WO2022177018A1 - 長時間作用型アドレノメデュリン誘導体の製造方法 - Google Patents

長時間作用型アドレノメデュリン誘導体の製造方法 Download PDF

Info

Publication number
WO2022177018A1
WO2022177018A1 PCT/JP2022/007079 JP2022007079W WO2022177018A1 WO 2022177018 A1 WO2022177018 A1 WO 2022177018A1 JP 2022007079 W JP2022007079 W JP 2022007079W WO 2022177018 A1 WO2022177018 A1 WO 2022177018A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
peptide
cysteine residue
Prior art date
Application number
PCT/JP2022/007079
Other languages
English (en)
French (fr)
Inventor
和雄 北村
さやか 永田
基生 山▲崎▼
Original Assignee
国立大学法人宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人宮崎大学 filed Critical 国立大学法人宮崎大学
Priority to JP2023500967A priority Critical patent/JPWO2022177018A1/ja
Publication of WO2022177018A1 publication Critical patent/WO2022177018A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、アドレノメデュリンの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る長期間持続的なアドレノメデュリン誘導体を、より低い時間的及び/又は経済的コストで製造する手段を提供する。本発明の一態様は、式(I)[式中、Aは、免疫グロブリンのFc領域であり、Bは、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。]で表される化合物若しくはその塩、又はそれらの水和物の製造方法であって、前記化合物を産生し得る宿主哺乳動物細胞において、該化合物を大量発現させる、発現工程を含む、前記方法に関する。 A-L-B (I)

Description

長時間作用型アドレノメデュリン誘導体の製造方法
 本発明は、長時間作用型アドレノメデュリン誘導体の製造方法に関する。
 アドレノメデュリン(adrenomedullin、以下、「AM」とも記載する)は、1993年に褐色細胞組織より単離及び同定された生理活性ペプチドである(非特許文献1)。発見当初、AMは、強力な血管拡張性の降圧作用を発揮することが判明した。例えば、特許文献1は、ヒトAMのアミノ酸配列を含む血圧降下作用を有するペプチドを記載する。
 その後の研究により、AMは、心血管保護作用、抗炎症作用、血管新生作用及び組織修復促進作用等の、多彩な薬理作用を発揮することが明らかになった。また、AMの薬理作用を、疾患治療に応用することを目指して、種々の疾患患者に対するAMの投与研究が行われてきた。なかでも、炎症性腸疾患、肺高血圧症、末梢血管疾患又は急性心筋梗塞の治療薬としてのAMの有用性が期待されている。
 例えば、特許文献2は、アドレノメデュリン若しくはその誘導体であって、非細菌性の炎症を抑制する活性を有するもの、又はそれらの塩であって非細菌性の炎症を抑制する活性を有するものを有効成分として含有する非細菌性の炎症性腸疾患の予防又は治療剤を記載する。
 特許文献3は、ステロイド製剤、免疫抑制剤又は生物学的製剤の使用が困難又は効果不十分な炎症性腸疾患の予防又は治療を必要とする患者における前記炎症性腸疾患の予防又は治療方法であって、有効量のアドレノメデュリン、その修飾体であって炎症を抑制する活性を有するもの、又は前記アドレノメデュリン若しくは前記修飾体の塩であって炎症を抑制する活性を有するものを前記患者に投与することを含む前記予防又は治療方法を記載する。
 また、AMの構造活性相関研究から、AMの生物活性に寄与し得る必須配列の特定が進められた(非特許文献2~9)。
 一般に、ペプチドは、生体内(例えば血中)における代謝反応に起因して、生体内における半減期が短いことが知られている。このため、ペプチドを医薬の有効成分として使用する場合、該ペプチドに他の基を連結したペプチド誘導体の形態とすることにより、生体内における半減期を延長して薬物動態を改善できる場合がある。
 例えば、特許文献4は、1.5時間を超える血清半減期を有することを特徴とする生物学的に活性なインテルメジンペプチド又はアドレノメデュリンペプチドを記載する。当該文献は、アルキル基とペプチド部分とをアミド結合を介して連結することを記載する。
 特許文献5は、AMのTyr1のフェノール性水酸基を介してポリエチレングリコール(以下、「PEG」とも記載する)基と連結したAM誘導体を記載する。
 特許文献6は、PEG-アルデヒドとペプチドの遊離アミノ基とを反応させて、ペプチドの遊離アミノ基にPEG基が連結されたペプチド誘導体を製造する方法を記載する。当該文献は、ペプチドとしてAMを記載する。
 非特許文献10は、AMのN末端のαアミノ基にPEG基をアミド結合を介して連結したAM誘導体を記載する。当該文献は、PEG基を連結したAM誘導体は血中半減期が延長されたことを記載する。
 特許文献7は、融合タンパク質のアミノ末端に位置し、第1の生理活性ペプチド又はタンパク質の配列を含有する第1のセグメント;及び、融合タンパク質のカルボキシル末端に位置し、第2の生理活性タンパク質又はペプチドの配列を含有する第2のセグメントを含む融合タンパク質であって、前記第1及び第2のセグメントが、機能するように共有結合してなる、融合タンパク質を記載する。当該文献は、前記第1のセグメント及び前記第2のセグメントと結合する、免疫グロブリン又はその機能的等価物のFc断片のようなリンカーセグメントをさらに含み得ることを記載する。当該文献は、アドレノメデュリンについて言及していない。
 特許文献8は、アルブミン結合ドメインポリペプチド(ABD)と、レプチン、レプチン類似体又はその活性断片から選択される第1のペプチドホルモンドメイン(HD1)とを含む操作されたポリペプチドを記載する。当該文献は、HD1に含まれる水溶性ポリマー部分としてFcタンパク質を記載する。当該文献は、操作されたポリペプチドが、良好な作用持続期間を有することを記載する。当該文献は、操作されたポリペプチドと併用投与し得る薬剤として、アドレノメデュリンのようなアミリン又はその類似体を例示する。
 特許文献9は、(i)免疫グロブリンFc領域;及び(ii)ペプチド結合又はペプチドリンカー配列により免疫グロブリンFc領域のカルボキシ末端へ連結された、インターフェロン-βタンパク質を含む;フォールディングを改善し及び凝集を減少させたFc-インターフェロン-β融合タンパク質を記載する。当該文献は、前記融合タンパク質により、インターフェロン-βの血中半減期を改善し得ることを記載する。当該文献は、アドレノメデュリンについて言及していない。
 特許文献10は、式(I):A-L-B  (I)[式中、Aは、免疫グロブリンのFc領域であり、Bは、アドレノメデュリン又はアドレノメデュリン活性を有するその修飾体から誘導されるペプチド部分であり、Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。]で表される化合物若しくはその塩、又はそれらの水和物を記載する。
特許第2774769号公報 特許第4830093号公報 国際公開第2012/096411号 国際公開第2012/138867号 国際公開第2013/064508号 米国特許出願公開第2009/0252703号明細書 特表2009-510999号公報 特表2014-528917号公報 特許第4808709号公報 国際公開第2018/181638号
Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun, 1993年4月30日, 第192(2)巻, pp. 553-560 Belloni, A.S. ら, Structure-activity relationships of adrenomedullin in the adrenal gland. Endocr Res, 1998年, 第24(3-4)巻, p. 729-30. Champion, H.C. ら, Catecholamine release mediates pressor effects of adrenomedullin-(15-22) in the rat. Hypertension, 1996年, 第28(6)巻, p. 1041-6. Champion, H.C., G.G. Nussdorfer, 及びP.J. Kadowitz, Structure-activity relationships of adrenomedullin in the circulation and adrenal gland. Regul Pept, 1999年, 第85(1)巻, p. 1-8. Eguchi, S. ら, Structure-activity relationship of adrenomedullin, a novel vasodilatory peptide, in cultured rat vascular smooth muscle cells. Endocrinology, 1994年, 第135(6)巻, p. 2454-8. Garcia, M.A. ら, Synthesis, biological evaluation, and three-dimensional quantitative structure-activity relationship study of small-molecule positive modulators of adrenomedullin. J Med Chem, 2005年, 第48(12)巻, p. 4068-75. Mitsuda, Y. ら, Large-scale production of functional human adrenomedullin: expression, cleavage, amidation, and purification. Protein Expr Purif, 2002年, 第25(3)巻, p. 448-55. Roldos, V. ら, Small-molecule negative modulators of adrenomedullin: design, synthesis, and 3D-QSAR study. ChemMedChem, 2008年, 第3(9)巻, p. 1345-55. Watanabe, T.X. ら, Vasopressor activities of N-terminal fragments of adrenomedullin in anesthetized rat. Biochem Biophys Res Commun, 1996年, 第219(1)巻, p. 59-63. Kubo, Kら, Biological properties of adrenomedullin conjugated with polyethylene glycol. Peptides, 2014年, 第57巻, p. 118-21 Kato, J., Kitamura, K.. Bench-to-bedside pharmacology of adrenomedullin. European Journal of Pharmacology, 2015年, 第764巻, p. 140-148.
