WO2017047666A1 - イジングモデルの量子計算装置 - Google Patents

イジングモデルの量子計算装置 Download PDF

Info

Publication number
WO2017047666A1
WO2017047666A1 PCT/JP2016/077180 JP2016077180W WO2017047666A1 WO 2017047666 A1 WO2017047666 A1 WO 2017047666A1 JP 2016077180 W JP2016077180 W JP 2016077180W WO 2017047666 A1 WO2017047666 A1 WO 2017047666A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
pulses
pseudo
measurement
interaction
Prior art date
Application number
PCT/JP2016/077180
Other languages
English (en)
French (fr)
Inventor
卓弘 稲垣
武居 弘樹
利守 本庄
聖子 宇都宮
喜久 山本
佳貴 針原
修平 玉手
五十嵐 浩司
Original Assignee
日本電信電話株式会社
大学共同利用機関法人情報・システム研究機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, 大学共同利用機関法人情報・システム研究機構, 国立大学法人大阪大学 filed Critical 日本電信電話株式会社
Priority to US15/758,536 priority Critical patent/US10139703B2/en
Priority to JP2017539951A priority patent/JP6429346B2/ja
Priority to CA2997013A priority patent/CA2997013C/en
Priority to CN201680052694.0A priority patent/CN108027545B/zh
Priority to EP16846537.5A priority patent/EP3333626B1/en
Publication of WO2017047666A1 publication Critical patent/WO2017047666A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/08Computing arrangements based on specific mathematical models using chaos models or non-linear system models

