WO2017047497A1 - 6配位白金錯体の高分子結合体 - Google Patents

6配位白金錯体の高分子結合体 Download PDF

Info

Publication number
WO2017047497A1
WO2017047497A1 PCT/JP2016/076482 JP2016076482W WO2017047497A1 WO 2017047497 A1 WO2017047497 A1 WO 2017047497A1 JP 2016076482 W JP2016076482 W JP 2016076482W WO 2017047497 A1 WO2017047497 A1 WO 2017047497A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
platinum complex
residue
hexacoordinate
halogen atom
Prior art date
Application number
PCT/JP2016/076482
Other languages
English (en)
French (fr)
Inventor
雅陽 中村
福田 剛
優作 菊地
千尋 渡邊
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2017539867A priority Critical patent/JP6725520B2/ja
Priority to KR1020187005965A priority patent/KR20180053654A/ko
Priority to AU2016324370A priority patent/AU2016324370B2/en
Priority to CA2998559A priority patent/CA2998559A1/en
Priority to CN201680053069.8A priority patent/CN108026271B/zh
Priority to BR112018003530-0A priority patent/BR112018003530A2/ja
Priority to RU2018109476A priority patent/RU2715048C2/ru
Priority to EP16846368.5A priority patent/EP3351580B1/en
Priority to US15/759,295 priority patent/US10596191B2/en
Publication of WO2017047497A1 publication Critical patent/WO2017047497A1/ja
Priority to US16/431,811 priority patent/US11033577B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a polymer conjugate of a 6-coordinate platinum complex having antitumor activity and a pharmaceutical comprising the same.
  • Platinum complexes such as cisplatin and oxaliplatin are used in various oncology areas as central agents for multi-drug combination therapy in cancer chemotherapy.
  • side effects it is known to cause kidney damage, nausea / vomiting, peripheral neuropathy, bone marrow suppression and the like, which is a problem in clinical use.
  • platinum complexes using drug delivery technology are being developed.
  • platinum complex DDS preparations that have been advanced to clinical trials so far include, for example, a coordination compound (NC-4016) of diaminocyclohexaneplatinum (II) and a block copolymer (see Patent Document 1), oxaliplatin Liposome encapsulated (MBP-426) (see Patent Document 2), N, O-amidmalonate platinum diamine complex (AP5346) (see Patent Document 3), coordination compound of cisplatin and block copolymer ( Patent Document 4), cisplatin liposome preparation (Lipoplatin) (see Non-Patent Document 1), and the like, but there is no platinum complex DDS preparation that has been put on the market.
  • the platinum complex DDS preparation that has advanced to the clinical trial stage uses a 4-coordinate platinum complex as the platinum complex, but a DDS preparation using a 6-coordinate platinum complex has also been reported.
  • Specific examples of DDS preparations using a hexacoordinate platinum complex include a compound using a gold nanorod as a carrier (see Non-Patent Document 2), and a serine threonine phosphatase 2A inhibitor bound between the carrier and the hexacoordinate platinum complex.
  • Non-patent Document 3 a compound obtained by crosslinking a carrier polymer with a 6-coordinate platinum complex (see Non-Patent Document 4), and a compound in which micelles containing the 6-coordinate platinum complex are modified with folic acid (See Non-Patent Document 5), a compound in which a photoresponsive 6-coordinate platinum complex is bound to a carrier (see Non-Patent Document 6), a compound that forms a micelle by binding a 6-coordinate platinum complex and daunomycin to a polymer (non-patent document 6) Patent Document 7), a compound that forms a micelle by binding a hexacoordinate platinum complex and paclitaxel to a polymer (see Non-Patent Document 8), a cancer targeting peptide and Coordination compounds obtained by binding the platinum complexes (Non-Patent Document 9 reference) are known.
  • hexacoordinate platinum complexes are generally less active than tetracoordinate platinum complexes, and are said to be reduced to tetracoordinate compounds by substances having a reducing action in cells and exhibit antitumor activity. Therefore, reduction of side effects is expected by using a 6-coordination complex (see Non-Patent Document 10).
  • substances having a reducing action in the living body include glutathione and ascorbic acid, and their concentrations in cells (including cancer cells) are known to be higher than those in blood.
  • the coordinated platinum complex is selectively converted into a highly coordinated 4-coordinate platinum complex in a reducing environment in the cell.
  • the intracellular concentration of ascorbic acid varies depending on the literature, but is 300 to 10000 ⁇ M, and the concentration in blood is 30 to 51 ⁇ M (see Non-Patent Documents 4 and 11).
  • non-patent documents 4 and 7 verify the release properties of the platinum complex from the carrier under ascorbic acid addition conditions.
  • Non-Patent Documents 2 to 9 all have one or both hydroxyl groups of a 6-coordinate platinum complex having two hydroxyl groups as an axial ligand as carriers. It is an ester-linked compound, and subsequent development has not progressed.
  • the present inventors have determined that a side chain carboxy group in a block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyglutamic acid part, a halogen atom in the axial position and A polymer derivative of a 6-coordinate platinum complex obtained by ester-linking a 6-coordinate platinum complex having a hydroxyl group directly or via a linker efficiently releases the platinum complex under reducing conditions in the cell and has antitumor activity As a result, the present invention has been completed.
  • the present invention relates to the following (1) to (16).
  • a 6-coordinate platinum complex having a halogen atom and a hydroxyl group at an axial position is directly or spacerly attached to a side chain carboxy group in a block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyglutamic acid part.
  • R 1 represents a hydrogen atom, an optionally substituted (C1 to C10) alkyl group or (C6 to C10) aryl group
  • R 2 represents a linking group
  • R 3 represents a hydrogen atom
  • a (C1 to C6) acyl group wherein R 4 is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, or the following general formula (II) [Wherein W is a residue of a six-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, a hydroxyl group, an optionally substituted (C1-C10) alkyl group or an amino group having a benzyl group, A substituent selected from the group consisting of (C1 to C10) alkoxy groups, (C6 to C10) aryloxy groups and —NR 6 CONHR 7 which may have a phenyl group, wherein R 6 and R 7 are the same They may be different (C3-C6) and may be substituted with a cyclic alkyl group or a tertiary amino group (C1-C5) alkyl group, and T may have a hydrogen atom or a
  • W of the substituents represents a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position
  • R 5 is a (C1-C30) alkoxy Group, (C1 to C30) aralkyloxy group, (C6 to C10) aryloxy group, optionally having (C1 to C30) alkylamino group, optionally having di (C1 C30)
  • the following general formula (III) in which H is removed from the alkylamino group and the ⁇ -amino group of the ⁇ -amino acid derivative [Wherein Q represents an ⁇ -amino acid residue, T represents a hydrogen atom, an optionally substituted (C1 to C10) alkyl group or (C6 to C10) aryl group, and Z represents a substituted group.
  • An optionally substituted (C1-C5) alkyl group a represents an integer of 5-11500, d, e, f, g, h, i, j each represents an integer of 0-200, and d + e represents an integer of 1 to 200, and d + e + f + g + h + i + j represents an integer of 2 to 200, and the bonding order of each constituent unit of polyaspartic acid is arbitrary.
  • R 1 is an optionally substituted (C1-C3) alkyl group
  • R 2 is a (C2-C6) alkylene group
  • R 3 is a (C1-C3) acyl group.
  • R 4 is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, or the following general formula (IV) [Wherein W, T and R 8 represent the same groups as in formula (II)] Wherein at least one W of the substituents is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and a is an integer of 10 to 2000.
  • D, e, f, g, h, i, j are each an integer of 0 to 100, d + e is an integer of 1 to 100, and d + e + f + g + h + i + j is an integer of 4 to 100.
  • R 1 is a methyl group
  • R 2 is a trimethylene group
  • R 3 is an acetyl group
  • R 4 is a residue of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position
  • R 5 is a phenylalanine benzyl ester
  • R 1 is a methyl group
  • R 2 is a trimethylene group
  • R 3 is an acetyl group
  • R 4 is the following general formula (V) [Wherein W is a substituent selected from the group consisting of a residue of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position and —NR 6 CONHR 7 , and R 6 and R 7 are both cyclohexyl groups or An isopropyl group, T is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and R 8 represents a residue of an amino acid in which a carboxylic acid is protected] Wherein at least one W of the substituents is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and R 5 is —NR 9 CONHR 10
  • (C1 to C6) acyl group wherein R 21 is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, or the following general formula (VII) [Wherein W is a residue of a six-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, a hydroxyl group, an optionally substituted (C1-C10) alkyl group or an amino group having a benzyl group, A substituent selected from the group consisting of (C1 to C10) alkoxy groups, (C6 to C10) aryloxy groups and —NR 16 CONHR 17 which may have a phenyl group, and R 16 and R 17 may be the same They may be different (C3-C6) and may be substituted with a cyclic alkyl group or a tertiary amino group (C1-C5) alkyl group, and T may have a hydrogen atom or a substituent
  • An optionally substituted (C1 to C5) alkyl group b represents an integer of 5 to 11500
  • k represents an integer of 1 to 200
  • m and n each represents an integer of 0 to 200
  • k + m + n represents an integer of 2 to 200
  • the binding order of each constituent unit of polyglutamic acid is arbitrary]
  • R 11 is an optionally substituted (C1-C3) alkyl group
  • R 19 is a (C2-C6) alkylene group
  • R 20 is a (C1-C3) acyl group.
  • R 21 is a residue of a hexacoordinate complex having a halogen atom and a hydroxyl group in the axial position, or the following general formula (IX) [Wherein W, T and R 8 represent the same groups as in general formula (VII)] Wherein at least one W of the substituents is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and b is an integer of 10 to 2000.
  • K is an integer from 1 to 100
  • m and n are each an integer from 0 to 100
  • k + m + n is an integer from 3 to 100. body.
  • R 11 is a methyl group
  • R 19 is a trimethylene group
  • R 20 is an acetyl group
  • R 21 is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position
  • R 22 is a phenylalanine benzyl ester (6) or (7), wherein the amino group is a residue obtained by removing H from the amino group and a substituent selected from the group consisting of —NR 14 CONHR 15 , and R 14 and R 15 are both cyclohexyl groups or isopropyl groups.
  • R 11 is a methyl group
  • R 19 is a trimethylene group
  • R 20 is an acetyl group
  • R 21 is the following general formula (X) [Wherein W is a substituent selected from the group consisting of a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position and —NR 16 CONHR 17 , and R 16 and R 17 are both cyclohexyl groups or An isopropyl group, T is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and R 8 represents a residue of an amino acid in which a carboxylic acid is protected] Wherein at least one W of the substituent is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and R 22 is —NR 14 CONHR 15
  • a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is represented by the following general formula (XI) [Wherein X 1 and X 2 are both halogen atoms, or together are dicarboxylates selected from the group consisting of oxalate, malonate, succinate and o-phthalate, and Y 1 is a halogen atom. ]
  • the hydroxyl group of the 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is present on the carboxy group of the side chain in the block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyglutamic acid part.
  • a linker that is bonded to a carboxy group of a side chain in a block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyglutamic acid part, and 6-coordinate having a halogen atom and a hydroxyl group at the axial position The method for producing a polymer conjugate of a six-coordinate platinum complex according to the above (1), wherein the hydroxyl group of the platinum complex is ester-bonded.
  • a medicament comprising a polymer conjugate of the six-coordinate platinum complex according to any one of (1) to (11) above as an active ingredient.
  • An antitumor agent comprising a polymer conjugate of the six-coordinate platinum complex according to any one of (1) to (11) as an active ingredient.
  • the polymer conjugate of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position of the present invention efficiently releases a platinum complex under reducing conditions in cancer cells, and a pharmaceutical comprising this as an active ingredient is clinical It is an effective antitumor activity drug with few side effects such as peripheral neuropathy.
  • the polymer conjugate of the 6-coordinate platinum complex of the present invention has a side chain carboxy group in a block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyethylene glycol structural part and a polyglutamic acid part, in an axial position.
  • a feature is that a hexacoordinate platinum complex having a halogen atom and a hydroxyl group is ester-bonded directly or via a spacer.
  • the polyethylene glycol structure portion in the present invention includes polyethylene glycol modified at both ends or one end, and the modifying groups at both ends may be the same or different.
  • terminal modifying groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, benzyl group, 4-phenylbutyl group, dimethoxyethyl group , Diethoxyethyl group, aminoethyl group, aminopropyl group, aminobutyl group and the like.
  • (C1-C3) alkyl group, aminoethyl group, aminopropyl group and the like which may have a substituent are preferable.
  • the molecular weight of the polyethylene glycol structure is usually about 200 to 500,000, preferably about 300 to 100,000, and more preferably about 1,000 to 50,000.
  • the number of bonds of the polyaspartic acid portion or polyglutamic acid portion of the block copolymer is about 1 to 300, preferably about 2 to 200, and more preferably about 3 to 100 per molecule.
  • the number of bonds can be determined by neutralization titration of the raw block copolymer with alkali.
  • the hexacoordinate platinum complex having a halogen atom and a hydroxyl group at the axial position in the present invention is not particularly limited as long as the central metal atom is platinum (IV) and the ligand at the axial position is a halogen atom and a hydroxyl group.
  • the polymer conjugate of the hexacoordinate platinum complex of the present invention is a side chain carboxy group in a block copolymer having the hydroxyl group and a polyethylene glycol structural part and a polyaspartic acid part or a polyethylene glycol structural part and a polyglutamic acid part, Alternatively, it is a compound in which the carboxy group of the linker bonded to the carboxy group is ester-bonded.
  • the polyaspartic acid moiety in the present invention may be an ⁇ -form or ⁇ -form polymer, or a polymer in which an ⁇ -form and a ⁇ -form are mixed, and is preferably a polymer in which an ⁇ -form and a ⁇ -form are mixed.
  • the polyglutamic acid moiety in the present invention may be an ⁇ -form or ⁇ -form polymer or a polymer in which an ⁇ -form and a ⁇ -form are mixed, and is preferably an alpha-form polymer.
  • the polyaspartic acid moiety or the polyglutamic acid moiety may be only D-amino acid, L-amino acid alone, or D-amino acid and L-amino acid may be arbitrarily mixed.
  • the binding amount of the block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or polyglutamic acid part and a polymer conjugate of a 6-coordinate platinum complex should be a medicinal amount. Although not particularly limited, it is usually 1 to 100%, preferably 5 to 80% of the total number of carboxy groups of the polymer.
  • the halogen atom in the present invention represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the optionally substituted (C1 to C10) alkyl group is a linear, branched or cyclic (C1 to C10) alkyl group such as a methyl group, an ethyl group, or an n-propyl group.
  • n-butyl group n-pentyl group, n-hexyl group, n-octyl group, n-decyl group, isopropyl group, s-butyl group, t-butyl group, 2,2-dimethylpropyl group, cyclopropyl Group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, benzyl group, phenethyl group, 4-phenylbutyl group, dimethoxyethyl group, diethoxyethyl group, dimethoxypropyl group, diethoxypropyl group, aminoethyl group, diaminoethyl Group, aminopropyl group, aminobutyl group and the like.
  • examples of the (C6-C10) aryl group include a phenyl group and a naphthyl group.
  • a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is bonded directly or via a spacer to the side chain carboxy group in the block copolymer having a polyethylene glycol structural moiety and a polyaspartic acid moiety of the present invention.
  • the polymer conjugate of the coordination platinum complex is represented, for example, by the general formula (I).
  • Examples of the alkyl group (C1 to C10) which may have a substituent in R 1 of the general formula (I) include those exemplified above, and may have a substituent (C1 to C1). C3) An alkyl group is preferable, and a methyl group is particularly preferable.
  • Examples of the (C6-C10) aryl group in R 1 of the general formula (I) include the substituents exemplified above.
  • Examples of the linking group represented by R 2 in the general formula (I) include a linear or branched (C2 to C6) alkylene group, and among them, a linear (C2 to C4) alkylene group is preferable.
  • An ethylene group, a trimethylene group, a tetramethylene group, etc. are mentioned, A trimethylene group is especially preferable.
  • Examples of the (C1 to C6) acyl group in R 3 of the general formula (I) include a formyl group, an acetyl group, a propionyl group, a pivaloyl group and the like, and a (C1 to C3) acyl group is preferable, and an acetyl group is Particularly preferred.
  • R 4 in the general formula (I) is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position as described above, or a substituent of the general formula (II).
  • the residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is a group obtained by removing H from the hydroxyl group of the above hexacoordinate platinum complex.
  • Examples of the (C1 to C10) alkyl group optionally having a substituent at W in formula (II) include those exemplified above, and among them, an ethyl group and a t-butyl group are preferable.
  • Examples of the (C1 to C10) alkoxy group optionally having a phenyl group in W of the general formula (II) include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a t-butoxy group, and a benzyl group. Examples thereof include an oxy group, a phenethyloxy group, and a 4-phenyl-1-butoxy group.
  • Examples of the (C6-C10) aryloxy group in W of the general formula (II) include a phenoxy group and a naphthoxy group.
  • Examples of the (C3 to C6) cyclic alkyl group in R 6 and R 7 of —NR 6 CONHR 7 of W in the general formula (II) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • a cyclohexyl group is preferred.
  • Examples of the (C1 to C5) alkyl group optionally substituted with a tertiary amino group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an isopropyl group, and dimethyl group.
  • An aminopropyl group, a 2-morpholinoethyl group, and the like can be given. Among them, an isopropyl group and a dimethylaminopropyl group are preferable.
  • Examples of the (C1 to C10) alkyl group optionally having a substituent at T in formula (II) include those exemplified above, preferably a methyl group, an ethyl group, an n-propyl group, a benzyl group. Etc.
  • Examples of the (C6 to C10) aryl group in T of the general formula (II) include the substituents exemplified above. Particularly preferable examples of T in the general formula (II) include a hydrogen atom, a methyl group, an ethyl group, and a benzyl group.
  • Examples of the (C1-C10) alkyl group optionally having a substituent in R 8 of the general formula (II) include those exemplified above, among which an ethyl group, a phenyl group, a benzyl group, 4-phenyl A 1-butyl group is preferred.
  • the amino acid residue in which the carboxy group is protected is not particularly limited. For example, glycine, alanine, leucine, isoleucine, valine, phenylalanine (C1-C3) alkyl ester or unsubstituted amide, dimethylamide, diethylamide, Benzylamide and the like are preferable.
  • the substituent represented by the general formula (II) in R 4 of the general formula (I) is represented by the general formula (IV) [wherein W, T and R 8 represent the same groups as in the general formula (II).
  • W is selected from the group consisting of a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and —NR 6 CONHR 7.
  • R 6 and R 7 are both a cyclohexyl group or an isopropyl group
  • T is a hydrogen atom, a methyl group, an ethyl group or a benzyl group
  • R 8 is a residue of an amino acid in which a carboxylic acid is protected.
  • the substituent represented by [shown] is particularly preferred.
  • R 5 in the general formula (I) may have a (C1 to C30) alkoxy group, (C1 to C30) aralkyloxy group, (C6 to C10) aryloxy group, or a substituent (C1 to C30).
  • An alkylamino group, an optionally substituted di (C1-C30) alkylamino group, the above general formula (III) [wherein Q represents an ⁇ -amino acid residue, T represents a hydrogen atom, Z represents an optionally substituted (C1 to C10) alkyl group or (C6 to C10) aryl group, and Z represents an optionally substituted (C1 to C10) alkyl group or amino group having a benzyl group.
  • Examples of the (C1 to C30) alkoxy group include a methoxy group, an ethoxy group, an n-butoxy group, a t-butoxy group, a cyclopropoxy group, a cyclohexyloxy group, an adamantyloxy group, and the like.
  • a butoxy group is preferred.
  • Examples of (C1 to C30) aralkyloxy groups include benzyloxy group, 2-phenylethoxy group, 3-phenylpropoxy group, 4-phenylbutoxy group and the like. Among them, benzyloxy group, 4-phenyl-1- A butoxy group is preferred.
  • Examples of the (C6-C10) aryloxy group include a phenoxy group and a naphthoxy group.
  • Examples of the optionally substituted (C1 to C30) alkylamino group and optionally substituted di (C1 to C30) alkylamino group include a methylamino group, an ethylamino group, and butyl.
  • Amino group isopropylamino group, cyclohexylamino group, benzylamino group, 4-phenylbutylamino group, dimethylamino group, diethylamino group, dibutylamino group, diisopropylamino group, dicyclohexylamino group, dibenzylamino group, diphenylbutylamino group N-ethylmethylamino group, N-methylphenylamino group, N-methyl-4-phenylbutylamino group and the like, among which ethylamino group, benzylamino group and 4-phenylbutylamino group are preferable.
  • Q in the ⁇ -amino acid derivative represented by the general formula (III) is preferably a side chain of an essential amino acid, and examples thereof include a hydrogen atom, a methyl group, a benzyl group, an isobutyl group, and the like, and a benzyl group that is a side chain of phenylalanine Is particularly preferred.
  • Examples of the (C1 to C10) alkyl group optionally having a substituent in Z include those exemplified above. Among them, a methyl group, an ethyl group, a phenyl group, a benzyl group, 4-phenyl-1-butyl, and the like. Groups are preferred.
  • Examples of the (C1 to C10) alkyl group and (C6 to C10) aryl group which may have a substituent in T include the same groups as T in the general formula (II), and preferable groups are also the same.
  • Examples of the (C1 to C10) alkoxy group optionally having a phenyl group in Z include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a t-butoxy group, a benzyloxy group, and a phenethyloxy group. And 4-phenylbutoxy group.
  • Examples of the (C6 to C10) aryloxy group in Z include a phenoxy group and a naphthoxy group.
  • the (C3 to C6) cyclic alkyl group and the tertiary amino group (C1 to C5) alkyl group in R 12 and R 13 may be substituted with the above general formula (C1 to C5).
  • R ⁇ 6 >, R ⁇ 7 > of W of II) is mentioned, A preferable group is also the same.
  • benzyloxy group is particularly preferable as Z.
  • R 5 —NR 9 CONHR 10 R 9 the (C3 to C6) cyclic alkyl group and the tertiary amino group (C1 to C5) alkyl group in R 10 may be substituted with the above-described alkyl groups.
  • R ⁇ 6 >, R ⁇ 7 > of W of general formula (II) is mentioned, A preferable group is also the same.
