置に関する。
 一般に、耐熱性のある絶縁被膜としてAl、Mg、Caといった多価金属のリン酸塩をベースとしたリン酸塩被膜が知られている。方向性電磁鋼板においては、絶縁性、加工性および防錆性等を付与するために、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜とその上に形成されるリン酸塩系の上塗り被膜を施すことが一般的である。
 これらの被膜は高温で形成され、しかも低い熱膨張率を持つことから、室温まで下がったときの鋼板と被膜との熱膨張率の差異により鋼板に張力を付与し、鉄損を低減させる効果がある。そのため、できるだけ高い張力を鋼板に付与することが望まれている。
 このような要望を満たすために、従来から種々の被膜が提案されている。例えば、特許文献1には、リン酸マグネシウム、コロイド状シリカを主体とする被膜が提案されている。また、特許文献2には、リン酸アルミニウム、コロイド状シリカおよび無水クロム酸およびクロム酸塩の1種または2種以上を主体とする被膜が提案されている。いずれの文献においてもリン酸塩被膜に特有な耐吸湿性の劣化を回避するためや、熱膨張係数を低下させるためには、無水クロム酸、クロム酸塩、重クロム酸塩等のクロム酸類が使用されている。
 一方、近年の環境保全への関心の高まりにより、クロムや鉛等の有害物質を含まない製品に対する要望が高まっており、方向性電磁鋼板においてもクロムフリー被膜の開発が望まれていた。しかし、クロムフリー被膜の場合、著しい耐吸湿性の低下や張力付与不足の問題が発生するため、クロムフリーとすることができなかった。
 耐吸湿性の低下や張力付与不足の問題を解決する方法として、特許文献3には、リン酸塩、コロイダルシリカに酸化物コロイド状物質を添加する方法が開示されている。特許文献4には、リン酸塩、コロイダルシリカに、Fe、Al、Ga、Ti、Zrなどの金属元素を含有するコロイド状化合物を含有させる技術が開示されている。特許文献5には、リン酸塩、シリカにAl、TiO、ZrOといった粒子を含有させる技術が開示されている。特許文献6には、リン酸塩、コロイド状シリカにリン酸ジルコニウム系化合物の微粒子を含有させる技術が開示されている。特許文献7には、金属リン酸塩、コロイドシリカナノ粒子、中空ナノ粒子、セラミックスナノファイバー、メソポーラスナノ粒子を含有させる技術が開示されている。
特開昭50-79442号公報 特開昭48-39338号公報 特開2000-169972号公報 特開2007-23329号公報 特表2017-511840号公報 特開2017-137540号公報 特表2018-504516号公報
 しかしながら、特許文献3~7に記載の技術では、耐吸湿性や付与張力のばらつきが大きく、安定して良好な特性を得ることができなかった。
 本発明は、上記の実情に鑑み開発されたもので、リン酸および/またはリン酸塩と粒子状の金属化合物とを含む絶縁被膜形成用処理液において、耐吸湿性、付与張力を向上する技術を安定的に適用することができる絶縁被膜形成用処理液の製造方法、および、この絶縁被膜形成用処理液を用いた絶縁被膜付き鋼板の製造方法、ならびに、絶縁被膜形成用処理液の製造装置を提供することを目的とする。
 上記の課題を解決すべく、本発明者らは、粒子状の金属化合物(ZrO:平均粒径100nm)を、リン酸および/またはリン酸塩をベースとする絶縁被膜形成用処理液に添加して被膜を形成し、良好な特性(被膜張力が8.0MPa以上、リン溶出量が150μg/150cm以下)が得られた場合と、良好な特性が得られなかった場合の鋼板サンプルを比較して、次の知見を得た。
 良好な特性を得た鋼板サンプルの表面をSEMで観察した結果を図1に、良好な結果を得られなかった鋼板サンプルの表面をSEMで観察した結果を図2に、それぞれ示す。良好な結果が得られなかった鋼板サンプルの表面には、凸部とそれに伴うワレが多数認められた。そこで本発明者らは凸部形成の原因の究明を行ったところ、凸部ではZrOの大きな凝集体が認められた。さらに凝集体の形成原因を調査したところ、絶縁被膜形成用処理液の原料であるリン酸アルミニウム水溶液やリン酸マグネシウム水溶液といったリン酸イオンを含む水溶液とZrO粒子を分散した液を混合した際、pHの変動などによりZrO粒子が凝集してしまうことが原因であることが分かった。
 このような凝集を回避するために、調合する処理液中の成分の性質に応じて、粒子状の金属化合物の粒子表面に対するコーティング処理などが考えられる。しかしながら、過度の試行錯誤が必要となり、開発できたとしても製造コストの上昇を招く。そこで安価な方法として、絶縁被膜性能を低下させない程度に塗布焼き付け後の鋼板表面の凝集物密度を安定的に低下できる絶縁被膜処理液を製造する方法を考え、本発明に至った。なお、絶縁被膜性能を低下させない程度の塗布焼き付け後の鋼板表面の凝集物密度は、1.0個/10000μm以下である。
 すなわち、本発明の要旨構成は、次の通りである。
[1]リン酸および/またはリン酸塩と粒子状の金属化合物とを含む絶縁被膜形成用処理液の製造方法であって、
リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、
粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合し、
前記液Aと前記液Bの混合開始後60秒以内にタービンステータ型の高速撹拌機にてタービン外周部の周速が10m/s以上になるように撹拌する絶縁被膜形成用処理液の製造方法。
[2]前記高速撹拌機にて撹拌後、さらに高圧分散機により20MPa以上の圧力にて分散処理を行う[1]に記載の絶縁被膜形成用処理液の製造方法。
[3]前記絶縁被膜形成用処理液は、さらにコロイド状シリカを含む[1]または[2]に記載の絶縁被膜形成用処理液の製造方法。
[4]前記粒子状の金属化合物が、Mg、Al、Ti、Zn、Y、Zr、Hfのうちから選ばれる1種または2種以上の元素を含む[1]~[3]のいずれかに記載の絶縁被膜形成用処理液の製造方法。
[5]前記粒子状の金属化合物が少なくとも1種以上の酸化物を含む[1]~[4]のいずれかに記載の絶縁被膜形成用処理液の製造方法。
[6]前記粒子状の金属化合物が少なくとも1種以上の窒化物を含む[1]~[4]のいずれかに記載の絶縁被膜形成用処理液の製造方法。
[7]前記粒子状の金属化合物の粒子径が3.0nm以上2.0μm以下である[1]~[6]のいずれかに記載の絶縁被膜形成用処理液の製造方法。
[8][1]~[7]のいずれかに記載の製造方法により得られる絶縁被膜形成用処理液を、鋼板表面に塗布した後、焼付け処理を行う絶縁被膜付き鋼板の製造方法。