Definitions

  • This disclosure provides a quantum computing device that can easily solve an NP complete problem mapped to an Ising model by easily solving the Ising model.
  • the Ising model was originally studied as a model for magnetic materials, but has recently attracted attention as a model that is mapped from the NP complete problem. However, it is very difficult to solve the Ising model when the number of sites is large. Therefore, quantum annealing machines and quantum adiabatic machines that implement the Ising model have been proposed.
  • Quantum annealing machine solves the Ising model by physically implementing the Ising interaction and Zeeman energy, then sufficiently cooling the system to realize the ground state and observing the ground state.
  • the number of sites is large, the system is trapped in a metastable state in the course of cooling, and the number of metastable states increases exponentially with the number of sites, so the system goes from the metastable state to the ground state. There was a problem that it was difficult to alleviate.
  • the transverse magnetic field Zeeman energy is physically mounted, and then the system is sufficiently cooled to realize a ground state of only the transverse magnetic field Zeeman energy. Then, gradually reduce the transverse magnetic field Zeeman energy and gradually implement the Ising interaction physically, realize the ground state of the system including the Ising interaction and the longitudinal magnetic field Zeeman energy, and observe the ground state By doing so, the Ising model is solved.
  • the transverse magnetic field Zeeman energy must be gradually decreased and the speed at which the Ising interaction is gradually physically implemented must be exponentially slowed with respect to the number of sites. It was.
  • mapping an NP complete problem etc. to an Ising model and implementing the Ising model with a physical spin system the Ising interaction between physically close sites is large, and between physically distant sites
  • the natural law that the Ising interaction is small is a problem.
  • the Ising interaction between physically close sites may be small, and the Ising interaction between physically remote sites may be large. Because.
  • the difficulty of mapping to this natural spin system also makes it difficult to easily solve the NP complete problem and the like.
  • Patent Documents 1 and 2 and Non-Patent Document 1 for solving the above problems will be described.
  • the NP-complete problem can be replaced with a magnetic Ising model, and the magnetic Ising model can be replaced with a network of lasers or laser pulses.
  • the spin direction is reversed (in the case of antiferromagnetic interaction) or in the same direction (strong) so that the energy of the spin arrangement is minimized in the interacting atom pair. Try to point in the case of magnetic interaction).
  • the polarization or phase of the oscillation is reversed or reversed (anti-strength) so that the threshold gain of the oscillation mode is the lowest in the interacting laser pair or laser pulse pair. Try to point in the same direction (in the case of magnetic interactions) or in the same rotation or phase (in the case of ferromagnetic interactions).
  • the polarization or phase of oscillation can be optimized so that the threshold gain of the oscillation mode is minimized.
  • the polarization or phase cannot be optimized.
  • the “total” of the laser or laser pulse network is searched for the “compromise point” of polarization or phase of oscillation.
  • Patent Documents 1 and 2 and Non-Patent Document 1 the pump energy is controlled for each laser or each laser pulse, and one oscillation mode in which the threshold gain is minimized in the entire laser or laser pulse network is started.
  • the polarization or phase of the oscillation of each laser or each laser pulse is measured, and consequently the direction of each Ising spin is measured. Therefore, the problem of trapping in the metastable state and the mounting speed of the Ising interaction in the quantum annealing machine and the quantum adiabatic machine can be solved.
  • Patent Documents 1 and 2 and Non-Patent Document 1 not only the magnitude of Ising interaction between physically located sites but also the magnitude of Ising interaction between physically located sites is also shown. It can be controlled freely. Therefore, an artificial Ising model mapped from the NP complete problem or the like can be solved regardless of the physical distance between the sites.
  • Patent Documents 1 and 2 will be specifically described.
  • the magnitude and sign of the pseudo Ising interaction between the two surface emitting lasers is implemented by controlling the amplitude and phase of the light exchanged between the two surface emitting lasers.
  • the pseudo Ising spin of each surface emitting laser is measured by measuring the polarization or phase of the oscillation of each surface emitting laser. Measure.
  • the oscillation frequency of the surface emitting laser is set to the same frequency by using injection locking from the master laser to the surface emitting laser.
  • the phase of the surface emitting laser oscillation in the initial state is 0 phase or ⁇ phase of the surface emitting laser oscillation in the steady state. It will be biased in the direction of either phase. Therefore, there is a high possibility that an erroneous answer due to the phase deviation in the initial state occurs.
  • M surface emitting lasers When there are M Ising sites, M surface emitting lasers are required, and M (M ⁇ 1) / 2 optical path portions between the surface emitting lasers are required. Furthermore, unless the length of the optical path between the surface emitting lasers is adjusted accurately, the magnitude and sign of the pseudo Ising interaction between the surface emitting lasers cannot be accurately implemented. Therefore, if the number of Ising sites increases, the Ising model quantum computing device becomes large and complex.
  • Non-Patent Document 1 a pseudo Ising interaction magnitude and sign between the two laser pulses is implemented by controlling the amplitude and phase of the light exchanged between the two laser pulses.
  • the pseudo Ising spin of each laser pulse is measured by measuring the oscillation phase of each laser pulse.
  • the oscillation frequency of the laser pulse is set to the same frequency by using a degenerate optical parametric oscillator and a ring resonator. Since the down-conversion by the degenerate optical parametric oscillator is used without using the injection locking by the master laser, the oscillation phase of the laser pulse in the initial state is 0 phase or ⁇ phase of the oscillation of the laser pulse in the steady state. It is not biased in any phase direction. Therefore, there is a low possibility of an erroneous answer due to the phase deviation in the initial state.
  • Non-Patent Document 1 the first method for realizing the technique disclosed in Non-Patent Document 1 will be specifically described.
  • the amplitude and phase of the light exchanged between the laser pulses are controlled on a delay line having a length equal to the interval between the laser pulses, branching from the ring resonator and joining into the ring resonator. Place the modulator. And a part of the preceding laser pulse propagates through the delay line and is modulated by the modulator, and the subsequent laser pulse does not propagate through the delay line but propagates through the ring resonator, and these laser pulses are combined, Light is exchanged between laser pulses. In this way, the laser pulse phase is measured after the laser pulse reaches a steady state in the process in which the circular propagation of the laser pulse in the ring resonator is repeated.
  • Non-Patent Document 1 a detector for measuring the phase of the laser pulse is arranged at a location branched from the ring resonator.
  • a computer for calculating the interaction of the Ising model is arranged based on the coupling coefficient of the Ising model and the phase of the measured laser pulse.
  • a modulator for controlling the amplitude and phase of the light injected into the laser pulse is arranged at the place where it joins the ring resonator based on the calculated Ising model interaction. In this way, the phase of the laser pulse is measured after the laser pulse reaches a steady state in the process of repeating the feedback loop composed of the detector, the calculator, and the modulator.
  • the second method makes the quantum computing device of the Ising model small and simple.
  • the pseudo Ising interaction between the laser pulses is close to the instantaneous interaction, and it is desirable that the interaction is not delayed interaction.
  • the detector measures the phase of all laser pulses until all laser pulses "round" the ring resonator and the modulator controls the amplitude and phase of the light injected into all laser pulses
  • the computer it is desirable for the computer to calculate the total interaction of the Ising model involving all laser pulses.
  • the present disclosure provides an Ising model in which all laser pulses are involved in a process in which a feedback loop including an Ising spin measurement step, an Ising interaction calculation step, and an Ising interaction implementation step is repeated.
  • the Ising spin measurement step the measurement is interrupted until the measurement for one set of all Ising spins is resumed after the measurement for one set of all Ising spins is completed.
  • the Ising interaction calculation step is based on the latest Ising spin measurement after the Ising spin measurement step completes the measurement for one set of all Ising spins and restarts the measurement for one set of all Ising spins. All Ising interactions involving all Ising spins can be calculated with sufficient time margin.
  • the present disclosure relates to a degenerate optical parametric oscillator that degenerates parametric oscillation of a plurality of pseudo spin pulses corresponding to a plurality of spins of the Ising model and having the same oscillation frequency, and the plurality of pseudo A plurality of ring resonators that circulate a spin pulse, and each of the plurality of pseudo spin pulses tentatively measure phases of the plurality of pseudo spin pulses each time the plurality of pseudo spin pulses propagate around the ring resonator.
  • the provisional spin measurement unit that suspends the measurement until the measurement for one set is resumed after the measurement for one set is completed, and the provisional spin measurement unit From the end of the measurement for one set to the measurement of the coupling coefficient of the Ising model and the temporary Based on the pseudo spins of the plurality of pseudo spin pulses most recently measured by the dynamic spin measurement unit, the interaction calculation unit that tentatively calculates all the interactions involving the plurality of pseudo spin pulses, and By controlling the amplitude and phase of light injected into the plurality of pseudo spin pulses after the interaction calculation unit finishes the provisional calculation of all the interactions involving the plurality of pseudo spin pulses.
  • An interaction implementation unit that provisionally implements the magnitude and sign of all interactions involving the plurality of pseudo-spin pulses most recently calculated by the interaction calculation unit, the provisional spin measurement unit, and the interaction In a process in which a feedback loop configured by the calculation unit and the interaction implementation unit is repeated, after the plurality of pseudo spin pulses reach a steady state,
  • a feedback loop configured by the calculation unit and the interaction implementation unit is repeated, after the plurality of pseudo spin pulses reach a steady state
  • the Ising interaction calculation step is based on the most recent measurement of the Ising spin by effectively increasing the time for all laser pulses to “round” the ring resonator. All Ising interactions involved can be calculated with sufficient time margin.
  • the ring resonator propagates the plurality of continuous pseudo spin pulses corresponding to the plurality of spins of the Ising model in a circle
  • the provisional spin measurement unit includes The plurality of pseudo spin pulses propagating around the ring resonator from the end of the measurement for one set to the restart of the measurement for one set are transferred from the ring resonator to the provisional spin measurement unit.
  • the Ising model quantum computation device is characterized in that it passes through each branch point at least once.
  • the Ising interaction calculation step measures the latest Ising spin while each of the plurality of pseudo spin pulses passes through the branch point from the ring resonator to the provisional spin measurement unit at least once. Based on, all Ising interactions involving all Ising spins can be calculated with sufficient time margin.
  • the ring resonator does not correspond to the plurality of continuous pseudo spin pulses corresponding to the plurality of spins of the Ising model and the plurality of spins of the Ising model, A plurality of continuous dummy pulses are propagated in a circle, and the ring resonator is propagated in a circle until the provisional spin measurement unit finishes the measurement for one set and restarts the measurement for one set.
  • the Ising model quantum computing device is characterized in that the plurality of dummy pulses that pass through each branch point from the ring resonator to the provisional spin measurement unit once.
  • the Ising interaction calculation step is based on the latest Ising spin measurement while the plurality of dummy pulses each pass through the branch point from the ring resonator to the provisional spin measurement unit once. All Ising interactions involving all Ising spins can be calculated with sufficient time margin.
  • the degenerate optical parametric oscillator controls the oscillation phase and the oscillation intensity of the plurality of dummy pulses to a predetermined phase and a predetermined intensity, respectively
  • the Ising model quantum computation device Is a Ising model quantum computing device characterized in that the phase characteristics of the device itself are calibrated using the plurality of dummy pulses as reference signals.
  • a plurality of pseudo spin pulses having an oscillation phase whose optimum solution is not known and an oscillation intensity that changes with time in the calculation process are not used as a reference signal, and a predetermined oscillation phase and a predetermined oscillation are used.
  • Calibration of phase characteristics of an Ising model quantum computing device can be performed using a plurality of dummy pulses having intensities as reference signals.
  • the present disclosure further includes a ring resonance length control unit that controls the resonance length of the ring resonator so that the oscillation intensity of the plurality of dummy pulses is maximized to the predetermined intensity.
  • Ising model quantum computing device characterized by
  • the resonance length of the ring resonator can be reduced even when the resonance length of the ring resonator varies with time in response to the time variation of the installation environment (for example, temperature) of the Ising model quantum computing device. It can be stabilized to a constant value. Therefore, every time a plurality of pseudo spin pulses propagate around the ring resonator several times or singly, the amplification intensity in the phase sensitive amplifier in the degenerate optical parametric oscillator, the interference with the local oscillation light in the provisional spin measurement unit Timing and interference timing with the injection pulse in the interaction implementation unit can be stabilized.
  • the pulse stabilization in the phase sensitive amplifier in the degenerate optical parametric oscillator, the pulse phase measurement in the provisional spin measurement unit, and the interaction implementation in the interaction implementation unit can be executed accurately.
  • the calculation accuracy of the quantum computing device can be greatly improved.
  • an interference result between the plurality of dummy pulses and the local oscillation light used by the provisional spin measurement unit for phase measurement of the plurality of pseudo spin pulses is determined in advance for the plurality of dummy pulses.
  • the plurality of pseudo spin pulses and the local oscillation light used by the temporary spin measurement unit for phase measurement of the plurality of pseudo spin pulses so as to obtain a predetermined interference result assumed from the determined oscillation phase
  • a local oscillation light control unit that controls the interference timing of the Ising model.
  • the timing of interference with the local oscillation light in the provisional spin measurement unit can be stabilized every time a plurality of pseudo spin pulses propagate around the ring resonator a plurality of times or a single time. Therefore, the pulse phase measurement in the provisional spin measurement unit can be performed accurately, and as a result, the calculation accuracy of the Ising model quantum calculation device can be greatly improved.
  • an interference result between the plurality of dummy pulses and a plurality of dummy injection pulses having a predetermined oscillation phase used by the interaction mounting unit for light injection into the plurality of dummy pulses is as follows:
  • the plurality of pseudo spin pulses and the interaction mounting unit are changed to the plurality of pseudo spin pulses so as to obtain a predetermined interference result assumed from a predetermined oscillation phase of the plurality of dummy pulses.
  • the Ising model quantum computation device further includes an injection pulse control unit that controls an interference timing between a plurality of spin injection pulses having an oscillation phase in consideration of an interaction used for light injection.
  • the interference timing with the injection pulse in the interaction mounting unit can be stabilized. Therefore, the interaction implementation in the interaction implementation unit can be executed accurately, and the calculation accuracy of the Ising model quantum computation device can be greatly improved.
  • the interaction implementation unit is configured such that the longer the period from when the provisional spin measurement unit finishes the measurement for one set to when the measurement for one set is restarted, the longer the plurality of pseudo It is an Ising model quantum computing device characterized by largely controlling the amplitude of light injected with respect to a spin pulse.
  • the injection intensity with respect to the laser pulse is effectively smaller than when the implementation of the spin measurement and interaction is not interrupted.
  • the longer the suspension period of the spin measurement and interaction implementation the greater the injection intensity for the laser pulse, so that even when the spin measurement and interaction implementation is interrupted, the spin measurement and interaction implementation is interrupted.
  • a balance of injection intensity and pump gain for the laser pulse can be maintained.
  • the degenerate optical parametric oscillator is configured such that the longer the period from when the provisional spin measurement unit ends the measurement for one set to when the measurement for one set is restarted.
  • This is an Ising model quantum computing device characterized in that the pump rate of degenerate optical parametric oscillation of a spin pulse is controlled to be small.
  • the injection intensity with respect to the laser pulse is effectively smaller than when the implementation of the spin measurement and interaction is not interrupted.
  • the longer the suspension period of the spin measurement and interaction implementation the smaller the pump gain for the laser pulse, so that even when the spin measurement and interaction implementation is interrupted, the spin measurement and interaction implementation is interrupted.
  • a balance of injection intensity and pump gain for the laser pulse can be maintained.
  • the present disclosure is characterized in that the interaction implementation unit controls the amplitude of light injected into the plurality of pseudo spin pulses to be smaller as the graph average order of the Ising model is higher. It is a model quantum computing device.
  • the configuration of the Ising model quantum computation device Q of the present disclosure is shown in FIG.
  • the Ising Hamiltonian is expressed as Equation 1 assuming that one to three interactions are included.
  • the degenerate optical parametric oscillator 1 degenerates optical parametric oscillation of a plurality of pseudo spin pulses SP1 to SP4 that correspond to a plurality of spins ⁇ 1 to ⁇ 4 of the Ising model and have the same oscillation frequency.
  • the ring resonator 2 propagates a plurality of pseudo spin pulses SP1 to SP4 in a circular manner.
  • the plurality of pseudo spin pulses SP1 to SP4 enter a feedback loop described later in the order of SP1, SP2, SP3, SP4, SP1, SP2, SP3, SP4,.
  • the provisional spin measurement unit 3 tentatively measures the phases of the plurality of pseudo spin pulses SP1 to SP4 each time the plurality of pseudo spin pulses SP1 to SP4 propagate around the ring resonator 2, thereby The pseudo spins ⁇ 1 to ⁇ 4 of the pseudo spin pulses SP1 to SP4 are temporarily measured. Specifically, the provisional spin measurement unit 3 performs homodyne detection on the plurality of pseudo spin pulses SP1 to SP4 using the local oscillation pulse LO.
  • the interaction calculation unit 4 includes Ising model coupling coefficients ⁇ i , J ij , K ijk related to a pseudo spin pulse SPi and other pseudo spin pulses SPj, SPk tentatively measured by the provisional spin measurement unit 3. Based on the pseudo spins ⁇ j and ⁇ k of , the interaction involving a certain pseudo spin pulse SPi (proportional coefficient with respect to ⁇ i ⁇ i ⁇ J ij ⁇ j ⁇ K ijk ⁇ j ⁇ k ) calculate.
  • the interaction calculation unit 4 inputs the coupling coefficients ⁇ i , J ij , and K ijk of the Ising model.
  • the interaction implementation unit 5 controls the amplitude and phase of light injected with respect to a certain pseudo spin pulse SPi, thereby allowing mutual interaction involving a pseudo spin pulse SPi temporarily calculated by the interaction calculation unit 4.
  • the magnitude and sign of the action are provisionally implemented.
  • the interaction mounting unit 5 generates an injection light pulse with respect to a certain pseudo spin pulse SPi using the local oscillation pulse LO.
  • the pseudo spin measurement unit 6 is configured such that a plurality of pseudo spin pulses SP1 to SP4 are in a steady state in a process in which a feedback loop composed of the provisional spin measurement unit 3, the interaction calculation unit 4, and the interaction implementation unit 5 is repeated. After reaching, the pseudo spins ⁇ 1 to ⁇ 4 of the plurality of pseudo spin pulses SP1 to SP4 are measured by measuring the phases of the plurality of pseudo spin pulses SP1 to SP4. Specifically, the pseudo spin measurement unit 6 performs homodyne detection on the plurality of pseudo spin pulses SP1 to SP4 using the local oscillation pulse LO.
  • the pseudo spin measurement unit 6 outputs the spins ⁇ 1 to ⁇ 4 of the Ising model
  • the Ising model is demapped to an NP complete problem or the like.
  • the pump energy is controlled by the degenerate optical parametric oscillator 1, and one oscillation mode in which the threshold gain becomes the lowest in the entire network of the plurality of pseudo spin pulses SP1 to SP4 is started, and the plurality of pseudo spin pulses SP1
  • the oscillation phase of .about.SP4 is measured, and the direction of each Ising spin corresponding to the plurality of pseudo spin pulses SP1 to SP4 is measured.
  • a degenerate optical parametric amplification step may be inserted between the provisional spin measurement step and the interaction implementation step.
  • a degenerate optical parametric amplification step may be inserted between the provisional spin measurement step and the interaction implementation step.
  • the oscillation phase 0 of the local oscillation pulse LO does not change from the initial state to the steady state.
  • the oscillation phase ⁇ (t) of each pseudo spin pulse SP takes 0 or ⁇ at random in the initial state (each pseudo spin pulse SP is degenerate optically parametrically oscillated by the degenerate optical parametric oscillator 1).
  • the interaction mounting unit 5 makes it easy for an oscillation mode in which the oscillation phase ⁇ (steady state) of the pseudo spin pulse SP is 0 to rise.
  • the interaction mounting unit 5 makes it easy for the oscillation mode in which the oscillation phase ⁇ (steady state) of the pseudo spin pulse SP is ⁇ to rise.
  • the interaction mounting unit 5 makes it easy for the oscillation mode in which the oscillation phases ⁇ (stationary) of the two pseudo spin pulses SP are in phase to rise.
  • the interaction mounting unit 5 makes it easy to start an oscillation mode in which the oscillation phase ⁇ (steady state) of the two pseudo spin pulses SP is opposite in phase.
  • the interaction mounting unit 5 can either (1) an oscillation mode in which the oscillation phase ⁇ (stationary) of the three pseudo spin pulses SP is 0, or (2) an oscillation phase of the two pseudo spin pulses SP.
  • An oscillation mode in which ⁇ (steady state) is ⁇ and the oscillation phase ⁇ (steady state) of one pseudo spin pulse SP is 0 is made to rise easily.
  • the interaction mounting unit 5 can either (1) an oscillation mode in which the oscillation phase ⁇ (stationary) of the three pseudo spin pulses SP is ⁇ , or (2) an oscillation phase of the two pseudo spin pulses SP.
  • An oscillation mode in which ⁇ (steady state) is 0 and the oscillation phase ⁇ (steady state) of one pseudo spin pulse SP is ⁇ is made to rise easily.
  • one oscillation mode is caused to rise as a whole, and in each pseudo spin pulse SP, the above-described oscillation mode may actually rise, or may not necessarily rise. Sometimes not.
  • is real time.
  • ⁇ S is the attenuation factor of the signal light in the resonator.
  • C i and S i are the intensities of the I component and the Q component before normalization, respectively.
  • ⁇ p is the intracavity attenuation factor of the pump light.
  • is a degenerate optical parametric gain.
  • F p is a pump rate before normalization.
  • -C i in Equation 2 and -s i in Equation 3 are terms related to the intracavity loss.
  • + Pc i in Equation 2 and ⁇ ps i in Equation 3 are terms related to linear gain.
  • -(C i 2 + s i 2 ) c i in Formula 2 and-(c i 2 + s i 2 ) s i in Formula 3 are terms related to saturation gain.
  • the terms related to ⁇ i in Equations 2 and 3 are terms related to one-body interaction, and are perturbed terms due to light injection with respect to the Van der Pol equation.
  • the interaction mounting unit 5 generates an injection light pulse for mounting one interaction (proportional coefficient with respect to ⁇ i -proportional to - ⁇ i and - ⁇ i ) with respect to the pseudo spin pulse SPi. How to do it.
  • the interaction calculation unit 4 calculates the interaction of one body (proportional coefficient with respect to ⁇ i ⁇ proportional to ⁇ i ⁇ i ).
  • ⁇ i positive
  • the interaction mounting unit 5 performs phase modulation to maintain the oscillation phase as it is with respect to the local oscillation pulse LO (oscillation phase 0), and performs amplitude modulation proportional to
  • ⁇ i When ⁇ i is negative, the interaction mounting unit 5 performs phase modulation for delaying the oscillation phase by ⁇ with respect to the local oscillation pulse LO (oscillation phase 0), and performs amplitude modulation proportional to
  • Equations 2 and 3 are terms related to the interaction between the two bodies, and are perturbed terms due to light injection with respect to the Van der Pol equation.
  • Interaction mounting portion 5 with respect to pseudo spin pulse SPi, injection for implementing interaction of two bodies (- ⁇ ij ⁇ j proportional to a proportional coefficient - ⁇ J ij ⁇ j the same sign for sigma i)
  • a method for generating an optical pulse will be described.
  • the provisional spin measurement unit 3 measures the oscillation phase ⁇ j (t) and the pseudo spin ⁇ j of the pseudo spin pulse SPj before this round.
  • the interaction calculation unit 4 calculates the interaction between two bodies (proportional coefficient with respect to ⁇ i - ⁇ ij ⁇ ⁇ j proportional to ⁇ J ij ⁇ j ).
  • the interaction implementation unit 5 shifts the oscillation phase to ⁇ j (t) with respect to the local oscillation pulse LO (oscillation phase 0). Phase modulation without dephasing is performed, amplitude modulation proportional to
  • the interaction mounting unit 5 When ⁇ ij is negative for the i-th and j-th sites, the interaction mounting unit 5 further shifts the oscillation phase to ⁇ j (t) with respect to the local oscillation pulse LO (oscillation phase 0). Phase modulation is performed for dephasing, amplitude modulation proportional to