 前記のように、生体内における持続性向上の観点からAMの薬物動態を改善するために、AMにPEG基のような他の基を連結したAM誘導体が知られている。しかしながら、公知のAM誘導体には改良の余地が存在した。例えば、AMのような比較的小さいペプチドにPEG基のような比較的大きな基を連結する場合、PEG基の分子量に依存して結果として得られるAM誘導体の様々な性質が大きく変動する可能性がある。また、特許文献5に記載のAM誘導体のように、AMのアミノ酸残基の側鎖に他の基を連結する場合、AM部分の立体構造が変化して、AMを認識するAM受容体との親和性が低下する可能性がある。このような場合、結果として得られるAM誘導体は、AMとしての薬理作用が低下する可能性がある。
 AMは、心血管保護作用、抗炎症作用、血管新生作用及び組織修復促進作用等の薬理作用に加えて、強力な血管拡張作用を有する。このため、AM又はAM誘導体を対象に投与する場合、強力な血管拡張作用に起因して過度の血圧低下のような望ましくない副反応を引き起こす可能性がある。このような副反応の発生は、特に血管拡張作用以外の薬理作用を発現することを期待してAM又はAM誘導体を使用する場合に問題となり得る。前記のような問題が生じることを回避するために、従来技術のAM又はその誘導体を有効成分として含有する医薬は、望ましくない副反応を実質的に生じない投与量で、持続静注によって対象に投与される必要があった。このような投与方法は、対象に負担を強いる可能性がある。
 AMの薬理作用を維持し、且つ生体内における持続性が向上したAM誘導体は、対象に単回投与する場合であっても、望ましくない副反応を実質的に生じることなく、AMの薬理効果を発現し得ると期待される。特許文献10は、AMのN末端のαアミノ基と免疫グロブリンのFc領域とを、特定のアミノ酸配列を有するペプチドの連結基を介して連結した構造を有する、長期間持続的なAM誘導体を記載する。しかしながら、特許文献10の実施例に示される、大腸菌を宿主細胞として用いる培養的手段によるAM誘導体の製造方法の場合、通常は、大腸菌から産生された組換えタンパク質をリフォールディング、C末端アミド化及び精製する工程が必要となる。このため、大腸菌等の原核生物を宿主細胞として用いる培養的手段をAM誘導体の製造方法に適用する場合、時間的及び/又は経済的コストが増大する可能性がある。
 それ故、本発明は、AMの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る長期間持続的なAM誘導体を、より低い時間的及び/又は経済的コストで製造する手段を提供することを目的とする。
 本発明者らは、前記課題を解決するための手段を種々検討した。本発明者らは、AM誘導体を産生するための宿主細胞として哺乳動物細胞を用いることにより、組換えタンパク質のリフォールディング及びC末端アミド化をすることなく高いアドレノメデュリン活性を有するAM誘導体を得られることを見出した。本発明者らは、前記知見に基づき本発明を完成した。
 すなわち、本発明は、以下の態様及び実施形態を包含する。
 (1) 式(I):
   A-L-B  (I)
[式中、
 Aは、免疫グロブリンのFc領域であり、
 Bは、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、
 Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。]
で表される化合物若しくはその塩、又はそれらの水和物の製造方法であって、
 前記化合物を産生し得る宿主哺乳動物細胞において、該化合物を大量発現させる、発現工程、
を含む、前記方法。
 (2) 発現工程で大量発現させた化合物をリフォールディングする、リフォールディング工程を含まない、前記実施形態(1)に記載の方法。
 (3) 発現工程で大量発現させた化合物のC末端をアミド化する、C末端アミド化工程を含まない、前記実施形態(1)又は(2)に記載の方法。
 (4) 式(I)で表される化合物を精製する、精製工程を含まない、前記実施形態(1)~(3)のいずれかに記載の方法。
 (5) 発現工程のみからなる、前記実施形態(1)~(4)のいずれかに記載の方法。
 (6) Lが、以下:
  GGGGSGGGGSGGGGS(配列番号18);
のアミノ酸配列を有するペプチドからなる連結基であり、
 Fc領域Aが、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ
ペプチド部分Bが、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されている、前記実施形態(1)~(5)のいずれかに記載の方法。
 (7) Aが、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域である、前記実施形態(1)~(6)のいずれかに記載の方法。
 (8) 前記アドレノメデュリン又はその修飾体が、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド、
(iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド、
(v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドである、前記実施形態(1)~(7)のいずれかに記載の方法。
 (9) 前記アドレノメデュリン又はその修飾体が、アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチドにおいて、C末端がアミド化されているペプチドである、前記実施形態(8)に記載の方法。
 (10) 前記アドレノメデュリン又はその修飾体が、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
(h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
(i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(1)~(7)のいずれかに記載の方法。
 (11) 前記アドレノメデュリン又はその修飾体が、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(10)に記載の方法。
 (12) 前記アドレノメデュリン又はその修飾体が、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである、前記実施形態(11)に記載の方法。
 (13) 式(I)で表される化合物が、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-g)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
(E-h)(E-a-1)~(E-g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
(E-i)(E-a-1)~(E-h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(E-j)(E-a-1)~(E-h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、前記実施形態(1)~(7)のいずれかに記載の方法。
 (14) 式(I)で表される化合物が、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(E-i)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド; 
からなる群より選択されるペプチドである、前記実施形態(13)に記載の方法。
 (15) 式(I)で表される化合物が、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである、前記実施形態(14)に記載の方法。
 本発明により、AMの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る長期間持続的なAM誘導体を、より低い時間的及び/又は経済的コストで製造する手段を提供することが可能となる。
 本明細書は、本願の優先権の基礎である日本国特許出願第2021-025877号の明細書及び/又は図面に記載される内容を包含する。
図1は、実験III-1において、添加したAM又はAM誘導体濃度と細胞内cAMP濃度との用量応答曲線を示すグラフである。図中、横軸は、添加したAM又はAM誘導体濃度(M)であり、縦軸は、細胞内cAMP濃度(fmol/ウェル(プレート))である。 図2は、実験III-2において、実施例2又は4のAM誘導体の皮下投与におけるAM誘導体の血中濃度の経時変化を示すグラフである。Aは、mAMに相当するAM誘導体の血中濃度の経時変化を示すグラフであり、Bは、tAMに相当するAM誘導体の血中濃度の経時変化を示すグラフである。図中、横軸は、投与後の期間(日)であり、縦軸は、AM誘導体の血中濃度(pM)である。 図3は、実験III-3において、高血圧自然発症ラット(SHR)に対する実施例4のAM誘導体の皮下投与による血圧上昇の抑制効果を示すグラフである。Aは、収縮期血圧(SBP)の経時変化を示すグラフであり、Bは、拡張期血圧(DBP)の経時変化を示すグラフである。図中、横軸は、投与後の期間(日)であり、縦軸は、血圧(mmHg)を示す。*は、スチューデントt-検定(n=5)により算出した、生理食塩水投与の対照群に対するp値が0.05未満であることを示す。 図4は、実験III-3において、対照又は実施例4のAM誘導体の皮下投与12日後におけるSHRのAM誘導体の血中濃度を示すグラフである。Aは、mAMに相当するAM誘導体の血中濃度を示すグラフであり、Bは、tAMに相当するAM誘導体の血中濃度を示すグラフである。図中、縦軸は、mAM又はtAMに相当するAM誘導体の血中濃度(pM)である。
<1. アドレノメデュリン誘導体の製造方法>
 本発明の一態様は、式(I):
   A-L-B  (I)
で表される化合物若しくはその塩、又はそれらの水和物の製造方法に関する。式(I)において、Aは、免疫グロブリンのFc領域であり、Bは、アドレノメデュリン(AM)又はその修飾体から誘導されるペプチド部分であり、Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。本明細書において、式(I)で表される化合物を、「免疫グロブリンFc領域連結型のアドレノメデュリン誘導体」又は「免疫グロブリンFc領域連結型のAM誘導体」、或いは単に「アドレノメデュリン誘導体」又は「AM誘導体」と記載する場合がある。
 公知の生理活性物質であるAMは、ペプチドである。このため、AMを有効成分として含有する医薬は、対象(例えばヒト患者)の生体内において有効に作用し得る時間が極めて短時間となる可能性がある。そこで、AMにポリエチレングリコール(PEG)等の他の基を連結したAM誘導体の形態とすることにより、生体内における半減期を延長して薬物動態を改善する試みが行われてきた(特許文献4~6及び10、並びに非特許文献10)。しかしながら、AMのような比較的小さいペプチドにPEG基のような比較的大きな基を連結する場合、PEG基の分子量に依存して結果として得られるAM誘導体の様々な性質が大きく変動する可能性がある。また、AMのアミノ酸残基の側鎖に他の基を連結する場合、AM部分の立体構造が変化して、AMを認識するAM受容体との親和性が低下する可能性がある。このような場合、結果として得られるAM誘導体は、AMとしての薬理作用が低下する可能性がある。
 AMは、強力な血管拡張作用を有する。このため、治療上有効な量のAM又はその誘導体を単回投与する場合、強力な血管拡張作用に起因して、望ましくない副反応(例えば、過度の血圧低下、反射性の交感神経活性上昇に伴う頻脈、及び/又はレニン活性の上昇等)を引き起こす可能性がある。このような副反応の発生は、特に血管拡張作用以外の薬理作用を発現することを期待してAM又はその誘導体を使用する場合に問題となり得る。前記のような問題が生じることを回避するために、AM又はその誘導体を有効成分として含有する医薬は、持続静注によって対象に投与される必要があった。このような投与方法は、対象に負担を強いる可能性がある。