  • the substituents of R 5 in the general formula (I) may be the same or different in one molecule, and may be single or mixed between the molecules of the polymer conjugate of the 6-coordinate platinum complex.
  • H is removed from the amino group of phenylalanine benzyl ester, N-methyl-phenylalanine benzyl ester, N-ethyl-phenylalanine benzyl ester, N-benzyl-phenylalanine benzyl ester.
  • a represents an integer of 5 to 11500, preferably 10 to 2000.
  • d, e, f, g, h, i, and j each represents an integer of 0 to 200
  • d + e represents an integer of 1 to 200
  • d + e + f + g + h + i + j represents an integer of 2 to 200
  • D, e, f, g, h, i, j are each an integer from 0 to 100
  • d + e is from 1 to 100
  • f + g is from 0 to 99
  • h + i is an integer from 0 to 30, and
  • d + e + f + g + h + i + j is an integer of 4 to 100.
  • the bonding order of the constituent units of polyaspartic acid is arbitrary.
  • a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is bonded directly or via a spacer to the side chain carboxy group in the block copolymer having the polyethylene glycol structural portion and the polyglutamic acid portion of the present invention.
  • the polymer conjugate of a hexacoordinate platinum complex is represented by, for example, the general formula (VI).
  • Examples of the alkyl group (C1 to C10) which may have a substituent in R 11 of the general formula (VI) include those exemplified above, and may have a substituent (C1 to C10). C3) An alkyl group is preferable, and a methyl group is particularly preferable. Examples of the (C6-C10) aryl group in R 11 of the general formula (VI) include the substituents exemplified above.
  • Examples of the linking group represented by R 19 in the general formula (VI) include the same groups as the linking group in R 2 of the general formula (I), and preferred groups are also the same.
  • Examples of the (C1-C6) acyl group in R 20 of the general formula (VI) include the same groups as the (C1-C6) acyl group in R 3 of the general formula (I), and preferred groups are also the same.
  • R 21 in the general formula (VI) is a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position as described above, or a substituent of the general formula (VII).
  • the residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is a group obtained by removing H from the hydroxyl group of the above hexacoordinate platinum complex.
  • (C1 to C10) alkyl group optionally having a substituent in W of formula (VII) (C1 to C10) alkoxy group optionally having a phenyl group, (C6 to C10) aryloxy group , —NR 16 CONHR 17 , R 16 , R 17 , (C3 to C6) cyclic alkyl group and (C1 to C5) alkyl group optionally substituted with a tertiary amino group are represented by W in formula (II) (C1 to C10) alkyl group which may have a substituent, (C1 to C10) alkoxy group which may have a phenyl group, (C6 to C10) aryloxy group, R of —NR 6 CONHR 7 6, the R 7 (C3 ⁇ C6) include cyclic alkyl groups and tertiary amino which may be substituted with group (C1 ⁇ C5) alkyl group and each similar group, preferred groups are also the same That.
  • Examples of the (C1 to C10) alkyl group optionally having a substituent at T in the general formula (VII) include those exemplified above, preferably a methyl group, an ethyl group, an n-propyl group, a benzyl group. Etc.
  • Examples of the (C6 to C10) aryl group in T of the general formula (VII) include the substituents exemplified above.
  • Particularly preferred examples of T in the general formula (VII) include a hydrogen atom, a methyl group, an ethyl group, and a benzyl group.
  • Amino acid residue which may have a substituent in R 8 (C1 ⁇ C10) alkyl group and a carboxy group is protected in the general formula (VII) have a substituent in R 8 of general formula (II) (C1-C10) alkyl groups and carboxy groups, which are optionally protected, include the same groups as the amino acid residues, and preferred groups are also the same.
  • the substituent represented by the general formula (VII) in R 21 of the general formula (VI) is represented by the general formula (IX) [wherein W, T and R 8 represent the same groups as in the general formula (VII).
  • W is selected from the group consisting of a residue of a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position, and —NR 16 CONHR 17 R 16 and R 17 are both a cyclohexyl group or an isopropyl group
  • T is a hydrogen atom, a methyl group, an ethyl group or a benzyl group
  • R 8 is a residue of an amino acid in which a carboxylic acid is protected.
  • the substituent represented by [shown] is particularly preferred.
  • R 22 in the general formula (VI) may have a (C1 to C30) alkoxy group, (C1 to C30) aralkyloxy group, (C6 to C10) aryloxy group, or a substituent (C1 to C30).
  • An alkylamino group, an optionally substituted di (C1 to C30) alkylamino group, the above general formula (VIII) [wherein Q represents an ⁇ -amino acid residue, T represents a hydrogen atom, Z represents an optionally substituted (C1 to C10) alkyl group or (C6 to C10) aryl group, and Z represents an optionally substituted (C1 to C10) alkyl group or amino group having a benzyl group.
  • CONHR 15 represents a group selected from the group consisting of R 14 and R 15 which may be the same or different (C 3 to C 6) and may be substituted with a cyclic alkyl group or a tertiary amino group (C 1 to C 5 ) An alkyl group.
  • the di (C1-C30) alkylamino group which may be substituted is a (C1-C30) alkoxy group, a (C1-C30) aralkyloxy group, or a (C6-C10) aryloxy group in R 5 of the general formula (I).
  • Examples of Q and T of the ⁇ -amino acid derivative represented by the general formula (VIII) include the same groups as Q and T of the ⁇ -amino acid derivative represented by the general formula (III), and preferred groups are also the same. .
  • (C1 to C10) alkyl group optionally having a substituent of Z in the general formula (VIII) (C1 to C10) alkoxy group optionally having a phenyl group, (C6 to C10) aryl
  • An oxy group, a (C3-C6) cyclic alkyl group and a (C1-C5) alkyl group optionally substituted by a (C3-C6) cyclic alkyl group and a tertiary amino group in R 24 , R 25 of —NR 24 CONHR 25 are represented by the general formula (III (C1-C10) alkyl group optionally having a substituent of Z, (C1-C10) alkoxy group optionally having a phenyl group, (C6-C10)
  • R 22 of general formula (VI) and R 15 is,
  • R 6 and R 7 of —NR 6 CONHR 7 of W in the general formula (II) are exemplified, and preferred groups are also the same.
  • the substituents of R 22 in the general formula (VI) may be the same or different in one molecule, and may be single or mixed between the molecules of the polymer conjugate of the 6-coordinate platinum complex.
  • H is preferably removed from the amino group of phenylalanine benzyl ester, N-methyl-phenylalanine benzyl ester, N-ethyl-phenylalanine benzyl ester, N-benzyl-phenylalanine benzyl ester.
  • b represents an integer of 5 to 11500, preferably 10 to 2000.
  • k represents an integer of 1 to 200
  • m and n each represents an integer of 0 to 200
  • k + m + n represents an integer of 2 to 200
  • k is an integer of 1 to 100
  • n are each an integer of 0 to 100
  • k + m + n is 3 to 100.
  • m is 0 to 99 and n is 0 to 30.
  • the order of binding of each constituent unit of polyglutamic acid is arbitrary.
  • the hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position in the present invention is preferably the above general formula (XI) [wherein, X 1 and X 2 are both halogen atoms or together, oxalate, malonate , A dicarboxylate selected from the group consisting of succinate and o-phthalate, and Y 1 represents a halogen atom].
  • X 1 and X 2 in the general formula (XI) a chlorine atom, a bromine atom or a dicarboxylate together are preferable, and Y 1 is preferably a chlorine atom or a bromine atom.
  • the dicarboxylate is not particularly limited, but is a group in which two carboxy groups are directly bonded, a (C1-C6) alkyl group having two carboxy groups or two carboxy groups in the ortho position ( C6 to C10) aryl groups are particularly preferred, and examples thereof include oxalate (i), malonate (ii), succinate (iii) and o-phthalate (iv) shown below.
  • a 1R or 2R trans configuration is preferable.
  • Y 1 represents a chlorine atom or a bromine atom
  • the polymer conjugate of the 6-coordinate platinum complex represented by the above general formula (I) or (VI) forms micelles having a polyethylene glycol structure portion as an outer shell and a platinum complex bond portion as an inner shell in water. May be.
  • the particle size of the micelle is about 3 to 100 nm as measured by a particle size / zeta potential measuring device (Malvern Instruments Ltd: Zetasizer Nano ZS).
  • the 6-coordinate platinum complex used in the present invention can be produced by applying a method described in a literature such as Non-Patent Document 10. That is, a method in which a 4-coordinate platinum complex is treated with an oxidizing agent such as hydrogen peroxide or an oxidative halogenation treatment in a solvent to form a 6-coordinate platinum complex, or a 6-coordinate platinum complex is substituted or condensed. This is a method of obtaining a desired six-coordinate platinum complex by subjecting to a reaction. An example of the production method is shown in the following reference example.
  • the polymer conjugate of the 6-coordinate platinum complex of the present invention comprises a side chain carboxy group of a block copolymer having a polyethylene glycol structural part and a polyaspartic acid part or a polyglutamic acid part, and an axial position obtained by the above preparation method.
  • the production method is also included in the present invention by ester-bonding a hydroxyl group of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group to an organic solvent using a dehydration condensing agent or the like.
  • a hexacoordinate platinum complex having a halogen atom and a hydroxyl group in the axial position is preferably mixed with N, N-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), N-methyl in a solvent.
  • Dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPC), 1-ethyl-3- (3-dimethylaminopropyl) in an aprotic polar solvent such as pyrrolidone (NMP) at 0 to 180 ° C., preferably 5 to 50 ° C.
  • DCC dicyclohexylcarbodiimide
  • DIPC diisopropylcarbodiimide
  • NMP pyrrolidone
  • Carbodiimide hydrochloride (WSC), 1-ethoxycarbonyl-2-ethoxy-1 2-dihydroxyquinolinone (EEDQ), hexafluorophosphoric acid (benzotriazol-1-yloxy) tripyrrolidinophosphonium (PyBOP), N, N, N ', N'-tetramethyl-O- (7-azabenzotriazole -1-yl) uronium
  • HATU hexafluorophosphate
  • a reaction aid such as N, N-dimethylaminopyridine (DMAP), 1-hydroxybenzotriazole hydrate (HOBt ⁇ H 2 O), (hydroxyimino) ethyl cyanoacetate or the like may be used. Good.
  • DMAP N, N-dimethylaminopyridine
  • HOBt ⁇ H 2 O 1-hydroxybenzotriazole hydrate
  • (hydroxyimino) ethyl cyanoacetate or the like may be used. Good.
  • a polymer conjugate of a 6-coordinate platinum complex is produced by an operation such as ordinary separation and purification.
  • a polymer conjugate of the 6-coordinate platinum complex of the present invention is produced using a block copolymer of a polyethylene glycol structural moiety-polyglutamic acid moiety prepared by referring to the method described in Japanese Patent No. 4745664.
  • a method for introducing a desired substituent into R 5 or R 22 in the compound of the general formula (I) or (VI) a method of using a carboxy group of a block copolymer in usual ester synthesis or amide synthesis is used.
  • the amount of the corresponding alcohol to be bound after activation, the corresponding amine or carboxy group-protected amino acid derivatives, etc. are reacted under basic conditions, or the corresponding alcohol, the corresponding amine or carboxy group is protected. It is possible to activate the amino acid derivative or the like and then react with the carboxy group of the block copolymer.
  • the unreacted carboxy group in the polymer can be reactivated by the same reaction, and the hydroxyl group of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position can be condensed here.
  • the hydroxyl group of a 6-coordinate platinum complex having a halogen atom and a hydroxyl group in the axial position can be condensed here.
  • those reaction orders may be different.
  • the production method of the polymer conjugate of the hexacoordinate platinum complex of the present invention is not limited to these methods. Examples of the production method are also shown in the following examples.
  • a pharmaceutical comprising the polymer conjugate of the hexacoordinate platinum complex of the present invention as an active ingredient.
  • bonded_body of the 6 coordinate platinum complex of this invention shows a pharmaceutical effect, The use as an antitumor agent is preferable.
  • an antitumor agent alone or as a carrier for formulation, excipient, disintegrant, binder, lubricant, fluidizing agent, coating agent, suspending agent, emulsifier, stabilizer, preservative, taste-masking agent It can also be mixed with pharmaceutically acceptable additives such as powders, flavoring agents, diluents, solubilizing agents, etc., and powders, granules, tablets, capsules, capsules, injections, suppositories, ointments It may be administered orally or parenterally (systemic administration, topical administration, etc.) in the form of a preparation. In particular, it is preferably used as an injection.
  • water for example, water, physiological saline, 5% glucose or mannitol solution, water-soluble organic solvent (for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. Or a mixture thereof) or a mixture of water and the water-soluble organic solvent.
  • water-soluble organic solvent for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. Or a mixture thereof
  • water-soluble organic solvent for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. Or a mixture thereof
  • water-soluble organic solvent for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. Or a mixture thereof
  • the dose of the polymer conjugate of the 6-coordinate platinum complex of the present invention can be naturally changed depending on the sex, age, physiological state, pathological condition, etc. of the patient, but parenterally, usually an active ingredient per day for an adult 0.01 to 1500 mg / m 2 , preferably 0.1 to 250 mg / m 2 is administered.
  • Administration by injection is performed by veins, arteries, affected areas (tumor areas) and the like.
  • the drug content of the compound in this example was determined by quantifying the platinum content using an inductively coupled plasma emission spectrometer ICP-OES (Agilent Technology Co., Ltd .: 720-ES type) and calculating from the platinum content.
  • ICP-OES inductively coupled plasma emission spectrometer
  • the particle size and zeta potential of the compounds in this example were measured using a particle size / zeta potential measuring device (Malvern Instruments Ltd: Zetasizer Nano ZS).
  • the molecular weight of the low molecular weight compound in this reference example was LC / MS (Shimadzu LCMS-2020), the column was Inertsil ODS-3 (2.1 mm ID x 100 mm), and the mobile phase (A) was acetonitrile / formic acid ( 99.9 / 0.1), water / formic acid (99.9 / 0.1) was used as the mobile phase (B), and measurement was performed under the following analysis conditions 3 or 4.
  • Reference Example 1 trans, cis, cis- [PtCl (OH) (R, R-dach) (ox)]: Synthesis of a hexacoordinate platinum complex in which Y in the general formula (XII) is a chlorine atom N-chlorosuccinimide ( 66.8 mg) was dissolved in 14 ml of distilled water, a solution of l-OHP (200 mg) suspended in 6 ml of distilled water was added, and the mixture was stirred at room temperature for 4 hours in the dark. After completion of the reaction, insoluble matters in the reaction solution were filtered off, and the filtrate was concentrated under reduced pressure to obtain a solid.
  • Y in the general formula (XII) is a chlorine atom N-chlorosuccinimide ( 66.8 mg) was dissolved in 14 ml of distilled water, a solution of l-OHP (200 mg) suspended in 6 ml of distilled water was added, and the mixture was stirred at room
  • Example 1 Compound (a block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 12,000 and a polyaspartic acid moiety having a polymerization number of about 43 and trans, cis, cis- [PtCl (OH) (R, R-dach) ) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 1 Me (methyl group)
  • R 2 trimethylene group
  • R 3 Ac (acetyl group)
  • R 4 6 coordination of general formula (I) Residue obtained by removing H from the hydroxyl group of platinum complex
  • Tylene glycol-polyaspartic acid block copolymer (polymerization number of aspartic acid: about 43; 1.98 g) and the 6-coordinate platinum complex (899 mg) obtained in Reference Example 1 were added to dimethylformamide (70 ml) at 35 ° C. After dissolution, dimethylaminopyridine (61 mg) was added. After the reaction solution was brought to 25 ° C., diisopropylcarbodiimide (0.38 ml) was added, and after 4 hours, phenylalanine benzyl ester hydrochloride (875 mg), diisopropylethylamine (0.52 ml) and diisopropylcarbodiimide (0.38 ml) were added.
  • the mixture was further stirred for 18.5 hours. After completion of the reaction, the reaction solution is slowly added to a mixed solution of ethyl acetate (70 ml), ethanol (70 ml) and diisopropyl ether (700 ml), stirred at room temperature and allowed to stand until the target product precipitates. Removed. The resulting precipitate was further washed with ethanol / diisopropyl ether (1/4 (v / v); 100 ml), and the crude product (3.1 g) was collected by filtration. The obtained crude product (1.4 g) was dissolved in cold water (28 ml), passed through an ion exchange resin (Dow Chemical Co.
  • Example 3 Compound (a block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 12000 and a polyglutamic acid moiety having a polymerization number of about 22 and trans, cis, cis- [PtCl (OH) (R, R-dach) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 11 Me (methyl group)
  • R 19 trimethylene group
  • R 20 Ac (acetyl group)
  • R 21 6-coordinate platinum of general formula (VI)
  • Manufacture A block copolymer (1.18 g) composed of
  • Example 4 Compound of Example 4 (block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a polyaspartic acid moiety having a polymerization number of about 11 and trans, cis, cis- [PtCl (OH) (R, R-dach ) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 1 Me (methyl group)
  • R 2 trimethylene group
  • R 3 Ac (acetyl group)
  • R 4 6 coordination of general formula (I) Residue obtained by removing H from the hydroxyl group of a platinum complex
  • R 5 residue obtained by removing H from the amino group of isopropylaminocarbonylisopropylamino group or phenylalanine benzyl ester
  • T hydrogen atom
  • a block copolymer (0.61 g) comprising a toxipolyethylene glycol moiety and a polyaspartic acid moiety having a polymerization number of about 11, the 6-coordinate platinum complex (0.38 g) obtained in Reference Example 1, and phenylalanine benzyl ester hydrochloride (0.35 g), diisopropylethylamine (0.21 ml), dimethylaminopyridine (24 mg) and diisopropylcarbodiimide (0.29 ml) were used in the same manner as in Example 1 to obtain the title compound.
  • the obtained title compound had a drug content of 14.8% (mass fraction). Further, the title compound was dissolved in water to a concentration of 1 mg / ml, and the particle diameter was measured to be less than 10 nm, forming micelles.
  • a block copolymer (1.00 g) comprising a methoxypolyethylene glycol moiety of 0 and a polyaspartic acid moiety having a polymerization number of about 41, the 6-coordinate platinum complex (0.17 g) obtained in Reference Example 1, and phenylalanine benzyl ester
  • the title compound was obtained in the same manner as in Example 1 using hydrochloride (0.19 g), diisopropylethylamine (0.12 ml), dimethylaminopyridine (11 mg) and diisopropylcarbodiimide (0.15 ml).
  • the obtained title compound had a drug content of 7.0% (mass fraction). Further, the title compound was dissolved in water to a concentration of 1 mg / ml, and the particle diameter was measured to be 80 nm, forming micelles.
  • Reference Example 2 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 12,000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 43.
  • Methoxypolyethylene glycol-polyaspartic acid block copolymer (aspartic acid polymerization number about 43; 3.03 g) was dissolved in dimethylformamide (25 ml) at 35 ° C.
  • phenylalanine benzyl ester hydrochloride (2.33 g), diisopropylethylamine (1.42 ml), dimethylaminopyridine (93 mg) and dimethylformamide (5 ml) were added.
  • diisopropylcarbodiimide (2.34 ml) was added, stirred at the same temperature for 18 hours, then heated to 30 ° C. and stirred for 5 hours, and then further diisopropylcarbodiimide (0.23 ml) was added. Stir for 2 hours.
  • the resulting elution fraction was concentrated under reduced pressure to remove acetonitrile and lyophilized to obtain the benzyl protected product (4.52 g) of the title compound.
  • the obtained benzyl protected product (3.14 g) was dissolved in dimethylformamide (63 ml) at 35 ° C., hydrous Pd / C (10%) (688 mg) was added, and the mixture was stirred at 33 ° C. for 22 hours under a hydrogen atmosphere. .
  • reaction solution was brought to 30 ° C., diisopropylcarbodiimide (0.31 ml) was added, and after 21 hours, diisopropylcarbodiimide (0.31 ml) was further added. After 3 hours, the temperature of the solution was raised to 35 ° C. and stirred for 2 hours. After completion of the reaction, the reaction solution was slowly added to a mixed solution of ethanol (43 ml) and diisopropyl ether (257 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • Example 7 Compound (block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a polyglutamic acid moiety having a polymerization number of about 10 and trans, cis, cis- [PtCl (OH) (R, R-dach) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 11 Me (methyl group),
  • R 19 trimethylene group
  • R 20 Ac (acetyl group)
  • R 21 6-coordinate platinum of general formula (VI)
  • a block copolymer consisting of a reethylene glycol moiety and a polyglutamic acid moiety having a polymerization number of about 10 (glutamic acid polymerization number of about 10; 750 mg) was dissolved in dimethylformamide (29 ml) at 35 ° C. and then obtained in Reference Example 1. 6-coordinate platinum complex (400 mg) and dimethylaminopyridine (27.6 mg) were added.
  • reaction solution was slowly added to a mixed solution of ethyl acetate (31 ml) and diisopropyl ether (589 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed. Thereafter, a mixed solution of ethyl acetate (31 ml) and diisopropyl ether (589 ml) was added and stirred overnight, and then the supernatant was removed and dried under reduced pressure to obtain a crude product (1.52 g). The obtained crude product was dissolved in cold water (72 ml), and then purified using Vivaspin Turbo 15 (MWCO: 10 kDa) (Sauterius).
  • Vivaspin Turbo 15 MWCO: 10 kDa
  • the obtained solution was freeze-dried to obtain the title compound (994 mg).
  • the drug content of the obtained title compound was 14.5% (mass fraction).
  • the title compound was dissolved in water to a concentration of 5 mg / ml, and the particle diameter was measured to be 9.9 nm, forming micelles.
  • Example 8 Compound (block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a polyglutamic acid moiety having a polymerization number of about 8 and trans, cis, cis- [PtCl (OH) (R, R-dach) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 11 Me (methyl group),
  • R 19 trimethylene group
  • R 20 Ac (acetyl group)
  • R 21 6-coordinate platinum of general formula (VI)
  • diisopropylcarbodiimide (0.20 ml) was added, and after 4.5 hours, phenylalanine benzyl ester hydrochloride (450 mg), diisopropylethylamine (0.44 ml) and diisopropylcarbodiimide (0.40 ml) And stirred for a further 16 hours. Thereafter, diisopropylcarbodiimide (0.20 ml) was added, and the mixture was further stirred for 4 hours.
  • reaction solution was slowly added to a mixed solution of ethyl acetate (38 ml) and diisopropyl ether (722 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed. Thereafter, a mixed solution of ethyl acetate (38 ml) and diisopropyl ether (722 ml) was added and stirred overnight, and then the supernatant was removed and dried under reduced pressure to obtain a crude product (1.77 g). The obtained crude product (1.68 g) was dissolved in cold water (72 ml) and purified using Vivaspin Turbo 15 (MWCO: 10 kDa) (Sautelius).
  • Vivaspin Turbo 15 MWCO: 10 kDa
  • the obtained solution was freeze-dried to obtain the title compound (1270 mg).
  • the obtained title compound had a drug content of 14.3% (mass fraction).
  • the title compound was dissolved in water to a concentration of 5 mg / ml, and the particle size was measured to be 9.6 nm, forming micelles.