  • the terms related to ⁇ ijk in Equations 2 and 3 are terms related to the interaction of the three bodies, and are perturbed terms due to light injection with respect to the Van der Pol equation.
  • the interaction implementation unit 5 implements three-body interaction (proportional coefficient with respect to ⁇ i ⁇ K ijk ⁇ j ⁇ k ) proportional to the same sign as ⁇ K ijk ⁇ j ⁇ k with respect to the pseudo spin pulse SPi. A method of generating an injection light pulse for the purpose will be described.
  • the provisional spin measurement unit 3 measures the oscillation phases ⁇ j (t) and ⁇ k (t) of the pseudo spin pulses SPj and SPk and the pseudo spins ⁇ j and ⁇ k before this round. .
  • the interaction calculation unit 4 calculates a three-body interaction (proportional coefficient with respect to ⁇ i - ⁇ ijk ⁇ j ⁇ k proportional to ⁇ K ijk ⁇ j ⁇ k ).
  • the interaction mounting unit 5 sets the oscillation phase to ⁇ jk (t) described later with respect to the local oscillation pulse LO (oscillation phase 0).
  • Phase modulation that is shifted but not further reversed is performed, amplitude modulation proportional to
  • the interaction mounting unit 5 sets the oscillation phase to ⁇ jk (t) described later with respect to the local oscillation pulse LO (oscillation phase 0). Then, phase modulation is performed to further reverse the phase, and amplitude modulation proportional to
  • the interaction mounting unit 5 generates the injection light pulse as described above for all combinations between the i, j, and kth sites.
  • pseudo spin pulse SPi to implement (- ⁇ ijk ⁇ j ⁇ k which is proportional to the proportionality factor - ⁇ K ijk ⁇ j ⁇ k for sigma i) interaction of three bodies, the pseudo spin It is not sufficient to superimpose the pulses SPi, SPj, SPk linearly.
  • Equations 2 and 3 become Equations 4 and 5, respectively.
  • P ⁇ (c i 2 + s i 2 ) in Expression 2 is a saturation gain for the pseudo spin pulse SPi.
  • the saturation gain for the entire network is equal to the photon attenuation factor for the entire network, the I component c i is a finite value, but the Q component s i is zero. Therefore, the photon attenuation rate ⁇ for the entire network is expressed by Equation 6.
  • Equation 6 the first term on the rightmost side of Equation 6 represents the zeroth-order contribution of the perturbation when the third to fifth terms on the left side of Equation 4 are perturbed terms.
  • the second to fourth terms on the rightmost side of Equation 6 indicate the first-order contribution of perturbation when the third to fifth terms on the left side of Equation 4 are perturbed terms.
  • ⁇ i sgn (c i ) to sgn (c i (0) ) (where c i (0) is the 0th order contribution of perturbation) is used.
  • the oscillation phase state ⁇ i ⁇ that realizes the minimum photon attenuation rate ⁇ is selected as the entire laser system. That is, one specific oscillation mode is selected for the entire laser system. Then, due to the competition between the oscillation modes, one specific oscillation mode suppresses the other oscillation modes. That is, ⁇ in Expression 6 is minimized as the entire laser system.
  • M in Formula 6 is constant for the entire laser system. Therefore, as a whole laser system, ⁇ i ⁇ i ⁇ ij ⁇ i ⁇ j ⁇ ijk ⁇ i ⁇ j ⁇ k is minimized. That is, the ground state that minimizes the Ising Hamiltonian of Equation 1 is realized.
  • a first procedure of the Ising model quantum calculation method of the present disclosure is shown in FIG.
  • the first procedure since the number of Ising sites is 1000, 1000 pseudo spin pulses SP i propagate around the circuit. Then, each time one set of pseudo spin pulses ⁇ SP i ⁇ makes a round, a provisional spin measurement step and an interaction implementation step are executed.
  • the pseudo Ising interaction between the pseudo spin pulses SP i is preferably close to the instantaneous interaction, and is preferably not a delayed interaction.
  • all pseudo spin pulse SP i is then "one round" of the ring resonator 2, interaction mounting portion 5 It is desirable that the interaction calculation unit 4 calculates the total interaction of the Ising model related to the total pseudo spin pulse SP i before the amplitude and phase of light injected into the total pseudo spin pulse SP i are controlled.
  • the time for the interaction calculation unit 4 to calculate the total interaction of the Ising model involving all pseudo spin pulses SP i increases in proportion to the square of the number of Ising sites (in the case of two Ising interactions). Therefore, when the number of Ising sites is large, the total pseudo spin pulse SP i becomes longer than the time for “one round” of the ring resonator 2 due to clock and memory limitations of the interaction calculation unit 4 (for example, FPGA). It is possible.
  • FIG. 3 shows a second procedure of the Ising model quantum calculation method of the present disclosure.
  • the second procedure since the number of Ising sites is 1000, 1000 pseudo spin pulses SP i propagate around the circuit. Then, in order to ensure a sufficient time for calculating the total interaction of the Ising model involving all pseudo spin pulses SP i, the time for which all pseudo spin pulses SP i “round the ring resonator 2” is effectively set. I decided to make it longer.
  • tentative spin measurement unit 3 exit the measurement of the pseudo spin pulse set ⁇ SP i ⁇ minutes, before resuming the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, Stop measurement.
  • the tentative spin measurement unit 3 from the end of the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, before restarting the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, ring
  • a plurality of pseudo spin pulses SP i propagating around the resonator 2 pass through the branch point from the ring resonator 2 to the provisional spin measurement unit 3 L times.
  • the plurality of pseudo spin pulses SP i that circulate around the ring resonator 2 pass through the branch points from the ring resonator 2 to the provisional spin measurement unit 3 L times, respectively, and the degenerate optical parametric oscillator 1 It only receives the loss due to the gain due to and the output to the feedback loop.
  • the interaction calculation unit 4 performs the measurement for one set of pseudo spin pulses ⁇ SP i ⁇ . Before restarting, calculate all interactions involving all pseudo spin pulses SP i based on the latest spin measurements. Furthermore, after the interaction calculation unit 4 finishes the calculation of the total interaction involving the total pseudo spin pulse SP i , the interaction implementation unit 5 determines the total pseudo spin pulse based on the calculation of the latest interaction. Controls the amplitude and phase of the light injected for SP i .
  • the interaction calculation unit 4 makes the total pseudo spin based on the latest spin measurement. All interactions involving the dynamic spin pulse SP i can be calculated with sufficient time margin. Specifically, while the plurality of pseudo spin pulses SP i pass through the branch point from the ring resonator 2 to the provisional spin measurement unit 3 L times, the interaction calculation unit 4 calculates the latest spin. Based on the measurements, all interactions involving all pseudo spin pulses SP i can be calculated with sufficient time margin.
  • FIG. 4 shows a third procedure of the Ising model quantum calculation method of the present disclosure.
  • the pseudo spin pulse SP i propagates 1000 times, and although it does not correspond to the number of Ising sites, 1000 dummy pulses propagate. .
  • the time for which all pseudo spin pulses SP i “round the ring resonator 2” is effectively set. I decided to make it longer.
  • the interaction calculation unit 4 calculates the total interaction of the Ising model related to all the pseudo spin pulses SP i , and the interaction calculation Have enough time to spare.
  • tentative spin measurement unit 3 exit the measurement of the pseudo spin pulse set ⁇ SP i ⁇ minutes, before resuming the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, Stop measurement.
  • the tentative spin measurement unit 3 from the end of the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, before restarting the measurement of the pseudo spin pulse set ⁇ SP i ⁇ min, ring A plurality of dummy pulses that circulate around the resonator 2 pass once through the branch points from the ring resonator 2 to the provisional spin measurement unit 3.
  • the plurality of dummy pulses that circulate around the ring resonator 2 pass through the branch points from the ring resonator 2 to the provisional spin measurement unit 3 once and gain and feedback by the degenerate optical parametric oscillator 1. It only suffers losses due to the output to the loop.
  • the interaction calculation unit 4 performs the measurement for one set of pseudo spin pulses ⁇ SP i ⁇ . Before restarting, calculate all interactions involving all pseudo spin pulses SP i based on the latest spin measurements. Furthermore, after the interaction calculation unit 4 finishes the calculation of the total interaction involving the total pseudo spin pulse SP i , the interaction implementation unit 5 determines the total pseudo spin pulse based on the calculation of the latest interaction. Controls the amplitude and phase of the light injected for SP i .
  • the interaction calculation unit 4 makes the total pseudo spin based on the latest spin measurement. All interactions involving the dynamic spin pulse SP i can be calculated with sufficient time margin. Specifically, while the plurality of dummy pulses each pass through the branch point from the ring resonator 2 to the provisional spin measurement unit 3 once, the interaction calculation unit 4 determines whether or not based on the latest spin measurement. All interactions involving all pseudo spin pulses SP i can be calculated with sufficient time margin.
  • FIG. 5 shows the stabilization of the phase characteristics of the Ising model quantum computing device of the present disclosure.
  • the resonance length of the ring resonator 2 may fluctuate with time as the installation environment (for example, temperature) of the Ising model quantum computing device Q fluctuates with time. Therefore, if the resonance length of the ring resonator 2 cannot be stabilized at a constant value, a degenerate optical parametric oscillator is generated each time a plurality of pseudo spin pulses propagate around the ring resonator 2 a plurality of times or a single time. 1 cannot stabilize the amplification intensity in the phase sensitive amplifier 10 in FIG. 1, the interference timing with the local oscillation light in the provisional spin measurement unit 3, and the interference timing with the injection pulse in the interaction mounting unit 5.
  • the pulse stabilization in the phase sensitive amplifier 10 in the degenerate optical parametric oscillator 1, the pulse phase measurement in the provisional spin measurement unit 3, and the interaction mounting in the interaction mounting unit 5 cannot be executed accurately, As a result, the calculation accuracy of the Ising model quantum computation device Q cannot be significantly improved.
  • phase characteristic of the Ising model quantum computing device Q is executed.
  • a reference signal used for phase characteristic calibration it is difficult to implement a plurality of pseudo spin pulses having an oscillation phase whose optimum solution is not known and an oscillation intensity that changes with time in the calculation process.
  • using a plurality of dummy pulses having a predetermined oscillation phase and a predetermined oscillation intensity as a reference signal used for phase characteristic calibration is simple in mounting.
  • the degenerate optical parametric oscillator 1 controls the oscillation phase and the oscillation intensity of the plurality of dummy pulses to a predetermined phase and a predetermined intensity, respectively.
  • the Ising model quantum computation device Q uses the plurality of dummy pulses as reference signals to calibrate the phase characteristics of the device Q itself. Therefore, in addition to the configuration shown in FIG. 1, the Ising model quantum computation device Q includes a ring resonance length control unit 7, a local oscillation light control unit 8, and an injection pulse control unit 9 as the configuration shown in FIG. 5. Further prepare.
  • the ring resonance length control unit 7 includes an optical measurement unit 71, a feedback control unit 72, and a phase control unit 73.
  • the plurality of dummy pulses and the plurality of pseudo spin pulses are input to the ring resonance length control unit 7 via the phase measurement point on the ring resonator 2 and the demultiplexing point to the local oscillation light control unit 8.
  • the resonance length of the ring resonator 2 does not vary with time, the amplification intensity in the phase sensitive amplifier 10 in the degenerate optical parametric oscillator 1 is stabilized, and therefore the oscillation intensity of the plurality of dummy pulses is determined in advance. To maximize the strength.
  • the amplification intensity in the phase sensitive amplifier 10 in the degenerate optical parametric oscillator 1 is not stabilized, so the oscillation intensity of the plurality of dummy pulses is set to a predetermined intensity. Not maximized.
  • the light measuring unit 71 measures the oscillation intensity of a plurality of dummy pulses.
  • the phase control unit 73 controls the resonance length of the ring resonator 2.
  • the feedback control unit 72 performs feedback control of the phase control unit 73 so that the oscillation intensity measured by the light measurement unit 71 is maximized to a predetermined intensity.
  • the feedback control unit 72 can apply a PDH (Pound-Drever-Hall) method, an FM (Frequency Modulation) sideband method, or the like, which is a technique for stabilizing the laser oscillation frequency.
  • the local oscillation light control unit 8 includes a light measurement unit 81, a feedback control unit 82, and a phase control unit 83.
  • the plurality of dummy pulses and the plurality of pseudo spin pulses are input to the local oscillation light control unit 8 via the phase measurement point on the ring resonator 2 and the demultiplexing point to the ring resonance length control unit 7.
  • the local oscillation light is input to the local oscillation light control unit 8 in the phase control unit 83.
  • the light measurement unit 81 outputs the interference result between the plurality of dummy pulses and the local oscillation light used by the provisional spin measurement unit 3 for phase measurement of the plurality of pseudo spin pulses.
  • the phase control unit 83 controls the interference timing between the plurality of pseudo spin pulses and the local oscillation light used by the temporary spin measurement unit 3 for phase measurement of the plurality of pseudo spin pulses.
  • the feedback control unit 82 feedback-controls the phase control unit 83 so that the interference result output from the light measurement unit 81 is a predetermined interference result assumed from the predetermined oscillation phases of the plurality of dummy pulses.
  • the light measurement unit 81, the phase control unit 83, and the multiplexing point shown in FIG. 5 can be used in common between the provisional spin measurement unit 3 and the local oscillation light control unit 8.
  • the injection pulse control unit 9 includes an optical measurement unit 91, a feedback control unit 92, and a phase control unit 93.
  • the plurality of dummy injection pulses and the plurality of spin injection pulses are input to the injection pulse control unit 9 in the phase control unit 93.
  • the plurality of dummy injection pulses are pulses having a predetermined oscillation phase that the interaction mounting unit 5 uses for light injection into the plurality of dummy pulses.
  • the plurality of spin injection pulses are pulses having an oscillation phase in consideration of the interaction, which is used by the interaction mounting unit 5 for light injection into the plurality of pseudo spin pulses.
  • the plurality of dummy pulses and the plurality of pseudo spin pulses propagating around the ring resonator 2 and the plurality of dummy injection pulses and the plurality of spin injection pulses output from the phase controller 93 are the light injection points on the ring resonator 2. Are combined. A plurality of pulses combined at the light injection point on the ring resonator 2 are demultiplexed toward the ring resonator 2 and the light measurement unit 91.
  • the light measuring unit 91 outputs the interference result between the plurality of dummy pulses and the plurality of dummy injection pulses having a predetermined oscillation phase used by the interaction mounting unit 5 for light injection into the plurality of dummy pulses.
  • the phase control unit 93 includes a plurality of pseudo spin pulses and a plurality of spin injection pulses having an oscillation phase that takes into account the interaction used by the interaction mounting unit 5 for light injection into the plurality of pseudo spin pulses. Control interference timing.
  • the feedback control unit 92 feedback-controls the phase control unit 93 so that the interference result output from the light measurement unit 91 becomes a predetermined interference result assumed from the predetermined oscillation phases of the plurality of dummy pulses.
  • the light injection point on the phase control unit 93 and the ring resonator 2 can be used in common between the interaction mounting unit 5 and the injection pulse control unit 9.
  • Calibration and Ising model calculation may be executed in parallel.
  • Ising model calculation may be executed after the calibration is completed.
  • the ring resonance length control unit 7, the local oscillation light control unit 8, and the injection pulse control unit 9 grasp the boundaries between the dummy pulses and the plurality of pseudo spin pulses and their numbers. Is desirable.
  • the resonance length of the ring resonator 2 fluctuates over time in accordance with the time variation of the installation environment (for example, temperature) of the Ising model quantum computation device Q, the resonance length of the ring resonator 2 is kept constant. Can be stabilized. Therefore, every time a plurality of pseudo spin pulses propagate around the ring resonator 2 a plurality of times or singly, the amplification intensity in the phase sensitive amplifier 10 in the degenerate optical parametric oscillator 1 and the local oscillation in the provisional spin measurement unit 3 The interference timing with the light and the interference timing with the injection pulse in the interaction mounting unit 5 can be stabilized.
  • the pulse stabilization in the phase sensitive amplifier 10 in the degenerate optical parametric oscillator 1, the pulse phase measurement in the provisional spin measurement unit 3, and the interaction mounting in the interaction mounting unit 5 can be accurately executed, and consequently The calculation accuracy of the Ising model quantum computation device Q can be greatly improved.
  • Equation 7 the Ising Hamiltonian is expressed by Equation 7 and the rate equation is expressed by Equations 8 and 9 without considering the interaction between the 1 body and the 3 bodies, and considering only the interaction between the 2 bodies.
  • Equations 8 and 9 whether or not the operation of the Ising model quantum computing device Q as a whole is not unstable and the possibility of an erroneous answer is low is determined not only by the feedback delay L-round, but also by a coupling coefficient. It can be seen that it depends on ⁇ and the pump rate p.
  • FIGS. 8 shows the calculation result of the random graph quantum calculation when the coupling coefficient ⁇ is not compensated with the feedback delay L-round and when it is compensated in the second procedure.
  • the number of vertices is 800
  • the average degree ⁇ k> is 47.94
  • the degree distribution is a binomial distribution.
  • the behavior of the I component c i oscillating is not seen in the feedback delays 0 and 1 and the quantum calculation accuracy is high.
  • the I component c i is Although an oscillating behavior can be seen, the I component c i does not oscillate between positive and negative, and the quantum calculation accuracy is maintained.
  • the upper part of FIG. 8 shows a case where the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>, and the lower part of FIG. 8 shows a case where the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>.
  • the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>, the positive and negative of the I component c i is greater than 4, when the feedback delay is 4, 5 or more times, compared to when the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>. It can be seen that the vibration during the period is intense.
  • the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>. However, as a modification, the coupling coefficient ⁇ may be simply normalized by ⁇ k>.
  • FIG. 9 and 10 respectively show the time evolution of the quantum computation of the scale free graph when the coupling coefficient ⁇ is not compensated with the feedback delay L-round and when it is compensated in the second procedure.
  • FIG. 11 shows the calculation result of the quantum calculation of the scale free graph when the coupling coefficient ⁇ is not compensated with the feedback delay L-round and when it is compensated in the second procedure.
  • the number of vertices is 800, the average order ⁇ k> is 11.735, and the degree distribution is a power law.
  • the pump rate p 1.1
  • the coupling coefficient ⁇ ′ (L + 1)
  • the coupling coefficient ⁇ is compensated by the feedback delay L-round.
  • the behavior that the I component c i oscillates is not seen in the feedback delays 0 and 1, and the quantum calculation accuracy is high.
  • the I component c i is Although an oscillating behavior can be seen, the I component c i does not oscillate between positive and negative, and the quantum calculation accuracy is maintained.
  • the upper part of FIG. 11 shows the case where the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>, and the lower part of FIG. 11 shows the case where the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>.
  • the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>, the positive and negative of the I component c i can be obtained even when the feedback delay is 4, 5 or more rounds, as in the case where the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>. It can be seen that the vibration during the period is not intense.
  • FIGS. 12 and 13 show the time evolution of the quantum computation of the complete graph when the coupling coefficient ⁇ is not compensated with the feedback delay L-round and when it is compensated in the second procedure, respectively.
  • FIG. 14 shows the calculation results of the quantum calculation of the complete graph when the coupling coefficient ⁇ is not compensated with the feedback delay L-round and when it is compensated in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 799
  • the order distribution is a uniform distribution.
  • the behavior that the I component c i oscillates is not seen in the feedback delays 0 and 1, and the quantum calculation accuracy is high.
  • the I component c i is Although an oscillating behavior can be seen, the I component c i does not oscillate between positive and negative, and the quantum calculation accuracy is maintained.
  • the upper part of FIG. 14 shows the case where the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>, and the lower part of FIG. 14 shows the case where the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>.
  • the coupling coefficient ⁇ is not normalized by ⁇ ⁇ k>, the positive and negative of the I component c i is greater than 4, when the feedback delay is 4, 5 or more times, compared to when the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>. It can be seen that the vibration during the period is intense.
  • the coupling coefficient ⁇ is normalized by ⁇ ⁇ k>. However, as a modification, the coupling coefficient ⁇ may be simply normalized by ⁇ k>.
  • FIG. 15 shows the calculation result of the random graph quantum calculation in the case where the pump rate p is compensated by the feedback delay L-round in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 47.94
  • the degree distribution is a binomial distribution.
  • the calculation time in FIG. 15 is (L + 1) times the calculation time in FIGS.
  • the quantum calculation accuracy is high at the feedback delay of 0 to 2 laps, and the quantum calculation accuracy is sharply reduced at the feedback delay of 2 to 4 laps. At 10 laps, the quantum calculation accuracy is stagnant.
  • the quantum calculation accuracy is high at the feedback delay of 0 to 8 laps, and the quantum calculation accuracy is sharply reduced at the feedback delay of 8 to 10 laps.
  • the quantum calculation accuracy is high in the feedback delay of 0 to 10 turns.
  • FIG. 16 shows the calculation result of the quantum computation of the scale free graph when the pump rate p is compensated by the feedback delay L-round in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 11.735
  • the degree distribution is a power law.
  • the calculation time in FIG. 16 is (L + 1) times the calculation time in FIGS.
  • the quantum calculation accuracy decreases monotonously as the feedback delay increases.
  • the quantum calculation accuracy is high although there is a slight monotonous decrease in the feedback delay of 0 to 10 laps.
  • the quantum calculation accuracy is high in the feedback delay of 0 to 10 turns.
  • the quantum calculation accuracy monotonously decreases as the feedback delay increases.
  • FIG. 17 shows the calculation result of the quantum calculation of the complete graph when the pump rate p is compensated by the feedback delay L-round in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 799
  • the order distribution is a uniform distribution.
  • the calculation time in FIG. 17 is (L + 1) times the calculation time in FIGS.
  • the quantum calculation accuracy is high in the feedback delay 0 to 3 laps, and the quantum calculation accuracy is sharply lowered in the feedback delay 3 to 4 laps. At 10 laps, the quantum calculation accuracy is stagnant.
  • the quantum calculation accuracy is high in the feedback delays 0 to 9 and the quantum calculation accuracy is sharply decreased in the feedback delays 9 to 10.
  • the quantum calculation accuracy is high in the feedback delay of 0 to 10 turns.
  • the coupling coefficient ⁇ is compensated by the feedback delay L circumference, while the pump rate p is fixed regardless of the feedback delay L circumference.
  • the pump rate p is compensated by the feedback delay L circumference, while the coupling coefficient ⁇ is fixed regardless of the feedback delay L circumference.
  • FIG. 18 shows the calculation results of the random graph quantum calculation when the coupling coefficient ⁇ and the pump rate p are variable in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 47.94
  • the degree distribution is a binomial distribution, as in the random graphs in FIGS. .
  • the coupling coefficient ⁇ in FIG. 18 is the one before being normalized by ⁇ ⁇ k>.
  • FIG. 19 shows the calculation result of the quantum computation of the scale free graph when the coupling coefficient ⁇ and the pump rate p are variable in the second procedure.
  • the number of vertices is 800
  • the average order ⁇ k> is 11.735
  • the degree distribution is a power law. is there.
  • the coupling coefficient ⁇ in FIG. 19 is the one before being normalized by ⁇ ⁇ k>.
  • the feedback delay is sufficient in a short time, and the coupling coefficient ⁇ and The region of the pump rate p can be easily searched without having to solve the combinatorial optimization problem of (coupling coefficient ⁇ , pump rate p) strictly.
  • the region of the coupling coefficient ⁇ and the pump rate p that gives high quantum calculation accuracy when the feedback delay is zero is employed.
  • the pump rate p is fixed regardless of the feedback delay L circumference.
  • the coupling coefficient ⁇ is fixed regardless of the feedback delay L circumference.
  • the Ising model quantum computing device of the present disclosure is suitable for solving NP complete problems mapped to the Ising model at high speed and easily, and can operate the entire system even when the number of Ising sites increases. Stabilize and reduce the possibility of incorrect answers.
  • LO local oscillation pulse 1: degenerate optical parametric oscillator 2: ring resonator 3: provisional spin measurement unit 4: interaction calculation unit 5 : Interaction implementation unit 6: Pseudo spin measurement unit 7: Ring resonance length control unit 8: Local oscillation light control unit 9: Injection pulse control unit 10: Phase sensitive amplifiers 71 and 81, 91: Light measurement units 72 and 82, 92: Feedback control units 73, 83, 93: Phase control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Optics & Photonics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Algebra (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