 AMの薬理作用を維持し、且つ生体内における持続性が向上したAM誘導体は、対象に単回投与する場合であっても、望ましくない副反応を実質的に生じることなく、AMの薬理効果を発現し得ると期待される。このような観点から、本発明者らは、AMのN末端のαアミノ基と免疫グロブリンのFc領域とを、特定のアミノ酸配列を有するペプチドの連結基を介して連結した構造を有する、長期間持続的なAM誘導体を開発した(特許文献10)。当該技術分野において、免疫グロブリンのFc領域と特定のタンパク質又はペプチドとを連結した融合タンパク質は、対象に投与した場合、親化合物であるタンパク質又はペプチドと比較して、対象の体内における半減期を延長し得ることが知られている(例えば、特許文献8及び9)。特許文献10に開示されるAM誘導体を、AMによって予防又は治療し得る症状、疾患及び/又は障害に対して適用することにより、望ましくない副反応を実質的に抑制しつつ、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 しかしながら、特許文献10の実施例に示される、大腸菌を宿主細胞として用いる培養的手段によるAM誘導体の製造方法の場合、通常は、大腸菌から産生された組換えタンパク質をリフォールディング、C末端アミド化及び精製する工程が必要となる。このため、大腸菌等の原核生物を宿主細胞として用いる培養的手段をAM誘導体の製造方法に適用する場合、時間的及び/又は経済的コストが増大する可能性がある。
 本発明者らは、AM誘導体を産生するための宿主細胞として哺乳動物細胞を用いることにより、組換えタンパク質のリフォールディング及びC末端アミド化をすることなく高いアドレノメデュリン活性を有するAM誘導体を得られることを見出した。それ故、本態様の方法は、式(I)で表される化合物を産生し得る宿主哺乳動物細胞において、該化合物を大量発現させる、発現工程を含む。式(I)で表される化合物を産生し得る宿主哺乳動物細胞を用いる本態様の方法により、AMの薬理作用を維持しつつ、望ましくない副反応を実質的に抑制し得る長期間持続的なAM誘導体を、より低い時間的及び/又は経済的コストで製造することができる。
[1-1. 宿主哺乳動物細胞作製工程]
 本態様の方法は、所望により、式(I)で表される化合物を産生し得る宿主哺乳動物細胞を作製する、宿主哺乳動物細胞作製工程を含んでもよい。
 本工程は、式(I)で表される化合物をコードする塩基配列を有する単離された核酸を、ベクターと連結して哺乳動物細胞に導入し、形質転換することにより、実施することができる。
 本工程において使用される単離された核酸は、以下において説明する式(I)で表される化合物の様々な実施形態に対応する塩基配列を有することが好ましく、配列番号14、16、22及び24からなる群より選択される塩基配列を有することがより好ましい。或いは、以下において説明するように、タンパク質発現用ベクターとして免疫グロブリンFc領域融合タンパク質調製用のプラスミドベクターを使用する場合、単離された核酸は、哺乳動物のAMに対応する、配列番号2、5、7、9、11及び13からなる群より選択される塩基配列を有することが好ましい。このような単離された核酸は、例えば、特許文献10に開示される。当業者であれば、前記文献に基づき、単離された核酸を購入等するか、購入等した単離された核酸に適切な変換反応を適用するか、或いは自ら調製することにより、該単離された核酸を準備することができる。
 本工程において使用されるベクターとしては、例えば、遺伝子発現用として、pUC119、pUC118及びpGEM T-Easyベクター等のプラスミドベクターを、タンパク質発現用として、pET-3、pET-11、pET-32及びpCMV-TNT等のプラスミドベクター、並びにpFUSEN-hG1Fc、pFUSE-hIgG4-Fc2及びpCAG-NeO-IgGFc等の免疫グロブリンFc領域融合タンパク質調製用のプラスミドベクターを、挙げることができる。免疫グロブリンFc領域融合タンパク質調製用のプラスミドベクターを使用することが好ましい。免疫グロブリンFc領域融合タンパク質調製用のプラスミドベクターを哺乳動物のAMに対応する単離された核酸と組み合わせて使用することにより、式(I)で表される化合物を大量発現させるためのベクターを容易に作製することができる。前記で例示したベクターを本工程において使用することにより、高効率で形質転換することができる。
 本工程において使用される哺乳動物細胞としては、例えば、HEK293及びCHO等の細胞を挙げることができる。HEK293を使用することが好ましい。
 本工程において、単離された核酸とベクターとの連結、及び連結したベクターを用いた哺乳動物細胞の形質転換は、当該技術分野で通常使用される条件に基づき実施することができる。
 本工程を実施することにより、式(I)で表される化合物を産生し得る宿主哺乳動物細胞を得ることができる。
[1-2. 発現工程]
 本態様の方法は、式(I)で表される化合物を産生し得る宿主哺乳動物細胞において、該化合物を大量発現させる、発現工程を含む。
 本工程において、式(I)で表される化合物の大量発現は、本工程において使用される宿主哺乳動物細胞のベクター及び細胞の種類等を考慮して、当該技術分野で通常使用される条件に基づき実施することができる。
 本工程において、大量発現させた式(I)で表される化合物は、宿主哺乳動物細胞の細胞又は培養上清から、好ましくは培養上清から得ることができる。
 本工程を実施することにより、アドレノメデュリン活性を有する式(I)で表される化合物を得ることができる。
[1-3. 精製工程]
 本態様の方法は、所望により、発現工程で得られた式(I)で表される化合物を精製する、精製工程を含んでもよい。
 本工程において、式(I)で表される化合物を精製する手段としては、例えば、抽出、濾過、遠心分離、吸着、再結晶、及び各種クロマトグラフィー等を挙げることができる。クロマトグラフィーとしては、例えば、吸着、順相若しくは逆相分配、イオン交換、及びゲル濾過等を挙げることができる。前記各手段は、当該技術分野で通常使用される条件に基づき実施することができる。前記各手段は、所望により同一又は異なる条件下で複数回繰り返してもよい。
 本工程を実施することにより、アドレノメデュリン活性を有する式(I)で表される化合物を高純度で得ることができる。
 本態様の方法において、発現工程で得られる式(I)で表される化合物は、リフォールディング及びC末端のアミド化をすることなくそのままの形態でアドレノメデュリン活性を発現し得ることが判明した。哺乳動物由来の生理活性タンパク質を、大腸菌等の原核生物を宿主細胞として大量発現させると、生理活性の発現に必要となる高次構造の形成及び/又はC末端のアミド化のような翻訳後修飾がされず、細胞内に封入体として蓄積される場合があることが知られている。このような場合、生理活性を発現し得る高次構造を有する形態及び/又はC末端がアミド化されている形態でタンパク質を得るためには、大量発現させたタンパク質をリフォールディング及び/又はC末端をアミド化する工程が必要となる。これに対し、本態様の方法において宿主細胞として使用される哺乳動物細胞は、哺乳動物由来の生理活性タンパク質を、生理活性を発現し得る高次構造及び/又はC末端アミド構造を有する形態で産生し、細胞外に分泌し得ることが知られている。それ故、本態様の方法は、発現工程で大量発現させた化合物をリフォールディングする、リフォールディング工程を含まないことが好ましい。また、本態様の方法は、発現工程で大量発現させた化合物のC末端をアミド化する、C末端アミド化工程を含まないことが好ましい。リフォールディング工程及び/又はC末端アミド化工程、特にリフォールディング工程及びC末端アミド化工程のいずれの工程も含まずに本態様の方法を実施することにより、アドレノメデュリン活性の発現に必要となる高次構造を有し、且つ/又はC末端がアミド化されている式(I)で表される化合物を得ることができる。これにより、大腸菌等の原核生物を宿主細胞として使用する従来技術の方法と比較して、より低い時間的及び/又は経済的コストで式(I)で表される化合物を製造することができる。
 特定の実施形態において、発現工程で得られる式(I)で表される化合物は、精製工程を実施することなく高純度であることが判明した。前記の通り、本態様の方法において宿主細胞として使用される哺乳動物細胞は、哺乳動物由来の生理活性タンパク質を、生理活性を発現し得る高次構造及び/又はC末端アミド構造を有する形態で産生し、細胞外に分泌し得ることが知られている。このため、発現工程で得られる式(I)で表される化合物は、好ましくは宿主哺乳細胞の培養上清から得ることができる。培養上清には、大量発現させた式(I)で表される化合物以外に宿主哺乳細胞由来の成分は実質的に含まれないので、発現工程で得られる培養上清は、式(I)で表される化合物を高純度で含む。それ故、本態様の方法は、式(I)で表される化合物を精製する、精製工程を含まないことが好ましい。精製工程を含まずに本態様の方法を実施することにより、アドレノメデュリン活性の発現に必要となる高次構造を有し、且つ/又はC末端がアミド化されている式(I)で表される化合物を高純度で得ることができる。これにより、大腸菌等の原核生物を宿主細胞として使用する従来技術の方法と比較して、より低い時間的及び/又は経済的コストで式(I)で表される化合物を製造することができる。
<2. アドレノメデュリン誘導体>
 本発明の別の一態様は、本発明の一態様の方法によって得られ得る、好ましくは該方法によって得られた式(I)で表される化合物若しくはその塩、又はそれらの水和物に関する。
 本発明の一態様の方法によって得られた式(I)で表される化合物であるFc領域連結型AM誘導体は、アドレノメデュリン活性の発現に必要となる高次構造を有し、且つ/又はC末端がアミド化されていることにより、大腸菌等の原核生物を宿主細胞として使用する従来技術の方法によって得られたFc領域連結型AM誘導体と比較して、顕著に高いアドレノメデュリン活性及び生体内における持続性を有することが判明した。それ故、本発明の一態様の方法によって得られ得る、好ましくは該方法によって得られた式(I)で表される化合物は、生体内において、持続的に高いアドレノメデュリン活性を発現することができる。
 本発明の各態様において、AMは、ヒト褐色細胞組織より単離及び同定されたヒト由来のペプチド(配列番号1、非特許文献1)だけでなく、例えばブタ(配列番号4)、イヌ(配列番号6)、ウシ(配列番号8)、ラット(配列番号10)又はマウス(配列番号12)等の他の非ヒト哺乳動物(例えば温血動物)由来のペプチド(オーソログ)であってもよい。生体内において、これらのペプチドは、そのアミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しており、且つC末端がアミド化されている。本明細書において、前記ペプチドであってジスルフィド結合及びC末端アミド基を有するものを、「天然型アドレノメデュリン」又は単に「アドレノメデュリン」と記載する場合がある。本発明の各態様は、前記のいずれのペプチドに対しても適用することができる。
 本明細書において、「C末端のアミド化」は、生体内におけるペプチドの翻訳後修飾の一態様を意味し、具体的には、ペプチドのC末端アミノ酸残基の主鎖カルボキシル基がアミド基の形態へ変換される反応を意味する。また、本明細書において、「システイン残基のジスルフィド結合の形成」又は「システイン残基のジスルフィド化」は、生体内におけるペプチドの翻訳後修飾の一態様を意味し、具体的には、ペプチドのアミノ酸配列中の2個のシステイン残基がジスルフィド結合(-S-S-)を形成する反応を意味する。生体内で産生される多くの生理活性ペプチドは、はじめ分子量のより大きな前駆体タンパク質として生合成され、これが細胞内移行の過程で、C末端アミド化及び/又はシステイン残基のジスルフィド化のような翻訳後修飾反応を受けて、成熟した生理活性ペプチドとなる。C末端のアミド化は、通常は、前駆体タンパク質に対し、C末端アミド化酵素が作用することによって進行する。C末端アミド基を有する生理活性ペプチドの場合、その前駆体タンパク質においては、アミド化されるC末端カルボキシル基にGly残基が結合しており、該Gly残基がC末端アミド化酵素によってC末端アミド基に変換される。また、前駆体タンパク質のC末端側プロペプチドには、例えばLys-Arg又はArg-Arg等の塩基性アミノ酸残基の組合せの繰返し配列が存在する(水野、生化学第61巻、第12号、1435~1461頁(1989))。システイン残基のジスルフィド化は、酸化的条件下で進行し得る。生体内においては、システイン残基のジスルフィド化は、通常は、前駆体タンパク質に対し、タンパク質ジスルフィド異性化酵素が作用することによって進行する。
 式(I)において、Bは、アドレノメデュリン又はその修飾体から誘導されるペプチド部分である。本発明の各態様において、「アドレノメデュリン又はその修飾体から誘導されるペプチド部分」は、AM又はその修飾体から1個の水素原子(通常は、アミノ基の1個の水素原子、典型的にはN末端のαアミノ基の1個の水素原子)を取り除いた構造を有する1価の遊離基を意味する。本発明において、「アドレノメデュリンの修飾体」は、前記で説明した天然型AMが化学修飾されたペプチドを意味する。アドレノメデュリンの修飾体は、アドレノメデュリン活性を有することが好ましい。また、本発明において、「アドレノメデュリン活性」は、AMの有する生物活性を意味する。アドレノメデュリン活性としては、下記のものを挙げることができる。
