WO2017047788A1 - 長時間作用型アドレノメデュリン誘導体 - Google Patents

長時間作用型アドレノメデュリン誘導体 Download PDF

Info

Publication number
WO2017047788A1
WO2017047788A1 PCT/JP2016/077543 JP2016077543W WO2017047788A1 WO 2017047788 A1 WO2017047788 A1 WO 2017047788A1 JP 2016077543 W JP2016077543 W JP 2016077543W WO 2017047788 A1 WO2017047788 A1 WO 2017047788A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
peptide
group
adrenomedullin
Prior art date
Application number
PCT/JP2016/077543
Other languages
English (en)
French (fr)
Inventor
和雄 北村
山▲崎▼ 基生
Original Assignee
国立大学法人宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2016324119A priority Critical patent/AU2016324119B2/en
Priority to CN201680053494.7A priority patent/CN108026182B/zh
Priority to EP16846659.7A priority patent/EP3351561A4/en
Priority to BR112018004208-0A priority patent/BR112018004208A2/ja
Priority to JP2017540025A priority patent/JP6991569B2/ja
Priority to RU2018114075A priority patent/RU2738416C2/ru
Priority to US15/760,310 priority patent/US10842879B2/en
Priority to CN202210383605.8A priority patent/CN114805540A/zh
Priority to KR1020207025165A priority patent/KR102443831B1/ko
Priority to KR1020187007746A priority patent/KR102152437B1/ko
Application filed by 国立大学法人宮崎大学 filed Critical 国立大学法人宮崎大学
Priority to SG11201802180TA priority patent/SG11201802180TA/en
Priority to CA2997131A priority patent/CA2997131C/en
Priority to NZ740534A priority patent/NZ740534A/en
Publication of WO2017047788A1 publication Critical patent/WO2017047788A1/ja
Priority to IL257995A priority patent/IL257995B/en
Priority to ZA2018/02079A priority patent/ZA201802079B/en
Priority to AU2020200934A priority patent/AU2020200934B2/en
Priority to US17/036,491 priority patent/US11478551B2/en
Priority to AU2021254623A priority patent/AU2021254623B2/en
Priority to JP2021195405A priority patent/JP2022019883A/ja
Priority to US17/937,788 priority patent/US20230142095A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a long-acting adrenomedullin derivative.
  • AM Adrenomedullin
  • Non-patent Document 1 Adrenomedullin
  • Patent Document 2 discloses adrenomedullin or a derivative thereof having an activity of suppressing non-bacterial inflammation, or a salt thereof having an activity of suppressing non-bacterial inflammation.
  • a preventive or therapeutic agent for non-bacterial inflammatory bowel disease is described.
  • Patent Document 3 is a method for preventing or treating inflammatory bowel disease in a patient who needs prevention or treatment of inflammatory bowel disease where it is difficult or insufficient to use a steroid preparation, immunosuppressive agent or biological preparation. And administering an effective amount of adrenomedullin, a modified form thereof having an activity to suppress inflammation, or a salt of the adrenomedullin or the modified form and having an activity to suppress inflammation to the patient.
  • the method for preventing or treating is described.
  • Non-Patent Documents 2 to 9 In addition, from the structure-activity relationship studies of AM, identification of essential sequences that can contribute to the biological activity of AM was advanced (Non-Patent Documents 2 to 9).
  • a peptide has a short half-life in vivo due to a metabolic reaction in vivo (for example, in blood). For this reason, when using a peptide as an active ingredient of a medicine, it may be possible to improve the pharmacokinetics by extending the half-life in vivo by adopting the form of a peptide derivative in which another group is linked to the peptide.
  • Patent Document 4 describes a biologically active intermedin peptide or adrenomedullin peptide characterized by having a serum half-life exceeding 1.5 hours. This document describes linking an alkyl group and a peptide moiety via an amide bond.
  • Patent Document 5 describes an AM derivative linked to a polyethylene glycol (hereinafter also referred to as “PEG”) group via a phenolic hydroxyl group of Tyr 1 of AM.
  • PEG polyethylene glycol
  • Patent Document 6 describes a method for producing a peptide derivative in which a PEG group is linked to a free amino group of a peptide by reacting PEG-aldehyde with a free amino group of the peptide.
  • the document describes AM as a peptide.
  • Non-Patent Document 10 describes an AM derivative in which a PEG group is linked to an ⁇ -amino group at the N-terminus of AM via an amide bond. The document describes that the AM half-linked PEG group has an increased blood half-life.
  • Adrenomedullin a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 30 , Pp. 553-560. Belloni, A.S., et al., Structure-activity relationships of adrenomedullin in the adrenal gland. Endocr Res, 1998, 24 (3-4), p. 729-30. Champion, H.C., et al., Catecholamine release mediates pressor effects of adrenomedullin- (15-22) in the rat. Hypertension, 1996, 628 (6), p.
  • AM derivatives in which other groups such as PEG groups are linked to AM are known in order to improve the pharmacokinetics of AM from the viewpoint of improving sustainability in vivo.
  • there was room for improvement in known AM derivatives For example, when a relatively large group such as a PEG group is linked to a relatively small peptide such as AM, the various properties of the resulting AM derivative can vary greatly depending on the molecular weight of the PEG group. is there.
  • Non-Patent Document 10 when the peptide moiety and another group are linked by a bond that can be cleaved by a biological reaction such as an amide bond or an ester bond, The bond can be cleaved in a relatively short time after administration.
  • the AM derivative described in Patent Document 5 when other groups are linked to the side chain of the amino acid residue of AM, the steric structure of the AM moiety changes, and the AM receptor that recognizes AM Affinity may be reduced. In such a case, the resulting AM derivative may have a reduced pharmacological action as AM.
  • AM has a powerful vasodilatory action in addition to pharmacological actions such as cardiovascular protective action, anti-inflammatory action, angiogenesis action and tissue repair promoting action.
  • pharmacological actions such as cardiovascular protective action, anti-inflammatory action, angiogenesis action and tissue repair promoting action.
  • AM or AM derivatives when administered to a subject, they can cause undesirable side reactions such as excessive blood pressure reduction due to strong vasodilatory effects.
  • the occurrence of such a side reaction can be a problem particularly when AM or an AM derivative is used with the expectation that a pharmacological action other than the vasodilatory action is expressed.
  • an object of the present invention is to provide a long-lasting novel adrenomedullin derivative that can substantially suppress undesirable side reactions while maintaining the pharmacological action of adrenomedullin.
  • the present inventors have studied various means for solving the above problems.
  • the present inventors linked adrenomedullin N-terminal ⁇ -amino group and PEG group having a specific molecular weight through a methylene group or urethane group, thereby maintaining the same biological activity as adrenomedullin while maintaining adrenomedullin. It was found that the blood half-life can be extended compared to Moreover, it discovered that the novel adrenomedullin derivative which has the said characteristic can suppress an undesirable side reaction like excessive blood pressure reduction substantially. Based on the above findings, the present inventors have completed the present invention.
  • the gist of the present invention is as follows.
  • A is the following formula (II): [Where: a is an integer greater than or equal to 1, m is an integer greater than or equal to 1, L 1 is a m + 1-valent linear or branched linking group, provided that when L 1 is plural, L 1 the plurality of may be the same or different from each other, L 2 and L 2 'are each independently a bond or a divalent linking group, provided that, L 2' when there are a plurality, L 2 of the plurality of 'may be the same or different from each other, M 1 is represented by the formula (III): # -(CH 2 CH 2 O) n - ** (III) [Where: n is an integer greater than or equal to 1, ** is the bonding position with L 1 # Is the bonding position with O or L 2 ′ .
  • M 1 is hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, substituted or unsubstituted C 2 -C 20 alkynyl, substituted or unsubstituted C 3- C 20 cycloalkyl, substituted or unsubstituted C 4 to C 20 cycloalkenyl, substituted or unsubstituted C 4 to C 20 cycloalkynyl, substituted or unsubstituted 3 to 6 membered heterocycloalkyl, substituted or unsubstituted C 7 -C 20
  • A is the following formula (V), (VI), (VII) or (VIII): [Where: a is an integer greater than or equal to 1, M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ are independently of each other a bond or formula (III): # -(CH 2 CH 2 O) n - ** (III) [Where: n is an integer greater than or equal to 1, ** is a bonding position with R 3 , R 3 ′ or CH, # Is the bonding position with O.
  • M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ the plurality of M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ may be the same or different from each other, and M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′
  • M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′ At least one of ''' is a polyethylene glycol group represented by the formula (III), R 1 , R 1 ′ , R 1 ′′ and R 1 ′ ′′ are independently of one another hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, Substituted or unsubstituted C 2 -C 20 alkynyl, substituted or unsubstituted C 3
  • the adrenomedullin or a modified form thereof having adrenomedullin activity is: (I) a peptide comprising the amino acid sequence of adrenomedullin, (Ii) a peptide consisting of an amino acid sequence of adrenomedullin, wherein two cysteine residues in the amino acid sequence form a disulfide bond, (Iii) In the peptide of (ii), the disulfide bond is substituted with an ethylene group, and the peptide has adrenomedullin activity, (Iv) the peptide of any one of (i) to (iii), wherein 1 to 15 amino acid residues are deleted, substituted or added, and has adrenomedullin activity, (V) In any peptide of (i) to (iv), a peptide in which the C-terminus is amidated, and in any of the peptides (vi) (i) to (iv), a gly
  • the adrenomedullin or a modified form thereof is: (I) a peptide comprising the amino acid sequence of adrenomedullin, (Ii) a peptide consisting of an amino acid sequence of adrenomedullin, wherein two cysteine residues in the amino acid sequence form a disulfide bond, (V) A peptide in which the C-terminus is amidated in the peptide of (i) or (ii), and (vi) a peptide in which a glycine residue is added to the C-terminus in the peptide of (i) or (ii)
  • the adrenomedullin or a modified form thereof is: (Iv ′
  • the adrenomedullin or a modified form thereof is: (A) a peptide consisting of the amino acid sequence of SEQ ID NO: 1, or a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (B) a peptide consisting of the amino acid sequence of SEQ ID NO: 3, or a peptide consisting of the amino acid sequence of SEQ ID NO: 3, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (C) a peptide consisting of the amino acid sequence of SEQ ID NO: 5, or a peptide consisting of the amino acid sequence of SEQ ID NO: 5, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (D) a peptide consisting of the amino acid sequence of SEQ ID NO: 7, or a peptid
  • a polyethylene glycol group represented by M 3 , M 3 ′ and M 3 ′′ are independently of each other a bond or formula (III): # -(CH 2 CH 2 O) n - ** (III) [Where: n is an integer greater than or equal to 1, ** is a bonding position with R 3 , R 3 ′ or CH, # Is the bonding position with O.
  • M 3 ′ and M 3 ′′ are independently of each other hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, substituted or unsubstituted C 2 -C 20 alkynyl.
  • the compound according to any one of the embodiments (1) to (10) and (12) or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof is contained as an active ingredient. Medicine.
  • the compound according to any one of the embodiments (1) to (10) and (12) or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof is contained as an active ingredient.
  • FIG. 1 is a diagram showing a reverse phase HPLC (RP-HPLC) chromatogram of a cleaved peptide.
  • A RP-HPLC chromatogram of cleaved peptide derived from h.AM (1-52) peptide
  • B RP-HPLC chromatogram of cleaved peptide derived from compound (2).
  • FIG. 2 shows compounds (3), (4), (5), (6), (7), (8), (9), (10), (11) and (12) from 10% to 20%. It is a figure which shows the result of having isolate
  • lane 0 is the molecular weight standard
  • lane 1 is compound (3)
  • lane 2 is compound (4)
  • lane 3 is compound (5)
  • lane 4 is compound (6)
  • lane 5 is Compound (7)
  • Lane 6 is Compound (8)
  • Lane 7 is Compound (9)
  • Lane 8 is Compound (10)
  • Lane 9 is Compound (11)
  • Lane 10 is Compound (12).
  • FIG. 3 compounds (1), (2), (13), (14), (15), (16) and (17) were used on a polyacrylamide gel having a concentration gradient of 10% to 20%. It is a figure which shows the result isolate
  • lane 0 is the molecular weight standard
  • lane 1 is compound (1)
  • lane 2 is compound (2)
  • lane 3 is compound (13)
  • lane 4 is compound (14)
  • lane 5 is Compound (15)
  • lane 6 shows compound (16)
  • lane 7 shows compound (17).
  • FIG. 4 shows compounds (25), (26), (27), (28), (29), (30), (31), (32), (33), (34), (35),
  • FIG. 6 shows the results of separating 36) and (37) by SDS-PAGE using a polyacrylamide gel having a concentration gradient of 10% to 20%.
  • lane 0 is the molecular weight standard
  • lane 1 is compound (25)
  • lane 2 is compound (26)
  • lane 3 is compound (27)
  • lane 4 is compound (28)
  • lane 5 is Compound (29)
  • Lane 6 is Compound (30)
  • Lane 7 is Compound (31)
  • Lane 8 is Compound (32)
  • Lane 9 is Compound (33)
  • Lane 10 is Compound (34).
  • Lane 11 shows the compound (35)
  • Lane 12 shows the compound (36)
  • Lane 13 shows the compound (37).
  • FIG. 5 uses compounds (18), (19), (20), (21), (22), (23), and (24) on a polyacrylamide gel having a concentration gradient of 10% to 20%. It is a figure which shows the result isolate
  • lanes 0 and 1 are molecular weight standards
  • lane 2 is compound (18)
  • lane 3 is compound (19)
  • lane 4 is compound (20)
  • lane 5 is compound (21)
  • lane 6 shows the compound (22)
  • lane 7 shows the compound (23)
  • lane 8 shows the compound (24).
  • 6 is a graph showing the relationship between the elapsed time from the start of administration of compound (2), compound (4), compound (8) or h.AM (1-52) and mean blood pressure.
  • A results of compound (2), compound (4) and h.AM (1-52);
  • B results of compound (8) and h.AM (1-52).
  • FIG. 7 is a graph showing the relationship between the elapsed time from the start of administration of compound (8) and the plasma AM concentration.
  • FIG. 7 is a graph showing the relationship between the elapsed time from the start of administration of compound (8) and the plasma AM concentration.
  • FIG. 8 is a graph showing the relationship between the elapsed time from the start of administration of compound (6) or h.AM (1-52) and the plasma AM concentration.
  • FIG. 9 is a graph showing blood pressure values of spontaneously hypertensive rats 2 days before and 9 days after administration of compound (8) or physiological saline.
  • FIG. 10 is a graph showing blood pressure change values with respect to mean systolic blood pressure on the day before administration 4 days after administration and 9 days after administration of compound (37) or physiological saline.
  • FIG. 11 is a graph showing the relationship between the elapsed time from the preparation of the dextran sulfate sodium (DSS) -induced colitis model and the total score in the compound (8) administration group and the control group.
  • DSS dextran sulfate sodium
  • FIG. 12 is a graph showing the relationship between the elapsed time from the production of a 2,4,6-trinitrobenzenesulfonic acid (TNBS) -induced colitis model and body weight in the compound (8) administration group and the control group.
  • a the day on which fasting was started by subcutaneous administration of compound (8) or physiological saline;
  • b the day on which TNBS was administered.
  • FIG. 13 is a graph showing the weight of the large intestine in the compound (8) administration group and the control group.
  • FIG. 14 is a graph showing the intestinal length of the large intestine in the compound (8) administration group and the control group.
  • FIG. 15 is a graph showing the right ventricular weight / left ventricular weight ratio in the compound (8) administration group and the control group.
  • FIG. 16 is a graph showing the relationship between the elapsed time from the creation of the wound model and the wound area in the compound (8) administration group and the control group.
  • FIG. 17 is a diagram showing the relationship between the elapsed time from the creation of the vascular occlusion model in the compound (8) administration group and the control group and the escape latency in the hidden platform test.
  • FIG. 18 is a graph showing the retention rate in the probe test in the compound (8) administration group and the control group with respect to the vascular occlusion model rat.
  • FIG. 19 is a graph showing the relationship between the elapsed time from the administration and the foot volume developed after administration of the adjuvant in the compound (8) administration group and the control group.
  • FIG. 20 is a graph showing the relationship between the elapsed time from the administration and the edema rate developed after administration of the adjuvant in the compound (8) administration group and the control group.
  • FIG. 21 is a graph showing the relationship between the elapsed time from administration and the inflammation score expressed after adjuvant administration in the compound (8) administration group and the control group.
  • Adrenomedullin derivatives One aspect of the present invention is a compound of formula (I): A-CH 2 -B (I) Or a salt thereof, or a hydrate thereof. In the present specification, the compound represented by the formula (I) may be described as “adrenomedullin derivative”.
  • adrenomedullin is not only a human-derived peptide (SEQ ID NO: 1, Non-Patent Document 1) isolated and identified from human brown cell tissue, but also, for example, pig (SEQ ID NO: 3), dog (sequence) It may be a peptide (ortholog) derived from other non-human mammals (for example, warm-blooded animals) such as No. 5), bovine (SEQ ID NO: 7), rat (SEQ ID NO: 9) or mouse (SEQ ID NO: 11).
  • SEQ ID NO: 1 human-derived peptide
  • Non-Patent Document 1 isolated and identified from human brown cell tissue
  • pig SEQ ID NO: 3
  • dog sequence
  • It may be a peptide (ortholog) derived from other non-human mammals (for example, warm-blooded animals) such as No. 5), bovine (SEQ ID NO: 7), rat (SEQ ID NO: 9) or mouse (SEQ ID NO: 11).
  • the peptide having a disulfide bond and a C-terminal amide group may be referred to as “natural adrenomedullin” or simply “adrenomedullin”.
  • the present invention can be applied to any of the above peptides.
  • C-terminal amidation means one embodiment of post-translational modification of a peptide in vivo.
  • the main chain carboxyl group of the C-terminal amino acid residue of the peptide is an amide group. It means a reaction that is converted to a form.
  • formation of disulfide bond of cysteine residue or “disulfation of cysteine residue” means one embodiment of post-translational modification of a peptide in vivo. It means a reaction in which two cysteine residues in an amino acid sequence form a disulfide bond (-SS-).
  • bioactive peptides produced in vivo are initially biosynthesized as precursor proteins with higher molecular weights, such as C-terminal amidation and / or disulfation of cysteine residues during the process of intracellular translocation. It undergoes a post-translational modification reaction and becomes a mature bioactive peptide.
  • C-terminal amidation usually proceeds by the action of a C-terminal amidating enzyme on the precursor protein.
  • a Gly residue is bonded to the C-terminal carboxyl group to be amidated, and the Gly residue is C-terminal by a C-terminal amidating enzyme. Converted to an amide group.
  • the C-terminal propeptide of the precursor protein has a repeating sequence of a combination of basic amino acid residues such as Lys-Arg or Arg-Arg (Mizuno, Biochemistry Vol. 61, No. 12, 1435-1461 (1989)). Disulfidation of cysteine residues can proceed under oxidative conditions. In vivo, disulfation of cysteine residues usually proceeds by the action of protein disulfide isomerase on the precursor protein.
  • Adrenomedullin a known physiologically active substance
  • Adrenomedullin is a peptide.
  • a medicine containing adrenomedullin as an active ingredient may have a very short time during which it can act effectively in the living body of a subject (for example, a human patient). Therefore, attempts have been made to extend the half-life in vivo to improve pharmacokinetics by adopting a form of an adrenomedullin derivative in which other groups such as polyethylene glycol (PEG) are linked to adrenomedullin (Patent Document 4). 6 and Non-Patent Document 10).
  • PEG polyethylene glycol
  • adrenomedullin when a relatively large group such as a PEG group is linked to a relatively small peptide such as adrenomedullin, the various properties of the resulting adrenomedullin derivative may vary greatly depending on the molecular weight of the PEG group. is there.
  • adrenomedullin and another group are linked by a bond that can be cleaved by a biological reaction such as an amide bond or an ester bond, the bond may be cleaved in a relatively short time after administration. .
  • the three-dimensional structure of the adrenomedullin moiety may change, and the affinity with the adrenomedullin receptor that recognizes adrenomedullin may be reduced.
  • the resulting adrenomedullin derivative may have a reduced pharmacological action as adrenomedullin.
  • Adrenomedullin has a strong vasodilatory effect. For this reason, a single dose of a therapeutically effective amount of adrenomedullin or a derivative thereof may cause undesirable side reactions (eg, excessive blood pressure reduction, increased reflex sympathetic activity due to strong vasodilatory effects). Associated tachycardia and / or increased renin activity). The occurrence of such a side reaction can be a problem particularly when adrenomedullin or a derivative thereof is used with the expectation that a pharmacological action other than the vasodilatory action is expressed. In order to avoid the occurrence of the above problems, a medicine containing adrenomedullin or a derivative thereof as an active ingredient needs to be administered to a subject by continuous intravenous injection. Such an administration method may impose a burden on the subject.
  • the present inventors have compared the adrenomedullin with the biological activity of adrenomedullin by connecting the N-terminal ⁇ -amino group of adrenomedullin and a PEG group having a specific molecular weight via a methylene group or a urethane group. And found that the blood half-life can be extended. Moreover, it discovered that the novel adrenomedullin derivative which has the said characteristic can suppress an undesirable side reaction like excessive blood pressure reduction substantially.
  • B must be adrenomedullin or a peptide moiety derived from a modified form having adrenomedullin activity.
  • a peptide moiety derived from adrenomedullin or a modified form thereof having adrenomedullin activity means one hydrogen atom (usually one hydrogen atom of an amino group) from the modified form having adrenomedullin or adrenomedullin activity.
  • a monovalent radical having a structure in which one hydrogen atom of the N-terminal ⁇ -amino group is removed.
  • adrenomedullin modified product means a peptide obtained by chemically modifying the natural adrenomedullin described above.
  • adrenomedullin activity means the biological activity of adrenomedullin. Examples of adrenomedullin activity include the following.
  • Cardiovascular system Vasodilatory effect, blood pressure lowering effect, blood pressure increase inhibiting effect, cardiac output increase / heart failure improving effect, pulmonary hypertension improving effect, angiogenic effect, lymphangiogenic effect, vascular endothelial function improving effect
  • Anti-arteriosclerotic action myocardial protective action (for example, myocardial protective action in ischemia-reperfusion injury or inflammation), remodeling inhibitory action after myocardial infarction, cardiac hypertrophy inhibitory action, and angiotensin converting enzyme inhibitory action.
  • Kidney / water electrolyte system diuretic action, natriuretic action, antidiuretic hormone inhibitory action, aldosterone lowering action, renal protective action (eg, renal protective action in hypertension or ischemia-reperfusion injury), drinking action inhibitory action, And salt demand suppression action.
  • Brain / nervous system neuroprotection / brain injury inhibitory action, anti-inflammatory action, apoptosis inhibitory action (for example, apoptosis inhibitory action in ischemia-reperfusion injury or inflammation), autoregulatory ability maintenance action, oxidative stress inhibitory action, Dementia improving effect and sympathetic nerve suppressing effect.
  • Urogenital Erection improving effect, blood flow improving effect, and implantation promoting effect.
  • Digestive system anti-ulcer action, tissue repair action, mucosal neoplasia action, blood flow improvement action, anti-inflammatory action, and liver function improvement action.
  • Orthopedic system Osteoblast stimulation and arthritis improvement.
  • Endocrine metabolic system adipocyte differentiation action, lipolysis control action, insulin sensitivity improvement action, insulin secretion control action, antidiuretic hormone secretion inhibitory action, and aldosterone secretion inhibitory action.
  • the blood pressure lowering action is preferably a vasodilatory antihypertensive action.
  • the anti-inflammatory action in the digestive system is a preventive or therapeutic action for inflammatory bowel diseases such as steroid resistant or steroid dependent inflammatory bowel diseases (eg, ulcerative colitis, Crohn's disease or intestinal Behcet's disease).
  • inflammatory bowel diseases such as steroid resistant or steroid dependent inflammatory bowel diseases (eg, ulcerative colitis, Crohn's disease or intestinal Behcet's disease).
  • adrenomedullin activity is expressed through an increase in intracellular cAMP concentration. Therefore, an increase in intracellular cAMP concentration can be used as an index of adrenomedullin activity.
  • the compound represented by the formula (I) of the present invention is an organism substantially equivalent to natural adrenomedullin.
  • An activity ie, adrenomedullin activity
  • the adrenomedullin or a modified form thereof having adrenomedullin activity is: (I) a peptide comprising the amino acid sequence of adrenomedullin, (Ii) a peptide consisting of an amino acid sequence of adrenomedullin, wherein two cysteine residues in the amino acid sequence form a disulfide bond, (Iii) In the peptide of (ii), the disulfide bond is substituted with an ethylene group, and the peptide has adrenomedullin activity, (Iv) the peptide of any one of (i) to (iii), wherein 1 to 15 amino acids are deleted, substituted or added, and has adrenomedullin activity, (V) In any peptide of (i) to (iv), a peptide in which the C-terminus is amidated, and in any of the peptides (vi) (i) to (iv), a glycine residue is
  • the adrenomedullin or a modified form thereof having adrenomedullin activity is: (I) a peptide comprising the amino acid sequence of adrenomedullin, (Ii) a peptide consisting of an amino acid sequence of adrenomedullin, wherein two cysteine residues in the amino acid sequence form a disulfide bond, (V) A peptide in which the C-terminus is amidated in the peptide of (i) or (ii), and (vi) a peptide in which a glycine residue is added to the C-terminus in the peptide of (i) or (ii) More preferably, the peptide is selected from the group consisting of:
  • the adrenomedullin or a modified form thereof having adrenomedullin activity is: (Iv ′)
  • the amino acid residues 1 to 15, 1 to 10, or 1 to 5 are deleted from the N-terminal side, and adrenomedullin activity
  • the peptides (i) to (vi) and (iv ′) are composed of the amino acid sequence of adrenomedullin, which is included in (v), the C-terminus is amidated, and two of the amino acid sequences in the amino acid sequence A peptide in which a cysteine residue forms a disulfide bond corresponds to a mature natural adrenomedullin.
  • the peptide consisting of the amino acid sequence of adrenomedullin in (i) corresponds to the natural adrenomedullin in the form before undergoing post-translational modification of C-terminal amidation and disulfation of cysteine residues (ie, immature).
  • the other peptides except the peptides described above correspond to adrenomedullin modifications.
  • the peptide of (ii) is formed by air-oxidizing the thiol groups of the two cysteine residues of the peptide of (i) or oxidizing them with an appropriate oxidizing agent to convert them into disulfide bonds. Can be made.
  • the three-dimensional structure of the peptide part B can be made similar to the three-dimensional structure of natural adrenomedullin.
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially equivalent to that of the natural adrenomedullin.
  • the peptide (iii) can be formed by converting the disulfide bond of the peptide (ii) to an ethylene group.
  • the substitution from the disulfide bond to the ethylene group can be performed by a method well known in the art (O. Keller et al., Helv. Chim. Acta, 1974, 57, p. 1253).
  • the peptide (iii) By using the peptide (iii), the three-dimensional structure of the peptide part B can be stabilized. Thereby, the compound represented by the formula (I) can continuously express adrenomedullin activity in vivo.
  • the number of deleted, substituted or added amino acid residues is preferably in the range of 1 to 15, more preferably in the range of 1 to 10, and 1 to 8 The range is more preferably 1 to 5, particularly preferably 1 to 5, and most preferably 1 to 3.
  • the preferred peptide (iv) is the peptide of any one of (i) to (iii), 1 to 15, 1 to 12, 1 to 10, 1 to 8, 1 to 5 from the N-terminal side.
  • a peptide having adrenomedullin activity, and a more preferred peptide (iv) is any one of the peptides (i) to (iii):
  • This is a peptide (peptide of (iv ′)) in which amino acid residues at positions 1 to 15, 1 to 10, or 1 to 5 are deleted from the N-terminal side and have adrenomedullin activity.
  • one or more (for example, 1 to 5, 1 to 3, or 1 or 2) amino acid residues may be further deleted, substituted or added.
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially substantially equivalent to that of the natural adrenomedullin.
  • the compound represented by formula (I) can continuously express adrenomedullin activity in vivo.
  • the peptide of (vi) or (iv ′) can be converted into the peptide of (v) by converting the C-terminal glycine residue into a C-terminal amide group by the action of the C-terminal amidating enzyme. . Therefore, by administering the peptide of (vi) or (iv ′) to a subject, a C-terminal amidated peptide can be formed in the subject's living body after a certain period of time. Thereby, the compound represented by the formula (I) can continuously express adrenomedullin activity in vivo.
  • the adrenomedullin or a modified form thereof is as follows: (A) a peptide consisting of the amino acid sequence of SEQ ID NO: 1, or a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (B) a peptide consisting of the amino acid sequence of SEQ ID NO: 3, or a peptide consisting of the amino acid sequence of SEQ ID NO: 3, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (C) a peptide consisting of the amino acid sequence of SEQ ID NO: 5, or a peptide consisting of the amino acid sequence of SEQ ID NO: 5, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (D) a peptide consisting of the amino acid sequence of SEQ ID NO: 7, or a
  • the adrenomedullin or a modified form thereof is: (A) a peptide consisting of the amino acid sequence of SEQ ID NO: 1, or a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (B) a peptide consisting of the amino acid sequence of SEQ ID NO: 3, or a peptide consisting of the amino acid sequence of SEQ ID NO: 3, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (C) a peptide consisting of the amino acid sequence of SEQ ID NO: 5, or a peptide consisting of the amino acid sequence of SEQ ID NO: 5, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (D) a peptide consisting of the amino acid sequence of SEQ ID NO: 7, or
  • the adrenomedullin or a modified form thereof is: (H ′) In any of the peptides (a) to (d), the amino acid residues 1 to 15, 1 to 10, or 1 to 5 are deleted from the N-terminal side, and adrenomedullin activity Or in the peptide (e) or (f), the amino acid residues at positions 1 to 13, 1 to 8, or 1 to 5 are deleted from the N-terminal side and have adrenomedullin activity peptide; (I) a peptide in which the C-terminus is amidated in the peptide of (h ′); and (j) a peptide in which a glycine residue is added to the C-terminus in the peptide of (h ′); More preferably, the peptide is selected from the group consisting of:
  • the number of deleted, substituted or added amino acid residues is preferably in the range of 1 to 12, more preferably in the range of 1 to 10, and 1 to 8 The range is more preferably 1 to 5, particularly preferably 1 to 5, and most preferably 1 to 3.
  • the preferred peptide (h) is any one of the peptides (a) to (g), 1 to 15, 1 to 12, 1 to 10, 1 to 8, 1 to 5 from the N-terminal side.
  • a more preferable peptide (h) is the N-terminal in any of the peptides (a) to (d)
  • the amino acid residues at positions 1 to 15, 1 to 10 or 1 to 5 are deleted from the side and have adrenomedullin activity, or from the N-terminal side in the peptide (e) or (f)
  • one or a plurality of amino acids may be further deleted, substituted or added.
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially substantially equivalent to that of natural adrenomedullin.
  • the compound represented by the formula (I) can continuously express adrenomedullin activity in vivo.
  • A must be a modifying group containing one or more PEG groups.
  • the embodiment containing one or more PEG groups is not particularly limited.
  • one or more PEG groups may be arranged at the end of the modifying group A, or may be arranged inside the modifying group A.
  • the modifying group A may be various groups known in the art as a linear or branched group containing a PEG group.
  • Suitable groups that can be used as the modifying group A include, but are not limited to, for example, WO1995 / 11924, WO2006 / 084089, WO98 / 41562, WO2005 / 079838, WO2002 / 060978, WO2001 / 048052, WO1998 / 055500, Examples include groups disclosed in WO1996 / 021469, WO2003 / 040211, and JP 04-108827.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo.
  • A is the following formula (II): It is preferable that it is a modification group represented by these.
  • a is an integer greater than or equal to 1
  • m is an integer greater than or equal to 1
  • L 1 is a m + 1-valent linear or branched linking group, provided that when L 1 is plural, L 1 the plurality of may be the same or different from each other
  • L 2 and L 2 ' are each independently a bond or a divalent linking group, provided that, L 2' when there are a plurality, L 2 of the plurality of 'may be the same or different from each other
  • M 1 is a PEG group, provided that when M 1 is a multiple, M 1 the plurality of may be the same or different from each other, M 2 is a bond or PEG groups, provided that when M 2 is a plurality, M 2 of the plurality of which may be the same or different from each other,
  • R 1 is hydrogen or a monovalent group
  • m is the number of branches of the linking group L 1 .
  • L 1 is a divalent linking group, and is a non-branched, that is, straight-chain group with respect to the terminal direction.
  • L 1 is a trivalent or higher linking group and is a group having 2 or more branches in the terminal direction.
  • m is usually an integer of 1 or more, an integer of 5 or less, preferably in the range of 1 to 5, more preferably in the range of 1 to 4, and in the range of 1 to 3. It is more preferable.
  • the modifying group A containing a PEG group can have a linear or branched structure.
  • a is the number of repeating units of the PEG groups M 1 and M 2 and the linking groups L 1 and L 2 ′ .
  • the unit does not have a repeating structure.
  • the unit has a linear repeating structure.
  • the unit has a dendritic branched structure.
  • a is usually an integer of 1 or more, an integer of 5 or less, preferably in the range of 1 to 5, and more preferably in the range of 1 to 2.
  • the modifying group A containing the PEG group may have a linear or branched structure. it can.
  • the PEG group is usually of formula (III): # -(CH 2 CH 2 O) n - ** (III) It is group represented by these.
  • ** is a bonding position with L 1
  • # is a bonding position with O or L 2 ′ .
  • the weight average molecular weight of the PEG group represented by the formula (III) is generally 1 kDa or more, preferably 5 kDa or more, more preferably 10 kDa or more, and further preferably 20 kDa or more as a total in the modifying group A.
  • the PEG groups represented by formula (III) generally have a weight average molecular weight in the range of 1 to 2000 kDa, for example in the range of 1 to 1000 kDa as a sum in the modifying group A, and in the range of 1 to 100 kDa.
  • the adrenomedullin activity of the compound represented by formula (I) is substantially substantially the same as that of natural adrenomedullin. Can be.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • n is the number of repeating ethylene oxide units defined based on the weight average molecular weight.
  • n is usually an integer of about 20 or more, preferably about 110 or more, more preferably about 230 or more, more preferably about 460 or more, and usually about 45000 or less, as defined based on the preferred range of the weight average molecular weight.
  • n is usually in the range of about 20 to 45000, for example in the range of about 20 to 22000, preferably in the range of about 1 to 2200, preferably about 110 to 1820, as defined based on the preferred range of the weight average molecular weight. Is more preferably in the range of about 230-1360, and particularly preferably in the range of about 460-1360.
  • the repeating number n is in the above range, the total weight average molecular weight of the PEG groups contained in the modifying group represented by the formula (II) is in the above range.
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially substantially equivalent to that of the natural type adrenomedullin.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • R 1 is hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, substituted or unsubstituted C 2 -C 20 alkynyl, substituted or unsubstituted C 3- C 20 cycloalkyl, substituted or unsubstituted C 4 to C 20 cycloalkenyl, substituted or unsubstituted C 4 to C 20 cycloalkynyl, substituted or unsubstituted 3 to 6 membered heterocycloalkyl, substituted or unsubstituted C 7 -C 20 cycloalkylalkyl, substituted or unsubstituted 3-6 membered heterocycloalkyl-C 1 -C 20 alkyl, substituted or unsubstituted C 4 -C 20 aryl, substituted or unsubstituted C 5- C 20 arylalkyl, substituted or unsubstit
  • the substituents are each independently halogen (fluorine, chlorine, bromine or iodine), cyano, nitro, substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, substituted or unsubstituted C 2 -C 5 alkynyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 3 -C 6 cycloalkenyl, substituted or unsubstituted Is preferably a monovalent group selected from the group consisting of C 3 -C 6 cycloalkynyl, substituted or unsubstituted amino, and substituted or unsubstituted C 1 -C 5 alkoxy, and halogen (fluorine, chlorine, Bromine or iodine), cyano, nitro, unsubstituted C 1 -C 5 alkoxy, and
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially substantially equivalent to that of natural adrenomedullin.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • L 1 is an m + 1 valent linear or branched linking group.
  • L 1 is preferably a substituted or unsubstituted m + 1-valent linear or branched hydrocarbon group.
  • the group includes one or more heteroatoms, alicyclic groups, aromatic groups, amide groups (—CO—NH—), ester groups (—CO—O—), or urethane groups (—O—CO—).
  • NH-) may also be included.
  • the substituents are independently halogen (fluorine, chlorine, bromine or iodine), cyano, nitro, and substituted or unsubstituted linear or branched hydrocarbons.
  • a monovalent group selected from the group consisting of groups is preferred.
  • L 2 and L 2 ′ are independently of each other a bond or a divalent linking group.
  • L 2 and L 2 ′ are independently of each other a substituted or unsubstituted divalent hydrocarbon group, an amide group (—CO—NH—), It is preferably an ester group (—CO—O—) or a urethane group (—O—CO—NH—), substituted or unsubstituted C 1 to C 20 alkylene, substituted or unsubstituted C 2 to C 20 Alkenylene, substituted or unsubstituted C 2 -C 20 alkynylene, substituted or unsubstituted C 3 -C 20 cycloalkylene, substituted or unsubstituted C 4 -C 20 cycloalkenylene, substituted or unsubstituted C 4 -C 20 Cycloalkynylene, substituted or unsubstituted 3-6 membered heterocycloalkylene, substituted or unsubstituted
  • the group may contain one or more heteroatoms, an amide group (—CO—NH—), an ester group (—CO—O—), or a urethane group (—O—CO—NH—).
  • the substituents are independently halogen (fluorine, chlorine, bromine or iodine), cyano, nitro, and substituted or unsubstituted linear or branched hydrocarbons.
  • the adrenomedullin activity of the compound represented by the formula (I) can be made substantially equivalent to that of natural adrenomedullin.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • Suitable modifying groups A are represented by the following formula (V), (VI), (VII) or (VIII): Is a modifying group represented by
  • a is an integer greater than or equal to 1
  • M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ are independently of each other a bond or a PEG group provided that M 3 , M 3 ′ , M 3 ′ ', M 3' 'if there are a plurality, M 3, M 3 of said plurality of' '' and M 3 ''', M 3 '', M 3''' and M 3 '''' are each the same or May be different and at least one of M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ is a PEG group, R 1 , R 1 ′ , R 1 ′′ and R 1 ′ ′′ are independently of each other hydrogen or a monovalent group; R 2 is a bond or a divalent group, R 3 , R 3 ′ and R 3 ′′ each
  • a is the number of repeating units containing PEG groups M 3 , M 3 ′ , M 3 ′′ , M 3 ′ ′′ and M 3 ′′ ′′ .
  • the unit does not have a repeating structure.
  • the unit has a linear repeating structure.
  • the unit has a dendritic branched structure.
  • a is usually an integer of 1 or more, an integer of 5 or less, preferably in the range of 1 to 5, and more preferably in the range of 1 to 2.
  • the modifying group A containing the PEG group is linear Or it can have a branched structure.
  • the PEG group is usually a group represented by the formula (III).
  • the PEG group represented by the formula (III) has the same meaning as described above.
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially the same as that of the natural adrenomedullin.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • R 1 has the same meaning as described above.
  • R 1 ′ , R 1 ′′ and R 1 ′ ′′ have the same meaning as R 1 .
  • the adrenomedullin activity of the compound represented by the formula (I) can be substantially the same as that of the natural adrenomedullin.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • R 2 represents a bond, a substituted or unsubstituted divalent hydrocarbon group, an amide group (—CO—NH—), an ester group (—CO—O—), or a urethane group (—O—CO—NH—).
  • a bond substituted or unsubstituted C 1 -C 20 alkylene, substituted or unsubstituted C 2 -C 20 alkenylene, substituted or unsubstituted C 2 -C 20 alkynylene, substituted or unsubstituted C 3 to C 20 cycloalkylene, substituted or unsubstituted C 4 to C 20 cycloalkenylene, substituted or unsubstituted C 4 to C 20 cycloalkynylene, substituted or unsubstituted 3 to 6 membered heterocycloalkylene, substituted or Unsubstituted C 7 -C 20 cycloalkylalkylene, substituted or unsubstituted 3-6 member
  • the divalent hydrocarbon group includes one or more heteroatoms, an amide group (—CO—NH—), an ester group (—CO—O—), or a urethane group (—O—CO—NH—). But you can.
  • the substituents are each independently halogen (fluorine, chlorine, bromine or iodine), cyano, nitro, substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, substituted or unsubstituted C 2 -C 5 alkynyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 3 -C 6 cycloalkenyl, substituted or unsubstituted Is preferably a monovalent group selected from the group consisting of C 3 -C 6 cycloalkynyl, substituted or unsubstituted amino, and substitute
  • R 2 is preferably a bond or a substituted or unsubstituted C 1 -C 10 alkylene group, more preferably a bond, methylene, ethylene, propylene or butylene, and still more preferably a bond or ethylene.
  • R 3 , R 3 ′ and R 3 ′′ each independently represent a bond, substituted or unsubstituted divalent hydrocarbon group, amide group (—CO—NH—), ester group (—CO—O— Or a urethane group (—O—CO—NH—), preferably a bond, substituted or unsubstituted C 1 -C 20 alkylene, substituted or unsubstituted C 2 -C 20 alkenylene, substituted or unsubstituted C 2 -C 20 alkynylene, substituted or unsubstituted C 3 -C 20 cycloalkylene, substituted or unsubstituted C 4 -C 20 cycloalkenylene, substituted or unsubstituted C 4 -C 20 cycloalkynylene, substituted or Unsubstituted 3-6 membered heterocycloalkylene, substituted or unsubstituted C 7 -C 20 cycloalkylalkylene, substituted
  • the divalent hydrocarbon group includes one or more heteroatoms, an amide group (—CO—NH—), an ester group (—CO—O—), or a urethane group (—O—CO—NH—). But you can.
  • the substituents are each independently halogen (fluorine, chlorine, bromine or iodine), cyano, nitro, substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, substituted or unsubstituted C 2 -C 5 alkynyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 3 -C 6 cycloalkenyl, substituted or unsubstituted Is preferably a monovalent group selected from the group consisting of C 3 -C 6 cycloalkynyl, substituted or unsubstituted amino, and substitute
  • R 3 , R 3 ′ and R 3 ′′ are preferably independently of each other a bond, substituted or unsubstituted C 1 -C 10 alkylene group, substituted or unsubstituted C 1 -C 10 alkylene containing an amide group Group or amide group (—CO—NH—), more preferably independently of each other, a bond, methylene, ethylene, —CO—NH— (CH 2 ) 4 —, —CH 2 —O—CO—NH— (CH 2 ) 3 — or —CO—NH—.
  • the adrenomedullin activity of the compound represented by formula (I) may be substantially substantially equivalent to that of natural adrenomedullin. it can.
  • the compound represented by the formula (I) can continuously exhibit adrenomedullin activity in vivo while substantially suppressing undesirable side reactions.
  • modifying groups A are represented by the following formulas (V-1-1), (VI-1-1), (VII-1-1), (VII-1-2), (VII-2-1) Or (VIII-1-1): [Where: n has the same meaning as defined above; n ′ has the same meaning as defined above for n; * Is the coupling position with the remaining part. ] Is a modifying group represented by
  • the PEG groups preferably have a total weight average molecular weight of 5 kDa, 10 kDa, 20 kDa, 30 kDa, 40 kDa, 60 kDa or 80 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 40 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 5 kDa, 10 kDa, 20 kDa, 30 kDa, 40 kDa, 60 kDa or 80 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 50 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 40 kDa
  • the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 40 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 30 kDa
  • the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 60 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 50 kDa, and the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 80 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 70 kDa, and the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 40 kDa.
  • the compound represented by the formula (I) substantially suppresses undesirable side reactions while maintaining the pharmacological action of natural adrenomedullin, Sustained adrenomedullin activity can be expressed.
  • the peptide part B needs to be linked to the rest by covalently bonding the nitrogen atom of the N-terminal ⁇ -amino group to the carbon atom of the methylene group.
  • the modifying group A containing one or more PEG groups and the peptide moiety B are linked in the above-mentioned linkage mode, they may be described as “alkylamine-linked adrenomedullin derivatives”.
  • the alkylamine-linked adrenomedullin derivative is an adrenomedullin derivative in which the nitrogen atom of the ⁇ -amino group at the N-terminal of adrenomedullin is linked to the remainder by forming an amide bond, such as the adrenomedullin derivative described in Non-Patent Document 10.
  • adrenomedullin derivative described in Non-Patent Document 10.
  • it has higher adrenomedullin activity compared to “amide-linked adrenomedullin derivative”.
  • the alkylamine-linked adrenomedullin derivative represented by the formula (I) of the present invention has an undesirable side reaction (for example, excessive decrease in blood pressure, increased reflex sympathetic nerve activity) compared with the amide-linked adrenomedullin derivative. Tachycardia and / or increased renin activity, etc.) are further suppressed. Therefore, the compound represented by the formula (I) of the present invention is capable of continuously expressing adrenomedullin activity in vivo while further suppressing undesirable side reactions as compared with known adrenomedullin derivatives. it can.
  • A is represented by the formula (V-1-1), (VI-1-1), (VII-1-1), (VII-1-2), (VII-2-1), or (VIII-1- 1), a modifying group containing a PEG group
  • B is: (A) a peptide consisting of the amino acid sequence of SEQ ID NO: 1, or a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (B) a peptide consisting of the amino acid sequence of SEQ ID NO: 3, or a peptide consisting of the amino acid sequence of SEQ ID NO: 3, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (C) a peptide consisting of the amino acid sequence of SEQ ID NO: 5, or a peptide consisting of the amino acid sequence of SEQ ID NO: 5, wherein the cyst
  • Another embodiment of the present invention provides (X): A'-CO-B (X) Or a salt thereof, or a hydrate thereof.
  • the compound represented by the formula (X) may be described as “urethane-linked adrenomedullin derivative”.
  • B needs to be adrenomedullin or a peptide moiety derived from a modified form having adrenomedullin activity.
  • the peptide part B has the same meaning as defined above for the compound represented by formula (I).
  • a ′ must be a modifying group containing one or more PEG groups. However, A ′ requires that the oxygen atom of the modifying group containing the PEG group is linked to the remainder by covalent bonding to the carbon atom of the carbonyl group. Since the modifying group A ′ has such a structure, the compound represented by the formula (X) can have a structure in which the modifying group A ′ and the peptide moiety B are linked via a urethane bond.
  • a ′ represents the following formula (XI), (XI ′) or (XII): R 1 -OM 1- * (XI) It is preferable that it is a modification group represented by these.
  • Particularly preferred modifying group A ′ is represented by the following formula (XI-1-1), (XII-1-1) or (XII-2-1): CH 3 O- (CH 2 CH 2 O) n- * (XI-1-1) [Where: n has the same meaning as defined above; n ′ has the same meaning as defined above for n; * Is the coupling position with the remaining part. ] Is a modifying group represented by
  • the PEG groups preferably have a total weight average molecular weight of 5 kDa, 10 kDa, 20 kDa, 30 kDa, 40 kDa, 60 kDa or 80 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 5 kDa, 10 kDa, 20 kDa, 30 kDa, 40 kDa, 60 kDa or 80 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 40 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 30 kDa
  • the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 60 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 50 kDa, and the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the PEG groups preferably have a total weight average molecular weight of 80 kDa.
  • the ethylene oxide units of (CH 2 CH 2 O) n have a total weight average molecular weight of 70 kDa, and the ethylene oxide units of (CH 2 CH 2 O) n ′ have a total of 10 kDa.
  • the compound represented by the formula (X) can continuously exhibit adrenomedullin activity in vivo while maintaining the pharmacological action of natural adrenomedullin. it can.
  • the peptide part B needs to be linked to the remaining part by covalently bonding the nitrogen atom of the ⁇ -amino group at the N-terminal to the carbon atom of the carbonyl group.
  • the urethane-linked adrenomedullin derivative has higher adrenomedullin activity than the amide-linked adrenomedullin derivative described in Non-Patent Document 10. Therefore, the compound represented by the formula (X) of the present invention can continuously express higher adrenomedullin activity in vivo as compared with known adrenomedullin derivatives.
  • a ′ is a modifying group containing a PEG group represented by the formula (XI-1-1), (XII-1-1) or (XII-2-1), B is: (A) a peptide consisting of the amino acid sequence of SEQ ID NO: 1, or a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (B) a peptide consisting of the amino acid sequence of SEQ ID NO: 3, or a peptide consisting of the amino acid sequence of SEQ ID NO: 3, wherein the cysteine residue at position 16 and the cysteine residue at position 21 form a disulfide bond; (C) a peptide consisting of the amino acid sequence of SEQ ID NO: 5, or a peptide consisting of the amino acid sequence of SEQ ID NO: 5, wherein the cysteine residue at position 16 and the cysteine residue
  • the compounds represented by the formulas (I) and (X) include not only the compounds themselves but also their salts.
  • the compounds represented by the formulas (I) and (X) are in the form of a salt, it is preferably a pharmaceutically acceptable salt.
  • the counter ion of the salt of the compound of the present invention is not limited, but includes, for example, a cation such as sodium ion, potassium ion, calcium ion, magnesium ion, or substituted or unsubstituted ammonium ion, or chloride ion.
  • the adrenomedullin activity of the compound can be substantially substantially equivalent to that of the natural adrenomedullin.
  • the compounds represented by the formulas (I) and (X) include not only the compounds themselves but also solvates of the compounds or salts thereof.
  • the compound represented by the formulas (I) and (X) or a salt thereof is in the form of a solvate, it is preferably a pharmaceutically acceptable solvate.
  • Solvents that can form solvates with the above-mentioned compounds or salts thereof are not limited. For example, water or methanol, ethanol, 2-propanol (isopropyl alcohol), dimethyl sulfoxide (DMSO), acetic acid, ethanol Organic solvents such as amines, acetonitrile or ethyl acetate are preferred.
  • the adrenomedullin activity of the compound is substantially equivalent to that of natural adrenomedullin. can do.
  • the compounds represented by the formulas (I) and (X) include not only the above-mentioned or the following compounds themselves, but also their protected forms.
  • the “protected form” means a form in which a protecting group is introduced into one or a plurality of functional groups (for example, a side chain amino group of a lysine residue).
  • a “protecting group” is a group introduced into a specific functional group in order to prevent an undesirable reaction from progressing, and is quantitatively removed under specific reaction conditions. In other reaction conditions, it means a group that is substantially stable, that is, reaction-inactive.
  • Protecting groups that can form protected forms of the compound include, but are not limited to, for example, t-butoxycarbonyl (Boc), 2-bromobenzyloxycarbonyl (BrZ), 9-fluorenylmethoxycarbonyl (Fmoc ), P-toluenesulfonyl (Tos), benzyl (Bzl), 4-methylbenzyl (4-MeBzl), 2-chlorobenzyloxycarbonyl (ClZ), cyclohexyl (cHex), and phenacyl (Pac);
  • As protecting groups for benzyloxycarbonyl p-chlorobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, benzhydryloxycarbonyl, 2- (p-biphenyl) Isopropyloxycarbonyl, 2- (3,5-dime
  • the compounds represented by formulas (I) and (X) also include individual enantiomers and diastereomers of the compounds, as well as mixtures of stereoisomers of the compounds, such as racemates.
  • the compounds represented by formulas (I) and (X) maintain the pharmacological action of natural adrenomedullin and substantially suppress undesirable side reactions, and thus continue in vivo.
  • adrenomedullin activity can be expressed.
  • adrenomedullin derivatives can continuously exhibit a biological activity substantially equivalent to the parent molecule adrenomedullin (that is, adrenomedullin activity) in vivo. it can. Therefore, the present invention provides a pharmaceutical comprising the compound represented by the formulas (I) and (X) of the present invention or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof as an active ingredient. About.