  • Example 9 Compound of Example 9 (block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 12000 and a polyaspartic acid moiety having a polymerization number of about 43 and trans, cis, cis- [PtCl (OH) (R, R-dach) ) Cl 2 ] and a conjugate with phenylalanine benzyl ester:
  • R 1 Me (methyl group)
  • R 2 trimethylene group
  • R 3 Ac (acetyl group)
  • R 4 6-coordinate platinum of general formula (I) Residue obtained by removing H from the hydroxyl group of the complex
  • Tylene glycol-polyaspartic acid block copolymer (aspartic acid polymerization number of about 43; 0.577 g) and the 6-coordinate platinum complex (251 mg) obtained in Reference Example 3 were added to dimethylformamide (20 ml) at 35 ° C. After dissolution, dimethylaminopyridine (17.8 mg) was added. After the reaction solution was brought to 25 ° C., diisopropylcarbodiimide (0.112 ml) was added, and after 4.5 hours, phenylalanine benzyl ester hydrochloride (254.8 mg), diisopropylethylamine (0.112 ml) and diisopropylcarbodiimide (0.
  • the obtained crude product (0.7 g) was dissolved in a 10% aqueous acetonitrile solution (30 ml), and then purified using Vivaspin Turbo 15 (MWCO: 10 kDa) (Sautelius). The resulting solution was lyophilized to give the title compound (0.68 g). The obtained title compound had a drug content of 6.4% (mass fraction). The title compound was dissolved in water to a concentration of 1 mg / ml, and the particle size was measured to be 87 nm, forming micelles.
  • reaction solution After the reaction solution was brought to 30 ° C., diisopropylcarbodiimide (0.20 ml) was added, and after 23 hours, diisopropylcarbodiimide (0.10 ml) was further added. After 1 hour, the temperature of the solution was raised to 35 ° C. and stirred for 2 hours. After completion of the reaction, the reaction solution is slowly added to a mixed solution of ethyl acetate (6 ml), ethanol (6 ml) and diisopropyl ether (48 ml), stirred at room temperature and allowed to stand until the target product precipitates. Removed.
  • ethyl acetate 6 ml
  • ethanol 6 ml
  • diisopropyl ether 48 ml
  • Reference Example 4 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 12, produced by the method described in Japanese Patent No. 3268913 Methoxypolyethyleneglycol-polyaspartic acid block copolymer (aspartic acid polymerization number of about 12; 2.04 g) was dissolved in dimethylformamide (20 ml) at 35 ° C.
  • reaction solution was slowly added to a mixed solution of ethyl acetate (15 ml) and diisopropyl ether (135 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • Ethyl acetate / diisopropyl ether (1/9 (v / v); 150 ml) was further added to the resulting precipitate, and the crude product (550 mg) was collected by filtration.
  • the obtained crude product (550 mg) was dissolved in cold water (35 ml), and centrifugal ultrafiltration was performed using Vivaspin Turbo 15 (MWCO: 3 kDa) (Zautrius) to remove low molecular compounds.
  • the purified solution was lyophilized to give the title compound (173 mg).
  • the drug content of the obtained title compound was 19.3% (mass fraction).
  • the title compound was dissolved in water to a concentration of 1 mg / ml, and the particle diameter was measured to be 21 nm, forming micelles.
  • Reference Example 5 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 12, produced by the method described in Japanese Patent No. 3268913 Methoxypolyethyleneglycol-polyaspartic acid block copolymer (aspartic acid polymerization number of about 12; 2.05 g) was dissolved in dimethylformamide (21 ml) at 35 ° C. to obtain phenylalanine benzyl ester hydrochloride (2.25 g: carboxy group).
  • diisopropylethylamine (1.35 ml) and dimethylaminopyridine (90 mg) were added.
  • diisopropylcarbodiimide (2.26 ml) was added, stirred at the same temperature for 19 hours, then warmed to 30 ° C., then further added diisopropylcarbodiimide (0.23 ml) and stirred for 5.5 hours. did.
  • the mixture was slowly added to a mixture of ethanol (20 ml) and diisopropyl ether (380 ml) and stirred at room temperature. The supernatant was removed and dried under reduced pressure to obtain a crude product (4.6 g).
  • reaction solution After the temperature of the reaction solution was 30 ° C., diisopropylcarbodiimide (0.52 ml) was added and stirred. After 20 hours, diisopropylcarbodiimide (0.52 ml) was further added, and the temperature of the solution was raised to 35 ° C. and stirred for 2 hours. After completion of the reaction, the reaction solution was slowly added to a mixed solution of ethyl acetate (78 ml) and diisopropyl ether (1482 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • ethyl acetate 78 ml
  • diisopropyl ether 1482 ml
  • the 6-coordinate platinum complex obtained in Reference Example 1 (532 mg), dimethylaminopyridine (24 mg) and diisopropylcarbodiimide (0.61 ml) were added and stirred. After 45 hours, diisopropylcarbodiimide (0.61 ml) was further added, and the temperature of the solution was raised to 35 ° C. and stirred for 3 hours. After completion of the reaction, the reaction solution was slowly added to a mixed solution of ethyl acetate (39 ml) and diisopropyl ether (351 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • Reference Example 6 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 7, produced by the method described in Japanese Patent No.
  • diisopropylcarbodiimide (0.08 ml) was further added and stirred for 4 hours. After completion of the reaction, the mixture was slowly added to a mixture of ethyl acetate (10 ml) and diisopropyl ether (190 ml) and stirred at room temperature. The supernatant was removed and ethyl acetate / diisopropyl ether (1/19 (v / v); 100 ml) was added. After stirring at room temperature, the supernatant was removed and dried under reduced pressure to obtain a crude product (2.0 g). It was.
  • the obtained crude product (2.0 g) was dissolved in a mixed solution of acetonitrile (7.5 ml) and water (7.5 ml) and dissolved in an ion exchange resin (Dow Chemical Co. Dowex 50 (H + ); 30 ml).
  • the column was passed through and eluted with 50% acetonitrile aqueous solution (120 ml).
  • the resulting elution fraction was concentrated under reduced pressure to remove acetonitrile and lyophilized to obtain the benzyl protected product (1.56 g) of the title compound.
  • the obtained benzyl protected product (1.54 g) was dissolved in dimethylformamide (30 ml) at 35 ° C., hydrous Pd / C (5%) (159 mg) was added, and the mixture was stirred at 30 ° C. for 19 hours under a hydrogen atmosphere. . Then, it processed with activated carbon, filtered using the filter paper, the filtrate was concentrate
  • reaction solution After the temperature of the reaction solution was 30 ° C., diisopropylcarbodiimide (0.47 ml) was added and stirred. After 45 hours, diisopropylcarbodiimide (0.47 ml) was further added, and the temperature of the solution was raised to 35 ° C. and stirred for 3 hours. After completion of the reaction, the reaction solution was slowly added to a mixed solution of ethyl acetate (31 ml) and diisopropyl ether (585 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • ethyl acetate 31 ml
  • diisopropyl ether 585 ml
  • Reference Example 7 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a side chain of polyaspartic acid having a polymerization number of about 16 produced by the method described in Japanese Patent No.
  • the obtained crude product (2.7 g) was dissolved in a mixture of acetonitrile (20 ml) and water (20 ml), and the mixture was washed with an ion exchange resin (Dow Chemical Co. Dowex 50 (H + ); 25 ml) under ice cooling. After time treatment and filtration of the ion exchange resin, the filtrate was concentrated under reduced pressure to remove acetonitrile. Subsequently, the benzyl protector (1.94g) of the title compound was obtained by freeze-drying. The obtained protected benzyl (1.88 g) was dissolved in N-methylpyrrolidone (34 ml) at 35 ° C.
  • N-methylpyrrolidone 34 ml
  • the 6-coordinate platinum complex obtained in Reference Example 1 (532 mg), dimethylaminopyridine (24 mg) and diisopropylcarbodiimide (0.61 ml) were added and stirred. After 45 hours, diisopropylcarbodiimide (0.61 ml) was further added, and the temperature of the solution was raised to 35 ° C. and stirred for 3 hours. After completion of the reaction, the reaction solution was slowly added to a mixed solution of ethyl acetate (40 ml) and diisopropyl ether (360 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • ethyl acetate 40 ml
  • diisopropyl ether 360 ml
  • Reference Example 8 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 12, produced by the method described in Japanese Patent No.
  • a crude product (2.5 g) was obtained by drying under reduced pressure.
  • the obtained crude product (2.5 g) was dissolved in a mixture of acetonitrile (50 ml) and water (50 ml), and an ion exchange resin (Dow Chemical Co. Dowex 50 (H + ); 78 ml) was added for 1 hour.
  • the mixture was stirred and the ion exchange resin was removed by vacuum filtration, followed by washing with 50% aqueous acetonitrile (30 ml).
  • the filtrate was concentrated under reduced pressure to remove acetonitrile and then lyophilized to obtain the benzyl protected product (2.23 g) of the title compound.
  • reaction solution was slowly added to a mixed solution of ethyl acetate (73 ml) and diisopropyl ether (1.39 l), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • ethyl acetate / diisopropyl ether (1/19 (v / v); 731 ml) was added and the supernatant was removed twice more, and the crude product (2.23 g) was filtered. I took it.
  • the obtained crude product (2.20 g) was dissolved in cold water (80 ml) and then subjected to centrifugal ultrafiltration using Vivaspin 20 (MWCO: 10 kDa) (Zautrius) to remove low molecular compounds.
  • the purified solution was lyophilized to give the title compound (893 mg).
  • the obtained title compound had a drug content of 13.2% (mass fraction).
  • the title compound was dissolved in water to a concentration of 5 mg / ml, and the particle diameter was measured. As a result, it was 10 nm, and micelles were formed.
  • Reference Example 9 A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a moiety having a structure in which phenylalanine is bonded to a polyaspartic acid side chain having a polymerization number of about 16, produced by the method described in Japanese Patent No. 3268913 Methoxypolyethyleneglycol-polyaspartic acid block copolymer (aspartic acid polymerization number of about 16; 1.18 g) was dissolved in dimethylformamide (24 ml) at 35 ° C., and phenylalanine benzyl ester hydrochloride (942 mg: based on carboxy group) 0.66 equivalents) was added.
  • diisopropylethylamine (0.64 ml), dimethylaminopyridine (60 mg) and diisopropylcarbodiimide (1.51 ml) were added, and the mixture was stirred at the same temperature.
  • diisopropylcarbodiimide (0.61 ml) was further added, and the temperature of the solution was raised to 35 ° C. and stirred for 4 hours.
  • the mixture was slowly added to a mixed solution of ethyl acetate (12 ml) and diisopropyl ether (228 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • the resulting precipitate was collected by filtration and dried under reduced pressure to obtain a crude product (2.9 g).
  • the obtained crude product (2.9 g) was dissolved in a mixed solution of acetonitrile (9 ml) and water (6 ml), passed through an ion exchange resin (Dow Chemical Co., Ltd., Dowex 50 (H + ); 40 ml), Elution was performed with 20% acetonitrile aqueous solution (120 ml). The resulting elution fraction was concentrated under reduced pressure to remove acetonitrile and then lyophilized to obtain the benzyl protected product (2.09 g) of the title compound.
  • reaction solution was slowly added to a mixed solution of ethyl acetate (34 ml) and diisopropyl ether (306 ml), stirred at room temperature, allowed to stand until the target product precipitated, and the supernatant was removed.
  • Ethyl acetate / diisopropyl ether (1/9 (v / v); 390 ml) was further added to the resulting precipitate, and the crude product (1.61 g) was collected by filtration.
  • the obtained crude product (1.5 g) was dissolved in 5% acetonitrile aqueous solution (60 ml), and then ultrafiltration using Vivaspin Turbo 15 (MWCO: 10 kDa) (Zautrius) was performed to remove low molecular compounds. did.
  • the purified solution was lyophilized to give the title compound (882 mg).
  • the drug content of the obtained title compound was 15.2% (mass fraction).
  • the title compound was dissolved in water so as to have a concentration of 5 mg / ml, and the particle diameter was measured. As a result, it was 11 nm, and micelles were formed.
  • a block copolymer (510 mg) comprising a moiety having a structure was dissolved in dimethylformamide (4.8 ml) at 35 ° C., and then the 6-coordinate platinum complex (158 mg) obtained in Reference Example 1 and dimethylaminopyridine ( 11 mg), dimethylformamide ( 4.0 ml) was added. After the reaction solution was brought to 25 ° C., diisopropylcarbodiimide (0.067 ml) was added, and after 4 hours, phenylalanine benzyl ester hydrochloride (153 mg), diisopropylethylamine (0.089 ml) and diisopropylcarbodiimide (0.067 ml) were added.
  • the purified solution was lyophilized to give the title compound (440 mg).
  • the obtained title compound had a drug content of 18.1% (mass fraction).
  • the title compound was dissolved in water to a concentration of 1 mg / ml, and the particle diameter was measured to be 33 nm, forming micelles.
  • Example 20 Compound (block copolymer consisting of a methoxypolyethylene glycol moiety having a molecular weight of 2000 and a polyaspartic acid moiety having a polymerization number of about 7 and trans, cis, cis- [PtCl (OH) (R, R-dach ) (Ox)] and a conjugate with phenylalanine benzyl ester:
  • R 1 Me (methyl group)
  • R 2 trimethylene group
  • R 3 Ac (acetyl group)
  • R 4 6 coordination of general formula (I) Residue obtained by removing H from the hydroxyl group of platinum complex
  • R 5 residue obtained by removing H from the amino group of isopropylaminocarbonylisopropylamino group or phenylalanine benzyl ester
  • T hydrogen atom
  • a block copolymer comprising a polyethylene glycol moiety and a polyaspartic acid part having a polymerization number of about 7 (aspartic acid polymerization number of about 7; 50 mg) and the 6-coordinate platinum complex obtained in Reference Example 1 (22.5 mg) was dissolved in dimethylformamide (2.15 ml) at 35 ° C., and dimethylaminopyridine (1.53 mg) was added.
  • the resulting precipitate was further washed with ethyl acetate / diisopropyl ether (1/9 (v / v); 20 ml), and the supernatant was removed.
  • the obtained crude product (79 mg) was dissolved in cold water (12 ml) and then subjected to centrifugal ultrafiltration using Vivaspin 6 (MWCO: 3 kDa) (Zautrius) to remove low molecular compounds.
  • the purified solution was lyophilized to give the title compound (48.8 mg).
  • the obtained title compound had a drug content of 12.1% (mass fraction).
  • the title compound was dissolved in water to a concentration of 5 mg / ml, and the particle diameter was measured. As a result, it was 10.4 nm, forming micelles.
  • 3,268,913 Publication A methoxypolyethyleneglycol-polyaspartic acid block partial copolymer having a molecular weight of 2000 produced by the method described above (aspartic acid polymerization number of about 12; 22 mg), the 6-coordinate platinum complex obtained in Reference Example 12 (23 mg), The title compound was obtained in the same manner as in Example 12 using HOBt ⁇ H 2 O (2.4 mg), diisopropylethylamine (0.016 ml), dimethylformamide (0.5 ml) and diisopropylcarbodiimide (0.048 ml). . The obtained title compound had a drug content of 19.0% (mass fraction). The title compound was dissolved in water to a concentration of 1 mg / ml, and the particle diameter was measured to be 10.5 nm, forming micelles.
  • Comparative Example 2 Compound (a block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 12000 and a polyaspartic acid moiety having a polymerization number of about 43 and trans, cis, cis- [Pt (OH) 2 (R, R- dach) (ox)] and a conjugate with phenylalanine benzyl ester:
  • R 1 Me (methyl group)
  • R 2 trimethylene group
  • R 3 Ac (acetyl group)
  • R 4 6 in general formula (I) Residue obtained by removing H from the hydroxyl group of the coordinate platinum complex
  • R 5 residue obtained by removing H from the amino group of isopropylaminocarbonylisopropylamino group or phenylalanine benzyl ester
  • T hydrogen atom
  • d + e + f + g + h + i + j 43
  • a 273 6-coordination in which both
  • Comparative Example 3 Comparative Example 3 Compound (Daplatin (Pt (R, R-dach) Cl), which is a tetracoordinate platinum complex, is added to a block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 12,000 and a polyglutamic acid moiety having a polymerization number of about 37. 2 ) Production of a polymer conjugate in which a coordinate bond is formed A block copolymer comprising a methoxypolyethylene glycol moiety having a molecular weight of 12000 and a polyglutamic acid moiety having a polymerization number of about 37, produced by the method described in Japanese Patent No.
  • the resulting precipitate was collected by filtration and dried under reduced pressure to obtain a crude polymer body (0.8 g) as a carrier.
  • the body (0.8 g) was dissolved in 50% acetonitrile aqueous solution (25 ml), and then passed through an ion exchange resin (Dow Chemical 50 Dowex 50 (H + ); 35 ml). 50% acetonitrile aqueous solution (17 ml) and 50% The resulting elution fraction was concentrated under reduced pressure to remove the organic solvent, and then lyophilized to obtain a polymer carrier (0.6 g).
  • Example 1 Platinum Complex Release Properties of Example 1 Compound, Comparative Example 1 Compound and Comparative Example 2 Compound under Reducing Conditions Ascorbic acid at a concentration of 600 ⁇ M was used for Example 1 compound, Comparative Example 1 compound and Comparative Example 2 compound. And dissolved in a 10 mM phosphate buffer containing 1 mg / ml as a compound concentration, shaken at 37 ° C. under light shielding, and the solution was collected over time. Vivapine 500 (MWCO: 5 kDa) ), And the platinum content of the filtrate was quantified to test the release of the platinum complex from the polymer conjugate. For comparison, the release property when the Example 1 compound was dissolved in 10 mM phosphate buffer without ascorbic acid was also tested. The platinum content of the filtrate was quantified using ICP-OES, and the ratio of the released platinum amount with the platinum content of the initial solution as 100% is shown in Table 1.
  • the compound of Example 1 was confirmed to release 76.4% of a platinum complex bound to the polymer 2 hours after the start of the test under reducing conditions by addition of ascorbic acid.
  • Comparative Example 1 compound and Comparative Example 2 compound release of the platinum complex bound to the polymer was hardly confirmed after 6 hours from the start of the test, and it was clear that the platinum complex was not released even under reducing conditions. became.
  • the platinum complex release rate for 2 hours after the start of the test was 17.8%, and the release rate under the aforementioned ascorbic acid addition condition was 76.4%. From this, it was confirmed that the release of the platinum complex was accelerated under reducing conditions.
  • Test Example 2 Test for Release of Platinum Complex of Example 1 Compound and Comparative Example 3 Compound under Reducing Conditions Similar to the method of Test Example 1, 4-coordination is different from that of Example 1 compound of hexacoordinate platinum complex in the binding mode A release test of the compound of Comparative Example 3 of the platinum complex was performed. The results are shown in Table 2.
  • the compound of Comparative Example 3 showed almost no release of the platinum complex even after 24 hours from the start of the test under reducing conditions by addition of ascorbic acid. Although the conditions with no ascorbic acid added were also tested, the release rate was almost the same as when ascorbic acid was added, and there was almost no effect due to the addition of ascorbic acid. Therefore, when the 4-coordinate platinum complex used in Patent Document 1 or the like is bound to a polymer by ligand exchange, it is clear that the release property is low.
  • Human gastric cancer 4-1ST was passaged and maintained under the skin of BALB / cA-nu / nu mice (hereinafter nude mice). Human gastric cancer 4-1ST was obtained from Central Laboratory for Experimental Animals.
  • the compound of Example 3 was dissolved in 5% glucose injection solution, and a single dose of 20 mg / kg and 10 mg / kg was administered.
  • the compound of Example 4 was dissolved in 5% glucose injection solution, and a single dose of 20 mg / kg and 10 mg / kg was administered.
  • the compound of Example 5 was dissolved in 5% glucose injection solution, and a single dose of 20 mg / kg and 10 mg / kg was administered.
  • 1-OHP was administered at a dose of 20 mg / kg and cisplatin was administered at a dose of 10 mg / kg.
  • the maximum tolerated dose (MTD dose) was adopted as the dose of 1-OHP, cisplatin, and the high dose of each Example compound.
  • T / C (%) administration group relative tumor volume / non-administration group relative tumor volume ⁇ 100
  • Example 2 compound showed higher antitumor effect than 1-OHP.
  • the compound of Example 4 maintained the same antitumor effect as 1-OHP even at a low dose.
  • the compound of Example 2 exhibited the same antitumor effect as 1-OHP. From the above results, it is clear that the 6-coordinate platinum complex polymer conjugate of the present invention has an antitumor effect equivalent to or better than that of l-OHP.
  • 1-OHP was administered at a dose of 18 mg / kg and cisplatin was administered at a dose of 10 mg / kg.
  • the maximum tolerated dose (MTD dose) was adopted as the dose of 1-OHP, cisplatin, and the high dose of each Example compound.
  • MTD dose maximum tolerated dose
  • the major axis (L) and minor axis (W) of the tumor were measured over time using calipers, and the tumor volume (L ⁇ W ⁇ W ⁇ 0.5) was calculated.
  • the non-administration group and each drug administration group were tested in 4 animals / group.
  • the relative tumor volume (T / C (%)) in the drug administration group was calculated by the following formula as an index of the antitumor effect.
  • Table 4 shows T / C (%) of each drug administration group.
  • Formula: T / C (%) administration group relative tumor volume / non-administration group relative tumor volume ⁇ 100
  • Table 5 shows changes in relative body weight from the start of administration to the 21st day after administration, with the body weight on the day of administration being taken as 1.
  • the compound of Example 11 and the compound of Example 12 showed stronger antitumor effects than 1-OHP and cisplatin.
  • the weight loss of the compound of Example 11 and the compound of Example 12 was smaller than that of l-OHP and cisplatin on the 4th day after administration.
  • Human stomach cancer 4-1ST was sampled from nude mice subcutaneously and cut into blocks of about 3 mm square. The obtained tumor block was transplanted subcutaneously on the dorsal side of nude mice using a trocar. Each drug was administered via the tail vein on the 20th day after transplantation when the average tumor volume became about 100 to 200 mm 3 .
  • the usage and dose (drug conversion) of each administered drug the compound of Example 7 was dissolved in 5% glucose injection solution, and doses of 15 mg / kg and 7.5 mg / kg were administered once.
  • the compound of Example 16 was dissolved in 5% glucose injection solution, and a single dose of 30 mg / kg and 15 mg / kg was administered.
  • l-OHP was administered at a dose of 18 mg / kg and 9 mg / kg
  • cisplatin was administered at a dose of 10 mg / kg.
  • the maximum tolerated dose (MTD dose) was adopted as the dose of 1-OHP, cisplatin, and the high dose of each Example compound.
  • MTD dose maximum tolerated dose
  • the major axis (L) and minor axis (W) of the tumor were measured over time using calipers, and the tumor volume (L ⁇ W ⁇ W ⁇ 0.5) was calculated.
  • the non-administration group and each drug administration group were tested in 4 animals / group.
  • the relative tumor volume (T / C (%)) in the drug administration group was calculated by the following formula as an index of the antitumor effect.
  • Table 6 shows T / C (%) of each drug administration group.
  • Formula: T / C (%) administration group relative tumor volume / non-administration group relative tumor volume ⁇ 100
  • Table 7 shows changes in relative body weight from the start of administration to the 21st day after administration, with the body weight on the day of administration being taken as 1.
  • Example 7 and Example 16 showed stronger antitumor effect than 1-OHP at the MTD dose.
  • the weight loss of the compound of Example 7 and the compound of Example 16 was smaller than that of l-OHP and cisplatin on the 4th day after administration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Polyamides (AREA)