(1)心血管系:血管拡張作用、血圧降下作用、血圧上昇抑制作用、心拍出量増加・心不全改善作用、肺高血圧症改善作用、血管新生作用、リンパ管新生作用、血管内皮機能改善作用、血管透過性制御、内皮細胞間接着制御、血管内皮バリア保護作用、抗動脈硬化作用、心筋保護作用(例えば、虚血再灌流障害又は炎症における心筋保護作用)、心筋梗塞後のリモデリング抑制作用、心肥大抑制作用、及びアンジオテンシン変換酵素抑制作用。
(2)腎臓・水電解質系:利尿作用、ナトリウム利尿作用、抗利尿ホルモン抑制作用、アルドステロン低下作用、腎保護作用(例えば、高血圧又は虚血再灌流障害における心筋保護作用)、糖尿病性腎症抑制作用、C3腎症抑制作用、飲水行動抑制作用、及び食塩要求抑制作用。
(3)脳・神経系:神経保護・脳障害抑制作用、抗炎症作用、アポトーシス抑制作用(例えば、虚血再灌流障害又は炎症におけるアポトーシス抑制作用)、自動調節能維持作用、酸化ストレス抑制作用、認知症改善作用、及び交感神経抑制作用。
(4)泌尿生殖器:勃起改善作用、血流改善作用、及び着床促進作用。
(5)消化器系:抗潰瘍作用、組織修復作用、粘膜新生作用、腸管バリア保護作用、血流改善作用、抗炎症作用、及び肝機能改善作用。
(6)整形外科系:骨芽細胞刺激作用、及び関節炎改善作用。
(7)内分泌代謝系:脂肪細胞分化作用、脂肪分解制御作用、インスリン感受性改善作用、インスリン分泌制御作用、抗利尿ホルモン分泌抑制作用、及びアルドステロン分泌抑制作用。
(8)呼吸器系:気管支拡張作用、肺保護作用、肺気腫改善作用、肺線維化抑制、肺炎抑制、気管支炎抑制作用、及び呼吸改善作用。
(9)免疫系:C3bの分解促進作用。
(10)その他:循環改善作用、抗炎症作用、サイトカイン制御作用、臓器保護作用、酸化ストレス抑制作用、組織修復作用(例えば、抗褥瘡作用)、敗血症の改善作用、敗血症性ショックの改善作用、多臓器不全の抑制作用、自己免疫疾患の抑制作用、糖尿病性網膜症抑制作用、抗菌作用、育毛作用、及び養毛作用。
 前記血圧降下作用は、血管拡張性の降圧作用であることが好ましい。前記消化器系における抗炎症作用は、ステロイド抵抗性又はステロイド依存性の炎症性腸疾患(例えば、潰瘍性大腸炎、クローン病又は腸管ベーチェット病)のような炎症性腸疾患の予防又は治療作用であることが好ましい。
 AMによって発現する前記で例示したアドレノメデュリン活性は、通常は、細胞内cAMPの濃度上昇を介して発現する。このため、細胞内cAMPの濃度上昇を、アドレノメデュリン活性の指標とすることができる。本発明の各態様において、細胞内cAMPの濃度上昇作用は、例えば、AMタイプ1受容体(AM1受容体)を安定発現させた培養細胞株(HEK293細胞株)に対象化合物を添加して、細胞内cAMPの産生量を測定することにより、評価することができる。前記のような生物活性を有するAM又はその修飾体から誘導されるペプチド部分Bを含むことにより、式(I)で表される化合物は、天然型AMと実質的に略同等の細胞内cAMPの濃度上昇作用を有する。それ故、式(I)で表される化合物は、細胞内cAMPの濃度上昇を介して、天然型AMと実質的に略同等の生物活性(すなわち、アドレノメデュリン活性)を発現することができる。
 前記AM又はその修飾体は、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド、
(iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド、
(v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドであることが好ましい。
 一実施形態において、前記AM又はその修飾体は、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
(v)(i)又は(ii)のペプチドにおいて、C末端がアミド化されているペプチド、並びに
(vi)(i)又は(ii)のペプチドにおいて、C末端にグリシン残基が付加されているペプチド
からなる群より選択されるペプチドであることがより好ましい。
 別の一実施形態において、前記AM又はその修飾体は、下記:
(i)アドレノメデュリンのアミノ酸配列からなるペプチド、
(ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、並びに
(v)(i)又は(ii)のペプチドにおいて、C末端がアミド化されているペプチド
からなる群より選択されるペプチドであることがさらに好ましい。
 別の一実施形態において、前記AM又はその修飾体は、アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチドにおいて、C末端がアミド化されているペプチドであることが特に好ましい。
 前記(i)~(vi)のペプチドにおいて、(v)に包含される、AMのアミノ酸配列からなり、C末端がアミド化されており、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチドは、アドレノメデュリン活性の発現に必要となる高次構造を有する成熟した天然型AMに相当する。(i)のAMのアミノ酸配列からなるペプチドは、C末端アミド化及びシステイン残基のジスルフィド化の翻訳後修飾を受ける前の(すなわち未成熟な)形態の天然型AMに相当する。前記(i)~(vi)のペプチドにおいて、前記で説明したペプチドを除く他のペプチドは、AMの修飾体に相当する。
 前記(ii)のペプチドは、前記(i)のペプチドの2個のシステイン残基のチオール基を空気酸化するか、又は適切な酸化剤を用いて酸化してジスルフィド結合に変換することにより、形成させることができる。前記(ii)のペプチドを用いることにより、ペプチド部分Bの立体構造を、天然型AMの立体構造に類似させることができる。これにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型AMと実質的に略同等のものとすることができる。
 前記(iii)のペプチドは、前記(ii)のペプチドのジスルフィド結合をエチレン基に変換することにより、形成させることができる。ジスルフィド結合からエチレン基への置換は、当該技術分野で周知の方法により、行うことができる(O. Kellerら, Helv. Chim. Acta, 1974年, 第57巻, p. 1253)。前記(iii)のペプチドを用いることにより、ペプチド部分Bの立体構造を安定化させることができる。これにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記(iv)のペプチドにおいて、欠失、置換若しくは付加されているアミノ酸残基は、1~15個の範囲であることが好ましく、1~10個の範囲であることがより好ましく、1~8個の範囲であることがさらに好ましく、1~5個の範囲であることが特に好ましく、1~3個の範囲であることがもっとも好ましい。好適な(iv)のペプチドは、(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~12位、1~10位、1~8位、1~5位又は1~3位のアミノ酸残基が欠失されているペプチドであり、より好適な(iv)のペプチドは、(i)~(iii)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されているペプチドである。前記好適なペプチドにおいて、1又は複数個(例えば、1~5個、1~3個、又は1若しくは2個)のアミノ酸残基がさらに欠失、置換若しくは付加されていてもよい。前記(iv)のペプチドを用いることにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型AMと実質的に略同等のものとすることができる。また、前記(iv)のペプチドを用いることにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記(vi)のペプチドは、C末端アミド化酵素の作用によってC末端のグリシン残基がC末端アミド基に変換されて、前記(v)のペプチドに変換されることができる。それ故、前記(vi)のペプチドを対象に投与することにより、該対象の生体内において、一定時間経過後に、C末端アミド化されたペプチドを形成させることができる。これにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 前記AM又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
(h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
(i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであることがより好ましい。
 一実施形態において、前記AM又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドであることがさらに好ましい。
 別の一実施形態において、前記AM又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド; 
からなる群より選択されるペプチドであることがさらに好ましい。
 別の一実施形態において、前記AM又はその修飾体は、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドであることが特に好ましい。
 前記(h)のペプチドにおいて、欠失、置換若しくは付加されているアミノ酸残基は、1~12個の範囲であることが好ましく、1~10個の範囲であることがより好ましく、1~8個の範囲であることがさらに好ましく、1~5個の範囲であることが特に好ましく、1~3個の範囲であることがもっとも好ましい。好適な(h)のペプチドは、(a)~(g)のいずれかのペプチドにおいて、N末端側から1~15位、1~12位、1~10位、1~8位、1~5位又は1~3位のアミノ酸が欠失されているペプチドであり、より好適な(h)のペプチドは、(a)~(d)のいずれかのペプチドにおいて、N末端側から1~15位、1~10位又は1~5位のアミノ酸残基が欠失されている、或いは、(e)又は(f)のペプチドにおいて、N末端側から1~13位、1~8位又は1~5位のアミノ酸残基が欠失されているペプチドである。前記好適なペプチドにおいて、1又は複数個(例えば、1~5個、1~3個、又は1若しくは2個)のアミノ酸がさらに欠失、置換若しくは付加されていてもよい。前記(h)のペプチドを用いることにより、式(I)で表される化合物のアドレノメデュリン活性を、天然型AMと実質的に略同等のものとすることができる。また、前記(h)のペプチドを用いることにより、式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、Aは、免疫グロブリンのFc領域である。Aは、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域であることが好ましい。当該技術分野において、免疫グロブリンのFc領域と特定のタンパク質又はペプチドとを連結した融合タンパク質は、対象に投与した場合、親化合物であるタンパク質又はペプチドと比較して、対象の体内における半減期を延長し得ることが知られている(例えば、特許文献8及び9)。それ故、免疫グロブリンのFc領域Aを有する本態様の式(I)で表される化合物は、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、Aとして使用する免疫グロブリンのFc領域の由来となる哺乳動物は、以下において説明する、本発明の一態様の式(I)で表される化合物を有効成分として含有する医薬を適用する対象に基づき、適宜選択することができる。Aは、ヒト又は非ヒト哺乳動物(例えば、ブタ、イヌ、ウシ、ラット、マウス、モルモット、ウサギ、ニワトリ、ヒツジ、ネコ、サル、マントヒヒ若しくはチンパンジー等の温血動物)由来の免疫グロブリンのFc領域であることが好ましく、本発明の一態様の医薬を適用する対象と同一のヒト又は非ヒト哺乳動物に由来する免疫グロブリンのFc領域であることがより好ましい。前記ヒト又は非ヒト哺乳動物に由来する免疫グロブリンのFc領域を有することにより、本態様の式(I)で表される化合物は、天然型AMの薬理作用を維持しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。Lは、限定されるものではないが、nを繰り返し数として、(GGGS)n(配列番号20)(nは、2~10の範囲の整数、好ましくは4~6の範囲の整数である)、又は(GGGGS)n(配列番号21)(nは、2~6の範囲の整数、好ましくは3である)のアミノ酸配列を有するペプチドからなる連結基を用いることができる。前記アミノ酸配列において、繰り返し単位中のGの数及び繰り返し数nは、適宜変更可能である。Lは、以下:
  GGGGSGGGGSGGGGS(配列番号18); 