  • the compounds represented by formulas (I) and (X) of the present invention When the compounds represented by formulas (I) and (X) of the present invention are applied for pharmaceutical use, the compounds may be used alone or in combination with one or more pharmaceutically acceptable ingredients. May be.
  • the medicament of the present invention can be formulated into various dosage forms usually used in the art depending on the desired administration method. Therefore, the medicament of the present invention is also provided in the form of a pharmaceutical composition containing the compounds represented by the formulas (I) and (X) of the present invention and one or more pharmaceutically acceptable carriers. Can also be done.
  • the pharmaceutical composition of the present invention comprises one or more pharmaceutically acceptable carriers, excipients, binders, vehicles, solubilizers, preservatives, stabilizers, swelling agents, lubricants. , Surfactants, oily liquids, buffers, soothing agents, antioxidants, sweetening agents, flavoring agents, and the like.
  • the pharmaceutical dosage form containing the compounds represented by formulas (I) and (X) of the present invention as an active ingredient is not particularly limited, and may be a preparation for use in parenteral administration, orally administered. It may be a preparation for use in the preparation.
  • the pharmaceutical dosage form of the present invention may be a unit dosage form or a multiple dosage form. Examples of the preparation for use in parenteral administration include injections such as sterile solutions or suspensions with water or other pharmaceutically acceptable liquids.
  • Additives that can be incorporated into injections include, but are not limited to, isotonic, including, for example, saline, glucose or other adjuvants (eg, D-sorbitol, D-mannitol, or sodium chloride) Vehicle such as liquid, alcohol (eg ethanol or benzyl alcohol), ester (eg benzyl benzoate), solubilizer such as polyalcohol (eg propylene glycol or polyethylene glycol), polysorbate 80 or polyoxyethylene hydrogenated castor oil
  • Nonionic surfactant such as oily liquid such as sesame oil or soybean oil, buffer such as phosphate buffer or sodium acetate buffer, soothing agent such as benzalkonium chloride or procaine hydrochloride, human Of serum albumin or polyethylene glycol Una stabilizer, may be mentioned preservatives, and antioxidants, and the like.
  • the prepared injection is usually filled in an appropriate vial (for example, an ampoule) and stored in an appropriate environment until use.
  • Examples of the preparation for use in oral administration include tablets, capsules, elixirs, microcapsules, tablets, syrups, suspensions, and the like with sugar coating or a soluble coating as necessary.
  • Additives that can be incorporated into tablets or capsules are not limited, but include, for example, binders such as gelatin, corn starch, gum tragacanth and gum arabic, excipients such as crystalline cellulose, corn starch Swelling agents such as gelatin and alginic acid, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavoring agents such as peppermint, red mono oil or cherry.
  • binders such as gelatin, corn starch, gum tragacanth and gum arabic
  • excipients such as crystalline cellulose
  • corn starch Swelling agents such as gelatin and alginic acid
  • lubricants such as magnesium stearate
  • sweeteners such as sucrose, lactose or
  • the compounds represented by the formulas (I) and (X) of the present invention can continuously exhibit an adrenomedullin activity substantially equivalent to the parent molecule adrenomedullin in vivo. Therefore, the medicament containing the compounds represented by the formulas (I) and (X) of the present invention as an active ingredient can be formulated as a depot preparation.
  • the medicament of the present invention in the form of a depot preparation can be administered, for example, by subcutaneous or intramuscular implantation or by intramuscular injection.
  • the adrenomedullin activity of the compounds represented by the formulas (I) and (X) of the present invention can be expressed continuously over a long period of time.
  • the medicament containing the compounds represented by the formulas (I) and (X) of the present invention as an active ingredient can be used in combination with one or more other drugs useful as a medicament.
  • the medicament of the present invention is a compound represented by the formulas (I) and (X) of the present invention or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof and one or more kinds.
  • the compound represented by the formulas (I) and (X) of the present invention, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof may be provided in the form of a single medicament containing other drugs.
  • the hydrate to be prepared and one or more other drugs may be provided in the form of a pharmaceutical combination or kit comprising a plurality of formulations formulated separately. When in the form of a pharmaceutical combination or kit, the respective formulations can be administered simultaneously or separately (eg sequentially).
  • the compounds represented by the formulas (I) and (X) of the present invention are not limited to the compounds themselves, Also included are the top acceptable salts and pharmaceutically acceptable solvates thereof.
  • the pharmaceutically acceptable salts of the compounds represented by the formulas (I) and (X) of the present invention and the pharmaceutically acceptable solvates thereof are not limited, but examples thereof include those exemplified above. Preferred salts or solvates are preferred.
  • the compounds represented by the formulas (I) and (X) are in the form of the aforementioned salts or solvates, the compounds can be applied to a desired pharmaceutical use.
  • the medicament containing the compounds represented by formulas (I) and (X) of the present invention as an active ingredient can similarly prevent or treat various symptoms, diseases and / or disorders that are prevented or treated by adrenomedullin. Can do.
  • the symptom, disease and / or disorder include, but are not limited to, the following.
  • Cardiovascular disease heart failure, pulmonary hypertension, obstructive arteriosclerosis, Buerger's disease, myocardial infarction, lymphedema, Kawasaki disease, myocarditis, hypertension, organ damage due to hypertension, and arteriosclerosis.
  • Kidney / water electrolyte diseases renal failure and nephritis.
  • Brain / neurological disorders Cerebral infarction, dementia, and encephalitis.
  • Urogenital disease erectile dysfunction (ED).
  • Gastrointestinal disease inflammatory bowel disease, ulcer disease, intestinal bechet, and liver failure.
  • Orthopedic disease arthritis.
  • Endocrine metabolic disease Diabetes mellitus, organ damage caused by diabetes, and primary aldosteronism.
  • Others septic shock, autoimmune disease, multiple organ failure, pressure ulcer, wound healing, and alopecia.
  • the cardiovascular disease is preferably myocardial infarction, pulmonary hypertension, heart failure or the like.
  • the gastrointestinal disease is preferably an inflammatory disease such as steroid resistant or steroid dependent inflammatory bowel disease (eg, ulcerative colitis, Crohn's disease or intestinal Behcet's disease).
  • the compounds represented by the formulas (I) and (X) of the present invention have a structure in which a natural physiologically active peptide adrenomedullin and a modifying group are linked. For this reason, the compounds represented by the formulas (I) and (X) of the present invention are safe and have low toxicity. Therefore, the medicament containing the compounds represented by the formulas (I) and (X) of the present invention as an active ingredient is applied to various subjects in need of prevention or treatment of the symptoms, diseases and / or disorders. be able to.
  • the subject is a subject or patient of a human or non-human mammal (eg, a warm-blooded animal such as a pig, dog, cow, rat, mouse, guinea pig, rabbit, chicken, sheep, cat, monkey, baboon or chimpanzee).
  • a human or non-human mammal eg, a warm-blooded animal such as a pig, dog, cow, rat, mouse, guinea pig, rabbit, chicken, sheep, cat, monkey, baboon or chimpanzee.
  • a human or non-human mammal eg, a warm-blooded animal such as a pig, dog, cow, rat, mouse, guinea pig, rabbit, chicken, sheep, cat, monkey, baboon or chimpanzee.
  • various symptoms, diseases and / or disorders prevented or treated with adrenomedullin can be prevented or treated.
  • prevention means substantially preventing the occurrence (onset or onset) of symptoms, diseases and / or disorders.
  • treatment means to suppress (e.g., suppress progression), relieve, repair, and / or cure a symptom, disease, and / or disorder that has occurred (onset or onset).
  • the medicament of the present invention is preferably a medicament for use in the prevention or treatment of the symptoms, diseases and / or disorders described above, and is suitable for the prevention or prevention of cardiovascular diseases, inflammatory diseases or peripheral vascular diseases. More preferably it is a medicament for use in therapy.
  • the present invention also includes a compound containing the compounds represented by formulas (I) and (X) of the present invention or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof as an active ingredient.
  • the present invention relates to a preventive or therapeutic agent for organ disease, inflammatory disease or peripheral vascular disease.
  • a preventive or therapeutic agent for organ disease, inflammatory disease or peripheral vascular disease By using the compounds represented by the formulas (I) and (X) of the present invention for the prevention or treatment of the symptoms, diseases and / or disorders described above, the symptoms, diseases and / or disorders can be sustained. Can be prevented or treated.
  • the compounds represented by the formulas (I) and (X) of the present invention in a subject having the symptoms, diseases and / or disorders described above (for example, cardiovascular disease, peripheral vascular disease or inflammatory disease), It can be used for the prevention or treatment of symptoms, diseases and / or disorders. Therefore, one embodiment of the present invention is represented by an effective amount of Formulas (I) and (X) of the present invention in a subject in need of prevention or treatment of the symptoms, diseases and / or disorders described above. Or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable hydrate thereof. Said symptoms, diseases and / or disorders are preferably cardiovascular diseases, peripheral vascular diseases or inflammatory diseases.
  • the symptom, disease and / or disorder is reduced. Can be prevented or treated.
  • Another embodiment of the present invention is a compound represented by formulas (I) and (X) of the present invention or a pharmaceutical product thereof for use in the prevention or treatment of the symptoms, diseases and / or disorders described above.
  • Another embodiment of the present invention is represented by formulas (I) and (X) of the present invention for the manufacture of a medicament for use in the prevention or treatment of the symptoms, diseases and / or disorders described above.
  • the symptoms, diseases and / or disorders are preferably cardiovascular diseases, inflammatory diseases or peripheral vascular diseases.
  • a medicament containing the compounds represented by formulas (I) and (X) of the present invention as an active ingredient is administered to a subject, particularly a human patient
  • the exact dose and the number of times of administration are determined by the subject's age, sex, In view of many factors, such as the symptoms to be prevented or treated, the exact state of the disease and / or disorder (eg severity), and the route of administration, the attending physician will ultimately determine a therapeutically effective dose and number of doses. Should be determined. Therefore, in the medicament of the present invention, the compounds represented by formulas (I) and (X) which are active ingredients are administered to a subject in a therapeutically effective amount and frequency.
  • the dose of the compound represented by the formulas (I) and (X) as active ingredients is usually 0.01 to 100 mg / kg body weight per day of 60 kg / kg. Typically, it is in the range of 0.01 to 10 mg / 60 kg of body weight per day.
  • the administration route and the number of administrations of the medicament containing the compounds represented by the formulas (I) and (X) of the present invention as an active ingredient are not particularly limited, and may be orally administered once or plural times, Parenteral administration may be single or multiple doses.
  • the medicament of the present invention is preferably administered by a parenteral route such as intravenous administration, enema administration, subcutaneous administration, intramuscular administration or intraperitoneal administration, and more preferably intravenous administration or subcutaneous administration.
  • the medicament of the present invention is preferably administered once.
  • the medicament of the present invention is particularly preferably used for single administration intravenously or subcutaneously.
  • Adrenomedullin which is the parent molecule of the compounds represented by formulas (I) and (X) of the present invention, has a potent vasodilatory action. For this reason, when a single dose of a therapeutically effective amount of adrenomedullin is administered, a powerful vasodilatory effect may cause excessive blood pressure reduction, tachycardia associated with increased reflex sympathetic activity, and / or increased renin activity. May cause undesirable side reactions.
  • the compounds represented by the formulas (I) and (X) of the present invention retain half the blood adrenomedullin activity while maintaining substantially the same adrenomedullin activity as the natural adrenomedullin. The period can be significantly extended.
  • the present invention also relates to a method for producing the compounds represented by formulas (I) and (X) of the present invention.
  • the method of the present invention comprises the step of providing at least one of a precursor of peptide moiety B derived from adrenomedullin or a modified form thereof, a precursor of modified group A or A ′ containing one or more polyethylene glycol groups. But you can.
  • precursor of peptide part B derived from adrenomedullin or a modified product thereof means adrenomedullin or a modified product itself, or, in the linking step described below, the peptide moiety B and the modifying group.
  • the derivatives thereof are appropriately modified or activated so that A or A ′ are linked to each other by a condensation reaction.
  • the precursor of peptide part B is preferably adrenomedullin or a modification thereof itself, or a protected form thereof.
  • the precursor of the modifying group A is usually represented by the formula (I-1): A-CHO (I-1) A precursor aldehyde of the modifying group A containing one or more polyethylene glycol groups represented by: In this step, by preparing a precursor having the above characteristics, a ligation reaction of each precursor in the linking step described below is performed to obtain a compound represented by the formula (I) in high yield. be able to.
  • the precursor of the modifying group A ′ is usually represented by the formula (X-1): A'-CO-OC 6 H 4 -p-NO 2 (X-1) A precursor p-nitrophenyl carbonate of a modifying group A ′ containing one or more polyethylene glycol groups represented by:
  • the precursor of the modifying group A ′ has the formula (X-2): A'-CO-OC 4 H 4 NO 2 (X-2) It may be a precursor N-hydroxysuccinimidyl carbonate of a modifying group A ′ containing one or more polyethylene glycol groups represented by:
  • a ligation reaction of each precursor in the linking step described below is performed to obtain a compound represented by the formula (X) in high yield. be able to.
  • the precursor of peptide part B derived from adrenomedullin or a modified form thereof can be formed by means usually used in the art.
  • the precursor of peptide part B is adrenomedullin or a modification thereof itself
  • solid or liquid phase peptide synthesis methods may be used, and human or non-human mammalian tissue capable of producing adrenomedullin
  • a method for purifying a natural peptide from cells may be used.
  • a DNA encoding adrenomedullin in a human or non-human mammal capable of producing adrenomedullin eg, SEQ ID NO: 2, 4, 6, 8, 10 or 12
  • a method of expressing a large amount of recombinant protein may be used. Or you may purchase and use the peptide manufactured previously. Either case is included in the embodiment of this step.
  • two cysteine residues in the amino acid sequence are disulfide bonded by disulfiding the thiol group of the two cysteine residues in the amino acid sequence.
  • the precursor which forms can be obtained.
  • the disulfide bond formed between the two cysteine residues in the amino acid sequence is replaced by an ethylene group, whereby the disulfide bond is converted to ethylene.
  • Precursors substituted by groups can be obtained.
  • the disulfide reaction and the substitution reaction with an ethylene group can be carried out based on conditions usually used in the art.
  • the disulfide reaction and the substitution reaction with an ethylene group may be performed in this step or may be performed in a connecting step described below. Either case is encompassed by the method embodiments of the present invention.
  • the precursor of the peptide moiety B and the precursor of the modifying group A or A ′ is a protected form thereof
  • a deprotecting step of deprotecting the protecting group of may be performed.
  • the protection step and the deprotection step can be performed by a protection reaction and a deprotection reaction that are usually used in the art.
  • the protection step and the deprotection step may be performed in this step, or may be performed in a connection step described below. Either case is encompassed by the method embodiments of the present invention.
  • the method of the present invention is represented by the formula (I) or (X) by linking a precursor of a peptide moiety B derived from adrenomedullin or a modified form thereof and a precursor of a modifying group A or A ′. It is necessary to include a linking step to obtain the compound.
  • this step usually comprises reducing the precursor of the peptide moiety B and the precursor aldehyde of the modifying group A containing one or more PEG groups represented by the formula (I-1) It is carried out by reacting in the presence.
  • the reducing agent used in this step include, but are not limited to, for example, sodium cyanoborohydride (NaCNBH 3), hydrogenated sodium borohydride (NaBH 4), boric acid dimethylamine, boric acid trimethyl borate Mention may be made of pyridine, pyridine borane, 2-picoline borane and 3-picoline borane.
  • the reaction temperature in this step is preferably in the range of ⁇ 20 to 50 ° C., more preferably in the range of 0 to 15 ° C.
  • the reaction time in this step is preferably in the range of 5 minutes to 100 hours.
  • this step usually comprises a modifying group A ′ comprising a precursor of peptide part B and one or more PEG groups represented by formula (X-1) or formula (X-2)
  • a modifying group A ′ comprising a precursor of peptide part B and one or more PEG groups represented by formula (X-1) or formula (X-2)
  • This is carried out by reacting the precursor p-nitrophenyl carbonate or N-hydroxysuccinimidyl carbonate in the presence of a base.
  • the base used in this step include, but are not limited to, triethylamine, pyridine, and dimethylaminopyridine.
  • the reaction temperature in this step is preferably in the range of 0 to 50 ° C.
  • the reaction time in this step is preferably in the range of 5 minutes to 200 hours.
  • Type 5 kDa CH 3 O-PEGylation reagent (PEG-1) (CH 3 O- (CH 2 CH 2 O) n- (CH 2 ) 5 -CO-O-NHS) H-Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-, a peptide corresponding to 1 to 52 amino acid residues (SEQ ID NO: 1) Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn- Cys 16 -Cys 21 disulfide cross-linked product of a peptide having the amino acid sequence of Val-Ala-Pro-Arg-Ser-Lys-
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr.
  • the column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • 50 mM sodium acetate buffer solution, pH 5.0 containing 5 mL of 1 M NaCl was passed through the column to obtain an elution fraction.
  • the elution fraction contains alkylamine-linked PEG (10k) adrenomedullin derivative (CH 3 O-PEG (10k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (1-52))) (3 ), And unreacted h.AM (1-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using a high-performance liquid chromatography (HPLC) system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Superdex 200 HR 10/30 (GE Healthcare) column.
  • HPLC high-performance liquid chromatography
  • NaCNBH 3 was added to this peptide solution so as to have a final concentration of 20 mM.
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr. The column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • elution fraction contains alkylamine-linked PEG (20k) adrenomedullin derivative (CH 3 O-PEG (20k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (1-52))) (4 ), And unreacted h.AM (1-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Superdex 200 HR 10/30 (GE Healthcare) column (eluent: 80 20% CH 3 CN containing mM sodium acetate buffer, pH 6 + 80 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • HPLC HPLC system
  • HR 10/30 GE Healthcare
  • NaCNBH 3 was added to this peptide solution so as to have a final concentration of 20 mM.
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr. The column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • elution fraction contains alkylamine-linked PEG (30k) adrenomedullin derivative (CH 3 O-PEG (30k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (1-52))) (5 ), And unreacted h.AM (1-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Superdex 200 HR 10/30 (GE Healthcare) column (eluent: 100). mM sodium acetate buffer, pH 6 + 200 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • HPLC HPLC
  • 0.8 mg (equivalent to h.AM (1-52)) of the target compound (5) was obtained.
  • Experiment I-1-6 Synthesis of GL-2 branched CH 3 O-PEG (20k) -CH 2 - ⁇ NH- (h.AM (1-52)) (compound (6))]
  • Experiment I-1-5 instead of CH 3 O-PEGylation reagent (PEG-2), 45 mg of formula (VII-1-1 ′):
  • a bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 20 kDa represented by the aldehyde type was used.
  • PEG (20k) adrenomedullin derivative (GL-2 branched CH 3 O-PEG (20k) -CH 2 - ⁇ NH- (h.AM (1-52))) (6): Got. Preparative HPLC gave 1.0 mg (equivalent to h.AM (1-52)) of the target compound (6).
  • Experiment I-1-7 Synthesis of GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (1-52)) (compound (7))]
  • PEG-2 instead of CH 3 O-PEGylation reagent (PEG-2), 80 mg of formula (VII-1-1 ′):
  • a bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 40 kDa represented by aldehyde was used.
  • PEG (40k) adrenomedullin derivative (GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (1-52))) (7): Got. Preparative HPLC gave 1.2 mg (equivalent to h.AM (1-52)) of the target compound (7).
  • Experiment I-1-8 Preparation of GL-2 branched CH 3 O-PEG (60k) -CH 2 - ⁇ NH- (h.AM (1-52)) (compound (8))]
  • PEG-2 instead of CH 3 O-PEGylation reagent (PEG-2), 40 mg of formula (VII-1-1 ′):
  • a bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 60 kDa represented by aldehyde was used.
  • PEG (60k) adrenomedullin derivative (GL-2 branched CH 3 O-PEG (60k) -CH 2 - ⁇ NH- (h.AM (1-52))) (8): Got. Preparative HPLC gave 0.4 mg (equivalent to h.AM (1-52)) of the target compound (8).
  • Experiment I-1-9 Synthesis of GL-2 branched CH 3 O-PEG (80k) -CH 2 - ⁇ NH- (h.AM (1-52)) (compound (9))]
  • PEG-2 instead of CH 3 O-PEGylation reagent (PEG-2), 121 mg of formula (VII-1-1 ′): A bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 80 kDa represented by aldehyde was used.
  • PEG (40k) adrenomedullin derivative (Lys-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (1-52))) (10): Got. Preparative HPLC gave 0.4 mg (h.AM (1-52) equivalent) of the target compound (10).
  • the resulting solution was fractionated using reverse phase HPLC to obtain a fraction containing the h.AM (1-52) peptide. This fraction was freeze-dried to obtain 10 mg of a peptide in which 4 lysine of h.AM (1-52) was protected with a Boc group as a white powder.
  • reaction solution was lyophilized. 1 mL of trifluoroacetic acid was added to the resulting residue under ice cooling. The temperature of the mixture was returned to room temperature and left for 2 hours. Subsequently, the trifluoroacetic acid was depressurizingly distilled from the mixture using the evaporator. To the resulting residue, 4 mL of 50 mM sodium acetate buffer, pH 4.0 was added and dissolved. This solution was passed through a SP-Sepharose HP (GE Healthcare) column (1 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 1 mL / hr.
  • SP-Sepharose HP GE Healthcare
  • the column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0. Subsequently, 50 mM sodium acetate buffer solution, pH 5.0 containing 5 mL of 1 M NaCl was passed through the column to obtain an elution fraction. In the eluted fraction, urethane-linked PEG (20k) adrenomedullin derivative (CH 3 O-PEG (20k) -CO- ⁇ NH- (h.AM (1-52))) (14) and unreacted h. AM (1-52) peptide was recovered. This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid). 20% CH 3 CN containing sodium buffer, pH 6 + 80 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • HPLC HPLC system
  • L-2000 manufactured by Hitachi High-Tech Science Co., Ltd.
  • Tsk gel G2000SWxL 60 cm, Tosoh Corporation
  • Example I-2 Structural analysis of full-length adrenomedullin derivatives
  • Example I-2-1 Identification of PEG group attachment position by mass spectrometry of cleaved peptide (1)] 10 ⁇ g of compound (3) was mixed with 70% formic acid and 600 ⁇ g of cyanogen bromide (BrCN) for a total of 500 ⁇ L. The mixture was allowed to react overnight at room temperature. The column was washed by sequentially passing 1 mL each of 60% aqueous acetonitrile containing chloroform, methanol, and 0.1% trifluoroacetic acid through a Sep Pak (Waters) column.
  • RhCN cyanogen bromide
  • Acetonitrile was distilled off under reduced pressure from the cleaved peptide elution fraction from the Sep Pak column obtained by the above treatment.
  • the obtained residue was purified and fractionated by reverse phase HPLC (RP-HPLC) using a reverse phase column (ODS-120A TSKgel, Tosoh Corporation). Elution in RP-HPLC ranges from 100% solution A (10% acetonitrile aqueous solution containing 0.1% trifluoroacetic acid) to 100% solution B (60% acetonitrile aqueous solution containing 0.1% trifluoroacetic acid) in 60 minutes. This was done with a changing linear gradient program.
  • the MS spectrum of the fractionated cleaved peptide was measured using a mass spectrometer (AXIMA-confidence, Shimadzu Corporation). As a result, it was confirmed that the molecular weight of the cleaved peptide coincided with the molecular weight of the peptide corresponding to 6 to 52 amino acid residues of human adrenomedullin ((M + Na) + , calculated value: m / z 5385.935; measured value : M / z 5385.9986). All lysine residues present in human adrenomedullin (residues 25, 36, 38 and 46 from the N-terminus) are in the range of 6 to 52 amino acid residues. Therefore, from the above results, it was confirmed that the PEG group in the alkylamine-linked PEG (10k) adrenomedullin derivative (3) was bonded to the N-terminal ⁇ -amino group.
  • Acetonitrile was distilled off under reduced pressure from the reduced alkylated peptide elution fraction from the Sep Pak column obtained by the above treatment.
  • the resulting reduced alkylated peptide was mixed with lysyl endopeptidase at a ratio of 20: 1 mass ratio of peptide: lysyl endopeptidase.
  • 1 M Tris-HCl pH 8.5 was added to prepare a volume of 200 L and a final concentration of 50 mM Tris-HCl. The mixture was left at 37 ° C. overnight (over 16 hours).
  • the obtained cleaved peptide was purified and fractionated by RP-HPLC using a reverse phase column (ODS-120A TSKgel, Tosoh Corporation).
  • ODS-120A TSKgel reverse phase column
  • 100% solution A (0.1% trifluoroacetic acid) was passed through for 5 minutes, and then 100% solution A to 50% solution B (containing 0.1% trifluoroacetic acid) over 60 minutes.
  • the solution was run under a linear gradient condition that changed up to 60% acetonitrile aqueous solution, and 100% B solution was passed through for 15 minutes.
  • reaction and preparative RP-HPLC were carried out in the same procedure as described above using a chemically synthesized standard h.AM (1-52) peptide instead of compound (2).
  • FIG. 1A An RP-HPLC chromatogram of the cleaved peptide is shown in FIG. 1A.
  • A shows an RP-HPLC chromatogram of the cleaved peptide derived from the h.AM (1-52) peptide
  • B shows an RP-HPLC chromatogram of the cleaved peptide derived from the compound (2).
  • the retention time is 28.08 minutes (hereinafter also referred to as “peak (1)”), 36.97 minutes (hereinafter referred to as “peak”).
  • peaks (1) and (5), peaks (2) and (6), and peaks (3) and (7) correspond to the same peptide fragment, respectively.
  • Peaks (4) and (8) have different retention times.
  • the compound of peak (8) is presumed to be a compound in which a PEG group is bound to the peptide fragment of peak (4).
  • MS spectrum of the fractionated cleaved peptide was measured using a mass spectrometer (QSTAR Elit, SCIEX).
  • Human adrenomedullin has 4 lysine residues (25, 36, 38 and 46 residues from the N-terminal side). Therefore, the cleaved peptide obtained by lysyl endopeptidase has 5 peptide fragments, specifically, YRQSMNNFQGLRSFGCRFGTCTVQK (h.AM (1-25)), LAHQIYQFTAK (h.AM (26-36) from the N-terminal side.
  • peaks (1) and (5) are peptide fragments of h.AM (39-46), peaks (2) and (6) are peptide fragments of h.AM (47-52). It was confirmed that peaks (3) and (7) correspond to the peptide fragment of h.AM (26-36), and peak (4) corresponds to the peptide fragment of h.AM (1-25).
  • the compound of peak (8) is h.AM (1-52) peptide It was confirmed that the compound was a compound in which a PEG group was bound to the N-terminal peptide fragment. Therefore, from the above results, it was confirmed that all of the PEG groups in the compounds (7), (8) and (26) were bonded to the N-terminal ⁇ -amino group.
  • lane 0 is the molecular weight standard
  • lane 1 is compound (3)
  • lane 2 is compound (4)
  • lane 3 is compound (5)
  • lane 4 is compound (6)
  • lane 5 Is compound (7)
  • lane 6 is compound (8)
  • lane 7 is compound (9)
  • lane 8 is compound (10)
  • lane 9 is compound (11)
  • lane 10 is compound (12)
  • lane 0 is the molecular weight standard
  • lane 1 is compound (1)
  • lane 2 is compound (2)
  • lane 3 is compound (13)
  • lane 4 is compound (14)
  • lane 5 Represents a compound (15) described later
  • lane 6 represents a compound (16) described later
  • lane 7 represents a compound (17) described later.
  • lane 0 is the molecular weight standard
  • lane 1 is compound (25)
  • lane 2 is compound (26)
  • lane 3 is compound (27)
  • lane 4 is compound (28)
  • lane 5 Is a compound (29) described later
  • lane 6 is a compound (30) described later
  • lane 7 is a compound (31) described later
  • lane 8 is a compound (32) described later
  • lane 9 is a compound (33 described later).
  • Lane 10 shows the compound (34) described later
  • lane 11 shows the compound (35)
  • lane 12 shows the compound (36) described later
  • lane 13 shows the compound (37) described later.
  • As the molecular weight standard substance Precision Plus Protein TM Dual Xtra Standards (Bio-Rad) was used. As shown in FIGS. 2, 3 and 4, each compound was confirmed to have a desired molecular weight.
  • each compound showed a single peak having a retention time corresponding to the molecular weight. From the results, it was confirmed that each adrenomedullin derivative molecule is not associated and exists as a monomer. Table 1 shows the retention time of each compound in the gel filtration chromatogram.
  • Type 5 kDa CH 3 O-PEGylation reagent (PEG-1) (CH 3 O- (CH 2 CH 2 O) n- (CH 2 ) 5 -CO-O-NHS) H-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val, a peptide corresponding to 6-52 amino acid residues -Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser N-terminal amino group of a Cys 16 -Cys 21 disulfide cross-linked product of a peptide having the amino acid sequence of -Pro-Gln
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr.
  • the column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • 50 mM sodium acetate buffer solution, pH 5.0 containing 5 mL of 1 M NaCl was passed through the column to obtain an elution fraction.
  • the elution fraction was combined with an alkylamine-linked PEG (5k) adrenomedullin derivative (CH 3 O-PEG (5k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (6-52))) (18 ) And unreacted h.AM (6-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid). 20% CH 3 CN containing sodium buffer, pH 6 + 80 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • Preparative HPLC gave 0.12 mg (equivalent to h.AM (6-52)) of the
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr.
  • the column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • 50 mM sodium acetate buffer solution, pH 5.0 containing 5 mL of 1 M NaCl was passed through the column to obtain an elution fraction.
  • alkylamine-linked PEG (5k) adrenomedullin derivative (CH 3 O-PEG (5k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (11-52))) (19 ), And unreacted h.AM (11-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore). The resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid).
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr.
  • the column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • 50 mM sodium acetate buffer solution, pH 5.0 containing 5 mL of 1 M NaCl was passed through the column to obtain an elution fraction.
  • the elution fraction was combined with an alkylamine-linked PEG (5k) adrenomedullin derivative (CH 3 O-PEG (5k)-(CH 2 ) 2 -CH 2 - ⁇ NH- (h.AM (16-52))) (20 ), And unreacted h.AM (16-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid).
  • NaCNBH 3 was added to this peptide solution so as to have a final concentration of 20 mM.
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr. The column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • NaCNBH 3 was added to this peptide solution so as to have a final concentration of 20 mM.
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr. The column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid). 20% CH 3 CN containing sodium buffer, pH 6 + 80 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • HPLC 0.1 mg (equivalent to h.AM (11-52)) of the target compound (22) was obtained.
  • NaCNBH 3 was added to this peptide solution so as to have a final concentration of 20 mM.
  • the reaction solution was left at 4 ° C. for 24 hours.
  • the resulting reaction solution was diluted 5-fold with 50 mM sodium acetate buffer, pH 4.0.
  • the diluted reaction solution was passed through a SP-Sepharose HP (GE Healthcare) column (2 mL) equilibrated with 50 mM sodium acetate buffer, pH 4.0 at a flow rate of 2 mL / hr. The column was washed with 2 mL of 50 mM sodium acetate buffer, pH 4.0.
  • Experiment II-1-10 Synthesis of GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (16-52)) (compound (24))]
  • PEG-2 instead of CH 3 O-PEGylation reagent (PEG-2), 20 mg of formula (VII-1-1 ′): A bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 40 kDa represented by aldehyde was used.
  • PEG (40k) adrenomedullin derivative (GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (16-52))) (24): Got. Preparative HPLC gave 0.2 mg (equivalent to h.AM (16-52)) of the target compound (24).
  • Experiment II-1-11 Synthesis of GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (6-52)) (compound (29))]
  • Experiment II-1-7 instead of CH 3 O-PEGylation reagent (PEG-2), 20 mg of formula (VII-1-1 ′): A bi-branched alkylamine-linked type having a glycerol skeleton was prepared in the same manner as described above except that a CH 3 O-PEGylation reagent (PEG-3) having a weight average molecular weight of 40 kDa represented by aldehyde was used.
  • PEG (40k) adrenomedullin derivative (GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (6-52))) (29): Got. Preparative HPLC gave 0.15 mg (equivalent to h.AM (6-52)) of the target compound (29).
  • the obtained solution was fractionated using reverse phase HPLC to obtain a fraction containing h.AM (6-52) peptide. This fraction was freeze-dried to obtain 9 mg of a peptide in which 4 mg of h.AM (6-52) was protected with a Boc group as a white powder.
  • the elution fraction contains a 2-branched urethane-linked PEG (20k) adrenomedullin derivative having a glycerol skeleton (GL-2 branched CH 3 O-PEG (20k) -CO- ⁇ NH- (h.AM (6-52) )) (30): And unreacted h.AM (6-52) peptide was recovered.
  • This elution fraction was concentrated to 0.2 mL using an ultrafiltration membrane (Amicon Ultra4, Millipore).
  • the resulting concentrated solution was purified and fractionated using an HPLC system (L-2000: manufactured by Hitachi High-Tech Science Co., Ltd.) connected to a Tsk gel G2000SWxL (60 cm, Tosoh Corporation) column (eluent: 80 mM acetic acid). 20% CH 3 CN containing sodium buffer, pH 6 + 80 mM Na 2 SO 4 , flow rate: 0.5 mL / min).
  • HPLC 0.2 mg (equivalent to h.AM (6-52)) of the target compound (30) was obtained.
  • Experiment II-1-15 Synthesis of GL-2 branched CH 3 O-PEG (40k) -CO- ⁇ NH- (h.AM (16-52)) (compound (33))]
  • Experiment II-1-14 32 mg of the formula (XII-1-1 ′) was substituted for the p-nitrophenyl ester type CH 3 O-PEGylation reagent (PEG-9) with a weight average molecular weight of 20 kDa.
  • Experiment II-1-16 Synthesis of GL-4 branched CH 3 O-PEG (40k) -CO- ⁇ NH- (h.AM (6-52)) (compound (34))]
  • Experiment II-1-12 20 mg of the formula (XII-2-1 ′) was substituted for the p-nitrophenyl ester type CH 3 O-PEGylation reagent (PEG-9) with a weight average molecular weight of 20 kDa.
  • a 4-branched type having a glycerol skeleton is obtained by the same procedure as described above except that a p-nitrophenyl ester type 40 kDa weight average molecular weight CH 3 O-PEGylation reagent (PEG-10) is used.
  • peaks corresponding to the peaks (5), (6), (7) and (8) shown in FIG. 1 were detected in the RP-HPLC chromatograms of the cleaved peptides derived from all the compounds.
  • peaks (1) and (5) are for the peptide fragment of h.AM (39-46)
  • peaks (2) and (6) are for h.AM (47-52)
  • peaks (3) and (7) are in the peptide fragment of h.AM (26-36)
  • peak (4) is in the peptide fragment of h.AM (1-25)
  • peak (8) is It was confirmed to correspond to the compounds in which the PEG group was bound to the N-terminal peptide fragment of the .AM (1-52) peptide.
  • lane 0 is the molecular weight standard substance
  • lane 1 is the above-mentioned compound (1)
  • lane 2 is the above-mentioned compound (2)
  • lane 3 is the above-mentioned compound (13)
  • lane 4 is above-mentioned.
  • compound (14) lane 5 represents compound (15)
  • lane 6 represents compound (16)
  • lane 7 represents compound (17).
  • lane 0 is the molecular weight standard
  • lane 1 is the compound (25)
  • lane 2 is the compound (26)
  • lane 3 is the compound (27)
  • lane 4 is the compound.
  • Compound (28) Lane 5 is Compound (29)
  • Lane 6 is Compound (30)
  • Lane 7 is Compound (31)
  • Lane 8 is Compound (32)
  • Lane 9 is Compound (33).
  • Lane 10 shows the compound (34)
  • Lane 11 shows the compound (35) described above
  • Lane 12 shows the compound (36) described later
  • Lane 13 shows the compound (37) described later.
  • lanes 0 and 1 are molecular weight standards
  • lane 2 is compound (18)
  • lane 3 is compound (19)
  • lane 4 is compound (20)
  • lane 5 is compound (21)
  • Lane 6 shows compound (22)
  • lane 7 shows compound (23)
  • lane 8 shows compound (24).
  • As the molecular weight standard substance Precision Plus Protein TM Dual Xtra Standards (Bio-Rad) was used. As shown in FIGS. 3, 4 and 5, each compound was confirmed to have a desired molecular weight.
  • Example III Preparation of C-terminal glycine-added adrenomedullin derivative> [Experiment III-1: Synthesis of C-terminal glycine-added adrenomedullin derivative] [Experiment III-1-1: Synthesis of GL-2 branched CH 3 O-PEG (40k) -CH 2 - ⁇ NH- (h.AM (1-52))-Gly (compound (36))] In Experiment I-1-5, the h.AM (1-52) peptide was changed to the h.AM (1-52) -Gly peptide and replaced with CH 3 O-PEGylation reagent (PEG-2).
  • Example IV-1 Increase in intracellular cAMP concentration by adrenomedullin derivatives
  • AM adrenomedullin
  • HEK293 cells In confluent HEK293 cells, in the presence of 0.5 mM IBMX, 10 -8 mol / L of each compound, or h.AM (1-52), h.AM (6-52), h.AM (11-52 ), H.AM (16-52) or h.AM (1-52) -Gly was added and incubated for 15 minutes. Thereafter, the intracellular cAMP concentration in HEK293 cells in each test group was measured using an ELISA kit for cAMP measurement (GE Healthcare, # RPN2251). Table 3 shows the effect of adrenomedullin derivative on increasing intracellular cAMP concentration in AM receptor-expressing cultured cells.
  • adrenomedullin derivative that has the same (20 kDa) PEG group with a weight average molecular weight and a peptide part (h.AM (1-52)) with the same amino acid sequence, but only the mode of linkage between the PEG group and the peptide part.
  • compound (2), compound (4), compound (6) and compound (14) are compared, compound (4) and compound (6) which are alkylamine-linked PEG (20k) adrenomedullin derivatives are amide-linked Compared with the compound (2) which is a PEG (20k) adrenomedullin derivative, it showed a higher intracellular cAMP concentration increasing action.
  • the compound (14), which is a urethane-linked PEG (20k) adrenomedullin derivative exhibited a higher intracellular cAMP concentration-increasing action than the compound (2) that is an amide-linked PEG (20k) adrenomedullin derivative. .
  • the compound (15), compound (16) and compound (17), which are amide-linked PEG (5k) adrenomedullin derivatives have a remarkable effect of increasing intracellular cAMP concentration as the N-terminal deletion of the peptide portion increases. Diminished.
  • Compound (4) which is an adrenomedullin derivative having the same (20 kDa) weight average molecular weight PEG group, and a linkage mode of the same PEG group and a peptide portion, and differing only in the peptide portion of the amino acid sequence, and compound (21 ), Compound (22), and Compound (23), the alkylamine-linked PEG (20k) adrenomedullin derivative (21), Compound (22), and Compound (23) have an N-terminal deletion in the peptide moiety. There was no effect on the intracellular cAMP concentration-increasing action, and high intracellular cAMP concentration-increasing action was shown.
  • Experiment IV-2 Antihypertensive effect of adrenomedullin derivative
  • Each compound prepared in Experiment I-1 and Experiment II-1 or full-length AM was administered once at a dose of 1 nmol / kg into the vein of anesthetized rats, and the blood pressure of the rats was observed.
  • Male Wistar rats aged 11-14 weeks were anesthetized by inhalation of isoflurane. After tracheotomy, inhalation anesthesia management was performed at an isoflurane concentration of 1.5-2.5% and a flow rate of 0.6-0.8 L / min.
  • the right jugular vein was isolated from the rat, and a catheter tube equivalent to 26G was inserted.
  • saline heparin solution (saline: 100 mL; heparin: 1000 units) was replenished from the right jugular vein catheter tube at 2.4 mL / hour. From the same catheter tube, 1 nmol / kg of Compound (2), Compound (4), Compound (8) or h.AM (1-52) was administered in a form dissolved in physiological saline.
  • a catheter inserted into the carotid artery was connected to a pressure transducer. The blood pressure before administration of compound (2), compound (4) or h.AM (1-52) and blood pressure after administration were measured over time.
  • FIG. 6 shows the relationship between the elapsed time from the start of administration of compound (2), compound (4), compound (8) or h.AM (1-52) and mean blood pressure.
  • A shows the results of compound (2), compound (4) and h.AM (1-52), and B shows the results of compound (8) and h.AM (1-52), respectively.
  • the vertical axis represents the difference obtained by subtracting the average blood pressure before each drug administration from the average blood pressure at the time of each drug administration.
  • adrenomedullin derivative that has the same (20 kDa) PEG group with a weight average molecular weight and a peptide part (h.AM (1-52)) with the same amino acid sequence, but only the mode of linkage between the PEG group and the peptide part. Comparing compound (2) with compound (4) and compound (8), compound (4) and compound (8), which are alkylamine-linked PEG (20k) adrenomedullin derivatives, are amide-linked PEG (20k) Compared with compound (2), which is an adrenomedullin derivative, the blood pressure decrease immediately after administration was further suppressed.
  • Experiment IV-3 Measurement of blood concentration of adrenomedullin derivative over time during subcutaneous administration (1)
  • the compound (8) prepared in Experiment I-1 or full-length AM was administered once subcutaneously in rats at a dose of 10 nmol / kg, and changes in blood concentration of adrenomedullin derivatives were observed over time.
  • 7-8 week old male Wistar rats (about 250 g) were subcutaneously administered with compound (8) or h.AM (1-52) dissolved in physiological saline.
  • FIG. 7 shows the relationship between the elapsed time from the start of administration of compound (8) and the AM concentration in plasma.
  • Experiment IV-4 Measurement of blood concentration of adrenomedullin derivative over time after a single administration of the jugular vein
  • the compound (6) prepared in Experiment I-1 or full-length AM was administered once at a dose of 3 nmol / kg into the intravenous vein of anesthetized rats, and the change over time in the blood concentration of the adrenomedullin derivative was observed.
  • Male Wistar rats (about 300 g) aged 8-9 weeks were anesthetized by inhalation of isoflurane. After tracheotomy, inhalation anesthesia management was performed at an isoflurane concentration of 1.5-2.5% and a flow rate of 0.6-0.8 L / min.
  • the right jugular vein was isolated from the rat, and a catheter tube equivalent to 26G was inserted.
  • the left carotid artery was isolated from the treated rat, and a catheter tube equivalent to 23G was inserted.
  • a saline heparin solution (saline: 100 mL; heparin: 1000 units) was replenished from the right jugular vein catheter tube at 2.4 mL / hour.
  • 3 nmol / kg of compound (6) or h.AM (1-52) was administered in a form dissolved in physiological saline.
  • 300 ⁇ l of blood was collected over time 1 hour, 2 hours and 4 hours after the start of administration.
  • FIG. 8 shows the relationship between the elapsed time from the start of administration of compound (6) or h.AM (1-52) and the AM concentration in plasma.
  • the half-life in the compound (6) was significantly prolonged compared with h.AM (1-52). From the above results, it was found that the half-life in blood of the alkylamine-linked adrenomedullin derivative of the present invention is remarkably prolonged compared to the parent molecule adrenomedullin.
  • Experiment IV-5 Suppression of blood pressure increase in spontaneously hypertensive rats (SHR rats) (1)
  • the compound (8) prepared in Experiment I-1 was administered once at a dose of 336 ⁇ g / 100 ⁇ L subcutaneously in spontaneously hypertensive rats (SHR), and the blood pressure increase inhibitory effect of adrenomedullin derivatives was observed.
  • a high salt diet (8% NaCl) was given to 8-week-old male SHR (about 200 g).
  • Compound (8) was administered in a form dissolved in physiological saline.
  • male SHR (about 200 g) under the same conditions was given a single subcutaneous administration of 100 ⁇ L of physiological saline.
  • Blood pressure and pulse were measured over time 2 days before and 9 days after administration of compound (8) or physiological saline.
  • FIG. 9 shows blood pressure values 2 days before and 9 days after administration of compound (8) or physiological saline.
  • the increase in blood pressure was suppressed in the compound (8) administration group compared to the control group (saline administration group). From the above results, it was found that the alkylamine-linked adrenomedullin derivative of the present invention has a pharmacological effect of suppressing an increase in blood pressure.
  • Experiment IV-6 Measurement of blood concentration of adrenomedullin derivative over time during subcutaneous administration (2)
  • the compound (27) prepared in Experiment I-1 was administered once at a dose of 10 nmol / kg subcutaneously in rats, and the time course of the blood concentration of adrenomedullin derivative was measured. Observed.
  • Experiment IV-7 Measurement of blood concentration of adrenomedullin derivative over time during subcutaneous administration (3)
  • the compound (37) prepared in Experiment III-1 was administered once subcutaneously in rats at a dose of 30 nmol / kg, and changes over time in the blood concentration of adrenomedullin derivatives were observed.
  • 7-8 week old male Wistar rats (approximately 250 g) were subcutaneously administered with compound (37) dissolved in physiological saline.
  • One day, two days, four days, seven days, and nine days after the start of administration, 50 mg of pentobarbital was intraperitoneally administered, and 300 ⁇ L of blood was collected from the tail vein each time under anesthesia.
  • Experiment IV-8 Suppression of blood pressure increase in spontaneously hypertensive rats (SHR) (2)]
  • the compound (37) prepared in Experiment III-1 was administered once at a dose of 30 nmol / kg subcutaneously in the SHR, and the antihypertensive effect of the adrenomedullin derivative was observed.
  • Eight weeks old male SHR (about 200 g) was administered in a form in which compound (37) was dissolved in physiological saline.
  • male SHR (about 200 g) under the same conditions was given a single subcutaneous administration of 100 ⁇ L of physiological saline.
  • Blood pressure was measured over time 1 day before administration of Compound (37) or physiological saline, and 4 days and 9 days after administration.
  • FIG. 10 shows blood pressure change values relative to the mean systolic blood pressure on the day before administration 4 days after administration of compound (37) or physiological saline and 9 days after administration.
  • the increase in blood pressure was suppressed in the compound (37) administration group as compared with the control group. From the above results, it was found that the alkylamine-linked glycine-added adrenomedullin derivative of the present invention has a pharmacological effect of suppressing blood pressure elevation.
  • TNBS 2,4,6-trinitrobenzenesulfonic acid
  • FIG. 12 shows the relationship between the elapsed time from the preparation of the TNBS-induced colitis model and the body weight in the compound (8) administration group and the control group.
  • a indicates the day on which fasting was started by subcutaneous administration of compound (8) or physiological saline
  • b indicates the day on which TNBS was administered.
  • the weight of the large intestine in the compound (8) administration group and the control group is shown in FIG.
  • the intestinal length of the large intestine in the compound (8) administration group and the control group is shown in FIG.
  • weight loss due to the onset of colitis was confirmed in the vehicle control group, but weight loss due to the onset of colitis was improved in the compound (8) administration group.
  • the weight of the large intestine usually increases due to swelling at the site of inflammation.
  • an increase in the weight of the large intestine was clearly suppressed as compared with the vehicle control group.
  • inflammation caused by colitis progresses, the intestinal length of the large intestine is usually shortened.
  • the decrease in the intestinal length of the large intestine was clearly suppressed in the compound (8) administration group as compared to the vehicle control group.
  • FIG. 15 shows the right ventricular weight / left ventricular weight ratio in the compound (8) administration group and the control group.
  • the compound (8) administration group had a significantly lower right ventricular / left ventricular weight ratio than the vehicle control group. From the above results, it was suggested that subcutaneous administration of compound (8) has a reducing effect on the pathological condition of the pulmonary hypertension model under the test conditions.
  • FIG. 16 shows the relationship between the elapsed time from the creation of the wound model and the wound area in the compound (8) administration group and the control group.
  • the bilateral common carotid artery occlusion day was defined as the day of preparation of the vascular occlusion model, that is, day 0.
  • the Morris water maze was allowed to swim for one trial (water habituation).
  • a hidden platform test was conducted for 5 days at intervals of 4 trials / day.
  • a probe test was performed 1 hour after the final trial on the fifth day of the hidden platform test (14 days after model creation).
  • the hidden platform test was performed according to the following procedure. On the 9th day after the operation, without placing the platform, it was allowed to swim for 90 seconds and habituate to water (water habituation). The measurement was started on the 10th day after the operation. Measurements were made at intervals of 4 trials / day. The swimming time (escape latency) from the start to the platform was measured. The starting position was changed for each trial. The platform position was fixed at the same position in all trials. The longest swimming time for one trial was 90 seconds. Rats that could not reach the platform within the longest swimming time were allowed to stay on the platform for 30 seconds after swimming.
  • the probe test was performed according to the following procedure.
  • the pool was divided into four without installing the platform in the experimental device.
  • the swimming time was measured in the fraction where the platform was installed during the hidden platform test.
  • the stay rate (%) was calculated based on the following formula using the measured swimming time.
  • the swimming time for the probe test was 60 seconds. Only one trial was performed one hour after the final hidden platform test on the 14th day after model creation.
  • FIG. 17 shows the relationship between the elapsed time from the creation of the vascular occlusion model in the compound (8) administration group and the control group and the escape latency in the hidden platform test.
  • FIG. 18 shows the retention rate in the probe test in the compound (8) administration group and the control group with respect to the vascular occlusion model rat.
  • the compound (8) administration group was the 1 and 10 ⁇ ⁇ nmol / kg administration group, compared with the vehicle control group, the time to reach the platform, that is, escape latency. Time has been shortened. Further, as shown in FIG.
  • Example IV-14 Pharmacological action in an adjuvant-induced arthritis model
  • the pharmacological effect of compound (8) on subcutaneous administration of adjuvant-induced arthritis was investigated.
  • Compound (8) was administered subcutaneously to rats.
  • an arthritis was induced by administering an adjuvant (inflammatory agent) at a dose of 0.1 mL / animal subcutaneously in the right hind limb of the animal.
  • Compound (8) was administered in two doses of 1 and 10 nmol / kg.
  • physiological saline was administered as a vehicle control group.
  • FIG. 19 shows the relationship between the elapsed time from the administration in the compound (8) administration group and the control group and the foot volume developed after administration of the adjuvant.
  • FIG. 20 shows the relationship between the elapsed time from the administration in the compound (8) administration group and the control group and the edema rate developed after administration of the adjuvant.
  • FIG. 21 shows the relationship between the elapsed time from the administration and the inflammation score expressed after administration of the adjuvant in the compound (8) administration group and the control group.
  • the foot volume and the edema rate were significantly decreased in the 1 and 10 nmol / kg administration groups as compared with the vehicle control group.
  • the arthritis score was significantly decreased in the group administered with compound (8) in the groups administered with 1 and 10 nmol / kg as compared with the vehicle control group. From the results, it was confirmed that the arthritis alleviating action in the adjuvant-induced arthritis model rat under the test conditions by subcutaneous administration of the compound (8) was confirmed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、アドレノメデュリンの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る、長期間持続的な新規アドレノメデュリン誘導体を提供する。一つの例示的実施形態として、本発明は、式(I): A-CH2-B (I) [式中、 Aは、1個以上のポリエチレングリコール基を含む修飾基であり、 Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、 但し、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がメチレン基の炭素原子と共有結合することによって残部分と連結されている。] で表される化合物若しくはその塩、又はそれらの水和物に関する。