[9]前記鋼板が、方向性電磁鋼板である[8]に記載の絶縁被膜付き鋼板の製造方法。
[10]リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、
粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合させる混合槽と、
タービンステータ型の高速撹拌機とを備え、
前記液Aと前記液Bの混合開始後60秒以内にタービンステータ型の高速撹拌機にてタービン外周部の周速が10m/s以上になるように撹拌する
絶縁被膜形成用処理液の製造装置。
[11]前記高速撹拌機にて撹拌後の液を、前記混合槽に循環させる循環経路をさらに備える[10]に記載の絶縁被膜形成用処理液の製造装置。
[12]前記高速撹拌機にて撹拌後の液の粒度分布を測定する粒度分布測定装置をさらに備える[10]または[11]に記載の絶縁被膜形成用処理液の製造装置。
 本発明によれば、塗布焼付け後の表面に被膜性能を低下させるような凝集物を発生させない絶縁被膜形成用処理液を製造することができ、低コストで、安定的に耐吸湿性や付与張力が大きい絶縁被膜を得ることができる。
図1は、良好な特性を得た鋼板サンプルの表面をSEMで観察した結果である。 図2は、良好な特性を得られなかった鋼板サンプルの表面をSEMで観察した結果である。 図3は、本発明の絶縁被膜形成用処理液の製造装置を示す概略図である。
 以下、本発明の基礎となった実験結果について説明する。
 絶縁被膜形成用処理液を塗布焼付けする素材として、公知の方法で製造され、板厚:0.23mmの仕上焼鈍済みのフォルステライト被膜を有する方向性電磁鋼板を使用した。絶縁被膜形成用処理液は、次に示す方法で製造した。まず、液Aとして第一リン酸マグネシウム水溶液を固形分換算で30gと、コロイド状シリカを固形分換算で20gとを、純水250mlに配合した。このとき、液A中のリン酸イオンは、1.10mol/L、粒子状の金属化合物は添加されていなかった。また、液Bとして粒子状の金属化合物として、固形分(ZrO)換算で15質量%のZrOゾルを150ml準備した。このとき、液B中の粒子状の金属化合物は、金属(Zr)換算で1.36mol/L、リン酸イオンは添加されていなかった。その後、液Aと液Bを表1に記載の2種類の撹拌方法で混合して、絶縁被膜形成用処理液を製造した。
 なお、プロペラ撹拌機としては、アズワン製トルネード撹拌機にΦ100mmのプロペラ型撹拌翼を取り付けたものを3000rpmで使用した。また、タービンステータ型の撹拌機としては、シルバーソン製ラボミキサーL5MAを5000rpmで使用した。なお、これらの撹拌機は回転物のサイズが異なるが、回転物先端周速が15.7m/sとなるように、それぞれの撹拌機で回転数を設定した。
 作製した処理液を、両面合計の乾燥後目付け量で10g/mとなるように塗布した。次に、乾燥炉で300℃、1分間乾燥し、その後、平坦化焼鈍と絶縁被膜の焼付けを兼ねた熱処理(800℃、2分間、N100%)を施した。その後、後述する試験用の試験片をせん断して採取した。また、付与張力試験用の試験片には、さらにその後、歪取焼鈍(800℃、2時間、N100%雰囲気)を行った。
 かくして得られた試料の、付与張力および耐吸湿性を調査した。付与張力は、圧延方向の張力とした。圧延方向長さ280mm×圧延直角方向長さ30mmの試験片の一方の面の絶縁被膜が除去されないように粘着テープでマスキングしてから絶縁被膜のうち片面を水酸化ナトリウム水溶液を用いて剥離して除去し、次いで試験片の片端30mmを固定して試験片250mmの部分を測定長さとしてそり量を測定し、下記式(I)を用いて付与張力を算出した。
鋼板への付与張力[MPa]=鋼板ヤング率[GPa]×板厚[mm]×そり量[mm]÷(測定長さ[mm])×10・・・式(I)
ただし、鋼板ヤング率は、132GPaとした。付与張力が8.0MPa以上を良好(被膜張力に優れる)と評価した。
 耐吸湿性は、リンの溶出試験により評価した。この試験は、50mm×50mmの試験片3枚を100℃の蒸留水中で5分間沸騰し、リンの溶出量[μg/150cm]を測定して絶縁被膜の水に対する溶解のしやすさを評価した。P(リン)の溶出量が150[μg/150cm]以下を良好(耐吸湿性に優れる)とした。Pの溶出量の測定方法は特に限定されず、例えばICP発光分析による定量分析でP溶出量を測定することができる。
 表1に、付与張力およびリンの溶出量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、タービンステータ型の撹拌機を用いて絶縁被膜形成用処理液を作製することにより、付与張力および耐吸湿性が良好な絶縁被膜を得ることができることがわかった。
 次に、本発明の各構成要件の限定理由について述べる。
 まず、本発明の絶縁被膜形成用処理液の製造方法について説明する。絶縁被膜形成用処理液にはリン酸イオン(リン酸および/またはリン酸塩)と粒子状の金属化合物が含まれている必要がある。リン酸イオン(リン酸および/またはリン酸塩)は、乾燥焼付の過程で脱水縮合反応によりポリマー化し絶縁被膜の骨格を形成するため必須の成分である。ポリマー化したリン酸は大気中の水分などと反応して加水分解されやすく、耐吸湿性が劣るが、粒子状の金属化合物を含有させることで加水分解反応を抑制できる。したがって、本発明において、粒子状の金属化合物は必須の成分である。
 リン酸イオンは粒子状の金属化合物表面に物理的、化学的に吸着しやすく不用意に両者を混合すると粒子状の金属化合物が凝集してしまうため、混合前の液(原料液)では含有量を制限しておく必要がある。
 なお、リン酸イオンは、水溶液中で複数の形態をとり得るため、PO 3-はもちろんのことHPO 2-、HPO などのリン酸水素イオンなども含む。
 そこで本発明では、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合前の液(原料液)とする。
 液Aにおいて、リン酸および/またはリン酸塩がPO 3-換算で0.20mol/L未満では、後述する撹拌混合・分散処理後の液中のリン酸イオン量が少なく十分な厚みの被膜を形成できないため絶縁性が劣化してしまう。一方、リン酸および/またはリン酸塩がPO 3-換算で10.0mol/L超えでは、リン酸イオンが過剰に存在するため、本願の撹拌処理によっても粒子状の金属化合物を分散させることが困難となる。このため、液Aにおいて、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10.0mol/L以下とする。また、液Aにおいて、粒子状の金属化合物を金属換算で0.50mol/L未満とする必要がある。粒子状の金属化合物を金属換算で0.50mol/L以上含むと、凝集物が生成してしまう。好ましくは0.30mol/L未満である。