のアミノ酸配列を有するペプチドからなる連結基であることが特に好ましい。前記アミノ酸配列を有する連結基Lで、免疫グロブリンのFc領域AとAM又はその修飾体から誘導されるペプチド部分Bとが連結されることにより、本態様の式(I)で表される化合物は、天然型AMの薬理作用を維持しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 式(I)において、Fc領域Aは、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ、ペプチド部分Bは、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されていることが好ましい。すなわち、本態様の式(I)で表される化合物は、全体として、タンパク質又はポリペプチドの構造を有する。このような構造を有することにより、本態様の式(I)で表される化合物は、高い生体適合性を有し得る。それ故、本態様の式(I)で表される化合物は、望ましくない副反応を抑制しつつ、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 好適な式(I)で表される化合物は、
 Aが、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域であり、
 Bが、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、
 Lが、以下:
  GGGGSGGGGSGGGGS(配列番号18); 
のアミノ酸配列を有するペプチドからなる連結基であり、
 Fc領域Aが、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ
ペプチド部分Bが、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されている。
 より好適な式(I)で表される化合物は、
 Aが、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域であり、
 Bが、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;
からなる群より選択されるペプチドである、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、
 Lが、以下:
  GGGGSGGGGSGGGGS(配列番号18); 
のアミノ酸配列を有するペプチドからなる連結基であり、
 Fc領域Aが、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ
ペプチド部分Bが、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されている。
 さらに好適な式(I)で表される化合物は、
 Aが、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域であり、
 Bが、下記:
(a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、
 Lが、以下:
  GGGGSGGGGSGGGGS(配列番号18); 
のアミノ酸配列を有するペプチドからなる連結基であり、
 Fc領域Aが、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ
ペプチド部分Bが、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されている。
 特に好適な式(I)で表される化合物は、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-g)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
(E-h)(E-a-1)~(E-g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
(E-i)(E-a-1)~(E-h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
(E-j)(E-a)~(E-h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
からなる群より選択されるペプチドである。
 より特に好適な式(I)で表される化合物は、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(E-i)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド; 
からなる群より選択されるペプチドである。
 とりわけ特に好適な式(I)で表される化合物は、下記:
(E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
(E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
(E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである。
 前記特徴を有する本態様の式(I)で表される化合物は、天然型AMの薬理作用を維持しつつ且つ望ましくない副反応を実質的に抑制して、生体内において、持続的にアドレノメデュリン活性を発現することができる。
 本発明の各態様において、式(I)で表される化合物は、該化合物自体だけでなく、その塩も包含する。式(I)で表される化合物が塩の形態である場合、薬学的に許容し得る塩であることが好ましい。式(I)で表される化合物の塩の対イオンとしては、限定するものではないが、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、若しくは置換若しくは非置換のアンモニウムイオンのようなカチオン、又は塩化物イオン、臭化物イオン、ヨウ化物イオン、リン酸イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、過塩素酸イオン、ギ酸イオン、酢酸イオン、トリフルオロ酢酸イオン、プロピオン酸イオン、乳酸イオン、マレイン酸イオン、ヒドロキシマレイン酸イオン、メチルマレイン酸イオン、フマル酸イオン、アジピン酸イオン、安息香酸イオン、2-アセトキシ安息香酸イオン、p-アミノ安息香酸イオン、ニコチン酸イオン、ケイ皮酸イオン、アスコルビン酸イオン、パモ酸イオン、コハク酸イオン、サリチル酸イオン、ビスメチレンサリチル酸イオン、シュウ酸イオン、酒石酸イオン、リンゴ酸イオン、クエン酸イオン、グルコン酸イオン、アスパラギン酸イオン、ステアリン酸イオン、パルミチン酸イオン、イタコン酸イオン、グリコール酸イオン、グルタミン酸イオン、ベンゼンスルホン酸イオン、シクロヘキシルスルファミン酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、イセチオン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、若しくはナフタレンスルホン酸イオンのようなアニオンが好ましい。式(I)で表される化合物が前記の対イオンとの塩の形態である場合、該化合物のアドレノメデュリン活性を、天然型AMと実質的に略同等のものとすることができる。
 本発明の各態様において、式(I)で表される化合物は、前記の化合物自体だけでなく、該化合物又はその塩の溶媒和物も包含する。式(I)で表される化合物又はその塩が溶媒和物の形態である場合、薬学的に許容し得る溶媒和物であることが好ましい。前記化合物又はその塩と溶媒和物を形成し得る溶媒としては、限定するものではないが、例えば、水、或いはメタノール、エタノール、2-プロパノール(イソプロピルアルコール)、ジメチルスルホキシド(DMSO)、酢酸、エタノールアミン、アセトニトリル又は酢酸エチルのような有機溶媒が好ましい。式(I)で表される化合物又はその塩が前記の溶媒との溶媒和物の形態である場合、該化合物のアドレノメデュリン活性を、天然型AMと実質的に略同等のものとすることができる。
 また、本発明の各態様において、式(I)で表される化合物は、該化合物の個々のエナンチオマー及びジアステレオマー、並びにラセミ体のような、該化合物の立体異性体の混合物も包含する。
<3. アドレノメデュリン誘導体の医薬用途>
 本発明の一態様の方法によって得られ得る、好ましくは該方法によって得られた式(I)で表される化合物は、生体内において、親分子であるAMと実質的に略同等の生物活性(すなわちアドレノメデュリン活性)を、持続的に発現することができる。それ故、本発明の別の一態様は、本発明の一態様の方法によって得られ得る、好ましくは該方法によって得られた式(I)で表される化合物を有効成分として含有する医薬に関する。
 本発明の一態様の式(I)で表される化合物を医薬用途に適用する場合、該化合物を単独で使用してもよく、1種以上の薬学的に許容し得る成分と組み合わせて使用してもよい。本態様の医薬は、所望の投与方法に応じて、当該技術分野で通常使用される様々な剤形に製剤されることができる。それ故、本態様の医薬はまた、本発明の一態様の式(I)で表される化合物と、1種以上の薬学的に許容し得る担体とを含有する医薬組成物の形態で提供されることもできる。本発明の一態様の医薬組成物は、前記成分に加えて、薬学的に許容し得る1種以上の担体、賦形剤、結合剤、ビヒクル、溶解補助剤、防腐剤、安定剤、膨化剤、潤滑剤、界面活性剤、油性液、緩衝剤、無痛化剤、酸化防止剤、甘味剤及び香味剤等を含んでもよい。
 本発明の一態様の式(I)で表される化合物を有効成分として含有する医薬は、医薬として有用な1種以上の他の薬剤と併用することもできる。この場合、本態様の医薬は、本発明の一態様の式(I)で表される化合物と1種以上の他の薬剤とを含む単一の医薬の形態で提供されてもよく、本発明の一態様の式(I)で表される化合物と1種以上の他の薬剤とが別々に製剤化された複数の製剤を含む医薬組合せ又はキットの形態で提供されてもよい。医薬組合せ又はキットの形態の場合、それぞれの製剤を同時又は別々に(例えば連続的に)投与することができる。
 本発明の一態様の式(I)で表される化合物を医薬用途に適用する場合、式(I)で表される化合物は、該化合物自体だけでなく、該化合物の製薬上許容される塩、及びそれらの製薬上許容される溶媒和物も包含する。本発明の一態様の式(I)で表される化合物の製薬上許容される塩、及びそれらの製薬上許容される溶媒和物としては、限定するものではないが、例えば、前記で例示した塩又は溶媒和物が好ましい。式(I)で表される化合物が前記の塩又は溶媒和物の形態である場合、該化合物を所望の医薬用途に適用することができる。
 本発明の一態様の式(I)で表される化合物を有効成分として含有する医薬は、AMによって予防又は治療される種々の症状、疾患及び/又は障害を、同様に予防又は治療することができる。前記症状、疾患及び/又は障害としては、限定するものではないが、例えば下記のものを挙げることができる。
(1)循環器疾患:心不全、肺高血圧症、閉塞性動脈硬化症、バージャー病、心筋梗塞、リンパ浮腫、川崎病、心筋炎、不整脈(例えば、カテーテルアブレーション手術後の不整脈)、心房細動、大動脈炎、肺高血圧症、高血圧、高血圧による臓器障害、末梢血管疾患、及び動脈硬化症。
(2)腎臓・水電解質系疾患:腎不全、及び腎炎。
(3)脳・神経疾患:脳梗塞、認知症、脳血管性認知症、アルツハイマー病、及び脳炎。
(4)泌尿生殖器疾患:勃起不全(ED)。
(5)消化器疾患:炎症性疾患(例えば、炎症性腸疾患又はクローン病)、潰瘍性疾患(例えば、潰瘍性大腸炎)、腸管ベーチェット病、肝炎、肝線維症、肝硬変、及び肝不全。
(6)整形外科疾患:関節炎。
(7)内分泌代謝疾患:糖尿病及び糖尿病による臓器障害(例えば、糖尿病性腎症又は糖尿病性網膜症)、並びに原発性アルドステロン症。
(8)呼吸器系疾患:気管支喘、肺気腫、肺線維症、肺炎、急性気管支炎、慢性気管支炎、及び急性呼吸窮迫症候群(ARDS)。
(9)免疫疾患:補体系に関連する疾患(例えば、C3腎症)。
(10)その他の疾患:敗血症、敗血症性ショック、自己免疫疾患、多臓器不全、褥瘡、創傷治癒、及び脱毛症。
 本発明の一態様の式(I)で表される化合物は、天然の生理活性ペプチドであるAMと免疫グロブリンのFc領域とを、ペプチドの連結基を介して連結した構造を有する。このため、本発明の一態様の式(I)で表される化合物は、安全で低毒性である。それ故、本発明の一態様の式(I)で表される化合物を有効成分として含有する医薬は、前記症状、疾患及び/又は障害の予防又は治療を必要とする様々な対象に適用することができる。前記対象は、ヒト又は非ヒト哺乳動物(例えば、ブタ、イヌ、ウシ、ラット、マウス、モルモット、ウサギ、ニワトリ、ヒツジ、ネコ、サル、マントヒヒ若しくはチンパンジー等の温血動物)の被験体又は患者であることが好ましい。前記対象に本態様の医薬を投与することにより、AMによって予防又は治療される種々の症状、疾患及び/又は障害を予防又は治療することができる。