Abstract

還元的条件である細胞内で選択的に高活性な白金錯体を放出し、医薬として求められる高い抗腫瘍活性を示す白金錯体のDDS製剤は未だ得られておらず、臨床上で使用可能な新規な白金錯体のDDS製剤が望まれている。 ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体を直接またはスペーサーを介して結合した6配位白金錯体の高分子結合体を提供する。

Description

6配位白金錯体の高分子結合体
 本発明は、抗腫瘍活性を有する6配位白金錯体の高分子結合体およびそれを有効成分とする医薬に関する。
 シスプラチン、オキサリプラチン等の白金錯体は、がん化学療法における多剤併用療法の中心的な薬剤として、様々ながん領域で使用されている。しかしながら、副作用として、腎臓障害、吐き気・嘔吐、末梢神経障害、骨髄抑制等を生じることが知られており、臨床使用上の問題となっている。
 これらの副作用低減および治療効果の増強を目指し、ドラッグデリバリー技術を利用した白金錯体の開発が進められている。これまでに、臨床試験段階まで進んだ白金錯体のDDS製剤としては、例えば、ジアミノシクロヘキサン白金(II)とブロック共重合体との配位化合物(NC-4016)(特許文献1参照)、オキサリプラチンを封入した標的化リポソーム(MBP-426)(特許文献2参照)、N、O-アミドマロネート白金ジアミン錯体(AP5346)(特許文献3参照)、シスプラチンとブロック共重合体との配位化合物(特許文献4参照)、シスプラチンのリポソーム製剤(Lipoplatin)(非特許文献1参照)等が挙げられるが、未だ上市に至った白金錯体のDDS製剤は存在しない。
 前記の臨床試験段階まで進んだ白金錯体のDDS製剤は、白金錯体として4配位の白金錯体を用いているが、6配位の白金錯体を用いたDDS製剤も報告されている。6配位の白金錯体を用いたDDS製剤の具体例としては、金ナノロッドを担体とした化合物(非特許文献2参照)、担体と6配位白金錯体の間にセリンスレオニンホスファターゼ2A阻害剤を結合させた化合物(非特許文献3参照)、担体であるポリマーを6配位白金錯体にて架橋した化合物(非特許文献4参照)、6配位白金錯体を内包するミセルを葉酸にて修飾した化合物(非特許文献5参照)、光応答性6配位白金錯体を担体に結合した化合物(非特許文献6参照)、6配位白金錯体およびダウノマイシンをそれぞれポリマーに結合させミセルを形成する化合物(非特許文献7参照)、6配位白金錯体およびパクリタキセルをそれぞれポリマーに結合させミセルを形成する化合物(非特許文献8参照)、がんターゲティングペプチドと6配位白金錯体を結合させた化合物(非特許文献9参照)等が知られている。
 6配位白金錯体を用いる利点としては、アキシアル位の配位子を利用して、4配位白金錯体とは異なる方法でDDSの担体と結合させることが可能となることが挙げられる。また、6配位白金錯体は一般に4配位白金錯体と比較して低活性であり、細胞内の還元作用のある物質により4配位化合物に還元され抗腫瘍活性を示すと言われていることから、6配位錯体を用いることで副作用の低減が期待される(非特許文献10参照)。生体内の還元作用のある物質としてはグルタチオンやアスコルビン酸等が挙げられ、細胞(がん細胞を含む)内のそれらの濃度は血中でのそれらの濃度より高いことが知られており、6配位白金錯体は、細胞内の還元環境下で選択的に高活性な4配位白金錯体に変換されると考えられる。なお、アスコルビン酸の細胞内濃度は文献により異なるが、300~10000μMであり、血中の濃度は30~51μMである(非特許文献4および11参照)。なお、アスコルビン酸添加条件下での担体からの白金錯体の放出性については非特許文献4および7で検証されている。
 低分子6配位白金錯体の還元性についてはアキシアル位の配位子により変化することが知られている。しかしながら、前記の非特許文献2~9で用いられている6配位白金錯体は、いずれもアキシアル位の配位子として2つの水酸基を有する6配位白金錯体の一方または双方の水酸基が担体とエステル結合した化合物であり、その後の開発は進んでいない。
特許第3955992号公報 特表2008-538105号公報 特開2011-137046号公報 特許第5458255号公報
ANTICANCER RESEARCH,2007,27,471-476 ACS Appl.Mater.Interfaces,2014,6,4382-4393 Macromol.Biosci.,2014,14,588-596 Macromol.Biosci.,2013,13,954-965 Biomacromolecules,2013,14,962-975 Colloids and Surfaces B:Biointerfaces,2014,123,734-741 Journal of Controlled Release,2012,163,304-314 Biomaterials,2012,33,6507-6519 Journal of Inorganic Biochemistry,2012,110,58-63 J.Med.Chem.,2007,50,3403-3411 J.Am.Chem.Soc.,2014,136,8790-8798
 前記のように還元的条件である細胞内で選択的に高活性な白金錯体を放出し、医薬として求められる高い抗腫瘍活性を示す白金錯体のDDS製剤は未だ得られておらず、臨床上で使用可能な新規な白金錯体のDDS製剤が望まれている。即ち、前記の化合物を含めて6配位の白金錯体を用いたDDS製剤は4配位白金錯体のDDS製剤と同様、臨床に使用されている化合物は無いことから、特定の6配位白金錯体とDDS担体により、細胞内の還元条件下で高活性な4配位白金錯体を放出する臨床上有用な6配位白金錯体のDDS製剤が求められている。
 本発明者等は前記課題を解決すべく鋭意研究の結果、ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体を直接またはリンカーを介してエステル結合させて得られる6配位白金錯体の高分子誘導体が、細胞内の還元条件下において効率的に白金錯体を放出し抗腫瘍活性を示すことを見出し、本発明を完成させるに至った。
 即ち、本発明は、下記(1)~(16)に関する。
(1)ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体を直接またはスペーサーを介して結合した6配位白金錯体の高分子結合体。
(2)下記一般式(I)
Figure JPOXMLDOC01-appb-C000012
[式中、Rは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは結合基を示し、Rは水素原子または(C1~C6)アシル基を示し、Rはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または下記一般式(II)
Figure JPOXMLDOC01-appb-C000013
[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、水酸基、置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NRCONHRからなる群から選ばれる置換基を示し、R、Rは同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは置換基を有していてもよい(C1~C10)アルキル基、ベンジル基またはカルボン酸が保護されたアミノ酸の残基を示す]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基を示し、Rは(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、α-アミノ酸誘導体のα-アミノ基からHを除いた下記一般式(III)
Figure JPOXMLDOC01-appb-C000014
[式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR12CONHR13からなる群から選ばれる置換基を示し、R12、R13は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]
で表される置換基および-NRCONHR10からなる群から選ばれる置換基を示し、R、R10は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、aは5~11500の整数を示し、d、e、f、g、h、i、jは各々0~200の整数を示し、且つd+eは1~200の整数を示し、且つd+e+f+g+h+i+jは2~200の整数を示し、ポリアスパラギン酸の各構成単位の結合順序は任意である]
で表される前記(1)に記載の6配位白金錯体の高分子結合体。
(3)Rが置換基を有していてもよい(C1~C3)アルキル基であり、Rが(C2~C6)アルキレン基であり、Rが(C1~C3)アシル基であり、Rがアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または下記一般式(IV)
Figure JPOXMLDOC01-appb-C000015
[式中、W、TおよびRは一般式(II)と同様な基を意味する]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、aが10~2000の整数であり、d、e、f、g、h、i、jが各々0~100の整数であり、且つd+eは1~100の整数であり、且つd+e+f+g+h+i+jが4~100の整数である前記(2)に記載の6配位白金錯体の高分子結合体。
(4)Rがメチル基、Rがトリメチレン基、Rがアセチル基であり、Rがアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、Rがフェニルアラニンベンジルエステルのアミノ基からHを除いた残基および-NRCONHR10からなる群から選ばれる置換基であり、R、R10が共にシクロヘキシル基若しくはイソプロピル基である前記(2)または(3)に記載の6配位白金錯体の高分子結合体。
(5)Rがメチル基、Rがトリメチレン基、Rがアセチル基であり、Rが下記一般式(V)
Figure JPOXMLDOC01-appb-C000016
[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NRCONHRからなる群から選ばれる置換基であり、R、Rが共にシクロヘキシル基若しくはイソプロピル基であり、Tが水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、Rが-NRCONHR10であり、R、R10が共にシクロヘキシル基若しくはイソプロピル基である前記(2)または(3)に記載の6配位白金錯体の高分子結合体。
(6)下記一般式(VI)
Figure JPOXMLDOC01-appb-C000017
[式中、R11は水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、R19は結合基を示し、R20は水素原子または(C1~C6)アシル基を示し、R21はアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、または下記一般式(VII)
Figure JPOXMLDOC01-appb-C000018
[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、水酸基、置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR16CONHR17からなる群から選ばれる置換基を示し、R16、R17は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは置換基を有していてもよい(C1~C10)アルキル基、ベンジル基またはカルボン酸が保護されたα-アミノ酸の残基を示す]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基を示し、R22は(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、α-アミノ酸誘導体のα-アミノ基からHを除いた下記一般式(VIII)
Figure JPOXMLDOC01-appb-C000019
[式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR24CONHR25からなる群から選ばれる置換基を示し、R24、R25は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]
で表される残基および-NR14CONHR15からなる群から選ばれる置換基を示し、R14、R15は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、bは5~11500の整数を示し、kは1~200の整数を示し、m、nは各々0~200の整数を示し、且つk+m+nは2~200の整数を示し、ポリグルタミン酸の各構成単位の結合順序は任意である]
で表される前記(1)に記載の6配位白金錯体の高分子結合体。
(7)R11が置換基を有していてもよい(C1~C3)アルキル基であり、R19が(C2~C6)アルキレン基であり、R20が(C1~C3)アシル基であり、R21がアキシアル位にハロゲン原子および水酸基を有する6配位錯体の残基または下記一般式(IX)
Figure JPOXMLDOC01-appb-C000020
[式中、W、TおよびRは一般式(VII)と同様な基を意味する]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、bが10~2000の整数であり、kが1~100の整数であり、m、nが各々0~100の整数であり、且つk+m+nが3~100の整数である前記(6)に記載の6配位白金錯体の高分子結合体。
 (8)R11がメチル基、R19がトリメチレン基、R20がアセチル基であり、R21がアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、R22がフェニルアラニンベンジルエステルのアミノ基からHを除いた残基および-NR14CONHR15からなる群から選ばれる置換基であり、R14、R15が共にシクロヘキシル基若しくはイソプロピル基である前記(6)または(7)に記載の6配位白金錯体の高分子結合体。
 (9)R11がメチル基、R19がトリメチレン基、R20がアセチル基であり、R21が下記一般式(X)
Figure JPOXMLDOC01-appb-C000021
[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NR16CONHR17からなる群から選ばれる置換基であり、R16、R17が共にシクロヘキシル基若しくはイソプロピル基であり、Tは水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]
で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、R22が-NR14CONHR15であり、R14、R15が共にシクロヘキシル基若しくはイソプロピル基である前記(6)または(7)に記載の6配位白金錯体の高分子結合体。
 (10)アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体が下記一般式(XI)
Figure JPOXMLDOC01-appb-C000022
[式中、XおよびXは、共にハロゲン原子、または共に一緒になってオキサレート、マロネート、スクシネートおよびo-フタレートからなる群から選択されるジカルボキシレートを示し、Yはハロゲン原子を示す]
で表される6配位白金錯体である前記(1)~(9)のいずれか一項に記載の6配位白金錯体の高分子結合体。
 (11)6配位白金錯体のYが塩素原子または臭素原子であり、XおよびXが、共に塩素原子若しくは臭素原子、または、共に一緒になってオキサレートである前記(10)に記載の6配位白金錯体の高分子結合体。
 (12)ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基と、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の水酸基とを脱水縮合剤を用いてエステル結合させることを特徴とする前記(1)に記載の6配位白金錯体の高分子結合体の製造法。
 (13)ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の該水酸基がエステル結合したリンカーを結合させることを特徴とする前記(1)に記載の6配位白金錯体の高分子結合体の製造法。
 (14)ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基に結合しているリンカーと、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の該水酸基をエステル結合させることを特徴とする前記(1)に記載の6配位白金錯体の高分子結合体の製造法。
 (15)前記(1)~(11)のいずれか一項に記載の6配位白金錯体の高分子結合体を有効成分とする医薬。
 (16)前記(1)~(11)のいずれか一項に記載の6配位白金錯体の高分子結合体を有効成分とする抗腫瘍剤。
 本発明のアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の高分子結合体はがん細胞内の還元条件下において効率的に白金錯体を放出し、それを有効成分とする医薬は臨床治療において末梢神経障害などの副作用が少なく有効な抗腫瘍活性を示す薬剤となる。
 以下に本発明の詳細を述べる。
 本発明の6配位白金錯体の高分子結合体は、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリエチレングリコール構造部分とポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体を直接またはスペーサーを介してエステル結合していることを特徴とする。
 本発明におけるポリエチレングリコール構造部分としては、両末端または片末端が修飾されたポリエチレングリコールが含まれ、両末端の修飾基は同一でも異なっていてもよい。末端の修飾基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ベンジル基、4-フェニルブチル基、ジメトキシエチル基、ジエトキシエチル基、アミノエチル基、アミノプロピル基、アミノブチル基等が挙げられる。中でも好ましくは、置換基を有していてもよい(C1~C3)アルキル基、アミノエチル基、アミノプロピル基等が挙げられる。
 ポリエチレングリコール構造部分の分子量は通常200~500000程度、好ましくは300~100000程度、更に好ましくは1000~50000程度である。
 該ブロック共重合体のポリアスパラギン酸部分またはポリグルタミン酸部分の結合数は1分子あたり平均1~300個程度、好ましくは2~200個程度、より好ましくは3~100個程度である。原料のブロック共重合体のアルカリによる中和滴定で該結合数は求められる。
 本発明におけるアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体とは中心金属原子が白金(IV)でありアキシアル位の配位子がハロゲン原子と水酸基であれば特に限定されない。
 本発明の6配位白金錯体の高分子結合体は、該水酸基と、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリエチレングリコール構造部分とポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基、あるいは該カルボキシ基と結合しているリンカーのカルボキシ基がエステル結合している化合物である。
 本発明におけるポリアスパラギン酸部分はα体またはβ体の重合体でも、α体およびβ体が混合された重合体でもよく、好ましくはα体およびβ体が混合された重合体である。
 本発明におけるポリグルタミン酸部分はα体またはγ体の重合体でも、α体およびγ体が混合された重合体でもよく、好ましくはα体の重合体である。
 本発明におけるポリアスパラギン酸部分またはポリグルタミン酸部分は、D-アミノ酸のみであっても、L-アミノ酸のみであっても、D-アミノ酸とL-アミノ酸が任意に混在していてもよい。
 本発明のブロック共重合体において、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体と6配位白金錯体の高分子結合体の結合量は薬効を示す量であれば特に限定されないが、通常、ポリマーの総カルボキシ基数の1~100%であり、好ましくは5~80%である。
 本発明におけるハロゲン原子とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す。
 本発明において置換基を有していてもよい(C1~C10)アルキル基とは、直鎖、分岐鎖または環状(C1~C10)アルキル基であり、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、イソプロピル基、s-ブチル基、t-ブチル基、2,2-ジメチルプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ベンジル基、フェネチル基、4-フェニルブチル基、ジメトキシエチル基、ジエトキシエチル基、ジメトキシプロピル基、ジエトキシプロピル基、アミノエチル基、ジアミノエチル基、アミノプロピル基、アミノブチル基等が挙げられる。
 本発明において(C6~C10)アリール基としては、例えば、フェニル基、ナフチル基が挙げられる。
 本発明のポリエチレングリコール構造部分とポリアスパラギン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体が直接またはスペーサーを介して結合した6配位白金錯体の高分子結合体は、例えば、前記一般式(I)で表される。
 一般式(I)のRにおける置換基を有していてもよい(C1~C10)アルキル基としては、前記例示の置換基が挙げられ、中でも置換基を有していてもよい(C1~C3)アルキル基が好ましく、特にメチル基が好ましい。
 一般式(I)のRにおける(C6~C10)アリール基としては前記例示の置換基が挙げられる。
 一般式(I)のRで示される結合基としては、例えば、直鎖または分岐鎖の(C2~C6)アルキレン基が挙げられ、中でも直鎖(C2~C4)アルキレン基が好ましく、例えば、エチレン基、トリメチレン基、テトラメチレン基等が挙げられ、トリメチレン基が特に好ましい。
 一般式(I)のRにおける(C1~C6)アシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ピバロイル基等が挙げられ、(C1~C3)アシル基が好ましく、アセチル基が特に好ましい。
 一般式(I)のRは前記のようにアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または一般式(II)の置換基である。
 アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基とは前記の6配位白金錯体の水酸基からHを除いた基である。
 一般式(II)のWにおける置換基を有していてもよい(C1~C10)アルキル基としては、前記例示の置換基が挙げられ、中でもエチル基、t-ブチル基が好ましい。
 一般式(II)のWにおけるフェニル基を有していてもよい(C1~C10)アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、t-ブトキシ基、ベンジルオキシ基、フェネチルオキシ基、4-フェニル-1-ブトキシ基等が挙げられる。
 一般式(II)のWにおける(C6~C10)アリールオキシ基としては、例えば、フェノキシ基、ナフトキシ基が挙げられる。
 一般式(II)のWの-NRCONHRのR、Rにおける(C3~C6)環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられ、中でもシクロヘキシル基が好ましい。また、三級アミノ基で置換されていてもよい(C1~C5)アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、イソプロピル基、ジメチルアミノプロピル基、2-モルホリノエチル基等が挙げられ、中でもイソプロピル基、ジメチルアミノプロピル基が好ましい。
 一般式(II)のTにおける置換基を有していてもよい(C1~C10)アルキル基としては前記例示の置換基が挙げられ、好ましくはメチル基、エチル基、n-プロピル基、ベンジル基等が挙げられる。
 一般式(II)のTにおける(C6~C10)アリール基としては、前記例示の置換基が挙げられる。
 一般式(II)のTとして特に好ましくは、水素原子、メチル基、エチル基、ベンジル基が挙げられる。
 一般式(II)のRにおける置換基を有していてもよい(C1~C10)アルキル基とは、前記例示の置換基が挙げられ、中でもエチル基、フェニル基、ベンジル基、4-フェニル-1-ブチル基が好ましい。また、カルボキシ基が保護されたアミノ酸残基としては特に限定されないが、例えば、グリシン、アラニン、ロイシン、イソロイシン、バリン、フェニルアラニンの(C1~C3)アルキルエステルまたは無置換アミド、ジメチルアミド、ジエチルアミド、ジベンジルアミド等が好ましい。
 一般式(I)のRにおける一般式(II)で表される置換基は、一般式(IV)[式中、W、TおよびRは一般式(II)と同様な基を意味する]で表される置換基が好ましく、一般式(V)[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NRCONHRからなる群から選ばれる置換基であり、R、Rが共にシクロヘキシル基若しくはイソプロピル基であり、Tは水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]で表される置換基が特に好ましい。
 一般式(I)のRは、(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、前記一般式(III)[式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR12CONHR13からなる群から選ばれる置換基を示し、R12、R13は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]で表されるα-アミノ酸誘導体および-NRCONHR10からなる群から選ばれる基を示し、R、R10は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基である。
 (C1~C30)アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-ブトキシ基、t-ブトキシ基、シクロプロポキシ基、シクロヘキシルオキシ基、アダマンチルオキシ基等が挙げられ、中でもエトキシ基、t-ブトキシ基が好ましい。
 (C1~C30)アラルキルオキシ基としては、例えば、ベンジルオキシ基、2-フェニルエトキシ基、3-フェニルプロポキシ基、4-フェニルブトキシ基等が挙げられ、中でもベンジルオキシ基、4-フェニル-1-ブトキシ基が好ましい。
 (C6~C10)アリールオキシ基としては、例えば、フェノキシ基、ナフトキシ基が挙げられる。
 置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、ブチルアミノ基、イソプロピルアミノ基、シクロヘキシルアミノ基、ベンジルアミノ基、4-フェニルブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジイソプロピルアミノ基、ジシクロヘキシルアミノ基、ジベンジルアミノ基、ジフェニルブチルアミノ基、N-エチルメチルアミノ基、N-メチルフェニルアミノ基、N-メチル-4-フェニルブチルアミノ基等が挙げられ、中でもエチルアミノ基、ベンジルアミノ基、4-フェニルブチルアミノ基が好ましい。
 一般式(III)で表されるα-アミノ酸誘導体のQは必須アミノ酸の側鎖が好ましく、例えば、水素原子、メチル基、ベンジル基、イソブチル基等が挙げられ、フェニルアラニンの側鎖であるベンジル基が特に好ましい。また、Zにおける置換基を有していてもよい(C1~C10)アルキル基は前記例示の置換基が挙げられ、中でもメチル基、エチル基、フェニル基、ベンジル基、4-フェニル-1-ブチル基が好ましい。
 Tにおける置換基を有していてもよい(C1~C10)アルキル基、(C6~C10)アリール基としては前記一般式(II)におけるTと同様な基が挙げられ、好ましい基も同様である。