Description

長時間作用型アドレノメデュリン誘導体
 本発明は、長時間作用型アドレノメデュリン誘導体に関する。
 アドレノメデュリン(adrenomedullin、以下、「AM」とも記載する)は、1993年に褐色細胞組織より単離及び同定された生理活性ペプチドである(非特許文献1)。発見当初、AMは、強力な血管拡張性の降圧作用を発揮することが判明した。例えば、特許文献1は、ヒトAMのアミノ酸配列を含む血圧降下作用を有するペプチドを記載する。
 その後の研究により、AMは、心血管保護作用、抗炎症作用、血管新生作用及び組織修復促進作用等の、多彩な薬理作用を発揮することが明らかになった。また、AMの薬理作用を、疾患治療に応用することを目指して、種々の疾患患者に対するAMの投与研究が行われてきた。なかでも、炎症性腸疾患、肺高血圧症、末梢血管疾患又は急性心筋梗塞の治療薬としてのAMの有用性が期待されている。
 例えば、特許文献2は、アドレノメデュリン若しくはその誘導体であって、非細菌性の炎症を抑制する活性を有するもの、又はそれらの塩であって非細菌性の炎症を抑制する活性を有するものを有効成分として含有する非細菌性の炎症性腸疾患の予防又は治療剤を記載する。
 特許文献3は、ステロイド製剤、免疫抑制剤又は生物学的製剤の使用が困難又は効果不十分な炎症性腸疾患の予防又は治療を必要とする患者における前記炎症性腸疾患の予防又は治療方法であって、有効量のアドレノメデュリン、その修飾体であって炎症を抑制する活性を有するもの、又は前記アドレノメデュリン若しくは前記修飾体の塩であって炎症を抑制する活性を有するものを前記患者に投与することを含む前記予防又は治療方法を記載する。
 また、AMの構造活性相関研究から、AMの生物活性に寄与し得る必須配列の特定が進められた(非特許文献2~9)。
 一般に、ペプチドは、生体内(例えば血中)における代謝反応に起因して、生体内における半減期が短いことが知られている。このため、ペプチドを医薬の有効成分として使用する場合、該ペプチドに他の基を連結したペプチド誘導体の形態とすることにより、生体内における半減期を延長して薬物動態を改善できる場合がある。
 例えば、特許文献4は、1.5時間を超える血清半減期を有することを特徴とする生物学的に活性なインテルメジンペプチド又はアドレノメデュリンペプチドを記載する。当該文献は、アルキル基とペプチド部分とをアミド結合を介して連結することを記載する。
 特許文献5は、AMのTyr1のフェノール性水酸基を介してポリエチレングリコール(以下、「PEG」とも記載する)基と連結したAM誘導体を記載する。
 特許文献6は、PEG-アルデヒドとペプチドの遊離アミノ基とを反応させて、ペプチドの遊離アミノ基にPEG基が連結されたペプチド誘導体を製造する方法を記載する。当該文献は、ペプチドとしてAMを記載する。
 非特許文献10は、AMのN末端のαアミノ基にPEG基をアミド結合を介して連結したAM誘導体を記載する。当該文献は、PEG基を連結したAM誘導体は血中半減期が延長されたことを記載する。
特許第2774769号公報 特許第4830093号公報 国際公開第2012/096411号 国際公開第2012/138867号 国際公開第2013/064508号 米国特許出願公開第2009/0252703号明細書
Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun, 1993年4月30日, 第192(2)巻, pp. 553-560. Belloni, A.S. ら, Structure-activity relationships of adrenomedullin in the adrenal gland. Endocr Res, 1998年, 第24(3-4)巻, p. 729-30. Champion, H.C. ら, Catecholamine release mediates pressor effects of adrenomedullin-(15-22) in the rat. Hypertension, 1996年, 第28(6)巻, p. 1041-6. Champion, H.C., G.G. Nussdorfer, 及びP.J. Kadowitz, Structure-activity relationships of adrenomedullin in the circulation and adrenal gland. Regul Pept, 1999年, 第85(1)巻, p. 1-8. Eguchi, S. ら, Structure-activity relationship of adrenomedullin, a novel vasodilatory peptide, in cultured rat vascular smooth muscle cells. Endocrinology, 1994年, 第135(6)巻, p. 2454-8. Garcia, M.A. ら, Synthesis, biological evaluation, and three-dimensional quantitative structure-activity relationship study of small-molecule positive modulators of adrenomedullin. J Med Chem, 2005年, 第48(12)巻, p. 4068-75. Mitsuda, Y. ら, Large-scale production of functional human adrenomedullin: expression, cleavage, amidation, and purification. Protein Expr Purif, 2002年, 第25(3)巻, p. 448-55. Roldos, V. ら, Small-molecule negative modulators of adrenomedullin: design, synthesis, and 3D-QSAR study. ChemMedChem, 2008年, 第3(9) 巻, p. 1345-55. Watanabe, T.X. ら, Vasopressor activities of N-terminal fragments of adrenomedullin in anesthetized rat. Biochem Biophys Res Commun, 1996年, 第219(1)巻, p. 59-63. Kubo, Kら, Biological properties of adrenomedullin conjugated with polyethylene glycol. Peptides, 2014年, 第57巻, p. 118-21 Kato, J., Kitamura, K.. Bench-to-bedside pharmacology of adrenomedullin. European Journal of Pharmacology, 2015年, 第764巻, p. 140-148.
 前記のように、生体内における持続性向上の観点からAMの薬物動態を改善するために、AMにPEG基のような他の基を連結したAM誘導体が知られている。しかしながら、公知のAM誘導体には改良の余地が存在した。例えば、AMのような比較的小さいペプチドにPEG基のような比較的大きな基を連結する場合、PEG基の分子量に依存して結果として得られるAM誘導体の様々な性質が大きく変動する可能性がある。また、特許文献4及び5、並びに非特許文献10に記載のように、ペプチド部分と他の基とが、アミド結合又はエステル結合のような生体反応によって切断され得る結合によって連結されている場合、投与後、比較的短時間で該結合が切断される可能性がある。さらに、特許文献5に記載のAM誘導体のように、AMのアミノ酸残基の側鎖に他の基を連結する場合、AM部分の立体構造が変化して、AMを認識するAM受容体との親和性が低下する可能性がある。このような場合、結果として得られるAM誘導体は、AMとしての薬理作用が低下する可能性がある。
 AMは、心血管保護作用、抗炎症作用、血管新生作用及び組織修復促進作用等の薬理作用に加えて、強力な血管拡張作用を有する。このため、AM又はAM誘導体を対象に投与する場合、強力な血管拡張作用に起因して過度の血圧低下のような望ましくない副反応を引き起こす可能性がある。このような副反応の発生は、特に血管拡張作用以外の薬理作用を発現することを期待してAM又はAM誘導体を使用する場合に問題となり得る。
 それ故、本発明は、アドレノメデュリンの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る、長期間持続的な新規アドレノメデュリン誘導体を提供することを目的とする。
 本発明者らは、前記課題を解決するための手段を種々検討した。本発明者らは、アドレノメデュリンのN末端のαアミノ基と特定の分子量を有するPEG基とをメチレン基又はウレタン基を介して連結することにより、アドレノメデュリンと同程度の生物活性を保持しつつ、アドレノメデュリンと比較して血中半減期を延長し得ることを見出した。また、前記特徴を有する新規アドレノメデュリン誘導体は、過度の血圧低下のような望ましくない副反応を実質的に抑制し得ることを見出した。本発明者らは、前記知見に基づき本発明を完成した。
 すなわち、本発明の要旨は以下の通りである。
 (1) 式(I):
   A-CH2-B  (I)
[式中、
 Aは、1個以上のポリエチレングリコール基を含む修飾基であり、
 Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、
 但し、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がメチレン基の炭素原子と共有結合することによって残部分と連結されている。]
で表される化合物若しくはその塩、又はそれらの水和物。
 (2) Aが、以下の式(II):
Figure JPOXMLDOC01-appb-C000004
[式中、
 aは、1以上の整数であり、
 mは、1以上の整数であり、
 L1は、m+1価の直鎖状又は分岐鎖状の連結基であり、但し、L1が複数の場合、該複数のL1は互いに同一又は異なっていてもよく、
 L2及びL2’は、互いに独立して、結合又は2価の連結基であり、但し、L2’が複数の場合、該複数のL2’は互いに同一又は異なっていてもよく、
 M1は、式(III):
   #-(CH2CH2O)n-**   (III)
[式中、
 nは、1以上の整数であり、
 **は、L1との結合位置であり、
 #は、O又はL2’との結合位置である。]
で表されるポリエチレングリコール基であり、但し、M1が複数の場合、該複数のM1は互いに同一又は異なっていてもよく、
 M2は、結合又は式(III)で表されるポリエチレングリコール基であり、但し、M2が複数の場合、該複数のM2は互いに同一又は異なっていてもよく、
 R1は、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
 *は、残部分との結合位置である。]
で表される修飾基である、前記実施形態(1)に記載の化合物。
 (3) Aが、以下の式(V)、(VI)、(VII)又は(VIII):
Figure JPOXMLDOC01-appb-C000005
[式中、
 aは、1以上の整数であり、
 M3、M3’、M3’’、M3’’’及びM3’’’’は、互いに独立して、結合又は式(III):
   #-(CH2CH2O)n-**   (III)
[式中、
 nは、1以上の整数であり、
 **は、R3、R3’又はCHとの結合位置であり、
 #は、Oとの結合位置である。]
で表されるポリエチレングリコール基であり、但し、M3、M3’、M3’’、M3’’’及びM3’’’’が複数の場合、該複数のM3、M3’、M3’’、M3’’’及びM3’’’’は互いに同一又は異なっていてもよく、且つM3、M3’、M3’’、M3’’’及びM3’’’’のうち少なくとも1個は式(III)で表されるポリエチレングリコール基であり、
 R1、R1’、R1’’及びR1’’’は、互いに独立して、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
 R2は、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、
 R3、R3’及びR3’’は、互いに独立して、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、但し、R3、R3’及びR3’’が複数の場合、該複数のR3、R3’及びR3’’は互いに同一又は異なっていてもよく、
 *は、残部分との結合位置である。]
で表される修飾基である、前記実施形態(1)又は(2)に記載の化合物。
 (4) 式(III)で表されるポリエチレングリコール基が、合計で1~100 kDaの範囲の重量平均分子量を有する、前記実施形態(1)~(3)のいずれかに記載の化合物。
 (5) 前記アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体が、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド、
(iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド、
(v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドである、前記実施形態(1)~(4)のいずれかに記載の化合物。
 (6) 前記アドレノメデュリン又はその修飾体が、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(v)(i)又は(ii)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)又は(ii)ペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドである、前記実施形態(5)に記載の化合物。
 (7) 前記アドレノメデュリン又はその修飾体が、下記:
(iv’)(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド、
(v)(iv’)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(iv’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドである、前記実施形態(5)に記載の化合物。
 (8) 前記アドレノメデュリン又はその修飾体が、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド;
(h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド;
(i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(1)~(5)のいずれかに記載の化合物。
 (9) 前記アドレノメデュリン又はその修飾体が、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(8)に記載の化合物。
 (10) 前記アドレノメデュリン又はその修飾体が、下記:
(h’)(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド;
(i)(h’)のペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(h’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(8)に記載の化合物。
 (11) アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体と、式(I-1):
   A-CHO  (I-1)
で表される1個以上のポリエチレングリコール基を含む修飾基Aの前駆体アルデヒドとを還元剤存在下で反応させて、式(I)で表される化合物を得る、連結工程を含む、前記実施形態(1)~(10)のいずれかに記載の化合物若しくはその塩、又はそれらの水和物の製造方法。
 (12) 式(X):
   A’-CO-B  (X)
[式中、
 A’は、1個以上のポリエチレングリコール基を含む修飾基であり、
 Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、
 但し、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がカルボニル基の炭素原子と共有結合することによって残部分と連結されており、
 A’が、以下の式(XI)、(XI’)又は(XII):
   R1-O-M1-*  (XI)
Figure JPOXMLDOC01-appb-C000006
[式中、
 aは、1以上の整数であり、
 M1は、式(III):
   #-(CH2CH2O)n-**   (III)
[式中、
 nは、1以上の整数であり、
 **は、*との結合位置であり、
 #は、Oとの結合位置である。]
で表されるポリエチレングリコール基であり、
 M3、M3’及びM3’’は、互いに独立して、結合又は式(III):
   #-(CH2CH2O)n-**   (III)
[式中、
 nは、1以上の整数であり、
 **は、R3、R3’又はCHとの結合位置であり、
 #は、Oとの結合位置である。]
で表されるポリエチレングリコール基であり、但し、M3、M3’及びM3’’が複数の場合、該複数のM3、M3’及びM3’’は互いに同一又は異なっていてもよく、且つM3、M3’及びM3’’のうち少なくとも1個は式(III)で表されるポリエチレングリコール基であり、
 R1及びR1’は、互いに独立して、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、又は置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
 R2は、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、
 R3、R3’及びR3’’は、互いに独立して、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、但し、R3、R3’及びR3’’が複数の場合、該複数のR3、R3’及びR3’’は互いに同一又は異なっていてもよく、
 *は、残部分との結合位置である。]
で表される修飾基である。]
で表される化合物若しくはその塩、又はそれらの水和物。
 (13) 前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する医薬。
 (14) 循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療に使用するための、前記実施形態(13)に記載の医薬。
 (15)前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する、循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療剤。
 (16) 前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物と、1種以上の薬学的に許容し得る担体とを含有する医薬組成物。
 (17) 循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療に使用するための、前記実施形態(16)に記載の医薬組成物。
 (18) 症状、疾患及び/若しくは障害の予防又は治療を必要とする対象に、有効量の前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を投与することを含む、前記症状、疾患及び/若しくは障害の予防又は治療方法。
 (19) 前記症状、疾患及び/若しくは障害が、循環器疾患、炎症性疾患又は末梢血管疾患である、前記実施形態(18)に記載の方法。
 (20) 症状、疾患及び/若しくは障害の予防又は治療に使用するための、前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物。
 (21) 前記症状、疾患及び/若しくは障害が、循環器疾患、炎症性疾患又は末梢血管疾患である、前記実施形態(20)に記載の化合物。
 (22) 症状、疾患及び/若しくは障害の予防又は治療に用いるための医薬の製造のための、前記実施形態(1)~(10)及び(12)のいずれかに記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物の使用。
 (23) 前記症状、疾患及び/若しくは障害が、循環器疾患、炎症性疾患又は末梢血管疾患である、前記実施形態(22)に記載の使用。
 本発明により、アドレノメデュリンの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る、長期間持続的な新規アドレノメデュリン誘導体を提供することが可能となる。
 本明細書は、本願の優先権の基礎である日本国特許出願第2015-184685号の明細書及び/又は図面に記載される内容を包含する。
図1は、切断ペプチドの逆相HPLC(RP-HPLC)クロマトグラムを示す図である。A:h.AM(1-52)ペプチド由来の切断ペプチドのRP-HPLCクロマトグラム;B:化合物(2)由来の切断ペプチドのRP-HPLCクロマトグラム。 図2は、化合物(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)及び(12)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した結果を示す図である。図中、レーン0は分子量標準物質を、レーン1は化合物(3)を、レーン2は化合物(4)を、レーン3は化合物(5)を、レーン4は化合物(6)を、レーン5は化合物(7)を、レーン6は化合物(8)を、レーン7は化合物(9)を、レーン8は化合物(10)を、レーン9は化合物(11)を、レーン10は化合物(12)を、それぞれ示す。 図3は、化合物(1)、(2)、(13)、(14)、(15)、(16)及び(17)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した結果を示す図である。図中、レーン0は分子量標準物質を、レーン1は化合物(1)を、レーン2は化合物(2)を、レーン3は化合物(13)を、レーン4は化合物(14)を、レーン5は化合物(15)を、レーン6は化合物(16)を、レーン7は化合物(17)を、それぞれ示す。 図4は、化合物(25)、(26)、(27)、(28)、(29)、(30)、(31)、(32)、(33)、(34)、(35)、(36)及び(37)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した結果を示す図である。図中、レーン0は分子量標準物質を、レーン1は化合物(25)を、レーン2は化合物(26)を、レーン3は化合物(27)を、レーン4は化合物(28)を、レーン5は化合物(29)を、レーン6は化合物(30)を、レーン7は化合物(31)を、レーン8は化合物(32)を、レーン9は化合物(33)を、レーン10は化合物(34)を、レーン11は化合物(35)を、レーン12は化合物(36)を、レーン13は化合物(37)を、それぞれ示す。 図5は、化合物(18)、(19)、(20)、(21)、(22)、(23)及び(24)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した結果を示す図である。図中、レーン0及び1は分子量標準物質を、レーン2は化合物(18)を、レーン3は化合物(19)を、レーン4は化合物(20)を、レーン5は化合物(21)を、レーン6は化合物(22)を、レーン7は化合物(23)を、レーン8は化合物(24)を、それぞれ示す。 図6は、化合物(2)、化合物(4)、化合物(8)又はh.AM(1-52)の投与開始時からの経過時間と平均血圧との関係を示す図である。A:化合物(2)、化合物(4)及びh.AM(1-52)の結果;B:化合物(8)及びh.AM(1-52)の結果。 図7は、化合物(8)の投与開始時からの経過時間と血漿中AM濃度との関係を示す図である。 図8は、化合物(6)又はh.AM(1-52)の投与開始時からの経過時間と血漿中AM濃度との関係を示す図である。 図9は、化合物(8)又は生理食塩水の投与2日前及び投与9日後の高血圧自然発症ラットの血圧値を示す図である。 図10は、化合物(37)又は生理食塩水の投与4日後及び投与9日後の、投与前日の平均収縮血圧に対する血圧変化値を示す図である。 図11は、化合物(8)投与群及び対照群におけるデキストラン硫酸ナトリウム(DSS)誘発大腸炎モデル作製時からの経過時間とスコアの合計値との関係を示す図である。 図12は、化合物(8)投与群及び対照群における2,4,6-トリニトロベンゼンスルホン酸(TNBS)誘発大腸炎モデル作製時からの経過時間と体重との関係を示す図である。a:化合物(8)又は生理食塩水を皮下投与して絶食を開始した日;b:TNBSを投与した日。 図13は、化合物(8)投与群及び対照群における大腸の重量を示す図である。 図14は、化合物(8)投与群及び対照群における大腸の腸管長を示す図である。 図15は、化合物(8)投与群及び対照群における右室重量/左室重量比を示す図である。 図16は、化合物(8)投与群及び対照群における創傷モデル作製時からの経過時間と創傷面積との関係を示す図である。 図17は、化合物(8)投与群及び対照群における血管閉塞モデル作製時からの経過時間と、隠されたプラットフォームテストにおける逃避潜時との関係を示す図である。 図18は、血管閉塞モデルラットに対する化合物(8)投与群及び対照群における、プローブテストにおける滞在率を示す図である。 図19は、化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した足容積との関係を示す図である。 図20は、化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した浮腫率との関係を示す図である。 図21は、化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した炎症スコアとの関係を示す図である。
<1. アドレノメデュリン誘導体>
 本発明の一態様は、式(I):
   A-CH2-B  (I)
で表される化合物若しくはその塩、又はそれらの水和物に関する。本明細書において、式(I)で表される化合物を、「アドレノメデュリン誘導体」と記載する場合がある。
 本発明において、アドレノメデュリン(AM)は、ヒト褐色細胞組織より単離及び同定されたヒト由来のペプチド(配列番号1、非特許文献1)だけでなく、例えばブタ(配列番号3)、イヌ(配列番号5)、ウシ(配列番号7)、ラット(配列番号9)又はマウス(配列番号11)等の他の非ヒト哺乳動物(例えば温血動物)由来のペプチド(オーソログ)であってもよい。生体内において、これらのペプチドは、そのアミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しており、且つC末端がアミド化されている。本明細書において、前記ペプチドであってジスルフィド結合及びC末端アミド基を有するものを、「天然型アドレノメデュリン」又は単に「アドレノメデュリン」と記載する場合がある。本発明は、前記のいずれのペプチドに対しても適用することができる。
 本明細書において、「C末端のアミド化」は、生体内におけるペプチドの翻訳後修飾の一態様を意味し、具体的には、ペプチドのC末端アミノ酸残基の主鎖カルボキシル基がアミド基の形態へ変換される反応を意味する。また、本明細書において、「システイン残基のジスルフィド結合の形成」又は「システイン残基のジスルフィド化」は、生体内におけるペプチドの翻訳後修飾の一態様を意味し、具体的には、ペプチドのアミノ酸配列中の2個のシステイン残基がジスルフィド結合(-S-S-)を形成する反応を意味する。生体内で産生される多くの生理活性ペプチドは、はじめ分子量のより大きな前駆体タンパク質として生合成され、これが細胞内移行の過程で、C末端アミド化及び/又はシステイン残基のジスルフィド化のような翻訳後修飾反応を受けて、成熟した生理活性ペプチドとなる。C末端のアミド化は、通常は、前駆体タンパク質に対し、C末端アミド化酵素が作用することによって進行する。C末端アミド基を有する生理活性ペプチドの場合、その前駆体タンパク質においては、アミド化されるC末端カルボキシル基にGly残基が結合しており、該Gly残基がC末端アミド化酵素によってC末端アミド基に変換される。また、前駆体タンパク質のC末端側プロペプチドには、例えばLys-Arg又はArg-Arg等の塩基性アミノ酸残基の組合せの繰返し配列が存在する(水野、生化学第61巻、第12号、1435~1461頁(1989))。システイン残基のジスルフィド化は、酸化的条件下で進行し得る。生体内においては、システイン残基のジスルフィド化は、通常は、前駆体タンパク質に対し、タンパク質ジスルフィド異性化酵素が作用することによって進行する。
 公知の生理活性物質であるアドレノメデュリンは、ペプチドである。このため、アドレノメデュリンを有効成分として含有する医薬は、対象(例えばヒト患者)の生体内において有効に作用し得る時間が極めて短時間となる可能性がある。そこで、アドレノメデュリンにポリエチレングリコール(PEG)等の他の基を連結したアドレノメデュリン誘導体の形態とすることにより、生体内における半減期を延長して薬物動態を改善する試みが行われてきた(特許文献4~6及び非特許文献10)。しかしながら、アドレノメデュリンのような比較的小さいペプチドにPEG基のような比較的大きな基を連結する場合、PEG基の分子量に依存して結果として得られるアドレノメデュリン誘導体の様々な性質が大きく変動する可能性がある。また、アドレノメデュリンと他の基とが、アミド結合又はエステル結合のような生体反応によって切断され得る結合によって連結されている場合、投与後、比較的短時間で該結合が切断される可能性がある。さらに、アドレノメデュリンのアミノ酸残基の側鎖に他の基を連結する場合、アドレノメデュリン部分の立体構造が変化して、アドレノメデュリンを認識するアドレノメデュリン受容体との親和性が低下する可能性がある。このような場合、結果として得られるアドレノメデュリン誘導体は、アドレノメデュリンとしての薬理作用が低下する可能性がある。
 アドレノメデュリンは、強力な血管拡張作用を有する。このため、治療上有効な量のアドレノメデュリン又はその誘導体を単回投与する場合、強力な血管拡張作用に起因して、望ましくない副反応(例えば、過度の血圧低下、反射性の交感神経活性上昇に伴う頻脈、及び/又はレニン活性の上昇等)を引き起こす可能性がある。このような副反応の発生は、特に血管拡張作用以外の薬理作用を発現することを期待してアドレノメデュリン又はその誘導体を使用する場合に問題となり得る。前記のような問題が生じることを回避するために、アドレノメデュリン又はその誘導体を有効成分として含有する医薬は、持続静注によって対象に投与される必要があった。このような投与方法は、対象に負担を強いる可能性がある。
 本発明者らは、アドレノメデュリンのN末端のαアミノ基と特定の分子量を有するPEG基とをメチレン基又はウレタン基を介して連結することにより、アドレノメデュリンの生物活性を保持しつつ、アドレノメデュリンと比較して血中半減期を延長し得ることを見出した。また、前記特徴を有する新規アドレノメデュリン誘導体は、過度の血圧低下のような望ましくない副反応を実質的に抑制し得ることを見出した。したがって、本発明の式(I)で表される化合物を、アドレノメデュリンによって予防又は治療し得る症状、疾患及び/又は障害に対して適用することにより、望ましくない副反応を実質的に抑制しつつ、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 式(I)において、Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であることが必要である。本発明において、「アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分」は、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から1個の水素原子(通常は、アミノ基の1個の水素原子、典型的にはN末端のαアミノ基の1個の水素原子)を取り除いた構造を有する1価の遊離基を意味する。本発明において、「アドレノメデュリンの修飾体」は、前記で説明した天然型アドレノメデュリンが化学修飾されたペプチドを意味する。また、本発明において、「アドレノメデュリン活性」は、アドレノメデュリンの有する生物活性を意味する。アドレノメデュリン活性としては、下記のものを挙げることができる。
(1)心血管系:血管拡張作用、血圧降下作用、血圧上昇抑制作用、心拍出量増加・心不全改善作用、肺高血圧症改善作用、血管新生作用、リンパ管新生作用、血管内皮機能改善作用、抗動脈硬化作用、心筋保護作用(例えば、虚血再灌流障害又は炎症における心筋保護作用)、心筋梗塞後のリモデリング抑制作用、心肥大抑制作用、及びアンジオテンシン変換酵素抑制作用。
(2)腎臓・水電解質系:利尿作用、ナトリウム利尿作用、抗利尿ホルモン抑制作用、アルドステロン低下作用、腎保護作用(例えば、高血圧又は虚血再灌流障害における腎保護作用)、飲水行動抑制作用、及び食塩要求抑制作用。
(3)脳・神経系:神経保護・脳障害抑制作用、抗炎症作用、アポトーシス抑制作用(例えば、虚血再灌流障害又は炎症におけるアポトーシス抑制作用)、自動調節能維持作用、酸化ストレス抑制作用、認知症改善作用、及び交感神経抑制作用。
(4)泌尿生殖器:勃起改善作用、血流改善作用、及び着床促進作用。
(5)消化器系:抗潰瘍作用、組織修復作用、粘膜新生作用、血流改善作用、抗炎症作用、及び肝機能改善作用。
(6)整形外科系:骨芽細胞刺激作用、及び関節炎改善作用。
(7)内分泌代謝系:脂肪細胞分化作用、脂肪分解制御作用、インスリン感受性改善作用、インスリン分泌制御作用、抗利尿ホルモン分泌抑制作用、及びアルドステロン分泌抑制作用。
(8)その他:循環改善作用、抗炎症作用、サイトカイン制御作用、臓器保護作用、酸化ストレス抑制作用、組織修復作用(例えば、抗褥瘡作用)、敗血症性ショックの改善作用、多臓器不全の抑制作用、自己免疫疾患の抑制作用、抗菌作用、育毛作用、及び養毛作用。
 前記血圧降下作用は、血管拡張性の降圧作用であることが好ましい。前記消化器系における抗炎症作用は、ステロイド抵抗性又はステロイド依存性の炎症性腸疾患(例えば、潰瘍性大腸炎、クローン病又は腸管ベーチェット病)のような炎症性腸疾患の予防又は治療作用であることが好ましい。前記のアドレノメデュリン活性は、細胞内cAMPの濃度上昇を介して発現する。このため、細胞内cAMPの濃度上昇を、アドレノメデュリン活性の指標とすることができる。前記のような生物活性を有するアドレノメデュリン又はその修飾体から誘導されるペプチド部分Bを含むことにより、本発明の式(I)で表される化合物は、天然型アドレノメデュリンと実質的に略同等の生物活性(すなわち、アドレノメデュリン活性)を発現することができる。
 前記アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体は、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド、
(iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド、
(v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドであることが好ましい。
 一実施形態において、前記アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体は、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(v)(i)又は(ii)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)又は(ii)ペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドであることがより好ましい。
 別の実施形態において、前記アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体は、下記:
(iv’)(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド、
(v)(iv’)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(iv’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドであることがより好ましい。
 前記(i)~(vi)及び(iv’)のペプチドにおいて、(v)に包含される、アドレノメデュリンのアミノ酸配列からなり、C末端がアミド化されており、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチドは、成熟した天然型アドレノメデュリンに相当する。(i)のアドレノメデュリンのアミノ酸配列からなるペプチドは、C末端アミド化及びシステイン残基のジスルフィド化の翻訳後修飾を受ける前の(すなわち未成熟な)形態の天然型アドレノメデュリンに相当する。前記(i)~(vi)及び(iv’)のペプチドにおいて、前記で説明したペプチドを除く他のペプチドは、アドレノメデュリンの修飾体に相当する。
 前記(ii)のペプチドは、前記(i)のペプチドの2個のシステイン残基のチオール基を空気酸化するか、又は適切な酸化剤を用いて酸化してジスルフィド結合に変換することにより、形成させることができる。前記(ii)のペプチドを用いることにより、ペプチド部分Bの立体構造を、天然型アドレノメデュリンの立体構造に類似させることができる。これにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。
 前記(iii)のペプチドは、前記(ii)のペプチドのジスルフィド結合をエチレン基に変換することにより、形成させることができる。ジスルフィド結合からエチレン基への置換は、当該技術分野で周知の方法により、行うことができる(O. Kellerら, Helv. Chim. Acta, 1974年, 第57巻, p. 1253)。前記(iii)のペプチドを用いることにより、ペプチド部分Bの立体構造を安定化させることができる。これにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記(iv)のペプチドにおいて、欠失、置換若しくは付加されているアミノ酸残基は、1~15個の範囲であることが好ましく、1~10個の範囲であることがより好ましく、1~8個の範囲であることがさらに好ましく、1~5個の範囲であることが特に好ましく、1~3個の範囲であることがもっとも好ましい。好適な(iv)のペプチドは、(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~12位、1~10位、1~8位、1~5位又は1~3位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチドであり、より好適な(iv)のペプチドは、(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド((iv’)のペプチド)である。前記好適なペプチドにおいて、1又は複数個(例えば、1~5個、1~3個、又は1若しくは2個)のアミノ酸残基がさらに欠失、置換若しくは付加されていてもよい。前記(iv)又は(iv’)のペプチドを用いることにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、前記(iv)又は(iv’)のペプチドを用いることにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記(vi)又は(iv’)のペプチドは、C末端アミド化酵素の作用によってC末端のグリシン残基がC末端アミド基に変換されて、前記(v)のペプチドに変換されることができる。それ故、前記(vi)又は(iv’)のペプチドを対象に投与することにより、該対象の生体内において、一定時間経過後に、C末端アミド化されたペプチドを形成させることができる。これにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記アドレノメデュリン又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド;
(h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド;
(i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであることがより好ましい。
 一実施形態において、前記アドレノメデュリン又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであることがさらに好ましい。
 別の実施形態において、前記アドレノメデュリン又はその修飾体は、下記:
(h’)(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド;
(i)(h’)のペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(h’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであることがさらに好ましい。
 前記(h)のペプチドにおいて、欠失、置換若しくは付加されているアミノ酸残基は、1~12個の範囲であることが好ましく、1~10個の範囲であることがより好ましく、1~8個の範囲であることがさらに好ましく、1~5個の範囲であることが特に好ましく、1~3個の範囲であることがもっとも好ましい。好適な(h)のペプチドは、(a)~(g)のいずれかのペプチドにおいて、N末端側から1~15位、1~12位、1~10位、1~8位、1~5位又は1~3位のアミノ酸が欠失されており、且つアドレノメデュリン活性を有するペプチドであり、より好適な(h)のペプチドは、(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド((h’)のペプチド)である。前記好適なペプチドにおいて、1又は複数個(例えば、1~5個、1~3個、又は1若しくは2個)のアミノ酸がさらに欠失、置換若しくは付加されていてもよい。前記(h)又は(h’)のペプチドを用いることにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、前記(h)又は(h’)のペプチドを用いることにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、Aは、1個以上のPEG基を含む修飾基であることが必要である。修飾基Aにおいて、1個以上のPEG基を含む態様は特に限定されない。例えば、1個以上のPEG基が修飾基Aの末端部に配置されていてもよく、修飾基Aの内部に配置されていてもよい。また、修飾基Aは、PEG基を含む直鎖状又は分岐鎖状の基として当該技術分野で公知の各種の基であってもよい。修飾基Aとして使用し得る公知の基としては、限定するものではないが、例えば、WO1995/11924、WO2006/084089、WO98/41562、WO2005/079838、WO2002/060978、WO2001/048052、WO1998/055500、WO1996/021469、WO2003/040211、及び特開平04-108827等に開示される基を挙げることができる。1個以上のPEG基を含む基を修飾基Aとして使用することにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 Aは、以下の式(II):
Figure JPOXMLDOC01-appb-C000007
で表される修飾基であることが好ましい。
 式(II)において、
 aは、1以上の整数であり、
 mは、1以上の整数であり、
 L1は、m+1価の直鎖状又は分岐鎖状の連結基であり、但し、L1が複数の場合、該複数のL1は互いに同一又は異なっていてもよく、
 L2及びL2’は、互いに独立して、結合又は2価の連結基であり、但し、L2’が複数の場合、該複数のL2’は互いに同一又は異なっていてもよく、
 M1は、PEG基であり、但し、M1が複数の場合、該複数のM1は互いに同一又は異なっていてもよく、
 M2は、結合又はPEG基であり、但し、M2が複数の場合、該複数のM2は互いに同一又は異なっていてもよく、
 R1は、水素又は1価の基であり、
 *は、残部分との結合位置である。
 mは、連結基L1の分岐数である。例えば、mが1の場合、L1は2価の連結基であり、末端方向に対して非分岐、すなわち直鎖状の基である。mが2以上の場合、L1は3価以上の連結基であり、末端方向に対して2分岐以上の基である。mは、通常は、1以上の整数であり、5以下の整数であり、1~5の範囲であることが好ましく、1~4の範囲であることがより好ましく、1~3の範囲であることがより好ましい。連結基L1の分岐数mが前記範囲の場合、PEG基を含む修飾基Aは直鎖状又は分岐鎖状の構造を有することができる。
 aは、PEG基M1及びM2、並びに連結基L1及びL2’の単位の繰り返し数である。例えば、aが1の場合、前記単位は繰り返し構造を有さない。aが2以上であって、且つmが1の場合、前記単位は直鎖状の繰り返し構造を有する。aが2以上であって、且つmが2以上の場合、前記単位は樹状分岐鎖状の繰り返し構造を有する。aは、通常は、1以上の整数であり、5以下の整数であり、1~5の範囲であることが好ましく、1~2の範囲であることがより好ましい。PEG基M1及びM2、並びに連結基L1及びL2’の単位の繰り返し数aが前記範囲の場合、PEG基を含む修飾基Aは直鎖状又は分岐鎖状の構造を有することができる。
 M1及びM2において、PEG基は、通常は、式(III):
   #-(CH2CH2O)n-**   (III)