 本明細書において、「予防」は、症状、疾患及び/又は障害の発生(発症又は発現)を実質的に防止することを意味する。また、本明細書において、「治療」は、発生(発症又は発現)した症状、疾患及び/又は障害を抑制(例えば進行の抑制)、軽快、修復及び/又は治癒することを意味する。
 本発明の一態様の式(I)で表される化合物は、前記で説明した症状、疾患及び/又は障害(例えば、循環器疾患、脳・神経疾患又は消化器疾患)を有する対象において、該症状、疾患及び/又は障害の予防又は治療に使用することができる。それ故、本態様の医薬は、前記で説明した症状、疾患及び/又は障害の予防又は治療に使用するための医薬であることが好ましく、心不全、急性心筋梗塞、不整脈、心房細動、肺高血圧症、末梢血管疾患、脳梗塞、認知症、炎症性腸疾患、クローン病、潰瘍性大腸炎、腸管ベーチェット病、糖尿病、糖尿病性腎症、糖尿病性網膜症、肺線維症、敗血症又は敗血症性ショックの予防又は治療に使用するための医薬であることがより好ましい。また、本発明は、本発明の一態様の式(I)で表される化合物を有効成分として含有する、循環器疾患、脳・神経疾患又は消化器疾患の予防又は治療剤に関する。本発明の一態様の式(I)で表される化合物を前記で説明した症状、疾患及び/又は障害の予防又は治療に使用することにより、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 本発明の一態様の式(I)で表される化合物は、前記で説明した症状、疾患及び/又は障害(例えば、循環器疾患、炎症性疾患、血管疾患又は腎疾患)を有する対象において、該症状、疾患及び/又は障害の予防又は治療に使用することができる。それ故、本発明の別の一態様は、前記で説明した症状、疾患及び/又は障害の予防又は治療を必要とする対象に、有効量の本発明の一態様の式(I)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物を投与することを含む、前記疾患若しくは症状の予防又は治療方法である。前記症状、疾患及び/又は障害は、循環器疾患、脳・神経疾患、消化器疾患、内分泌代謝疾患、呼吸器系疾患又はその他の疾患であることが好ましく、心不全、急性心筋梗塞、不整脈、心房細動、肺高血圧症、末梢血管疾患、脳梗塞、認知症、炎症性腸疾患、クローン病、潰瘍性大腸炎、腸管ベーチェット病、糖尿病、糖尿病性腎症、糖尿病性網膜症、肺線維症、敗血症又は敗血症性ショックであることがより好ましい。前記症状、疾患及び/又は障害の予防又は治療を必要とする対象に、本発明の一態様の式(I)で表される化合物を投与することにより、該症状、疾患及び/又は障害を予防又は治療することができる。
 本発明の別の一態様は、前記で説明した症状、疾患及び/又は障害の予防又は治療に使用するための、本発明の一態様の式(I)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物である。本発明のさらに別の一態様は、前記で説明した症状、疾患及び/又は障害の予防又は治療に用いるための医薬の製造における、本発明の一態様の式(I)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物の使用である。本発明のさらに別の一態様は、前記で説明した症状、疾患及び/又は障害の予防又は治療に用いるための、本発明の一態様の式(I)で表される化合物若しくはその製薬上許容される塩、又はそれらの製薬上許容される水和物の使用である。前記症状、疾患及び/又は障害は、循環器疾患、脳・神経疾患、消化器疾患、内分泌代謝疾患、呼吸器系疾患又はその他の疾患であることが好ましく、心不全、急性心筋梗塞、不整脈、心房細動、肺高血圧症、末梢血管疾患、脳梗塞、認知症、炎症性腸疾患、クローン病、潰瘍性大腸炎、腸管ベーチェット病、糖尿病、糖尿病性腎症、糖尿病性網膜症、肺線維症、敗血症又は敗血症性ショックであることがより好ましい。本発明の一態様の式(I)で表される化合物又は医薬を前記で説明した症状、疾患及び/又は障害の予防又は治療に使用することにより、該症状、疾患及び/又は障害を持続的に予防又は治療することができる。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
<実験I:アドレノメデュリン誘導体をコードする組換え遺伝子の作製>
[実験I-1:組換え遺伝子の設計及び解析]
 免疫グロブリンG1(IgG1)のFc領域、免疫グロブリンG4(IgG4)のFc領域、ヒトアドレノメデュリン(h.AM(1-52)又はh.AM(6-52))、及び下記の連結基に基づき、下記の構造を有するアドレノメデュリン誘導体の組換え遺伝子を設計した。使用する遺伝子に関して、塩基配列中の制限酵素部位の特定、塩基配列の確認及びプライマーの設計、並びに対応するタンパク質のアミノ酸配列、分子量及び等電点等の解析は、遺伝情報処理ソフトウェアGENETIX Ver.13(ゼネテックス社)を用いて行った。
 実施例1:(IgG1 Fc領域)+(リンカーS)+(h.AM(1-52)-Gly);(配列番号14及び15)
 実施例2:(IgG1 Fc 領域)+(リンカーS)+(h.AM(6-52)-Gly);(配列番号22及び23)
 実施例3:(IgG4 Fc領域)+(リンカーS)+(h.AM(1-52)-Gly);(配列番号16及び17)
 実施例4:(IgG4 Fc 領域)+(リンカーS)+(h.AM(6-52)-Gly);(配列番号24及び25)
 リンカーS:
  アミノ酸配列:GGGGSGGGGSGGGGS;(配列番号18)
  塩基配列:GGA GGA GGA GGA TCA GGA GGA GGA GGA TCA GGA GGA GGA GGA TCA
       (配列番号19)
[実験I-2:DNA断片の作製]
 IgG1のFc領域、IgG4のFc領域及びヒトアドレノメデュリン(h.AM(1-52)又はh.AM(6-52))をコードするDNA断片をクローニングした。IgG1のFc領域は、Ellison らの文献(Ellison JW, Nucleic Acids Res. 1982;10(10);4071-9)及びGenBank:JN222933を参考にした。IgG4のFc領域は、Labrijnらの文献(Labrijn AF, J Immunol. 2011; 187(6):3238-46.)を参考にした。ヒトアドレノメデュリンは、Kitamuraらの文献(Kitamura K et.al.BBRC.1993;194(2);720-5.)を参考にした。ベクター及び挿入するDNA断片の増幅は、In-Fusion HD Cloning Kit(タカラ)を用いてPCR反応を行って作製した。ベクターのPCR反応は、98℃で10秒、55℃で15秒、72℃で25秒を35サイクル行った。挿入する断片のPCR反応は、98℃で10秒、55℃で15秒、72℃で10秒を35サイクル行った。その後、同キットのクローニングエンハンサーを加えて、37℃で15分、80℃で15分の反応を行い、鋳型とプライマーの分解を行った。
[実験I-3:ライゲーション]
 In-Fusion HD Cloning Kit(タカラ)を用いて、増幅したプラスミドベクターDNA及び目的タンパクタンパク質のDNA断片、並びに酵素プレミックスを加えて50℃で15分間反応させ、目的タンパク質の配列を含むプラスミドを作製した。
[実験I-4:プラスミドの大量生産]
 In-Fusion HD Cloning Kit(タカラ)のプロトコールに従って、Stellar Competent cell(タカラ)にライゲーションを行ったプラスミドを形質転換した。37℃で細胞の振盪培養を行った。その後、Plasmid Maxi Kit(キアゲン)を用いてプラスミドを精製した。
<実験II:アドレノメデュリン誘導体タンパク質の調製>
[実験II-1:形質転換及び目的タンパク質の発現誘導]
 2.5×106個/mLのHEK293(Expi293F)細胞1 Lに、1.0 mgのプラスミドをトランスフェクションした。翌日にエンハンサーを添加し、5日間培養を行い、細胞及び培養上清を回収した。遺伝子のトランスフェクション及びタンパク質の発現誘導には、遺伝子導入試薬及びエンハンサーセット(NeoFectionEN-1)(アステック社)を用いて行った。細胞又は培養上清に含まれるAM誘導体の量は、2種類の認識部位が異なる抗体を用いる特異的蛍光免疫測定(東ソー株式会社)を用いて測定した。第一の抗体は、AMの16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成した環状構造に結合し、第二の抗体は、AMのC末端部分に結合する。これら2個の抗体を用いることで、AM誘導体のうち、不活性型及び活性型の両方のAM(tAM)に相当するタンパク質及び活性を発現し得る活性型AMのみ(mAM)に相当するタンパク質を区別して定量分析することができる(Ohta Hら, One-step direct assay for mature-type adrenomedullin with monoclonal antibodies. Clin Chem., 1999年2月, 第45(2)巻, p. 244-51;Kubo Kら, Biological properties of adrenomedullin conjugated with polyethylene glycol. Peptides, 2014年7月, 第57巻, p. 118-21. doi: 10.1016/j.peptides.2014.05.005. Epub 2014 May 27.)。細胞又は培養上清に含まれるAM誘導体の量を表1に示す。表中、AM誘導体の量は、1 Lの細胞培養液あたりの値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4のいずれのAM誘導体も、細胞中の蓄積量に比べて培養上清中の蓄積量が多かった。また、2個の抗体を用いるAM誘導体の定量分析の結果から、実施例1~4のいずれのAM誘導体も、C末端アミド化酵素の作用によってC末端に付加されたグリシン残基がC末端アミド基に変換されていると推測される。実施例2及び4を比較すると、IgG4を有する実施例4のタンパク質発現量は、IgG1を有する実施例2のタンパク質発現量より低かった。また、IgG4を有する実施例3及び4を発現誘導した宿主細胞の細胞生存率も、実施例1及び2を発現誘導した宿主細胞の細胞生存率より低かった。前記の結果から、大腸菌を宿主細胞として用いてAM誘導体を調製した場合(特許文献10)と異なり、本実験の方法によって得られたAM誘導体は、C末端がアミド化されたペプチドの形態で宿主哺乳動物細胞の培養液中に分泌されることが明らかとなった。
[実験II-2:イオン交換カラムを用いる組換えタンパク質の精製]
 実験II-1で得られた実施例1~4の培養上清を、イオン交換カラム(SP)を用いるステップワイズ法で精製を行った。実施例1及び2の培養上清は、50 mM酢酸(ナトリウム)緩衝液+300 mM NaCl(pH5.5)で、実施例3及び4の培養上清は、50 mM酢酸(ナトリウム)緩衝液+300 mM NaCl(pH6.0)で、それぞれ溶出した。
[実験II-3:アフィニティーカラムを用いる組換えタンパク質の精製]
 実験II-2で得られた実施例1~4の組換えタンパク質を、IgGのFc領域に対する特異的結合能を有するHiTrap Protein A HPカラム及びAb Buffer Kit(GE Healthcare)を用いて、メーカーのプロトコールに従って精製を行った。Protein A精製後の組換えタンパク質は、20 mMクエン酸緩衝液(pH7.2)で希釈した後、Amicon Ultra-15 Ultracel-10K(メルクミリポア)を用いて濃縮及び溶媒置換を行った。
<実験III:アドレノメデュリン誘導体の使用例>
[実験III-1:アドレノメデュリン誘導体による細胞内cAMP濃度上昇作用]
 AMの生理作用は、細胞内cAMPの濃度の上昇を介して発現することが知られている(非特許文献1参照)。そこで、AM受容体を発現させた培養細胞株(HEK293細胞株)に、実施例1~4のAM誘導体を添加して、細胞内cAMPの産生量を測定した。コンフルエントのHEK293細胞に、0.5 mMのIBMXの存在下、10-8~10-6 Mの実施例1~4のいずれかのAM誘導体、又は陽性対照のAMとしてアドレノメデュリン(h.AM(1-52))を添加して、15分間インキュベートした。その後、cAMP測定用ELISAキット(GEヘルスケアー、#RPN2251)を用いて、各試験区のHEK293細胞における細胞内cAMP濃度を測定した。添加したAM又はAM誘導体濃度と細胞内cAMP濃度との用量応答曲線を図1に示す。図中、横軸は、添加したAM又はAM誘導体濃度(M)であり、縦軸は、細胞内cAMP濃度(fmol/ウェル(プレート))である。