 同様に、液Bにおいて、リン酸および/またはリン酸塩がPO 3-換算で0.20mol/L未満とする必要がある。液Bにおいて、粒子状の金属化合物が0.50mol/L未満では、リン酸イオンに対して十分な量の粒子状の金属化合物を混合するための液量が多くなってしまって混合後の液中のリン酸イオンの濃度が低くなりすぎ、十分な厚みの被膜を形成できなくなり、絶縁性が劣化する。一方、粒子状の金属化合物が20.0mol/L超えでは、処理液中での粒子状の金属化合物同士の距離が近くなりすぎて凝集しやすくなる。このため、液Bにおいて、粒子状の金属化合物は20.0mol/L以下、好ましくは、18.0mol/L以下とする。
 凝集の恐れを避けるために、撹拌を制御しない状態ではリン酸および/またはリン酸塩と粒子状の金属化合物とは、それぞれ別々の液としておくことが理想である。なお、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満、もしくは、粒子状の金属化合物が金属換算で0.50mol/L未満の場合、混合、撹拌方法によらず、凝集することはなく、同一の液に混入していてもよい。好ましくは、粒子状の金属化合物が金属換算で0.30mol/L未満である。
 液Aと液Bをそれぞれ用意し下記の方法によって混合させることにより、リン酸イオンによる粒子状の金属化合物の凝集を防止し、塗布焼付け後の表面に被膜性能を低下させるような凝集物を発生させない程度の分散を可能とすることができる。また、液A、液Bには、それぞれ凝集の懸念がない物質を予め調合しておくことも可能である。たとえば、コロイド状シリカなどは液Aにも液Bにも予め混合が可能であり、その場合の撹拌方法については特に限定するものではなく、プロペラ撹拌機、ラボスケールにおいてはマグネティックスターラーや撹拌棒といった汎用の混合方式で十分である。
 上記の液Aと液Bを混合するにあたっては、混合開始後60秒以内にタービンステータ型(あるいはローターステータ型ともいう)の高速撹拌機にて撹拌することが必要である。混合開始から60秒を超えて撹拌しない状態であると、粒子状の金属化合物の凝集体が強固となり、タービンステータ型高速撹拌機で攪拌しても凝集した粒子状の金属化合物の分散が難しくなる。より好ましくは45秒以内である。なお、混合開始後60秒以内にタービンステータ型の高速撹拌機にて液Aと液Bが撹拌されればよい。このため、図3に示すように、液Aの槽(A液槽)と液Bの槽(B液槽)を準備し、A液槽とB液槽から独立あるいは途中で混合されたものを高速撹拌機に送るという構成であればよい。また、液Aと液Bを混合した後の混合液槽は、例えば、配管などを介してタービンステータ型の高速撹拌機と接続されていてもよい。なお、配管などの接続部を設ける場合、液Aと液Bの混合開始から60秒以内に高速撹拌機にて撹拌するよう、流速や流路を適宜設計すればよい。
 また、高速撹拌機で撹拌した後の液を混合槽から高速撹拌機に再び投入し、循環させる循環経路をさらに備えてもよい。撹拌後の液を循環させることにより、分散困難な原料でも十分な分散状態を得ることができる。
 液Aと液Bをタービンステータ型高速撹拌機で撹拌して絶縁被膜処理液を製造したあと、塗布するまでの間は、静置、通常の方法で撹拌、タービンステータ型高速撹拌機で撹拌など、特に限定するものではないが、混合させて粒子状の金属化合物を分散させるために用いる装置としては、ビーズミルといったメディア分散機は不純物の混入の恐れがあり適さない。メディアレス分散機のうち、タービンステータ型の高速撹拌機であればステータを通過した液のみを回収することで、確実に処理部分(ステータを通過した液)と未処理部分(ステータを通過していない液)を分離できるため、本発明に適している。撹拌翼先端部分の周速は早ければ早いほど好ましい。本発明では、タービン外周部の周速が10m/s以上とする。好ましくはタービン外周部の周速が40m/s以上である。
 タービンステータ型の高速撹拌機の例としては、シルバーソン製ハイシアーミキサー、大平洋機工株式会社製キャビトロン、株式会社パウレック製クワドロワイトロンZなどがある。
 なお、液Aと液Bの混合開始とは、液Aと液Bが接触し始めてからという意味である。
 さらに粒子状の金属化合物の分散度を高めたい場合には、タービンステータ型高速撹拌機で処理したのち、高圧分散機による処理をおこなうのが好ましい。高圧分散機とは、被処理液に高圧力をかけてその後、圧が解放する際に液にせん断力などを与えることで固体を分散するもので、例えば湿式ジェットミルと呼ばれる装置であり、市販装置ではスギノマシン株式会社製のスターバースト、吉田機械興業株式会社製のナノベータ、株式会社常光製のナノジェットパルなどがある。処理時の圧力は高いほどよく、20MPa以上が好ましく、50MPa以上がさらに好ましい。
 また、本発明では、高速撹拌機で撹拌した後の液の粒度分布を測定する粒度分布測定装置をさらに備えてもよい。粒度分布測定装置としては、特に限定するものではないが、インラインで粒度分布を測定する場合、例えば、超音波を用いた粒度分布測定装置が挙げられる。なお、高圧分散機を備えている場合は、高速分散機による処理後の液の粒度分布を測定するように粒度分布測定装置を設置すればよい。粒度分布の測定値が設定範囲となるように、高速撹拌機や高圧分散機の操業条件にフィードバックするとさらに好ましい(図3参照)。
 本発明において、絶縁被膜形成用処理液にはさらに、付与張力を高めるためコロイド状シリカを含ませることができる。コロイド状シリカは、液Aおよび/または液Bに含んでいてもよく、また液Aと液Bの混合時に含んでもよい。もしくは、液Aと液Bの混合後(分散処理前後のいずれでも構わない)に含んでもよい。また、コロイド状シリカは複数回含むタイミングがあってもよい。コロイド状シリカの含有量としては、リン酸および/またはリン酸塩をPO 3-換算で100質量部に対してSiO固形分換算で60~200質量部含有させるのが好ましい。
 液A、液Bに用いるリン酸イオン源としては、オルトリン酸(HPO)水溶液、あるいはMg、Ca、Ba、Sr、Zn、Al及びMnのリン酸塩のうちから選ばれる1種または2種以上を用いるのが好ましい。アルカリ金属(Li、Na、Kなど)のリン酸塩は耐吸湿性が著しく劣るため不適である。一般的には、1種類のリン酸塩を用いるが、2種以上のリン酸塩を混合して用いることで絶縁被膜(コーティング)の物性値を緻密に制御することができる。リン酸塩の種類としては、第一リン酸塩(重リン酸塩)が入手容易であり好適である。