 Zにおけるフェニル基を有していてもよい(C1~C10)アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、t-ブトキシ基、ベンジルオキシ基、フェネチルオキシ基、4-フェニルブトキシ基等が挙げられる。
 Zにおける(C6~C10)アリールオキシ基としては、例えば、フェノキシ基、ナフトキシ基が挙げられる。
 Zが-NR12CONHR13である場合、R12、R13における(C3~C6)環状アルキル基および三級アミノ基で置換されていてもよい(C1~C5)アルキル基は前記の一般式(II)のWのR、Rと同様な基が挙げられ、好ましい基も同様である。
 中でもZとしてベンジルオキシ基が特に好ましい。
 一般式(I)のRにおける-NRCONHR10のR、R10における(C3~C6)環状アルキル基および三級アミノ基で置換されていてもよい(C1~C5)アルキル基は前記の一般式(II)のWのR、Rと同様な基が挙げられ、好ましい基も同様である。
 一般式(I)のRの置換基は、一分子中同一でも異なっていてもよく、また、6配位白金錯体の高分子結合体の分子間で単一でも混合物でもよい。
 一般式(I)のRの置換基として特に好ましくはフェニルアラニンベンジルエステル、N-メチル-フェニルアラニンベンジルエステル、N-エチル-フェニルアラニンベンジルエステル、N-ベンジル-フェニルアラニンベンジルエステルのアミノ基からHを除いた残基、または前記の-NRCONHR10が挙げられる。
 一般式(I)のaは5~11500の整数を示し、10~2000が好ましい。
 一般式(I)のd、e、f、g、h、i、jは各々0~200の整数を示し、且つd+eは1~200の整数を示し、且つd+e+f+g+h+i+jは2~200の整数を示し、好ましくはd、e、f、g、h、i、jは各々0~100の整数であり、且つd+eは1~100、f+gは0~99、h+iは0~30の整数であり、且つd+e+f+g+h+i+jが4~100の整数である。
 一般式(I)で表される6配位白金錯体の高分子結合体において、ポリアスパラギン酸の各構成単位の結合順序は任意である。
 本発明のポリエチレングリコール構造部分とポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体が直接またはスペーサーを介して結合している6配位白金錯体の高分子結合体は、例えば、前記一般式(VI)で表される。
 一般式(VI)のR11における置換基を有していてもよい(C1~C10)アルキル基としては、前記例示の置換基が挙げられ、中でも置換基を有していてもよい(C1~C3)アルキル基が好ましく、特にメチル基が好ましい。
 一般式(VI)のR11における(C6~C10)アリール基としては前記例示の置換基が挙げられる。
 一般式(VI)のR19で示される結合基としては、前記一般式(I)のRにおける結合基と同様の基が挙げられ、好ましい基も同様である。
 一般式(VI)のR20における(C1~C6)アシル基としては前記一般式(I)のRにおける(C1~C6)アシル基と同様の基が挙げられ、好ましい基も同様である。
 一般式(VI)のR21は前記のようにアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または一般式(VII)の置換基である。
 アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基とは前記の6配位白金錯体の水酸基からHを除いた基である。
 一般式(VII)のWにおける置換基を有していてもよい(C1~C10)アルキル基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基、-NR16CONHR17のR16、R17における(C3~C6)環状アルキル基と三級アミノ基で置換されていてもよい(C1~C5)アルキル基は、一般式(II)のWにおける置換基を有していてもよい(C1~C10)アルキル基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基、-NRCONHRのR、Rにおける(C3~C6)環状アルキル基と三級アミノ基で置換されていてもよい(C1~C5)アルキル基とそれぞれ同様な基が挙げられ、好ましい基も同様である。
 一般式(VII)のTにおける置換基を有していてもよい(C1~C10)アルキル基としては前記例示の置換基が挙げられ、好ましくはメチル基、エチル基、n-プロピル基、ベンジル基等が挙げられる。
 一般式(VII)のTにおける(C6~C10)アリール基としては、前記例示の置換基が挙げられる。
 一般式(VII)のTとして特に好ましくは、水素原子、メチル基、エチル基、ベンジル基が挙げられる。
 一般式(VII)のRにおける置換基を有していてもよい(C1~C10)アルキル基とカルボキシ基が保護されたアミノ酸残基は、一般式(II)のRにおける置換基を有していてもよい(C1~C10)アルキル基およびカルボキシ基が保護されたアミノ酸残基と同様な基が挙げられ、好ましい基も同様である。
 一般式(VI)のR21における一般式(VII)で表される置換基は、一般式(IX)[式中、W、TおよびRは一般式(VII)と同様な基を意味する]で表される置換基が好ましく、一般式(X)[式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NR16CONHR17からなる群から選ばれる置換基であり、R16、R17が共にシクロヘキシル基若しくはイソプロピル基であり、Tは水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]で表される置換基が特に好ましい。
 一般式(VI)のR22は、(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、前記一般式(VIII)[式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR24CONHR25からなる群から選ばれる置換基を示し、R24、R25は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]で表されるα-アミノ酸誘導体および-NR14CONHR15からなる群から選ばれる基を示し、R14、R15は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基である。
 ここで(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基は前記一般式(I)のRにおける(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基とそれぞれ同様な基が挙げられ、好ましい基も同様である。
 一般式(VIII)で表されるα-アミノ酸誘導体のQ、Tは、一般式(III)で表されるα-アミノ酸誘導体のQ、Tと同様な基が挙げられ、好ましい基も同様である。また、一般式(VIII)のZの置換基を有していてもよい(C1~C10)アルキル基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基、-NR24CONHR25のR24、R25における(C3~C6)環状アルキル基および三級アミノ基で置換されていてもよい(C1~C5)アルキル基は、前記の一般式(III)のZの置換基を有していてもよい(C1~C10)アルキル基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基、-NR12CONHR13のR12、R13における(C3~C6)環状アルキル基および三級アミノ基で置換されていてもよい(C1~C5)アルキル基と同様な基が挙げられ、好ましい基も同様である。
 中でもZとしてベンジルオキシ基が特に好ましい。
 一般式(VI)のR22における-NR14CONHR15のR14、R15における(C3~C6)環状アルキル基および三級アミノ基で置換されていてもよい(C1~C5)アルキル基は、前記の一般式(II)のWの-NRCONHRのR、Rと同様な基が挙げられ、好ましい基も同様である。
 一般式(VI)のR22の置換基は、一分子中同一でも異なっていてもよく、また、6配位白金錯体の高分子結合体の分子間で単一でも混合物でもよい。
 一般式(VI)のR22の置換基として特に好ましくはフェニルアラニンベンジルエステル、N-メチル-フェニルアラニンベンジルエステル、N-エチル-フェニルアラニンベンジルエステル、N-ベンジル-フェニルアラニンベンジルエステルのアミノ基からHを除いた残基または前記の-NR14CONHR15が挙げられる。
 一般式(VI)のbは5~11500の整数を示し、10~2000が好ましい。
 一般式(VI)のkは1~200の整数を示し、m、nは各々0~200の整数を示し、且つk+m+nは2~200の整数を示し、好ましくはkが1~100の整数であり、m、nが各々0~100の整数であり、且つk+m+nが3~100である。更に好ましくは、mが0~99、nが0~30である。
 一般式(VI)で表される6配位白金錯体の高分子結合体において、ポリグルタミン酸の各構成単位の結合順序は任意である。
 本発明におけるアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体として好ましくは前記一般式(XI)[式中、XおよびXは、共にハロゲン原子、または共に一緒になってオキサレート、マロネート、スクシネートおよびo-フタレートからなる群から選択されるジカルボキシレートを示し、Yはハロゲン原子を示す]で表される6配位白金錯体が挙げられる。
 一般式(XI)のXおよびXとしては共に塩素原子、臭素原子若しくは共に一緒になっているジカルボキシレートが好ましく、Yとしては塩素原子若しくは臭素原子が好ましい。
 該ジカルボキシレートとしては特に限定されないが、2個のカルボキシ基が直接結合している基、2個のカルボキシ基を有する(C1~C6)アルキル基や2個のカルボキシ基をオルト位に有する(C6~C10)アリール基が特に好ましく、例えば、以下に示すオキサレート(i)、マロネート(ii)、スクシネート(iii)、o-フタレート(iv)等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 本発明の6配位白金錯体に好ましく用いられるシクロヘキサン-1,2-ジアミン配位子の立体構造としては、1R、2Rのトランス配置が好ましい。
 本発明のアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体としては、下記一般式(XII)および(XIII)で表される化合物が殊更好ましい。
Figure JPOXMLDOC01-appb-C000024
[式中、Yは塩素原子または臭素原子を示す]
 上記一般式(I)または(VI)で表される6配位白金錯体の高分子結合体は、水中でポリエチレングリコール構造部分を外殻とし、白金錯体結合部分を内殻とするミセルを形成してもよい。その場合、該ミセルの粒径は粒子径・ゼータ電位測定装置(Malvern Instruments Ltd:Zetasizer Nano ZS)による測定で3~100nm程度である。
 本発明で用いる6配位白金錯体は、非特許文献10等の文献記載の方法を応用して製造することができる。即ち、4配位白金錯体を溶媒中で、過酸化水素等の酸化剤処理または酸化的ハロゲン化処理をすることにより6配位白金錯体とする方法や、6配位白金錯体を置換反応あるいは縮合反応に付すことにより目的とする6配位白金錯体とする方法である。製造方法の一例示を下記参考例に示す。
 本発明の6配位白金錯体の高分子結合体は、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体の側鎖カルボキシ基と、前記調製法により得られるアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の水酸基とを有機溶媒中、脱水縮合剤等を用いてエステル結合させることにより得られ、本製造方法も本発明に含まれる。即ち、例えば、特許第3268913号公報に記載の方法を参考にして調製されるポリエチレングリコール構造部分-ポリアスパラギン酸部分のブロック共重合体と、必要に応じて反応させる基以外の官能基を保護したアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体とを、溶媒中、好ましくはN,N-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、N-メチルピロリドン(NMP)等の非プロトン性極性溶媒中、0~180℃、好ましくは5~50℃でジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキシキノリノン(EEDQ)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(PyBOP)、N,N,N′,N′-テトラメチル-O-(7-アザベンゾトリアゾール-1-イル)ウロニウム ヘキサフルオロホスファート(HATU)等による脱水縮合反応に付す製造方法である。また、縮合反応の際にN,N-ジメチルアミノピリジン(DMAP)、1-ヒドロキシベンゾトリアゾール水和物(HOBt・HO)、(ヒドロキシイミノ)シアノ酢酸エチル等の反応補助剤を用いてもよい。縮合反応後、必要に応じて脱保護を行い、通常の分離精製等の操作により6配位白金錯体の高分子結合体が製造される。特許第4745664号公報に記載の方法を参考にして調製されるポリエチレングリコール構造部分-ポリグルタミン酸部分のブロック共重合体を用いて同様に本発明の6配位白金錯体の高分子結合体が製造される。
 一般式(I)または(VI)の化合物中のRまたはR21に、一般式(II)または(VII)で示される構造を導入する方法としては、例えば、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体の側鎖カルボキシ基と、カルボン酸が保護されたアミノ酸誘導体またはそのN-モノアルキル体を、脱水縮合剤を用いてアミド結合させ、カルボン酸の脱保護を行った後、脱水縮合剤を用いて一般式(II)または(VII)のWで示される置換基を導入することで製造できる。
 一般式(I)または(VI)の化合物中のRまたはR22に所望の置換基を導入する方法としては、ブロック共重合体のカルボキシ基を通常のエステル合成やアミド合成で用いる方法にて活性化してから結合させたい量の対応するアルコール、対応するアミンやカルボキシ基が保護されたアミノ酸誘導体等を塩基性条件下に反応させる方法や、対応するアルコール、対応するアミンやカルボキシ基が保護されたアミノ酸誘導体等を活性化させてからブロック共重合体のカルボキシ基に反応させる方法等で可能である。生成物を精製した後に同様の反応でポリマー中の未反応のカルボキシ基を再活性化させることができ、ここにアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の水酸基を縮合させてもよく、或いは異なるアルコール、アミン等を繰り返し反応させて、RまたはR22の種々の置換基の混成体を合成し、次いでアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の水酸基を縮合させてもよい。また、それらの反応順序は異なっていてもよい。本発明の6配位白金錯体の高分子結合体の製造法はこれらの方法に限定されるわけではない。製造方法の例示を下記の実施例にも示す。
 本発明の6配位白金錯体の高分子結合体を有効成分とする医薬も本発明に含まれる。本発明の6配位白金錯体の高分子結合体が薬効を示す医薬用途であれば特に限定されないが、抗腫瘍剤としての用途が好ましい。抗腫瘍剤としての使用は、単独または製剤用担体、賦形剤、崩壊剤、結合剤、滑沢剤、流動化剤、コーティング剤、懸濁化剤、乳化剤、安定化剤、保存剤、矯味剤、着香剤、希釈剤、溶解補助剤等の製薬上許容し得る添加剤と混合しても可能で、粉剤、顆粒剤、錠剤、カブレット剤、カプセル剤、注射剤、座剤、軟膏剤等の製剤形態で、経口または非経口的(全身投与、局所投与等)に投与すればよい。特に注射剤としての使用が好ましく、通常、例えば、水、生理食塩水、5%ブドウ糖またはマンニトール液、水溶性有機溶媒(例えば、グリセロール、エタノール、ジメチルスルホキシド、N-メチルピロリドン、ポリエチレングリコール、クレモフォア等またはそれらの混合液)あるいは水と該水溶性有機溶媒の混合液等が使用される。
 本発明の6配位白金錯体の高分子結合体の投与量は、患者の性別、年齢、生理的状態、病態等により当然変更され得るが、非経口的に、通常、成人1日当たり、活性成分として0.01~1500mg/m、好ましくは0.1~250mg/mを投与する。注射による投与は、静脈、動脈、患部(腫瘍部)等により行われる。
 以下、実施例により本発明を更に詳細に説明する。ただし、本発明がこれらの実施例に限定されるものではない。
 本発明の実施例では以下の略号を使用する。
ox : オキサレート
R,R-dach : (1R,2R)-シクロヘキサンジアミン
l-OHP : オキサリプラチン
 本実施例中の化合物の薬剤含量は、誘導結合プラズマ発光分光分析装置ICP-OES(アジレントテクノロジー株式会社:720-ES型)を用いて白金含量を定量し、該白金含量から計算により求めた。
 本実施例中の化合物の粒子径およびゼータ電位は、粒子径・ゼータ電位測定装置(Malvern Instruments Ltd:Zetasizer Nano ZS)を用いて実施した。
 本参考例中の低分子化合物の純度測定は、高速液体クロマトグラフィーを用い、カラムとしてL-column2 ODS(4.6mmI.D.x250mm:一般財団法人 化学物質評価研究機構から購入)、移動相(A)としてリン酸二水素カリウム2.72g、1-ペンタンスルホン酸ナトリウム1.89gおよびトリエチルアミン0.5mlを蒸留水2000mlに溶解し、リン酸でpH4.3に調製した緩衝液、移動相(B)としてメタノールを用い、下記の分析条件1または2で実施した。
分析条件1(イソクラティック分析):
移動相(B)濃度:15%(0min)-15%(20min)、
移動相流速1ml/min、検出210nm。
分析条件2(グラジエント分析):
移動相(B)濃度:15%(0min)-90%(10min)、
移動相流速1ml/min、検出210nm。
 本参考例中の低分子化合物の分子量は、LC/MS(島津LCMS-2020)を用い、カラムとしてInertsil ODS-3(2.1mmI.D.x100mm)、移動相(A)としてアセトニトリル/ギ酸(99.9/0.1)、移動相(B)として水/ギ酸(99.9/0.1)を用い、下記の分析条件3または4で計測した。
分析条件3
グラジェント
時間(分)      0.0 5.5 6.5 6.51 10.0
移動相(A)濃度(%) 20  90  90   20   20
移動相流速:0.3ml/min。
分析条件4
グラジェント
時間(分)      0.0 5.5 6.5 6.51 10.0
移動相(A)濃度(%)  0  90  90    0    0
移動相流速:0.3ml/min。
 参考例1 trans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]:一般式(XII)のYが塩素原子である6配位白金錯体の合成
 N-クロロスクシンイミド(66.8mg)を蒸留水14mlに溶解し、l-OHP(200mg)を蒸留水6mlに懸濁した液を加え、遮光下、室温にて4時間撹拌した。反応終了後、反応液中の不溶物をろ別し、ろ液を減圧濃縮することにより固体を得た。得られた固体を、エタノール/水で再結晶することで標記化合物(114mg)を得た。H-NMR(DO):δ2.89-2.72(2H、m)、2.15(2H、d、J=12.2Hz)、1.53-1.41(4H、m)、0.97-0.90(2H、m)、MS(ESI):450(M+1)、451(M+2)、純度(HPLC、分析条件2):99.4%。
 実施例1 実施例1化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=43、a=273)の製造
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約43;1.98g)および参考例1で得られた6配位白金錯体(899mg)を35℃にてジメチルホルムアミド(70ml)に溶解した後、ジメチルアミノピリジン(61mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.38ml)を加え、4時間経過後に、フェニルアラニンベンジルエステル塩酸塩(875mg)、ジイソプロピルエチルアミン(0.52ml)およびジイソプロピルカルボジイミド(0.38ml)を加え、更に18.5時間撹拌した。反応終了後、反応液を、酢酸エチル(70ml)、エタノール(70ml)およびジイソプロピルエーテル(700ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物を、更にエタノール/ジイソプロピルエーテル(1/4(v/v);100ml)で洗浄し、粗体(3.1g)をろ取した。得られた粗体(1.4g)を冷水(28ml)に溶解後、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);14ml)に通塔し、冷水(40ml)にて溶出した。得られた溶出画分を凍結乾燥することによって標記化合物(1.04g)を得た。得られた標記化合物の薬剤含量は21.5%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ33nmであり、ミセルを形成していた。
 実施例2 実施例2化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=43、a=273)の製造
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約43;0.93g)および参考例1で得られた6配位白金錯体(633mg)を35℃にてジメチルホルムアミド(40ml)に溶解した後、ジメチルアミノピリジン(29mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.43ml)を加え、5.5時間撹拌した。反応終了後、反応液を、酢酸エチル(40ml)、エタノール(40ml)およびジイソプロピルエーテル(400ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物を、更にエタノール/ジイソプロピルエーテル(1/4(v/v);40ml)で洗浄し、粗体(1.5g)をろ取した。得られた粗体(1.45g)を冷水(29ml)に溶解後、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);14.5ml)に通塔し、冷水(40ml)にて溶出した。得られた溶出画分を凍結乾燥することによって標記化合物(1.25g)を得た。得られた標記化合物の薬剤含量は31.1%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ散乱強度が弱く、ミセルを形成していないことが示唆された。
 実施例3 実施例3化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約22のポリグルタミン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(VI)のR11=Me(メチル基)、R19=トリメチレン基、R20=Ac(アセチル基)、R21=6配位白金錯体の水酸基からHを除いた残基、R22=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、k+m+n=22、b=273)の製造
 特許第4745664号公報記載の方法により製造された分子量12000のメトキシポリエチレングリコール部分と重合数が約22のポリグルタミン酸部分からなるブロック共重合体(1.18g),フェニルアラニンベンジルエステル塩酸塩(0.31g)、参考例1で得られた6配位白金錯体(0.32g)、ジイソプロピルエチルアミン(0.18ml)、ジメチルアミノピリジン(21mg)およびジイソプロピルカルボジイミド(0.27ml)を用い、実施例1と同様の方法で、標記化合物を得た。得られた標記化合物の薬剤含量は9.9%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ17nmであり、ミセルを形成していた。
 実施例4 実施例4化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約11のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=11、a=46)の製造
 特許第3268913号公報に記載の方法により製造された分子量2000のメトキシポリエチレングリコール部分と重合数が約11のポリアスパラギン酸部分からなるブロック共重合体(0.61g),参考例1で得られた6配位白金錯体(0.38g)、フェニルアラニンベンジルエステル塩酸塩(0.35g)、ジイソプロピルエチルアミン(0.21ml)、ジメチルアミノピリジン(24mg)およびジイソプロピルカルボジイミド(0.29ml)を用い、実施例1と同様の方法で、標記化合物を得た。得られた標記化合物の薬剤含量は14.8%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ10nm未満であり、ミセルを形成していた。
 実施例5 実施例5化合物(分子量40000のメトキシポリエチレングリコール部分と重合数が約41のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=41、a=909)の製造
 特許第3268913号公報に記載の方法により製造された分子量40000のメトキシポリエチレングリコール部分と重合数が約41のポリアスパラギン酸部分からなるブロック共重合体(1.00g),参考例1で得られた6配位白金錯体(0.17g)、フェニルアラニンベンジルエステル塩酸塩(0.19g)、ジイソプロピルエチルアミン(0.12ml)、ジメチルアミノピリジン(11mg)およびジイソプロピルカルボジイミド(0.15ml)を用い、実施例1と同様の方法で、標記化合物を得た。得られた標記化合物の薬剤含量は7.0%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ80nmでありミセルを形成していた。
 参考例2 分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約43;3.03g)をジメチルホルムアミド(25ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(2.33g)、ジイソプロピルエチルアミン(1.42ml)、ジメチルアミノピリジン(93mg)およびジメチルホルムアミド(5ml)を加えた。液温を25℃まで冷却後、ジイソプロピルカルボジイミド(2.34ml)を加え、同温で18時間撹拌後、30℃に昇温して5時間撹拌し、次いでジイソプロピルカルボジイミド(0.23ml)を更に加え2時間撹拌した。反応終了後、エタノール(60ml)およびジイソプロピルエーテル(240ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物をろ取し、減圧乾燥を行い粗体(4.6g)を得た。得られた粗体(4.6g)をアセトニトリル(60ml)および水(20ml)の混合液に溶解し、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);40ml)に通塔し、20%アセトニトリル水溶液(110ml)にて溶出した。得られた溶出画分を減圧濃縮することでアセトニトリルを除去し、凍結乾燥することによって標記化合物のベンジル保護体(4.52g)を得た。得られたベンジル保護体(3.14g)をジメチルホルムアミド(63ml)に35℃で溶解させ、含水Pd/C(10%)(688mg)を加え、水素雰囲気下で22時間、33℃で撹拌した。反応終了後、金属スカベンジャー(SiliaMetS TAAcOH)で処理し、セライトを用いてろ過し、ろ液をヘプタン(570ml)および酢酸エチル(114ml)の混合液にゆっくり滴下し、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、ヘプタンおよび酢酸エチルの混合液を加え、上清を除去することを、更に2回繰り返し、沈析物をろ取し、減圧乾燥することで標記化合物(1.8g)を得た。
 実施例6 実施例6化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=43、a=273)の製造