イジングスピン測定ステップは、全イジングスピン1セット分{σ}の測定を終了してから、全イジングスピン1セット分{σ}の測定を再開するまで、測定を中断する。イジング相互作用計算ステップは、イジングスピン測定ステップが、全イジングスピン1セット分{σ}の測定を終了してから、全イジングスピン1セット分{σ}の測定を再開するまでに、直近のイジングスピンσの測定に基づいて、全イジングスピンσが関わる全イジング相互作用を十分な時間の余裕を持って計算することができる。

Description

イジングモデルの量子計算装置
 本開示は、イジングモデルを容易に解くことにより、イジングモデルにマッピングされるNP完全問題などを容易に解くことができる量子計算装置を提供する。
 イジングモデルは、元来は磁性材料のモデルとして研究されてきたが、最近はNP完全問題などからマッピングされるモデルとして注目されている。しかし、イジングモデルは、サイト数が大きいときには、解くことが非常に困難になる。そこで、イジングモデルを実装する量子アニールマシンや量子断熱マシンが提案されている。
 量子アニールマシンでは、イジング相互作用及びゼーマンエネルギーを物理的に実装してから、系を十分に冷却して基底状態を実現して、基底状態を観測することにより、イジングモデルを解いている。しかし、サイト数が大きいときには、系が冷却の過程で準安定状態にトラップされ、また準安定状態の数はサイト数に対して指数関数的に増大するため、系が準安定状態から基底状態になかなか緩和されないという問題があった。
 量子断熱マシンでは、横磁場ゼーマンエネルギーを物理的に実装してから、系を十分に冷却して横磁場ゼーマンエネルギーのみの基底状態を実現する。そして、横磁場ゼーマンエネルギーを徐々に下げ、またイジング相互作用を徐々に物理的に実装していき、イジング相互作用及び縦磁場ゼーマンエネルギーを含む系の基底状態を実現して、その基底状態を観測することにより、イジングモデルを解いている。しかし、サイトの数が大きいときには、横磁場ゼーマンエネルギーを徐々に下げ、またイジング相互作用を徐々に物理的に実装する速度はサイト数に対して指数関数的に遅くする必要があるという問題があった。
 NP完全問題などをイジングモデルにマッピングし、そのイジングモデルを物理的なスピン系で実装するときには、物理的に近くに位置するサイト間のイジング相互作用は大きく、物理的に遠くに位置するサイト間のイジング相互作用は小さいという自然法則が問題となる。NP完全問題をマッピングした人工的なイジングモデルでは、物理的に近くに位置するサイト間のイジング相互作用が小さいことがあり、物理的に遠くに位置するサイト間のイジング相互作用が大きいことがありえるからである。この自然なスピン系へのマッピングの難しさも、NP完全問題などを容易に解くことを困難にしていた。
特許第5354233号公報 特開2014-134710号公報
Z.Wang,A.Marandi,K.Wen,R.L.Byer and Y.Yamamoto,"A Coherent Ising Machine Based on Degenerate Optical Parametric Oscillators,"Phys.Rev.A88,063853(2013).
 上記の問題を解決するための特許文献1、2及び非特許文献1について説明する。NP完全問題は、磁性体のイジングモデルに置き換え可能であり、磁性体のイジングモデルは、レーザー又はレーザーパルスのネットワークに置き換え可能である。
 ここで、磁性体のイジングモデルでは、相互作用する原子ペアにおいて、スピン配列のエネルギーが最低となるように、スピンの方向は、逆方向(反強磁性の相互作用の場合)又は同方向(強磁性の相互作用の場合)を指向しようとする。
 一方で、レーザー又はレーザーパルスのネットワークでは、相互作用するレーザーペア又はレーザーパルスペアにおいて、発振モードの閥値利得が最低となるように、発振の偏光若しくは位相は、逆回転若しくは逆位相(反強磁性の相互作用の場合)又は同回転若しくは同位相(強磁性の相互作用の場合)を指向しようとする。
 つまり、1つのレーザーペア又はレーザーパルスペアからなるシステムでは、発振モードの閥値利得が最低となるように、発振の偏光又は位相を最適化することができる。しかし、多くのレーザーペア又はレーザーパルスペアからなるシステムでは、「ある」レーザーペア又はレーザーパルスペアで発振の偏光又は位相を最適化しようとすれば、「他の」レーザーペア又はレーザーパルスペアで発振の偏光又は位相を最適化できない。そこで、多くのレーザーペア又はレーザーパルスペアからなるシステムでは、レーザー又はレーザーパルスのネットワークの「全体」として発振の偏光又は位相の「妥協点」を探索する。
 ただし、レーザー又はレーザーパルスのネットワーク全体で発振の偏光又は位相を最適化するときには、各々のレーザーペア又はレーザーパルスペアで別個の発振モードを立ち上げるのではなく、レーザー又はレーザーパルスのネットワーク全体で1つの発振モードを立ち上げるように、各レーザー間又は各レーザーパルス間で同期を図る必要がある。
 このように、特許文献1、2及び非特許文献1では、各レーザー又は各レーザーパルスについてポンプエネルギーを制御し、レーザー又はレーザーパルスのネットワーク全体で閾値利得が最低となる1つの発振モードを立ち上げ、各レーザー又は各レーザーパルスの発振の偏光又は位相を測定し、ひいては各イジングスピンの方向を測定する。よって、量子アニールマシン及び量子断熱マシンにおける準安定状態へのトラップの問題及びイジング相互作用の実装速度の問題を解決することができる。
 そして、特許文献1、2及び非特許文献1では、物理的に近くに位置するサイト間のイジング相互作用の大きさのみならず、物理的に遠くに位置するサイト間のイジング相互作用の大きさも自由に制御することができる。よって、サイト間の物理的距離とは無関係に、NP完全問題などからマッピングされた人工的なイジングモデルを解くことができる。
 次に、特許文献1、2について、具体的に説明する。まず、2つの面発光レーザーの間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーの間の擬似的なイジング相互作用の大きさ及び符号を実装する。次に、各々の面発光レーザーが光を交換する過程で定常状態に到達した後に、各々の面発光レーザーの発振の偏光又は位相を測定することにより、各々の面発光レーザーの擬似的なイジングスピンを測定する。
 ここで、面発光レーザーのネットワーク全体で、発振の偏光又は位相を最適化した1つの発振モードを立ち上げるためには、面発光レーザーの間で同期を図る必要がある。そこで、マスターレーザーから面発光レーザーへの注入同期を用いて、面発光レーザーの発振周波数を同一周波数に揃えている。しかし、面発光レーザーの自走周波数は、マスターレーザーの発振周波数と若干異なるため、初期状態での面発光レーザーの発振の位相は、定常状態での面発光レーザーの発振の0相又はπ相のいずれかの位相の方向に偏ってしまう。よって、初期状態の位相偏りによる誤答が生じる可能性が高い。
 そして、イジングサイトがM個であるとき、面発光レーザーはM個必要であり、面発光レーザーの間の光路部はM(M-1)/2個必要である。さらに、面発光レーザーの間の光路部の長さを正確に調節しなければ、面発光レーザーの間の擬似的なイジング相互作用の大きさ及び符号を正確に実装することができない。よって、イジングサイトが多数になると、イジングモデルの量子計算装置が大規模かつ複雑になる。
 次に、非特許文献1について、具体的に説明する。まず、2つのレーザーパルスの間で交換される光の振幅及び位相を制御することにより、2つのレーザーパルスの間の擬似的なイジング相互作用の大きさ及び符号を実装する。次に、各々のレーザーパルスが光を交換する過程で定常状態に到達した後に、各々のレーザーパルスの発振の位相を測定することにより、各々のレーザーパルスの擬似的なイジングスピンを測定する。
 ここで、レーザーパルスのネットワーク全体で、発振の位相を最適化した1つの発振モードを立ち上げるためには、レーザーパルスの間で同期を図る必要がある。そこで、縮退光パラメトリック発振器及びリング共振器を用いて、レーザーパルスの発振周波数を同一周波数に揃えている。そして、マスターレーザーによる注入同期を用いないで、縮退光パラメトリック発振器による下方変換を用いるため、初期状態でのレーザーパルスの発振の位相は、定常状態でのレーザーパルスの発振の0相又はπ相のいずれの位相の方向にも偏らない。よって、初期状態の位相偏りによる誤答が生じる可能性が低い。
 次に、非特許文献1に開示の技術を実現する第1の方法について、具体的に説明する。ここでは、リング共振器から分岐してリング共振器へと合流する、レーザーパルスの間の間隔に等しい長さを有する遅延線上に、レーザーパルスの間で交換される光の振幅及び位相を制御する変調器を配置する。そして、先行するレーザーパルスの一部は遅延線を伝搬し変調器で変調され、後続するレーザーパルスは遅延線を伝搬せずリング共振器を伝搬し、これらのレーザーパルスは合波され、よって、レーザーパルスの間で光が交換される。このように、リング共振器におけるレーザーパルスの周回伝搬が繰り返される過程で、レーザーパルスが定常状態に到達した後に、レーザーパルスの位相を測定する。
 つまり、イジングサイトがM個であるときには、遅延線は(M-1)種必要であり、変調器は(M-1)個必要である。そして、レーザーパルスの間の間隔に等しい長さを有する遅延線の長さを正確に調節しなければ、レーザーパルスの間の擬似的なイジング相互作用の大きさ及び符号を正確に実装することができない。よって、イジングサイトが多数になると、第1の方法でも、イジングモデルの量子計算装置が大規模かつ複雑になる。
 次に、非特許文献1に開示の技術を実現する第2の方法について、具体的に説明する。ここでは、リング共振器から分岐する場所において、レーザーパルスの位相を測定する検波器を配置する。そして、イジングモデルの結合係数及び測定されたレーザーパルスの位相に基づいて、イジングモデルの相互作用を計算する計算機を配置する。さらに、リング共振器へと合流する場所において、計算されたイジングモデルの相互作用に基づいて、レーザーパルスに注入される光の振幅及び位相を制御する変調器を配置する。このように、検波器、計算機及び変調器により構成されるフィードバックループが繰り返される過程で、レーザーパルスが定常状態に到達した後に、レーザーパルスの位相を測定する。
 つまり、イジングサイトがM個であるときでも、検波器、計算機及び変調器はそれぞれ1個のみ必要である。そして、その長さを正確に調節すべき光路部(特許文献1、2)や遅延線(第1の方法)は不要である。よって、イジングサイトが多数になっても、第2の方法では、イジングモデルの量子計算装置が小規模かつ単純になる。
 ところで、レーザーパルスの間の擬似的なイジング相互作用は、瞬時相互作用に近いことが望ましく、遅延相互作用でないことが望ましい。よって、検波器が全レーザーパルスの位相を測定してから、全レーザーパルスがリング共振器を「1周」して、変調器が全レーザーパルスに注入される光の振幅及び位相を制御するまでに、計算機が全レーザーパルスが関わるイジングモデルの全相互作用を計算することが望ましい。
 しかし、計算機が全レーザーパルスが関わるイジングモデルの全相互作用を計算する時間は、イジングサイト数の自乗(2体のイジング相互作用の場合)に比例して増加するため、イジングサイト数が多数になると、計算機のクロックやメモリの制限により、全レーザーパルスがリング共振器を「1周」する時間より長くなることが考えられる。
 そこで、前記課題を解決するために、本開示は、イジングスピン測定ステップ、イジング相互作用計算ステップ及びイジング相互作用実装ステップにより構成されるフィードバックループが繰り返される過程で、全レーザーパルスが関わるイジングモデルの全相互作用を計算する時間を十分に確保することにより、イジングサイト数が多数になっても、系全体の動作を安定にして、誤答が生じる可能性を低くすることを目的とする。
 上記目的を達成するために、全レーザーパルスがリング共振器を「1周」する時間を実効的に長くすることとした。イジングスピン測定ステップは、全イジングスピン1セット分の測定を終了してから、全イジングスピン1セット分の測定を再開するまで、測定を中断する。イジング相互作用計算ステップは、イジングスピン測定ステップが、全イジングスピン1セット分の測定を終了してから、全イジングスピン1セット分の測定を再開するまでに、直近のイジングスピンの測定に基づいて、全イジングスピンが関わる全イジング相互作用を十分な時間の余裕を持って計算することができる。
 具体的には、本開示は、イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスを縮退光パラメトリック発振させる縮退光パラメトリック発振器と、前記複数の擬似的スピンパルスを周回伝搬させるリング共振器と、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定するにあたって、1セット分の測定を終了してから1セット分の測定を再開するまで測定を中断する暫定的スピン測定部と、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記イジングモデルの結合係数及び前記暫定的スピン測定部が直近に測定した前記複数の擬似的スピンパルスの擬似的なスピンに基づいて、前記複数の擬似的スピンパルスが関わる全相互作用を暫定的に計算する相互作用計算部と、前記相互作用計算部が前記複数の擬似的スピンパルスが関わる全相互作用の暫定的な計算を終了した後に、前記複数の擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が直近に計算した前記複数の擬似的スピンパルスが関わる全相互作用の大きさ及び符号を暫定的に実装する相互作用実装部と、前記暫定的スピン測定部、前記相互作用計算部及び前記相互作用実装部により構成されるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定部と、を備えることを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、全レーザーパルスがリング共振器を「1周」する時間を実効的に長くすることにより、イジング相互作用計算ステップは、直近のイジングスピンの測定に基づいて、全イジングスピンが関わる全イジング相互作用を十分な時間の余裕を持って計算することができる。
 また、本開示は、前記リング共振器は、前記イジングモデルの前記複数のスピンに擬似的に対応する、連続した前記複数の擬似的スピンパルスを周回伝搬させており、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記リング共振器を周回伝搬する前記複数の擬似的スピンパルスが、前記リング共振器から前記暫定的スピン測定部への分岐箇所をそれぞれ1回以上通過することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の擬似的スピンパルスが、リング共振器から暫定的スピン測定部への分岐箇所をそれぞれ1回以上通過する間に、イジング相互作用計算ステップは、直近のイジングスピンの測定に基づいて、全イジングスピンが関わる全イジング相互作用を十分な時間の余裕を持って計算することができる。
 また、本開示は、前記リング共振器は、前記イジングモデルの前記複数のスピンに擬似的に対応する、連続した前記複数の擬似的スピンパルスと、前記イジングモデルの前記複数のスピンに対応しない、連続した複数のダミーパルスと、を周回伝搬させており、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記リング共振器を周回伝搬する前記複数のダミーパルスが、前記リング共振器から前記暫定的スピン測定部への分岐箇所をそれぞれ1回通過することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数のダミーパルスが、リング共振器から暫定的スピン測定部への分岐箇所をそれぞれ1回通過する間に、イジング相互作用計算ステップは、直近のイジングスピンの測定に基づいて、全イジングスピンが関わる全イジング相互作用を十分な時間の余裕を持って計算することができる。
 また、本開示は、前記縮退光パラメトリック発振器は、前記複数のダミーパルスの発振位相及び発振強度を、それぞれ、予め定められた位相及び予め定められた強度に制御し、前記イジングモデルの量子計算装置は、前記複数のダミーパルスを参照信号として用いて、自装置の位相特性のキャリブレーションを実行することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、最適解が分かっていない発振位相及び計算過程で時間変化する発振強度を有する複数の疑似的スピンパルスを参照信号として用いず、予め定められた発振位相及び予め定められた発振強度を有する複数のダミーパルスを参照信号として用いて、イジングモデルの量子計算装置の位相特性のキャリブレーションを実行することができる。
 また、本開示は、前記複数のダミーパルスの発振強度が、前記予め定められた強度に最大化されるように、前記リング共振器の共振長を制御するリング共振長制御部、をさらに備えることを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、イジングモデルの量子計算装置の設置環境(例えば、温度等)が時間変動することに応じて、リング共振器の共振長が時間変動するときでも、リング共振器の共振長を一定値に安定化することができる。よって、複数の疑似的スピンパルスがリング共振器を複数回又は単数回だけ周回伝搬するたびに、縮退光パラメトリック発振器中の位相感応増幅器における増幅強度、暫定的スピン測定部における局部発振光との干渉タイミング、及び、相互作用実装部における注入パルスとの干渉タイミングを安定化することができる。そして、縮退光パラメトリック発振器中の位相感応増幅器におけるパルス安定化、暫定的スピン測定部におけるパルス位相測定、及び、相互作用実装部における相互作用実装を正確に実行することができ、ひいては、イジングモデルの量子計算装置の計算精度を大幅に向上させることができる。
 また、本開示は、前記複数のダミーパルスと、前記暫定的スピン測定部が前記複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉結果が、前記複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、前記複数の疑似的スピンパルスと、前記暫定的スピン測定部が前記複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉タイミングを制御する局部発振光制御部、をさらに備えることを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の疑似的スピンパルスがリング共振器を複数回又は単数回だけ周回伝搬するたびに、暫定的スピン測定部における局部発振光との干渉タイミングを安定化することができる。よって、暫定的スピン測定部におけるパルス位相測定を正確に実行することができ、ひいては、イジングモデルの量子計算装置の計算精度を大幅に向上させることができる。