 粒子状の金属化合物としてはリン酸イオンの補足能力の観点から、価数が大きい、もしくは、イオン半径が小さい金属元素の粒子状の金属化合物が好ましく、具体的にはMg、Al、Ti、Zn、Y、Zr、Hfのうちから選ばれる1種または2種以上の元素を含むことが好ましい。さらに、粒子状の金属化合物の形態は酸化物または窒化物が好ましく、その中でも水と反応しにくいものがより好ましい。なお、金属の定義であるが、ホウ素(B)、珪素(Si)、ゲルマニウム(Ge)ヒ素(As)アンチモン(Sb)、テルル(Te)は半金属であり、金属には含まない。
 粒子状の金属化合物の粒子径は、リン酸イオンの補足能の観点から、粒子径は小さいほうが比表面積が大きくなるため好ましい。一方、表面エネルギーの観点から、粒子径が大きいほうが絶縁被膜形成用処理液中での粒子状の金属化合物の分散性が向上する。そこで本発明では、粒子状の金属化合物の粒子径は3.0nm以上2.0μm以下とすることが好ましい。ここで粒子径とは、処理液中で金属化合物が凝集した場合の粒子径ではなく、粒子1つ1つの粒子径をSEMやTEMで観察・撮影して、その面積を円相当とした際の平均粒子径である。なお、一次粒子が焼結して一体となったものは1つの粒子とみなす。
 上記のようにして得られた絶縁被膜形成用処理液を鋼板の表面に塗布、焼付けて絶縁被膜を形成する。絶縁被膜の焼付け後目付け量は、両面合計で4.0~30g/mとすることが好ましい。4.0g/m未満では層間抵抗が低下し、また、30g/m超えでは占積率が低下する。4.0~15g/mとすることがさらに好ましい。
 絶縁被膜の焼付けは、平坦化焼鈍を兼ねて800~1000℃の温度範囲で10~300秒の均熱時間とすることが好ましい。焼付け温度が低すぎたり、均熱時間が短すぎると、平坦化が不十分で形状不良のために歩留りが低下する。一方、焼付け温度が高すぎたり、均熱時間が長すぎると、平坦化焼鈍の効果が強すぎてクリープ変形して磁気特性が劣化する。
 本発明の絶縁被膜形成用処理液を塗布する鋼板、すなわち、本発明で対象とする鋼板は、炭素鋼、高張力鋼板、ステンレス鋼板などどのようなものであっても構わないが、特に方向性電磁鋼板が好適である。
 また、本発明において、絶縁被膜形成用処理液を塗布する鋼板の好ましい成分組成について、方向性電磁鋼板の製造方法を一例に説明する。
 鋼板の成分としては次の範囲が好ましい。
 C:0.001~0.10mass%
 Cはゴス方位結晶粒の発生に有用な成分であり、かかる作用を有効に発揮させるためには0.001mass%以上の含有を必要とする。C含有量が0.10mass%を超えると脱炭焼鈍によっても脱炭不良を起こすので、Cは0.001~0.10mass%の範囲が好ましい。
 Si:1.0~5.0mass%
 Siは、電気抵抗を高めて鉄損を低下させるとともに、鉄のBCC組織を安定化させて高温の熱処理を可能とするために必要な成分であり、少なくとも1.0mass%を必要とする。Si含有量が5.0mass%を超えると冷間圧延が困難となるので、Siは1.0~5.0mass%が好ましい。
 Mn:0.01~1.0mass%
 Mnは鋼の熱間脆性の改善に有効に寄与するだけでなく、SやSeが混在している場合には、MnSやMnSe等の析出物を形成し抑制剤としての機能を発揮する。Mnの含有量が0.01mass%より少ないと上記の効果が不十分であり、一方、1.0mass%を超えるとMnSe等の析出物の粒径が粗大化してインヒビターとしての効果が失われるため、Mnは0.01~1.0mass%の範囲が好ましい。
 sol.Al:0.003~0.050mass%
 Alは鋼中でAlNを形成して分散第二相としてインヒビターの作用をする有用成分であるが、添加量が0.003mass%未満では十分に析出量が確保できない。一方、0.050mass%を超えて添加するとAlNが粗大に析出してインヒビターとしての作用が失われるため、sol.Alとして0.003~0.050mass%の範囲が好ましい。
 N:0.001~0.020mass%
 NもAlと同様にAlNを形成するために必要な成分である。添加量が0.001mass%を下回るとAlNの析出が不十分である。一方、0.020mass%を超えて添加するとスラブ加熱時にふくれ等を生じるため、Nは0.001~0.020mass%の範囲が好ましい。
 S及びSeのうちから選んだ1種又は2種:0.001~0.05mass%
 S又はSeは、MnやCuと結合してMnSe、MnS、Cu-xSe、Cu-xSを形成し鋼中の分散第二相としてインヒビターの作用を発揮する有用成分である。これらS、Seの合計の含有量が0.001mass%に満たないとその添加効果に乏しい。一方、0.05mass%を超える場合はスラブ加熱時の固溶が不完全となるだけでなく、製品表面の欠陥の原因ともなるため、単独添加又は複合添加いずれの場合も0.001~0.05mass%の範囲が好ましい。
 Cu:0.01~0.2mass%、Ni:0.01~0.5mass%、Cr:0.01~0.5mass%、Sb:0.01~0.1mass%、Sn:0.01~0.5mass%、Mo:0.01~0.5mass%、Bi:0.001~0.1%massのうちから選ばれる1種または2種以上
 補助的なインヒビターとしての作用を有する元素を添加することで、さらなる磁性向上が可能である。このような元素として、結晶粒径や表面に偏析しやすい上記の元素が挙げられる。いずれも上記の添加量に満たない場合は、その効果が得られない。また、上記添加量を超えると被膜外観の不良や二次再結晶不良が発生しやすくなるので、上記範囲が好ましい。
 さらに、上記の成分に加えて、B:0.001~0.01mass%、Ge:0.001~0.1mass%、As:0.005~0.1mass%、P:0.005~0.1mass%、Te:0.005~0.1mass%、Nb:0.005~0.1mass%、Ti:0.005~0.1mass%、V:0.005~0.1mass%から選ばれる1種又は2種以上を鋼に添加することにより、抑制力がさらに強化されてより高い磁束密度を安定的に得ることができる。
 残部はFeおよび不可避不純物である。