 参考例2で製造されたメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(0.6g)および参考例1で得られた6配位白金錯体(460mg)を35℃にてジメチルホルムアミド(30ml)に溶解した後、ジメチルアミノピリジン(12mg)を加えた。反応液を30℃とした後、ジイソプロピルカルボジイミド(0.31ml)を加え、21時間経過後に、ジイソプロピルカルボジイミド(0.31ml)を更に加えた。3時間後、溶液の温度を35℃まで昇温し、2時間撹拌した。反応終了後、反応液を、エタノール(43ml)およびジイソプロピルエーテル(257ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更にエタノール/ジイソプロピルエーテル(1/6(v/v);150ml)を加え、粗体(807mg)をろ取した。得られた粗体(785mg)を冷水(80ml)に溶解後、ビバスピン20(MWCO:3kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(424mg)を得た。得られた標記化合物の薬剤含量は14.1%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ68nmでありミセルを形成していた。
 実施例7 実施例7化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約10のポリグルタミン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(VI)のR11=Me(メチル基)、R19=トリメチレン基、R20=Ac(アセチル基)、R21=6配位白金錯体の水酸基からHを除いた残基、R22=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、k+m+n=10、b=46)の製造
 特許第4745664号公報記載の方法により製造された分子量2000のメトキシポリエチレングリコール部分と重合数が約10のポリグルタミン酸部分からなるブロック共重合体(グルタミン酸の重合数約10;750mg)を35℃にてジメチルホルムアミド(29ml)に溶解した後、参考例1で得られた6配位白金錯体(400mg)およびジメチルアミノピリジン(27.6mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.17ml)を加え、5時間経過後に、フェニルアラニンベンジルエステル塩酸塩(390mg)、ジイソプロピルエチルアミン(0.38ml)およびジイソプロピルカルボジイミド(0.34ml)を加え、更に17.5時間撹拌した。その後、イソプロピルカルボジイミド(0.17ml)を加え、更に5時間撹拌した。反応終了後、反応液を、酢酸エチル(31ml)およびジイソプロピルエーテル(589ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。その後、酢酸エチル(31ml)およびジイソプロピルエーテル(589ml)の混合液を加え、終夜で撹拌した後、上澄みを除去し、減圧乾燥後、粗体(1.52g)を得た。得られた粗体を冷水(72ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて精製を行った。得られた溶液を凍結乾燥することによって、標記化合物(994mg)を得た。得られた標記化合物の薬剤含量は14.5%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ9.9nmであり、ミセルを形成していた。
 実施例8 実施例8化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約8のポリグルタミン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(VI)のR11=Me(メチル基)、R19=トリメチレン基、R20=Ac(アセチル基)、R21=6配位白金錯体の水酸基からHを除いた残基、R22=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、k+m+n=8、b=46)の製造
 特許第4745664号公報記載の方法により製造された分子量2000のメトキシポリエチレングリコール部分と重合数が約8のポリグルタミン酸部分からなるブロック共重合体(グルタミン酸の重合数約8;1001mg)を35℃にてジメチルホルムアミド(36ml)に溶解した後、参考例1で得られた6配位白金錯体(461mg)およびジメチルアミノピリジン(31.5mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.20ml)を加え、4.5時間経過後に、フェニルアラニンベンジルエステル塩酸塩(450mg)、ジイソプロピルエチルアミン(0.44ml)およびジイソプロピルカルボジイミド(0.40ml)を加え、更に16時間撹拌した。その後、ジイソプロピルカルボジイミド(0.20ml)を加え、更に4時間撹拌した。反応終了後、反応液を、酢酸エチル(38ml)およびジイソプロピルエーテル(722ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。その後、酢酸エチル(38ml)およびジイソプロピルエーテル(722ml)の混合液を加え、終夜で撹拌した後、上澄みを除去し、減圧乾燥後、粗体(1.77g)を得た。得られた粗体(1.68g)を冷水(72ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて精製を行った。得られた溶液を凍結乾燥することによって、標記化合物(1270mg)を得た。得られた標記化合物の薬剤含量は14.3%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ9.6nmであり、ミセルを形成していた。
 参考例3 trans,cis,cis-[PtCl(OH)(R,R-dach)Cl]:一般式(XIII)のYが塩素原子である6配位白金錯体の合成
 N-クロロスクシンイミド(534mg)を蒸留水50mlに溶解し、J.Med.Chem.,52,5474-5484(2009)の記載にしたがい調製したPt(R,R-dach)Cl(1.52g)をテトラヒドロフラン500mlに懸濁した液に加え、遮光下、室温にて3時間撹拌した。反応終了後、反応液中の不溶物をろ別し、ろ液を減圧濃縮することにより固体を得た。得られた固体を、エタノールに懸濁させ、再度、ろ取することで目的物(1.55g)を得た。H-NMR(DMSO-d):δ7.53-7.29(2H、m)、6.89-6.78(2H、m)、2.75-2.60(2H、m)、2.10-2.00(2H、m)、1.47(2H、d、J=8.0Hz)、1.10-0.93(2H、m)、MS(ESI):433(M+1)、純度(HPLC、分析条件2):98.1%。
 実施例9 実施例9化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)Cl]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=43、a=273)の製造
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約43;0.577g)および参考例3で得られた6配位白金錯体(251mg)を35℃にてジメチルホルムアミド(20ml)に溶解した後、ジメチルアミノピリジン(17.8mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.112ml)を加え、4.5時間経過後に、フェニルアラニンベンジルエステル塩酸塩(254.8mg)、ジイソプロピルエチルアミン(0.112ml)およびジイソプロピルカルボジイミド(0.152ml)を加え、更に18.5時間撹拌した。反応終了後、反応液を、酢酸エチル(20ml)、エタノール(20ml)およびジイソプロピルエーテル(160ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物を、更にエタノール/ジイソプロピルエーテル(1/4(v/v);50ml)で洗浄し、粗体(0.791g)をろ取した。得られた粗体(0.7g)を10%アセトニトリル水溶液(30ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて精製を行った。得られた溶液を凍結乾燥することによって標記化合物(0.68g)を得た。得られた標記化合物の薬剤含量は6.4%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ87nmであり、ミセルを形成していた。
 実施例10 実施例10化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)Cl]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=43、a=273)の製造
 参考例2で製造されたメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(390mg)および参考例3で得られた6配位白金錯体(225mg)を35℃にてジメチルホルムアミド(5ml)に溶解した後、ジメチルアミノピリジン(8mg)を加えた。反応液を30℃とした後、ジイソプロピルカルボジイミド(0.20ml)を加え、23時間経過後に、ジイソプロピルカルボジイミド(0.10ml)を更に加えた。1時間後、溶液の温度を35℃まで昇温し、2時間撹拌した。反応終了後、反応液を、酢酸エチル(6ml)、エタノール(6ml)およびジイソプロピルエーテル(48ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル(1ml)、エタノール(1ml)およびジイソプロピルエーテル(8ml)の混合液を加え、粗体(408mg)をろ取した。得られた粗体(399mg)を10%アセトニトリル水溶液(16ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(241mg)を得た。得られた標記化合物の薬剤含量は8.2%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ17nmでありミセルを形成していた。
 参考例4 分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約12;2.04g)をジメチルホルムアミド(20ml)に35℃で溶解させた。液温を25℃まで冷却後、フェニルアラニンベンジルエステル塩酸塩(2.17g:カルボキシ基に対して1.05当量)、ジイソプロピルエチルアミン(1.33ml)、ジメチルアミノピリジン(86mg)およびジイソプロピルカルボジイミド(2.19ml)を加え、同温で15時間撹拌後、30℃に昇温し、ジイソプロピルカルボジイミド(0.22ml)を更に加え2時間撹拌した。反応終了後、酢酸エチル(20ml)およびジイソプロピルエーテル(380ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(19/1(v/v);400ml)を加え、粗体(5.4g)をろ取した。得られた粗体(5.4g)をアセトニトリル(18ml)および水(12ml)の混合液に溶解させ、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);70ml)に通塔し、60%アセトニトリル水溶液(225ml)にて溶出した。得られた溶出画分を減圧濃縮することでアセトニトリルを除去し、凍結乾燥することによって標記化合物のベンジル保護体(3.8g)を得た。得られたベンジル保護体(3.75g)をジメチルホルムアミド(67ml)に溶解し、含水Pd/C(5%)(375mg)を加え、水素雰囲気下、室温で20時間撹拌した。反応終了後、金属スカベンジャー(SiliaMetS TAAcOH)で処理し、親水性ポリテトラフルオロエチレン製フィルターを用いてろ過後、ろ液をジイソプロピルエーテル(1340ml)にゆっくり滴下し、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、ジイソプロピルエーテル(1005ml)を加え、沈析物をろ取し、減圧乾燥することで標記化合物(2.5g)を得た。
 実施例11 実施例11化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)Cl]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=12、a=46)の製造
 参考例4の方法で製造されたメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(0.3g)および参考例3で得られた6配位白金錯体(303mg)を25℃にてジメチルホルムアミド(15ml)に溶解した後、ジメチルアミノピリジン(17mg)、ジイソプロピルカルボジイミド(0.22ml)を加え、15時間撹拌した。反応終了後、反応液を、酢酸エチル(15ml)およびジイソプロピルエーテル(135ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/9(v/v);150ml)を加え、粗体(550mg)をろ取した。得られた粗体(550mg)を冷水(35ml)に溶解後、ビバスピンターボ15(MWCO:3kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(173mg)を得た。得られた標記化合物の薬剤含量は19.3%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ21nmでありミセルを形成していた。
 参考例5 分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約12;2.05g)をジメチルホルムアミド(21ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(2.25g:カルボキシ基に対して1.05当量)、ジイソプロピルエチルアミン(1.35ml)およびジメチルアミノピリジン(90mg)を加えた。液温を25℃まで冷却後、ジイソプロピルカルボジイミド(2.26ml)を加え、同温で19時間撹拌後、30℃に昇温し、次いでジイソプロピルカルボジイミド(0.23ml)を更に加え5.5時間撹拌した。反応終了後、エタノール(20ml)およびジイソプロピルエーテル(380ml)の混合液にゆっくり加え、室温で撹拌した。上清を除去し、減圧乾燥を行い粗体(4.6g)を得た。得られた粗体(4.6g)をアセトニトリル(18ml)および水(12ml)の混合液に溶解させ、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);69ml)に通塔し、60%アセトニトリル水溶液(375ml)にて溶出した。得られた溶出画分を減圧濃縮することでアセトニトリルを除去し、凍結乾燥することによって標記化合物のベンジル保護体(4.5g)を得た。得られたベンジル保護体(4.5g)をジメチルホルムアミド(89ml)および酢酸(4.5ml)の混合液に35℃で溶解させ、含水Pd/C(10%)(450mg)を加え、水素雰囲気下で67時間、30℃で撹拌した。反応終了後、金属スカベンジャー(SiliaMetS TAAcOH)で処理し、セライトを用いてろ過し、ろ液をジイソプロピルエーテル(1800ml)にゆっくり滴下し、室温で撹拌した。上清を除去し、得られた沈析物にジイソプロピルエーテルを加え、上清を除去することを2回繰り返し、減圧乾燥することで標記化合物(1.7g)を得た。
 実施例12 実施例12化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=12、a=46)の製造
 参考例5で製造されたメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(733mg)および参考例1で得られた6配位白金錯体(756mg)を35℃にてジメチルホルムアミド(78ml)に溶解した後、ジメチルアミノピリジン(21mg)を加えた。反応液を30℃とした後、ジイソプロピルカルボジイミド(0.52ml)を加え撹拌した。20時間経過後に、ジイソプロピルカルボジイミド(0.52ml)を更に加え、溶液の温度を35℃まで昇温し、2時間撹拌した。反応終了後、反応液を、酢酸エチル(78ml)およびジイソプロピルエーテル(1482ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/19(v/v);780ml)を加え、粗体(1.30g)をろ取した。得られた粗体(642mg)を5%アセトニトリル水溶液(36ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(389mg)を得た。得られた標記化合物の薬剤含量は18.1%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ10nmでありミセルを形成していた。
 実施例13 実施例13化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=12、a=46)の製造
 参考例4で製造されたメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(0.9g)を35℃にてジメチルホルムアミド(39ml)に溶解した。反応液を30℃とした後、参考例1で得られた6配位白金錯体(532mg)、ジメチルアミノピリジン(24mg)およびジイソプロピルカルボジイミド(0.61ml)を加え撹拌した。45時間経過後に、ジイソプロピルカルボジイミド(0.61ml)を更に加え、溶液の温度を35℃まで昇温し、3時間撹拌した。反応終了後、反応液を、酢酸エチル(39ml)およびジイソプロピルエーテル(351ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/9(v/v);390ml)を加え、粗体(1.27g)をろ取した。得られた粗体(1.2g)を5%アセトニトリル水溶液(36ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(863mg)を得た。得られた標記化合物の薬剤含量は14.4%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ13nmでありミセルを形成していた。
 参考例6 分子量2000のメトキシポリエチレングリコール部分と重合数が約7のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約7;1.0g)をジメチルホルムアミド(10ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(770mg)、ジイソプロピルエチルアミン(0.47ml)およびジメチルアミノピリジン(31mg)を加えた。液温を25℃まで冷却後、ジイソプロピルカルボジイミド(0.77ml)を加え、同温で19時間撹拌後、30℃に昇温し、次いでジイソプロピルカルボジイミド(0.08ml)を更に加え4時間撹拌した。反応終了後、酢酸エチル(10ml)およびジイソプロピルエーテル(190ml)の混合液にゆっくり加え、室温で撹拌した。上清を除去し、酢酸エチル/ジイソプロピルエーテル(1/19(v/v);100ml)を加え、室温で撹拌した後に上清を除去し、減圧乾燥を行い粗体(2.0g)を得た。得られた粗体(2.0g)をアセトニトリル(7.5ml)および水(7.5ml)の混合液に溶解し、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);30ml)に通塔し、50%アセトニトリル水溶液(120ml)にて溶出した。得られた溶出画分を減圧濃縮することでアセトニトリルを除去し、凍結乾燥することによって標記化合物のベンジル保護体(1.56g)を得た。得られたベンジル保護体(1.54g)をジメチルホルムアミド(30ml)に35℃で溶解し、含水Pd/C(5%)(159mg)を加え、水素雰囲気下で19時間、30℃で撹拌した。その後、活性炭で処理し、ろ紙を用いてろ過し、ろ液を減圧濃縮し溶媒を除いた。次いでN-メチルピロリドンに30℃で溶解し、含水Pd/C(5%)(159mg)を加え,水素雰囲気下で14時間、30℃で撹拌した。反応終了後、活性炭で処理し、ろ紙を用いてろ過し、ろ液をジイソプロピルエーテル(500ml)にゆっくり滴下し、室温で撹拌した。上清を除去し、得られた沈析物にジイソプロピルエーテルを加え、上清を除去し、減圧乾燥した。得られた残渣を水に溶解し、凍結乾燥して標記化合物(1.0g)を得た。
 実施例14 実施例14化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約7のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=7、a=46)の製造
 参考例6で製造されたメトキシポリエチレングリコール部分と重合数が約7のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(838mg)および参考例1で得られた6配位白金錯体(416mg)を35℃にてジメチルホルムアミド(31ml)に溶解した後、ジメチルアミノピリジン(19mg)を加えた。反応液を30℃とした後、ジイソプロピルカルボジイミド(0.47ml)を加え撹拌した。45時間経過後に、ジイソプロピルカルボジイミド(0.47ml)を更に加え、溶液の温度を35℃まで昇温し、3時間撹拌した。反応終了後、反応液を、酢酸エチル(31ml)およびジイソプロピルエーテル(585ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/19(v/v);308ml)を加えて室温で撹拌した後、上清を除去し減圧乾燥することで粗体(1.15g)を得た。得られた粗体(1.15g)を冷水(36ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(774mg)を得た。得られた標記化合物の薬剤含量は9.3%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ8.8nmでありミセルを形成していた。
 参考例7 分子量2000のメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約16;998mg)をジメチルホルムアミド(12ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(1.27g:カルボキシ基に対して1.05当量)、ジイソプロピルエチルアミン(0.77ml)およびジメチルアミノピリジン(51mg)を加えた。液温を25℃まで冷却後、ジイソプロピルカルボジイミド(1.27ml)を加え、同温で撹拌した。21時間経過後にジイソプロピルカルボジイミド(0.64ml)を更に加え、2時間撹拌した。反応終了後、酢酸エチル(23ml)およびジイソプロピルエーテル(207ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/19(v/v);230ml)を加え、沈析物をろ取した後に、減圧乾燥を行い粗体(2.7g)を得た。得られた粗体(2.7g)をアセトニトリル(20ml)および水(20ml)の混合液に溶解し、氷冷下イオン交換樹脂(ダウケミカル社製ダウエックス50(H);25ml)で5時間処理し、イオン交換樹脂をろ過後、ろ液を減圧濃縮してアセトニトリルを除去した。次いで、凍結乾燥することによって標記化合物のベンジル保護体(1.94g)を得た。得られたベンジル保護体(1.88g)を35℃にてN-メチルピロリドン(34ml)に溶解させた。反応液を30℃とした後、含水Pd/C(10%)(188mg)を加え、水素雰囲気下、同温で25時間撹拌した。反応終了後、活性炭で処理し、フィルターろ過したろ液をジイソプロピルエーテル(646ml)にゆっくり滴下し、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、酢酸エチルおよびジイソプロピルエーテルの混合液を加え、沈析物を水に溶解し、凍結乾燥することで標記化合物(1.5g)を得た。
 実施例15 実施例15化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=16、a=46)の製造
 参考例7で製造されたメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(0.8g)を35℃にてジメチルホルムアミド(40ml)に溶解した。反応液を30℃とした後、参考例1で得られた6配位白金錯体(532mg)、ジメチルアミノピリジン(24mg)およびジイソプロピルカルボジイミド(0.61ml)を加え撹拌した。45時間経過後に、ジイソプロピルカルボジイミド(0.61ml)を更に加え、溶液の温度を35℃まで昇温し、3時間撹拌した。反応終了後、反応液を、酢酸エチル(40ml)およびジイソプロピルエーテル(360ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/9(v/v);400ml)を加え、粗体(1.2g)をろ取した。得られた粗体(1.1g)を5%アセトニトリル水溶液(60ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(719mg)を得た。得られた標記化合物の薬剤含量は13.3%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ32nmでありミセルを形成していた。
 参考例8 分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約12;1.54g)をジメチルホルムアミド(97ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(1.04g:カルボキシ基に対して0.66当量)、ジイソプロピルエチルアミン(0.70ml)、ジメチルアミノピリジン(66mg)およびジメチルホルムアミド(11ml)を加えた。液温を25℃まで冷却後、ジイソプロピルカルボジイミド(1.67ml)を加え、同温で22時間撹拌後、ジイソプロピルカルボジイミド(0.23ml)を加え、35℃に昇温し、3時間撹拌した。反応終了後、酢酸エチル(87ml)およびジイソプロピルエーテル(1.65l)の混合液にゆっくり加え、室温で撹拌後、更にジイソプロピルエーテル(200ml)を加えた後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/19(v/v);1.08l)を加え、上清を除去することを2回繰り返し、沈析物をろ取し、減圧乾燥を行うことで粗体(2.5g)を得た。得られた粗体(2.5g)をアセトニトリル(50ml)および水(50ml)の混合液に溶解し、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);78ml)を加えて1時間撹拌し、減圧ろ過でイオン交換樹脂を除去した後、50%アセトニトリル水溶液(30ml)にて洗浄した。ろ液を減圧濃縮することでアセトニトリルを除去し、次いで凍結乾燥することによって標記化合物のベンジル保護体(2.23g)を得た。得られたベンジル保護体(2.19g)をジメチルホルムアミド(44ml)に35℃で溶解し、含水Pd/C(5%)(219mg)を加え、水素雰囲気下で25時間、30℃で撹拌した。反応終了後、活性炭で処理し、セライトを用いてろ過し、ろ液を酢酸エチル(44ml)およびジイソプロピルエーテル(836ml)の混合液にゆっくり滴下し、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、酢酸エチル/ジイソプロピルエーテル(1/19(v/v);440ml)を加え、上清を除去することを、更に2回繰り返し、沈析物をろ取し、減圧乾燥することで標記化合物(1.27g)を得た。
 実施例16 実施例16化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基および6配位白金錯体の水酸基からHを除いた残基、d+e+f+g+h+i+j=12、a=46)の製造