で表される基である。式(III)において、**は、L1との結合位置であり、#は、O又はL2’との結合位置である。式(III)で表されるPEG基の重量平均分子量は、修飾基Aにおける合計として、通常は1 kDa以上、好ましくは5 kDa以上、より好ましくは10 kDa以上、さらに好ましくは20 kDa以上であり、通常は2000 kDa以下、好ましくは1000 kDa以下、より好ましくは100 kDa以下、さらに好ましくは80 kDa以下であり、特に好ましくは60 kDa以下である。式(III)で表されるPEG基は、修飾基Aにおける合計として、通常は1~2000 kDaの範囲、例えば1~1000 kDaの範囲の重量平均分子量を有し、1~100 kDaの範囲の重量平均分子量を有することが好ましく、5~80 kDaの範囲の重量平均分子量を有することがより好ましく、10~60 kDaの範囲の重量平均分子量を有することがさらに好ましく、20~60 kDaの範囲の重量平均分子量を有することが特に好ましい。修飾基Aにおける式(III)で表されるPEG基の合計の重量平均分子量が前記範囲の場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(III)において、nは、前記重量平均分子量に基づいて定義されるエチレンオキシド単位の繰り返し数である。nは、前記重量平均分子量の好ましい範囲に基づき定義すると、通常は約20以上、好ましくは約110以上、より好ましくは約230以上、さらに好ましくは約460以上の整数であり、通常は約45000以下、好ましくは約22000以下、より好ましくは約2200以下、さらに好ましくは約1820以下、特に好ましくは約1360以下の整数である。nは、前記重量平均分子量の好ましい範囲に基づき定義すると、通常は約20~45000の範囲、例えば約20~22000の範囲であり、約1~2200の範囲であることが好ましく、約110~1820の範囲であることがより好ましく、約230~1360の範囲であることがさらに好ましく、約460~1360の範囲であることが特に好ましい。繰り返し数nが前記範囲の場合、式(II)で表される修飾基に含まれるPEG基の合計の重量平均分子量が前記の範囲となる。それ故、繰り返し数nが前記範囲の場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 R1は、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであることが好ましく、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、又は置換若しくは非置換のC2~C20アルキニルであることがより好ましく、水素、メチル、エチル、プロピル、ブチル、ペンチル又はヘキシルであることがさらに好ましく、メチルであることが特に好ましい。前記基が置換されている場合、該置換基は、それぞれ独立して、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、置換若しくは非置換のC1~C5アルキル、置換若しくは非置換のC2~C5アルケニル、置換若しくは非置換のC2~C5アルキニル、置換若しくは非置換のC3~C6シクロアルキル、置換若しくは非置換のC3~C6シクロアルケニル、置換若しくは非置換のC3~C6シクロアルキニル、置換若しくは非置換のアミノ、及び置換若しくは非置換のC1~C5アルコキシからなる群より選択される1価基であることが好ましく、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、非置換のC1~C5アルキル、非置換のC2~C5アルケニル、非置換のC2~C5アルキニル、非置換のC3~C6シクロアルキル、非置換のC3~C6シクロアルケニル、非置換のC3~C6シクロアルキニル、非置換のアミノ、及び非置換のC1~C5アルコキシからなる群より選択される1価基であることがより好ましい。R1が前記基である場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 L1は、m+1価の直鎖状又は分岐鎖状の連結基である。L1は、置換又は非置換のm+1価の直鎖状又は分岐鎖状の炭化水素基であることが好ましい。前記の基は、1個以上の複素原子、脂環式基、芳香族基、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい。前記基が置換されている場合、該置換基は、それぞれ独立して、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、及び置換若しくは非置換の直鎖状又は分岐鎖状の炭化水素基からなる群より選択される1価基であることが好ましい。
 L2及びL2’は、互いに独立して、結合又は2価の連結基である。L2及びL2’が2価の連結基の場合、L2及びL2’は、互いに独立して、置換若しくは非置換の2価の炭化水素基、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることが好ましく、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、又は置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることがより好ましい。前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい。前記基が置換されている場合、該置換基は、それぞれ独立して、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、及び置換若しくは非置換の直鎖状又は分岐鎖状の炭化水素基からなる群より選択される1価基であることが好ましく、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、非置換のC1~C5アルキル、非置換のC2~C5アルケニル、非置換のC2~C5アルキニル、非置換のC3~C6シクロアルキル、非置換のC3~C6シクロアルケニル、非置換のC3~C6シクロアルキニル、非置換のアミノ、及び非置換のC1~C5アルコキシからなる群より選択される1価基であることがより好ましい。
 L1、L2及びL2’が前記基である場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 好適な修飾基Aは、以下の式(V)、(VI)、(VII)又は(VIII):
Figure JPOXMLDOC01-appb-C000008
で表される修飾基である。
 式(V)、(VI)、(VII)及び(VIII)において、
 aは、1以上の整数であり、
 M3、M3’、M3’’、M3’’’及びM3’’’’は、互いに独立して、結合又はPEG基であり、但し、M3、M3’、M3’’、M3’’’及びM3’’’’が複数の場合、該複数のM3、M3’、M3’’、M3’’’及びM3’’’’は互いに同一又は異なっていてもよく、且つM3、M3’、M3’’、M3’’’及びM3’’’’のうち少なくとも1個はPEG基であり、
 R1、R1’、R1’’及びR1’’’は、互いに独立して、水素又は1価の基であり、
 R2は、結合又は2価の基であり、
 R3、R3’及びR3’’は、互いに独立して、結合又は2価の基であり、但し、R3、R3’及びR3’’が複数の場合、該複数のR3、R3’及びR3’’は互いに同一又は異なっていてもよく、
 *は、残部分との結合位置である。
 aは、PEG基M3、M3’、M3’’、M3’’’及びM3’’’’を含む単位の繰り返し数である。例えば、aが1の場合、前記単位は繰り返し構造を有さない。式(V)において、aが2以上の場合、前記単位は直鎖状の繰り返し構造を有する。式(VI)、(VII)及び(VIII)において、aが2以上の場合、前記単位は樹状分岐鎖状の繰り返し構造を有する。aは、通常は、1以上の整数であり、5以下の整数であり、1~5の範囲であることが好ましく、1~2の範囲であることがより好ましい。PEG基M3、M3’、M3’’、M3’’’及びM3’’’’を含む単位の繰り返し数aが前記範囲の場合、PEG基を含む修飾基Aは直鎖状又は分岐鎖状の構造を有することができる。
 M3、M3’、M3’’、M3’’’及びM3’’’’がPEG基の場合、該PEG基は、通常は、式(III)で表される基である。式(III)で表されるPEG基は、前記と同様の意味を有する。この場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 R1は、前記と同様の意味を有する。また、R1’、R1’’及びR1’’’は、前記R1と同様の意味を有する。この場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 R2は、結合、置換若しくは非置換の2価の炭化水素基、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることが好ましく、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、又は置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることがより好ましい。前記2価の炭化水素基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい。前記基が置換されている場合、該置換基は、それぞれ独立して、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、置換若しくは非置換のC1~C5アルキル、置換若しくは非置換のC2~C5アルケニル、置換若しくは非置換のC2~C5アルキニル、置換若しくは非置換のC3~C6シクロアルキル、置換若しくは非置換のC3~C6シクロアルケニル、置換若しくは非置換のC3~C6シクロアルキニル、置換若しくは非置換のアミノ、及び置換若しくは非置換のC1~C5アルコキシからなる群より選択される1価基であることが好ましく、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、非置換のC1~C5アルキル、非置換のC2~C5アルケニル、非置換のC2~C5アルキニル、非置換のC3~C6シクロアルキル、非置換のC3~C6シクロアルケニル、非置換のC3~C6シクロアルキニル、非置換のアミノ、及び非置換のC1~C5アルコキシからなる群より選択される1価基であることがより好ましい。R2は、好ましくは結合又は置換若しくは非置換のC1~C10アルキレン基であり、より好ましくは結合、メチレン、エチレン、プロピレン又はブチレンであり、さらに好ましくは結合又はエチレンである。
 R3、R3’及びR3’’は、互いに独立して、結合、置換若しくは非置換の2価の炭化水素基、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることが好ましく、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、又は置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であることがより好ましい。前記2価の炭化水素基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい。前記基が置換されている場合、該置換基は、それぞれ独立して、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、置換若しくは非置換のC1~C5アルキル、置換若しくは非置換のC2~C5アルケニル、置換若しくは非置換のC2~C5アルキニル、置換若しくは非置換のC3~C6シクロアルキル、置換若しくは非置換のC3~C6シクロアルケニル、置換若しくは非置換のC3~C6シクロアルキニル、置換若しくは非置換のアミノ、及び置換若しくは非置換のC1~C5アルコキシからなる群より選択される1価基であることが好ましく、ハロゲン(フッ素、塩素、臭素又はヨウ素)、シアノ、ニトロ、非置換のC1~C5アルキル、非置換のC2~C5アルケニル、非置換のC2~C5アルキニル、非置換のC3~C6シクロアルキル、非置換のC3~C6シクロアルケニル、非置換のC3~C6シクロアルキニル、非置換のアミノ、及び非置換のC1~C5アルコキシからなる群より選択される1価基であることがより好ましい。R3、R3’及びR3’’は、好ましくは互いに独立して、結合、置換若しくは非置換のC1~C10アルキレン基、アミド基を含む置換若しくは非置換のC1~C10アルキレン基又はアミド基(-CO-NH-)であり、より好ましくは互いに独立して、結合、メチレン、エチレン、-CO-NH-(CH2)4-、-CH2-O-CO-NH-(CH2)3-又は-CO-NH-である。
 R2、R3、R3’及びR3’’が前記基である場合、式(I)で表される化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。また、式(I)で表される化合物は、望ましくない副反応を実質的に抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 特に好適な修飾基Aは、以下の式(V-1-1)、(VI-1-1)、(VII-1-1)、(VII-1-2)、(VII-2-1)、又は(VIII-1-1):
Figure JPOXMLDOC01-appb-C000009
[式中、
 nは、前記定義と同様の意味を有し、
 n’は、nに関する前記定義と同様の意味を有し、
 *は、残部分との結合位置である。]
で表される修飾基である。
 式(V-1-1)において、PEG基は、好ましくは合計で5 kDa、10 kDa、20 kDa、30 kDa、40 kDa、60 kDa又は80 kDaの重量平均分子量を有する。
 式(VI-1-1)において、PEG基は、好ましくは合計で40 kDaの重量平均分子量を有する。
 式(VII-1-1)において、PEG基は、好ましくは合計で5 kDa、10 kDa、20 kDa、30 kDa、40 kDa、60 kDa又は80 kDaの重量平均分子量を有する。
 式(VII-1-2)において、PEG基は、好ましくは合計で50 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で40 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。
 式(VII-2-1)において、PEG基は、好ましくは合計で40 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で30 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。或いは、PEG基は、好ましくは合計で60 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で50 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。或いは、PEG基は、好ましくは合計で80 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で70 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。
 式(VIII-1-1)において、PEG基は、好ましくは合計で40 kDaの重量平均分子量を有する。
 修飾基Aとして前記の基を使用することにより、式(I)で表される化合物は、天然型アドレノメデュリンの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がメチレン基の炭素原子と共有結合することによって残部分と連結されていることが必要である。本発明において、1個以上のPEG基を含む修飾基Aとペプチド部分Bとが前記連結様式で連結されている場合、「アルキルアミン連結型アドレノメデュリン誘導体」と記載する場合がある。アルキルアミン連結型アドレノメデュリン誘導体は、非特許文献10に記載のアドレノメデュリン誘導体のように、アドレノメデュリンのN末端のαアミノ基の窒素原子がアミド結合を形成することによって残部分と連結されているアドレノメデュリン誘導体(以下、「アミド連結型アドレノメデュリン誘導体」とも記載する)と比較して、より高いアドレノメデュリン活性を有する。また、本発明の式(I)で表されるアルキルアミン連結型アドレノメデュリン誘導体は、アミド連結型アドレノメデュリン誘導体と比較して、望ましくない副反応(例えば、過度の血圧低下、反射性の交感神経活性上昇に伴う頻脈、及び/又はレニン活性の上昇等)がより抑制される。それ故、本発明の式(I)で表される化合物は、公知のアドレノメデュリン誘導体と比較して、望ましくない副反応をより抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 特に好適な式(I)で表される化合物は、
 Aが、式(V-1-1)、(VI-1-1)、(VII-1-1)、(VII-1-2)、(VII-2-1)、又は(VIII-1-1)で表される、PEG基を含む修飾基であり、
 Bが、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであるか、或いは、
下記:
(h’)(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド;
(i)(h’)のペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(h’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分である。前記特徴を有する式(I)で表される化合物は、天然型アドレノメデュリンの薬理作用を維持しつつ且つ望ましくない副反応を実質的に抑制して、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 本発明の別の態様は、(X):
   A’-CO-B  (X)
で表される化合物若しくはその塩、又はそれらの水和物に関する。本明細書において、式(X)で表される化合物を、「ウレタン連結型アドレノメデュリン誘導体」と記載する場合がある。
 式(X)において、Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であることが必要である。ペプチド部分Bは、式(I)で表される化合物に関する前記定義と同様の意味を有する。
 A’は、1個以上のPEG基を含む修飾基であることが必要である。但し、A’は、PEG基を含む修飾基の酸素原子が、カルボニル基の炭素原子と共有結合することによって残部分と連結されていることが必要である。修飾基A’がこのような構造を有することにより、式(X)で表される化合物は、ウレタン結合を介して修飾基A’及びペプチド部分Bが連結されている構造を有することができる。
 A’は、以下の式(XI)、(XI’)又は(XII):
   R1-O-M1-*  (XI)
Figure JPOXMLDOC01-appb-C000010
で表される修飾基であることが好ましい。
 式(XI)、(XI’)及び(XII)において、*は、残部分との結合位置である。
 式(XI)、(XI’)及び(XII)において、a、R1、R1’、R2、R3、R3’、R3’’、M1、M3、M3’及びM3’’は、式(I)で表される化合物に関する前記定義と同様の意味を有する。
 特に好適な修飾基A’は、以下の式(XI-1-1)、(XII-1-1)又は(XII-2-1):
   CH3O-(CH2CH2O)n-*  (XI-1-1)
Figure JPOXMLDOC01-appb-C000011
[式中、
 nは、前記定義と同様の意味を有し、
 n’は、nに関する前記定義と同様の意味を有し、
 *は、残部分との結合位置である。]
で表される修飾基である。
 式(XI-1-1)において、PEG基は、好ましくは合計で5 kDa、10 kDa、20 kDa、30 kDa、40 kDa、60 kDa又は80 kDaの重量平均分子量を有する。
 式(XII-1-1)において、PEG基は、好ましくは合計で5 kDa、10 kDa、20 kDa、30 kDa、40 kDa、60 kDa又は80 kDaの重量平均分子量を有する。
 式(XII-2-1)において、PEG基は、好ましくは合計で40 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で30 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。或いは、PEG基は、好ましくは合計で60 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で50 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。或いは、PEG基は、好ましくは合計で80 kDaの重量平均分子量を有する。この場合、通常は、(CH2CH2O)nのエチレンオキシド単位は、合計で70 kDaの重量平均分子量を有し、(CH2CH2O)n’のエチレンオキシド単位は、合計で10 kDaの重量平均分子量を有する。
 修飾基A’として前記の基を使用することにより、式(X)で表される化合物は、天然型アドレノメデュリンの薬理作用を維持しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(X)において、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がカルボニル基の炭素原子と共有結合することによって残部分と連結されていることが必要である。ウレタン連結型アドレノメデュリン誘導体は、非特許文献10に記載のアミド連結型アドレノメデュリン誘導体と比較して、より高いアドレノメデュリン活性を有する。それ故、本発明の式(X)で表される化合物は、公知のアドレノメデュリン誘導体と比較してより高いアドレノメデュリン活性を、生体内において持続的に発現することができる。
 特に好適な式(X)で表される化合物は、
 A’が、式(XI-1-1)、(XII-1-1)又は(XII-2-1)で表される、PEG基を含む修飾基であり、
 Bが、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであるか、或いは、
下記:
(h’)(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド;
(i)(h’)のペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(h’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分である。前記特徴を有する式(X)で表される化合物は、公知のアドレノメデュリン誘導体と比較してより高いアドレノメデュリン活性を、生体内において持続的に発現することができる。
 本発明において、式(I)及び(X)で表される化合物は、該化合物自体だけでなく、その塩も包含する。式(I)及び(X)で表される化合物が塩の形態である場合、薬学的に許容し得る塩であることが好ましい。本発明の化合物の塩の対イオンとしては、限定するものではないが、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、若しくは置換若しくは非置換のアンモニウムイオンのようなカチオン、又は塩化物イオン、臭化物イオン、ヨウ化物イオン、リン酸イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、過塩素酸イオン、ギ酸イオン、酢酸イオン、トリフルオロ酢酸イオン、プロピオン酸イオン、乳酸イオン、マレイン酸イオン、ヒドロキシマレイン酸イオン、メチルマレイン酸イオン、フマル酸イオン、アジピン酸イオン、安息香酸イオン、2-アセトキシ安息香酸イオン、p-アミノ安息香酸イオン、ニコチン酸イオン、ケイ皮酸イオン、アスコルビン酸イオン、パモ酸イオン、コハク酸イオン、サリチル酸イオン、ビスメチレンサリチル酸イオン、シュウ酸イオン、酒石酸イオン、リンゴ酸イオン、クエン酸イオン、グルコン酸イオン、アスパラギン酸イオン、ステアリン酸イオン、パルミチン酸イオン、イタコン酸イオン、グリコール酸イオン、グルタミン酸イオン、ベンゼンスルホン酸イオン、シクロヘキシルスルファミン酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、イセチオン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、若しくはナフタレンスルホン酸イオンのようなアニオンが好ましい。式(I)及び(X)で表される化合物が前記の対イオンとの塩の形態である場合、該化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。
 式(I)及び(X)で表される化合物は、前記の化合物自体だけでなく、該化合物又はその塩の溶媒和物も包含する。式(I)及び(X)で表される化合物又はその塩が溶媒和物の形態である場合、薬学的に許容し得る溶媒和物であることが好ましい。前記化合物又はその塩と溶媒和物を形成し得る溶媒としては、限定するものではないが、例えば、水、或いはメタノール、エタノール、2-プロパノール(イソプロピルアルコール)、ジメチルスルホキシド(DMSO)、酢酸、エタノールアミン、アセトニトリル又は酢酸エチルのような有機溶媒が好ましい。式(I)及び(X)で表される化合物又はその塩が前記の溶媒との溶媒和物の形態である場合、該化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。
 式(I)及び(X)で表される化合物は、前記又は下記の化合物自体だけでなく、その保護形態も包含する。本明細書において、「保護形態」は、1個又は複数個の官能基(例えばリジン残基の側鎖アミノ基)に保護基が導入された形態を意味する。また、本明細書において、「保護基」は、望ましくない反応の進行を防止するために、特定の官能基に導入される基であって、特定の反応条件において定量的に除去され、且つそれ以外の反応条件においては実質的に安定、即ち反応不活性である基を意味する。前記化合物の保護形態を形成し得る保護基としては、限定するものではないが、例えば、t-ブトキシカルボニル(Boc)、2-ブロモベンジルオキシカルボニル(BrZ)、9-フルオレニルメトキシカルボニル(Fmoc)、p-トルエンスルホニル(Tos)、ベンジル(Bzl)、4-メチルベンジル(4-MeBzl)、2-クロロベンジルオキシカルボニル(ClZ)、シクロヘキシル(cHex)、及びフェナシル(Pac);アミノ基の他の保護基として、ベンジルオキシカルボニル、p-クロロベンジルオキシカルボニル、p-ブロモベンジルオキシカルボニル、p-ニトロベンジルオキシカルボニル、p-メトキシベンジルオキシカルボニル、ベンズヒドリルオキシカルボニル、2-(p-ビフェニル)イソプロピルオキシカルボニル、2-(3,5-ジメトキシフェニル)イソプロピルオキシカルボニル、p-フェニルアゾベンジルオキシカルボニル、トリフェニルホスホノエチルオキシカルボニル、9-フルオレニルメチルオキシカルボニル、t-アミルオキシオキシカルボニル、ジイソプロピルメチルオキシカルボニル、イソプロピルオキシカルボニル、エチルオキシカルボニル、アリルオキシカルボニル、2-メチルスルホニルエチルオキシカルボニル、2,2,2-トリクロロエチルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル、アダマンチルオキシカルボニル、イソボルニルオキシカルボニル、ベンゼンスルホニル、メシチレンスルフォニル、メトキシトリメチルフェニルスルホニル、2-ニトロベンゼンスルホニル、2-ニトロベンゼンスルフェニル、4-ニトロベンゼンスルホニル、及び4-ニトロベンゼンスルフェニル;カルボキシル基の他の保護基として、メチルエステル、エチルエステル、t-ブチルエステル、p-メトキシベンジルエステル、及びp-ニトロベンジルエステル;Argの他の側鎖保護基として、2,2,4,6,7-ペンタメチル-2,3-ジヒドロベンゾフラン-5-スルホニル、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル、及び2-メトキシベンゼンスルホニル;Tyrの他の保護基として、2,6-ジクロロベンジル、t-ブチル、及びシクロヘキシル;Cysの他の保護基として、4-メトキシベンジル、t-ブチル、トリチル、アセトアミドメチル、及び3-ニトロ-2-ピリジンスルフェニル;Hisの他の保護基として、ベンジルオキシメチル、p-メトキシベンジルオキシメチル、t-ブトキシメチル、トリチル、及び2,4-ジニトロフェニル;並びに、Ser及びThrの他の保護基として、t-ブチル等を挙げることができる。式(I)及び(X)で表される化合物が前記の保護基による保護形態である場合、該化合物のアドレノメデュリン活性を、天然型アドレノメデュリンと実質的に略同等のものとすることができる。
 また、式(I)及び(X)で表される化合物は、該化合物の個々のエナンチオマー及びジアステレオマー、並びにラセミ体のような、該化合物の立体異性体の混合物も包含する。
 前記特徴を有することにより、式(I)及び(X)で表される化合物は、天然型アドレノメデュリンの薬理作用を維持しつつ且つ望ましくない副反応を実質的に抑制して、生体内において、持続的にアドレノメデュリン活性を発現することができる。
<2. アドレノメデュリン誘導体の医薬用途>
 本発明の式(I)及び(X)で表される化合物は、生体内において、親分子であるアドレノメデュリンと実質的に略同等の生物活性(すなわちアドレノメデュリン活性)を、持続的に発現することができる。それ故、本発明は、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する医薬に関する。
 本発明の式(I)及び(X)で表される化合物を医薬用途に適用する場合、該化合物を単独で使用してもよく、1種以上の薬学的に許容し得る成分と組み合わせて使用してもよい。本発明の医薬は、所望の投与方法に応じて、当該技術分野で通常使用される様々な剤形に製剤されることができる。それ故、本発明の医薬はまた、本発明の式(I)及び(X)で表される化合物と、1種以上の薬学的に許容し得る担体とを含有する医薬組成物の形態で提供されることもできる。本発明の医薬組成物は、前記成分に加えて、薬学的に許容し得る1種以上の担体、賦形剤、結合剤、ビヒクル、溶解補助剤、防腐剤、安定剤、膨化剤、潤滑剤、界面活性剤、油性液、緩衝剤、無痛化剤、酸化防止剤、甘味剤及び香味剤等を含んでもよい。
 本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬の剤形は、特に限定されず、非経口投与に使用するための製剤であってもよく、経口投与に使用するための製剤であってもよい。また、本発明の医薬の剤形は、単位用量形態の製剤であってもよく、複数投与形態の製剤であってもよい。非経口投与に使用するための製剤としては、例えば、水若しくはそれ以外の薬学的に許容し得る液との無菌性溶液又は懸濁液等の注射剤を挙げることができる。注射剤に混和することができる添加剤としては、限定するものではないが、例えば、生理食塩水、ブドウ糖若しくはその他の補助薬(例えば、D-ソルビトール、D-マンニトール若しくは塩化ナトリウム)を含む等張液のようなビヒクル、アルコール(例えばエタノール若しくはベンジルアルコール)、エステル(例えば安息香酸ベンジル)、ポリアルコール(例えばプロピレングリコール若しくはポリエチレングリコール)のような溶解補助剤、ポリソルベート80又はポリオキシエチレン硬化ヒマシ油のような非イオン性界面活性剤、ゴマ油又は大豆油のような油性液、リン酸塩緩衝液又は酢酸ナトリウム緩衝液のような緩衝剤、塩化ベンザルコニウム又は塩酸プロカインのような無痛化剤、ヒト血清アルブミン又はポリエチレングリコールのような安定剤、保存剤、並びに酸化防止剤等を挙げることができる。調製された注射剤は、通常、適当なバイアル(例えばアンプル)に充填され、使用時まで適切な環境下で保存される。
 経口投与に使用するための製剤としては、例えば、必要に応じて糖衣や溶解性被膜を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤、タブレット、シロップ、懸濁液等を挙げることができる。錠剤又はカプセル剤等に混和することができる添加剤としては、限定するものではないが、例えば、ゼラチン、コーンスターチ、トラガントガム及びアラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン及びアルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤等を挙げることができる。製剤がカプセル剤の場合、さらに油脂のような液状担体を含有してもよい。
 本発明の式(I)及び(X)で表される化合物は、生体内において、親分子であるアドレノメデュリンと実質的に略同等のアドレノメデュリン活性を、持続的に発現することができる。それ故、本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬は、デポー製剤として製剤化することもできる。この場合、デポー製剤の剤形の本発明の医薬を、例えば皮下若しくは筋肉に埋め込み、又は筋肉注射により投与することができる。本発明の医薬をデポー製剤に適用することにより、本発明の式(I)及び(X)で表される化合物のアドレノメデュリン活性を、長期間に亘って持続的に発現することができる。
 本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬は、医薬として有用な1種以上の他の薬剤と併用することもできる。この場合、本発明の医薬は、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物と1種以上の他の薬剤とを含む単一の医薬の形態で提供されてもよく、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物と1種以上の他の薬剤とが別々に製剤化された複数の製剤を含む医薬組合せ又はキットの形態で提供されてもよい。医薬組合せ又はキットの形態の場合、それぞれの製剤を同時又は別々に(例えば連続的に)投与することができる。
 本発明の式(I)及び(X)で表される化合物を医薬用途に適用する場合、式(I)及び(X)で表される化合物は、該化合物自体だけでなく、該化合物の製薬上許容される塩、及びそれらの製薬上許容される溶媒和物も包含する。本発明の式(I)及び(X)で表される化合物の製薬上許容される塩、及びそれらの製薬上許容される溶媒和物としては、限定するものではないが、例えば、前記で例示した塩又は溶媒和物が好ましい。式(I)及び(X)で表される化合物が前記の塩又は溶媒和物の形態である場合、該化合物を所望の医薬用途に適用することができる。
 本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬は、アドレノメデュリンによって予防又は治療される種々の症状、疾患及び/又は障害を、同様に予防又は治療することができる。前記症状、疾患及び/又は障害としては、限定するものではないが、例えば下記のものを挙げることができる。
(1)循環器疾患:心不全、肺高血圧症、閉塞性動脈硬化症、バージャー病、心筋梗塞、リンパ浮腫、川崎病、心筋炎、高血圧、高血圧による臓器障害、及び動脈硬化症。
(2)腎臓・水電解質系疾患:腎不全、及び腎炎。
(3)脳・神経疾患:脳梗塞、認知症、及び脳炎。
(4)泌尿生殖器疾患:勃起不全(ED)。
(5)消化器疾患:炎症性腸疾患、潰瘍性疾患、腸管ベーチェット、及び肝不全。
(6)整形外科疾患:関節炎。
(7)内分泌代謝疾患:糖尿病及び糖尿病による臓器障害、並びに原発性アルドステロン症。
(8)その他:敗血症性ショック、自己免疫疾患、多臓器不全、褥瘡、創傷治癒、及び脱毛症。
 前記循環器疾患は、心筋梗塞、肺高血圧症又は心不全等であることが好ましい。前記消化器疾患は、ステロイド抵抗性又はステロイド依存性の炎症性腸疾患(例えば、潰瘍性大腸炎、クローン病又は腸管ベーチェット病)のような炎症性疾患であることが好ましい。
 本発明の式(I)及び(X)で表される化合物は、天然の生理活性ペプチドであるアドレノメデュリンと修飾基とを連結した構造を有する。このため、本発明の式(I)及び(X)で表される化合物は、安全で低毒性である。それ故、本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬は、前記症状、疾患及び/又は障害の予防又は治療を必要とする様々な対象に適用することができる。前記対象は、ヒト又は非ヒト哺乳動物(例えば、ブタ、イヌ、ウシ、ラット、マウス、モルモット、ウサギ、ニワトリ、ヒツジ、ネコ、サル、マントヒヒ若しくはチンパンジー等の温血動物)の被験体又は患者であることが好ましい。前記対象に本発明の医薬を投与することにより、アドレノメデュリンによって予防又は治療される種々の症状、疾患及び/又は障害を予防又は治療することができる。
 本明細書において、「予防」は、症状、疾患及び/又は障害の発生(発症又は発現)を実質的に防止することを意味する。また、本明細書において、「治療」は、発生(発症又は発現)した症状、疾患及び/又は障害を抑制(例えば進行の抑制)、軽快、修復及び/又は治癒することを意味する。
 本発明の式(I)及び(X)で表される化合物は、前記で説明した症状、疾患及び/又は障害(例えば、循環器疾患、末梢血管疾患又は炎症性疾患)を有する対象において、該症状、疾患及び/又は障害の予防又は治療に使用することができる。それ故、本発明の医薬は、前記で説明した症状、疾患及び/又は障害の予防又は治療に使用するための医薬であることが好ましく、循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療に使用するための医薬であることがより好ましい。また、本発明は、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する、循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療剤に関する。本発明の式(I)及び(X)で表される化合物を前記で説明した症状、疾患及び/又は障害の予防又は治療に使用することにより、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 本発明の式(I)及び(X)で表される化合物は、前記で説明した症状、疾患及び/又は障害(例えば、循環器疾患、末梢血管疾患又は炎症性疾患)を有する対象において、該症状、疾患及び/又は障害の予防又は治療に使用することができる。それ故、本発明の一実施形態は、前記で説明した症状、疾患及び/又は障害の予防又は治療を必要とする対象に、有効量の本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を投与することを含む、前記疾患若しくは症状の予防又は治療方法である。前記症状、疾患及び/又は障害は、循環器疾患、末梢血管疾患又は炎症性疾患であることが好ましい。前記症状、疾患及び/又は障害の予防又は治療を必要とする対象に、本発明の式(I)及び(X)で表される化合物を投与することにより、該症状、疾患及び/又は障害を予防又は治療することができる。
 本発明の他の一実施形態は、前記で説明した症状、疾患及び/又は障害の予防又は治療に使用するための、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物である。本発明の別の実施形態は、前記で説明した症状、疾患及び/又は障害の予防又は治療に用いるための医薬の製造のための、本発明の式(I)及び(X)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物の使用である。前記症状、疾患及び/又は障害は、循環器疾患、炎症性疾患又は末梢血管疾患であることが好ましい。本発明の医薬を前記で説明した症状、疾患及び/又は障害の予防又は治療に使用することにより、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬を、対象、特にヒト患者に投与する場合、正確な投与量及び投与回数は、対象の年齢、性別、予防又は治療されるべき症状、疾患及び/又は障害の正確な状態(例えば重症度)、並びに投与経路等の多くの要因を鑑みて、担当医が治療上有効な投与量及び投与回数を最終的に決定すべきである。それ故、本発明の医薬において、有効成分である式(I)及び(X)で表される化合物は、治療上有効な量及び回数で、対象に投与される。例えば、本発明の医薬をヒト患者に投与する場合、有効成分である式(I)及び(X)で表される化合物の投与量は、通常は、1日に体重60 kg当り0.01~100 mgの範囲であり、典型的には、1日に体重60 kg当り0.01~10 mgの範囲である。
 本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬の投与経路及び投与回数は、特に限定されず、経口的に単回若しくは複数回投与されてもよく、非経口的に単回若しくは複数回投与されてもよい。本発明の医薬は、静脈投与、注腸投与、皮下投与、筋肉内投与又は腹腔内投与のような非経口的経路で投与されることが好ましく、静脈投与又は皮下投与されることがより好ましい。また、本発明の医薬は、単回投与されることが好ましい。本発明の医薬は、静脈又は皮下に単回投与するために使用されることが特に好ましい。本発明の式(I)及び(X)で表される化合物の親分子であるアドレノメデュリンは、強力な血管拡張作用を有する。このため、治療上有効な量のアドレノメデュリンを単回投与する場合、強力な血管拡張作用により、過度の血圧低下、反射性の交感神経活性上昇に伴う頻脈、及び/又はレニン活性の上昇のような望ましくない副反応を引き起こす可能性がある。これに対し、本発明の式(I)及び(X)で表される化合物は、天然型アドレノメデュリンと実質的に略同等のアドレノメデュリン活性を保持しつつ、天然型アドレノメデュリンと比較して、血中半減期を有意に延長し得る。それ故、本発明の式(I)及び(X)で表される化合物を有効成分として含有する医薬を対象の静脈に単回投与することにより、アドレノメデュリンの血管拡張作用に起因する望ましくない副反応を抑制しつつ、対象の症状、疾患及び/又は障害を持続的に予防又は治療することができる。
<3. アドレノメデュリン誘導体の製造方法>
 本発明はまた、本発明の式(I)及び(X)で表される化合物の製造方法に関する。
[3-1.前駆体準備工程]
 本発明の方法は、アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体、1個以上のポリエチレングリコール基を含む修飾基A又はA’の前駆体の少なくともいずれかを準備する工程を含んでもよい。
 本発明において、「アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体」は、アドレノメデュリン又はその修飾体自体を意味するか、或いは、以下で説明する連結工程において、ペプチド部分B及び修飾基A又はA’が縮合反応によって互いに連結されるように、適宜改変又は活性化されたそれらの誘導体を意味する。ペプチド部分Bの前駆体は、アドレノメデュリン若しくはその修飾体自体、又はそれらの保護形態であることが好ましい。
 修飾基Aの前駆体は、通常は、式(I-1):
   A-CHO  (I-1)
で表される1個以上のポリエチレングリコール基を含む修飾基Aの前駆体アルデヒドである。本工程において、前記の特徴を有する前駆体を準備することにより、以下で説明する連結工程における各前駆体の連結反応を実施して、式(I)で表される化合物を高収率で得ることができる。
 修飾基A’の前駆体は、通常は、式(X-1):
   A’-CO-O-C6H4-p-NO2  (X-1)
で表される1個以上のポリエチレングリコール基を含む修飾基A’の前駆体p-ニトロフェニル炭酸エステルである。或いは、修飾基A’の前駆体は、式(X-2):
   A’-CO-O-C4H4NO2  (X-2)
で表される1個以上のポリエチレングリコール基を含む修飾基A’の前駆体N-ヒドロキシスクシンイミジル炭酸エステルであってもよい。本工程において、前記の特徴を有する前駆体を準備することにより、以下で説明する連結工程における各前駆体の連結反応を実施して、式(X)で表される化合物を高収率で得ることができる。
 本工程において、アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体は、当該技術分野で通常使用される手段により形成することができる。ペプチド部分Bの前駆体が、アドレノメデュリン又はその修飾体自体である場合、例えば、固相系又は液相系のペプチド合成法を用いてもよく、アドレノメデュリンを産生し得るヒト又は非ヒト哺乳動物の組織又は細胞から、天然ペプチドを精製する方法を用いてもよい。或いは、アドレノメデュリンを産生し得るヒト又は非ヒト哺乳動物におけるアドレノメデュリンをコードするDNA(例えば、配列番号2、4、6、8、10又は12)を使用して、大腸菌又は出芽酵母等の形質転換系で組換えタンパク質を大量発現させる方法を用いてもよい。或いは、予め製造されたペプチドを購入等して用いてもよい。いずれの場合も、本工程の実施形態に包含される。
 前記の手段によって形成されたペプチド部分Bの前駆体において、該アミノ酸配列中の2個のシステイン残基のチオール基をジスルフィド化することにより、該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成している前駆体を得ることができる。また、前記の手段によって形成されたペプチド部分Bの前駆体において、該アミノ酸配列中の2個のシステイン残基の間で形成されたジスルフィド結合をエチレン基によって置換することにより、該ジスルフィド結合がエチレン基によって置換された前駆体を得ることができる。前記ジスルフィド化反応及びエチレン基による置換反応は、当該技術分野で通常使用される条件に基づき実施することができる。前記ジスルフィド化反応及びエチレン基による置換反応は、本工程において実施してもよく、以下で説明する連結工程において実施してもよい。いずれの場合も本発明の方法の実施形態に包含される。
 ペプチド部分Bの前駆体、及び修飾基A又はA’の前駆体の少なくともいずれかがそれらの保護形態である場合、本工程において、所望により、ペプチド部分Bの前駆体、及び修飾基A又はA’の少なくともいずれかに1種以上の保護基を導入する保護工程、並びに/又は、ペプチド部分Bの前駆体、及び修飾基A又はA’の前駆体の保護形態の少なくともいずれかの1種以上の保護基を脱保護する脱保護工程を実施してもよい。前記保護工程及び脱保護工程は、当該技術分野で通常使用される保護化反応及び脱保護化反応によって実施することができる。前記保護工程及び脱保護工程は、本工程において実施してもよく、以下で説明する連結工程において実施してもよい。いずれの場合も本発明の方法の実施形態に包含される。
[3-2. 連結工程]
 本発明の方法は、アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体と、修飾基A又はA’の前駆体とを連結させて、式(I)又は(X)で表される化合物を得る、連結工程を含むことが必要である。
 式(I)において、本工程は、通常は、ペプチド部分Bの前駆体と、式(I-1)で表される1個以上のPEG基を含む修飾基Aの前駆体アルデヒドとを還元剤存在下で反応させることによって実施される。本工程において使用される還元剤としては、限定するものではないが、例えば、水素化シアノホウ素ナトリウム(NaCNBH3)、水素化ホウ素ナトリウム(NaBH4)、ホウ酸ジメチルアミン、ホウ酸トリメチルアミン、ホウ酸ピリジン、ピリジンボラン、2-ピコリンボラン及び3-ピコリンボランを挙げることができる。本工程における反応温度は、-20~50℃の範囲であることが好ましく、0~15℃の範囲であることがより好ましい。また、本工程における反応時間は、5分~100時間の範囲であることが好ましい。
 式(X)において、本工程は、通常は、ペプチド部分Bの前駆体と、式(X-1)又は式(X-2)で表される1個以上のPEG基を含む修飾基A’の前駆体p-ニトロフェニル炭酸エステル又はN-ヒドロキシスクシンイミジル炭酸エステルとを塩基存在下で反応させることによって実施される。本工程において使用される塩基としては、限定するものではないが、例えば、トリエチルアミン、ピリジン及びジメチルアミノピリジンを挙げることができる。本工程における反応温度は、0~50℃の範囲であることが好ましい。また、本工程における反応時間は、5分~200時間の範囲であることが好ましい。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
<実験I:全長アドレノメデュリン誘導体の調製>
〔実験I-1:全長アドレノメデュリン誘導体の合成〕
[実験I-1-1:CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(1-52))(化合物(1))の合成]
 公知文献(Kubo, Kら, “Biological properties of adrenomedullin conjugated with polyethylene glycol.”, Peptides, 2014年, 第57巻, p. 118-21)に記載の方法に基づき、N-ヒドロキシコハク酸イミド活性エステル型の5 kDaのCH3O-PEG化試薬(PEG-1)(CH3O-(CH2CH2O)n-(CH2)5-CO-O-NHS)を用いて、ヒトアドレノメデュリンの1~52アミノ酸残基(配列番号1)に対応するペプチドである、H-Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「h.AM(1-52)」とも記載する)のN末端アミノ基に、アミド結合を介して5 kDaの重量平均分子量のポリエチレングリコール基(以下、「PEG(5k)」とも記載する)を連結して、アミド連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(1-52)))(1)を合成した。
[実験I-1-2:CH3O-PEG(20k)-(CH2)5-CO-αNH-(h.AM(1-52))(化合物(2))の合成]
 実験I-1-1と同様の方法に基づき、N-ヒドロキシコハク酸イミド活性エステル型の20 kDaのCH3O-PEG化試薬(PEG-1)(CH3O-(CH2CH2O)n-(CH2)5-CO-O-NHS)を用いて、h.AM(1-52)ペプチドのN末端アミノ基に、アミド結合を介して20 kDaの重量平均分子量のポリエチレングリコール基(以下、「PEG(20k)」とも記載する)を連結して、アミド連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-(CH2)5-CO-αNH-(h.AM(1-52)))(2)を合成した。