 上記の好適な成分組成を有する鋼を従来公知の精錬プロセスで溶製し、連続鋳造法または造塊-分塊圧延法を用いて鋼素材(鋼スラブ)とする。その後、鋼スラブを熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む二回以上の冷間圧延を施して最終板厚の冷延板とする。次いで、一次再結晶焼鈍と脱炭焼鈍を施し、その後MgOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍を施しフォルステライトを主体とする被膜層を形成する。その後、本発明の製造方法により得られる絶縁被膜形成用処理液を塗布し、焼付けを兼ねた平坦化焼鈍を経る一連の工程からなる製造方法で製造することができる。絶縁被膜形成用処理液の製造条件や、上述した絶縁被膜形成用処理液の焼付け条件以外の製造条件については、従来公知の条件を採用することができ、特に制限はない。また、脱炭焼鈍後にAlなどを主体とする分離剤を塗布することにより最終仕上げ焼鈍後にフォルステライトを形成することなく、その後CVD、PVD、ゾルゲル法、鋼板酸化などの方法により結晶質を主体とする被膜を形成し、その後、本発明の製造方法により得られる絶縁被膜形成用処理液を塗布し、絶縁被膜を形成することもできる。
<絶縁被膜形成用処理液の検討>
 絶縁被膜形成用処理液の原料として、表2に示す第一リン酸マグネシウム(Mg(HPO)および85%リン酸(HPO)水溶液をリン酸イオン源とし、ジルコニアゾル(多木化学製バイラールZr-C20)を粒子状の金属化合物源(金属元素:Zr)として、表2に記載の液Aを準備した。また、同様に、ジルコニアゾルと85%リン酸水溶液を用いて、表2に記載の液Bを準備した。なお、液量は純水を用いて調整した。
 この液Aおよび液Bを、各々200ml混合し、混合から20秒後にタービンステータ型分散機(シルバーソン製 L5MA)にて1分間撹拌処理を行い、絶縁被膜形成用処理液を400ml準備した。
 次に、板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板を準備した。この方向性電磁鋼板を、リン酸酸洗後、表2に記載の各絶縁被膜形成用処理液を両面合計の乾燥後目付量で30g/mとなるように塗布したのち、850℃、30秒、N100%雰囲気の条件で焼付け処理を行った。その後、後述する試験用の試験片をせん断して採取した。付与張力試験用には、その後、800℃、2時間、N100%雰囲気で歪取焼鈍を実施した。
 このようにして得られた方向性電磁鋼板の絶縁被膜特性を調査した。なお、絶縁被膜特性の評価は次のようにして行った。
 (1)付与張力
 鋼板への付与張力は圧延方向の張力とし、片面の被膜をアルカリ、酸などを用いて剥離した後の鋼板のそり量から、下記式(1)を用いて算出した。
 鋼板への付与張力[MPa]=鋼板ヤング率[GPa]×板厚[mm]×そり量[mm]÷(そり測定長さ[mm])×10・・・式(1)
 ただし、鋼板ヤング率は、132GPaとした。
 付与張力は、8.0MPaを良好と判断とした。
 (2)耐吸湿性
 耐吸湿性は、リンの溶出試験により評価した。この試験は、50mm×50mmの試験片3枚を100℃の蒸留水中で5分間煮沸し、リンの溶出量[μg/150cm]を測定して張力被膜の水に対する溶解のしやすさを評価した。溶出量が150[μg/150cm]以下を良好(耐吸湿性に優れる)とした。Pの溶出量の測定方法はICP発光分析による定量分析でP溶出量を測定した。
 (3)被膜外観
 目視にて歪取り焼鈍後の絶縁被膜の外観均一性および光沢で判定した。なお、目視にて光沢がないものをざらつき有りと判断した。
 (4)占積率
 占積率は、JIS C 2550に定める方法にて測定した。占積率の値は、板厚により異なるが、本実施例の0.23mm厚の鋼板では96.0%以上を良好と判断とした。
 (5)層間絶縁性
 層間絶縁性は、JIS C 2550に記載された層間抵抗試験の測定方法のうち、A法に準拠して測定を行い、接触子に流れる全電流値を層間抵抗電流として、その値が0.20A以下を良好と判断した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明はいずれも、良好な絶縁被膜特性を得られることがわかる。
<撹拌方法の検討>
 絶縁被膜形成用処理液の原料として、表3に示す各リン酸塩および85%リン酸(HPO)水溶液をリン酸イオン源とし、コロイド状シリカ(日産化学製 ST-C)を含む液Aを準備した。また、同様に、チタニアゾル(昭和電工製NTB-100)と酸化マグネシウム(宇部マテリアルズ製 気相法MgO(500A))を粒子状の金属化合物源として、表3に記載の液Bを準備した。なお、液量は純水を用いて合計1000Lに調整した。なお、液Aの粒子状の金属化合物および液Bのリン酸イオンの濃度はいずれも0mol/Lである。
 この液Aおよび液Bを各々200L混合し、表3に記載の撹拌条件にて撹拌処理を行い、処理液を400L準備した。撹拌時間はいずれも2分とした。
 次に、板厚:0.20mmの仕上焼鈍済みの方向性電磁鋼板を準備した。この方向性電磁鋼板を、リン酸酸洗後、表3に記載の各絶縁被膜処理液を、乾燥後の絶縁被膜目付量で両面で15g/mとなるように塗布したのち、900℃、30秒、N100%雰囲気の条件で焼付け処理を行った。その後、後述する試験用の試験片をせん断して採取した。付与張力試験用には、その後、800℃、2時間、N100%雰囲気で歪取焼鈍を実施した。
 このようにして得られた方向性電磁鋼板の絶縁被膜特性を調査した。なお、絶縁被膜特性については、付与張力、耐吸湿性、外観および占積率を評価し、その評価方法は実施例1と同様の方法で行った。なお、占積率の値は、板厚により異なるため、板厚が0.20mmの本実施例では、95.0%以上を良好と判断した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明はいずれも良好な絶縁被膜特性を得られることがわかる。
<高圧分散処理ほか>
 絶縁被膜形成用処理液の原料として、表3に記載の各リン酸塩および85%リン酸(HPO)水溶液をリン酸イオン源とし、コロイド状シリカ(日産化学製 ST-O)を含む液Aを準備した。また、同様に、Al(多木化学製バイラールAl-C20)、ZnO(テイカ製MZ-300)、Y、HfO、ZrCa(PO、ZrWO(PO(いずれも市販の試薬を粉砕したもので粒径0.5μm)を粒子状の金属化合物源として、表4に記載の液Bを準備した。なお、液量は純水を用いて合計1000Lに調整した。
 この液Aおよび液Bを各々200L混合し、混合後10秒の間をおいてシルバーソン製ハイシアミキサーを用いて約5分間撹拌処理をおこなった。その後、さらに一部の実施例については表4に記載の高圧分散機により撹拌処理後に分散処理を施した。