 図1に示すように、IgG1及びIgG4のいずれを連結したAM誘導体でも、N末端欠損型AMであるh.AM(6-52)を有する実施例2及び4は、全長、すなわちh.AM(1-52)を有する実施例1及び3と比較して、相対的に活性が高い傾向が確認された。特に、高濃度では、実施例2及び4は、天然型AMとほぼ同程度の高い活性を示した。また、実施例4は、低濃度であっても高い活性を示した。
 比較例1~4として、特許文献10に基づき、大腸菌を宿主細胞として用いて、実施例1~4と同一のアミノ酸配列を有するAM誘導体を調製した。比較例1~4のAM誘導体を用いて、前記と同様の手順で、AM(h.AM(1-52))又はAM誘導体を添加したHEK293細胞における細胞内cAMP濃度を測定した。AMを添加した際の最大活性を100%として、10-6 M又は10-7 Mの比較例1~4及び実施例1~4のいずれかのAM誘導体を添加した際の結果を相対値として算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~4のAM誘導体は、いずれも同一のアミノ酸配列を有する比較例1~4のAM誘導体と比較して、実質的にほぼ同程度(実施例2)又は有意に高い活性(実施例1、3及び4)を示した。
[実験III-2:アドレノメデュリン誘導体皮下投与時の経時的血中濃度の推移]
 8週齢のWistarラット(約300 g)に、30 nmol/kgの実施例2又は4のAM誘導体の生理食塩水溶液を皮下投与した。投与前(0日)、及び投与1日後から14日後まで毎日、イソフルランで吸入麻酔を行った。麻酔下で、尾静脈よりEDTA-2Na及びアプロチニンを添加した状態で、かんたんチューブ(栄研)を用いて採血した。得られた血液を、かんたん遠心機(栄研)を用いて2,000×gで1分間遠心分離することにより、血漿を得た。血漿中のAM誘導体の濃度を、ELISA法にて測定した。実施例2又は4のAM誘導体の皮下投与におけるAM誘導体の血中濃度の経時変化を図2に示す。Aは、mAMに相当するAM誘導体の血中濃度の経時変化を示すグラフであり、Bは、tAMに相当するAM誘導体の血中濃度の経時変化を示すグラフである。図中、横軸は、投与後の期間(日)であり、縦軸は、AM誘導体の血中濃度(pM)である。また、実施例2又は4のAM誘導体の皮下投与14日後におけるAM誘導体の血中濃度を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図2及び表3に示すように、実施例2又は4のいずれのAM誘導体の皮下投与の場合も、投与14日後も治療域に十分な量のAM誘導体が血中に存在していた。
[実験III-3:アドレノメデュリン誘導体の高血圧自然発症ラット(SHR)における血圧上昇抑制効果]
 以下の手順で、SHRに対する実施例4のAM誘導体の皮下投与による血圧上昇の抑制効果を検討した。8%高塩食を与えた8週齢のSHRに、50 nmol/kgの実施例4のAM誘導体の生理食塩水溶液を皮下に単回投与した。対照群として、同量の生理食塩水を皮下に単回投与した。血圧は、テールカフにて投与前(0日)、並びに投与1、3、6、9及び12日後に測定した。測定値から、血圧の上昇率を算出した。実験終了時(投与12日後)に、EDTA-2Naを含むチューブに断頭採血した。得られた血液を、3,500 rpm、4℃で10分間遠心分離することにより、血漿を得た。血漿中の誘導体のAM濃度を、ELISA法にて測定した。SHRに対する実施例4のAM誘導体の皮下投与による血圧上昇の抑制効果を図3に示す。Aは、収縮期血圧(SBP)の経時変化を示すグラフであり、Bは、拡張期血圧(DBP)の経時変化を示すグラフである。図中、横軸は、投与後の期間(日)であり、縦軸は、血圧(mmHg)を示す。*は、スチューデントt-検定(n=5)により算出した、生理食塩水投与の対照群に対するp値が0.05未満であることを示す。対照又は実施例4のAM誘導体の皮下投与12日後におけるSHRの血圧を表4に示す。また、対照又は実施例4のAM誘導体の皮下投与12日後におけるSHRのAM誘導体の血中濃度を図4に示す。Aは、mAMに相当するAM誘導体の血中濃度を示すグラフであり、Bは、tAMに相当するAM誘導体の血中濃度を示すグラフである。図中、縦軸は、mAM又はtAMに相当するAM誘導体の血中濃度(pM)である。
Figure JPOXMLDOC01-appb-T000004
 図3及び表4に示すように、生理食塩水投与の対照群と比較して、実施例4のAM誘導体投与群においては、SBP及びDBPのいずれも10 mmHg以上の血圧上昇の抑制が確認された。また、図4に示すように、実施例4のAM誘導体の皮下投与により、投与12日後も治療域に十分な量のAM誘導体が血中に存在していた。
[実験III-4:アドレノメデュリン誘導体の皮下投与後の組織移行性]
 8週齢のWistarラット(約300 g)に、30 nmol/kgの実施例2又は4のAM誘導体の生理食塩水溶液を各4匹ずつ皮下投与した。投与7日後(各2匹)及び14日後(各2匹)に、脳、肺、心臓、腎臓、副腎、肝臓、膵臓、脾臓、大腸、小腸及び胃の組織を採取し、液体窒素で瞬間凍結し、使用するまで-80℃で保存した。保存した組織は、凍ったまま阻害剤入りリン酸緩衝液(PBS)中でホモジナイザーによって破砕した。阻害剤入りPBSは、プロテアーゼ阻害剤カクテル(ナカライテスク)を冷却したPBS(タカラ)で50倍に希釈して調製した。阻害剤入りPBSは、組織約0.3 gに対して1 mL使用した。破砕した組織は、20,000×g、4℃で20分間遠心分離して、上清を組織抽出液として得た。その後、組織抽出液中のAM誘導体濃度を、ELISA法にて測定した。測定後、Pierce BCA プロテインアッセイキット(Thermo)を用いて組織抽出液中の総タンパク量を測定した。AM誘導体濃度の測定値を、総タンパク量で補正した。
 各組織抽出液中の、実施例2又は4のtAMに相当するAM誘導体の濃度を表5に、各組織抽出液中の、実施例2又は4のmAMに相当するAM誘導体の濃度を表6に、それぞれ示す。表中のデータは、ラット各2匹の平均値で示す。表5及び6に示すように、実施例2及び4のAM誘導体のいずれも、測定した全ての組織でその移行性が確認され、14日後にも組織中に残っていることが明らかとなった。実施例2及び4のAM誘導体の間では、結果に大きな差は見られなかった。また、どちらも腎臓中の値が最も高く、次いで小腸、肺、大腸そして心臓及び胃の値が高かった。さらに、tAMに相当するAM誘導体の濃度の値とmAMに相当するAM誘導体の濃度の値との間では、結果に大きな差は見られなかった。mAMは、AMの活性型を反映していることから、実施例2及び4ともに組織中では活性型として存在していると考えられた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 なお、本発明は、前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加、削除及び/又は置換をすることが可能である。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1.  式(I):
       A-L-B  (I)
    [式中、
     Aは、免疫グロブリンのFc領域であり、
     Bは、アドレノメデュリン又はその修飾体から誘導されるペプチド部分であり、
     Lは、任意のアミノ酸配列を有するペプチドからなる連結基である。]
    で表される化合物若しくはその塩、又はそれらの水和物の製造方法であって、
     前記化合物を産生し得る宿主哺乳動物細胞において、該化合物を大量発現させる、発現工程、
    を含む、前記方法。
  2.  発現工程で大量発現させた化合物をリフォールディングする、リフォールディング工程を含まない、請求項1に記載の方法。
  3.  発現工程で大量発現させた化合物のC末端をアミド化する、C末端アミド化工程を含まない、請求項1又は2に記載の方法。
  4.  式(I)で表される化合物を精製する、精製工程を含まない、請求項1~3のいずれか一項に記載の方法。
  5.  発現工程のみからなる、請求項1~4のいずれか一項に記載の方法。
  6.  Lが、以下:
      GGGGSGGGGSGGGGS(配列番号18);
    のアミノ酸配列を有するペプチドからなる連結基であり、
     Fc領域Aが、そのC末端のカルボキシル基が連結基LのN末端のαアミノ基とペプチド結合を形成することによって残部分と連結されており、且つ
    ペプチド部分Bが、そのN末端のαアミノ基が連結基LのC末端のカルボキシル基とペプチド結合を形成することによって残部分と連結されている、請求項1~5のいずれか一項に記載の方法。
  7.  Aが、免疫グロブリンG1(IgG1)のFc領域、又は免疫グロブリンG4(IgG4)のFc領域である、請求項1~6のいずれか一項に記載の方法。
  8.  前記アドレノメデュリン又はその修飾体が、下記:
    (i)アドレノメデュリンのアミノ酸配列からなるペプチド、
    (ii)アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチド、
    (iii)(ii)のペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド、
    (iv)(i)~(iii)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド、
    (v)(i)~(iv)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド、並びに
    (vi)(i)~(iv)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド
    からなる群より選択されるペプチドである、請求項1~7のいずれか一項に記載の方法。
  9.  前記アドレノメデュリン又はその修飾体が、アドレノメデュリンのアミノ酸配列からなり、且つ該アミノ酸配列中の2個のシステイン残基がジスルフィド結合を形成しているペプチドにおいて、C末端がアミド化されているペプチドである、請求項8に記載の方法。
  10.  前記アドレノメデュリン又はその修飾体が、下記:
    (a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (g)(a)~(f)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
    (h)(a)~(g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
    (i)(a)~(h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (j)(a)~(h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項1~7のいずれか一項に記載の方法。
  11.  前記アドレノメデュリン又はその修飾体が、下記:
    (a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (i)(a)~(f)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (j)(a)~(f)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項10に記載の方法。
  12.  前記アドレノメデュリン又はその修飾体が、下記:
    (a)配列番号1のアミノ酸配列からなるペプチド、又は配列番号1のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (b)配列番号4のアミノ酸配列からなるペプチド、又は配列番号4のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (c)配列番号6のアミノ酸配列からなるペプチド、又は配列番号6のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (d)配列番号8のアミノ酸配列からなるペプチド、又は配列番号8のアミノ酸配列からなり、且つ16位のシステイン残基と21位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (e)配列番号10のアミノ酸配列からなるペプチド、又は配列番号10のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