[実験I-1-3:CH3O-PEG(10k)-(CH2)2-CH2-αNH-(h.AM(1-52))(化合物(3))の合成]
 2 mgのh.AM(1-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、2 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、16 mgのアルデヒド型の10 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(10k)アドレノメデュリン誘導体(CH3O-PEG(10k)-(CH2)2-CH2-αNH-(h.AM(1-52)))(3)、及び未反応のh.AM(1-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Superdex 200 HR 10/30 (GEヘルスケア社) カラムを接続した高速液体クロマトグラフィー(HPLC)システム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、1.0 mg(h.AM(1-52)換算)の目的化合物(3)を得た。
[実験I-1-4:CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(1-52))(化合物(4))の合成]
 1 mgのh.AM(1-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、1 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、32 mgのアルデヒド型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(1-52)))(4)、及び未反応のh.AM(1-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Superdex 200 HR 10/30 (GEヘルスケア社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.3 mg(h.AM(1-52)換算)の目的化合物(4)を得た。
[実験I-1-5:CH3O-PEG(30k)-(CH2)2-CH2-αNH-(h.AM(1-52))(化合物(5))の合成]
 2 mgのh.AM(1-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、2 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、30 mgのアルデヒド型の30 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(30k)アドレノメデュリン誘導体(CH3O-PEG(30k)-(CH2)2-CH2-αNH-(h.AM(1-52)))(5)、及び未反応のh.AM(1-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Superdex 200 HR 10/30 (GEヘルスケア社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:100 mM 酢酸ナトリウム緩衝液, pH6 + 200 mM Na2SO4、流速:0.5 mL/min)。前記分取HPLCにより、0.8 mg(h.AM(1-52)換算)の目的化合物(5)を得た。
[実験I-1-6:GL-2分岐型CH3O-PEG(20k)-CH2-αNH-(h.AM(1-52))(化合物(6))の合成]
 実験I-1-5において、CH3O-PEG化試薬(PEG-2)に代えて、45 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000012
で表されるアルデヒド型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(20k)-CH2-αNH-(h.AM(1-52)))(6):
Figure JPOXMLDOC01-appb-C000013
を得た。分取HPLCにより、1.0 mg(h.AM(1-52)換算)の目的化合物(6)を得た。
[実験I-1-7:GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52))(化合物(7))の合成]
 実験I-1-5において、CH3O-PEG化試薬(PEG-2)に代えて、80 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000014
で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52)))(7):
Figure JPOXMLDOC01-appb-C000015
を得た。分取HPLCにより、1.2 mg(h.AM(1-52)換算)の目的化合物(7)を得た。
[実験I-1-8:GL-2分岐型CH3O-PEG(60k)-CH2-αNH-(h.AM(1-52))(化合物(8))の調製]
 実験I-1-4において、CH3O-PEG化試薬(PEG-2)に代えて、40 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000016
で表されるアルデヒド型の60 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(60k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(60k)-CH2-αNH-(h.AM(1-52)))(8):
Figure JPOXMLDOC01-appb-C000017
を得た。分取HPLCにより、0.4 mg(h.AM(1-52)換算)の目的化合物(8)を得た。
[実験I-1-9:GL-2分岐型CH3O-PEG(80k)-CH2-αNH-(h.AM(1-52))(化合物(9))の合成]
 実験I-1-5において、CH3O-PEG化試薬(PEG-2)に代えて、121 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000018
で表されるアルデヒド型の80 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(80k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(60k)-CH2-αNH-(h.AM(1-52)))(9):
Figure JPOXMLDOC01-appb-C000019
を得た。分取HPLCにより、1.1 mg(h.AM(1-52)換算)の目的化合物(9)を得た。
[実験I-1-10:Lys-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52))(化合物(10))の合成]
 実験I-1-4において、CH3O-PEG化試薬(PEG-2)に代えて、42.9 mgの式(VI-1-1’):
Figure JPOXMLDOC01-appb-C000020
で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-4)を用いた他は、前記と同様の手順により、リジン骨格を有する2分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(Lys-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52)))(10):
Figure JPOXMLDOC01-appb-C000021
を得た。分取HPLCにより、0.4 mg(h.AM(1-52)換算)の目的化合物(10)を得た。
[実験I-1-11:GL-4分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52))(化合物(11))の合成]
 実験I-1-3において、CH3O-PEG化試薬(PEG-2)に代えて、93 mgの式(VII-2-1’):
Figure JPOXMLDOC01-appb-C000022
で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-5)を用いた他は、前記と同様の手順により、グリセロール骨格を有する4分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(GL-4分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52)))(11):
Figure JPOXMLDOC01-appb-C000023
を得た。分取HPLCにより、1.1 mg(h.AM(1-52)換算)の目的化合物(11)を得た。
[実験I-1-12:Xyl-4分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52))(化合物(12))の合成]
 実験I-1-3において、CH3O-PEG化試薬(PEG-2)に代えて、94 mgの式(VIII-1-1’):
Figure JPOXMLDOC01-appb-C000024
で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-6)を用いた他は、前記と同様の手順により、キシロース骨格を有する4分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(Xyl-4分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52)))(12):
Figure JPOXMLDOC01-appb-C000025
を得た。分取HPLCにより、1.0 mg(h.AM(1-52)換算)の目的化合物(12)を得た。
[実験I-1-13:GL-3分岐型CH3O-PEG(50k)-CH2-αNH-(h.AM(1-52))(化合物(13))の合成]
 実験I-1-3において、CH3O-PEG化試薬(PEG-2)に代えて、94 mgの式(VII-1-2’):
Figure JPOXMLDOC01-appb-C000026
で表されるアルデヒド型の50 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-7)を用いた他は、前記と同様の手順により、グリセロール骨格を有する3分岐型アルキルアミン連結型PEG(50k)アドレノメデュリン誘導体(GL-3分岐型CH3O-PEG(50k)-CH2-αNH-(h.AM(1-52)))(13):
Figure JPOXMLDOC01-appb-C000027
を得た。分取HPLCにより、0.9 mg(h.AM(1-52)換算)の目的化合物(13)を得た。
[実験I-1-14:CH3O-PEG(20k)-CO-αNH-(h.AM(1-52))(化合物(14))の合成]
 Fmocペプチド合成法を用いて、Fmoc-Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「Fmoc-αNH-(h.AM(1-52))」とも記載する)を委託合成した。18 mgのFmoc-αNH-(h.AM(1-52))ぺプチドを、1.8 mLのジメチルスルホキシド(DMSO)に溶解した。この溶液に、9 mgの炭酸 t-ブチルスクシンイミジル及び6 μLのジイソプロピルエチルアミンを加えた。反応溶液を、5時間撹拌した。得られた反応溶液に、酢酸水を加えた。その後、この溶液を凍結乾燥した。残渣を、2 mLのDMSOに溶解した。得られた溶液に、0.2 mLのジエチルアミンを加えた。得られた溶液を、70分間攪拌した。反応溶液に、酢酸水を加えて希釈した。得られた溶液を、逆相HPLCを用いて分取して、h.AM(1-52)ペプチドを含む画分を得た。この画分を凍結乾燥して、10 mgのh.AM(1-52)の4個のリジンがBoc基で保護されたペプチドを白色粉末として得た。
 前記得られたペプチド2 mgを、2 mLのDMSOに溶解した。このペプチド溶液に、氷冷下、15 mgのp-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-8)(CH3O-(CH2CH2O)n-CO-O-C6H4-p-NO2)を添加した。さらに、このペプチド溶液に、6.5 μLの0.1 M トリエチルアミン/DMSO溶液を添加した。反応液を、氷冷下、1時間放置した。その後、反応液を室温に戻し、24時間放置した。さらに、反応液の温度を30℃に上げて、2日間反応を継続した。反応液を凍結乾燥した。氷冷下、得られた残渣に、1 mLのトリフロオロ酢酸を添加した。混合物の温度を室温に戻して、2時間放置した。次いで、エバポレーターを用いて、混合物からトリフルオロ酢酸を減圧留去した。得られた残渣に、4 mLの50 mM 酢酸ナトリウム緩衝液, pH 4.0を添加して溶解させた。この溶液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(1 mL)に、1 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、ウレタン連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-CO-αNH-(h.AM(1-52)))(14)、及び未反応のh.AM(1-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、250 μg(h.AM(1-52)換算)の目的化合物(14)を得た。
[実験I-1-15:CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(1-52))(化合物(35))の合成]
 実験I-1-3において、アルデヒド型の10 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)に代えて、5 mgのアルデヒド型の5 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を用いた他は、前記と同様の手順により、アルキルアミン連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(1-52)))(35)を得た。分取HPLCにより、0.8 mg(h.AM(1-52)換算)の目的化合物(35)を得た。
[実験I-1-16:CH3O-PEG(40k)-(CH2)2-CH2-αNH-(h.AM(1-52))(化合物(25))の合成]
 実験I-1-3において、アルデヒド型の10 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)に代えて、40 mgのアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を用いた他は、前記と同様の手順により、アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(CH3O-PEG(40k)-(CH2)2-CH2-αNH-(h.AM(1-52)))(25)を得た。分取HPLCにより、0.6 mg(h.AM(1-52)換算)の目的化合物(25)を得た。
[実験I-1-17:GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(1-52))(化合物(26))の合成]
 実験I-1-14において、p-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-8)(CH3O-(CH2CH2O)n-CO-O-C6H4-p-NO2)に代えて、25 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000028
で表されるp-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型ウレタン連結型PEG(20k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(1-52))(26):
Figure JPOXMLDOC01-appb-C000029
を得た。分取HPLCにより、0.2 mg(h.AM(1-52)換算)の目的化合物(26)を得た。
[実験I-1-18:GL-2分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(1-52))(化合物(27))の合成]
 実験I-1-14において、p-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-8)(CH3O-(CH2CH2O)n-CO-O-C6H4-p-NO2)に代えて、35 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000030
で表されるp-ニトロフェニルエステル型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型ウレタン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(1-52))(27):
Figure JPOXMLDOC01-appb-C000031
を得た。分取HPLCにより、0.2 mg(h.AM(1-52)換算)の目的化合物(27)を得た。
[実験I-1-19:GL-4分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(1-52))(化合物(28))の合成]
 実験I-1-14において、p-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-8)(CH3O-(CH2CH2O)n-CO-O-C6H4-p-NO2)に代えて、40 mgの式(XII-2-1’):
Figure JPOXMLDOC01-appb-C000032
で表されるp-ニトロフェニルエステル型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-10)を用いた他は、前記と同様の手順により、グリセロール骨格を有する4分岐型ウレタン連結型PEG(40k)アドレノメデュリン誘導体(GL-4分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(1-52))(28):
Figure JPOXMLDOC01-appb-C000033
を得た。分取HPLCにより、0.2 mg(h.AM(1-52)換算)の目的化合物(28)を得た。
〔実験I-2:全長アドレノメデュリン誘導体の構造解析〕
[実験I-2-1:切断ペプチドの質量分析によるPEG基の結合位置の同定(1)]
 10 μgの化合物(3)を、70%ギ酸及び600 μgの臭化シアン(BrCN)と混合して合計500 μLにした。この混合物を、室温で一晩反応させた。Sep Pak(ウォーターズ社)カラムに、クロロホルム、メタノール、及び0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液を各1 mLずつ順次通液して、カラムを洗浄した。その後、1 mLの超純水を通液して、Sep Pakカラムを平衡化した。一晩反応させた臭化シアン処理後の反応液(500 μL)に、4,500 μLの超純水を加えて5 mLの希釈反応液を得た。希釈反応液をカラムに通液して、切断ペプチドを吸着させた。次に、カラムに、超純水、及び0.1%トリフルオロ酢酸を含有する10%アセトニトリル水溶液を各1 mLずつ順次通液して、カラムを洗浄し、未吸着物質を除去した。最後に、カラムに、1 mLの0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液を通液して、切断ペプチドをカラムから溶出した。
 前記処理で得られたSep Pakカラムからの切断ペプチド溶出画分から、アセトニトリルを減圧留去した。得られた残留物を、逆相カラム(ODS-120A TSKgel、東ソー社)を用いた逆相HPLC(RP-HPLC)により精製及び分取した。RP-HPLCにおける溶出は、60分間で100%のA液(0.1%トリフルオロ酢酸を含有する10%アセトニトリル水溶液)から100%のB液(0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液)まで変化するリニアグラジエントプログラムで行った。質量分析装置(AXIMA-confidence、島津製作所)を用いて、分取した切断ペプチドのMSスペクトルを測定した。その結果、切断ペプチドの分子量は、ヒトアドレノメデュリンの6~52アミノ酸残基に対応するペプチドの分子量と一致することが確認された((M+Na)+、計算値:m/z 5385.935;測定値:m/z 5385.9986)。ヒトアドレノメデュリンに存在する全てのリジン残基(N末端から25、36、38及び46残基)は、6~52アミノ酸残基の範囲内に存在する。それ故、前記結果から、アルキルアミン連結型PEG(10k)アドレノメデュリン誘導体(3)におけるPEG基は、N末端のαアミノ基に結合していることが確認された。
[実験I-2-2:切断ペプチドの質量分析によるPEG基の結合位置の同定(2)]
 10~40 μgの化合物(2)を、2.5 mMエチレンジアミン四酢酸、30%N,N-ジメチルホルムアミド及び250 mM Tris-HCl(pH 8.5)を含む500 μLの溶液に溶解し、ボルテックスミキサー及び超音波処理によって攪拌及び混合した。混合物に2.5 mgの1,4-ジチオトレイトールを加えて、混合物がpH 8.0以上であることを確認した。混合物に窒素ガスを注入し、超音波処理を5分間行った。この混合物を、37℃で2時間反応させた。反応後、反応混合物に、遮光下で6.25 mgのモノヨード酢酸を加えて、25℃で30分間さらに反応させた。その後、反応混合物に、最終濃度が1 Nとなるように酢酸を加えて、反応を停止させた。Sep Pak(ウォーターズ社)カラムに、クロロホルム、メタノール、及び0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液を各1 mLずつ順次通液して、カラムを洗浄した。その後、1 mLの1 N酢酸を通液して、Sep Pakカラムを平衡化した。還元アルキル化後の反応液をカラムに通液して、反応ペプチドを吸着させた。次に、カラムに、1N酢酸、及び0.1%トリフルオロ酢酸を含有する10%アセトニトリル水溶液を各1 mLずつ順次通液して、カラムを洗浄し、未吸着物質を除去した。最後に、カラムに、1 mLの0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液を通液して、還元アルキル化ペプチドをカラムから溶出した。
 前記処理で得られたSep Pakカラムからの還元アルキル化ペプチド溶出画分から、アセトニトリルを減圧留去した。得られた還元アルキル化ペプチドを、リシルエンドペプチダーゼと、ペプチド: リシルエンドペプチダーゼが20:1の質量比となる割合で混合した。混合物に、1 M Tris-HCl(pH 8.5)を加えて、200 μLの体積及び50mM Tris-HClの最終濃度となるように調製した。この混合物を、37℃で一晩(16時間以上)放置した。得られた切断ペプチドを、逆相カラム(ODS-120A TSKgel、東ソー社)を用いたRP-HPLCにより精製及び分取した。RP-HPLCにおける溶出は、100%のA液(0.1%トリフルオロ酢酸)を5分間通液し、その後、60分間で100%のA液から50%のB液(0.1%トリフルオロ酢酸を含有する60%アセトニトリル水溶液)まで変化するリニアグラジエント条件で通液し、さらに100%のB液を15分間通液するプログラムで行った。対照として、化合物(2)に代えて化学合成した標品のh.AM(1-52)ペプチドを用いて前記と同様の手順で反応及び分取RP-HPLCを行った。切断ペプチドのRP-HPLCクロマトグラムを図1に示す。図中、Aは、h.AM(1-52)ペプチド由来の切断ペプチドのRP-HPLCクロマトグラムを、Bは、化合物(2)由来の切断ペプチドのRP-HPLCクロマトグラムを、それぞれ示す。図1Aに示すように、h.AM(1-52)ペプチド由来の切断ペプチドのRP-HPLCクロマトグラムでは、保持時間28.08分(以下、「ピーク(1)」とも記載する)、36.97分(以下、「ピーク(2)」とも記載する)、54.53分(以下、「ピーク(3)」とも記載する)、及び67.52分(以下、「ピーク(4)」とも記載する)に4個の主要なピークが検出された。他方、図1Bに示すように、化合物(2)由来の切断ペプチドのRP-HPLCクロマトグラムでは、保持時間28.69分(以下、「ピーク(5)」とも記載する)、36.98分(以下、「ピーク(6)」とも記載する)、54.57分(以下、「ピーク(7)」とも記載する)、及び72.30分(以下、「ピーク(8)」とも記載する)に4個の主要なピークが検出された。保持時間の比較から、ピーク(1)及び(5)、ピーク(2)及び(6)、並びにピーク(3)及び(7)は、それぞれ同一のペプチド断片に対応する。ピーク(4)及び(8)は、保持時間が異なる。ピーク(8)の化合物は、ピーク(4)のペプチド断片にPEG基が結合した化合物と推測される。
 化合物(7)、(8)及び(26)を用いて前記と同様の手順で反応及び分取RP-HPLCを行った。その結果、化合物(2)を用いた場合と同様に、ピーク(1)、(2)及び(3)に対応する保持時間を有するピークが検出された。また、ピーク(8)のように、ピーク(4)のペプチド断片にPEG基が結合した化合物に対応すると推測されるピークも検出された。
 質量分析装置(QSTAR Elit、SCIEX社)を用いて、分取した切断ペプチドのMSスペクトルを測定した。ヒトアドレノメデュリンは、4個のリジン残基(N末端側から25、36、38及び46残基)を有している。このため、リシルエンドペプチダーゼによって得られる切断ペプチドは、5個のペプチド断片、具体的には、N末側よりYRQSMNNFQGLRSFGCRFGTCTVQK(h.AM(1-25))、LAHQIYQFTAK(h.AM(26-36))、DK(h.AM(37-38))、DNVAPRSK(h.AM(39-46))、及びISPQGY(h.AM(47-52))のペプチド断片からなる。得られたMSスペクトルから、ピーク(1)及び(5)はh.AM(39-46)のペプチド断片に、ピーク(2)及び(6)はh.AM(47-52)のペプチド断片に、ピーク(3)及び(7)はh.AM(26-36)のペプチド断片に、ピーク(4)はh.AM(1-25)のペプチド断片に、それぞれ対応することが確認された。また、質量分析装置(autoflex II、ブルカーダルトニクス社)を用いて、ピーク(8)のペプチド断片のMSスペクトルを測定した結果、ピーク(8)の化合物は、h.AM(1-52)ペプチドのN末端側のペプチド断片にPEG基が結合した化合物であることが確認された。それ故、前記結果から、化合物(7)、(8)及び(26)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
[実験I-2-3:アミノ酸配列分析によるPEG基の結合位置の同定]
 化合物(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)及び(13)を、プロテインシーケンサー(Procise 494 HT Protein Sequencing System、アプライドバイオシステムズ社)を用いて、アミノ酸配列分析に供した。その結果、いずれの化合物ともヒトアドレノメデュリンのN末端アミノ酸残基に相当するアミノ酸は検出されなかった。前記結果から、化合物(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)及び(13)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
[実験I-2-4:イオン交換HPLCによるPEG基の結合位置の同定]
 イオン交換カラム(CM-2SW、東ソー社)を用いたイオン交換HPLCにより、h.AM(1-52)ペプチドとヒトアドレノメデュリンの6~52アミノ酸残基に対応するペプチドとを分離した。イオン交換HPLCにおける溶出は、0~40分間に80%のA液(100 mM 酢酸ナトリウム, pH 5.0)、及び20%のB液(1 M 硫酸ナトリウムを含有する100 mM 酢酸ナトリウム, pH 7.0)から20%のA液及び80%のB液まで変化するリニアグラジエントプログラムで行った。
 実験I-2-1で得られた化合物(3)の切断ペプチドのSep Pakカラム溶出画分からアセトニトリルを減圧留去した残留物を、前記条件のイオン交換HPLCで分析した。その結果、化合物(3)について、ヒトアドレノメデュリンの6~52アミノ酸残基に対応するペプチドと同一の溶出時間を有するピークを確認した。実験I-2-1と同様の手順で得られた化合物(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(25)、(27)、(28)及び(35)の切断ペプチドのSep Pakカラム溶出画分からアセトニトリルを減圧留去した残留物を、前記条件のイオン交換HPLCで分析した結果、化合物(3)のピークと一致することを確認した。それ故、前記結果から、化合物(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(25)、(27)、(28)及び(35)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
[実験I-2-5:SDS-PAGEによる分子量分析]
 実験書(実験医学別冊「タンパク質実験ハンドブック」羊土社、竹縄忠臣、伊藤俊樹/編)に基づき、実験I-1で得られた化合物(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(25)、(26)、(27)、(28)及び(35)(各200 ng)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した。結果を図2、3及び4に示す。図2中、レーン0は分子量標準物質を、レーン1は化合物(3)を、レーン2は化合物(4)を、レーン3は化合物(5)を、レーン4は化合物(6)を、レーン5は化合物(7)を、レーン6は化合物(8)を、レーン7は化合物(9)を、レーン8は化合物(10)を、レーン9は化合物(11)を、レーン10は化合物(12)を、それぞれ示す。図3中、レーン0は分子量標準物質を、レーン1は化合物(1)を、レーン2は化合物(2)を、レーン3は化合物(13)を、レーン4は化合物(14)を、レーン5は後述する化合物(15)を、レーン6は後述する化合物(16)を、レーン7は後述する化合物(17)を、それぞれ示す。図4中、レーン0は分子量標準物質を、レーン1は化合物(25)を、レーン2は化合物(26)を、レーン3は化合物(27)を、レーン4は化合物(28)を、レーン5は後述する化合物(29)を、レーン6は後述する化合物(30)を、レーン7は後述する化合物(31)を、レーン8は後述する化合物(32)を、レーン9は後述する化合物(33)を、レーン10は後述する化合物(34)を、レーン11は化合物(35)を、レーン12は後述する化合物(36)を、レーン13は後述する化合物(37)を、それぞれ示す。分子量標準物質は、いずれもPrecision Plus Protein(TM) Dual Xtra Standards(バイオラッド社)を用いた。図2、3及び4に示すように、各化合物は、所望の分子量を有することが確認された。
[実験I-2-6:ゲル濾過HPLCによる会合の確認]
 ゲル濾過カラム(Superdex 200 Increace 10/300 GL、GEヘルスケア社)を用いたゲル濾過HPLCにより、アドレノメデュリン誘導体分子の会合を確認した。実験I-1で得られた化合物(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(25)、(27)、(28)、及び(35)(各50 μg)を、カラムに添加した。溶出液(100 mM 酢酸ナトリウム及び100 mM 硫酸ナトリウム, pH 6.0)を、0.75 mL/分の流速でカラムに通液した。得られたゲル濾過クロマトグラムから、各化合物は、分子量に応じた保持時間を有する単一ピークを示した。前記結果から、各アドレノメデュリン誘導体分子は、会合しておらず、単量体として存在することが確認された。前記ゲル濾過クロマトグラムにおける各化合物の保持時間を、表1に示す。
Figure JPOXMLDOC01-appb-T000034
<実験II:N末端欠失アドレノメデュリン誘導体の調製>
〔実験II-1:N末端欠失アドレノメデュリン誘導体の合成〕
[実験II-1-1:CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(6-52))(化合物(15))の合成]
 公知文献(Kubo, Kら, “Biological properties of adrenomedullin conjugated with polyethylene glycol.”, Peptides, 2014年, 第57巻, p. 118-21)に記載の方法に基づき、N-ヒドロキシコハク酸イミド活性エステル型の5 kDaのCH3O-PEG化試薬(PEG-1)(CH3O-(CH2CH2O)n-(CH2)5-CO-O-NHS)を用いて、ヒトアドレノメデュリンの6~52アミノ酸残基に対応するペプチドである、H-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「h.AM(6-52)」とも記載する)のN末端アミノ基に、アミド結合を介して5 kDaの重量平均分子量のポリエチレングリコール基(PEG(5k))を連結して、アミド連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(6-52)))(15)を合成した。
[実験II-1-2:CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(11-52))(化合物(16))の合成] 実験II-1-1と同様の方法に基づき、N-ヒドロキシコハク酸イミド活性エステル型の5 kDaのCH3O-PEG化試薬(PEG-1)(CH3O-(CH2CH2O)n-(CH2)5-CO-O-NHS)を用いて、ヒトアドレノメデュリンの11~52アミノ酸残基に対応するペプチドである、H-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「h.AM(11-52)」とも記載する)のN末端アミノ基に、アミド結合を介して5 kDaの重量平均分子量のポリエチレングリコール基(PEG(5k))を連結して、アミド連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(11-52)))(16)を合成した。
[実験II-1-3:CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(16-52))(化合物(17))の合成] 実験II-1-1と同様の方法に基づき、N-ヒドロキシコハク酸イミド活性エステル型の5 kDaのCH3O-PEG化試薬(PEG-1)(CH3O-(CH2CH2O)n-(CH2)5-CO-O-NHS)を用いて、ヒトアドレノメデュリンの16~52アミノ酸残基に対応するペプチドである、H-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「h.AM(16-52)」とも記載する)のN末端アミノ基に、アミド結合を介して5 kDaの重量平均分子量のポリエチレングリコール基(PEG(5k))を連結して、アミド連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)5-CO-αNH-(h.AM(16-52)))(17)を合成した。
[実験II-1-4:CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(6-52))(化合物(18))の合成] 0.4 mgのh.AM(6-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.5 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、2 mgのアルデヒド型の5 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(6-52)))(18)、及び未反応のh.AM(6-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.12 mg(h.AM(6-52)換算)の目的化合物(18)を得た。
[実験II-1-5:CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(11-52))(化合物(19))の合成] 0.44 mgのh.AM(11-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.5 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、2.5 mgのアルデヒド型の5 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(11-52)))(19)、及び未反応のh.AM(11-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.1 mg(h.AM(11-52)換算)の目的化合物(19)を得た。
[実験II-1-6:CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(16-52))(化合物(20))の合成] 0.46 mgのh.AM(16-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.5 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、3 mgのアルデヒド型の5 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(5k)アドレノメデュリン誘導体(CH3O-PEG(5k)-(CH2)2-CH2-αNH-(h.AM(16-52)))(20)、及び未反応のh.AM(16-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.15 mg(h.AM(16-52)換算)の目的化合物(20)を得た。
[実験II-1-7:CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(6-52))(化合物(21))の合成] 0.22 mgのh.AM(6-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.2 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、4.1 mgのアルデヒド型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(6-52)))(21)、及び未反応のh.AM(6-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.1 mg(h.AM(6-52)換算)の目的化合物(21)を得た。
[実験II-1-8:CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(11-52))(化合物(22))の合成]
 0.22 mgのh.AM(11-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.2 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、4.6 mgのアルデヒド型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(11-52)))(22)、及び未反応のh.AM(11-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.1 mg(h.AM(11-52)換算)の目的化合物(22)を得た。
[実験II-1-9:CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(16-52))(化合物(23))の合成]
 0.22 mgのh.AM(16-52)ペプチドを、100 mM 酢酸ナトリウム緩衝液, pH5.5に溶解して、0.2 mLのペプチド溶液を得た。このペプチド溶液に、氷冷下、5.2 mgのアルデヒド型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-2)(CH3O-(CH2CH2O)n-(CH2)2-CHO)を添加した。さらに、このペプチド溶液に、NaCNBH3を20 mMの最終濃度となるように添加した。反応液を、4℃下、24時間放置した。得られた反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0を用いて5倍希釈した。希釈された反応液を、50 mM 酢酸ナトリウム緩衝液, pH4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(2 mL)に、2 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH5.0をカラムに通液し、溶出画分を得た。溶出画分に、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体(CH3O-PEG(20k)-(CH2)2-CH2-αNH-(h.AM(16-52)))(23)、及び未反応のh.AM(16-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.1 mg(h.AM(16-52)換算)の目的化合物(23)を得た。
[実験II-1-10:GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(16-52))(化合物(24))の合成]
 実験II-1-6において、CH3O-PEG化試薬(PEG-2)に代えて、20 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000035
 で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(16-52)))(24):
Figure JPOXMLDOC01-appb-C000036
 を得た。分取HPLCにより、0.2 mg(h.AM(16-52)換算)の目的化合物(24)を得た。
[実験II-1-11:GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(6-52))(化合物(29))の合成]
 実験II-1-7において、CH3O-PEG化試薬(PEG-2)に代えて、20 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000037
 で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(6-52)))(29):
Figure JPOXMLDOC01-appb-C000038
 を得た。分取HPLCにより、0.15 mg(h.AM(6-52)換算)の目的化合物(29)を得た。
[実験II-1-12:GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(6-52))(化合物(30))の合成]
 Fmocペプチド合成法を用いて、Fmoc-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「Fmoc-αNH-(h.AM(6-52))」とも記載する)を合成した。17 mgのFmoc-αNH-(h.AM(6-52))ぺプチドを、1.8 mLのDMSOに溶解した。この溶液に、9 mgの炭酸 t-ブチルスクシンイミジル及び6 μLのジイソプロピルエチルアミンを加えた。反応溶液を、5時間撹拌した。得られた反応溶液に、酢酸水を加えた。その後、この溶液を凍結乾燥した。残渣を、2 mLのDMSOに溶解した。得られた溶液に、0.2 mLのジエチルアミンを加えた。得られた溶液を、70分間攪拌した。反応溶液に、酢酸水を加えて希釈した。得られた溶液を、逆相HPLCを用いて分取して、h.AM(6-52)ペプチドを含む画分を得た。この画分を凍結乾燥して、9 mgのh.AM(6-52)の4個のリジンがBoc基で保護されたペプチドを白色粉末として得た。
 前記得られたペプチド2 mgを、2 mLのDMSOに溶解した。このペプチド溶液に、氷冷下、15 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000039
 で表されるp-ニトロフェニルエステル型の20 kDaの重量平均分子量のGL2分岐型CH3O-PEG化試薬(PEG-9)を添加した。さらに、このペプチド溶液に、6.5 μLの0.1 M トリエチルアミン/DMSO溶液を添加した。反応液を、氷冷下、1時間放置した。その後、反応液を室温に戻し、24時間放置した。さらに、反応液の温度を30℃に上げて、2日間反応を継続した。反応液を凍結乾燥した。氷冷下、得られた残渣に、1 mLのトリフロオロ酢酸を添加した。混合物の温度を室温に戻して、2時間放置した。次いで、エバポレーターを用いて、混合物からトリフルオロ酢酸を減圧留去した。得られた残渣に、4 mLの50 mM 酢酸ナトリウム緩衝液, pH 4.0を添加して溶解させた。この溶液を、50 mM 酢酸ナトリウム緩衝液, pH 4.0で平衡化されたSP-Sepharose HP (GEヘルスケア社) カラム(1 mL)に、1 mL/hrの流速で通液した。2 mLの50 mM 酢酸ナトリウム緩衝液, pH 4.0を用いてカラムを洗浄した。次いで、5 mLの1 M NaClを含有する50 mM 酢酸ナトリウム緩衝液, pH 5.0をカラムに通液し、溶出画分を得た。溶出画分に、グリセロール骨格を有する2分岐型ウレタン連結型PEG(20k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(6-52)))(30):
Figure JPOXMLDOC01-appb-C000040
 及び未反応のh.AM(6-52)ペプチドが回収された。この溶出画分を、限外濾過膜(アミコンUltra4, ミリポア社)を用いて0.2 mLに濃縮した。得られた濃縮液を、Tsk gel G2000SWxL (60 cm、東ソー社) カラムを接続したHPLCシステム (L-2000:日立ハイテクサイエンス社製) を用いて、精製及び分取した (溶出液:80 mM 酢酸ナトリウム緩衝液, pH6 + 80 mM Na2SO4を含有する20% CH3CN、流速:0.5 mL/min)。前記分取HPLCにより、0.2 mg(h.AM(6-52)換算)の目的化合物(30)を得た。
[実験II-1-13:GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(11-52))(化合物(31))の合成]
 Fmocペプチド合成法を用いて、Fmoc-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「Fmoc-αNH-(h.AM(11-52))」とも記載する)を合成した。Fmoc-αNH-(h.AM(11-52))を用いて、実験II-1-12と同様の手順により、6 mgのh.AM(11-52)の4個のリジンがBoc基で保護されたペプチドを白色粉末として得た。