 次に、板厚:0.27mmの仕上焼鈍済みの方向性電磁鋼板を準備した。この方向性電磁鋼板を、リン酸酸洗後、表4に記載の種々の絶縁被膜処理液を乾燥後の絶縁被膜目付量で両面で8.0g/mとなるように塗布したのち、820℃、30秒、N100%雰囲気の条件で焼付け処理を行った。その後、後述する試験用の試験片をせん断して採取した。付与張力試験用には、その後、800℃、2時間、N100%雰囲気で歪取焼鈍を実施した。
 このようにして得られた方向性電磁鋼板の絶縁被膜特性を調査した。なお、絶縁被膜特性については、付与張力、耐吸湿性、外観および占積率を評価し、その評価方法は実施例1と同様の方法で行った。なお、占積率の値は、板厚により異なるため、板厚が0.27mmの本実施例では、97.0%以上を良好と判断した。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明はいずれも良好な絶縁被膜特性を得られる。さらに、高圧分散機による処理をおこなうことによって、付与張力、リン溶出量、占積率の各特性が著しく向上することがわかる。
 なお、実施例2、3において、本発明の絶縁被膜形成用処理液の製造方法を適用することにより、本発明例はいずれも最終製品として出荷することができ、生産性の向上につながった。
 表2に記載のNo.11の絶縁被膜形成用処理液について、粒度分布を測定した。粒度分布は、超音波式の粒度分布測定装置(株式会社日本レーザー製、OPUS)を用いた。その結果、その結果、粒径(D50、メジアン系)は0.087μmであった。さらにこの処理液を実施例1と同様にタービンステータ型分散機(シルバーソン製、L5MA)にて1分間の追加の撹拌処理を実施した。その結果、平均粒径(D50、メジアン系)が0.0083μmと分散度が進んでいることが確認できた。さらに、実施例1と同様に絶縁被膜特性を評価したところ、付与張力が12.6MPa、リンの溶出量が11μg/150cmという結果になり、追加の撹拌処理前よりも良好な特性を示すことを確認した。
 以上より、本発明によれば、リン酸イオンおよび粒子状の金属化合物を含む絶縁被膜形成用処理液の製造に関し、リン酸イオンの溶出に起因する耐吸湿性の低下を効果的に防止するためや絶縁被膜が鋼板へ付与する引っ張り張力を増大させる目的のために、各種粒子状の金属化合物を用いる方法を適用する際に問題となる粒子状の金属化合物の絶縁被膜形成用処理液中への分散を、金属化合物に対して表面処理するといった高コストな方法に比べて、低コストで安定的に分散させることができ、その結果、耐吸湿性や付与張力が大きい絶縁被膜を得ることができる処理液を得ることができる。

Claims (12)

  1.  リン酸および/またはリン酸塩と粒子状の金属化合物とを含む絶縁被膜形成用処理液の製造方法であって、
    リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、
    粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合し、
    前記液Aと前記液Bの混合開始後60秒以内にタービンステータ型の高速撹拌機にてタービン外周部の周速が10m/s以上になるように撹拌する絶縁被膜形成用処理液の製造方法。
  2.  前記高速撹拌機にて撹拌後、さらに高圧分散機により20MPa以上の圧力にて分散処理を行う請求項1に記載の絶縁被膜形成用処理液の製造方法。
  3.  前記絶縁被膜形成用処理液は、さらにコロイド状シリカを含む請求項1または2に記載の絶縁被膜形成用処理液の製造方法。
  4.  前記粒子状の金属化合物が、Mg、Al、Ti、Zn、Y、Zr、Hfのうちから選ばれる1種または2種以上の元素を含む請求項1~3のいずれかに記載の絶縁被膜形成用処理液の製造方法。
  5.  前記粒子状の金属化合物が少なくとも1種以上の酸化物を含む請求項1~4のいずれかに記載の絶縁被膜形成用処理液の製造方法。
  6.  前記粒子状の金属化合物が少なくとも1種以上の窒化物を含む請求項1~4のいずれかに記載の絶縁被膜形成用処理液の製造方法。
  7.  前記粒子状の金属化合物の粒子径が3.0nm以上2.0μm以下である請求項1~6のいずれかに記載の絶縁被膜形成用処理液の製造方法。
  8.  請求項1~7のいずれかに記載の製造方法により得られる絶縁被膜形成用処理液を、鋼板表面に塗布した後、焼付け処理を行う絶縁被膜付き鋼板の製造方法。
  9.  前記鋼板が、方向性電磁鋼板である請求項8に記載の絶縁被膜付き鋼板の製造方法。
  10.  リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L以上10mol/L以下含み、かつ粒子状の金属化合物を金属換算で0.50mol/L未満含む液Aと、
    粒子状の金属化合物を金属換算で0.50mol/L以上20.0mol/L以下含み、リン酸および/またはリン酸塩をPO 3-換算で0.20mol/L未満含む液Bとを混合させる混合槽と、
    タービンステータ型の高速撹拌機とを備え、
    前記液Aと前記液Bの混合開始後60秒以内にタービンステータ型の高速撹拌機にてタービン外周部の周速が10m/s以上になるように撹拌する
    絶縁被膜形成用処理液の製造装置。
  11.  前記高速撹拌機にて撹拌後の液を、前記混合槽に循環させる循環経路をさらに備える請求項10に記載の絶縁被膜形成用処理液の製造装置。
  12.  前記高速撹拌機にて撹拌後の液の粒度分布を測定する粒度分布測定装置をさらに備える請求項10または11に記載の絶縁被膜形成用処理液の製造装置。
PCT/JP2019/025634 2018-08-17 2019-06-27 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置 WO2020036006A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980053049.4A CN112567073B (zh) 2018-08-17 2019-06-27 绝缘覆膜形成用处理液的制造方法和制造装置以及带有绝缘覆膜的钢板的制造方法