    (f)配列番号12のアミノ酸配列からなるペプチド、又は配列番号12のアミノ酸配列からなり、且つ14位のシステイン残基と19位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである、請求項11に記載の方法。
  13.  式(I)で表される化合物が、下記:
    (E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
    (E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (E-g)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、前記ジスルフィド結合が、エチレン基によって置換されているペプチド;
    (E-h)(E-a-1)~(E-g)のいずれかのペプチドにおいて、1~15個のアミノ酸残基が欠失、置換若しくは付加されているペプチド;
    (E-i)(E-a-1)~(E-h)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド;並びに
    (E-j)(E-a-1)~(E-h)のいずれかのペプチドにおいて、C末端にグリシン残基が付加されているペプチド;
    からなる群より選択されるペプチドである、請求項1~7のいずれか一項に記載の方法。
  14.  式(I)で表される化合物が、下記:
    (E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
    (E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
    (E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    (E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
    (E-i)(E-a-1)~(E-a-4)のいずれかのペプチドにおいて、C末端がアミド化されているペプチド; 
    からなる群より選択されるペプチドである、請求項13に記載の方法。
  15.  式(I)で表される化合物が、下記:
    (E-a-1)配列番号15のアミノ酸配列からなるペプチド、又は配列番号15のアミノ酸配列からなり、且つ259位のシステイン残基と264位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
    (E-a-2)配列番号17のアミノ酸配列からなるペプチド、又は配列番号17のアミノ酸配列からなり、且つ256位のシステイン残基と261位のシステイン残基とがジスルフィド結合を形成しているペプチド; 
    (E-a-3)配列番号23のアミノ酸配列からなるペプチド、又は配列番号23のアミノ酸配列からなり、且つ254位のシステイン残基と259位のシステイン残基とがジスルフィド結合を形成しているペプチド;並びに
    (E-a-4)配列番号25のアミノ酸配列からなるペプチド、又は配列番号25のアミノ酸配列からなり、且つ251位のシステイン残基と256位のシステイン残基とがジスルフィド結合を形成しているペプチド;
    からなる群より選択されるペプチドにおいて、C末端がアミド化されているペプチドである、請求項14に記載の方法。
PCT/JP2022/007079 2021-02-22 2022-02-22 長時間作用型アドレノメデュリン誘導体の製造方法 WO2022177018A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500967A JPWO2022177018A1 (ja) 2021-02-22 2022-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025877 2021-02-22
JP2021-025877 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022177018A1 true WO2022177018A1 (ja) 2022-08-25

Family

ID=82930697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007079 WO2022177018A1 (ja) 2021-02-22 2022-02-22 長時間作用型アドレノメデュリン誘導体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022177018A1 (ja)
WO (1) WO2022177018A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508862A (ja) * 2004-06-28 2008-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Fc−インターフェロン−β融合タンパク質
JP2015502930A (ja) * 2011-11-16 2015-01-29 アドレノメト アクチェンゲゼルシャフト 慢性若しくは急性疾患又は急性病態に罹患している患者の死亡リスクを低減するための抗アドレノメデュリン(ADM)抗体、抗ADM抗体フラグメント又は抗ADM非Ig足場
JP2018500272A (ja) * 2014-09-26 2018-01-11 バイエル ファーマ アクチエンゲゼルシャフト 安定化アドレノメデュリン誘導体およびその使用
WO2018181638A1 (ja) * 2017-03-29 2018-10-04 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508862A (ja) * 2004-06-28 2008-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Fc−インターフェロン−β融合タンパク質
JP2015502930A (ja) * 2011-11-16 2015-01-29 アドレノメト アクチェンゲゼルシャフト 慢性若しくは急性疾患又は急性病態に罹患している患者の死亡リスクを低減するための抗アドレノメデュリン(ADM)抗体、抗ADM抗体フラグメント又は抗ADM非Ig足場
JP2018500272A (ja) * 2014-09-26 2018-01-11 バイエル ファーマ アクチエンゲゼルシャフト 安定化アドレノメデュリン誘導体およびその使用
WO2018181638A1 (ja) * 2017-03-29 2018-10-04 国立大学法人宮崎大学 長時間作用型アドレノメデュリン誘導体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KITAMURA, K., ETO, T.: "Adrenomedullin", JAPANESE JOURNAL OF CLINICAL MEDICINE, NIPPON-RINSHO CO., OSAKA., JP, vol. 62, no. Suppl. 3, 1 January 2004 (2004-01-01), JP , pages 239 - 242, XP009539176, ISSN: 0047-1852 *
KRISTINA R. CARLSON, STEVEN C. POMERANTZ, JIALI LI, OMID VAFA, MICHAEL NASO, WILLIAM STROHL, RICHARD E. MAINS, BETTY A. EIPPER: "Secretion of Fc-amidated peptide fusion proteins by Chinese hamster ovary cells", BMC BIOTECHNOLOGY, vol. 15, no. 1, 1 December 2015 (2015-12-01), XP055536155, DOI: 10.1186/s12896-015-0173-5 *
KUBO KEISHI; TOKASHIKI MARIKO; KUWASAKO KENJI; TAMURA MASAJI; TSUDA SHUGO; KUBO SHIGERU; YOSHIZAWA-KUMAGAYE KUMIKO; KATO JOHJI; KI: "Biological properties of adrenomedullin conjugated with polyethylene glycol", PEPTIDES, ELSEVIER, AMSTERDAM, NL, vol. 57, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 118 - 121, XP028854862, ISSN: 0196-9781, DOI: 10.1016/j.peptides.2014.05.005 *
SAYAKA NAGATA, YAMASAKI MOTOO, KAWANO AYA, KITAMURA KAZUO: "Developments of human adrenomedullin-IgG1 Fc fusion proteins", JOURNAL OF BIOCHEMISTRY, OXFORD UNIVERSITY PRESS, GB, vol. 166, no. 2, 1 August 2019 (2019-08-01), GB , pages 157 - 162, XP055751904, ISSN: 0021-924X, DOI: 10.1093/jb/mvz023 *

Also Published As

Publication number Publication date
JPWO2022177018A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
JP7211712B2 (ja) グルカゴン受容体アゴニスト
AU2008365559B2 (en) Glucagon analogues
AU2008365555B2 (en) Glucagon analogues
RU2559320C2 (ru) Новые аналоги глюкагона
JP6054742B2 (ja) アシル化グルカゴン類似体
JP5635531B2 (ja) グルカゴン類似体
US20070244041A1 (en) Peptide Yy Analogues
US20110293586A1 (en) Glucagon analogues
WO2011020319A1 (zh) 调节血糖血脂的融合蛋白及其制备方法和应用
KR20170075779A (ko) Gip 효능제 화합물 및 방법
WO2011153965A1 (zh) Exendin-4及其类似物的融合蛋白,其制备和应用
AU2004298424A1 (en) Novel GLP-1 compounds
JP2007537142A (ja) アルブミン様物質に結合した新規のglp−1類似物
EA019203B1 (ru) Коагонисты глюкагонового рецептора/glp-1-рецептора
JP2013530969A (ja) グルカゴン類似体
JP6991569B2 (ja) 長時間作用型アドレノメデュリン誘導体
JP2021184753A (ja) 長時間作用型アドレノメデュリン誘導体
WO2017062334A1 (en) Antibody peptide conjugates that have agonist activity at both the glucagon and glucagon-like peptide 1 receptors
WO2022177018A1 (ja) 長時間作用型アドレノメデュリン誘導体の製造方法
WO2022030580A1 (ja) 長時間作用型新規アドレノメデュリン誘導体、その製造方法及びその医薬用途
JP2023538871A (ja) エキセンジン-4ペプチド類似体
CN114867742A (zh) 胰高血糖素和glp-1受体的钉合内酰胺共激动剂
WO2024015922A2 (en) Compositions including multi-agonist peptides and methods of manufacture and use
JP6018129B2 (ja) グルカゴン類似体
TWI428139B (zh) A novel glucagon-like peptide analogue, a composition and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500967

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756335

Country of ref document: EP

Kind code of ref document: A1