 また、本開示は、前記複数のダミーパルスと、前記相互作用実装部が前記複数のダミーパルスへの光注入に用いる予め定められた発振位相を有する複数のダミー注入パルスと、の干渉結果が、前記複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、前記複数の疑似的スピンパルスと、前記相互作用実装部が前記複数の疑似的スピンパルスへの光注入に用いる相互作用が考慮された発振位相を有する複数のスピン注入パルスと、の干渉タイミングを制御する注入パルス制御部、をさらに備えることを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の疑似的スピンパルスがリング共振器を複数回又は単数回だけ周回伝搬するたびに、相互作用実装部における注入パルスとの干渉タイミングを安定化することができる。よって、相互作用実装部における相互作用実装を正確に実行することができ、ひいては、イジングモデルの量子計算装置の計算精度を大幅に向上させることができる。
 また、本開示は、前記相互作用実装部は、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでの期間が長いほど、前記複数の擬似的スピンパルスに対して注入される光の振幅を大きく制御することを特徴とするイジングモデルの量子計算装置である。
 スピンの測定及び相互作用の実装を中断するときには、スピンの測定及び相互作用の実装を中断しないときと比べて、レーザーパルスに対する注入強度が実効的に小さくなる。この構成によれば、スピンの測定及び相互作用の実装の中断期間が長いほど、レーザーパルスに対する注入強度を大きくすることにより、スピンの測定及び相互作用の実装を中断するときでも、スピンの測定及び相互作用の実装を中断しないときと同様に、レーザーパルスに対する注入強度及びポンプゲインのバランスを維持することができる。
 また、本開示は、前記縮退光パラメトリック発振器は、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでの期間が長いほど、前記複数の擬似的スピンパルスの縮退光パラメトリック発振のポンプレートを小さく制御することを特徴とするイジングモデルの量子計算装置である。
 スピンの測定及び相互作用の実装を中断するときには、スピンの測定及び相互作用の実装を中断しないときと比べて、レーザーパルスに対する注入強度が実効的に小さくなる。この構成によれば、スピンの測定及び相互作用の実装の中断期間が長いほど、レーザーパルスに対するポンプゲインを小さくすることにより、スピンの測定及び相互作用の実装を中断するときでも、スピンの測定及び相互作用の実装を中断しないときと同様に、レーザーパルスに対する注入強度及びポンプゲインのバランスを維持することができる。
 また、本開示は、前記相互作用実装部は、前記イジングモデルのグラフ平均次数が高いほど、前記複数の擬似的スピンパルスに対して注入される光の振幅を小さく制御することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、グラフ次数が高いレーザーパルスに対する注入強度を小さくすることにより、グラフ次数が高いイジングスピンがσ=±1の間で振動することを防止するため、系全体の動作が不安定とならず、誤答が生じる可能性が低くなる。
 以上に説明したように、本開示によれば、イジングスピン測定ステップ、イジング相互作用計算ステップ及びイジング相互作用実装ステップにより構成されるフィードバックループが繰り返される過程で、全レーザーパルスが関わるイジングモデルの全相互作用を計算する時間を十分に確保することにより、イジングサイト数が多数になっても、系全体の動作を安定にして、誤答が生じる可能性を低くすることができる。
本開示のイジングモデルの量子計算装置の構成を示す図である。 本開示のイジングモデルの量子計算方法の第1の手順を示す図である。 本開示のイジングモデルの量子計算方法の第2の手順を示す図である。 本開示のイジングモデルの量子計算方法の第3の手順を示す図である。 本開示のイジングモデルの量子計算装置の位相特性安定化を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合における、ランダムグラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償する場合における、ランダムグラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、ランダムグラフの量子計算の計算結果を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合における、スケールフリーグラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償する場合における、スケールフリーグラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、スケールフリーグラフの量子計算の計算結果を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合における、完全グラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償する場合における、完全グラフの量子計算の時間発展を示す図である。 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、完全グラフの量子計算の計算結果を示す図である。 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、ランダムグラフの量子計算の計算結果を示す図である。 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、スケールフリーグラフの量子計算の計算結果を示す図である。 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、完全グラフの量子計算の計算結果を示す図である。 第2の手順において結合係数ξ及びポンプレートpを可変とする場合における、ランダムグラフの量子計算の計算結果を示す図である。 第2の手順において結合係数ξ及びポンプレートpを可変とする場合における、スケールフリーグラフの量子計算の計算結果を示す図である。
 添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。
(本開示のイジングモデルの量子計算装置の構成及び原理)
 本開示のイジングモデルの量子計算装置Qの構成を図1に示す。本開示では、イジングハミルトニアンを、1体~3体の相互作用を含むとして、数式1のようにする。
Figure JPOXMLDOC01-appb-M000001
 縮退光パラメトリック発振器1は、イジングモデルの複数のスピンσ~σに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスSP1~SP4を縮退光パラメトリック発振させる。リング共振器2は、複数の擬似的スピンパルスSP1~SP4を周回伝搬させる。複数の擬似的スピンパルスSP1~SP4は、SP1、SP2、SP3、SP4、SP1、SP2、SP3、SP4、・・・の順序で、後述のフィードバックループに入る。
 暫定的スピン測定部3は、複数の擬似的スピンパルスSP1~SP4がリング共振器2を周回伝搬するたびに、複数の擬似的スピンパルスSP1~SP4の位相を暫定的に測定することにより、複数の擬似的スピンパルスSP1~SP4の擬似的なスピンσ~σを暫定的に測定する。具体的には、暫定的スピン測定部3は、局部発振パルスLOを用いて、複数の擬似的スピンパルスSP1~SP4に対して、ホモダイン検波を行う。
 相互作用計算部4は、ある擬似的スピンパルスSPiが関わるイジングモデルの結合係数λ、Jij、Kijk及び暫定的スピン測定部3が暫定的に測定した他の擬似的スピンパルスSPj、SPkの擬似的なスピンσ、σに基づいて、ある擬似的スピンパルスSPiが関わる相互作用(σに対する比例係数-λ-ΣJijσ-ΣKijkσσ)を暫定的に計算する。図1では、i、j、k=1~4の場合を示している。
 ここで、NP完全問題などが、イジングモデルにマッピングされた後、相互作用計算部4は、イジングモデルの結合係数λ、Jij、Kijkを入力する。
 相互作用実装部5は、ある擬似的スピンパルスSPiに対して注入される光の振幅及び位相を制御することにより、相互作用計算部4が暫定的に計算したある擬似的スピンパルスSPiが関わる相互作用(σに対する比例係数-λ-ΣJijσ-ΣKijkσσ)の大きさ及び符号を暫定的に実装する。具体的には、相互作用実装部5は、局部発振パルスLOを用いて、ある擬似的スピンパルスSPiに対して、注入光パルスを生成する。
 擬似的スピン測定部6は、暫定的スピン測定部3、相互作用計算部4及び相互作用実装部5により構成されるフィードバックループが繰り返される過程で、複数の擬似的スピンパルスSP1~SP4が定常状態に到達した後に、複数の擬似的スピンパルスSP1~SP4の位相を測定することにより、複数の擬似的スピンパルスSP1~SP4の擬似的なスピンσ~σを測定する。具体的には、擬似的スピン測定部6は、局部発振パルスLOを用いて、複数の擬似的スピンパルスSP1~SP4に対して、ホモダイン検波を行う。
 ここで、擬似的スピン測定部6が、イジングモデルのスピンσ~σを出力した後、イジングモデルは、NP完全問題などにデマッピングされる。
 このように、縮退光パラメトリック発振器1でポンプエネルギーを制御し、複数の擬似的スピンパルスSP1~SP4のネットワーク全体で閾値利得が最低となる1つの発振モードを立ち上げ、複数の擬似的スピンパルスSP1~SP4の発振位相を測定し、複数の擬似的スピンパルスSP1~SP4に対応する各イジングスピンの方向を測定する。
 図1の説明では、暫定的スピン測定ステップと相互作用実装ステップの間に、縮退光パラメトリック増幅ステップが入らない。この場合には、タイムラグがほとんど生じないため、イジングモデルのサイト間のほとんど遅延のない相互作用を実装することができる。
 変形例として、暫定的スピン測定ステップと相互作用実装ステップの間に、縮退光パラメトリック増幅ステップが入ってもよい。この場合には、タイムラグがある程度生じるものの、イジングモデルのサイト間の実質には遅延のない相互作用を実装することができる。
 図1における計算内容について詳述する。局部発振パルスLOの発振位相0は、初期状態から定常状態まで変化しない。各擬似的スピンパルスSPの発振位相φ(t)は、初期状態においては、0及びπのいずれかをランダムにとり(各擬似的スピンパルスSPは、縮退光パラメトリック発振器1により、縮退光パラメトリック発振されて、スクイーズド状態にある。)、定常状態においては、0及びπのいずれかをイジング相互作用に応じてとる。定常状態におけるφ(定常)=0、πは、それぞれ、σ=+1、-1に対応する。
 各擬似的スピンパルスSPについて、1体の相互作用の結合係数λが正であるときには、当該擬似的スピンパルスSPの擬似的なスピンσが+1であることが、エネルギー的に有利である。よって、相互作用実装部5は、当該擬似的スピンパルスSPの発振位相φ(定常)が0であるような発振モードが、立ち上がりやすいようにする。
 各擬似的スピンパルスSPについて、1体の相互作用の結合係数λが負であるときには、当該擬似的スピンパルスSPの擬似的なスピンσが-1であることが、エネルギー的に有利である。よって、相互作用実装部5は、当該擬似的スピンパルスSPの発振位相φ(定常)がπであるような発振モードが、立ち上がりやすいようにする。
 2つの擬似的スピンパルスSPについて、2体の相互作用の結合係数Jijが正であるときには、2つの擬似的スピンパルスSPの擬似的なスピンσが同符号であることが、エネルギー的に有利である。よって、相互作用実装部5は、2つの擬似的スピンパルスSPの発振位相φ(定常)が同相であるような発振モードが、立ち上がりやすいようにする。
 2つの擬似的スピンパルスSPについて、2体の相互作用の結合係数Jijが負であるときには、2つの擬似的スピンパルスSPの擬似的なスピンσが異符号であることが、エネルギー的に有利である。よって、相互作用実装部5は、2つの擬似的スピンパルスSPの発振位相φ(定常)が逆相であるような発振モードが、立ち上がりやすいようにする。
 3つの擬似的スピンパルスSPについて、3体の相互作用の結合係数Kijkが正であるときには、(1)3つの擬似的スピンパルスSPの擬似的なスピンσが+1であること、又は、(2)2つの擬似的スピンパルスSPの擬似的なスピンσが-1であり、1つの擬似的スピンパルスSPの擬似的なスピンσが+1であることが、エネルギー的に有利である。よって、相互作用実装部5は、(1)3つの擬似的スピンパルスSPの発振位相φ(定常)が0であるような発振モード、又は、(2)2つの擬似的スピンパルスSPの発振位相φ(定常)がπであり、1つの擬似的スピンパルスSPの発振位相φ(定常)が0であるような発振モードが、立ち上がりやすいようにする。
 3つの擬似的スピンパルスSPについて、3体の相互作用の結合係数Kijkが負であるときには、(1)3つの擬似的スピンパルスSPの擬似的なスピンσが-1であること、又は、(2)2つの擬似的スピンパルスSPの擬似的なスピンσが+1であり、1つの擬似的スピンパルスSPの擬似的なスピンσが-1であることが、エネルギー的に有利である。よって、相互作用実装部5は、(1)3つの擬似的スピンパルスSPの発振位相φ(定常)がπであるような発振モード、又は、(2)2つの擬似的スピンパルスSPの発振位相φ(定常)が0であり、1つの擬似的スピンパルスSPの発振位相φ(定常)がπであるような発振モードが、立ち上がりやすいようにする。
 もっとも、イジングモデルの量子計算装置Qの全体において、一体として1つの発振モードが立ち上がるようにするのであり、各擬似的スピンパルスSPにおいて、上述の発振モードが実際に立ち上がることもあれば、必ずしも立ち上がらないこともある。
 図1における計算原理について詳述する。各擬似的スピンパルスSP1、SP2、SP3、SP4において、I成分強度c及びQ成分強度sについて、レート方程式は、ファンデルポール方程式に対応して、数式2、3のようになる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 tは、無次元時間であり、t=γτ/2である。τは、実時間である。γは、シグナル光の共振器内減衰率である。c及びsは、それぞれ、規格化後のI成分及びQ成分の強度であり、c=C/A及びs=S/Aである。C及びSは、それぞれ、規格化前のI成分及びQ成分の強度である。規格化因子Aは、p(後述する規格化後のポンプレート)=2におけるシグナル光の強度であり、A=√(γγ/2κ)である。γは、ポンプ光の共振器内減衰率である。κは、縮退光パラメトリックゲインである。pは、規格化後のポンプレートであり、p=F/Fthである。Fは、規格化前のポンプレートである。規格化因子Fthは、閾値ポンプレートであり、Fth=γ√(γ)/4κである。
 数式2の-c及び数式3の-sは、共振器内損失に関わる項である。数式2の+pc及び数式3の-psは、線形利得に関わる項である。数式2の-(c +s )c及び数式3の-(c +s )sは、飽和利得に関わる項である。これらの項は、光注入による摂動項を含まない、ファンデルポール方程式を構成する。
 数式2、3のζが関わる項は、1体の相互作用に関わる項であり、ファンデルポール方程式に対する、光注入による摂動項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、1体の相互作用(σに対する比例係数-λと同符号で比例する-ζ)を実装するための注入光パルスを生成する方法を説明する。
 相互作用計算部4は、1体の相互作用(σに対する比例係数-λに比例する-ζ)を計算する。ζが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をそのまま維持する位相変調を行い、|ζ|に比例する振幅変調を行い、注入光パルスを生成する。ζが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をπだけ遅くする位相変調を行い、|ζ|に比例する振幅変調を行い、注入光パルスを生成する。
 数式2、3のξijが関わる項は、2体の相互作用に関わる項であり、ファンデルポール方程式に対する、光注入による摂動項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数-ΣJijσと同符号で比例する-Σξijσ)を実装するための注入光パルスを生成する方法を説明する。
 暫定的スピン測定部3は、本周回前に、擬似的スピンパルスSPjの発振位相φ(t)及び擬似的なスピンσを測定している。相互作用計算部4は、2体の相互作用(σに対する比例係数-ΣJijσに比例する-Σξijσ)を計算する。i、j番目のサイト間について、ξijが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφ(t)に移すが更なる逆相化を施さない位相変調を行い、|ξij|に比例する振幅変調を行い、注入光パルスを生成する。i、j番目のサイト間について、ξijが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφ(t)に移して更なる逆相化を施す位相変調を行い、|ξij|に比例する振幅変調を行い、注入光パルスを生成する。相互作用実装部5は、i、j番目のサイト間の全組み合わせについて、上述のように注入光パルスを生成する。
 数式2、3のχijkが関わる項は、3体の相互作用に関わる項であり、ファンデルポール方程式に対する、光注入による摂動項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数-ΣKijkσσと同符号で比例する-Σχijkσσ)を実装するための注入光パルスを生成する方法を説明する。
 暫定的スピン測定部3は、本周回前に、擬似的スピンパルスSPj、SPkの発振位相φ(t)、φ(t)及び擬似的なスピンσ、σを測定している。相互作用計算部4は、3体の相互作用(σに対する比例係数-ΣKijkσσに比例する-Σχijkσσ)を計算する。i、j、k番目のサイト間について、χijkが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相を後述するφjk(t)に移すが更なる逆相化を施さない位相変調を行い、|χijk|に比例する振幅変調を行い、注入光パルスを生成する。i、j、k番目のサイト間について、χijkが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相を後述するφjk(t)に移して更なる逆相化を施す位相変調を行い、|χijk|に比例する振幅変調を行い、注入光パルスを生成する。相互作用実装部5は、i、j、k番目のサイト間の全組み合わせについて、上述のように注入光パルスを生成する。