 参考例8で製造されたメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(1.27g)を35℃にてジメチルホルムアミド(29ml)に溶解した後、ジメチルアミノピリジン(27mg)、参考例1で得られた6配位白金錯体(986mg)およびジメチルホルムアミド(44ml)を加えた。反応液を30℃とした後、ジイソプロピルカルボジイミド(0.68ml)を加え、22時間経過後に、ジイソプロピルカルボジイミド(0.68ml)を更に加え、溶液の温度を35℃まで昇温し、3時間撹拌した。反応終了後、反応液を、酢酸エチル(73ml)およびジイソプロピルエーテル(1.39l)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、酢酸エチル/ジイソプロピルエーテル(1/19(v/v);731ml)を加え、上清を除去することを、更に2回繰り返し、粗体(2.23g)をろ取した。得られた粗体(2.20g)を冷水(80ml)に溶解後、ビバスピン20(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(893mg)を得た。得られた標記化合物の薬剤含量は13.2%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ10nmでありミセルを形成していた。
 参考例9 分子量2000のメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体
 特許第3268913号公報に記載の方法により製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(アスパラギン酸の重合数約16;1.18g)をジメチルホルムアミド(24ml)に35℃で溶解させ、フェニルアラニンベンジルエステル塩酸塩(942mg:カルボキシ基に対して0.66当量)を加えた。液温を25℃まで冷却後、ジイソプロピルエチルアミン(0.64ml)、ジメチルアミノピリジン(60mg)およびジイソプロピルカルボジイミド(1.51ml)を加え、同温で撹拌した。21時間経過後にジイソプロピルカルボジイミド(0.61ml)を更に加え、溶液の温度を35℃まで昇温し、4時間撹拌した。反応終了後、酢酸エチル(12ml)およびジイソプロピルエーテル(228ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物をろ取し、減圧乾燥を行い粗体(2.9g)を得た。得られた粗体(2.9g)をアセトニトリル(9ml)および水(6ml)の混合液に溶解させ、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);40ml)に通塔し、20%アセトニトリル水溶液(120ml)にて溶出した。得られた溶出画分を減圧濃縮することでアセトニトリルを除去し、次いで凍結乾燥することによって標記化合物のベンジル保護体(2.09g)を得た。得られたベンジル保護体(2.0g)をジメチルホルムアミド(36ml)に30℃で溶解し、含水Pd/C(5%)(300mg)を加え、水素雰囲気下、同温で24時間撹拌した。反応終了後、活性炭で処理し、フィルターろ過したろ液を酢酸エチル(36ml)およびジイソプロピルエーテル(684ml)の混合液にゆっくり滴下し、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、酢酸エチルおよびジイソプロピルエーテルの混合液を加え、沈析物をろ取し、減圧乾燥することで標記化合物(1.5g)を得た。
 実施例17 実施例17化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子)、R=イソプロピルアミノカルボニルイソプロピルアミノ基および6配位白金錯体の水酸基からHを除いた残基、d+e+f+g+h+i+j=16、a=46)の製造
 参考例9で製造されたメトキシポリエチレングリコール部分と重合数が約16のポリアスパラギン酸の側鎖にフェニルアラニンが結合した構造を有する部分からなるブロック共重合体(0.9g)を35℃にてジメチルホルムアミド(34ml)に溶解した。反応液を30℃とした後、参考例1で得られた6配位白金錯体(765mg)、ジメチルアミノピリジン(21mg)およびジイソプロピルカルボジイミド(0.53ml)を加え撹拌した。45時間経過後に、ジイソプロピルカルボジイミド(0.61ml)を更に加え、溶液の温度を35℃まで昇温し、3時間撹拌した。反応終了後、反応液を、酢酸エチル(34ml)およびジイソプロピルエーテル(306ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更に酢酸エチル/ジイソプロピルエーテル(1/9(v/v);390ml)を加え、粗体(1.61g)をろ取した。得られた粗体(1.5g)を5%アセトニトリル水溶液(60ml)に溶解後、ビバスピンターボ15(MWCO:10kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(882mg)を得た。得られた標記化合物の薬剤含量は15.2%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ11nmでありミセルを形成していた。
 実施例18 実施例18化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸側鎖にアスパラギン酸-アラニン(4-フェニル-1-ブタノール)エステルが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(vii)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子、R=アラニン(4-フェニル-1-ブタノール)エステルのアミノ基からHを除いた残基)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=43、a=273)の製造
 国際公開2010/131675公報に記載の方法で製造されたメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸の側鎖にアラニン(4-フェニル-1-ブタノール)エステルが結合した構造を有する部分からなるブロック共重合体(364mg)および参考例1で得られた6配位白金錯体(135mg)を35℃にてジメチルホルムアミド(10ml)に溶解した後、ジメチルアミノピリジン(6mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.07ml)を加え、22時間経過後に、ジイソプロピルカルボジイミド(0.07ml)を更に加え、4時間撹拌した。反応終了後、反応液を、エタノール(20ml)、酢酸エチル(20ml)およびジイソプロピルエーテル(160ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更にエタノール/酢酸エチル/ジイソプロピルエーテル(1/1/8(v/v/v);100ml)を加え、粗体(441mg)をろ取した。得られた粗体(420mg)を30%アセトニトリル水溶液(30ml)に溶解後、スペクトラ/ポア6(MWCO:3.5kDa)(スペクトラム社)を用いて透析を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(399mg)を得た。得られた標記化合物の薬剤含量は21.9%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ75nmでありミセルを形成していた。
 実施例19 実施例19化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸側鎖にアスパラギン酸-グリシンエチルエステルが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(vii)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=水素原子、R=グリシンエチルエステルのアミノ基からHを除いた残基)、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=43、a=273)の製造
 国際公開2010/131675公報に記載の方法に準じて製造されたメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸の側鎖にアスパラギン酸-グリシンエチルエステルが結合した構造を有する部分からなるブロック共重合体(510mg)を35℃にてジメチルホルムアミド(4.8ml)に溶解した後、参考例1で得られた6配位白金錯体(158mg)およびジメチルアミノピリジン(11mg)、ジメチルホルムアミド(4.0ml)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.067ml)を加え、4時間経過後に、フェニルアラニンベンジルエステル塩酸塩(153mg)、ジイソプロピルエチルアミン(0.089ml)およびジイソプロピルカルボジイミド(0.067ml)を加え、更に20時間撹拌した。反応終了後、反応液を、エタノール(13ml)およびジイソプロピルエーテル(75ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物に、更にエタノール/ジイソプロピルエーテル(1/6(v/v);88ml)を加え、粗体(643mg)をろ取した。得られた粗体(501mg)を冷水(50ml)に溶解後、スペクトラ/ポア6(MWCO:3.5kDa)(スペクトラム社)を用いて透析を行い,低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(440mg)を得た。得られた標記化合物の薬剤含量は18.1%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ33nmでありミセルを形成していた。
実施例20 実施例20化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約7のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=7、a=46)の製造
 特許第3268913号公報に記載の方法で製造された分子量2000のメトキシポリエチレングリコール部分と重合数が約7のポリアスパラギン酸部分からなるブロック共重合体(アスパラギン酸の重合数約7;50mg)および参考例1で得られた6配位白金錯体(22.5mg)を35℃にてジメチルホルムアミド(2.15ml)に溶解した後、ジメチルアミノピリジン(1.53mg)を加えた。反応液を25℃とした後、ジイソプロピルカルボジイミド(0.009ml)を加え、5時間経過後に、フェニルアラニンベンジルエステル塩酸塩(22mg)、ジイソプロピルエチルアミン(0.013ml)およびジイソプロピルカルボジイミド(0.009ml)を加え、更に21時間撹拌した。反応終了後、反応液を、酢酸エチル(4.3ml)およびジイソプロピルエーテル(48.7ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物を、更に酢酸エチル/ジイソプロピルエーテル(1/9(v/v);20ml)で洗浄し、上清を除去した。得られた粗体(79mg)を冷水(12ml)に溶解後、ビバスピン6(MWCO:3kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、低分子化合物を除去した。精製後の溶液を凍結乾燥することによって標記化合物(48.8mg)を得た。得られた標記化合物の薬剤含量は12.1%(質量分率)であった。また、標記化合物を水にて5mg/mlの濃度となるように溶解し、粒子径を測定したところ、10.4nmであり、ミセルを形成していた。
 参考例10 trans,cis,cis-[Pt(OH)(OAc)(R,R-dach)(ox)]の合成
 l-OHP(200mg)を酢酸9mlに懸濁した液に、30%過酸化水素水0.135mlを加え、遮光下、室温にて19時間撹拌した。反応終了後、水を加えながら数回減圧濃縮し、固体を得た。得られた固体を、エタノール/メタノールで再結晶することで標記化合物(55mg)を得た。H-NMR(DO):δ2.78-2.73(2H、m)、2.17(2H、d、J=9.2Hz)、1.94(3H、s)、1.54-1.44(4H、m)、1.20-1.05(2H、m)、純度(HPLC、分析条件1):94.0%。
 参考例11 trans,cis,cis-[Pt(OCOCH(CHPh)N(CH)-Boc)(Cl)(R,R-dach)(ox)]の合成
 参考例1で得られた6配位白金錯体(300mg)、N-α-Boc-N-α-メチル-フェニルアラニン(223.6mg、渡辺化学工業((株)))およびHOBt・HO(10.2mg)をジメチルホルムアミド(3ml)に懸濁し、0℃に冷却後、ジイソプロピルカルボジイミド(0.155ml)を加え、1時間撹拌した。その後、室温へ戻し、更に6時間反応させた。反応終了後、酢酸エチルおよび水を加え分液し、有機層を水、炭酸水素ナトリウム水溶液を用い洗浄し、硫酸ナトリウムを加え乾燥した。硫酸ナトリウムをろ別し、ろ液を減圧濃縮した。得られた残渣にジエチルエーテルを加えて固体を析出させ、固体をろ取することにより、標記化合物(178mg)を得た。LC/MS(分析条件3);保持時間5.5分、m/z 711(M+1)。
 参考例12 trans,cis,cis-[Pt(OCOCH(CHPh)NH(CH))(Cl)(R,R-dach)(ox)]トリフルオロ酢酸塩の合成
 参考例11で得た6配位白金錯体(96mg)をジクロロメタン(3ml)に溶解し、0℃に冷却後、トリフルオロ酢酸(1ml)を加えた。同温で15分撹拌度、溶媒を減圧除去した。得られた残渣にジエチルエーテルを加えて固体を析出させ、固体をろ取することにより、標記化合物(76mg)を得た。LC/MS(分析条件4);保持時間4.1分、m/z 611(M+1)。
 実施例21 実施例21化合物(分子量2000のメトキシポリエチレングリコール部分と重合数が約12のポリアスパラギン酸側鎖にN-メチル-フェニルアラニンが結合した構造を有する部分からなるブロック共重合体とtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]との結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=一般式(II)の(i)の構造(W=6配位白金錯体の水酸基からHを除いた残基またはイソプロピルアミノカルボニルイソプロピルアミノ基、T=メチル基)、R=イソプロピルアミノカルボニルイソプロピルアミノ基、d+e+f+g+h+i+j=12、a=46)の製造
 特許第3268913号公報に記載の方法により製造された分子量2000のメトキシポリエチレングリコール-ポリアスパラギン酸ブロック部分共重合体(アスパラギン酸の重合数約12;22mg)、参考例12で得られた6配位白金錯体(23mg)、HOBt・HO(2.4mg)、ジイソプロピルエチルアミン(0.016ml)、ジメチルホルムアミド(0.5ml)およびジイソプロピルカルボジイミド(0.048ml)を用い、実施例12と同様の操作で標記化合物を得た。得られた標記化合物の薬剤含量は19.0%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ10.5nmであり、ミセルを形成していた。
 比較例1 比較例1化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[Pt(OH)(OAc)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=43、a=273)の製造
 参考例10で製造されたアキシアル位にアセトキシ基および水酸基を有する6配位白金錯体であるtrans,cis,cis-[Pt(OH)(OAc)(R,R-dach)(ox)]を実施例1のtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]の替りに用いて、実施例1と同様の方法で標記化合物を得た。得られた標記化合物の薬剤含量は20.2%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ15nmでありミセルを形成していた。
 参考例13 trans,cis,cis-[Pt(OH)(R,R-dach)(ox)]の合成
 l-OHP(900mg)を蒸留水12mlに懸濁した液に、30%過酸化水素水2.58mlを加え、遮光下、室温にて20.5時間撹拌した。反応終了後、水を加えながら数回減圧濃縮し、固体を得た。得られた固体を、蒸留水で再結晶することで標記化合物(422mg)を得た。H-NMR(DO):δ2.74-2.72(2H、m)、2.17(2H、d、J=12.8Hz)、1.54-1.45(4H、m)、1.18-1.12(2H、m)、純度(HPLC、分析条件1):>98.0%。
 比較例2 比較例2化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約43のポリアスパラギン酸部分からなるブロック共重合体とtrans,cis,cis-[Pt(OH)(R,R-dach)(ox)]およびフェニルアラニンベンジルエステルとの結合体:一般式(I)のR=Me(メチル基)、R=トリメチレン基、R=Ac(アセチル基)、R=6配位白金錯体の水酸基からHを除いた残基、R=イソプロピルアミノカルボニルイソプロピルアミノ基またはフェニルアラニンベンジルエステル(T=水素原子)のアミノ基からHを除いた残基、d+e+f+g+h+i+j=43、a=273)の製造
 参考例13で製造されたアキシアル位の配位子が共に水酸基である6配位白金錯体trans,cis,cis-[Pt(OH)(R,R-dach)(ox)]を実施例1のtrans,cis,cis-[PtCl(OH)(R,R-dach)(ox)]の替りに用いて、実施例1と同様の方法で標記化合物を得た。得られた標記化合物の薬剤含量は12.5%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ44nmでありミセルを形成していた。
 比較例3 比較例3化合物(分子量12000のメトキシポリエチレングリコール部分と重合数が約37のポリグルタミン酸部分からなるブロック共重合体に4配位白金錯体であるダハプラチン(Pt(R,R-dach)Cl)が配位結合している高分子結合体の製造
 特許第4745664号公報記載の方法により製造された分子量12000のメトキシポリエチレングリコール部分と重合数が約37のポリグルタミン酸部分からなるブロック共重合体(0.7g)およびフェニルアラニンベンジルエステル塩酸塩(243mg)を35℃にてジメチルホルムアミド(18ml)に溶解した後、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(260mg)およびジイソプロピルエチルアミン(0.15ml)を順次加え、同温で17時間撹拌した。反応終了後、反応液をエタノール(36ml)およびジイソプロピルエーテル(144ml)の混合液にゆっくり加え、室温で撹拌後、目的物が沈析するまで静置し、上清を除去した。得られた沈析物をろ取し、減圧乾燥し、担体となる高分子の粗体(0.8g)を得た。得られた粗体(0.8g)を50%アセトニトリル水溶液(25ml)に溶解後、イオン交換樹脂(ダウケミカル社製ダウエックス50(H);35ml)に通塔し、50%アセトニトリル水溶液(17ml)および50%イソプロピルアルコール水溶液にて溶出した。得られた溶出画分を減圧濃縮し、有機溶媒を除去した後、凍結乾燥することによって高分子担体(0.6g)を得た。得られた高分子担体(0.5g)を50%イソプロピルアルコール水溶液(22ml)に溶解し、続いて0.56規定の水酸化ナトリウム水溶液(0.9ml)を加え、40℃で1.5時間撹拌した。その後、特開平1-313488号公報に記載の方法でKPtClから調製した[Pt(R,R-dach)(OH](NOの水溶液(10.75mM;24ml)を加え、19.5時間撹拌した。反応終了後、透析膜(MWCO=14kDa)を用いて、低分子成分を除いた後、マルトース(2.0g)を加え、凍結乾燥を行った。得られた標記化合物の薬剤含量は2.9%(質量分率)であった。また、標記化合物を水にて1mg/mlの濃度となるように溶解し、粒子径を測定したところ44nmでありミセルを形成していた。
 試験例1 実施例1化合物、比較例1化合物および比較例2化合物の還元条件下での白金錯体放出性試験
 実施例1化合物、比較例1化合物、比較例2化合物を、600μMの濃度でアスコルビン酸を含有する10mMリン酸緩衝液に化合物濃度として1mg/mlになるよう溶解して、遮光下、37℃で振とうし、経時的に溶液を採取し、ビバスピン500(MWCO:5kDa)(ザウトリウス社)を用いて遠心限外ろ過を行い、ろ液の白金含量を定量して高分子結合体からの白金錯体の放出性を試験した。比較の為、実施例1化合物についてはアスコルビン酸無添加の10mMリン酸緩衝液に溶解した場合の放出性も試験した。なお、ろ液の白金含量はICP-OESを用いて定量し、当初溶液の白金含量を100%とした放出白金量の割合を表1に示す。
Figure JPOXMLDOC01-appb-T000025
 実施例1化合物は、アスコルビン酸添加による還元性条件下で、試験開始2時間後において高分子に結合された76.4%の白金錯体の放出が確認された。一方、比較例1化合物および比較例2化合物においては、試験開始6時間後において、高分子に結合された白金錯体の放出がほとんど確認されず、還元条件下でも白金錯体が放出されないことが明らかとなった。また、実施例1化合物において、アスコルビン酸無添加の場合の試験開始後2時間の白金錯体放出率は17.8%であり、前述のアスコルビン酸添加条件での放出率が76.4%であることから、還元性条件下で白金錯体の放出が加速されていることが確認された。以上のことより、ポリエチレングリコール構造部分とポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体に結合させる6配位白金錯体を選択することにより、還元条件下で白金錯体を放出する6配位白金錯体の高分子結合体が得られることを見出した。
 試験例2 実施例1化合物および比較例3合物の還元条件下での白金錯体放出性試験
 試験例1の方法と同様に6配位白金錯体の実施例1化合物と結合様式が異なる4配位白金錯体の比較例3化合物の放出試験を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000026
 比較例3化合物は、アスコルビン酸添加による還元性条件下において試験開始24時間後でも白金錯体の放出はほとんど確認されなかった。アスコルビン酸無添加の条件も試験したが放出率はアスコルビン酸添加時とほぼ同じであり、アスコルビン酸添加による影響はほとんど見られなかった。よって、特許文献1等で用いられている4配位白金錯体を配位子交換により高分子に結合した場合、放出性が低いことが明らかである。
 試験例3 ヒト胃がん4-1ST移植マウスに対する抗腫瘍効果
<動物と移植腫瘍>
 BALB/cA-nu/nuマウス(以下、ヌードマウス)の皮下でヒト胃がん4-1STを継代維持した。ヒト胃がん4-1STは公益財団法人実験動物中央研究所より入手した。
<抗腫瘍試験1>
 ヒト胃がん4-1STをヌードマウス皮下より採材し、約3mm角のブロックに細断した。得られた腫瘍ブロックをヌードマウス背側部皮下に套管針を用いて移植した。平均腫瘍体積が約100~200mmとなった移植後15日目に各薬剤を尾静脈より投与した。投与した各薬剤の用法および用量(薬剤換算)は、実施例1化合物については、5%ブドウ糖注射液に溶解し、25mg/kgおよび12.5mg/kgの用量を単回投与した。実施例2化合物については、5%ブドウ糖注射液に溶解し、25mg/kgおよび12.5mg/kgの用量を単回投与した。実施例3化合物については、5%ブドウ糖注射液に溶解し、20mg/kgおよび10mg/kgの用量を単回投与した。実施例4化合物については、5%ブドウ糖注射液に溶解し、20mg/kgおよび10mg/kgの用量を単回投与した。実施例5化合物については、5%ブドウ糖注射液に溶解し、20mg/kgおよび10mg/kgの用量を単回投与した。対照薬剤としてl-OHPを20mg/kgの用量で、シスプラチンを10mg/kgの用量でいずれも単回投与した。l-OHP、シスプラチンの投与量および各実施例化合物の高投与量はいずれも最大耐量(MTD用量)を採用した。投与後、腫瘍の長径(L)および短径(W)を、経時的にノギスを用いて計測し、腫瘍体積(L×W×W×0.5)を算出した。無投与群および各薬剤投与群は全て4匹/群で試験を実施した。投与開始から投与後21日目までについて、薬剤無投与群の相対腫瘍体積を100とした薬剤投与群相対腫瘍体積(T/C(%))を抗腫瘍効果の指標として以下の式で算出した。各薬剤投与群のT/C(%)を表3に示す。
 式:T/C(%)=投与群相対腫瘍体積/無投与群相対腫瘍体積×100
Figure JPOXMLDOC01-appb-T000027
 実施例2化合物を除く全ての実施例化合物がl-OHPよりも高い抗腫瘍効果を示した。特に実施例4化合物については低用量においてもl-OHPと同程度の抗腫瘍効果を維持した。実施例2化合物はl-OHPと同程度の抗腫瘍効果を発揮した。以上の結果から、本発明の6配位白金錯体の高分子結合体はl-OHPの抗腫瘍効果と同等以上の抗腫瘍効果を有することは明らかである。
<抗腫瘍試験2>
 ヒト胃がん4-1STをヌードマウス皮下より採材し、約3mm角のブロックに細断した。得られた腫瘍ブロックをヌードマウス背側部皮下に套管針を用いて移植した。平均腫瘍体積が約100~200mmとなった移植後17日目に各薬剤を尾静脈より投与した。投与した各薬剤の用法および用量(薬剤換算)は、実施例11化合物については、5%ブドウ糖注射液に溶解し、15mg/kgおよび7.5mg/kgの用量を単回投与した。実施例12化合物については、5%ブドウ糖注射液に溶解し、30mg/kgおよび15mg/kgの用量を単回投与した。対照薬剤としてl-OHPを18mg/kgの用量で、シスプラチンを10mg/kgの用量でいずれも単回投与した。l-OHP、シスプラチンの投与量および各実施例化合物の高投与量はいずれも最大耐量(MTD用量)を採用した。投与後、腫瘍の長径(L)および短径(W)を、経時的にノギスを用いて計測し、腫瘍体積(L×W×W×0.5)を算出した。無投与群および各薬剤投与群は全て4匹/群で試験を実施した。投与開始から投与後21日目までについて、薬剤無投与群の相対腫瘍体積を100とした薬剤投与群相対腫瘍体積(T/C(%))を抗腫瘍効果の指標として以下の式で算出した。各薬剤投与群のT/C(%)を表4に示す。
 式:T/C(%)=投与群相対腫瘍体積/無投与群相対腫瘍体積×100
 投与後、マウスの体重を、経時的に計測した。投与開始から投与後21日目までについて、投与開始日の体重を1とした相対体重の変化を表5に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 実施例11化合物および実施例12化合物はl-OHPおよびシスプラチンよりも強い抗腫瘍効果を示した。一方で実施例11化合物および実施例12化合物の体重減少は投与4日目において、l-OHPおよびシスプラチンよりも軽微であった。
<抗腫瘍試験3>
 ヒト胃がん4-1STをヌードマウス皮下より採材し、約3mm角のブロックに細断した。得られた腫瘍ブロックをヌードマウス背側部皮下に套管針を用いて移植した。平均腫瘍体積が約100~200mmとなった移植後20日目に各薬剤を尾静脈より投与した。投与した各薬剤の用法および用量(薬剤換算)は、実施例7化合物については、5%ブドウ糖注射液に溶解し、15mg/kgおよび7.5mg/kgの用量を単回投与した。実施例16化合物については、5%ブドウ糖注射液に溶解し、30mg/kgおよび15mg/kgの用量を単回投与した。対照薬剤としてl-OHPを18mg/kgおよび9mg/kgの用量で、シスプラチンを10mg/kgの用量でいずれも単回投与した。l-OHP、シスプラチンの投与量および各実施例化合物の高投与量はいずれも最大耐量(MTD用量)を採用した。投与後、腫瘍の長径(L)および短径(W)を、経時的にノギスを用いて計測し、腫瘍体積(L×W×W×0.5)を算出した。無投与群および各薬剤投与群は全て4匹/群で試験を実施した。投与開始から投与後21日目までについて、薬剤無投与群の相対腫瘍体積を100とした薬剤投与群相対腫瘍体積(T/C(%))を抗腫瘍効果の指標として以下の式で算出した。各薬剤投与群のT/C(%)を表6に示す。
 式:T/C(%)=投与群相対腫瘍体積/無投与群相対腫瘍体積×100
 投与後、マウスの体重を、経時的に計測した。投与開始から投与後21日目までについて、投与開始日の体重を1とした相対体重の変化を表7に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 実施例7化合物および実施例16化合物はMTD用量において、l-OHPよりも強い抗腫瘍効果を示した。一方で実施例7化合物および実施例16化合物の体重減少は投与4日目において、l-OHPおよびシスプラチンよりも軽微であった。
 