 実験II-1-12において、h.AM(6-52)ペプチドを前記で得られたh.AM(11-52)ペプチドに変更し、且つ20 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000041
 で表されるp-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型ウレタン連結型PEG(20k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(11-52)))(31):
Figure JPOXMLDOC01-appb-C000042
 を得た。分取HPLCにより、0.2 mg(h.AM(11-52)換算)の目的化合物(31)を得た。
[実験II-1-14:GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(16-52))(化合物(32))の合成]
 Fmocペプチド合成法を用いて、Fmoc-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2のアミノ酸配列を有するペプチドのCys16-Cys21ジスルフィド架橋体(以下、「Fmoc-αNH-(h.AM(16-52))」とも記載する)を合成した。Fmoc-αNH-(h.AM(16-52))を用いて、実験II-1-12と同様の手順により、6 mgのh.AM(16-52)の4個のリジンがBoc基で保護されたペプチドを白色粉末として得た。
 実験II-1-12において、h.AM(6-52)ペプチドを前記で得られたh.AM(16-52)ペプチドに変更し、且つ15 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000043
 で表されるp-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型ウレタン連結型PEG(20k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(20k)-CO-αNH-(h.AM(16-52)))(32):
Figure JPOXMLDOC01-appb-C000044
 を得た。分取HPLCにより、0.2 mg(h.AM(16-52)換算)の目的化合物(32)を得た。
[実験II-1-15:GL-2分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(16-52))(化合物(33))の合成]
 実験II-1-14において、p-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)に代えて、32 mgの式(XII-1-1’):
Figure JPOXMLDOC01-appb-C000045
 で表されるp-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型ウレタン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(16-52))(33)を得た。分取HPLCにより、0.15 mg(h.AM(16-52)換算)の目的化合物(33)を得た。
[実験II-1-16:GL-4分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(6-52))(化合物(34))の合成]
 実験II-1-12において、p-ニトロフェニルエステル型の20 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-9)に代えて、20 mgの式(XII-2-1’):
Figure JPOXMLDOC01-appb-C000046
 で表されるp-ニトロフェニルエステル型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-10)を用いた他は、前記と同様の手順により、グリセロール骨格を有する4分岐型ウレタン連結型PEG(40k)アドレノメデュリン誘導体(GL-4分岐型CH3O-PEG(40k)-CO-αNH-(h.AM(6-52))(34):
Figure JPOXMLDOC01-appb-C000047
 を得た。分取HPLCにより、0.15 mg(h.AM(6-52)換算)の目的化合物(34)を得た。
〔実験II-2:N末端欠失アドレノメデュリン誘導体の構造解析〕
[実験II-2-1:切断ペプチドの質量分析によるPEG基の結合位置の同定]
 実験I-2-2と同様の手順で、化合物(18)、(19)、(20)、(21)、(22)、(23)、(24)、(29)、(30)、(31)、(32)、(33)及び(34)のリシルエンドペプチダーゼによる切断ペプチドを得た。得られた切断ペプチドを、実験I-2-2と同様の手順で、RP-HPLCにより精製及び分取した。その結果、全ての化合物由来の切断ペプチドのRP-HPLCクロマトグラムで、図1に示すピーク(5)、(6)、(7)及び(8)に対応するピークが検出された。実験I-2-2の結果から、ピーク(1)及び(5)はh.AM(39-46)のペプチド断片に、ピーク(2)及び(6)はh.AM(47-52)のペプチド断片に、ピーク(3)及び(7)はh.AM(26-36)のペプチド断片に、ピーク(4)はh.AM(1-25)のペプチド断片に、ピーク(8)はh.AM(1-52)ペプチドのN末端側のペプチド断片にPEG基が結合した化合物に、それぞれ対応することが確認された。それ故、前記結果から、化合物(18)、(19)、(20)、(21)、(22)、(23)、(24)、(29)、(30)、(31)、(32)、(33)及び(34)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
[実験II-2-2:アミノ酸配列分析によるPEG基の結合位置の同定]
 化合物(18)、(21)、(22)、(23)、(24)、(31)、(33)及び(34)を、プロテインシーケンサー(Procise 494 HT Protein Sequencing System、アプライドバイオシステムズ社)を用いて、アミノ酸配列分析に供した。その結果、いずれの化合物ともヒトアドレノメデュリンのN末端アミノ酸残基に相当するアミノ酸は検出されなかった。前記結果から、化合物(18)、(21)、(22)、(23)、(24)、(31)、(33)及び(34)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
[実験II-2-3:SDS-PAGEによる分子量分析]
 実験書(実験医学別冊「タンパク質実験ハンドブック」羊土社、竹縄忠臣,伊藤俊樹/編)に基づき、実験II-1で得られた化合物(15)、(16)、(17)、(18)、(19)、(20)、(21)、(22)、(23)、(24)、(29)、(30)、(31)、(32)、(33)及び(34)(各200 ng)を、10%~20%の濃度勾配を有するポリアクリルアミドゲルを用いたSDS-PAGEによって分離した。結果を図3、4及び5に示す。図3中、レーン0は分子量標準物質を、レーン1は前述した化合物(1)を、レーン2は前述した化合物(2)を、レーン3は前述した化合物(13)を、レーン4は前述した化合物(14)を、レーン5は化合物(15)を、レーン6は化合物(16)を、レーン7は化合物(17)を、それぞれ示す。図4中、レーン0は分子量標準物質を、レーン1は前述した化合物(25)を、レーン2は前述した化合物(26)を、レーン3は前述した化合物(27)を、レーン4は前述した化合物(28)を、レーン5は化合物(29)を、レーン6は化合物(30)を、レーン7は化合物(31)を、レーン8は化合物(32)を、レーン9は化合物(33)を、レーン10は化合物(34)を、レーン11は前述した化合物(35)を、レーン12は後述する化合物(36)を、レーン13は後述する化合物(37)を、それぞれ示す。図5中、レーン0及び1は分子量標準物質を、レーン2は化合物(18)を、レーン3は化合物(19)を、レーン4は化合物(20)を、レーン5は化合物(21)を、レーン6は化合物(22)を、レーン7は化合物(23)を、レーン8は化合物(24)を、それぞれ示す。分子量標準物質は、いずれもPrecision Plus Protein(TM) Dual Xtra Standards(バイオラッド社)を用いた。図3、4及び5に示すように、各化合物は、所望の分子量を有することが確認された。
[実験II-2-4:ゲル濾過HPLCによる会合の確認]
 ゲル濾過カラム(Superdex 200 Increace 10/300 GL、GEヘルスケア社)を用いたゲル濾過HPLCにより、アドレノメデュリン誘導体分子の会合を確認した。実験II-1で得られた化合物(18)、(21)、(22)、(23)、(24)、(29)及び(34)(各50 μg)を、カラムに添加した。溶出液(100 mM 酢酸ナトリウム及び100 mM 硫酸ナトリウム, pH 6.0)を、0.75 mL/分の流速でカラムに通液した。得られたゲル濾過クロマトグラムから、各化合物は、分子量に応じた保持時間を有する単一ピークを示した。前記結果から、各アドレノメデュリン誘導体分子は、会合しておらず、単量体として存在することが確認された。前記ゲル濾過クロマトグラムにおける各化合物の保持時間を、表2に示す。
Figure JPOXMLDOC01-appb-T000048
<実験III:C末端グリシン付加アドレノメデュリン誘導体の調製>
〔実験III-1:C末端グリシン付加アドレノメデュリン誘導体の合成〕
[実験III-1-1:GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52))-Gly(化合物(36))の合成]
 実験I-1-5において、h.AM(1-52)ペプチドをh.AM(1-52)-Glyペプチドに変更し、CH3O-PEG化試薬(PEG-2)に代えて、80 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000049
 で表されるアルデヒド型の40 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(40k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(40k)-CH2-αNH-(h.AM(1-52)-Gly))(36):
Figure JPOXMLDOC01-appb-C000050
 を得た。分取HPLCにより、0.8 mg(h.AM(1-52)-Gly換算)の目的化合物(36)を得た。
[実験III-1-2:GL-2分岐型CH3O-PEG(60k)-CH2-αNH-(h.AM(1-52))-Gly(化合物(37))の合成]
 実験I-1-5において、h.AM(1-52)ペプチドをh.AM(1-52)-Glyペプチドに変更し、CH3O-PEG化試薬(PEG-2)に代えて、80 mgの式(VII-1-1’):
Figure JPOXMLDOC01-appb-C000051
 で表されるアルデヒド型の60 kDaの重量平均分子量のCH3O-PEG化試薬(PEG-3)を用いた他は、前記と同様の手順により、グリセロール骨格を有する2分岐型アルキルアミン連結型PEG(60k)アドレノメデュリン誘導体(GL-2分岐型CH3O-PEG(60k)-CH2-αNH-(h.AM(1-52)-Gly))(37):
Figure JPOXMLDOC01-appb-C000052
 を得た。分取HPLCにより、0.7 mg(h.AM(1-52)-Gly換算)の目的化合物(37)を得た。
〔実験III-2:C末端グリシン付加アドレノメデュリン誘導体の構造解析〕
[実験III-2-1:アミノ酸配列分析によるPEG基の結合位置の同定]
 化合物(36)及び(37)を、プロテインシーケンサー(Procise 494 HT Protein Sequencing System、アプライドバイオシステムズ社)を用いて、アミノ酸配列分析に供した。その結果、いずれの化合物ともヒトアドレノメデュリンのN末端アミノ酸残基に相当するアミノ酸は検出されなかった。前記結果から、化合物(36)及び(37)におけるPEG基は、いずれもN末端のαアミノ基に結合していることが確認された。
<実験IV:アドレノメデュリン誘導体の使用例>
[実験IV-1:アドレノメデュリン誘導体による細胞内cAMP濃度上昇作用]
 アドレノメデュリン(AM)の生理作用は、細胞内cAMPの濃度の上昇を介して発現することが知られている(非特許文献1参照)。そこで、AM受容体を発現させた培養細胞株(HEK293細胞株)に、実験I-1、実験II-1及び実験III-1で調製した各化合物又は全長AM、N末端欠失AM若しくはC末端グリシン付加AMを添加して、細胞内cAMPの産生量を測定した。コンフルエントのHEK293細胞に、0.5 mMのIBMXの存在下、10-8 mol/Lの各化合物、又はh.AM(1-52)、h.AM(6-52)、h.AM(11-52)、h.AM(16-52)若しくはh.AM(1-52)-Glyを添加して、15分間インキュベートした。その後、cAMP測定用ELISAキット(GEヘルスケアー、#RPN2251)を用いて、各試験区のHEK293細胞における細胞内cAMP濃度を測定した。AM受容体発現培養細胞におけるアドレノメデュリン誘導体による細胞内cAMP濃度上昇作用を表3に示す。
Figure JPOXMLDOC01-appb-T000053
 表3に示すように、試験したアドレノメデュリン誘導体は、いずれもPEG基を連結していない対応する全長AM、N末端欠失AM又はC末端グリシン付加AMと同程度の細胞内cAMP濃度上昇作用を示した。それ故、PEG基を連結したアドレノメデュリン誘導体は、親化合物である全長AM、N末端欠失AM又はC末端グリシン付加AMと同程度の生物活性を維持していると推測される。
 同一(20 kDa)の重量平均分子量のPEG基、及び同一のアミノ酸配列のペプチド部分(h.AM(1-52))を有し、PEG基とペプチド部分との連結様式のみが異なるアドレノメデュリン誘導体である化合物(2)、化合物(4)、化合物(6)及び化合物(14)を対比すると、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体である化合物(4)及び化合物(6)は、アミド連結型PEG(20k)アドレノメデュリン誘導体である化合物(2)と比較してより高い細胞内cAMP濃度上昇作用を示した。同様に、ウレタン連結型PEG(20k)アドレノメデュリン誘導体である化合物(14)は、アミド連結型PEG(20k)アドレノメデュリン誘導体である化合物(2)と比較してより高い細胞内cAMP濃度上昇作用を示した。
 同一(5 kDa)の重量平均分子量のPEG基、及び同一のアミノ酸配列のペプチド部分(h.AM(6-52)、h.AM(11-52)又はh.AM(16-52))を有し、PEG基とペプチド部分との連結様式のみが異なるアドレノメデュリン誘導体である化合物(15)、化合物(16)及び化合物(17)、並びに化合物(18)、化合物(19)及び化合物(20)をそれぞれ対比すると、アミド連結型PEG(5k)アドレノメデュリン誘導体である化合物(15)、化合物(16)及び化合物(17)は、ペプチド部分のN末端欠失の拡大につれ細胞内cAMP濃度上昇作用が顕著に減少した。一方、アルキルアミン連結型PEG(5k)アドレノメデュリン誘導体である化合物(18)、化合物(19)及び化合物(20)では、ペプチド部分のN末端欠失による細胞内cAMP濃度上昇作用への影響は抑えられた。
 同一(20 kDa)の重量平均分子量のPEG基、及び同一のPEG基とペプチド部分との連結様式を有し、アミノ酸配列のペプチド部分のみが異なるアドレノメデュリン誘導体である化合物(4)、並びに化合物(21)、化合物(22)及び化合物(23)を対比すると、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体である化合物(21)、化合物(22)及び化合物(23)は、ペプチド部分のN末端欠失による細胞内cAMP濃度上昇作用への影響はなく、高い細胞内cAMP濃度上昇作用を示した。
[実験IV-2:アドレノメデュリン誘導体による降圧作用]
 麻酔下ラットの静脈内に、実験I-1及び実験II-1で調製した各化合物又は全長AMを1 nmol/kgの用量で単回投与して、該ラットの血圧の経過を観察した。11~14週齢の雄性ウイスターラットを、イソフルランの吸入により麻酔導入した。気管切開の後、1.5~2.5%のイソフルラン濃度及び0.6~0.8 L/分の流量にて、吸入麻酔管理を行った。前記ラットから、右頸静脈を単離し、26G相当のカテーテルチューブを挿入した。次に、前記処置後のラットから、左頸動脈を単離し、23G相当のカテーテルチューブを挿入した。右頸静脈のカテーテルチューブより、生理食塩水ヘパリン溶液(生理食塩水:100 mL;ヘパリン:1000単位)を2.4 mL/時間で補液した。同じカテーテルチューブより、1 nmol/kgの化合物(2)、化合物(4)、化合物(8)又はh.AM(1-52)を、生理食塩水に溶解した形態で投与した。頸動脈に挿入したカテーテルを、圧トランスデューサーに接続した。化合物(2)、化合物(4)又はh.AM(1-52)の投与前の血圧と投与後の血圧とを、経時的に測定した。化合物(2)、化合物(4)、化合物(8)又はh.AM(1-52)の投与開始時からの経過時間と平均血圧との関係を図6に示す。Aは、化合物(2)、化合物(4)及びh.AM(1-52)の結果を、Bは、化合物(8)及びh.AM(1-52)の結果を、それぞれ示す。なお、図中、縦軸は、各薬剤投与時の平均血圧から、各薬剤投与前の平均血圧を差し引いた差を示す。
 図6に示すように、PEG基を連結していない全長AM(h.AM(1-52))では、投与直後に急激な血圧低下が観察された。これに対し、PEG基を連結したアドレノメデュリン誘導体(化合物(2)、化合物(4)及び化合物(8))では、h.AM(1-52)で観察された投与直後の急激な血圧低下は認められなかった。それ故、PEG基を連結したアドレノメデュリン誘導体は、親化合物である全長AMで生じ得る急激な血圧降下のような望ましくない副反応を抑制することができると推測される。
 同一(20 kDa)の重量平均分子量のPEG基、及び同一のアミノ酸配列のペプチド部分(h.AM(1-52))を有し、PEG基とペプチド部分との連結様式のみが異なるアドレノメデュリン誘導体である化合物(2)と化合物(4)及び化合物(8)とを対比すると、アルキルアミン連結型PEG(20k)アドレノメデュリン誘導体である化合物(4)及び化合物(8)は、アミド連結型PEG(20k)アドレノメデュリン誘導体である化合物(2)と比較して、投与直後の血圧低下が更に抑制された。
[実験IV-3:皮下投与時のアドレノメデュリン誘導体の経時的血中濃度測定(1)]
 ラットの皮下に、実験I-1で調製した化合物(8)又は全長AMを10 nmol/kgの用量で単回投与して、アドレノメデュリン誘導体の血中濃度の経時変化を観察した。7~8週齢の雄性ウイスターラット(約250 g)に、生理食塩水に溶解した化合物(8)又はh.AM(1-52)を皮下投与した。投与開始時から1日後、7日後及び10日後に、50 mgのペントバルビタールを腹腔内投与して、麻酔下にて尾静脈より毎回300 μL採血した。得られた血液検体に、直ちに300 μgのEDTA-2Na、及び21 μgのアプロチニンを添加して、10分、3000回転の条件で遠心分離して血漿を得た。各検体の血漿中AM濃度を、ラジオイムノアッセイ(RIA)法(Kitamura K, Ichiki Y, Tanaka Mら, Immunoreactive adrenomedullin in human plasma. FEBS Lett. 第341巻, p. 288-90, 1994年)にて測定した。化合物(8)の投与開始時からの経過時間と血漿中AM濃度との関係を図7に示す。
 図7に示すように、化合物(8)を投与した場合には、1日後に2600 pM以上、7日後に740 pM以上、10日後でも280 pM以上の血漿中AM濃度が確認された。一方、h.AM(1-52)を投与した場合には、化合物(8)の投与1日後に6.7 pM、7日後及び10日後はいずれの測定においても血漿中AMは0 pM(検出感度以下)であった。通常、ラットの血漿中AM濃度は1 pM程度であることが知られている(Mori, Y. ら、 Long-Term Adrenomedullin Infusion Improves Survival in Malignant Hypertensive Rats. Hypertension, 2002年, 第40巻, p107-113.)。前記結果より、本発明のアルキルアミン連結型アドレノメデュリン誘導体は、親分子であるアドレノメデュリンと比較して、顕著に長い期間に亘って、血中で高濃度で存在することが判明した。
[実験IV-4:頸静脈単回投与時のアドレノメデュリン誘導体の経時的血中濃度測定]
 麻酔下ラットの静脈内に、実験I-1で調製した化合物(6)又は全長AMを3 nmol/kgの用量で単回投与して、アドレノメデュリン誘導体の血中濃度の経時変化を観察した。8~9週齢の雄性ウイスターラット(約300 g)を、イソフルランの吸入により麻酔導入した。気管切開の後、1.5~2.5%のイソフルラン濃度及び0.6~0.8 L/分の流量にて、吸入麻酔管理を行った。前記ラットから、右頸静脈を単離し、26G相当のカテーテルチューブを挿入した。次に、前記処置後のラットから、左頸動脈を単離し、23G相当のカテーテルチューブを挿入した。右頸静脈のカテーテルチューブより、生理食塩水ヘパリン溶液(生理食塩水:100 mL;ヘパリン:1000単位)を2.4 mL/時間で補液した。同じカテーテルチューブより、3 nmol/kgの化合物(6)又はh.AM(1-52)を、生理食塩水に溶解した形態で投与した。頸動脈に挿入したカテーテルより、投与開始時から1時間後、2時間後及び4時間後に、300 μlの採血を経時的に行った。得られた血液検体に、直ちに300 μgのEDTA-2Na、及び21 μgのアプロチニンを添加して、10分、3000回転の条件で遠心分離して血漿を得た。各検体の血漿中AM濃度を、ラジオイムノアッセイ(RIA)法(Kitamura K, Ichiki Y, Tanaka Mら, Immunoreactive adrenomedullin in human plasma. FEBS Lett. 第341巻, p. 288-90, 1994年)にて測定した。化合物(6)又はh.AM(1-52)の投与開始時からの経過時間と血漿中AM濃度との関係を図8に示す。
 図8に示すように、化合物(6)は、h.AM(1-52)と比較して、血中半減期が顕著に延長された。前記の結果より、本発明のアルキルアミン連結型アドレノメデュリン誘導体は、親分子であるアドレノメデュリンと比較して、血中半減期が顕著に延長されることが判明した。
[実験IV-5:高血圧自然発症ラット(SHRラット)における血圧上昇抑制作用(1)]
 高血圧自然発症ラット(SHR)の皮下に、実験I-1で調製した化合物(8)を336 μg/100 μLの用量で単回投与して、アドレノメデュリン誘導体の血圧上昇抑制効果を観察した。8週齢の雄性SHR(約200 g)に対し、高塩食(8% NaCl)を与えた。高塩食投与時に、化合物(8)を生理食塩水に溶解した形態で投与した。対照群として、同じ条件の雄性SHR (約200 g)に、100 μLの生理食塩水を皮下単回投与した。化合物(8)又は生理食塩水の投与2日前及び投与9日後の血圧及び脈拍を経時的に測定した。化合物(8)又は生理食塩水の投与2日前及び投与9日後の血圧値を図9に示す。
 図9に示すように、化合物(8)投与群は、対照群(生理食塩水投与群)と比較して、血圧の上昇が抑制された。前記結果より、本発明のアルキルアミン連結型アドレノメデュリン誘導体は、血圧上昇抑制の薬理効果を有することが判明した。
[実験IV-6:皮下投与時のアドレノメデュリン誘導体の経時的血中濃度測定(2)]
 実験IV-3と同様の手順により、ラットの皮下に、実験I-1で調製した化合物(27)を10 nmol/kgの用量で単回投与して、アドレノメデュリン誘導体の血中濃度の経時変化を観察した。
 化合物(27)を投与した場合には、1日後に3600 pM以上、7日後に120 pM以上の血漿中AM濃度が確認された。前記結果より、本発明のウレタン連結型アドレノメデュリン誘導体は、親分子であるアドレノメデュリンと比較して、顕著に長い期間に亘って、血中で高濃度で存在することが判明した。
[実験IV-7:皮下投与時のアドレノメデュリン誘導体の経時的血中濃度測定(3)]
 ラットの皮下に、実験III-1で調製した化合物(37)を30 nmol/kgの用量で単回投与して、アドレノメデュリン誘導体の血中濃度の経時変化を観察した。7~8週齢の雄性ウイスターラット(約250 g)に、生理食塩水に溶解した化合物(37)を皮下投与した。投与開始時から1日後、2日後、4日後、7日後及び9日後に、50 mgのペントバルビタールを腹腔内投与して、麻酔下にて尾静脈より毎回300 μL採血した。得られた血液検体に、直ちに300 μgのEDTA-2Na、及び21 μgのアプロチニンを添加して、10分、3000回転の条件で遠心分離して血漿を得た。各検体の血漿中AM濃度を、RIA法にて測定した。
 化合物(37)を投与した場合には、1日後に34000 pM以上、7日後に1600 pM以上、9日後でも110 pM以上の血漿中AM濃度が確認された。前記結果より、本発明のアルキルアミン連結型グリシン付加アドレノメデュリン誘導体は、親分子であるアドレノメデュリンと比較して、顕著に長い期間に亘って、血中で高濃度で存在することが判明した。
[実験IV-8:高血圧自然発症ラット(SHR)における血圧上昇抑制作用(2)]
 SHRの皮下に、実験III-1で調製した化合物(37)を30 nmol/kgの用量で単回投与して、アドレノメデュリン誘導体の血圧上昇抑制効果を観察した。8週齢の雄性SHR(約200 g)に、化合物(37)を生理食塩水に溶解した形態で投与した。対照群として、同じ条件の雄性SHR (約200 g)に、100 μLの生理食塩水を皮下単回投与した。化合物(37)又は生理食塩水の投与1日前並びに投与4日後及び投与9日後の血圧を経時的に測定した。化合物(37)又は生理食塩水の投与4日後及び投与9日後の、投与前日の平均収縮血圧に対する血圧変化値を図10に示す。
 図10に示すように、化合物(37)投与群は、対照群と比較して、血圧の上昇が抑制された。前記結果より、本発明のアルキルアミン連結型グリシン付加アドレノメデュリン誘導体は、血圧上昇抑制の薬理効果を有することが判明した。
[実験IV-9:デキストラン硫酸ナトリウム(DSS)誘発大腸炎モデルにおける薬理作用]
 DSS誘発大腸炎モデルに対する化合物(8)の皮下投与による改善作用を検討した。化合物(8)を、マウスの背部に皮下投与した。投与翌日(0日目)に、3%DSSの7日間飲水投与により、大腸炎モデルの作製を開始した。化合物(8)の投与量は、1、5及び25 nmol/kgの3種類の用量とした。媒体の対照群として、生理食塩水を投与した。DSS飲水開始日(0日目)から3、5及び7日目に、体重及び便の性状を、表4に示すスコアに基づき評価した。化合物(8)投与群及び対照群におけるDSS誘発大腸炎モデル作製時からの経過時間とスコアの合計値との関係を図11に示す。
Figure JPOXMLDOC01-appb-T000054
 図11に示すように、化合物(8)投与群は、5及び25 nmol/kg投与群で有意なスコアの減少が確認された。スコアの減少は、大腸炎の軽減作用を示唆する。また、媒体の対照群と比較して、5 nmol/kg投与群で腸管の湿重量が軽くなる傾向が、25 nmol/kg投与群で腸管の長さが長くなる傾向が確認された。前記結果から、化合物(8)の皮下投与による、本試験条件下におけるDSS大腸炎モデルの病態に対する軽減作用が示唆された。
[実験IV-10:2,4,6-トリニトロベンゼンスルホン酸(TNBS)誘発大腸炎モデルにおける薬理作用]
 TNBS誘発大腸炎モデルに対する化合物(8)の皮下投与による改善作用を検討した。7週齢の雄性ウィスターラットを1週間馴化飼育した。その後、ラットに、化合物(8)(1 nmol/kg)又は生理食塩水を皮下投与した(0日目)。また、皮下投与と一緒に24時間絶食を行い、体内の糞便の除去を行った。下記の手順で、大腸炎モデルを作製した。TNBS(ナカライテスク社)は、30 mg/500μL(50%エタノール水溶液中)の濃度となるように調製した。50 mgのペントバルビタールを腹腔内投与して、麻酔下にてゾンデを用いて肛門からゆっくりと回転させながら8 cm挿入し、500 μLの薬液を注入した(1日目)。その後、2分間逆さまの状態を維持した。体重及び下痢の性状を毎日評価した。14日後、50 mgのペントバルビタールを腹腔内投与して、麻酔下にて心臓採血を行い、大腸を摘出した。摘出時に、腸管の長さ及び重量を測定して、各群の比較を行った。化合物(8)投与群及び対照群におけるTNBS誘発大腸炎モデル作製時からの経過時間と体重との関係を図12に示す。図中、aは、化合物(8)又は生理食塩水を皮下投与して絶食を開始した日を、bは、TNBSを投与した日を、それぞれ示す。化合物(8)投与群及び対照群における大腸の重量を図13に示す。化合物(8)投与群及び対照群における大腸の腸管長を図14に示す。
 図12に示すように、媒体の対照群では、大腸炎発症による体重減少が確認されたが、化合物(8)投与群では、大腸炎発症による体重減少が改善された。大腸炎を発症すると、通常は、炎症部位の腫脹により、大腸の重量が増加する。図13に示すように、化合物(8)投与群では、媒体の対照群と比較して、大腸の重量増加が明らかに抑制された。また、大腸炎に起因する炎症が進行すると、通常は、大腸の腸管長が短くなる。図14に示すように、化合物(8)投与群では、媒体の対照群と比較して、大腸の腸管長の減少が明らかに抑制された。大腸の解剖所見からも、化合物(8)投与群では、媒体の対照群と比較して、明らかに病的変化が少ないことが確認された。前記結果から、化合物(8)の皮下投与による、本試験条件下におけるTNBS誘発大腸炎モデルの病態に対する軽減作用が示唆された。それ故、本発明のアドレノメデュリン誘導体は、大腸炎に対する治療効果を有することが判明した。
[実験IV-11:肺高血圧モデルにおける薬理作用]
 肺高血圧モデルに対する化合物(8)の皮下投与による改善作用を検討した。3週齢の雄性ウイスターラット(日本チャールス・リバー社)を購入し、1週間馴化飼育した。その後、ラットに、60 mg/kgの濃度でモノクロタリン溶液を皮下投与した。同時に、背部の別の位置に、化合物(8)(1 nmol/kg)又は生理食塩水を単回皮下投与した。肺高血圧モデルにおける効果の判定指標として、一般的な心臓の右室と左室との重量比を測定した。同モデルでは、病態が進むほど、右室の肥大に伴い、重量比が大きくなることが知られている(Miyauchi T.,Yorikane R.,Sakai S.,Sakurai T.,Okada m.,Nishikibe M.,Yano M.,Yamaguchi I.,Sugishita Y.and Goto k.: Contribution of endogenous endothelinl to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ. Res., 第73巻, pp. 887-897, 1993年)。投与14日後に、50 mgのペントバルビタールを腹腔内投与して、麻酔下にて下大静脈より採血した。その後、心臓を摘出して重量を測定した。摘出した心臓は、右室と左室とに分け、それぞれの重量を測定して右室重量/左室重量比を算出した。化合物(8)投与群及び対照群における右室重量/左室重量比を図15に示す。
 図15に示すように、化合物(8)投与群は、媒体の対照群と比較して、右室・左室重量比が顕著に低かった。前記結果から、化合物(8)の皮下投与による、本試験条件下における肺高血圧モデルの病態に対する軽減作用が示唆された。
[実験IV-12:創傷モデルにおける薬理作用]
 創傷モデルに対する化合物(8)の皮下投与による薬理作用を検討した。5週齢の雄性BALB/c-nu/nuマウス(日本チャールス・リバー社)を購入し、1週間馴化飼育した。その後、マウスに、5 mgのペントバルビタールを腹腔内投与して麻酔した。消毒用エタノールを用い、皮膚を消毒した。マウスを側臥させた状態で、背部皮膚を指で引っ張り、消毒した製図用マットの上で、片側から反対側に向けて、皮膚バイオプシー用円形ナイフ(生検トレパン)で押し切るようにして、各直径6 mmの2個の欠損創を作製した。同時に、背部の別の位置に、化合物(8)(1 nmol/kg)を単回皮下投与した。媒体の対照群として、生理食塩水を投与した。創傷部位を含む背部を覆うようにドレッシング剤を塗布した。創傷面積の変化を、経時的に観察した。化合物(8)投与群及び対照群における創傷モデル作製時からの経過時間と創傷面積との関係を図16に示す。
 図16に示すように、化合物(8)投与群は、媒体の対照群と比較して、創傷面積の縮小が早く進行した。前記結果から、化合物(8)の皮下投与による、本試験条件下における創傷の治癒促進作用が確認された。
[実験IV-13:血管閉塞モデルにおける薬理作用]
 モリスの水迷路試験を用いて、血管閉塞モデルラットにおける学習及び記憶障害に対する化合物(8)の皮下投与による薬理作用を検討した。椎骨動脈閉塞手術前に、化合物(8)を皮下投与した。化合物(8)の投与量は、1及び10 nmol/kgの2種類の用量とした。媒体の対照群として、生理食塩水を投与した。その後、麻酔下で両側椎骨動脈を永久閉塞した。翌日、縫合糸を用いて、麻酔下で両側総頸動脈を30分間閉塞した。その後、縫合糸を取り除き、血流を再開通した。両側総頸動脈閉塞日を、血管閉塞モデルの作製日、すなわち0日とした。モデル作製後9日目に、モリスの水迷路を1試行遊泳させた(水慣らし)。モデル作製後10日目より、4試行/日の間隔で5日間、隠されたプラットフォームテスト(hidden platform test)を行った。隠されたプラットフォームテストの5日目(モデル作製後14日目)の最終試行の1時間後に、プローブテスト(probe test)を行った。
 モリスの水迷路試験は、下記の実験装置を用いて行った。直径150 cm、高さ45 cm、水深30 cmの円形プールを準備した。直径12 cmの無色透明なプラットフォームを、円形プールの水面下約1 cmの位置に置いた。円形プールの水温を23±1℃に設定した。実験装置を設置した室内には、間接照明を設置し、動物の視覚的手がかりとなるもの(カレンダー、ボール、立方体及び縞模様の紙)を配置した。試験期間中、これらの配置は常に一定にした。測定には、ビデオ画像行動解析装置(Smart、Panlab社)を用いた。
 隠されたプラットフォームテストは、下記の手順で実施した。手術後9日目に、プラットフォームを設置せずに、90秒間遊泳させ、水に馴化させた(水慣らし)。測定は、手術後10日目より開始した。測定は、4試行/日の間隔で行った。スタートからプラットフォーム到達までの遊泳時間(逃避潜時)を測定した。スタート位置は、試行毎に変更した。プラットフォームの位置は、全ての試行で同じ位置に固定した。また、1試行の最長遊泳時間は90秒間とした。最長遊泳時間内にプラットフォームに到達できないラットは、遊泳後、プラットフォーム上に30秒間の滞在時間を設けた。
 プローブテストは、下記の手順で実施した。実験装置に、プラットフォームを設置せずにプールを4分割した。隠されたプラットフォームテスト時にプラットフォームが設置された分画での遊泳時間を測定した。測定された遊泳時間を用いて、下記の計算式に基づき滞在率(%)を算出した。プローブテストの遊泳時間は60秒間とした。モデル作製後14日目の最終の隠されたプラットフォームテストが終了してから1時間後に、1試行のみ実施した。
Figure JPOXMLDOC01-appb-M000055
 化合物(8)投与群及び対照群における血管閉塞モデル作製時からの経過時間と、隠されたプラットフォームテストにおける逃避潜時との関係を図17に示す。また、血管閉塞モデルラットに対する化合物(8)投与群及び対照群における、プローブテストにおける滞在率を図18に示す。図17に示すように、隠されたプラットフォームテストにおいて、化合物(8)投与群は、1及び10 nmol/kg投与群で、媒体の対照群と比較して、プラットフォームへの到達時間、すなわち逃避潜時が短縮した。また、図18に示すように、プローブテストにおいても、化合物(8)投与群は、1及び10 nmol/kg投与群で、媒体の対照群と比較して、滞在率が有意に上昇した。本試験において、両側総頸動脈閉塞手術時の死亡率には、有意な差は確認されなかった。前記結果から、化合物(8)の皮下投与による、本試験条件下の4血管閉塞モデルラットにおける学習及び記憶障害の軽減作用が確認された。
[実験IV-14:アジュバント誘発関節炎モデルにおける薬理作用]
 アジュバント誘発関節炎モデルに対する化合物(8)の皮下投与による薬理作用を検討した。化合物(8)を、ラットに皮下投与した。化合物(8)の投与翌日(1日目)に、動物の右側後肢の皮下に、アジュバント(起炎剤)を0.1 mL/匹の投与量で投与して、関節炎を誘発させた。化合物(8)の投与量は、1及び10 nmol/kgの2種類の用量とした。媒体の対照群として、生理食塩水を投与した。足容積測定装置(MK-550、室町機械株式会社)を用いて、左右足の足容積及び浮腫率を、0日目(アジュバント投与前日)、4日目、7日目、10日目及び14日目に測定した。また、表5に示すスコアに基づき、0日目(アジュバント投与前日)、4日目、7日目、10日目及び14日目の炎症スコアを評価した。化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した足容積との関係を図19に示す。化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した浮腫率との関係を図20に示す。また、化合物(8)投与群及び対照群における投与時からの経過時間とアジュバント投与後に発現した炎症スコアとの関係を図21に示す。
Figure JPOXMLDOC01-appb-T000056
 図19及び20に示すように、化合物(8)投与群は、1及び10 nmol/kg投与群で、媒体の対照群と比較して、足容積及び浮腫率が有意に減少した。また、図21に示すように、化合物(8)投与群は、1及び10 nmol/kg投与群で、媒体の対照群と比較して、関節炎スコアが有意に減少した。前記結果から、化合物(8)の皮下投与による、本試験条件下のアジュバント誘発関節炎モデルラットにおける関節炎の軽減作用が確認された。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1.  式(I):
       A-CH2-B  (I)
    [式中、
     Aは、1個以上のポリエチレングリコール基を含む修飾基であり、
     Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、
     但し、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がメチレン基の炭素原子と共有結合することによって残部分と連結されている。]
    で表される化合物若しくはその塩、又はそれらの水和物。
  2.  Aが、以下の式(II):
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、
     aは、1以上の整数であり、
     mは、1以上の整数であり、
     L1は、m+1価の直鎖状又は分岐鎖状の連結基であり、但し、L1が複数の場合、該複数のL1は互いに同一又は異なっていてもよく、
     L2及びL2’は、互いに独立して、結合又は2価の連結基であり、但し、L2’が複数の場合、該複数のL2’は互いに同一又は異なっていてもよく、
     M1は、式(III):
       #-(CH2CH2O)n-**   (III)
    [式中、
     nは、1以上の整数であり、
     **は、L1との結合位置であり、
     #は、O又はL2’との結合位置である。]
    で表されるポリエチレングリコール基であり、但し、M1が複数の場合、該複数のM1は互いに同一又は異なっていてもよく、
     M2は、結合又は式(III)で表されるポリエチレングリコール基であり、但し、M2が複数の場合、該複数のM2は互いに同一又は異なっていてもよく、
     R1は、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
     *は、残部分との結合位置である。]
    で表される修飾基である、請求項1に記載の化合物。
  3.  Aが、以下の式(V)、(VI)、(VII)又は(VIII):
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、
     aは、1以上の整数であり、
     M3、M3’、M3’’、M3’’’及びM3’’’’は、互いに独立して、結合又は式(III):
       #-(CH2CH2O)n-**   (III)
    [式中、
     nは、1以上の整数であり、
     **は、R3、R3’又はCHとの結合位置であり、
     #は、Oとの結合位置である。]
    で表されるポリエチレングリコール基であり、但し、M3、M3’、M3’’、M3’’’及びM3’’’’が複数の場合、該複数のM3、M3’、M3’’、M3’’’及びM3’’’’は互いに同一又は異なっていてもよく、且つM3、M3’、M3’’、M3’’’及びM3’’’’のうち少なくとも1個は式(III)で表されるポリエチレングリコール基であり、
     R1、R1’、R1’’及びR1’’’は、互いに独立して、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
     R2は、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、
     R3、R3’及びR3’’は、互いに独立して、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、但し、R3、R3’及びR3’’が複数の場合、該複数のR3、R3’及びR3’’は互いに同一又は異なっていてもよく、
     *は、残部分との結合位置である。]
    で表される修飾基である、請求項1又は2に記載の化合物。
  4.  式(III)で表されるポリエチレングリコール基が、合計で1~100 kDaの範囲の重量平均分子量を有する、請求項1~3のいずれか1項に記載の化合物。
  5.  前記アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体が、下記:
    (i)アドレノメデュリンのアミノ酸配列からなるペプチド、
    (ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
    (iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド、
    (iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド、
    (v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
    (vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
    からなる群より選択されるペプチドである、請求項1~4のいずれか1項に記載の化合物。
  6.  前記アドレノメデュリン又はその修飾体が、下記:
    (i)アドレノメデュリンのアミノ酸配列からなるペプチド、
    (ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
    (v)(i)又は(ii)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
    (vi)(i)又は(ii)ペプチドにおいて、C末端にグリシン残基が付加されているペプチド
    からなる群より選択されるペプチドである、請求項5に記載の化合物。
  7.  前記アドレノメデュリン又はその修飾体が、下記:
    (iv’)(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド、
    (v)(iv’)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
    (vi)(iv’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド
    からなる群より選択されるペプチドである、請求項5に記載の化合物。
  8.  前記アドレノメデュリン又はその修飾体が、下記:
    (a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されており、且つアドレノメデュリン活性を有するペプチド;
    (h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されており、且つアドレノメデュリン活性を有するペプチド;
    (i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項1~5のいずれか1項に記載の化合物。
  9.  前記アドレノメデュリン又はその修飾体が、下記:
    (a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (b)配列番号3のアミノ酸配列からなるペプチド、又は配列番号3のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (c)配列番号5のアミノ酸配列からなるペプチド、又は配列番号5のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (d)配列番号7のアミノ酸配列からなるペプチド、又は配列番号7のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (e)配列番号9のアミノ酸配列からなるペプチド、又は配列番号9のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (f)配列番号11のアミノ酸配列からなるペプチド、又は配列番号11のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項8に記載の化合物。
  10.  前記アドレノメデュリン又はその修飾体が、下記:
    (h’)(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有する、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されており、且つアドレノメデュリン活性を有するペプチド;
    (i)(h’)のペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (j)(h’)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項8に記載の化合物。
  11.  アドレノメデュリン又はその修飾体から誘導されるペプチド部分Bの前駆体と、式(I-1):
       A-CHO  (I-1)
    で表される1個以上のポリエチレングリコール基を含む修飾基Aの前駆体アルデヒドとを還元剤存在下で反応させて、式(I)で表される化合物を得る、連結工程を含む、請求項1~10のいずれか1項に記載の化合物若しくはその塩、又はそれらの水和物の製造方法。
  12.  式(X):
       A’-CO-B  (X)
    [式中、
     A’は、1個以上のポリエチレングリコール基を含む修飾基であり、
     Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、
     但し、ペプチド部分Bは、そのN末端のαアミノ基の窒素原子がカルボニル基の炭素原子と共有結合することによって残部分と連結されており、
     A’が、以下の式(XI)、(XI’)又は(XII):
       R1-O-M1-*  (XI)
    Figure JPOXMLDOC01-appb-C000003
     