RU2021103853A RU2753539C1 (ru) 2018-08-17 2019-06-27 Способ производства раствора для обработки для формирования изоляционного покрытия, способ производства стального листа с нанесенным изолирующим покрытием и устройство для производства раствора для обработки для формирования изоляционного покрытия
JP2019554707A JP6642782B1 (ja) 2018-08-17 2019-06-27 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
EP22185359.1A EP4095285A1 (en) 2018-08-17 2019-06-27 A production apparatus for a treatment solution for forming an insulating coating
EP19850486.2A EP3839093B1 (en) 2018-08-17 2019-06-27 Production method for treatment solution for forming insulating coating and production method for steel sheet having insulating coating
KR1020217004038A KR102604342B1 (ko) 2018-08-17 2019-06-27 절연 피막 형성용 처리액의 제조 방법 및 절연 피막이 형성된 강판의 제조 방법 그리고 절연 피막 형성용 처리액의 제조 장치
US17/269,183 US20210269921A1 (en) 2018-08-17 2019-06-27 Production method for treatment solution for forming insulating coating, production method for steel sheet having insulating coating, and production apparatus for treatment solution for forming insulating coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018153520 2018-08-17
JP2018-153520 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020036006A1 true WO2020036006A1 (ja) 2020-02-20

Family

ID=69525445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025634 WO2020036006A1 (ja) 2018-08-17 2019-06-27 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置

Country Status (5)

Country Link
US (1) US20210269921A1 (ja)
EP (1) EP3839093B1 (ja)
KR (1) KR102604342B1 (ja)
RU (1) RU2753539C1 (ja)
WO (1) WO2020036006A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222450B1 (ja) * 2022-01-21 2023-02-15 Jfeスチール株式会社 前処理液および絶縁被膜付き電磁鋼板の製造方法
WO2023139847A1 (ja) * 2022-01-21 2023-07-27 Jfeスチール株式会社 前処理液および絶縁被膜付き電磁鋼板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116013678B (zh) * 2023-03-02 2023-10-17 深圳信义磁性材料有限公司 一种低损耗的铁硅磁粉芯材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394075A (ja) * 1989-09-04 1991-04-18 Nippon Parkerizing Co Ltd 表面調整処理方法
JP2014195793A (ja) * 2013-03-04 2014-10-16 株式会社リコー 流動体攪拌装置、流動体攪拌方法及びトナー製造方法
JP2014214368A (ja) * 2013-04-26 2014-11-17 日本パーカライジング株式会社 親水化表面処理金属材及び熱交換器
JP2017119797A (ja) * 2015-12-28 2017-07-06 花王株式会社 顔料水分散体の製造方法
WO2017150383A1 (ja) * 2016-03-03 2017-09-08 日産化学工業株式会社 フェニルホスホン酸含有シリカゾル及びその用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5652117B2 (ja) 1973-11-17 1981-12-10
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP4005942B2 (ja) * 2003-04-04 2007-11-14 新日本製鐵株式会社 防錆皮膜被覆金属製品、水性防錆処理液及びこれらの製造方法
JP4878788B2 (ja) 2005-07-14 2012-02-15 新日本製鐵株式会社 クロムを含有しない電磁鋼板用絶縁被膜剤
WO2010069906A1 (en) * 2008-12-16 2010-06-24 Solvay Fluor Gmbh Metal parts containing a protective coating
SI2718449T1 (en) * 2011-06-09 2018-01-31 Xyleco, Inc. BIOMASS PROCESSING
EP2902509B1 (en) 2014-01-30 2018-08-29 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating
CN106414802B (zh) * 2014-01-31 2018-11-06 杰富意钢铁株式会社 无铬张力被膜用处理液、无铬张力被膜的形成方法、以及具有无铬张力被膜的取向性电磁钢板
KR102177038B1 (ko) 2014-11-14 2020-11-10 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
JP6682888B2 (ja) 2016-02-05 2020-04-15 日本製鉄株式会社 方向性電磁鋼板の絶縁被膜用処理剤、方向性電磁鋼板、及び、方向性電磁鋼板の絶縁被膜処理方法
RU2706940C1 (ru) 2016-10-18 2019-11-21 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электромагнитная листовая сталь и способ производства текстурированной электромагнитной листовой стали
US11535943B2 (en) * 2016-10-31 2022-12-27 Nippon Steel Corporation Grain-oriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394075A (ja) * 1989-09-04 1991-04-18 Nippon Parkerizing Co Ltd 表面調整処理方法
JP2014195793A (ja) * 2013-03-04 2014-10-16 株式会社リコー 流動体攪拌装置、流動体攪拌方法及びトナー製造方法
JP2014214368A (ja) * 2013-04-26 2014-11-17 日本パーカライジング株式会社 親水化表面処理金属材及び熱交換器
JP2017119797A (ja) * 2015-12-28 2017-07-06 花王株式会社 顔料水分散体の製造方法
WO2017150383A1 (ja) * 2016-03-03 2017-09-08 日産化学工業株式会社 フェニルホスホン酸含有シリカゾル及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3839093A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222450B1 (ja) * 2022-01-21 2023-02-15 Jfeスチール株式会社 前処理液および絶縁被膜付き電磁鋼板の製造方法
WO2023139847A1 (ja) * 2022-01-21 2023-07-27 Jfeスチール株式会社 前処理液および絶縁被膜付き電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR20210028711A (ko) 2021-03-12
EP3839093A1 (en) 2021-06-23
KR102604342B1 (ko) 2023-11-20
EP3839093B1 (en) 2024-07-31
US20210269921A1 (en) 2021-09-02
EP3839093A4 (en) 2021-12-15
RU2753539C1 (ru) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2020036006A1 (ja) 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
JP5877252B2 (ja) 無方向性電磁鋼板の絶縁被膜組成物、その製造方法および絶縁被膜組成物が適用された無方向性電磁鋼板
KR102071515B1 (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
TWI658172B (zh) Electromagnetic steel plate
JP6299938B1 (ja) クロムフリー絶縁張力被膜付き方向性電磁鋼板およびその製造方法
JP7269007B2 (ja) 方向性電磁鋼板の絶縁被膜形成用組成物、これを用いた絶縁被膜の形成方法、および絶縁被膜が形成された方向性電磁鋼板
WO2020026627A1 (ja) 絶縁被膜処理液、絶縁被膜付き方向性電磁鋼板およびその製造方法
JP6642782B1 (ja) 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
KR102599445B1 (ko) 방향성 전자 강판용 절연피막을 형성하기 위한 도포액, 방향성 전자 강판, 및 방향성 전자 강판의 제조 방법
JP5320898B2 (ja) 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法
JP5422937B2 (ja) 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法
JP4698448B2 (ja) 方向性電磁鋼板用MgOとこれを用いた磁気特性とグラス被膜特性に優れた方向性電磁鋼板の製造方法
JP7014231B2 (ja) 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
JP6652229B1 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
WO2020066469A1 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
JP6939870B2 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
JP2017179460A (ja) 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
WO2024214723A1 (ja) MgO粉末、MgOスラリーおよびそれらの製造方法、並びに、方向性電磁鋼板の製造方法
JPH1121675A (ja) 方向性珪素鋼板の絶縁皮膜形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554707

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850486

Country of ref document: EP

Effective date: 20210317