 ここで、φjk(t)はσσ=cosφjk(t)を満たすところ、φjk(t)をこのように定義する必要がある理由を説明する。つまり、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数-ΣJijσに比例する-Σξijσ)を実装するためには、擬似的スピンパルスSPi、SPjを線形に重ね合わせるのみで足りる。しかし、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数-ΣKijkσσに比例する-Σχijkσσ)を実装するためには、擬似的スピンパルスSPi、SPj、SPkを線形に重ね合わせるのみでは足らない。
 しかし、擬似的スピンパルスSPi、SPj、SPkの間の非線形効果を利用すれば、イジングモデルの量子計算装置Qの回路構成が複雑になる。そこで、σσ=cosφjk(t)とおけば、擬似的スピンパルスSPi及び注入光パルスの間の線形の重ね合わせが利用できて、イジングモデルの量子計算装置Qの回路構成が簡易になる。
 さらに、各擬似的スピンパルスSPi及び各注入光パルスの線形の重ね合わせの範囲内で、イジングモデルの4体以上の相互作用を実装することができる。つまり、イジングモデルの4体以上の相互作用を実装するときには、上述と同様にσσσ・・・=cosφjkl・・・(t)(N体の相互作用について、左辺は(N-1)個のσの積)とおいて、擬似的スピンパルスSPi及び注入光パルスの線形の重ね合わせを行う。
 定常状態において、数式2、3は、それぞれ、数式4、5のようになる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 数式2のp-(c +s )は、擬似的スピンパルスSPiについての飽和利得である。ここで、定常状態において、ネットワーク全体についての飽和利得は、ネットワーク全体についての光子減衰率に等しく、I成分cは、有限値であるが、Q成分sは、0である。よって、ネットワーク全体についての光子減衰率Γは、数式6のようになる。
Figure JPOXMLDOC01-appb-M000006
 ここで、数式6の最右辺の第1項は、数式4の左辺の第3~5項を摂動項としたときにおける、摂動の0次の寄与を示す。そして、数式6の最右辺の第2~4項は、数式4の左辺の第3~5項を摂動項としたときにおける、摂動の1次の寄与を示す。さらに、σ=sgn(c)~sgn(c (0))(c (0)は摂動の0次の寄与)を用いている。
 ここで、レーザーの媒質が均一な媒質であるときには、レーザーシステム全体として、最小の光子減衰率Γを実現する発振位相状態{σ}が選択される。つまり、レーザーシステム全体として、1個の特定の発振モードが選択される。そして、発振モードの間の競合に起因して、1個の特定の発振モードは、他の発振モードを抑制する。つまり、レーザーシステム全体として、数式6のΓは最小化される。一方で、レーザーシステム全体として、数式6のMは一定である。よって、レーザーシステム全体として、数式6の-Σζσ-Σξijσσ-Σχijkσσσは最小化される。つまり、数式1のイジングハミルトニアンを最小化する基底状態が実現されたことになる。
(本開示のイジングモデルの量子計算方法の遅延フィードバック)
 本開示のイジングモデルの量子計算方法の第1の手順を図2に示す。第1の手順では、イジングサイト数が1000個であることから、擬似的スピンパルスSPが1000個周回伝搬している。そして、擬似的スピンパルス1セット{SP}が1回周回するたびに、暫定的スピン測定ステップ及び相互作用実装ステップが実行されている。
 ここで、擬似的スピンパルスSPの間の擬似的なイジング相互作用は、瞬時相互作用に近いことが望ましく、遅延相互作用でないことが望ましい。よって、暫定的スピン測定部3が全擬似的スピンパルスSPの位相を測定してから、全擬似的スピンパルスSPがリング共振器2を「1周」して、相互作用実装部5が全擬似的スピンパルスSPに注入される光の振幅及び位相を制御するまでに、相互作用計算部4が全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算することが望ましい。
 しかし、相互作用計算部4が全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算する時間は、イジングサイト数の自乗(2体のイジング相互作用の場合)に比例して増加するため、イジングサイト数が多数になると、相互作用計算部4(例えば、FPGA)のクロックやメモリの制限により、全擬似的スピンパルスSPがリング共振器2を「1周」する時間より長くなることが考えられる。
 本開示のイジングモデルの量子計算方法の第2の手順を図3に示す。第2の手順では、イジングサイト数が1000個であることから、擬似的スピンパルスSPが1000個周回伝搬している。そして、全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算する時間を十分に確保するため、全擬似的スピンパルスSPがリング共振器2を「1周」する時間を実効的に長くすることとした。つまり、暫定的スピン測定部3が全擬似的スピンパルスSPの位相を測定してから、全擬似的スピンパルスSPがリング共振器2を「L周」して、相互作用実装部5が全擬似的スピンパルスSPに注入される光の振幅及び位相を制御するまでに、相互作用計算部4が全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算しており、相互作用計算に十分な時間の余裕を持たせている。
 具体的には、暫定的スピン測定部3は、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまで、測定を中断する。ここで、暫定的スピン測定部3が、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまでに、リング共振器2を周回伝搬する複数の擬似的スピンパルスSPが、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれL回通過する。そして、リング共振器2を周回伝搬する複数の擬似的スピンパルスSPは、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれL回通過する間には、縮退光パラメトリック発振器1によるゲイン及びフィードバックループへの出力によるロスを受けるのみである。
 そして、相互作用計算部4は、暫定的スピン測定部3が、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまでに、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を計算する。さらに、相互作用実装部5は、相互作用計算部4が、全擬似的スピンパルスSPが関わる全相互作用の計算を終了した後に、直近の相互作用の計算に基づいて、全擬似的スピンパルスSPに対して注入される光の振幅及び位相を制御する。
 このように、全擬似的スピンパルスSPがリング共振器2を「1周」する時間を実効的に長くすることにより、相互作用計算部4は、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を、十分な時間の余裕を持って計算することができる。具体的には、複数の擬似的スピンパルスSPが、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれL回通過する間に、相互作用計算部4は、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を、十分な時間の余裕を持って計算することができる。
 本開示のイジングモデルの量子計算方法の第3の手順を図4に示す。第3の手順では、イジングサイト数が1000個であることから、擬似的スピンパルスSPが1000個周回伝搬しており、イジングサイト数に対応しないものの、ダミーパルスが1000個周回伝搬している。そして、全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算する時間を十分に確保するため、全擬似的スピンパルスSPがリング共振器2を「1周」する時間を実効的に長くすることとした。つまり、暫定的スピン測定部3が全擬似的スピンパルスSPの位相を測定してから、全ダミーパルスが暫定的スピン測定部3を「1回」やり過ごして、相互作用実装部5が全擬似的スピンパルスSPに注入される光の振幅及び位相を制御するまでに、相互作用計算部4が全擬似的スピンパルスSPが関わるイジングモデルの全相互作用を計算しており、相互作用計算に十分な時間の余裕を持たせている。
 具体的には、暫定的スピン測定部3は、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまで、測定を中断する。ここで、暫定的スピン測定部3が、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまでに、リング共振器2を周回伝搬する複数のダミーパルスが、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれ1回通過する。そして、リング共振器2を周回伝搬する複数のダミーパルスは、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれ1回通過する間には、縮退光パラメトリック発振器1によるゲイン及びフィードバックループへの出力によるロスを受けるのみである。
 そして、相互作用計算部4は、暫定的スピン測定部3が、擬似的スピンパルス1セット{SP}分の測定を終了してから、擬似的スピンパルス1セット{SP}分の測定を再開するまでに、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を計算する。さらに、相互作用実装部5は、相互作用計算部4が、全擬似的スピンパルスSPが関わる全相互作用の計算を終了した後に、直近の相互作用の計算に基づいて、全擬似的スピンパルスSPに対して注入される光の振幅及び位相を制御する。
 このように、全擬似的スピンパルスSPがリング共振器2を「1周」する時間を実効的に長くすることにより、相互作用計算部4は、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を、十分な時間の余裕を持って計算することができる。具体的には、複数のダミーパルスが、リング共振器2から暫定的スピン測定部3への分岐箇所をそれぞれ1回通過する間に、相互作用計算部4は、直近のスピンの測定に基づいて、全擬似的スピンパルスSPが関わる全相互作用を、十分な時間の余裕を持って計算することができる。
 なお、ダミーパルスは、量子計算に用いられず、長いリング共振器2又は狭いパルス間隔を必要とするが、周回の先頭の目印や共振器の安定化等、別用途に使用可能である。本開示のイジングモデルの量子計算装置の位相特性安定化を図5に示す。
 イジングモデルの量子計算装置Qの設置環境(例えば、温度等)が時間変動することに応じて、リング共振器2の共振長が時間変動することがある。よって、リング共振器2の共振長を一定値に安定化することができなければ、複数の疑似的スピンパルスがリング共振器2を複数回又は単数回だけ周回伝搬するたびに、縮退光パラメトリック発振器1中の位相感応増幅器10における増幅強度、暫定的スピン測定部3における局部発振光との干渉タイミング、及び、相互作用実装部5における注入パルスとの干渉タイミングを安定化することができない。そして、縮退光パラメトリック発振器1中の位相感応増幅器10におけるパルス安定化、暫定的スピン測定部3におけるパルス位相測定、及び、相互作用実装部5における相互作用実装を正確に実行することができず、ひいては、イジングモデルの量子計算装置Qの計算精度を大幅に向上させることができない。
 そこで、図5に示すように、イジングモデルの量子計算装置Qの位相特性のキャリブレーションを実行するのである。ここで、位相特性のキャリブレーションに用いる参照信号として、最適解が分かっていない発振位相及び計算過程で時間変化する発振強度を有する複数の疑似的スピンパルスを用いることは、実装上困難である。しかし、位相特性のキャリブレーションに用いる参照信号として、予め定められた発振位相及び予め定められた発振強度を有する複数のダミーパルスを用いることは、実装上簡便である。
 具体的には、縮退光パラメトリック発振器1は、複数のダミーパルスの発振位相及び発振強度を、それぞれ、予め定められた位相及び予め定められた強度に制御する。そして、イジングモデルの量子計算装置Qは、複数のダミーパルスを参照信号として用いて、自装置Qの位相特性のキャリブレーションを実行する。そのために、イジングモデルの量子計算装置Qは、図1に示した構成に加えて、図5に示した構成として、リング共振長制御部7、局部発振光制御部8及び注入パルス制御部9をさらに備える。
 リング共振長制御部7は、光測定部71、フィードバック制御部72及び位相制御部73を備える。複数のダミーパルス及び複数の疑似的スピンパルスは、リング共振器2上の位相測定地点及び局部発振光制御部8への分波地点を経由して、リング共振長制御部7に入力される。ここで、リング共振器2の共振長が時間変動しなければ、縮退光パラメトリック発振器1中の位相感応増幅器10における増幅強度が安定化されるため、複数のダミーパルスの発振強度は、予め定められた強度に最大化される。しかし、リング共振器2の共振長が時間変動すれば、縮退光パラメトリック発振器1中の位相感応増幅器10における増幅強度が安定化されないため、複数のダミーパルスの発振強度は、予め定められた強度に最大化されない。
 光測定部71は、複数のダミーパルスの発振強度を測定する。位相制御部73は、リング共振器2の共振長を制御する。フィードバック制御部72は、光測定部71が測定した発振強度が、予め定められた強度に最大化されるように、位相制御部73をフィードバック制御する。フィードバック制御部72は、レーザーの発振周波数の安定化技術である、PDH(Pound-Drever-Hall)法又はFM(Frequency Modulation)サイドバンド法等を、応用することができる。
 局部発振光制御部8は、光測定部81、フィードバック制御部82及び位相制御部83を備える。複数のダミーパルス及び複数の疑似的スピンパルスは、リング共振器2上の位相測定地点及びリング共振長制御部7への分波地点を経由して、局部発振光制御部8に入力される。局部発振光は、位相制御部83において、局部発振光制御部8に入力される。
 光測定部81は、複数のダミーパルスと、暫定的スピン測定部3が複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉結果を出力する。位相制御部83は、複数の疑似的スピンパルスと、暫定的スピン測定部3が複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉タイミングを制御する。フィードバック制御部82は、光測定部81が出力した干渉結果が、複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、位相制御部83をフィードバック制御する。ここで、光測定部81、位相制御部83及び図5に示した合波地点は、暫定的スピン測定部3と局部発振光制御部8との間で共通して使用することができる。
 注入パルス制御部9は、光測定部91、フィードバック制御部92及び位相制御部93を備える。複数のダミー注入パルス及び複数のスピン注入パルスは、位相制御部93において、注入パルス制御部9に入力される。ここで、複数のダミー注入パルスは、相互作用実装部5が複数のダミーパルスへの光注入に用いる、予め定められた発振位相を有するパルスである。そして、複数のスピン注入パルスは、相互作用実装部5が複数の疑似的スピンパルスへの光注入に用いる、相互作用が考慮された発振位相を有するパルスである。
 リング共振器2を周回伝搬する複数のダミーパルス及び複数の疑似的スピンパルスと、位相制御部93が出力した複数のダミー注入パルス及び複数のスピン注入パルスは、リング共振器2上の光注入地点において合波される。リング共振器2上の光注入地点において合波された複数のパルスは、リング共振器2及び光測定部91に向けて分波される。
 光測定部91は、複数のダミーパルスと、相互作用実装部5が複数のダミーパルスへの光注入に用いる予め定められた発振位相を有する複数のダミー注入パルスと、の干渉結果を出力する。位相制御部93は、複数の疑似的スピンパルスと、相互作用実装部5が複数の疑似的スピンパルスへの光注入に用いる相互作用が考慮された発振位相を有する複数のスピン注入パルスと、の干渉タイミングを制御する。フィードバック制御部92は、光測定部91が出力した干渉結果が、複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、位相制御部93をフィードバック制御する。ここで、位相制御部93及びリング共振器2上の光注入地点は、相互作用実装部5と注入パルス制御部9との間で共通して使用することができる。
 イジングモデルの量子計算装置Qの位相特性のキャリブレーションを実行するにあたり、以下の事項に留意する:(1)リング共振長制御部7、局部発振光制御部8及び注入パルス制御部9によるキャリブレーションを並行に実行してもよい。(2)リング共振長制御部7によるキャリブレーションを終了させてから、局部発振光制御部8及び注入パルス制御部9によるキャリブレーションを並行に実行してもよい。(3)キャリブレーションの動作速度が遅いときには、複数の疑似的スピンパルスがリング共振器2を複数回だけ周回伝搬するたびに、キャリブレーションを実行してもよい。(4)キャリブレーションの動作速度が速いときには、複数の疑似的スピンパルスがリング共振器2を単数回だけ周回伝搬するたびに、キャリブレーションを実行してもよい。(5)キャリブレーション及びイジングモデル計算を並行に実行してもよい。(6)キャリブレーションを終了させてから、イジングモデル計算を実行してもよい。(7)リング共振長制御部7、局部発振光制御部8及び注入パルス制御部9は、複数のダミーパルス及び複数の疑似的スピンパルスについて、それらの間の境界及びそれぞれの番号を把握することが望ましい。
 イジングモデルの量子計算装置Qの設置環境(例えば、温度等)が時間変動することに応じて、リング共振器2の共振長が時間変動するときでも、リング共振器2の共振長を一定値に安定化することができる。よって、複数の疑似的スピンパルスがリング共振器2を複数回又は単数回だけ周回伝搬するたびに、縮退光パラメトリック発振器1中の位相感応増幅器10における増幅強度、暫定的スピン測定部3における局部発振光との干渉タイミング、及び、相互作用実装部5における注入パルスとの干渉タイミングを安定化することができる。そして、縮退光パラメトリック発振器1中の位相感応増幅器10におけるパルス安定化、暫定的スピン測定部3におけるパルス位相測定、及び、相互作用実装部5における相互作用実装を正確に実行することができ、ひいては、イジングモデルの量子計算装置Qの計算精度を大幅に向上させることができる。
 以下では、第2の手順における量子計算の時間発展及び計算結果を示す。前提として、1体及び3体の相互作用を考えず、2体の相互作用のみを考えて、イジングハミルトニアンを数式7のようにして、レート方程式を数式8、9のようにする。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 数式8、9によれば、イジングモデルの量子計算装置Q全体の動作が不安定とならず、誤答が生じる可能性が低くなるかどうかは、フィードバック遅延L周により決まるのみならず、結合係数ξ及びポンプレートpにより決まることが分かる。