    [式中、
     aは、1以上の整数であり、
     M1は、式(III):
       #-(CH2CH2O)n-**   (III)
    [式中、
     nは、1以上の整数であり、
     **は、*との結合位置であり、
     #は、Oとの結合位置である。]
    で表されるポリエチレングリコール基であり、
     M3、M3’及びM3’’は、互いに独立して、結合又は式(III):
       #-(CH2CH2O)n-**   (III)
    [式中、
     nは、1以上の整数であり、
     **は、R3、R3’又はCHとの結合位置であり、
     #は、Oとの結合位置である。]
    で表されるポリエチレングリコール基であり、但し、M3、M3’及びM3’’が複数の場合、該複数のM3、M3’及びM3’’は互いに同一又は異なっていてもよく、且つM3、M3’及びM3’’のうち少なくとも1個は式(III)で表されるポリエチレングリコール基であり、
     R1及びR1’は、互いに独立して、水素、置換若しくは非置換のC1~C20アルキル、置換若しくは非置換のC2~C20アルケニル、置換若しくは非置換のC2~C20アルキニル、置換若しくは非置換のC3~C20シクロアルキル、置換若しくは非置換のC4~C20シクロアルケニル、置換若しくは非置換のC4~C20シクロアルキニル、置換若しくは非置換の3~6員のヘテロシクロアルキル、置換若しくは非置換のC7~C20シクロアルキルアルキル、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキル、置換若しくは非置換のC4~C20アリール、置換若しくは非置換のC5~C20アリールアルキル、置換若しくは非置換の5~15員のヘテロアリール、又は置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキル、又は置換若しくは非置換のアシルであり、
     R2は、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、
     R3、R3’及びR3’’は、互いに独立して、結合、置換若しくは非置換のC1~C20アルキレン、置換若しくは非置換のC2~C20アルケニレン、置換若しくは非置換のC2~C20アルキニレン、置換若しくは非置換のC3~C20シクロアルキレン、置換若しくは非置換のC4~C20シクロアルケニレン、置換若しくは非置換のC4~C20シクロアルキニレン、置換若しくは非置換の3~6員のヘテロシクロアルキレン、置換若しくは非置換のC7~C20シクロアルキルアルキレン、置換若しくは非置換の3~6員のヘテロシクロアルキル-C1~C20アルキレン、置換若しくは非置換のC4~C20アリーレン、置換若しくは非置換のC5~C20アリールアルキレン、置換若しくは非置換の5~15員のヘテロアリーレン、若しくは置換若しくは非置換の5~15員のヘテロアリール-C1~C20アルキレン(前記の基は、1個以上の複素原子、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)を含んでもよい)、アミド基(-CO-NH-)、エステル基(-CO-O-)、又はウレタン基(-O-CO-NH-)であり、但し、R3、R3’及びR3’’が複数の場合、該複数のR3、R3’及びR3’’は互いに同一又は異なっていてもよく、
     *は、残部分との結合位置である。]
    で表される修飾基である。]
    で表される化合物若しくはその塩、又はそれらの水和物。
  13.  請求項1~10及び12のいずれか1項に記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する医薬。
  14.  循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療に使用するための、請求項13に記載の医薬。
  15.  請求項1~10及び12のいずれか1項に記載の化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を有効成分として含有する、循環器疾患、炎症性疾患又は末梢血管疾患の予防又は治療剤。
PCT/JP2016/077543 2015-09-18 2016-09-16 長時間作用型アドレノメデュリン誘導体 WO2017047788A1 (ja)