Claims (16)

  1. ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖カルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体を直接またはスペーサーを介して結合した6配位白金錯体の高分子結合体。
  2. 下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは結合基を示し、Rは水素原子または(C1~C6)アシル基を示し、Rはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または下記一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、水酸基、置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NRCONHRからなる群から選ばれる置換基を示し、R、Rは同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは置換基を有していてもよい(C1~C10)アルキル基、ベンジル基またはカルボン酸が保護されたアミノ酸の残基を示す]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基を示し、Rは(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、α-アミノ酸誘導体のα-アミノ基からHを除いた下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR12CONHR13からなる群から選ばれる置換基を示し、R12、R13は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]
    で表される置換基および-NRCONHR10からなる群から選ばれる置換基を示し、R、R10は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、aは5~11500の整数を示し、d、e、f、g、h、i、jは各々0~200の整数を示し、且つd+eは1~200の整数を示し、且つd+e+f+g+h+i+jは2~200の整数を示し、ポリアスパラギン酸の各構成単位の結合順序は任意である]
    で表される請求項1に記載の6配位白金錯体の高分子結合体。
  3. が置換基を有していてもよい(C1~C3)アルキル基であり、Rが(C2~C6)アルキレン基であり、Rが(C1~C3)アシル基であり、Rがアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000004
    [式中、W、TおよびRは一般式(II)と同様な基を意味する]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、aが10~2000の整数であり、d、e、f、g、h、i、jが各々0~100の整数であり、且つd+eは1~100の整数であり、且つd+e+f+g+h+i+jが4~100の整数である請求項2に記載の6配位白金錯体の高分子結合体。
  4. がメチル基、Rがトリメチレン基、Rがアセチル基であり、Rがアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、Rがフェニルアラニンベンジルエステルのアミノ基からHを除いた残基および-NRCONHR10からなる群から選ばれる置換基であり、R、R10が共にシクロヘキシル基若しくはイソプロピル基である請求項2または3に記載の6配位白金錯体の高分子結合体。
  5. がメチル基、Rがトリメチレン基、Rがアセチル基であり、Rが下記一般式(V)
    Figure JPOXMLDOC01-appb-C000005
    [式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NRCONHRからなる群から選ばれる置換基であり、R、Rが共にシクロヘキシル基若しくはイソプロピル基であり、Tは水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、Rが-NRCONHR10であり、R、R10が共にシクロヘキシル基若しくはイソプロピル基である請求項2または3に記載の6配位白金錯体の高分子結合体。
  6. 下記一般式(VI)
    Figure JPOXMLDOC01-appb-C000006
    [式中、R11は水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、R19は結合基を示し、R20は水素原子または(C1~C6)アシル基を示し、R21はアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基または下記一般式(VII)
    Figure JPOXMLDOC01-appb-C000007
    [式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、水酸基、置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR16CONHR17からなる群から選ばれる置換基を示し、R16、R17は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Rは置換基を有していてもよい(C1~C10)アルキル基、ベンジル基またはカルボン酸が保護されたα-アミノ酸の残基を示す]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基を示し、R22は(C1~C30)アルコキシ基、(C1~C30)アラルキルオキシ基、(C6~C10)アリールオキシ基、置換基を有していてもよい(C1~C30)アルキルアミノ基、置換基を有していてもよいジ(C1~C30)アルキルアミノ基、α-アミノ酸誘導体のα-アミノ基からHを除いた下記一般式(VIII)
    Figure JPOXMLDOC01-appb-C000008
    [式中、Qはα-アミノ酸の残基を示し、Tは水素原子、置換基を有していてもよい(C1~C10)アルキル基または(C6~C10)アリール基を示し、Zは置換基を有していてもよい(C1~C10)アルキル基若しくはベンジル基を有するアミノ基、フェニル基を有していてもよい(C1~C10)アルコキシ基、(C6~C10)アリールオキシ基および-NR24CONHR25からなる群から選ばれる置換基を示し、R24、R25は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す]
    で表される残基および-NR14CONHR15からなる群から選ばれる置換基を示し、R14、R15は同一でも異なっていてもよく(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示し、bは5~11500の整数を示し、kは1~200の整数を示し、m、nは各々0~200の整数を示し、且つk+m+nは2~200の整数を示し、ポリグルタミン酸の各構成単位の結合順序は任意である]
    で表される請求項1に記載の6配位白金錯体の高分子結合体。
  7. 11が置換基を有していてもよい(C1~C3)アルキル基であり、R19が(C2~C6)アルキレン基であり、R20が(C1~C3)アシル基であり、R21がアキシアル位にハロゲン原子および水酸基を有する6配位錯体の残基または下記一般式(IX)
    Figure JPOXMLDOC01-appb-C000009
    [式中、W、TおよびRは一般式(VII)と同様な基を意味する]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、bが10~2000の整数であり、kが1~100の整数であり、m、nが各々0~100の整数であり、且つk+m+nが3~100の整数である請求項6に記載の6配位白金錯体の高分子結合体。
  8. 11がメチル基、R19がトリメチレン基、R20がアセチル基であり、R21がアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基、R22がフェニルアラニンベンジルエステルのアミノ基からHを除いた残基および-NR14CONHR15からなる群から選ばれる置換基であり、R14、R15が共にシクロヘキシル基若しくはイソプロピル基である請求項6または7に記載の6配位白金錯体の高分子結合体。
  9. 11がメチル基、R19がトリメチレン基、R20がアセチル基であり、R21が下記一般式(X)
    Figure JPOXMLDOC01-appb-C000010
    [式中、Wはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基および-NR16CONHR17からなる群から選ばれる置換基であり、R16、R17が共にシクロヘキシル基若しくはイソプロピル基であり、Tは水素原子、メチル基、エチル基またはベンジル基であり、Rはカルボン酸が保護されたアミノ酸の残基を示す]
    で表される群から選ばれる置換基、ただし該置換基の少なくとも1つのWはアキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の残基であり、R22が-NR14CONHR15であり、R14、R15が共にシクロヘキシル基若しくはイソプロピル基である請求項6または7に記載の6配位白金錯体の高分子結合体。
  10. アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体が下記一般式(XI)
    Figure JPOXMLDOC01-appb-C000011
    [式中、XおよびXは、共にハロゲン原子、または共に一緒になってオキサレート、マロネート、スクシネートおよびo-フタレートからなる群から選択されるジカルボキシレートを示し、Yはハロゲン原子を示す]
    で表される6配位白金錯体である請求項1~9のいずれか一項に記載の6配位白金錯体の高分子結合体。
  11. 6配位白金錯体のYが塩素原子または臭素原子であり、XおよびXが、共に塩素原子若しくは臭素原子、または、共に一緒になってオキサレートである請求項10に記載の6配位白金錯体の高分子結合体。
  12. ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基と、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の水酸基とを脱水縮合剤を用いてエステル結合させることを特徴とする請求項1に記載の6配位白金錯体の高分子結合体の製造法。
  13. ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基に、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の該水酸基がエステル結合したリンカーを結合させることを特徴とする請求項1に記載の6配位白金錯体の高分子結合体の製造法。
  14. ポリエチレングリコール構造部分と、ポリアスパラギン酸部分またはポリグルタミン酸部分とを有するブロック共重合体における側鎖のカルボキシ基に結合しているリンカーと、アキシアル位にハロゲン原子および水酸基を有する6配位白金錯体の該水酸基をエステル結合させることを特徴とする請求項1に記載の6配位白金錯体の高分子結合体の製造法。
  15. 請求項1~11のいずれか一項に記載の6配位白金錯体の高分子結合体を有効成分とする医薬。
  16. 請求項1~11のいずれか一項に記載の6配位白金錯体の高分子結合体を有効成分とする抗腫瘍剤。
PCT/JP2016/076482 2015-09-14 2016-09-08 6配位白金錯体の高分子結合体 WO2017047497A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2017539867A JP6725520B2 (ja) 2015-09-14 2016-09-08 6配位白金錯体の高分子結合体
KR1020187005965A KR20180053654A (ko) 2015-09-14 2016-09-08 6배위 백금착체의 고분자 결합체
AU2016324370A AU2016324370B2 (en) 2015-09-14 2016-09-08 Polymer conjugate of hexa-coordinated platinum complex
CA2998559A CA2998559A1 (en) 2015-09-14 2016-09-08 Polymer conjugate of hexa-coordinated platinum complex
CN201680053069.8A CN108026271B (zh) 2015-09-14 2016-09-08 6配位铂络合物的高分子偶联物
BR112018003530-0A BR112018003530A2 (ja) 2015-09-14 2016-09-08 At least 6 Distribution are the polymers joint objects of a platinum complex.
RU2018109476A RU2715048C2 (ru) 2015-09-14 2016-09-08 Полимерный конъюгат гексакоординированного комплекса платины
EP16846368.5A EP3351580B1 (en) 2015-09-14 2016-09-08 Polymer conjugate of hexa-coordinated platinum complex
US15/759,295 US10596191B2 (en) 2015-09-14 2016-09-08 Polymer conjugate of hexa-coordinated platinum complex
US16/431,811 US11033577B2 (en) 2015-09-14 2019-06-05 Polymer conjugate of hexa-coordinated platinum complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180875 2015-09-14
JP2015-180875 2015-09-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/759,295 A-371-Of-International US10596191B2 (en) 2015-09-14 2016-09-08 Polymer conjugate of hexa-coordinated platinum complex
US16/431,811 Division US11033577B2 (en) 2015-09-14 2019-06-05 Polymer conjugate of hexa-coordinated platinum complex

Publications (1)

Publication Number Publication Date
WO2017047497A1 true WO2017047497A1 (ja) 2017-03-23

Family

ID=58289255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076482 WO2017047497A1 (ja) 2015-09-14 2016-09-08 6配位白金錯体の高分子結合体

Country Status (12)

Country Link
US (2) US10596191B2 (ja)
EP (1) EP3351580B1 (ja)
JP (1) JP6725520B2 (ja)
KR (1) KR20180053654A (ja)
CN (1) CN108026271B (ja)
AU (1) AU2016324370B2 (ja)
BR (1) BR112018003530A2 (ja)
CA (1) CA2998559A1 (ja)
MA (1) MA42837A (ja)
RU (1) RU2715048C2 (ja)
TW (1) TWI715628B (ja)
WO (1) WO2017047497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038240A1 (ja) * 2016-08-26 2018-03-01 公益財団法人川崎市産業振興財団 金属とブロック共重合体との錯体を含むミセルを安定化させる方法および安定化されたミセル、並びにミセルからの金属の放出制御法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797116B2 (ja) * 2015-06-24 2020-12-09 日本化薬株式会社 新規白金(iv)錯体
EP3351580B1 (en) 2015-09-14 2021-02-24 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of hexa-coordinated platinum complex
CN111494411A (zh) * 2020-05-21 2020-08-07 中国医学科学院放射医学研究所 一种原位自组装四价铂药物及其制备方法与应用
CN114209848B (zh) * 2021-12-27 2024-02-23 中国科学技术大学 一种具有运输siRNA功能的铂肽共聚物的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617283A (ja) * 1984-06-20 1986-01-13 Shionogi & Co Ltd 新規白金錯体および抗悪性腫瘍剤
JPS62207283A (ja) * 1986-03-07 1987-09-11 Yoshinori Kitani 新規な白金錯体
JPH03279392A (ja) * 1990-03-29 1991-12-10 Sankyo Co Ltd 4価白金錯体
JPH05117385A (ja) * 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
WO2005056641A1 (ja) * 2003-12-10 2005-06-23 Toudai Tlo, Ltd. ジアミノシクロヘキサン白金(ii)とポリ(カルボン酸)セグメント含有ブロック共重合体との配位錯体、その抗腫瘍剤
JP2011105792A (ja) * 2009-11-12 2011-06-02 Japan Science & Technology Agency ブロックコポリマー、ブロックコポリマー−金属錯体複合体、及びそれを用いた中空構造体キャリア

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1186617A1 (ru) 1980-01-03 1985-10-23 Нидерландзе Сентрале Организати Фор Тегепаст-Натурветеншаппелийк Ондерцоек (Фирма) Платино ( @ )-диаминовые комплексы,про вл ющие противоопухолевую активность
NL181434C (nl) 1980-01-03 1987-08-17 Tno Platina(iv)-diamine-complexen, alsmede hun bereiding en toepassing.
DE68918878T2 (de) 1988-02-02 1995-02-23 Johnson Matthey Inc Pt(IV) Komplexe.
US5072011A (en) 1988-02-02 1991-12-10 Johnson Matthey, Inc. Pt(IV) complexes
US5041578A (en) 1988-11-22 1991-08-20 Board Of Regents, The University Of Texas System Water soluble 1,2-diaminocyclohexane platinum (IV) complexes as antitumor agents
US5434256A (en) 1988-11-22 1995-07-18 Board Of Regents, The University Of Texas System Diamine platinum complexes as antitumor agents
US5393909A (en) 1988-11-22 1995-02-28 Board Of Regents, The University Of Texas System Diamine platinum complexes as antitumor agents
JP3268913B2 (ja) 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
AU4842996A (en) 1995-02-28 1996-09-18 Yoshinori Kidani Novel platinum (iv) complexes, process for producing the same, and carcinostatic agents containing the same
CA2396702C (en) 2000-01-04 2010-03-23 Access Pharmaceuticals, Inc. N,o-amidomalonate platinum complexes
US7166733B2 (en) 2000-01-04 2007-01-23 Access Pharmaceuticals, Inc. O,O'-Amidomalonate and N,O-Amidomalonate platinum complexes
EP1536864A2 (en) 2002-09-11 2005-06-08 Board Of Regents The University Of Texas System Platinum complexes as antitumor agents in combination with biochemical modulation
CN1309763C (zh) 2002-10-31 2007-04-11 日本化药株式会社 喜树碱的高分子衍生物
JP2006248978A (ja) 2005-03-10 2006-09-21 Mebiopharm Co Ltd 新規なリポソーム製剤
CA2728502C (en) 2008-06-24 2017-01-03 Nanocarrier Co., Ltd. Liquid composition of cisplatin coordination compound
FR2954321A1 (fr) * 2010-07-15 2011-06-24 Sanofi Aventis Derives de platine (iv) - couples a un agent de ciblage antitumoral
RU2623426C2 (ru) * 2011-09-11 2017-06-26 Ниппон Каяку Кабусики Кайся Способ получения блок-сополимера
JP5993237B2 (ja) * 2012-07-25 2016-09-14 オリンパス株式会社 蛍光観察装置
US9556214B2 (en) 2012-12-19 2017-01-31 Placon Therapeutics, Inc. Compounds, compositions, and methods for the treatment of cancers
JP6797116B2 (ja) 2015-06-24 2020-12-09 日本化薬株式会社 新規白金(iv)錯体
EP3351580B1 (en) 2015-09-14 2021-02-24 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of hexa-coordinated platinum complex

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617283A (ja) * 1984-06-20 1986-01-13 Shionogi & Co Ltd 新規白金錯体および抗悪性腫瘍剤
JPS62207283A (ja) * 1986-03-07 1987-09-11 Yoshinori Kitani 新規な白金錯体
JPH03279392A (ja) * 1990-03-29 1991-12-10 Sankyo Co Ltd 4価白金錯体
JPH05117385A (ja) * 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
WO2005056641A1 (ja) * 2003-12-10 2005-06-23 Toudai Tlo, Ltd. ジアミノシクロヘキサン白金(ii)とポリ(カルボン酸)セグメント含有ブロック共重合体との配位錯体、その抗腫瘍剤
JP2011105792A (ja) * 2009-11-12 2011-06-02 Japan Science & Technology Agency ブロックコポリマー、ブロックコポリマー−金属錯体複合体、及びそれを用いた中空構造体キャリア

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351580A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038240A1 (ja) * 2016-08-26 2018-03-01 公益財団法人川崎市産業振興財団 金属とブロック共重合体との錯体を含むミセルを安定化させる方法および安定化されたミセル、並びにミセルからの金属の放出制御法

Also Published As

Publication number Publication date
EP3351580A4 (en) 2019-05-01
EP3351580A1 (en) 2018-07-25
JP6725520B2 (ja) 2020-07-22
RU2018109476A3 (ja) 2019-12-19
TWI715628B (zh) 2021-01-11
EP3351580B1 (en) 2021-02-24
RU2018109476A (ru) 2019-10-16
AU2016324370A1 (en) 2018-04-26
CN108026271B (zh) 2021-03-12
US20180250332A1 (en) 2018-09-06
TW201714613A (zh) 2017-05-01
US11033577B2 (en) 2021-06-15
JPWO2017047497A1 (ja) 2018-06-28
US20190282612A1 (en) 2019-09-19
BR112018003530A2 (ja) 2018-09-25
AU2016324370B2 (en) 2021-02-25
KR20180053654A (ko) 2018-05-23
US10596191B2 (en) 2020-03-24
MA42837A (fr) 2018-07-25
CN108026271A (zh) 2018-05-11
RU2715048C2 (ru) 2020-02-25
CA2998559A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US11033577B2 (en) Polymer conjugate of hexa-coordinated platinum complex
JP5687899B2 (ja) 生理活性物質の高分子結合体
JP5249016B2 (ja) タキサン類の高分子結合体
JP5544357B2 (ja) 水酸基を有する生理活性物質の高分子結合体
EP2042195A1 (en) Polymer conjugate of combretastatin
JP5856069B2 (ja) 新規なシチジン系代謝拮抗剤の高分子誘導体
JP6867084B2 (ja) 新規な陽イオン性ポリホスファゼン化合物、ポリホスファゼン−薬物コンジュゲート化合物およびその製造方法
RU2721725C2 (ru) Полимерный конъюгат координационного комплекса платины (ii) с производным сульфоксида

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539867

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187005965

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15759295

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2998559

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003530

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018109476

Country of ref document: RU

Ref document number: 2016846368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016324370

Country of ref document: AU

Date of ref document: 20160908

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018003530

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180223