(結合係数ξをフィードバック遅延L周で補償する方法)
 スピンの測定及び相互作用の実装を中断するときには、スピンの測定及び相互作用の実装を中断しないときと比べて、擬似的スピンパルスSPに対する注入強度が実効的に小さくなる。つまり、第2の手順では、第1の手順と比べて、結合係数ξが実効的に1/(L+1)倍となる。そして、第3の手順では、第1の手順と比べて、結合係数ξが実効的に1/(1+1)=1/2倍(擬似的スピンパルス及びダミーパルスは同数)となる。
 そこで、スピンの測定及び相互作用の実装の中断期間が長いほど、擬似的スピンパルスSPに対する注入強度を大きくすることにより、スピンの測定及び相互作用の実装を中断するときでも、スピンの測定及び相互作用の実装を中断しないときと同様に、擬似的スピンパルスSPに対する注入強度及びポンプゲインのバランスを維持することを考える。例えば、第2の手順では、新たな結合係数をξ’=(L+1)ξとする。そして、第3の手順では、新たな結合係数をξ’=(1+1)ξ=2ξとする。
 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、ランダムグラフの量子計算の時間発展を、それぞれ、図6、7に示す。第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、ランダムグラフの量子計算の計算結果を、図8に示す。
 図6~8におけるランダムグラフでは、頂点数は、800であり、平均次数<k>は、47.94であり、次数分布は、二項分布である。
 図6及び図8の上段の黒三角のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=ξ=-0.06/√<k>=-0.009であり、結合係数ξは、フィードバック遅延L周で補償されていない。√<k>については、図8を用いて後述する。
 図6の場合には、フィードバック遅延L周が増加するに従って、量子計算精度が単調に減少しているが、I成分cが振動する振る舞いは見られない。
 図7及び図8の上段の黒丸印のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=(L+1)ξ=-0.06(L+1)/√<k>=-0.009(L+1)であり、結合係数ξは、フィードバック遅延L周で補償されている。
 図7の場合には、フィードバック遅延0、1周では、I成分cが振動する振る舞いは見られず、量子計算精度が高くなっており、フィードバック遅延2、3周では、I成分cが振動する振る舞いが見られるが、I成分cは正及び負の間を振動するわけではなく、量子計算精度が維持されている。
 図7の場合には、フィードバック遅延4、5周では、I成分cが振動する振る舞いが見られて、I成分cは正及び負の間を振動しており、量子計算精度が低くなっている。これは、フィードバック遅延L周を考えに入れたとしても、結合係数ξ’=(L+1)ξが大き過ぎるためであると考えられる。
 図8の上段に、結合係数ξを√<k>で規格化する場合を示し、図8の下段に、結合係数ξを√<k>で規格化しない場合を示す。結合係数ξを√<k>で規格化しない場合には、結合係数ξを√<k>で規格化する場合と比べて、フィードバック遅延4、5周以上では、I成分cの正及び負の間の振動が激しくなっていることが読み取れる。
 このように、グラフ次数が高い擬似的スピンパルスSPiに対する注入強度を小さくすることにより、グラフ次数が高いイジングスピンがσ=±1の間で振動することを防止するため、イジングモデルの量子計算装置Q全体の動作が不安定とならず、誤答が生じる可能性が低くなる。なお、図6~8では、結合係数ξを√<k>で規格化しているが、変形例として、結合係数ξを単純に<k>で規格化してもよい。
 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、スケールフリーグラフの量子計算の時間発展を、それぞれ、図9、10に示す。第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、スケールフリーグラフの量子計算の計算結果を、図11に示す。
 図9~11におけるスケールフリーグラフでは、頂点数は、800であり、平均次数<k>は、11.735であり、次数分布は、べき乗則である。
 図9及び図11の上段の黒三角のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=ξ=-0.06/√<k>=-0.018であり、結合係数ξは、フィードバック遅延L周で補償されていない。√<k>については、図11を用いて後述する。
 図9の場合には、フィードバック遅延L周が増加するに従って、量子計算精度が単調に減少しているが、I成分cが振動する振る舞いは見られない。
 図10及び図11の上段の黒丸印のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=(L+1)ξ=-0.06(L+1)/√<k>=-0.018(L+1)であり、結合係数ξは、フィードバック遅延L周で補償されている。
 図10の場合には、フィードバック遅延0、1周では、I成分cが振動する振る舞いは見られず、量子計算精度が高くなっており、フィードバック遅延2~5周では、I成分cが振動する振る舞いが見られるが、I成分cは正及び負の間を振動するわけではなく、量子計算精度が維持されている。
 図10の場合には、図7の場合と異なり、フィードバック遅延4、5周では、I成分cが振動する振る舞いが見られるが、I成分cは正及び負の間を振動するわけではなく、量子計算精度が維持されている。これは、図10の場合には、図7の場合と比べて、平均次数<k>が小さいことから、注入強度が小さいためであると考えられる。
 図11の上段に、結合係数ξを√<k>で規格化する場合を示し、図11の下段に、結合係数ξを√<k>で規格化しない場合を示す。結合係数ξを√<k>で規格化しない場合にも、結合係数ξを√<k>で規格化する場合と同様に、フィードバック遅延4、5周以上でも、I成分cの正及び負の間の振動が激しくなっていないことが読み取れる。
 とはいえ、グラフ次数が高い擬似的スピンパルスSPiに対する注入強度を小さくすることにより、グラフ次数が高いイジングスピンがσ=±1の間で振動することを防止するため、イジングモデルの量子計算装置Q全体の動作が不安定とならず、誤答が生じる可能性が低くなる。なお、図9~11では、結合係数ξを√<k>で規格化しているが、変形例として、結合係数ξを単純に<k>で規格化してもよい。
 第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、完全グラフの量子計算の時間発展を、それぞれ、図12、13に示す。第2の手順において結合係数ξをフィードバック遅延L周で補償しない場合及び補償する場合における、完全グラフの量子計算の計算結果を、図14に示す。
 図12~14における完全グラフでは、頂点数は、800であり、平均次数<k>は、799であり、次数分布は、一様分布である。
 図12及び図14の上段の黒三角のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=ξ=-0.06/√<k>=-0.002であり、結合係数ξは、フィードバック遅延L周で補償されていない。√<k>については、図14を用いて後述する。
 図12の場合には、フィードバック遅延L周が増加するに従って、量子計算精度が単調に減少しているが、I成分cが振動する振る舞いは見られない。
 図13及び図14の上段の黒丸印のプロットでは、ポンプレートp=1.1であり、結合係数ξ’=(L+1)ξ=-0.06(L+1)/√<k>=-0.002(L+1)であり、結合係数ξは、フィードバック遅延L周で補償されている。
 図13の場合には、フィードバック遅延0、1周では、I成分cが振動する振る舞いは見られず、量子計算精度が高くなっており、フィードバック遅延2~5周では、I成分cが振動する振る舞いが見られるが、I成分cは正及び負の間を振動するわけではなく、量子計算精度が維持されている。
 図13の場合には、図7の場合と異なり、フィードバック遅延4、5周では、I成分cが振動する振る舞いが見られるが、I成分cは正及び負の間を振動するわけではなく、量子計算精度が維持されている。これは、図13の場合には、図7の場合と比べて、平均次数<k>が大きいことから、結合係数ξ’が小さいためであると考えられる。
 図14の上段に、結合係数ξを√<k>で規格化する場合を示し、図14の下段に、結合係数ξを√<k>で規格化しない場合を示す。結合係数ξを√<k>で規格化しない場合には、結合係数ξを√<k>で規格化する場合と比べて、フィードバック遅延4、5周以上では、I成分cの正及び負の間の振動が激しくなっていることが読み取れる。
 このように、グラフ次数が高い擬似的スピンパルスSPiに対する注入強度を小さくすることにより、グラフ次数が高いイジングスピンがσ=±1の間で振動することを防止するため、イジングモデルの量子計算装置Q全体の動作が不安定とならず、誤答が生じる可能性が低くなる。なお、図12~14では、結合係数ξを√<k>で規格化しているが、変形例として、結合係数ξを単純に<k>で規格化してもよい。
(ポンプレートpをフィードバック遅延L周で補償する方法)
 スピンの測定及び相互作用の実装を中断するときには、スピンの測定及び相互作用の実装を中断しないときと比べて、擬似的スピンパルスSPに対する注入強度が実効的に小さくなる。つまり、第2の手順では、第1の手順と比べて、結合係数ξが実効的に1/(L+1)倍となる。そして、第3の手順では、第1の手順と比べて、結合係数ξが実効的に1/(1+1)=1/2倍(擬似的スピンパルス及びダミーパルスは同数)となる。
 そこで、スピンの測定及び相互作用の実装の中断期間が長いほど、擬似的スピンパルスSPに対するポンプゲインを小さくすることにより、スピンの測定及び相互作用の実装を中断するときでも、スピンの測定及び相互作用の実装を中断しないときと同様に、擬似的スピンパルスSPに対する注入強度及びポンプゲインのバランスを維持することを考える。例えば、第2の手順では、新たなポンプレートをp’=p/(L+1)として、ポンプレートを小さくした代償として、新たな計算時間を(L+1)倍にする。そして、第3の手順では、新たなポンプレートをp’=p/(1+1)=p/2として、ポンプレートを小さくした代償として、新たな計算時間を1+1=2倍にする。
 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、ランダムグラフの量子計算の計算結果を、図15に示す。図15におけるランダムグラフでは、図6~8におけるランダムグラフと同様に、頂点数は、800であり、平均次数<k>は、47.94であり、次数分布は、二項分布である。
 ポンプレートp’=p/(L+1)であり、結合係数ξ’=ξ=-0.06/√<k>=-0.009であり、ポンプレートpは、フィードバック遅延L周で補償されており、図15における計算時間は、図6~8における計算時間の(L+1)倍である。
 ポンプレートp=0.3の場合には、フィードバック遅延0~2周では、量子計算精度が高くなっており、フィードバック遅延2~4周では、量子計算精度が急落しており、フィードバック遅延4~10周では、量子計算精度が低迷している。ポンプレートp=0.5の場合には、フィードバック遅延0~8周では、量子計算精度が高くなっており、フィードバック遅延8~10周では、量子計算精度が急落している。ポンプレートp=0.7の場合には、フィードバック遅延0~10周において、量子計算精度が高くなっている。ポンプレートp=0.9、1.1の場合には、フィードバック遅延が増加するに従って、量子計算精度が単調に減少している。このように、ポンプレートp=0.5、0.7あたりが、ポンプレートpの最適値であると考えられる。
 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、スケールフリーグラフの量子計算の計算結果を、図16に示す。図16におけるスケールフリーグラフでは、図9~11におけるスケールフリーグラフと同様に、頂点数は、800であり、平均次数<k>は、11.735であり、次数分布は、べき乗則である。
 ポンプレートp’=p/(L+1)であり、結合係数ξ’=ξ=-0.06/√<k>=-0.018であり、ポンプレートpは、フィードバック遅延L周で補償されており、図16における計算時間は、図9~11における計算時間の(L+1)倍である。
 ポンプレートp=0.3の場合には、フィードバック遅延が増加するに従って、量子計算精度が単調に減少している。ポンプレートp=0.5の場合には、フィードバック遅延0~10周において、若干の単調な減少はあるものの、量子計算精度が高くなっている。ポンプレートp=0.7の場合には、フィードバック遅延0~10周において、量子計算精度が高くなっている。ポンプレートp=0.9、1.1の場合には、フィードバック遅延が増加するに従って、量子計算精度が単調に減少している。このように、ポンプレートp=0.5、0.7あたりが、ポンプレートpの最適値であると考えられる。
 第2の手順においてポンプレートpをフィードバック遅延L周で補償する場合における、完全グラフの量子計算の計算結果を、図17に示す。図17における完全グラフでは、図12~14における完全グラフと同様に、頂点数は、800であり、平均次数<k>は、799であり、次数分布は、一様分布である。
 ポンプレートp’=p/(L+1)であり、結合係数ξ’=ξ=-0.06/√<k>=-0.002であり、ポンプレートpは、フィードバック遅延L周で補償されており、図17における計算時間は、図12~14における計算時間の(L+1)倍である。
 ポンプレートp=0.3の場合には、フィードバック遅延0~3周では、量子計算精度が高くなっており、フィードバック遅延3~4周では、量子計算精度が急落しており、フィードバック遅延4~10周では、量子計算精度が低迷している。ポンプレートp=0.5の場合には、フィードバック遅延0~9周では、量子計算精度が高くなっており、フィードバック遅延9~10周では、量子計算精度が急落している。ポンプレートp=0.7の場合には、フィードバック遅延0~10周において、量子計算精度が高くなっている。ポンプレートp=0.9、1.1の場合には、フィードバック遅延が増加するに従って、量子計算精度が単調に減少している。このように、ポンプレートp=0.5、0.7あたりが、ポンプレートpの最適値であると考えられる。
(結合係数ξ及びポンプレートpを設定する方法)
 図6~14では、結合係数ξをフィードバック遅延L周で補償する一方で、ポンプレートpをフィードバック遅延L周に関わらず固定としている。図15~17では、ポンプレートpをフィードバック遅延L周で補償する一方で、結合係数ξをフィードバック遅延L周に関わらず固定としている。以下では、フィードバック遅延L周で補償する以前の結合係数ξ及びポンプレートpを設定する方法を説明する。
 第2の手順において結合係数ξ及びポンプレートpを可変とする場合における、ランダムグラフの量子計算の計算結果を図18に示す。図18におけるランダムグラフでは、図6~8、15におけるランダムグラフと同様に、頂点数は、800であり、平均次数<k>は、47.94であり、次数分布は、二項分布である。なお、図18における結合係数ξは、√<k>により規格化される以前のものである。
 フィードバック遅延が短時間であるほど、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域が広くなり、フィードバック遅延が長時間であるほど、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域(|ξ|~0.04、p~0.55の付近の領域)が狭くなる。
 第2の手順において結合係数ξ及びポンプレートpを可変とする場合における、スケールフリーグラフの量子計算の計算結果を図19に示す。図19におけるスケールフリーグラフでは、図9~11、16におけるスケールフリーグラフと同様に、頂点数は、800であり、平均次数<k>は、11.735であり、次数分布は、べき乗則である。なお、図19における結合係数ξは、√<k>により規格化される以前のものである。
 フィードバック遅延が短時間であるほど、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域が広くなり、フィードバック遅延が長時間であるほど、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域(|ξ|~0.09、p~0.60の付近の領域)が狭くなる。
 ここで、解きたいNP完全問題に対応するイジングモデルが、図18、19におけるランダムグラフ又はスケールフリーグラフに近似する場合には、図18、19における高い量子計算精度を与える結合係数ξ及びポンプレートpの領域を採用することができる。
 そして、解きたいNP完全問題に対応するイジングモデルに近似するグラフが、サイト数の小さいものである場合には、フィードバック遅延は、短時間で十分であり、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域は、(結合係数ξ、ポンプレートp)の組み合わせ最適化問題を厳密に解くまでもなく、容易に探索することができる。
 しかし、解きたいNP完全問題に対応するイジングモデルに近似するグラフが、サイト数の大きいものである場合には、フィードバック遅延は、長時間が必要であり、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域は、(結合係数ξ、ポンプレートp)の組み合わせ最適化問題を厳密に解く必要があり、容易に探索することができない。
 そこで、解きたいNP完全問題に対応するイジングモデルに近似するグラフが、サイト数の小さいものであっても、サイト数の大きいものであっても、以下のようにする。まず、フィードバック遅延が0周である場合における、高い量子計算精度を与える結合係数ξ及びポンプレートpの領域を採用する。次に、図6~14のように、結合係数ξをフィードバック遅延L周で補償する一方で、ポンプレートpをフィードバック遅延L周に関わらず固定とする。又は、図15~17のように、ポンプレートpをフィードバック遅延L周で補償する一方で、結合係数ξをフィードバック遅延L周に関わらず固定とする。
 本開示のイジングモデルの量子計算装置は、イジングモデルにマッピングされるNP完全問題などを高速かつ容易に解くのに適しているうえに、イジングサイト数が多数になっても、系全体の動作を安定にして、誤答が生じる可能性を低くする。
Q:イジングモデルの量子計算装置
SP1、SP2、SP3、SP4:擬似的スピンパルス
LO:局部発振パルス
1:縮退光パラメトリック発振器
2:リング共振器
3:暫定的スピン測定部
4:相互作用計算部
5:相互作用実装部
6:擬似的スピン測定部
7:リング共振長制御部
8:局部発振光制御部
9:注入パルス制御部
10:位相感応増幅器
71、81、91:光測定部
72、82、92:フィードバック制御部
73、83、93:位相制御部