Priority Applications (20)

Application Number Priority Date Filing Date Title
SG11201802180TA SG11201802180TA (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
CN201680053494.7A CN108026182B (zh) 2015-09-18 2016-09-16 长效肾上腺髓质素衍生物
BR112018004208-0A BR112018004208A2 (ja) 2015-09-18 2016-09-16 Prolonged operation type Adreno medullin derivative
JP2017540025A JP6991569B2 (ja) 2015-09-18 2016-09-16 長時間作用型アドレノメデュリン誘導体
RU2018114075A RU2738416C2 (ru) 2015-09-18 2016-09-16 Длительно действующее производное адреномедуллина
US15/760,310 US10842879B2 (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
CN202210383605.8A CN114805540A (zh) 2015-09-18 2016-09-16 长效肾上腺髓质素衍生物
CA2997131A CA2997131C (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
KR1020187007746A KR102152437B1 (ko) 2015-09-18 2016-09-16 장시간 작용형 아드레노메둘린 유도체
AU2016324119A AU2016324119B2 (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
EP16846659.7A EP3351561A4 (en) 2015-09-18 2016-09-16 PROLONGED ACTION ADRENOMEDULLIN DERIVATIVE
KR1020207025165A KR102443831B1 (ko) 2015-09-18 2016-09-16 장시간 작용형 아드레노메둘린 유도체
NZ740534A NZ740534A (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
IL257995A IL257995B (en) 2015-09-18 2018-03-09 A derivative of adrenomedullin that acts over time
ZA2018/02079A ZA201802079B (en) 2015-09-18 2018-03-28 Long-acting adrenomedullin derivative
AU2020200934A AU2020200934B2 (en) 2015-09-18 2020-02-10 Long-acting adrenomedullin derivative
US17/036,491 US11478551B2 (en) 2015-09-18 2020-09-29 Long-acting adrenomedullin derivative
AU2021254623A AU2021254623B2 (en) 2015-09-18 2021-10-21 Long-acting adrenomedullin derivative
JP2021195405A JP2022019883A (ja) 2015-09-18 2021-12-01 長時間作用型アドレノメデュリン誘導体
US17/937,788 US20230142095A1 (en) 2015-09-18 2022-10-04 Long-Acting Adrenomedullin Derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-184685 2015-09-18
JP2015184685 2015-09-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/760,310 A-371-Of-International US10842879B2 (en) 2015-09-18 2016-09-16 Long-acting adrenomedullin derivative
US17/036,491 Continuation US11478551B2 (en) 2015-09-18 2020-09-29 Long-acting adrenomedullin derivative

Publications (1)

Publication Number Publication Date
WO2017047788A1 true WO2017047788A1 (ja) 2017-03-23

Family

ID=58289487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077543 WO2017047788A1 (ja) 2015-09-18 2016-09-16 長時間作用型アドレノメデュリン誘導体

Country Status (14)

Country Link
US (3) US10842879B2 (ja)
EP (1) EP3351561A4 (ja)
JP (2) JP6991569B2 (ja)
KR (2) KR102152437B1 (ja)
CN (2) CN114805540A (ja)
AU (3) AU2016324119B2 (ja)
BR (1) BR112018004208A2 (ja)
CA (1) CA2997131C (ja)
IL (1) IL257995B (ja)
NZ (1) NZ740534A (ja)
RU (2) RU2020111229A (ja)
SG (2) SG10202008963QA (ja)
WO (1) WO2017047788A1 (ja)
ZA (1) ZA201802079B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181638A1 (ja) * 2017-03-29 2018-10-04 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体
WO2021112220A1 (ja) * 2019-12-05 2021-06-10 国立大学法人 宮崎大学 異常タンパク質蓄積性神経変性疾患の治療剤
WO2021201271A1 (ja) 2020-04-02 2021-10-07 国立大学法人宮崎大学 新規アドレノメデュリン類縁体、その製造方法及びその医薬用途
WO2022030580A1 (ja) * 2020-08-06 2022-02-10 国立大学法人宮崎大学 長時間作用型新規アドレノメデュリン誘導体、その製造方法及びその医薬用途
WO2022054826A1 (ja) * 2020-09-09 2022-03-17 国立大学法人宮崎大学 抗ウイルス剤
WO2022054825A1 (ja) * 2020-09-09 2022-03-17 国立大学法人宮崎大学 ウイルス性感染症を有する対象における症状又は障害を予防又は治療するための医薬

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127914A4 (en) * 2014-03-20 2017-11-22 University of Miyazaki Long-acting adrenomedullin derivatives

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506116A (ja) * 1994-10-12 1997-06-17 アムジエン・インコーポレーテツド N末端化学修飾タンパク質組成物および方法
JP2004525097A (ja) * 2000-12-20 2004-08-19 エフ.ホフマン−ラ ロシュ アーゲー エリスロポエチンコンジュゲート
JP2005525302A (ja) * 2001-11-20 2005-08-25 ファルマシア・コーポレーション 化学的に修飾されたヒト成長ホルモンコンジュゲート
WO2009044918A1 (ja) * 2007-10-05 2009-04-09 Takeda Pharmaceutical Company Limited ニューロメジンu誘導体
JP2013533217A (ja) * 2010-05-17 2013-08-22 セビックス・インコーポレイテッド Peg化c−ペプチド
JP2014532682A (ja) * 2011-11-03 2014-12-08 バイエル・ファルマ・アクチェンゲゼルシャフトBayer Pharma Aktiengesellschaft ポリエチレングリコールベースのアドレノメデュリンのプロドラッグおよびその使用
WO2015141819A1 (ja) * 2014-03-20 2015-09-24 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830093B1 (ja) 1969-10-29 1973-09-17
JP2774769B2 (ja) 1993-04-26 1998-07-09 賢治 寒川 アドレノメデュリン
ATE505204T1 (de) 2000-12-20 2011-04-15 Hoffmann La Roche Konjugate von erythropoietin (epo) mit polyethylenglykol (peg)
WO2005044846A1 (ja) * 2003-10-24 2005-05-19 Mochida Pharmaceutical Co., Ltd. アドレノメデュリン2およびその用途
MXPA06009072A (es) * 2004-02-09 2007-03-29 Human Genome Sciences Inc Proteinas de fusion de albumina.
US8475764B2 (en) * 2004-05-24 2013-07-02 Institut De Cardiologie De Montreal Labelled adrenomedullin derivatives and their use for imaging and therapy
TWI376234B (en) * 2005-02-01 2012-11-11 Msd Oss Bv Conjugates of a polypeptide and an oligosaccharide
JP4830093B2 (ja) 2005-04-08 2011-12-07 国立大学法人 宮崎大学 非細菌性の炎症性疾患の予防又は治療剤
WO2008051383A2 (en) 2006-10-19 2008-05-02 Amgen Inc. Use of alcohol co-solvents to improve pegylation reaction yields
CA2715771C (en) * 2008-02-19 2014-10-28 National University Corporation Asahikawa Medical College Adrenomedullin production enhancer
FR2948939B1 (fr) 2009-08-05 2013-03-22 Pf Medicament Derives de 2h pyridazin-3-ones, leur preparation et leur application en therapeutique humaine
US9629895B2 (en) 2011-01-12 2017-04-25 University Of Miyazaki Method for prevention or treatment of intractable inflammatory bowel disease
US9694051B2 (en) 2011-04-07 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University Long-acting peptide analogs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506116A (ja) * 1994-10-12 1997-06-17 アムジエン・インコーポレーテツド N末端化学修飾タンパク質組成物および方法
JP2004525097A (ja) * 2000-12-20 2004-08-19 エフ.ホフマン−ラ ロシュ アーゲー エリスロポエチンコンジュゲート
JP2005525302A (ja) * 2001-11-20 2005-08-25 ファルマシア・コーポレーション 化学的に修飾されたヒト成長ホルモンコンジュゲート
WO2009044918A1 (ja) * 2007-10-05 2009-04-09 Takeda Pharmaceutical Company Limited ニューロメジンu誘導体
JP2013533217A (ja) * 2010-05-17 2013-08-22 セビックス・インコーポレイテッド Peg化c−ペプチド
JP2014532682A (ja) * 2011-11-03 2014-12-08 バイエル・ファルマ・アクチェンゲゼルシャフトBayer Pharma Aktiengesellschaft ポリエチレングリコールベースのアドレノメデュリンのプロドラッグおよびその使用
WO2015141819A1 (ja) * 2014-03-20 2015-09-24 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUBO KEISHI ET AL.: "Biological properties of adrenomedullin conjugated with polyethylene glycol", PEPTIDES, vol. 57, 2014, pages 118 - 121, XP028854862 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181638A1 (ja) * 2017-03-29 2018-10-04 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体
CN110678550A (zh) * 2017-03-29 2020-01-10 国立大学法人宫崎大学 长效肾上腺髓质素衍生物
JPWO2018181638A1 (ja) * 2017-03-29 2020-02-13 国立大学法人 宮崎大学 長時間作用型アドレノメデュリン誘導体
JP7001285B2 (ja) 2017-03-29 2022-01-19 国立大学法人 宮崎大学 長時間作用型アドレノメデュリン誘導体
CN110678550B (zh) * 2017-03-29 2023-11-14 国立大学法人宫崎大学 长效肾上腺髓质素衍生物
WO2021112220A1 (ja) * 2019-12-05 2021-06-10 国立大学法人 宮崎大学 異常タンパク質蓄積性神経変性疾患の治療剤
JPWO2021112220A1 (ja) * 2019-12-05 2021-06-10
WO2021201271A1 (ja) 2020-04-02 2021-10-07 国立大学法人宮崎大学 新規アドレノメデュリン類縁体、その製造方法及びその医薬用途
EP4130264A4 (en) * 2020-04-02 2024-04-17 Univ Miyazaki NEW ADRENOMEDULLIN ANALOGUE, METHOD FOR ITS PRODUCTION AND PHARMACEUTICAL USE THEREOF
WO2022030580A1 (ja) * 2020-08-06 2022-02-10 国立大学法人宮崎大学 長時間作用型新規アドレノメデュリン誘導体、その製造方法及びその医薬用途
WO2022054826A1 (ja) * 2020-09-09 2022-03-17 国立大学法人宮崎大学 抗ウイルス剤
WO2022054825A1 (ja) * 2020-09-09 2022-03-17 国立大学法人宮崎大学 ウイルス性感染症を有する対象における症状又は障害を予防又は治療するための医薬

Also Published As

Publication number Publication date
KR102152437B1 (ko) 2020-09-07
KR20200105551A (ko) 2020-09-07
KR102443831B1 (ko) 2022-09-15
AU2020200934B2 (en) 2021-09-09
RU2018114075A (ru) 2019-10-21
CA2997131A1 (en) 2017-03-23
US20210008219A1 (en) 2021-01-14
AU2016324119B2 (en) 2019-11-14
CN108026182A (zh) 2018-05-11
JPWO2017047788A1 (ja) 2018-07-05
AU2021254623B2 (en) 2024-05-02
AU2020200934A1 (en) 2020-02-27
JP2022019883A (ja) 2022-01-27
CN108026182B (zh) 2022-04-26
SG10202008963QA (en) 2020-10-29
IL257995A (en) 2018-05-31
RU2020111229A (ru) 2020-06-08
IL257995B (en) 2021-09-30
EP3351561A1 (en) 2018-07-25
RU2738416C2 (ru) 2020-12-14
US10842879B2 (en) 2020-11-24
NZ740534A (en) 2019-07-26
ZA201802079B (en) 2022-07-27
RU2018114075A3 (ja) 2019-10-21
CN114805540A (zh) 2022-07-29
BR112018004208A2 (ja) 2018-09-25
CA2997131C (en) 2021-05-25
AU2016324119A1 (en) 2018-04-05
JP6991569B2 (ja) 2022-02-15
SG11201802180TA (en) 2018-04-27
EP3351561A4 (en) 2019-05-15
US20230142095A1 (en) 2023-05-11
AU2021254623A1 (en) 2021-11-18
US11478551B2 (en) 2022-10-25
US20180264123A1 (en) 2018-09-20
KR20180052642A (ko) 2018-05-18

Similar Documents

Publication Publication Date Title
JP6991569B2 (ja) 長時間作用型アドレノメデュリン誘導体
CN107001439B (zh) Gip激动剂化合物及方法
WO2015141819A1 (ja) 長時間作用型アドレノメデュリン誘導体
JP2016540741A (ja) Gip−glp−1デュアルアゴニスト化合物及び方法
BR112012017348B1 (pt) análogo de peptídeo de oxintomodulina, seu uso, bem como composição farmacêutica
JP2021184753A (ja) 長時間作用型アドレノメデュリン誘導体
WO2022030580A1 (ja) 長時間作用型新規アドレノメデュリン誘導体、その製造方法及びその医薬用途
WO2021112235A1 (ja) C3腎症を予防又は治療するための医薬、医薬組成物及び補体C3b分解促進剤
WO2022177018A1 (ja) 長時間作用型アドレノメデュリン誘導体の製造方法
CN114867742A (zh) 胰高血糖素和glp-1受体的钉合内酰胺共激动剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2997131

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 122020025411

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 257995

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017540025

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760310

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187007746

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018004208

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016324119

Country of ref document: AU

Date of ref document: 20160916

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018114075

Country of ref document: RU

Ref document number: 2016846659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018004208

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180302