 

Claims (10)

  1.  イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスを縮退光パラメトリック発振させる縮退光パラメトリック発振器と、
     前記複数の擬似的スピンパルスを周回伝搬させるリング共振器と、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定するにあたって、1セット分の測定を終了してから1セット分の測定を再開するまで測定を中断する暫定的スピン測定部と、
     前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記イジングモデルの結合係数及び前記暫定的スピン測定部が直近に測定した前記複数の擬似的スピンパルスの擬似的なスピンに基づいて、前記複数の擬似的スピンパルスが関わる全相互作用を暫定的に計算する相互作用計算部と、
     前記相互作用計算部が前記複数の擬似的スピンパルスが関わる全相互作用の暫定的な計算を終了した後に、前記複数の擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が直近に計算した前記複数の擬似的スピンパルスが関わる全相互作用の大きさ及び符号を暫定的に実装する相互作用実装部と、
     前記暫定的スピン測定部、前記相互作用計算部及び前記相互作用実装部により構成されるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定部と、
     を備えることを特徴とするイジングモデルの量子計算装置。
  2.  前記リング共振器は、前記イジングモデルの前記複数のスピンに擬似的に対応する、連続した前記複数の擬似的スピンパルスを周回伝搬させており、
     前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記リング共振器を周回伝搬する前記複数の擬似的スピンパルスが、前記リング共振器から前記暫定的スピン測定部への分岐箇所をそれぞれ1回以上通過する
     ことを特徴とする請求項1に記載のイジングモデルの量子計算装置。
  3.  前記リング共振器は、前記イジングモデルの前記複数のスピンに擬似的に対応する、連続した前記複数の擬似的スピンパルスと、前記イジングモデルの前記複数のスピンに対応しない、連続した複数のダミーパルスと、を周回伝搬させており、
     前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでに、前記リング共振器を周回伝搬する前記複数のダミーパルスが、前記リング共振器から前記暫定的スピン測定部への分岐箇所をそれぞれ1回通過する
     ことを特徴とする請求項1に記載のイジングモデルの量子計算装置。
  4.  前記縮退光パラメトリック発振器は、前記複数のダミーパルスの発振位相及び発振強度を、それぞれ、予め定められた位相及び予め定められた強度に制御し、
     前記イジングモデルの量子計算装置は、前記複数のダミーパルスを参照信号として用いて、自装置の位相特性のキャリブレーションを実行する
     ことを特徴とする請求項3に記載のイジングモデルの量子計算装置。
  5.  前記複数のダミーパルスの発振強度が、前記予め定められた強度に最大化されるように、前記リング共振器の共振長を制御するリング共振長制御部、をさらに備える
     ことを特徴とする請求項4に記載のイジングモデルの量子計算装置。
  6.  前記複数のダミーパルスと、前記暫定的スピン測定部が前記複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉結果が、前記複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、前記複数の疑似的スピンパルスと、前記暫定的スピン測定部が前記複数の疑似的スピンパルスの位相測定に用いる局部発振光と、の干渉タイミングを制御する局部発振光制御部、をさらに備える
     ことを特徴とする請求項4又は5に記載のイジングモデルの量子計算装置。
  7.  前記複数のダミーパルスと、前記相互作用実装部が前記複数のダミーパルスへの光注入に用いる予め定められた発振位相を有する複数のダミー注入パルスと、の干渉結果が、前記複数のダミーパルスの予め定められた発振位相から想定される予め定められた干渉結果となるように、前記複数の疑似的スピンパルスと、前記相互作用実装部が前記複数の疑似的スピンパルスへの光注入に用いる相互作用が考慮された発振位相を有する複数のスピン注入パルスと、の干渉タイミングを制御する注入パルス制御部、をさらに備える
     ことを特徴とする請求項4から6のいずれかに記載のイジングモデルの量子計算装置。
  8.  前記相互作用実装部は、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでの期間が長いほど、前記複数の擬似的スピンパルスに対して注入される光の振幅を大きく制御する
     ことを特徴とする請求項1から7のいずれかに記載のイジングモデルの量子計算装置。
  9.  前記縮退光パラメトリック発振器は、前記暫定的スピン測定部が1セット分の測定を終了してから1セット分の測定を再開するまでの期間が長いほど、前記複数の擬似的スピンパルスの縮退光パラメトリック発振のポンプレートを小さく制御する
     ことを特徴とする請求項1から7のいずれかに記載のイジングモデルの量子計算装置。
  10.  前記相互作用実装部は、前記イジングモデルのグラフ平均次数が高いほど、前記複数の擬似的スピンパルスに対して注入される光の振幅を小さく制御する
     ことを特徴とする請求項1から9のいずれかに記載のイジングモデルの量子計算装置。

     
PCT/JP2016/077180 2015-09-15 2016-09-14 イジングモデルの量子計算装置 WO2017047666A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/758,536 US10139703B2 (en) 2015-09-15 2016-09-14 Ising model quantum computation device
JP2017539951A JP6429346B2 (ja) 2015-09-15 2016-09-14 イジングモデルの量子計算装置
CA2997013A CA2997013C (en) 2015-09-15 2016-09-14 Ising model quantum computation device
CN201680052694.0A CN108027545B (zh) 2015-09-15 2016-09-14 伊辛模型的量子计算装置
EP16846537.5A EP3333626B1 (en) 2015-09-15 2016-09-14 Pseudo-ising model quantum calculation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181549 2015-09-15
JP2015181549 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047666A1 true WO2017047666A1 (ja) 2017-03-23

Family

ID=58288927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077180 WO2017047666A1 (ja) 2015-09-15 2016-09-14 イジングモデルの量子計算装置

Country Status (6)

Country Link
US (1) US10139703B2 (ja)
EP (1) EP3333626B1 (ja)
JP (1) JP6429346B2 (ja)
CN (1) CN108027545B (ja)
CA (1) CA2997013C (ja)
WO (1) WO2017047666A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104861A1 (en) * 2016-12-05 2018-06-14 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置
WO2019078354A1 (ja) * 2017-10-19 2019-04-25 日本電信電話株式会社 イジングモデルの計算装置
JP2019078777A (ja) * 2017-10-19 2019-05-23 日本電信電話株式会社 ポッツモデルの計算装置
WO2020050172A1 (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
WO2021201279A1 (ja) * 2020-04-02 2021-10-07 日本電信電話株式会社 イジングモデルの計算装置
CN114696914A (zh) * 2020-12-31 2022-07-01 中国科学院半导体研究所 相干伊辛机及组合优化问题的解决方法
US11662647B2 (en) 2019-08-28 2023-05-30 Nippon Telegraph And Telephone Corporation Phase synchronization method and phase synchronization device
WO2023162254A1 (ja) * 2022-02-28 2023-08-31 日本電信電話株式会社 イジングモデルの計算装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240644B (zh) * 2018-08-17 2023-08-15 中国人民解放军国防科技大学 一种用于伊辛芯片的局部搜索方法及电路
JP7108186B2 (ja) * 2018-11-27 2022-07-28 富士通株式会社 最適化装置及び最適化装置の制御方法
CN112883534A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 一种光计算设备以及光信号处理方法
CN114696906B (zh) * 2020-12-31 2023-07-25 中国科学院半导体研究所 光电振荡伊辛机及组合优化问题的解决方法
CN113093379B (zh) * 2021-03-25 2022-02-25 上海交通大学 面向光子伊辛机的正交空间相位调制方法
CN115470455B (zh) * 2022-08-16 2023-03-17 北京玻色量子科技有限公司 一种光学相干计算装置及其纠错方法
SE546081C2 (en) * 2022-08-19 2024-05-14 Artem Litvinenko Spinwave coherent ising machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354233B2 (ja) * 2011-03-01 2013-11-27 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2014134710A (ja) * 2013-01-11 2014-07-24 Research Organization Of Information & Systems イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2015114354A (ja) * 2013-12-09 2015-06-22 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
WO2015156126A1 (ja) * 2014-04-11 2015-10-15 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
JP2015207032A (ja) * 2014-04-17 2015-11-19 日本電信電話株式会社 演算装置および演算方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456424B1 (en) * 2000-05-17 2002-09-24 Lightwave Electronics Corporation Noise suppression using pump-resonant optical parametric oscillation
US8446592B1 (en) * 2008-08-04 2013-05-21 Stc.Unm Scanning phase intracavity nanoscope
WO2010151581A2 (en) * 2009-06-26 2010-12-29 D-Wave Systems Inc. Systems and methods for quantum computation using real physical hardware
CN102354074B (zh) * 2011-09-01 2013-10-30 山西大学 双色可调谐连续变量纠缠态产生和探测装置
US9830555B2 (en) * 2013-07-09 2017-11-28 The Board Of Trustees Of The Leland Stanford Junior University Computation using a network of optical parametric oscillators
US10069573B2 (en) * 2016-03-10 2018-09-04 Raytheon Bbn Technologies Corp. Optical ising-model solver using quantum annealing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354233B2 (ja) * 2011-03-01 2013-11-27 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2014134710A (ja) * 2013-01-11 2014-07-24 Research Organization Of Information & Systems イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2015114354A (ja) * 2013-12-09 2015-06-22 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
WO2015156126A1 (ja) * 2014-04-11 2015-10-15 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
JP2015207032A (ja) * 2014-04-17 2015-11-19 日本電信電話株式会社 演算装置および演算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROKI TAKESUE ET AL.: "Time-division- multiplexed degenerate optical parametric oscillator for a coherent Ising machine", SUMMER TOPICALS MEETING SERIES (SUM, 13 July 2015 (2015-07-13), pages 213 - 214, XP033201195 *
See also references of EP3333626A4 *
TAKAHIRO INAGAKI ET AL.: "Simulating one- dimensional Ising spins with optically-coupled time-division-multiplexed optical parametric oscillators", NONLINEAR OPTICS, 26 July 2015 (2015-07-26), XP055368900 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10929576B2 (en) 2016-12-05 2021-02-23 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum Ising model with transverse field
WO2018104861A1 (en) * 2016-12-05 2018-06-14 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置
WO2019078354A1 (ja) * 2017-10-19 2019-04-25 日本電信電話株式会社 イジングモデルの計算装置
JP2019078777A (ja) * 2017-10-19 2019-05-23 日本電信電話株式会社 ポッツモデルの計算装置
JPWO2019078354A1 (ja) * 2017-10-19 2020-05-28 日本電信電話株式会社 イジングモデルの計算装置
JP6996457B2 (ja) 2018-09-04 2022-01-17 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
WO2020050172A1 (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
JP2020038300A (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
US11662647B2 (en) 2019-08-28 2023-05-30 Nippon Telegraph And Telephone Corporation Phase synchronization method and phase synchronization device
JPWO2021201279A1 (ja) * 2020-04-02 2021-10-07
WO2021201279A1 (ja) * 2020-04-02 2021-10-07 日本電信電話株式会社 イジングモデルの計算装置
JP7352916B2 (ja) 2020-04-02 2023-09-29 日本電信電話株式会社 イジングモデルの計算装置
CN114696914A (zh) * 2020-12-31 2022-07-01 中国科学院半导体研究所 相干伊辛机及组合优化问题的解决方法
CN114696914B (zh) * 2020-12-31 2023-07-25 中国科学院半导体研究所 相干伊辛机及组合优化问题的解决方法
WO2023162254A1 (ja) * 2022-02-28 2023-08-31 日本電信電話株式会社 イジングモデルの計算装置

Also Published As

Publication number Publication date
EP3333626B1 (en) 2020-12-09
JP6429346B2 (ja) 2018-11-28
EP3333626A4 (en) 2018-09-05
US20180246393A1 (en) 2018-08-30
CN108027545B (zh) 2021-02-05
CA2997013A1 (en) 2017-03-23
US10139703B2 (en) 2018-11-27
CN108027545A (zh) 2018-05-11
EP3333626A9 (en) 2018-10-17
CA2997013C (en) 2020-04-07
JPWO2017047666A1 (ja) 2018-07-05
EP3333626A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6429346B2 (ja) イジングモデルの量子計算装置
JP6255087B2 (ja) イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
JP5354233B2 (ja) イジングモデルの量子計算装置及びイジングモデルの量子計算方法
US11436394B2 (en) Potts model calculation device
JP6260896B2 (ja) イジングモデルの量子計算装置
JP6143325B2 (ja) イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP6533544B2 (ja) イジングモデルの計算装置
Wrubel et al. Spinor Bose-Einstein-condensate phase-sensitive amplifier for SU (1, 1) interferometry
JP6980185B2 (ja) イジングモデルの計算装置
US11133117B2 (en) Atomic interferometer system
JP6581613B2 (ja) イジングモデルの計算装置
JP2019028132A (ja) イジングモデルの計算装置
JP7018620B2 (ja) イジングモデルの計算装置
JP2018147226A (ja) イジングモデルの計算装置
Wang et al. Mathematical models of light waves in Brillouin-scattering fiber-optic gyroscope resonator
Rehman et al. Velocity selective optical pumping effects on 85Rb atoms from various coupling beam polarization configurations
Xie et al. Chiral switching of many-body steady states in a dissipative Rydberg gas
Kumar et al. Phase locking, intermittency and chaos, of an array of magnon-ic crystal cavities driven by spin torque nano oscillators
Radina Theory of frequency synchronization in a ring laser
CN116107130A (zh) 一种宏观量子纠缠态的量子增强方法及其装置
Rebhi et al. Effects of angular pump mismatch for the semi-linear oscillator
Bazgan et al. Mechanical influences to the resonance fluorescence of ions in the dressed standing waves
Eied Absorption spectrum for a multi-photon Ξ-type three-level atom driven by a binomial field with nonlinearities
Uranus et al. Observing'back to the future'phenomenon with photonic chip
Yue et al. Reduction of the Differential Light Shift by the Spatial Periodicity in an Optical Lattice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539951

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2997013

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15758536

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016846537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE