WO2017047201A1 - オゾンガスの供給方法、およびオゾンガスの供給システム - Google Patents

オゾンガスの供給方法、およびオゾンガスの供給システム Download PDF

Info

Publication number
WO2017047201A1
WO2017047201A1 PCT/JP2016/069299 JP2016069299W WO2017047201A1 WO 2017047201 A1 WO2017047201 A1 WO 2017047201A1 JP 2016069299 W JP2016069299 W JP 2016069299W WO 2017047201 A1 WO2017047201 A1 WO 2017047201A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone gas
ozone
gas
adsorbent
pipe
Prior art date
Application number
PCT/JP2016/069299
Other languages
English (en)
French (fr)
Inventor
尚久 牧平
泉 浩一
政博 古谷
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Priority to KR1020187010780A priority Critical patent/KR102591018B1/ko
Priority to US15/761,040 priority patent/US10597296B2/en
Publication of WO2017047201A1 publication Critical patent/WO2017047201A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/14Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0075Nitrogen oxides

Definitions

  • the present invention relates to an ozone gas supply method and an ozone gas supply system.
  • Ozone gas is widely used for deodorizing agents, bactericides, and semiconductor oxidation treatments because it has strong oxidizing power but does not leave toxicity after decomposition.
  • Ozone gas can be generated, for example, by discharge in an atmosphere containing oxygen gas.
  • concentration of ozone gas is increased and the stability over time is improved by adding a small amount of nitrogen gas to oxygen gas as a raw material.
  • nitrogen oxides When a small amount of nitrogen gas is added to the oxygen gas as a raw material in this way, part of the added nitrogen gas becomes nitrogen oxides. This nitrogen oxide corrodes the piping that becomes the gas flow path.
  • the concentration of ozone in the supplied gas may become unstable.
  • An object of the present invention is to provide an ozone gas supply method and an ozone gas supply system capable of supplying ozone gas from which nitrogen oxides have been removed at a stable concentration.
  • the ozone gas supply method is a first flow path in which a first container holding a first adsorbent made of silica gel is used for ozone gas containing nitrogen oxides from an ozone gas source.
  • This is a method for supplying ozone gas to be supplied to a supply object by switching between a state of supplying to the supply object via a state and a state of supplying to the supply object via a second flow path.
  • the ozone gas supply method includes a step of supplying ozone gas from an ozone gas source to a supply object via a second flow path, and supplying ozone gas from an ozone gas source to the supply object via a first flow path. Switching to a state to be performed, adsorbing nitrogen oxide on the first adsorbent, and supplying ozone gas having a reduced concentration of nitrogen oxide to the supply object.
  • the step of supplying the ozone gas from the ozone gas source through the second flow path includes supplying a part of the ozone gas from the ozone gas source while supplying the ozone gas from the ozone gas source to the supply object through the second flow path.
  • a step of causing the first adsorbent to adsorb ozone gas by introducing the first adsorbent into the first container and suppressing the ozone adsorbing ability of the first adsorbent is included.
  • the first adsorbent whose ozone adsorbing ability is suppressed in the step of suppressing the ozone adsorbing ability of the first adsorbent is held. Ozone gas passes through the first container.
  • the ozone gas from the ozone gas source passes through the first flow path from the state in which the ozone gas from the ozone gas source is supplied to the supply object through the second flow path.
  • the ozone gas from the ozone gas source passes through the first flow path from the state in which the ozone gas from the ozone gas source is supplied to the supply object through the second flow path.
  • nitrogen oxides are adsorbed to the first adsorbent made of silica gel in the first container installed in the first flow path, and ozone gas having a reduced concentration of nitrogen oxides is supplied to the supply object.
  • silica gel has a characteristic of adsorbing not only nitrogen oxides but also ozone gas. Therefore, when no countermeasure is taken, ozone gas is adsorbed by the first adsorbent, and the concentration of ozone gas supplied to the supply object decreases. As a result, the concentration of ozone gas supplied to the supply object may become unstable.
  • the step of supplying ozone gas from the ozone gas source through the second flow path includes the step of suppressing the ozone adsorption ability of the first adsorbent.
  • the first adsorbent in which the ozone adsorbing ability is suppressed in the step of suppressing the ozone adsorbing ability of the first adsorbent is held. Ozone gas passes through the container. Therefore, adsorption of ozone gas to the first adsorbent is suppressed, and the concentration of ozone gas is stabilized.
  • the ozone gas from which nitrogen oxides have been removed can be supplied at a stable concentration.
  • the ozone gas from the ozone gas source is switched to a state of supplying the supply object via the first flow path, and the first adsorbent is caused to adsorb nitrogen oxides
  • the step of supplying ozone gas with a reduced concentration of nitrogen oxides to the supply object when nitrogen oxide concentration increase information is detected, which is timing information for increasing the concentration of nitrogen oxides contained in ozone gas from the ozone gas source
  • nitrogen oxide concentration increase information it may be switched to a state in which ozone gas is supplied to the supply object via the first flow path. By doing in this way, it can switch to the state which adsorb
  • the ozone gas source may generate ozone gas by discharge between electrodes arranged in a gas containing oxygen gas as a main component.
  • the nitrogen oxide concentration increase information may be information on the timing at which the concentration of nitrogen oxide increases as the electrode is heated to a temperature equal to or higher than the temperature at which dinitrogen pentoxide vaporizes.
  • ozone generation efficiency may be reduced due to adhesion of dinitrogen pentoxide to the electrodes.
  • Dinitrogen pentoxide adhering to the electrode can be vaporized and removed by heating the electrode.
  • vaporized dinitrogen pentoxide is mixed in the generated ozone, and the concentration of nitrogen oxides contained in the ozone gas from the ozone gas source increases.
  • the step of supplying the ozone gas from the ozone gas source through the second flow path includes the first container before the step of suppressing the ozone adsorption ability of the first adsorbent.
  • the purge gas is introduced into the first container while heating the first adsorbent in the container, the nitrogen oxide adsorbed on the first adsorbent is released, and discharged to the outside of the first container by the purge gas.
  • a step of recovering the nitrogen oxide adsorbing ability of the adsorbent may be further included.
  • the step of suppressing the ozone adsorption capacity of the first adsorbent after the step of recovering the nitrogen oxide adsorption capacity of the first adsorbent is performed, so that the first adsorbent has sufficient nitrogen oxide adsorption capacity. It is possible to switch to a state in which ozone gas is supplied to the supply object via the first flow path in a state where the ozone adsorption capacity is suppressed.
  • the ozone gas source may generate ozone gas by discharge in a gas mainly composed of oxygen gas supplied from an oxygen source holding oxygen.
  • oxygen gas may be supplied as a purge gas from the oxygen source.
  • the oxygen source which is the raw material for ozone gas
  • the purge gas supply source is also used as the purge gas supply source.
  • the gas which has oxygen gas as a main component means the gas containing 80 volume% or more oxygen gas.
  • the step of supplying ozone gas from an ozone gas source to a supply object via a second flow path and the supply object of ozone gas from the ozone gas source via the first flow path In the step of supplying to the product, the ozone gas flowing through the first container or the second channel installed in the first channel flows into the buffer container and the concentration is leveled, and then supplied to the supply object. May be. By doing in this way, the ozone gas of the stable density
  • An ozone gas supply system includes an ozone gas source that provides ozone gas containing nitrogen oxides, and a first flow path for conveying ozone gas from the ozone gas source to a supply object. And a second flow path for transporting ozone gas from the ozone gas source to the supply target, and a control unit for controlling a supply path of the ozone gas from the ozone gas source to the supply target.
  • a first container holding a first adsorbent made of silica gel is installed in the first channel.
  • the control unit supplies the ozone gas from the ozone gas source to the supply object via the second flow path, and supplies the ozone gas from the ozone gas source via the first flow path in which the first container is installed.
  • the first adsorbent is adsorbed with nitrogen oxide, and the state is switched to supplying the ozone gas having a reduced concentration of nitrogen oxide to the object to be supplied.
  • the state in which the ozone gas from the ozone gas source is supplied to the supply object through the second flow path is such that the ozone gas from the ozone gas source is supplied to the supply object through the second flow path.
  • the control unit is configured such that the ozone gas from the ozone gas source is in a state where the first adsorbent in which the ozone adsorbing ability is suppressed by introducing a part of the ozone gas from the ozone gas source into the first container is held in the first container. Is switched to a state of supplying to the supply object via the first flow path.
  • the ozone gas supply method of the first aspect of the present invention can be implemented.
  • the ozone gas from which nitrogen oxides have been removed can be supplied at a stable concentration.
  • the ozone gas supply system detects the rising timing of the concentration of nitrogen oxide contained in the ozone gas from the ozone gas source, and provides the nitrogen oxide concentration increase information for notifying the increase in the concentration of nitrogen oxide contained in the ozone gas. You may further provide the detection part to output.
  • the control unit may switch to a state in which ozone gas is supplied to the supply object via the first flow path based on the nitrogen oxide concentration increase information. By doing in this way, it can switch to the state which adsorb
  • the ozone gas source may include an electrode for generating ozone gas by discharge in a gas mainly containing oxygen gas.
  • the detection unit may detect a timing at which the electrode is heated to a temperature equal to or higher than a temperature at which dinitrogen pentoxide is vaporized as a timing at which the concentration of nitrogen oxide increases.
  • the nitrogen oxide is adsorbed to the first adsorbent.
  • the ozone gas having a reduced concentration of nitrogen oxides can be supplied to the supply object.
  • the ozone gas supply system further includes a purge gas inflow passage connected to the first container, a heating unit for heating the first adsorbent, and a purge gas discharge passage connected to the first container. It may be.
  • the purge gas is introduced into the first container and the nitrogen oxide adsorbed on the first adsorbent is released, and the purge gas is used for the first adsorbent.
  • the nitrogen oxide adsorption ability of the first adsorbent can be recovered.
  • the ozone gas supply system may further include an oxygen source connected to the ozone gas source.
  • the ozone gas source may generate ozone gas by discharge in a gas mainly composed of oxygen gas supplied from the oxygen source.
  • the oxygen source may be connected to a purge gas inflow path.
  • the oxygen source for supplying oxygen as a raw material for ozone gas is also used as the supply source for the purge gas, so that the equipment can be simplified.
  • the first flow path may include a merging area that is an area where the second flow path is merged downstream of the first container.
  • a buffer container for leveling the concentration of ozone gas may be installed in the merge region.
  • the method for removing nitrogen oxides according to the second aspect of the present invention is a method for removing nitrogen oxides for removing nitrogen oxides from ozone gas containing nitrogen oxides.
  • This method for removing nitrogen oxide introduces ozone gas from an ozone gas source that supplies ozone gas containing nitrogen oxide into a first container that holds the first adsorbent made of silica gel, and converts nitrogen oxide into the first adsorbent.
  • the nitrogen oxides adsorbed on the first adsorbent are released and discharged to the outside of the first container with a purge gas to restore the nitrogen oxide adsorbing ability of the first adsorbent, and the ozone gas source is made of silica gel.
  • ozone gas into the second container holding the second adsorbent, adsorbing nitrogen oxide on the second adsorbent, and discharging ozone gas having a reduced concentration of nitrogen oxide from the second container;
  • the ozone gas is introduced into the third container holding the third adsorbent made of silica gel from the nitrogen gas source, the nitrogen oxide is adsorbed on the third adsorbent, and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the third container.
  • the step of introducing ozone gas from the ozone gas source into the first container to adsorb ozone gas to the first adsorbent whose nitrogen oxide adsorbing capacity has been recovered and suppressing the ozone adsorbing capacity of the first adsorbent, and the ozone gas source The ozone gas is introduced into the first container to recover the nitrogen oxide adsorbing capacity, and the first adsorbent with suppressed ozone adsorbing capacity is adsorbed with nitrogen oxide, and the ozone gas having a reduced nitrogen oxide concentration is added to the first container. And a step of discharging from one container.
  • ozone gas is introduced into the first container, the nitrogen oxides are adsorbed by the first adsorbent, and the ozone gas having a reduced concentration of nitrogen oxides is Discharge from one container. Then, before the adsorption capacity of the first adsorbent for nitrogen oxides falls below the allowable range, the inflow of ozone gas into the first container is stopped and ozone gas is introduced into the second container to remove nitrogen oxides. 2 Ozone gas having a reduced concentration of nitrogen oxides adsorbed on the adsorbent is discharged from the second container.
  • the first adsorption is performed by introducing the purge gas into the first container while heating the first adsorbent to release the nitrogen oxide adsorbed on the first adsorbent.
  • the nitrogen oxide adsorption ability of the agent is restored.
  • the nitrogen oxide in the first container can be removed again.
  • ozone gas is again introduced into the first container, and ozone gas with a reduced nitrogen oxide concentration is discharged from the first container. In this way, continuous supply of ozone gas becomes possible.
  • ozone gas is introduced into the third container, nitrogen oxides are adsorbed by the third adsorbent, and the concentration of nitrogen oxides is reduced.
  • the ozone adsorbing ability of the first adsorbent is suppressed by introducing ozone gas into the first container and adsorbing the ozone gas to the first adsorbent that has recovered the nitrogen oxide adsorbing ability.
  • the third adsorbent and the third container may be the same as the second adsorbent and the second container, respectively, or an adsorbent composed of another silica gel different from the second adsorbent and the second container. And a container for holding the adsorbent.
  • the flow rate of ozone gas introduced into the first container is preferably 10% or less, more preferably 5% or less, of the flow rate of ozone gas introduced into the third container.
  • the ozone gas supply method includes a step of preparing ozone gas containing nitrogen oxide, a step of removing nitrogen oxide from ozone gas, and supplying ozone gas from which nitrogen oxide has been removed. A process. In the step of removing nitrogen oxides, the nitrogen oxides are removed by the nitrogen oxide removal method. According to the ozone gas supply method of the second aspect of the present invention, the nitrogen oxide in the ozone gas is removed by the nitrogen oxide removal method of the second aspect of the present invention, so that the nitrogen oxide is removed. Ozone gas can be supplied at a stable concentration.
  • the ozone gas in the step of preparing the ozone gas, is prepared by discharge in a gas mainly composed of oxygen gas supplied from an oxygen source holding oxygen, and the ozone gas is oxidized from nitrogen.
  • oxygen gas may be supplied as a purge gas from the oxygen source.
  • An ozone gas supply device is connected to an oxygen source holding oxygen, and ozone gas containing nitrogen oxides is discharged by discharge in a gas mainly containing oxygen gas supplied from the oxygen source.
  • a first ozone gas pipe defining a flow path of ozone gas flowing into the container; a second ozone gas pipe connected to the second container; defining a flow path of ozone gas flowing into the second container from the ozone generator; and the first ozone gas
  • the ozone gas supply device is connected to the first container, and is connected to the first purge gas pipe defining the flow path of the purge gas flowing into the first container, and to the second container, and flows into the second container.
  • a first outflow pipe for defining a flow path of the gas flowing out from the first container, a second outflow pipe connected to the second container and defining a flow path of the gas flowing out from the second container, and the first container A first heating unit that heats the inside of the second container, a second heating unit that heats the inside of the second container, and a purge flow that defines a flow path of oxygen gas that flows from the oxygen source into the first purge gas pipe and the second purge gas pipe as purge gas Oxygen gas And a tube.
  • the method for removing nitrogen oxides of the second aspect of the present invention can be implemented by using the ozone gas supply device of the second aspect of the present invention.
  • the ozone gas supply apparatus according to the second aspect of the present invention includes a purge oxygen gas pipe that defines a flow path of oxygen gas flowing as a purge gas from the oxygen source into the first purge gas pipe and the second purge gas pipe.
  • the ozone gas supply device of the second aspect is connected to the first ozone gas valve, the second ozone gas valve, the first purge gas valve, and the second purge gas valve, the first ozone gas valve, the second ozone gas valve, the first purge gas valve, and the first You may further provide the control part which controls opening and closing of 2 purge gas valve
  • introduction of ozone gas into the container for removing nitrogen oxides from the ozone gas supplied from the ozone generator and introduction of purge gas into the container for recovering the nitrogen oxide adsorption ability of the adsorbent are performed.
  • the opening / closing operation of the 1 ozone gas valve, the second ozone gas valve, the first purge gas valve, and the second purge gas valve to be performed can be performed by the control unit.
  • control unit may include an adsorption state determination unit that determines a state of adsorption of nitrogen oxides on the silica gel. This makes it possible to appropriately control the inflow and outflow timings of ozone gas and purge gas.
  • the ozone gas supply device may further include a first cooling unit that cools the inside of the first container and a second cooling unit that cools the inside of the second container.
  • a first cooling unit that cools the inside of the first container
  • a second cooling unit that cools the inside of the second container.
  • oxygen produced by a general process contains nitrogen as an impurity. Therefore, ozone gas containing nitrogen oxides is generated by discharge in a gas containing oxygen gas as a main component. Moreover, in the production
  • the first aspect and the second aspect of the present invention can be implemented by appropriately combining the contents.
  • the ozone gas supply method and ozone gas supply system of the first aspect of the present invention it is possible to supply ozone gas from which nitrogen oxides have been removed at a stable concentration.
  • An ozone gas supply method and an ozone gas supply system can be provided. According to the method for removing nitrogen oxides, the method for supplying ozone gas, and the ozone gas supply device according to the second aspect of the present invention, it is possible to continuously supply ozone gas from which nitrogen oxides have been removed at a stable concentration. It becomes.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of an ozone gas supply system according to Embodiment 1.
  • FIG. It is a schematic sectional drawing which shows the structure of the discharge unit contained in an ozone production
  • 3 is a flowchart illustrating an example of control of an ozone gas supply path in the first embodiment. It is a flowchart which shows an example of control of an ozone production
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of an ozone gas supply system in Embodiment 2.
  • FIG. 5 is a flowchart illustrating an example of control of an ozone gas supply path in a second embodiment. 6 is a timing chart illustrating an example of an ozone gas supply procedure in a second embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of an ozone gas supply system in a third embodiment. It is the schematic which shows an example of a structure of the ozone gas supply apparatus in Embodiment 4, and a nitrogen oxide removal apparatus. It is a figure which shows the schematic structure of a removal cylinder. It is a block diagram which shows schematic electrical structure of a nitrogen oxide removal apparatus.
  • 10 is a timing chart illustrating an example of a procedure of a nitrogen oxide removing process according to Embodiment 4. It is the schematic which shows an example of a structure of the ozone gas supply apparatus in Embodiment 5, and a nitrogen oxide removal apparatus. 10 is a timing chart illustrating an example of a procedure of a nitrogen oxide removing process in the fifth embodiment. It is a figure which shows the time-dependent change of the density
  • an ozone supply system 1 that is an ozone gas supply system in Embodiment 1 includes an ozone generator 10 as an ozone gas source, and an ozone concentration connected to the ozone generator 10.
  • the detection part 30 and the control part 40 connected to the ozone concentration detection part 30 are provided.
  • the ozone concentration detector 30 detects the concentration of ozone generated in the ozone generator 10 and outputs a concentration abnormality signal to the controller 40 when the concentration is abnormal.
  • the control unit 40 receives an abnormal concentration signal, the controller 40 determines that dinitrogen pentoxide has adhered to the electrode in the ozone generator 10 beyond the allowable range, and the ozone is so removed as to remove the adhering dinitrogen pentoxide.
  • generation apparatus 10 While controlling the production
  • the concentration abnormality signal is nitrogen oxide concentration increase information for notifying an increase in the concentration of nitrogen oxide contained in ozone gas.
  • the ozone supply system 1 further includes an oxygen source 51, a nitrogen source 52, a first mass flow controller 56 as a first flow rate adjustment unit, a second mass flow controller 57 as a second flow rate adjustment unit, and a third flow rate adjustment unit.
  • a third mass flow controller 58 and a first removal cylinder 20A as a first container.
  • the oxygen source 51 and the nitrogen source 52 for example, LGC (Liquid Gas Container), CE (Cold Evaporator) holding oxygen and nitrogen, respectively, can be employed.
  • the oxygen source 51 and the first mass flow controller 56 are connected by a pipe 80.
  • the pipe 80 is an oxygen gas outflow path from the oxygen source 51.
  • a valve 61 is installed in the pipe 80.
  • the nitrogen source 52 and the second mass flow controller 57 are connected by a pipe 81.
  • a valve 62 is installed in the pipe 81.
  • a pipe 82 is connected to the first mass flow controller 56.
  • a valve 63 is installed in the pipe 82.
  • a pipe 83 is connected to the second mass flow controller 57.
  • a valve 64 is installed in the pipe 83.
  • the pipe 82 and the pipe 83 are connected to the pipe 84.
  • the pipe 84 is connected to the ozone generator 10.
  • the pipe 84 is an inflow path of the raw material gas to the ozone generator 10.
  • the oxygen source 51 and the nitrogen source 52 are connected to the ozone generator 10 via the piping.
  • a pipe 85 is connected to the ozone generator 10.
  • the pipe 85 is an outflow path for ozone gas generated in the ozone generator 10.
  • a pipe 86 and a pipe 87 are connected to the pipe 85.
  • a valve 67 is installed in the pipe 86.
  • a pipe 89 is connected between a position where the valve 61 of the pipe 80 is installed and a position where the valve 61 is connected to the oxygen source 51.
  • the pipe 89 is connected to the third mass flow controller 58.
  • a valve 65 is installed in the pipe 89.
  • a pipe 99 is connected to the third mass flow controller 58.
  • a valve 66 is installed in the pipe 99.
  • the pipe 99 and the pipe 86 are connected to the pipe 91A.
  • a valve 69A is installed in the pipe 91A.
  • the pipe 91A is connected to the first removal cylinder 20A.
  • the pipe 91A is an inflow path of the oxygen gas as the ozone gas and the purge gas to the first removal cylinder 20A.
  • the pipe 80, the pipe 89, the pipe 99, and the pipe 91A constitute a purge gas inflow passage.
  • a pipe 92A is connected to the first removal cylinder 20A.
  • the pipe 92A is an outflow path for ozone gas and purge gas from the first removal cylinder 20A.
  • a valve 71A is installed in the pipe 92A.
  • a pipe 101 and a pipe 96 are connected to the pipe 92A.
  • a valve 74 is installed in the pipe 101.
  • the pipe 101 is connected to the exhaust part.
  • the pipe 101 is an exhaust pipe that discharges unnecessary gas from the ozone supply system 1.
  • a valve 75 is installed in the pipe 96.
  • the pipe 96 is connected to the pipe 102.
  • a valve 78 is installed in the pipe 102.
  • the pipe 102 is connected to a discharge unit that discharges ozone gas to a supply target to which ozone gas is to be supplied.
  • the pipe 102 is a supply pipe that discharges ozone gas from the ozone supply system 1 to a supply target.
  • the pipe 87 is connected to the pipe 102.
  • the pipe 87 is provided with a valve 68, a valve 72, and a valve 73 from the side close to the pipe 85.
  • the pipe 92A and the pipe 101 constitute a purge gas discharge path.
  • the pipe 85, the pipe 86, the pipe 91A, the pipe 92A, the pipe 96, and the pipe 102 constitute a first flow path.
  • the pipe 85, the pipe 87, and the pipe 102 constitute a second flow path.
  • the ozone generator 10 includes a plurality of discharge units. A plurality of discharge units are arranged in parallel in the ozone generator 10.
  • the discharge unit 11 includes a first electrode 12, a second electrode 14, and a dielectric tube 13.
  • the first electrode 12 is made of a conductor and has a hollow cylindrical shape with both ends opened.
  • the second electrode 14 is made of a conductor and has a hollow cylindrical shape having a diameter smaller than that of the first electrode 12.
  • the dielectric tube 13 is made of, for example, glass and has a hollow cylindrical shape with both ends closed.
  • the first electrode 12, the second electrode 14, and the dielectric tube 13 are arranged so that their central axes coincide.
  • the second electrode 14 and the dielectric tube 13 are arranged so that the inner peripheral surface of the dielectric tube 13 and the outer peripheral surface of the second electrode 14 are in contact over the entire region.
  • a wall at one end of the dielectric tube 13 is in contact with one end face of the second electrode 14.
  • the wall at the other end of the dielectric tube 13 is in contact with the other end face of the second electrode 14. That is, the dielectric tube 13 is disposed so as to surround the second electrode 14 while being in contact with the second electrode 14.
  • the outer peripheral surface of the dielectric tube 13 and the inner peripheral surface of the first electrode 12 are opposed to each other.
  • a space sandwiched between the outer peripheral surface of the dielectric tube 13 and the inner peripheral surface of the first electrode 12 is a discharge space 15.
  • a discharge is generated in the discharge space 15.
  • a raw material gas containing oxygen gas as a main component and nitrogen gas flows in along the arrow ⁇ .
  • Oxygen gas contained in the source gas is ozonized by the discharge between the first electrode 12 and the second electrode 14, and the ozone gas is discharged along the arrow ⁇ . In this way, the oxygen gas that has flowed into the discharge unit 11 is ozonized, and the ozone gas is discharged from the discharge unit 11.
  • the first removal cylinder 20A has the same structure as the removal cylinder 20 shown in FIG.
  • the removal cylinder 20 includes a main body 21, a ribbon heater 22 as a heating unit, a jacket 23, and a temperature sensor 24.
  • the main body 21 has a cylindrical shape.
  • An adsorbent holding portion 28 that is a hollow region having a cylindrical shape is formed in the main body portion 21.
  • an adsorbent 29 (first adsorbent) made of silica gel is held.
  • the silica gel constituting the adsorbent 29 is adjusted to a purity of 99.99% by mass or more, for example.
  • a pipe 91 is connected to one end of the adsorbent holding unit 28.
  • a pipe 92 is connected to the other end of the adsorbent holder 28.
  • the pipe 91 and the pipe 92 correspond to the pipe 91A and the pipe 92A in FIG. 1, respectively.
  • the ribbon heater 22 is disposed so as to surround the outer periphery of the main body 21.
  • the ribbon heater 22 is connected to a heating power source (not shown), and heats the main body 21 to heat the first adsorbent 29 in the adsorbent holding section 28 to a desired temperature.
  • the jacket 23 is disposed so as to surround the outer periphery of the ribbon heater 22. By installing the jacket 23, the removal cylinder 20 is kept warm, and when the removal cylinder 20 is heated, the temperature of the removal cylinder 20 is equal to the temperature of other members arranged adjacent to the removal cylinder 20. It is possible to suppress the influence.
  • the temperature sensor 24 is installed in the main body 21. The temperature sensor 24 measures the temperature of the first adsorbent 29 in the adsorbent holding unit 28.
  • the temperature sensor 24 and the heating power source are connected to the control unit 40. Based on the temperature information of the first adsorbent 29 obtained from the temperature sensor 24, the control unit 40 controls the heating power supply so as to maintain the first adsorbent 29 at a desired temperature.
  • FIG. 4 is a flowchart showing an example of the control of the ozone gas supply path in the first embodiment.
  • FIG. 5 is a flowchart showing an example of the control of the ozone generator.
  • FIG. 6 is a flowchart showing an example of the removal cylinder control.
  • FIG. 7 is a timing chart showing an example of an ozone gas supply procedure in the first embodiment.
  • steps (S10) to (S30) are repeated in the control of the ozone gas supply path, and step (T10) is performed in the ozone generator. .
  • the first removal cylinder is in a standby state.
  • a step of supplying ozone gas from the ozone generator 10 to the supply object via the second flow path. Is implemented.
  • this step (S10) referring to FIG. 1, the valves 61 to 64, 68, 72, 73, 78 are opened and the other valves are closed by the control of the control unit 40. .
  • the flow rate of the oxygen gas supplied from the oxygen source 51 via the pipe 80 is adjusted by the first mass flow controller 56 and reaches the pipe 84 via the pipe 82.
  • the flow rate of the nitrogen gas supplied from the nitrogen source 52 via the pipe 81 is adjusted by the second mass flow controller 57 and reaches the pipe 84 via the pipe 83.
  • a raw material gas in which nitrogen gas is mixed with oxygen gas at a desired ratio (for example, a mixed gas containing several percent by volume of nitrogen gas and the remainder being oxygen gas) is supplied to the ozone generator 10 via the pipe 84.
  • the source gas that has reached the ozone generator 10 flows into the discharge space 15 along the arrow ⁇ with reference to FIG.
  • ozone gas is generated by the discharge between the first electrode 12 and the second electrode 14.
  • the generated ozone gas is discharged from the discharge space 15 along the arrow ⁇ .
  • the discharged ozone gas is supplied to the supply object via the pipe 85, the pipe 87, and the pipe 102 constituting the second flow path.
  • step (S20) when the supply of ozone gas to the supply object is completed (YES in step (S20)), the operation of ozone supply system 1 is stopped and the supply of ozone gas is ended.
  • nitrogen oxidation is information on timing at which the concentration of nitrogen oxide contained in ozone gas from the ozone generator 10 increases. It is confirmed whether or not the object concentration increase information is detected (step (S30)).
  • the ozone concentration detector 30 detects the concentration of ozone generated in the ozone generator 10 and confirms whether there is an abnormality in the concentration.
  • the ozone concentration detection unit 30 checks whether or not the ozone concentration is below a predetermined concentration range (step (T10)). If the concentration of ozone is within the predetermined concentration range (NO in step (T10)), it is determined that the timing at which the concentration of nitrogen oxides increases is not detected (NO in step (S30)), and ozone gas Is continuously supplied to the supply object through the second flow path.
  • the ozone concentration detector 30 continues to detect the concentration of ozone generated in the ozone generator 10. From time t 1 to t 2 , the steps (S10) to (S30) are repeatedly performed as described above, and the step (T10) is repeatedly performed.
  • the first removal cylinder 20A installed in the first flow path is in a standby state.
  • steps (S40) to (S60) are repeated in the control of the ozone gas supply path between times t 2 and t 3 .
  • steps (T20) to (T30) are repeated.
  • the step (U10) is performed in the first removal cylinder.
  • the ozone concentration detection unit 30 that a range of concentrations in which the concentration of ozone gas predetermined detects, for example, the concentration of ozone gas in advance
  • the concentration is lower than the predetermined concentration range (YES in step (T10)
  • dinitrogen pentoxide is attached to the electrode (see FIG. 2) of the ozone generator 10 and the ozone generation efficiency is reduced. Conceivable. Therefore, the electrode is heated to remove dinitrogen pentoxide (step (T20)).
  • the concentration of nitrogen oxide contained in the generated ozone gas increases. Therefore, the information on the decrease in the ozone gas concentration is nitrogen oxide concentration increase information, which is information on the timing at which the concentration of nitrogen oxide contained in the ozone gas from the ozone generator 10 as the ozone gas source increases.
  • the ozone concentration detection unit 30 outputs the nitrogen oxide concentration increase information, and the control unit 40 detects this (YES in step (S30)). Based on the nitrogen oxide concentration increase information, the controller 40 switches the ozone gas from the ozone generator 10 to a state in which the ozone gas is supplied to the supply object via the first flow path (step (S40)). Specifically, referring to FIG. 1, valve 68, valve 72, and valve 73 are closed, and valve 67, valve 69A, valve 71A, and valve 75 are opened. About another valve, the same state as a process (S10) is maintained.
  • the ozone gas discharged from the ozone generator 10 is supplied through the pipe 85, the pipe 86, the pipe 91A, the pipe 92A, the pipe 96, and the pipe 102 constituting the first flow path with reference to FIG. Supplied to the object.
  • Step (T20) The removal of dinitrogen pentoxide by heating the electrode (step (T20)) is performed simultaneously with or after the start of ozone gas supply (step (S40)) through the first flow path.
  • Step (T20) can be carried out by heating the electrodes (first electrode 12 and second electrode 14) to a temperature equal to or higher than the temperature at which dinitrogen pentoxide vaporizes.
  • the heating of the electrode is, for example, one or both of increasing the voltage between the first electrode 12 and the second electrode 14 and increasing the current between the first electrode 12 and the second electrode 14. Can be achieved.
  • Ozone generation efficiency in the ozone generator 10 may change due to heating of the electrodes.
  • the component composition, flow rate, etc., of the source gas (gas containing oxygen gas as a main component) flowing into the ozone generator 10 may be changed.
  • the ozone gas discharged from the ozone generator 10 flows into the first removal cylinder 20A holding the adsorbent 29 made of silica gel.
  • the nitrogen oxide contained in the ozone gas is adsorbed by the adsorbent 29 (first adsorbent), and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the first removal cylinder 20A (step (U10)).
  • the ozone gas discharged from the first removal cylinder 20A is supplied to the supply object through the pipe 92A, the pipe 96, and the pipe 102.
  • Step (T20) the concentration of nitrogen oxides contained in the ozone gas is increased by performing the step (T20) in which the electrode is heated, the state is switched to the state in which the ozone gas is supplied through the first flow path.
  • Step (S40) the ozone gas discharged from the ozone generator 10 flows into the first removal cylinder 20A and the nitrogen oxides are adsorbed (step (U10)), thereby reducing the concentration of nitrogen oxides.
  • Ozone gas is supplied to the supply object.
  • the ozone concentration detector 30 monitors whether or not the concentration of ozone gas has recovered within a predetermined concentration range. (Step (T30)). When the concentration of ozone gas is not within the predetermined concentration range (NO in step (T30)), the electrode is continuously heated. Referring to FIGS. 1 and 4, after the supply of ozone gas through the first flow path is started, it is monitored whether or not the cause of the increase in the concentration of nitrogen oxides has been removed (step (S50)). .
  • step (S60) When the heating of the electrode that causes the increase in the concentration of nitrogen oxides is continued (NO in step (S50)), it is determined whether or not the supply of ozone gas to the supply object is completed (step (S60)). ). When the supply of ozone gas to the supply object is completed (YES in step (S60)), the operation of the ozone supply system 1 is stopped and the supply of ozone gas is ended. If the supply of ozone gas to the supply object has not been completed (NO in step (S60)), the supply of ozone gas through the first flow path is continued.
  • steps (S10) to (S30) are repeated in the control of the ozone gas supply path between times t 3 and t 6 .
  • the step (T10) is repeated.
  • the step (U20) ⁇ (U40) is carried out in the removal tube.
  • step (T30) It is considered that the dinitrogen pentoxide adhering to the electrode (see FIG. 2) of the ozone generator 10 was sufficiently removed. Therefore, heating of the electrode is finished. Thereafter, the process returns to step (T10) again to monitor the ozone concentration. Thereafter, as in the case of time t 1 to t 2 , the step (T10) is repeatedly performed until time t 6 .
  • step (S50) When the heating of the electrode that is the cause of the increase in the concentration of nitrogen oxides is completed (YES in step (S50)), the control unit 40 controls the valve so that the ozone gas from the ozone generator 10 passes through the second flow path. To switch to a state of being supplied to the supply object. Thereafter, as in the case of time t 1 ⁇ t 2, step until the time t 6 (S10) ⁇ (S30 ) is performed repeatedly.
  • step (U20) the cylinder for removing (first cylinder for removing 20A), the adsorbent (first adsorbent 29) It is determined whether it is necessary to restore the nitrogen oxide adsorption capacity of the catalyst (step (U20)). When it is determined that the adsorption capacity remains sufficiently in consideration of the operation history of the removal cylinder and the like and recovery is not necessary (NO in step (U20)), the removal cylinder enters a standby state.
  • a step of recovering the nitrogen oxide adsorption ability of the adsorbent is performed as the step (U30).
  • the purge gas is introduced into the first removal cylinder 20A, and the nitrogen oxide adsorbed on the first adsorbent 29 is released to remove the purge gas.
  • the nitrogen oxide adsorbing ability of the first adsorbent 29 is recovered by discharging to the outside of the first removal cylinder 20A.
  • valve 65, valve 66, valve 69A, valve 71A and valve 74 are opened.
  • the oxygen gas supplied from the oxygen source 51 reaches the third mass flow controller 58 via the pipe 80 and the pipe 89.
  • the oxygen gas adjusted to a desired flow rate in the third mass flow controller 58 flows into the first removal cylinder 20A as a purge gas through the pipe 99 and the pipe 91A.
  • the first adsorbent 29 held in the first removal cylinder 20A is heated by the ribbon heater 22.
  • the heating temperature of the first adsorbent 29 is monitored by the temperature sensor 24.
  • the nitrogen oxides adsorbed by the first adsorbent 29 are released and discharged from the first removal cylinder 20A through the pipe 92A together with the oxygen gas that is the purge gas.
  • the exhaust gas containing nitrogen oxides discharged to the pipe 92A is sent to the exhaust section through the pipe 101 which is an exhaust pipe. In this way, the nitrogen oxide adsorption ability of the first adsorbent 29 is recovered, and the step (U30) is completed.
  • a process for suppressing the ozone adsorption ability of the first adsorbent 29 is performed as a step (U40).
  • a part of the ozone gas from the ozone generator 10 is introduced into the first removal cylinder 20A to adsorb the ozone gas to the first adsorbent, thereby suppressing the ozone adsorbing ability of the first adsorbent.
  • the valve 65 and the valve 66 are closed. Thereby, the supply of oxygen gas as the purge gas to the first removal cylinder 20A is stopped. Thereafter, the valve 67 is opened. Thereby, a part of the ozone gas discharged from the ozone generator 10 flows into the first removal cylinder 20A via the pipe 86 and the pipe 91A. The ozone gas flowing into the first removal cylinder 20A is adsorbed by the first adsorbent 29. As a result, the ozone adsorption capacity of the first adsorbent 29 is suppressed. Thereafter, the ozone gas in the first removal cylinder 20A is discharged to the exhaust section through the pipe 92A and the pipe 101.
  • the flow rate of the ozone gas introduced into the first removal cylinder 20A is preferably 10% or less, more preferably 5% or less, of the flow rate of the ozone gas discharged from the ozone generator 10. By doing in this way, it becomes easy to suppress the fluctuation
  • the ozone gas introduced into the first removal cylinder 20A in the step (U40) may be supplied to the supply object via the pipe 96 and the pipe 102. That is, the valve 74 may be closed and the valve 75 may be open.
  • the ozone gas introduced into the first removal cylinder 20A in the step (U40) as described above is caused to flow to the exhaust part via the pipe 101, It is preferable not to be supplied to the supply object.
  • the step (U40) is completed. Specifically, referring to FIG. 1, valve 67, valve 69A, valve 71A and valve 74 are closed. Then, between the times t 5 and t 6 , the first removal cylinder 20A is in a standby state. That is, during the time t 5 to t 6 , as in the time t 1 to t 2 , the steps (S10) to (S30) are repeatedly performed in the control of the ozone gas supply path, and the ozone generation is performed. The step (T10) is repeatedly performed in the apparatus.
  • the first removal cylinder 20A installed in the first flow path is in a standby state. Then, the time at which that out of range of concentration in which the concentration of ozone gas a predetermined ozone concentration detection unit 30 detects a time t 2, the hereafter, the control is repeated.
  • the steps of supplying ozone gas from the ozone generator 10 through the second flow path (S10 to S30; times t 3 to t 6 ) are applied to the first flow path.
  • the step of suppressing the ozone adsorbing ability of the first adsorbent U40; At time t 4 to t 5 ), the ozone gas passes through the first removal cylinder 20A holding the first adsorbent whose ozone adsorption capacity is suppressed. Therefore, adsorption of ozone gas to the first adsorbent is suppressed, and the concentration of ozone gas is stabilized.
  • the ozone gas from which nitrogen oxides have been removed can be supplied to the supply object at a stable concentration.
  • the step of supplying the ozone gas from the ozone generator 10 through the second flow path (S10 to S30; times t 3 to t 6 ) is performed using the first adsorbent.
  • the purge gas is introduced into the first removal cylinder 20A while heating the first adsorbent 29 in the first removal cylinder 20A. And removing the nitrogen oxides adsorbed on the first adsorbent 29 and discharging them to the outside of the first removal cylinder 20A with a purge gas, thereby recovering the nitrogen oxide adsorbing ability of the first adsorbent 29. (U30; time t 4 to t 5 ).
  • the first adsorbent By performing the step (U40) of suppressing the ozone adsorption ability of the first adsorbent 29 after the step (U30) of restoring the nitrogen oxide adsorption capability of the first adsorbent 29 is performed, the first adsorbent In a state where 29 has a sufficient nitrogen oxide adsorbing capacity and the ozone adsorbing capacity is suppressed, the ozone gas is switched to a state of being supplied to the supply object through the first flow path.
  • the step (U40) may be performed at the same time or after the ozone concentration detector 30 outputs the nitrogen oxide concentration increase information and the controller 40 detects it.
  • Embodiment 2 Configuration of Ozone Gas Supply System
  • the ozone gas supply system according to the second embodiment has basically the same configuration as that of the first embodiment and has the same effects.
  • the second embodiment is different from the first embodiment in that a container for holding the adsorbent is also installed in the second flow path.
  • a container for holding the adsorbent is also installed in the second flow path.
  • the ozone supply system 1 in the second embodiment includes a second removal cylinder 20B as a second container.
  • a pipe 88 is connected between the position where the valve 66 of the pipe 99 is installed and the position where the valve 66 is connected to the third mass flow controller 58.
  • a valve 70 is installed in the pipe 88.
  • the pipe 88 and the pipe 87 are connected to the pipe 91B.
  • a valve 69B is installed in the pipe 91B.
  • the pipe 91B is connected to the second removal cylinder 20B.
  • the pipe 91B is an inflow path of the ozone gas and the oxygen gas as the purge gas to the second removal cylinder 20B.
  • the pipe 80, the pipe 89, the pipe 99, the pipe 88, and the pipe 91B constitute a purge gas inflow passage to the second removal cylinder 20B.
  • a pipe 92B is connected to the second removal cylinder 20B.
  • the pipe 92B is an outflow path for ozone gas and purge gas from the second removal cylinder 20B.
  • a valve 71B is installed in the pipe 92B.
  • the second removal cylinder 20B has the same configuration as the first removal cylinder 20A and operates in the same manner.
  • a pipe 97 and a pipe 98 are connected to the pipe 92B.
  • a valve 76 is installed in the pipe 97.
  • the pipe 97 is connected to the pipe 101 connected to the exhaust part.
  • the pipe 97 is an exhaust pipe that discharges unnecessary gas from the ozone supply system 1.
  • a valve 77 is installed in the pipe 98.
  • the pipe 98 is connected to the pipe 102.
  • the pipe 92B, the pipe 97, and the pipe 101 constitute a purge gas discharge path.
  • the pipe 85, the pipe 87, the pipe 91B, the pipe 92B, the pipe 98, and the pipe 102 constitute a second flow path.
  • FIG. 9 is a flowchart showing an example of the control of the ozone gas supply path in the second embodiment.
  • FIG. 10 is a timing chart showing an example of an ozone gas supply procedure in the second embodiment.
  • step (T10) is performed in the ozone generator.
  • the first removal cylinder 20A is in a standby state.
  • the process (U10) is performed in the second removal cylinder 20B.
  • step (S110) the step of supplying ozone gas from the ozone generator 10 to the supply object through the second flow path. Is implemented.
  • step (S110) referring to FIG. 8, the valves 61 to 64, 68, 69B, 71B, 77, 78 are opened and the other valves are closed under the control of the control unit 40. Is done.
  • ozone gas is generated in the same manner as in the first embodiment, and is supplied via the pipe 85, the pipe 87, the pipe 91 ⁇ / b> B, the pipe 92 ⁇ / b> B, the pipe 98 and the pipe 102 constituting the second flow path. Supplied to the object.
  • step (S120) when the supply of ozone gas to the supply object is completed (YES in step (S120)), the operation of ozone supply system 1 is stopped and the supply of ozone gas is completed.
  • the nitrogen oxide concentration which is information on the timing at which the concentration of nitrogen oxide contained in the ozone gas from the ozone generator 10 increases. Whether or not the rising information is detected is confirmed in the same manner as in the first embodiment (step (S130)).
  • step (S130) When the nitrogen oxide concentration increase information is not detected (NO in step (S130)), ozone gas is continuously supplied to the supply object via the second flow path.
  • the ozone concentration detector 30 continues to detect the concentration of ozone generated in the ozone generator 10.
  • the second removal cylinder 20B has the same structure as the first removal cylinder 20A described based on FIG.
  • the nitrogen oxide contained in the ozone gas is adsorbed by the adsorbent 29 (second adsorbent), and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the second removal cylinder 20B (step (U10)).
  • the ozone gas discharged from the second removal cylinder 20B is supplied to the supply object via the pipe 92B, the pipe 98, and the pipe 102.
  • the ozone gas discharged from the ozone generator 10 flows into the second removal cylinder 20B and the nitrogen oxide is adsorbed (step (U10)), so that the ozone gas having a reduced concentration of nitrogen oxide is supplied. Supplied to the object.
  • the steps (S110) to (S130) are repeatedly performed as described above, and the step (T10) is repeatedly performed.
  • the step (U10) is performed in the second removal cylinder 20B installed in the second flow path.
  • step (S140) ⁇ (S160) are repeated in the control of the supply path of the ozone gas.
  • step (T10) between times t 14 ⁇ t 16 is performed repeatedly.
  • the process (U10) is performed between the times t 12 and t 16 .
  • step between times t 13 ⁇ t 15 (U20) ⁇ (U40) is performed.
  • the ozone concentration detection unit 30 when the ozone concentration detection unit 30 that a range of concentrations in which the concentration of ozone gas predetermined detects, for example, the concentration of ozone gas in advance
  • the concentration is lower than the predetermined concentration range (YES in step (T10)
  • the ozone concentration detection unit 30 outputs the nitrogen oxide concentration increase information, and the control unit 40 Is detected (YES in step (S130)).
  • the controller 40 switches the ozone gas from the ozone generator 10 to a state in which the ozone gas is supplied to the supply object via the first flow path (step (S140)). Specifically, referring to FIG.
  • valve 68, valve 69B, valve 71B and valve 77 are closed, and valve 67, valve 69A, valve 71A and valve 75 are opened. .
  • the same state as a process (S110) is maintained. Thereby, the ozone gas discharged from the ozone generator 10 is supplied through the pipe 85, the pipe 86, the pipe 91A, the pipe 92A, the pipe 96, and the pipe 102 constituting the first flow path with reference to FIG. Supplied to the object.
  • step (S140) the electrode in the ozone generator 10 is heated to remove dinitrogen pentoxide (step (T20)). ). Removal of dinitrogen pentoxide by heating the electrode (step (T20)) is performed in the same manner as in the first embodiment.
  • the ozone gas discharged from the ozone generator 10 flows into the first removal cylinder 20A holding the adsorbent 29 made of silica gel.
  • the nitrogen oxide contained in the ozone gas is adsorbed by the adsorbent 29 (first adsorbent), and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the first removal cylinder 20A (step (U10)).
  • the ozone gas discharged from the first removal cylinder 20A is supplied to the supply object through the pipe 92A, the pipe 96, and the pipe 102.
  • Step (T20) the concentration of nitrogen oxides contained in the ozone gas is increased by performing the step (T20) in which the electrode is heated, the state is switched to the state in which the ozone gas is supplied through the first flow path.
  • Step (S140) the ozone gas discharged from the ozone generator 10 flows into the first removal cylinder 20A and the nitrogen oxides are adsorbed (step (U10)), so that the concentration of nitrogen oxides decreases. Ozone gas is supplied to the supply object.
  • ozone concentration detecting unit 30 monitors whether the concentration of ozone gas has recovered within a predetermined concentration range. (Step (T30)). When the concentration of ozone gas is not within the predetermined concentration range (NO in step (T30)), the electrode is continuously heated. Then, at time t 14, when the ozone concentration detection unit 30 that falls within a range of concentration in which the concentration of ozone gas predetermined detects (YES at step (T30)), and terminates the heating of the electrode. Thereafter, the process returns to step (T10) again to monitor the ozone concentration. Thereafter, as in the case of times t 11 to t 12 , the step (T10) is repeatedly performed until time t 16 .
  • step (S150) it is confirmed whether or not nitrogen oxide concentration increase information has been detected after the supply of ozone gas through the first flow path is started (step (S150)).
  • step (S150) it is confirmed whether or not the supply of ozone gas to the supply target is completed (step (S160)).
  • step (S160) the supply of the ozone gas to the supply object is completed (YES in step (S160))
  • the operation of the ozone supply system 1 is stopped and the supply of the ozone gas is ended. If the supply of ozone gas to the supply object has not been completed (NO in step (S160)), the ozone gas is continuously supplied to the supply object via the first flow path.
  • the ozone concentration detector 30 continues to detect the concentration of ozone generated in the ozone generator 10.
  • the second cylinder for removing 20B, nitrogen oxides of the second adsorbent (adsorbent 29) It is determined whether or not the adsorption capacity of the resin needs to be recovered (step (U20)). When it is determined that the adsorption capacity remains sufficiently in consideration of the operation history of the second removal cylinder 20B and the recovery is unnecessary (NO in step (U20)), the second removal cylinder 20B is in a standby state. It becomes.
  • a step of recovering the nitrogen oxide adsorption ability of the adsorbent 29 (second adsorbent) is performed as the step (U30).
  • this step (U30) while the adsorbent 29 (second adsorbent) of the second removal cylinder 20B is heated, purge gas is introduced into the second removal cylinder 20B to release nitrogen oxides adsorbed on the adsorbent 29.
  • the nitrogen oxide adsorbing ability of the adsorbent 29 is recovered by discharging the purge gas to the outside of the second removal cylinder 20B.
  • Recovery of the nitrogen oxide adsorbing ability of the adsorbent 29 (second adsorbent) of the second removal cylinder 20B can be carried out in the same procedure as in the case of the first adsorbent of the first embodiment.
  • a process for suppressing the ozone adsorption ability of the adsorbent 29 (second adsorbent) is performed.
  • a part of the ozone gas from the ozone generator 10 is introduced into the second removal cylinder 20B so that the second adsorbent adsorbs the ozone gas, and the second adsorbent (adsorbent 29) absorbs ozone. Suppress performance.
  • the ozone adsorbing ability of the second adsorbent can be suppressed by the same procedure as that for the first adsorbent of the first embodiment.
  • the step (U40) is completed. Specifically, referring to FIG. 8, valve 68, valve 69B, valve 71B, and valve 76 are closed. Then, between the times t 15 and t 16 , the second removal cylinder 20B is in a standby state.
  • step (S110) ⁇ (S130) are repeated in the control of the supply path of the ozone gas.
  • step (T20) ⁇ (T30) was repeated between times t 16 ⁇ t 18
  • step (T10) between times t 18 ⁇ t 20 is performed repeatedly.
  • step between times t 17 ⁇ t 19 (U20) ⁇ (U40) is performed.
  • step (U10) is performed.
  • the ozone concentration detection unit 30 when the ozone concentration detection unit 30 that a range of concentrations in which the concentration of ozone gas predetermined detects, for example, the concentration of ozone gas in advance
  • the concentration is lower than the predetermined concentration range (YES in step (T10)
  • the ozone concentration detection unit 30 outputs the nitrogen oxide concentration increase information
  • the control unit 40 Is detected (YES in step (S150)).
  • the controller 40 switches the ozone gas from the ozone generator 10 to a state in which the ozone gas is supplied to the supply object via the second flow path (step (S110)). Specifically, referring to FIG.
  • valve 67, valve 69A, valve 71A and valve 75 are closed, and valve 68, valve 69B, valve 71B and valve 77 are opened. .
  • the same state as a process (S140) is maintained.
  • the ozone gas discharged from the ozone generator 10 is supplied through the pipe 85, the pipe 87, the pipe 91B, the pipe 92B, the pipe 98, and the pipe 102 constituting the second flow path with reference to FIG. Supplied to the object.
  • the electrode in the ozone generator 10 is heated to remove dinitrogen pentoxide (step (T20)). ). Removal of dinitrogen pentoxide by heating the electrode (step (T20)) is performed in the same manner as in the first embodiment.
  • the ozone gas discharged from the ozone generator 10 is placed in a removal cylinder (second removal cylinder 20B) that holds an adsorbent 29 made of silica gel. Inflow.
  • the nitrogen oxide contained in the ozone gas is adsorbed by the adsorbent 29 (second adsorbent), and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the second removal cylinder 20B (step (U10)).
  • the ozone gas discharged from the second removal cylinder 20B is supplied to the supply object via the pipe 92B, the pipe 98, and the pipe 102.
  • Step (T20) the concentration of nitrogen oxides contained in the ozone gas is increased by performing the step (T20) in which the electrode is heated, the state is switched to a state in which the ozone gas is supplied through the second flow path.
  • Step (S110) the ozone gas discharged from the ozone generator 10 flows into the second removal cylinder 20B and the nitrogen oxides are adsorbed (step (U10)), thereby reducing the concentration of nitrogen oxides.
  • Ozone gas is supplied to the supply object.
  • ozone concentration detecting unit 30 monitors whether the concentration of ozone gas has recovered within a predetermined concentration range. (Step (T30)). When the concentration of ozone gas is not within the predetermined concentration range (NO in step (T30)), the electrode is continuously heated. Then, at time t 18, when the ozone concentration detection unit 30 that falls within a range of concentration in which the concentration of ozone gas predetermined detects (YES at step (T30)), and terminates the heating of the electrode. Thereafter, the process returns to step (T10) again to monitor the ozone concentration. Thereafter, as in the case of time t 11 to t 12 , the step (T10) is repeatedly performed until time t 20 .
  • step (S120) After the supply of ozone gas through the second flow path is started, it is confirmed whether or not the supply of ozone gas to the supply target has been completed (step (S120)). .
  • step (S120) When the supply of ozone gas to the supply object is completed (YES in step (S120)), the operation of the ozone supply system 1 is stopped and the supply of ozone gas is ended. If the supply of ozone gas to the supply object has not been completed (NO in step (S120)), it is confirmed whether or not nitrogen oxide concentration increase information has been detected (step (S130)). When the nitrogen oxide concentration increase information is not detected (NO in step (S130)), ozone gas is continuously supplied to the supply object via the second flow path. The ozone concentration detector 30 continues to detect the concentration of ozone generated in the ozone generator 10.
  • the first cylinder for removing 20A the nitrogen oxides of the first adsorbent (adsorbent 29) It is determined whether or not the adsorption capacity of the resin needs to be recovered (step (U20)). When it is determined that the adsorption capacity remains sufficiently in consideration of the operation history of the first removal cylinder 20A and the recovery is unnecessary (NO in step (U20)), the first removal cylinder 20A is in a standby state. It becomes.
  • the step of recovering the nitrogen oxide adsorption ability of the adsorbent 29 (first adsorbent) as the step (U30). Is implemented.
  • a purge gas is introduced into the first removal cylinder 20A while heating the adsorbent 29 (first adsorbent) of the first removal cylinder 20A, and nitrogen oxides adsorbed on the adsorbent 29 are released. Then, the nitrogen oxide adsorbing ability of the adsorbent 29 is recovered by discharging the purge gas to the outside of the first removal cylinder 20A. Recovery of the nitrogen oxide adsorbing ability of the adsorbent 29 (first adsorbent) of the first removal cylinder 20A can be performed in the same procedure as in the first embodiment.
  • a process of suppressing the ozone adsorption ability of the adsorbent 29 is performed as a step (U40).
  • ozone gas is adsorbed by the first adsorbent 29 by introducing a part of the ozone gas from the ozone generator 10 into the first removal cylinder 20A, and the ozone of the first adsorbent (adsorbent 29). Suppresses adsorption capacity.
  • the suppression of the ozone adsorbing ability of the first adsorbent can be carried out in the same procedure as in the first embodiment.
  • the step (U40) is completed. Specifically, referring to FIG. 8, valve 67, valve 69A, valve 71A and valve 74 are closed. Then, during time t 19 to t 20 , the first removal cylinder 20A is in a standby state. That is, during the time t 19 to t 20 , as in the time t 11 to t 12 , the steps (S110) to (S130) are repeatedly performed in the control of the ozone gas supply path, and the ozone generation is performed. The step (T10) is repeatedly performed in the apparatus.
  • the first removal cylinder 20A installed in the first flow path is in a standby state.
  • the step (U10) is performed in the second removal cylinder 20B installed in the second flow path. Then, as the time t 12 to the time that it is now outside the range of concentration in which the concentration of ozone gas a predetermined ozone concentration detection unit 30 detects, thereafter, the control is repeated.
  • the steps of supplying ozone gas from the ozone generator 10 through the second flow path are applied to the first flow path.
  • the step of supplying ozone gas from an ozone generator 10 via the first channel is the second flow A step (U40; times t 13 to t 15 ) of suppressing the ozone adsorbing ability of the second adsorbent in the second removal cylinder 20B installed on the road.
  • switching from one of the first flow path and the second flow path to the other is performed after it is confirmed that the removal cylinder installed in the other is in a standby state. It is preferred that
  • Embodiment 3 an ozone gas supply system according to Embodiment 3, which is another embodiment, will be described.
  • the ozone gas supply system according to the third embodiment basically has the same structure as that of the second embodiment and has the same effects. However, the ozone gas supply system of the third embodiment is different from that of the second embodiment in that a buffer container is provided.
  • a buffer tube 105 as a buffer container for leveling the concentration of ozone gas is disposed in the pipe 102 of the ozone supply system 1 of the third embodiment.
  • the buffer cylinder 105 may be filled with silica gel, which is a material that adsorbs and desorbs ozone gas, or may not be filled. By disposing the buffer cylinder 105, it is possible to supply ozone gas having a stable concentration to the supply object.
  • the standby state refers to a state in which the ozone adsorption ability suppression process (U40) is performed and sufficient nitrogen oxide removal ability is secured. More specifically, the nitrogen oxide adsorption capacity recovery process (U30) and the ozone adsorption capacity suppression process (U40) are carried out, the nitrogen oxide adsorption capacity remains sufficiently, and the ozone adsorption capacity is suppressed. The state that has been done.
  • the ozone gas supply method and the ozone gas supply system of the present invention are as described above. It is not limited to a simple configuration. For example, three or more channels including the third channel may be switched and controlled. Specifically, for example, a third flow path in which a third removal cylinder (third container) that holds the third adsorbent is installed may exist. By doing in this way, it becomes easy to ensure the time for implementing the recovery of the nitrogen oxide adsorption ability of the adsorbent and the suppression of the ozone adsorption ability.
  • nitrogen oxides contained in ozone gas due to various causes, such as when the concentration of nitrogen oxides contained in ozone gas rises when nitrogen oxides attached to piping (peripheral piping) downstream of the ozone gas source are removed
  • the ozone gas supply method and the ozone gas supply system of the present invention can be applied.
  • FIG. 12 is a schematic diagram illustrating an example of configurations of an ozone gas supply device and a nitrogen oxide removal device according to the fourth embodiment.
  • the connection by piping is indicated by a solid line
  • the electrical connection is indicated by a broken line.
  • an ozone gas supply device 400 is a device that generates ozone gas using oxygen gas to which a small amount of nitrogen gas is added as a raw material, and supplies this.
  • the ozone gas supply device 400 is connected to the ozone generator 230 as an ozone generator and the ozone generator 230 and removes nitrogen oxides from the ozone gas containing nitrogen oxides generated in the ozone generator 230.
  • Device 300 The ozone gas supply device 400 is further connected to an oxygen flow rate adjustment unit 243, a nitrogen flow rate adjustment unit 244, a purge gas flow rate adjustment unit 249, a pipe 217 connected to a process line (not shown), and a discharge port (not shown). Piping 222 is provided.
  • the ozone generator 230 is connected to an oxygen gas storage unit 241 as an oxygen source for holding oxygen via a junction pipe 206 and an oxygen gas pipe 202. Further, the ozone generator 230 is connected to a nitrogen gas storage unit 242 as a nitrogen source that holds nitrogen through a junction pipe 206 and a nitrogen gas pipe 203. The oxygen gas pipe 202 and the nitrogen gas pipe 203 are connected to the junction pipe 206.
  • An oxygen flow rate adjustment unit 243 is installed in the oxygen gas pipe 202.
  • the oxygen flow rate adjustment unit 243 is, for example, a mass flow controller.
  • the oxygen flow rate adjustment unit 243 adjusts the flow rate of oxygen gas flowing from the oxygen gas pipe 202 to the merge pipe 206.
  • a valve 245 is installed in a region where the oxygen gas storage unit 241 and the oxygen flow rate adjustment unit 243 are connected in the oxygen gas pipe 202. Further, a valve 247 is installed in a region where the oxygen flow rate adjusting unit 243 and the junction pipe 206 are connected in the oxygen gas pipe 202. In the oxygen gas pipe 202, a purge oxygen gas pipe 208 is connected between the valve 245 and the oxygen flow rate adjusting unit 243. A purge gas flow rate adjustment unit 249 is installed in the purge oxygen gas pipe 208. The purge gas flow rate adjustment unit 249 is, for example, a mass flow controller.
  • a nitrogen flow rate adjusting unit 244 is installed in the nitrogen gas pipe 203.
  • the nitrogen flow rate adjusting unit 244 is, for example, a mass flow controller.
  • the nitrogen flow rate adjusting unit 244 adjusts the flow rate of nitrogen gas flowing from the nitrogen gas pipe 203 to the merge pipe 206.
  • a valve 246 is installed in a region where the nitrogen gas storage unit 242 and the nitrogen flow rate adjustment unit 244 are connected in the nitrogen gas pipe 203.
  • a valve 248 is installed in a region where the nitrogen flow rate adjusting unit 244 and the merge pipe 206 are connected in the nitrogen gas pipe 203.
  • a mixed gas in which less than several volume% of nitrogen gas is added to oxygen gas flows into the ozone generator 230.
  • the mixing ratio of oxygen gas and nitrogen gas is adjusted by the oxygen flow rate adjustment unit 243 and the nitrogen flow rate adjustment unit 244.
  • a joining pipe 206 is connected to the ozone generator 230, and a structure in which a mixed gas of oxygen gas and nitrogen gas flows into the ozone generator 230 through the joining pipe 206 is employed.
  • the gas pipe 202 and the nitrogen gas pipe 203 may be directly connected to the ozone generator 230.
  • the ozone generator 230 generates nitrogen by discharge in a mixed gas of oxygen gas and nitrogen gas supplied from an oxygen gas storage unit 241 that is an oxygen source that holds oxygen and a nitrogen gas storage unit 242 that is a nitrogen source that holds nitrogen. Ozone gas containing oxide is generated.
  • an ozone gas transport pipe 207 is connected to the ozone generator 230.
  • the ozone generator 230 is connected to the nitrogen oxide removing device 300 via the ozone gas transport pipe 207.
  • generation apparatus 230 is supplied to the nitrogen oxide removal apparatus 300 via the ozone gas transport piping 207.
  • the nitrogen oxide removing apparatus 300 removes nitrogen oxide contained in ozone gas.
  • the nitrogen oxide removing apparatus 300 includes a removal cylinder 251 as a first container holding a first adsorbent 209A made of silica gel, a removal cylinder 252 as a second container holding a second adsorbent 209B made of silica gel, A first ozone gas pipe 211 that defines a flow path of ozone gas that flows from the ozone generator 230 into the removal cylinder 251 and is connected to the removal cylinder 251, and is connected to the removal cylinder 252 and flows from the ozone generator 230 into the removal cylinder 252.
  • a second ozone gas pipe 239 that defines the flow path of the ozone gas, a first ozone gas valve 231 installed in the first ozone gas pipe 211, and a second ozone gas valve 235 installed in the second ozone gas pipe 239 are provided. Further, the nitrogen oxide removing apparatus 300 is connected to the removal cylinder 251, connected to the first purge gas pipe 212 defining the flow path of the purge gas flowing into the removal cylinder 251, and the removal cylinder 252, and flows into the removal cylinder 252.
  • a second purge gas pipe 240 defining a purge gas flow path; a first purge gas valve 232 installed in the first purge gas pipe 212; a second purge gas valve 236 installed in the second purge gas pipe 240; 251 is connected to the removal cylinder 251 to define the flow path of the gas flowing out from the removal cylinder 251, and the second outflow pipe 223 is connected to the removal cylinder 252 to define the flow path of the gas flowing out from the removal cylinder 252.
  • a temperature adjustment unit 256A as a first heating unit for heating the inside of the removal cylinder 251
  • a temperature adjustment unit 2 as a second heating part for heating the inside of the removal cylinder 252.
  • the temperature adjustment units 256A and 256B are ribbon heaters.
  • the nitrogen oxide removing device 300 is connected to the oxygen gas pipe 202 via the purge oxygen gas pipe 208.
  • the purge oxygen gas pipe 208 is connected to the first purge gas pipe 212 and the second purge gas pipe 240.
  • the purge oxygen gas pipe 208 defines a flow path of oxygen gas that flows from the oxygen gas storage unit 241 into the first purge gas pipe 212 and the second purge gas pipe 240 as a purge gas.
  • the oxygen gas storage unit 241 that holds oxygen gas as a raw material of ozone gas can be used as a supply source of purge gas, it is possible to simplify the equipment. .
  • the removal cylinders 251 and 252 hold the adsorbents 209A and 209B, respectively.
  • the silica gel constituting the adsorbents 209A and 209B is adjusted to a purity of 99.99% by mass or more, for example.
  • the removal cylinders 251 and 252 are each provided with a temperature detection sensor 255 for measuring the temperature.
  • a temperature detection sensor 255 a thermocouple, a thermistor, etc. are employable, for example.
  • the temperature detection sensor 255 is connected to the control unit 260 and detects the temperature inside the removal cylinders 251 and 252.
  • FIG. 13 is a diagram showing a schematic configuration of the removal cylinder.
  • removal cylinder 251 has a hollow cylindrical shape in which both end portions are closed by disk-shaped bottom wall portions 258 and 259.
  • a junction pipe 213 serving as a flow path for the gas flowing in along the gas traveling direction F is connected so as to penetrate one bottom wall portion 258 of the removal cylinder 251.
  • a first outflow pipe 214 serving as a flow path for the gas flowing out along the gas traveling direction F is connected to the other bottom wall portion 259 of the removal cylinder 251.
  • the removal cylinder 251 includes a temperature adjustment unit 256A that heats the inside of the removal cylinder 251.
  • the ribbon heater that is the temperature adjustment unit 256 ⁇ / b> A is disposed so as to be wound around the outer peripheral surface of the removal cylinder 251.
  • the temperature adjustment unit 256A is connected to the control unit 260 and adjusts the temperature inside the removal cylinder 251 based on a command from the control unit 260.
  • a jacket 257A including a heat insulating material is attached so as to surround the outer periphery of the temperature adjustment unit 256A. By installing the jacket 257A, it is possible to keep the removal cylinder 251 warm and to prevent the temperature of one of the removal cylinders 251 and 252 from affecting the other temperature.
  • a first ozone gas pipe 211 and a first purge gas pipe 212 are connected to the removal cylinder 251 via a junction pipe 213.
  • the first ozone gas pipe 211 is connected to the ozone gas transport pipe 207 and defines a flow path of ozone gas flowing from the ozone generator 230 into the removal cylinder 251.
  • a first ozone gas valve 231 is installed in the first ozone gas pipe 211.
  • the first purge gas pipe 212 is connected to the purge oxygen gas pipe 208 and defines the flow path of the purge gas flowing into the removal cylinder 251.
  • a first purge gas valve 232 is installed in the first purge gas pipe 212. Note that the first ozone gas pipe 211 and the first purge gas pipe 212 may be directly connected to the removal cylinder 251.
  • a first outflow pipe 214 is connected to the removal cylinder 251.
  • the first outflow pipe 214 defines a flow path for gas flowing out from the removal cylinder 251.
  • the first outflow pipe 214 is connected to the pipe 215 and the pipe 216.
  • the pipe 215 is connected to a pipe 217 connected to a process line (not shown).
  • the pipe 216 is connected to a pipe 222 connected to a discharge port (not shown).
  • a valve 233 is installed in the pipe 215.
  • a valve 234 is installed in the pipe 216.
  • the removal cylinder 252 has the same structure as the removal cylinder 251.
  • the removal cylinder 252 holds the second adsorbent 209 ⁇ / b> B made of silica gel corresponding to the first adsorbent 209 ⁇ / b> A of the removal cylinder 251, and is joined to the first ozone gas pipe 211 and the first purge gas pipe 212.
  • Jacket 257B is connected or installed.
  • the second outflow pipe 223 is connected to the pipe 220 and the pipe 221.
  • the pipe 220 is connected to a pipe 217 connected to a process line (not shown).
  • the pipe 221 is connected to a pipe 222 connected to a discharge port (not shown).
  • a valve 237 is installed in the pipe 220.
  • a valve 238 is installed in the pipe 221.
  • the temperature adjustment units 256A and 256B may include a ribbon heater and a cooling unit. That is, the nitrogen oxide removing device 300 included in the ozone gas supply device 400 includes a temperature adjusting unit 256A as a first cooling unit that cools the inside of the removing cylinder 251 and a temperature as a second cooling unit that cools the inside of the removing cylinder 252. And an adjustment unit 256B.
  • the inside of the removal cylinders 251 and 252 heated to separate nitrogen oxides from the adsorbents 209A and 209B can be efficiently cooled, and the nitrogen oxide in the introduced ozone gas can be converted into the adsorbent 209A. , 209B can be performed at a low temperature.
  • FIG. 14 is a block diagram showing a schematic electrical configuration of the nitrogen oxide removing apparatus.
  • the control unit 260 includes temperature detection sensors 255 and 255 installed in the removal cylinders 251 and 252, a temperature adjustment unit 56 (temperature adjustment units 256 ⁇ / b> A and 256 ⁇ / b> B), and a valve group 262 (valves 231, 232, 233, 234 and 235). 236, 237, 238; see FIG. Then, the control unit 260 performs open / close control of the valve group 262 and temperature control of the removal cylinders 251 and 252. Specifically, referring to FIG.
  • temperature detection sensor 255 is connected to control unit 260, measures the temperature inside removal cylinders 251 and 252, and temperature information signal 264 including temperature information. Is output to the control unit 260.
  • the controller 260 outputs a temperature control information signal 265 based on the temperature information signal 264.
  • the temperature adjustment unit 56 adjusts the temperature inside the removal cylinders 251 and 252 based on the temperature control information signal 265.
  • control unit 260 includes an adsorption state determination unit 261 that determines the state of adsorption of nitrogen oxides to the adsorbents 209A and 209B.
  • the adsorption state determination unit 261 includes a timer that measures the time that ozone gas flows into the removal cylinders 251 and 252 and the heating time by the temperature adjustment units 256A and 256B. Then, the adsorption state determination unit 261 determines the adsorption state of nitrogen oxides on the adsorbents 209A and 209B based on the inflow time of ozone gas and the heating time by the temperature adjustment units 256A and 256B.
  • the control unit 260 outputs a valve opening / closing signal 263 to the valve group 262 based on the determination result of the adsorption state determination unit 261 to control the opening / closing of the valve group 262. 2.
  • Ozone gas supply method and nitrogen oxide removal method of the present embodiment Next, with reference to FIG. 12, FIG. 15, FIG. 16, and FIG. 17, the ozone gas supply method and the nitrogen oxidation in the fourth embodiment of the present invention A method for removing objects will be described.
  • FIG. 15 is a flowchart illustrating an example of the procedure of the ozone gas supply method using the ozone gas supply apparatus.
  • FIG. 16 is a flowchart showing an example of the procedure of the nitrogen oxide removing method using the removal cylinder of the nitrogen oxide removing apparatus.
  • FIG. 15 is a flowchart illustrating an example of the procedure of the ozone gas supply method using the ozone gas supply apparatus.
  • FIG. 16 is a flowchart showing an example of the procedure of the nitrogen oxide removing method using the removal
  • the ozone gas supply method according to the fourth embodiment includes an ozone gas preparation step (S210), a nitrogen oxide removal step (S220), and an ozone gas supply step (S230).
  • Ozone gas preparation process Referring to FIG. 15, in the ozone gas supply method according to the fourth embodiment, an ozone gas preparation step (S210) is first performed. In this step (S210), ozone gas containing nitrogen oxides is prepared.
  • valve 245 is opened to allow oxygen gas to flow out from oxygen gas storage unit 241, and valve 246 is opened to cause nitrogen gas to flow out from nitrogen gas storage unit 242.
  • the valve 247 and the valve 248 are opened, and the oxygen gas whose flow rate is adjusted by the oxygen flow rate adjusting unit 243 and the nitrogen gas whose flow rate is adjusted by the nitrogen flow rate adjusting unit 244 merge in the merge pipe 206. It becomes a mixed gas, and the mixed gas is introduced into the ozone generator 230.
  • a mixed gas obtained by adding, for example, less than several volume% of nitrogen gas to oxygen gas is introduced into the ozone generator 230 as a raw material gas from the junction pipe 206.
  • ozone gas containing nitrogen oxides is generated by the ozone generator 230 by the discharge in the mixed gas (S210).
  • ozone gas is generated from oxygen gas as a raw material by discharge, and at the same time, a part of nitrogen gas added to the oxygen gas (addition) is added as shown in the equation (1).
  • dinitrogen pentoxide (N 2 O 5 ) is generated by the reaction between nitrogen dioxide and ozone gas.
  • nitric acid (HNO 3 ) is generated by the reaction between moisture and dinitrogen pentoxide.
  • FIG. 16 shows a procedure for removing nitrogen oxides and regenerating the adsorbent in each of the removal cylinders 251 and 252. Referring to FIG. 16, in the removal process of nitrogen oxides in each removal cylinder 251 and 252 and the regeneration process of the adsorbent, the nitrogen oxides of ozone gas introduced into the removal cylinders 251 and 252 are adsorbed on the adsorbents 209A and 209B.
  • step T210 to T230 a nitrogen oxide adsorption process
  • step T210 in FIG. 16 ozone gas is introduced into the removal cylinder 251 to start adsorption of nitrogen oxides in ozone.
  • step T210 in FIG. 16 hereinafter, “step” is omitted.
  • valves 231 and 233 are opened with valves 232 and 234 closed.
  • ozone gas containing nitrogen oxides generated in the ozone generator 230 is introduced into the removal cylinder 251 via the first ozone gas pipe 211 and the junction pipe 213.
  • the nitrogen oxide in the ozone gas is adsorbed by the first adsorbent 209 ⁇ / b> A made of silica gel, and the ozone gas having a reduced concentration of nitrogen oxide is discharged from the first outflow pipe 214.
  • the adsorption state determination unit 261 determines whether or not the ozone gas introduction time has reached a predetermined time (T220). If the ozone gas introduction time reaches a predetermined time (YES in T220), the first ozone gas valve 231 is closed to stop the introduction of ozone gas (T230).
  • the “predetermined time” is determined in consideration of the time until the nitrogen oxide adsorbing ability of the first adsorbent 209 ⁇ / b> A held in the removal cylinder 251 decreases beyond the allowable range. More specifically, the “predetermined time” is determined based on the nitrogen oxide adsorption capacity of the first adsorbent 209A, the flow rate of gas per unit time, and the concentration of nitrogen oxide in the gas. Can do.
  • a regeneration process and a cooling process for performing the regeneration process of the first adsorbent 209A are performed.
  • introduction of purge gas into the removal cylinder 251 is started (T240). Specifically, referring to FIG. 12, valves 232 and 234 are opened with valves 231 and 233 closed. As a result, oxygen gas that is purge gas flows from the oxygen gas storage unit 241 into the removal cylinder 251 through the oxygen gas pipe 202, the purge oxygen gas pipe 208, the first purge gas pipe 212, and the junction pipe 213.
  • heating of the removal cylinder 251 by the temperature adjustment unit 256A installed in the removal cylinder 251 is started (T250).
  • the temperature detection sensor 255 measures the temperature inside the removal cylinder 251 and outputs a temperature information signal 264 including temperature information to the control unit 260.
  • the temperature adjustment unit 256 ⁇ / b> A adjusts the temperature inside the removal cylinder 251 based on the temperature control information signal 265 output from the control unit 260.
  • the nitrogen oxide adsorbed on the first adsorbent 209A is released, and is discharged to the outside by the oxygen gas that is the purge gas. In this way, the nitrogen oxide adsorption ability of the first adsorbent 209A is recovered.
  • the purge gas is discharged by flowing oxygen gas containing nitrogen oxides from the removal cylinder 251 to the discharge port via the first outflow pipe 214 and the pipes 216 and 222.
  • the adsorption state determination unit 261 determines whether or not the heating time of the removal cylinder 251 has reached a predetermined time (T260). If the heating time reaches a predetermined time (YES at T260), heating of removal cylinder 251 is terminated (T270).
  • the predetermined time is that the nitrogen oxides adsorbed on the first adsorbent 209A are sufficiently separated and regenerated so that the first adsorbent 209A can be used again for adsorption of nitrogen oxides. This is the time required.
  • cooling of the removal cylinder 251 is started (T280).
  • the removal cylinder 251 is cooled by air cooling.
  • T290 it is determined whether or not the temperature of the removal cylinder 251 has reached a predetermined temperature (T290). If the temperature of removal cylinder 251 reaches a predetermined temperature (YES at T290), cooling of removal cylinder 251 ends (T300). Thereafter, the valves 232 and 234 are closed to stop the introduction of the purge gas (T310).
  • the regeneration process of the first adsorbent 209A by the regeneration process and the cooling process of T240 to T310 may be performed continuously after the completion of the nitrogen oxide absorption and removal process in the ozone gas of T210 to T230, or the process of T210 to T230. You may make it carry out after progress of predetermined time after completion
  • a step (T320) of suppressing the ozone adsorption ability of the first adsorbent 209A in which the regeneration step and the cooling step are performed is performed.
  • ozone gas is introduced into the removal cylinder 251 and ozone is adsorbed by the first adsorbent 209A to suppress the ozone adsorbing ability of the first adsorbent 209A.
  • the first ozone gas valve 231 is opened with the first purge gas valve 232 being closed.
  • the ozone gas generated in the ozone generator 230 is introduced into the removal cylinder 251 via the first ozone gas pipe 211 and the junction pipe 213.
  • this step (T320) is performed simultaneously with the steps (T210 to T230) in another removal cylinder (for example, the removal cylinder 252).
  • the flow rate of the ozone gas introduced into the removal cylinder 251 is preferably 10% or less of the flow rate of the ozone gas introduced into the other removal cylinder (for example, the removal cylinder 252), more preferably 5% or less. preferable. By doing in this way, it becomes easy to suppress the fluctuation
  • the ozone gas introduced into the removal cylinder 251 in the step (T320) may be flowed to the process line via the pipe 217 or may be flowed to the discharge port via the pipe 222. From the viewpoint of further stabilizing the concentration of ozone gas supplied to the process line, the ozone gas introduced into the removal cylinder 251 in the step (T320) may flow to the discharge port via the pipe 222 and may not be supplied to the process line. preferable.
  • the pipes 211, 212, 213, 214, 215, 216 connected to the removal cylinder 251, valves 231, 232, 233, 234 installed in the pipe and the removal cylinder 251 are installed.
  • the corresponding piping 239, 240, 218, 223, 220, 221 and valves 235, 236, 237, 238 installed in the piping, and the temperature adjustment unit 256B installed in the removal cylinder 252 are provided.
  • FIG. 17 is a timing chart illustrating an example of a procedure of a nitrogen oxide removal process performed by the removal cylinder in the fourth embodiment.
  • the horizontal axis indicates the elapsed time in the nitrogen oxide removal step.
  • the above-described nitrogen oxide adsorption step (T210 to T230) in ozone gas is performed in the removal cylinder 251.
  • the inflow of ozone gas is switched from the removal cylinder 251 to the removal cylinder 252.
  • the above-described nitrogen oxide adsorption process in ozone gas is performed in the removal cylinder 252.
  • regeneration and cooling steps between t 204 from time t 202 from time t 203 comprised between t 206 (T240 ⁇ T310) is performed.
  • the ozone adsorbing capability suppressing step (T320) is performed in the removal tube 251. Specifically, between time t 205 and t 206 , ozone gas is introduced into the removal cylinder 252 and nitrogen oxide is adsorbed by the second adsorbent 209B, and the ozone gas having a reduced concentration of nitrogen oxide is removed from the removal cylinder 252.
  • a process of suppressing ozone adsorption capacity of the first adsorbent 209A by introducing ozone gas into the removal cylinder 251 and adsorbing ozone to the first adsorbent 209A whose nitrogen oxide adsorption capacity has been recovered is performed. Then, removal at time t 206 before the step of inhibiting the ozone adsorption capability is completed, and the adsorption capacity of the second adsorbent 209B removal tube 252 is lowered beyond the allowable range, the flow of ozone gas from the cylinder for removing 252 Switch to cylinder 251. Then, the above-described nitrogen oxide adsorption step in removing cylinder 251 in t 210 from time t 206 is continuously performed.
  • a regeneration process and a cooling process are performed between times t 207 and t 208 included between times t 206 and t 210 . Also, between time t 209 comprised between time t 206 of t 210 of t 210, the ozone adsorbing capability inhibition step is carried out in the removal tube 252.
  • the ozone gas is introduced into the removal cylinder 251 before switching the introduction of the ozone gas from the removal cylinder 252 to the removal cylinder 251.
  • ozone is adsorbed on the first adsorbent 209A whose nitrogen oxide adsorbing capacity has been recovered, and the ozone adsorbing capacity of the first adsorbent 209A in the removal cylinder 251 is suppressed.
  • the first adsorbent of the removal cylinder 251 Since the ozone adsorption ability of 209A is suppressed, the concentration of ozone gas discharged from the removal cylinder 251 is suppressed from decreasing.
  • the removal of the nitrogen oxides and the regeneration of the adsorbent are performed alternately in the removal cylinder 251 and the removal cylinder 252.
  • the removal cylinder 252 is used as the third container holding the third adsorbent of the present invention to remove nitrogen oxides.
  • an ozone gas supply step (S230) is performed.
  • ozone gas from which nitrogen oxides have been removed is supplied to a desired object to be processed.
  • the valve 233 is opened while the valve 234 is closed.
  • ozone gas is supplied from the removal cylinder 251 to the workpiece or the like (not shown) via the first outflow pipe 214 and the pipes 215 and 217.
  • the valve 237 is opened with the valve 238 closed.
  • ozone gas is supplied from the removal cylinder 252 to the object to be processed or the like via the second outflow pipe 223 and the pipes 220 and 217.
  • ozone gas from which nitrogen oxides have been removed is supplied to the object to be processed.
  • the ozone gas from which nitrogen oxides have been removed can be supplied continuously and at a stable concentration.
  • FIG. 18 is a schematic diagram illustrating an example of the configuration of the ozone gas supply device and the nitrogen oxide removal device according to the fifth embodiment.
  • the ozone gas supply device 400 and the nitrogen oxide removing device 300 of the fifth embodiment basically have the same configuration as that of the fourth embodiment, and exert the same effect by being controlled similarly.
  • the fifth embodiment is different from the fourth embodiment in that the nitrogen oxide removing apparatus 300 includes a removal cylinder 253 having the same configuration as the removal cylinders 251 and 252.
  • ozone gas supply apparatus 400 in the fifth embodiment includes removal cylinder 253 having the same structure as removal cylinder 251 in addition to the case of the fourth embodiment.
  • the removal cylinder 253 holds the third adsorbent 209 ⁇ / b> C made of silica gel corresponding to the first adsorbent 209 ⁇ / b> A of the removal cylinder 251, and is joined to the first ozone gas pipe 211 and the first purge gas pipe 212.
  • the third outflow pipe 277 is connected to the pipe 278 and the pipe 279.
  • the pipe 278 is connected to a pipe 217 connected to a process line (not shown).
  • the pipe 279 is connected to a pipe 222 connected to a discharge port (not shown).
  • a valve 275 is installed in the pipe 278.
  • a valve 276 is installed in the pipe 279.
  • the adsorption state determination unit 261 of the control unit 260 in the fifth embodiment determines the state of nitrogen oxide adsorption in the third adsorbent 209C.
  • the control unit 260 in the fifth embodiment is electrically connected to the temperature detection sensor 255, the temperature adjustment unit 256C, and the valves 273, 274, 275, and 276 (valve group 262) installed in the removal cylinder 253. Is controlled in the same manner as the temperature detection sensor 255, the temperature adjustment unit 256A, and the valves 231, 232, 233, and 234 installed in the removal cylinder 251. 2.
  • the ozone gas supply method and nitrogen oxide removal method of the fifth embodiment are basically the same as those of the fourth embodiment. Have the same effect.
  • the nitrogen gas removing step (S220) is performed after the ozone gas preparation step (S210) is performed as in the case of the fourth embodiment.
  • the step (S220) of the fifth embodiment removal of nitrogen oxides and regeneration of the adsorbent are sequentially performed at different timings in the removal cylinder 251, the removal cylinder 252, and the removal cylinder 253. That is, in the fifth embodiment, also in the removal cylinder 253, as in the case of the removal cylinder 251 described with reference to FIG.
  • the nitrogen oxide adsorption step (T210 ⁇ ) by the third adsorbent 209C. T230), the regeneration process and the cooling process for performing the regeneration process of the third adsorbent 209C (T240 to T310), and the third adsorbent 209C having recovered the nitrogen oxide adsorbing capacity is adsorbed with ozone to suppress the ozone adsorbing capacity.
  • the ozone adsorption capacity suppressing step (T320) is performed.
  • the valves 273, 274, 275, and 276 are opened and closed instead of the valves 231, 232, 233, and 234.
  • the above steps T210 to T320 in the nitrogen oxide removing step (S220) are performed in the three removal cylinders 251, 252, and 253 at different timings. That is, in this embodiment, the removal cylinder 253 as a third container holding the third adsorbent is used to remove nitrogen oxides.
  • FIG. 19 is a timing chart illustrating an example of a procedure of a nitrogen oxide removing process performed by the removal cylinder in the fifth embodiment.
  • the horizontal axis indicates the elapsed time in the nitrogen oxide removal step.
  • the nitrogen oxide adsorption step in removing cylinder 251 in t 202 from time t 201 (T210 ⁇ T230) is performed.
  • the inflow of ozone gas is switched from the removal cylinder 251 to the removal cylinder 252.
  • the nitrogen oxide adsorption process is performed in the removal cylinder 252 from time t 202 to t 205 .
  • regeneration and cooling steps between t 204 from time t 202 from time t 203 comprised between t 205 (T240 ⁇ T310) is performed.
  • the introduction of ozone gas is switched from the removal cylinder 252 to the removal cylinder 253. Then, the nitrogen oxide adsorption process is performed in the removal cylinder 253 from time t 205 to t 209 .
  • a regeneration process and a cooling process are performed between time t 206 and t 207 included between time t 205 and t 209 .
  • the ozone adsorbing capability suppressing step (T320) is performed in the removal tube 251. Specifically, between times t 208 and t 209 , ozone gas is introduced into the removal cylinder 253 and nitrogen oxide is adsorbed by the third adsorbent 209 C, and the ozone gas having a reduced concentration of nitrogen oxide is removed from the removal cylinder 253.
  • a process of suppressing ozone adsorption capacity of the first adsorbent 209A by introducing ozone gas into the removal cylinder 251 and adsorbing ozone to the first adsorbent 209A whose nitrogen oxide adsorption capacity has been recovered is performed. Then, removal at time t 209 before the step of inhibiting the ozone adsorption capability is completed, and the adsorption capacity of the third adsorbent 209C removal tube 253 is lowered beyond the allowable range, the flow of ozone gas from the cylinder for removing 253 Switch to cylinder 251. Furthermore, nitrogen oxide adsorption step in removing cylinder 251 in t 213 from time t 209 is continuously performed.
  • the removal tube 253 regeneration and cooling steps between t 211 from time t 210 comprised between time t 209 of t 213 is made. Also, between time t 212 comprised between time t 209 of t 213 of t 213, the ozone adsorbing capability inhibition step is carried out in the removal tube 252, cylinder for removing the t 213 ozone adsorptivity suppression process is completed 252 Then, a nitrogen oxide adsorption step (not shown) is continued.
  • the ozone gas is introduced into the removal cylinder 251 before the introduction of the ozone gas is switched from the removal cylinder 253 to the removal cylinder 251. Further, before switching the introduction of ozone gas from the removal cylinder 251 to the removal cylinder 252, the ozone gas is introduced into the removal cylinder 252. Further, before switching the introduction of the ozone gas from the removal cylinder 252 to the removal cylinder 253, the ozone gas is introduced into the removal cylinder 253.
  • the nitrogen oxide adsorption capacity is recovered and the nitrogen oxide in the ozone gas is removed in the removal cylinder holding the adsorbent in which the ozone adsorption capacity is suppressed. Removal is performed. Further, as in the case of the fourth embodiment, an ozone gas supply step (S230) is performed. According to the present embodiment, by performing the nitrogen oxide removal step (S220) as described above, it is possible to supply ozone gas from which nitrogen oxide has been removed continuously and at a stable concentration. Become. In the present embodiment, the removal cylinder 253 is used as a third container for holding the third adsorbent of the present invention, and nitrogen oxide is removed.
  • the nitrogen oxide removing device of the ozone gas supply device includes two or three removal cylinders
  • the nitrogen oxide removing device may include four or more removal tubes.
  • the removal cylinders are operated at different timings for each cylinder has been described, but it is also possible to operate at different timings for each group of two or more removal cylinders.
  • each removal cylinder is performed by one heating unit using an infrared heater or the like. May be heated.
  • the said embodiment demonstrated the case where the oxygen gas storage part 41 which is an oxygen source, and the nitrogen gas storage part 42 which is a nitrogen source were connected to the ozone production
  • the apparatus 230 is connected to the oxygen gas storage unit 41 and may not be connected to the nitrogen gas storage unit 42. Even in such a case, nitrogen gas is contained in the ozone gas generated in the ozone generator 230 due to nitrogen contained as an impurity in the oxygen held in the oxygen gas storage unit 41.
  • the adsorption state determination unit determines the adsorption state of nitrogen oxides on silica gel (adsorbent) based on the ozone gas inflow time and the heating time by the temperature adjustment unit.
  • an FTIR spectrometer Fluier transform infrared spectrophotometer
  • a Q-MS quadrature mass spectrometer
  • a nitrogen oxide detector disclosed in Japanese Patent Application Laid-Open No. 2014-163720 is provided at the gas outlet of A device for measuring the concentration of nitrogen oxides such as the above may be provided, and the state of adsorption of nitrogen oxides on silica gel (adsorbent) may be determined based on the composition ratio of the gas flowing out from the removal cylinder.
  • the ozone gas supply method is performed in the same manner as in Embodiment 4, and the concentrations of ozone and nitrogen oxides contained in the gas discharged from the pipe 217 are adjusted.
  • the ozone gas introduced into the removal cylinder in the step (T320) flowed to the pipe 217 (Example).
  • the concentrations of ozone and nitrogen oxide were measured using an FTIR spectrometer (Fourier transform infrared spectrophotometer).
  • the ozone concentration of the gas introduced into the nitrogen oxide removing apparatus 300 was 8.6% by volume, and the flow rate was 20 L / min.
  • FIG. 20 shows the measurement results of the concentrations of ozone and nitrogen oxide in the ozone gas in Examples and Comparative Examples.
  • the thick solid line in the graph indicates the ozone concentration of the example, and the thin solid line indicates the ozone concentration of the comparative example.
  • a thin broken line indicates the concentration of dinitrogen pentoxide in the example, and a thick broken line indicates the concentration of nitric acid in the example.
  • the stability of the concentration of the ozone gas supplied is improved as compared with the comparative example. More specifically, in the case of the comparative example, the ozone concentration rapidly decreases immediately after the points b and d when the removal cylinder for removing nitrogen oxides is switched. This is because the ozone adsorption capacity of the adsorbent (silica gel) is also recovered by heating to recover the nitrogen oxide adsorption capacity, so that the introduced ozone is absorbed by the adsorbent in the removal cylinder immediately after the start of nitrogen oxide removal. It is thought that it is because it is adsorbed with high efficiency.
  • the ozone concentration in the example decreases immediately after the points a and c corresponding to the start time of the step of suppressing the ozone adsorption capacity in the removal cylinder, the ozone adsorption capacity at that time point Since the removal of nitrogen oxides is simultaneously performed in other removal cylinders in which NO is sufficiently suppressed, the decrease in ozone concentration is clearly reduced. Further, the concentrations of dinitrogen pentoxide and nitric acid are sufficiently reduced.
  • the ozone gas supply method and ozone gas supply system of the present invention can be applied particularly advantageously to an ozone gas supply method and an ozone gas supply system that require suppression of concentration fluctuations of the supplied ozone gas.
  • 1 ozone supply system 10 ozone generator, 11 discharge unit, 12 first electrode, 13 dielectric tube, 14 second electrode, 15 discharge space, 20 removal cylinder, 20A, 20B first removal cylinder, 21 body part, 22 Ribbon heater, 23 jacket, 24 temperature sensor, 28 adsorbent holding section, 29 adsorbent, 30 ozone concentration detection section, 40 control section, 51 oxygen source, 52 nitrogen source, 56 first mass flow controller, 57 second mass flow controller, 58 third mass flow controller, 59 fourth mass flow controller, 61, 62, 63, 64, 65, 66, 67, 68, 69A, 69B, 71A, 71B, 72, 73, 74, 75, 76, 77, 78 valves , 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 0, 91, 91A, 91B, 92, 92A, 92B, 96, 97, 98, 99, 100, 101, 102

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

オゾンガスの供給方法は、オゾンガス源(10)からのオゾンガスを第2の流路(85,87,102)を介して供給する工程と、オゾンガスを、第1の流路(85,86,91A,92A,96,102)を介して供給する状態に切り替えて、窒素酸化物の濃度が低下したオゾンガスを供給する工程とを備える。オゾンガスを第2の流路(85,87,102)を介して供給する工程は、オゾンガスの一部を第1容器(20A)に導入して第1吸着剤のオゾン吸着能を抑制する工程を含む。オゾンガスを第1の流路(85,86,91A,92A,96,102)を介して供給対象物に供給する工程では、オゾン吸着能が抑制された第1吸着剤を保持する第1容器(20A)をオゾンガスが通過する。

Description

オゾンガスの供給方法、およびオゾンガスの供給システム
 本発明はオゾンガスの供給方法、およびオゾンガスの供給システムに関するものである。
 オゾンガスは、強い酸化力を有する一方、分解した後は毒性を残さないため、脱臭剤、殺菌剤、半導体の酸化処理などに、広く使用されている。
 オゾンガスは、たとえば酸素ガスを含む雰囲気中での放電によって生成させることができる。このようにしてオゾンガスを生成させる場合、原料となる酸素ガスに微量の窒素ガスを添加することでオゾンガスの濃度が高くなるとともに、経時安定性も向上することが知られている。このように原料となる酸素ガスに微量の窒素ガスを添加した場合、添加した窒素ガスの一部が窒素酸化物となる。この窒素酸化物は、ガスの流路となる配管を腐食する原因となる。
 オゾンガスに含まれる窒素酸化物を除去する技術として、窒素酸化物が混入したオゾンガスをシリカゲルが充填された除去筒に導入して窒素酸化物を除去する方法が提案されている(たとえば、特開2011-121805号公報(特許文献1)参照)。
特開2011-121805号公報
 しかしながら、シリカゲルを用いた窒素酸化物の除去を実施した場合、供給されるガス中のオゾンの濃度が不安定となる場合がある。
 本発明の目的は、窒素酸化物が除去されたオゾンガスを安定した濃度で供給することを可能とするオゾンガスの供給方法、およびオゾンガスの供給システムを提供することである。
 本発明の第1の局面に従ったオゾンガスの供給方法は、オゾンガス源からの窒素酸化物を含むオゾンガスを、シリカゲルからなる第1吸着剤を保持する第1容器が設置された第1の流路を介して供給対象物に供給する状態と、第2の流路を介して供給対象物に供給する状態と、を切り替えて、供給対象物に供給するオゾンガスの供給方法である。このオゾンガスの供給方法は、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給する工程と、オゾンガス源からのオゾンガスを、第1の流路を介して供給対象物に供給する状態に切り替えて、第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを供給対象物に供給する工程と、を備える。
 オゾンガス源からのオゾンガスを第2の流路を介して供給する工程は、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給しつつ、オゾンガス源からのオゾンガスの一部を第1容器に導入することにより第1吸着剤にオゾンガスを吸着させ、第1吸着剤のオゾン吸着能を抑制する工程を含む。オゾンガス源からのオゾンガスを第1の流路を介して供給対象物に供給する工程では、第1吸着剤のオゾン吸着能を抑制する工程においてオゾン吸着能が抑制された第1吸着剤を保持する第1容器をオゾンガスが通過する。
 本発明の第1の局面のオゾンガスの供給方法では、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給する状態から、オゾンガス源からのオゾンガスが第1の流路を介して供給対象物に供給される状態に切り替えられる。これにより、第1流路に設置された第1容器内のシリカゲルからなる第1吸着剤に窒素酸化物が吸着され、窒素酸化物の濃度が低下したオゾンガスが供給対象物に供給される。このとき、シリカゲルは窒素酸化物だけでなくオゾンガスをも吸着する特性を有する。そのため、何ら対策を講じない場合、第1吸着剤にオゾンガスが吸着され、供給対象物へと供給されるオゾンガスの濃度が低下する。その結果、供給対象物へと供給されるオゾンガスの濃度が不安定となる場合がある。
 これに対し、本発明のオゾンガスの供給方法では、オゾンガス源からのオゾンガスを第2の流路を介して供給する工程が、第1吸着剤のオゾン吸着能を抑制する工程を含む。そして、オゾンガス源からのオゾンガスを第1の流路を介して供給する工程では、第1吸着剤のオゾン吸着能を抑制する工程においてオゾン吸着能が抑制された第1吸着剤を保持する第1容器をオゾンガスが通過する。そのため、第1吸着剤にオゾンガスが吸着されることが抑制され、オゾンガスの濃度が安定する。このように、本発明の第1の局面のオゾンガスの供給方法によれば、窒素酸化物が除去されたオゾンガスを安定した濃度で供給することができる。
 上記第1の局面のオゾンガスの供給方法において、オゾンガス源からのオゾンガスを、第1の流路を介して供給対象物に供給する状態に切り替えて、第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを供給対象物に供給する工程では、オゾンガス源からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングの情報である窒素酸化物濃度上昇情報を検知した場合に、窒素酸化物濃度上昇情報に基づいて、第1の流路を介してオゾンガスを供給対象物に供給する状態に切り替えられてもよい。このようにすることにより、適切なタイミングで第1容器において窒素酸化物を吸着する状態に切り替えることができる。
 上記第1の局面のオゾンガスの供給方法において、オゾンガス源では、酸素ガスを主成分とするガス中に配置された電極間における放電によりオゾンガスが生成されてもよい。窒素酸化物濃度上昇情報は、上記電極が、五酸化二窒素が気化する温度以上の温度に加熱されて窒素酸化物の濃度が上昇するタイミングの情報であってもよい。
 酸素ガスを主成分とするガス中に配置された電極間における放電によりオゾンガスが生成される場合、電極に五酸化二窒素が付着することによりオゾンの生成効率が低下する場合がある。電極に付着した五酸化二窒素は、電極を加熱することにより気化させて除去することができる。このとき、気化した五酸化二窒素が生成したオゾンに混入し、オゾンガス源からのオゾンガスに含まれる窒素酸化物の濃度が上昇する。電極を加熱するタイミングの情報を窒素酸化物濃度上昇情報として、オゾンガスが第1の流路を介して供給対象物に供給される状態に切り替えることにより、第1吸着剤に窒素酸化物を吸着し、窒素酸化物の濃度が低下したオゾンガスを供給対象物に供給することができる。
 上記第1の局面のオゾンガスの供給方法において、オゾンガス源からのオゾンガスを第2の流路を介して供給する工程は、第1吸着剤のオゾン吸着能を抑制する工程の前に、第1容器内の第1吸着剤を加熱しつつ第1容器内にパージガスを導入して第1吸着剤に吸着した窒素酸化物を離脱させてパージガスにより第1容器の外部へと排出することにより、第1吸着剤の窒素酸化物吸着能を回復させる工程をさらに含んでいてもよい。
 第1吸着剤の窒素酸化物吸着能を回復させる工程が実施された後に第1吸着剤のオゾン吸着能を抑制する工程が実施されることにより、第1吸着剤が十分な窒素酸化物吸着能を有し、かつオゾン吸着能が抑制された状態で、オゾンガスが第1の流路を介して供給対象物に供給される状態に切り替えることが可能となる。
 上記第1の局面のオゾンガスの供給方法において、オゾンガス源では、酸素を保持する酸素源から供給される酸素ガスを主成分とするガス中における放電によりオゾンガスが生成されてもよい。そして、第1吸着剤の窒素酸化物吸着能を回復させる工程では、上記酸素源からパージガスとして酸素ガスが供給されてもよい。
 これにより、オゾンガスの原料となる酸素源がパージガスの供給源としても使用されるので、設備の簡略化を図ることが可能となる。なお、本願において、酸素ガスを主成分とするガスとは、80体積%以上の酸素ガスを含むガスを意味する。
 上記第1の局面のオゾンガスの供給方法において、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給する工程およびオゾンガス源からのオゾンガスを第1の流路を介して供給対象物に供給する工程では、第1の流路に設置された第1容器または第2の流路を流れたオゾンガスが緩衝容器に流入して濃度が平準化された後、供給対象物に供給されてもよい。このようにすることにより、安定した濃度のオゾンガスを供給対象物に供給することができる。
 本発明の第1の局面に従ったオゾンガスの供給システムは、窒素酸化物を含むオゾンガスを提供するオゾンガス源と、オゾンガス源からのオゾンガスを供給対象物へと運搬するための第1の流路と、オゾンガス源からのオゾンガスを供給対象物へと運搬するための第2の流路と、オゾンガス源からのオゾンガスの供給対象物への供給経路を制御する制御部と、を備える。第1の流路には、シリカゲルからなる第1吸着剤を保持する第1容器が設置される。
 制御部は、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給する状態と、オゾンガス源からのオゾンガスを、第1容器が設置された第1の流路を介して供給対象物に供給することで、第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを供給対象物に供給する状態と、を切り替える。オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給する状態は、オゾンガス源からのオゾンガスを第2の流路を介して供給対象物に供給しつつ、オゾンガス源からのオゾンガスの一部を、第1容器に導入することにより第1吸着剤にオゾンガスを吸着させ、第1吸着剤のオゾン吸着能を抑制する状態を含む。制御部は、オゾンガス源からのオゾンガスの一部が第1容器に導入されることによってオゾン吸着能が抑制された第1吸着剤が第1容器に保持されている状態で、オゾンガス源からのオゾンガスを第1の流路を介して供給対象物に供給する状態に切り替える。
 本発明のオゾンガスの供給システムを用いることで、上記本発明の第1の局面のオゾンガスの供給方法を実施することができる。その結果、本発明の第1の局面のオゾンガスの供給システムによれば、窒素酸化物が除去されたオゾンガスを安定した濃度で供給することができる。
 上記オゾンガスの供給システムは、オゾンガス源からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングを検知して、オゾンガスに含まれる窒素酸化物の濃度の上昇を予告する窒素酸化物濃度上昇情報を出力する検知部をさらに備えていてもよい。制御部は、窒素酸化物濃度上昇情報に基づいて第1の流路を介してオゾンガスを供給対象物に供給する状態に切り替えてもよい。このようにすることにより、適切なタイミングで第1容器において窒素酸化物を吸着する状態に切り替えることができる。
 上記第1の局面のオゾンガスの供給システムにおいて、オゾンガス源は、酸素ガスを主成分とするガス中における放電によりオゾンガスを生成するための電極を含んでいてもよい。検知部は、電極が、五酸化二窒素が気化する温度以上の温度に加熱されるタイミングを窒素酸化物の濃度が上昇するタイミングとして検知してもよい。
 電極を加熱するタイミングの情報を窒素酸化物濃度上昇情報として、オゾンガスが第1の流路を介して供給対象物に供給される状態に切り替えることにより、第1吸着剤に窒素酸化物を吸着し、窒素酸化物の濃度が低下したオゾンガスを供給対象物に供給することができる。
 上記第1の局面のオゾンガスの供給システムは、第1容器に接続されるパージガス流入路と、第1吸着剤を加熱する加熱部と、第1容器に接続されるパージガス排出路と、をさらに備えていてもよい。このようにすることにより、第1容器内の第1吸着剤を加熱部により加熱しつつ第1容器内にパージガスを導入して第1吸着剤に吸着した窒素酸化物を離脱させてパージガスにより第1容器の外部へと排出することにより、第1吸着剤の窒素酸化物吸着能を回復させることができる。
 上記第1の局面のオゾンガスの供給システムは、オゾンガス源に接続される酸素源をさらに備えていてもよい。オゾンガス源は、当該酸素源から供給される酸素ガスを主成分とするガス中における放電によりオゾンガスを生成してもよい。そして、上記酸素源はパージガス流入路に接続されてもよい。これにより、オゾンガスの原料となる酸素を供給する酸素源がパージガスの供給源としても使用されるので、設備の簡略化を図ることが可能となる。
 上記第1の局面のオゾンガスの供給システムにおいて、第1の流路は、第1容器よりも下流側に第2の流路と合流した領域である合流領域を含んでいてもよい。合流領域にはオゾンガスの濃度を平準化する緩衝容器が設置されていてもよい。このようにすることにより、安定した濃度のオゾンガスを供給対象物に供給することができる。
 本発明の第2の局面に従った窒素酸化物の除去方法は、窒素酸化物を含むオゾンガスから窒素酸化物を除去するための窒素酸化物の除去方法である。この窒素酸化物の除去方法は、窒素酸化物を含むオゾンガスを供給するオゾンガス源から、シリカゲルからなる第1吸着剤を保持する第1容器にオゾンガスを導入して第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを第1容器から吐出する工程と、窒素酸化物が吸着した第1容器内の第1吸着剤を加熱しつつ第1容器内にパージガスを導入して第1吸着剤に吸着した窒素酸化物を離脱させてパージガスにより第1容器の外部へと排出して第1吸着剤の窒素酸化物吸着能を回復させるとともに、上記オゾンガス源から、シリカゲルからなる第2吸着剤を保持する第2容器にオゾンガスを導入して第2吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを第2容器から吐出する工程と、上記オゾンガス源から、シリカゲルからなる第3吸着剤を保持する第3容器にオゾンガスを導入して第3吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを第3容器から吐出しつつ、上記オゾンガス源から第1容器にオゾンガスを導入して窒素酸化物吸着能が回復した第1吸着剤にオゾンガスを吸着させ第1吸着剤のオゾン吸着能を抑制する工程と、上記オゾンガス源から第1容器にオゾンガスを導入して窒素酸化物吸着能が回復し、かつオゾン吸着能が抑制された第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを第1容器から吐出する工程と、を備える。
 本発明の第2の局面の窒素酸化物の除去方法においては、第1容器にオゾンガスを導入して、窒素酸化物を第1吸着剤に吸着させ、窒素酸化物の濃度が低下したオゾンガスを第1容器から吐出する。そして、第1吸着剤の窒素酸化物の吸着能が許容範囲を超えて低下する前に、第1容器へのオゾンガスの流入を停止するとともに第2容器にオゾンガスを導入して窒素酸化物を第2吸着剤に吸着させ、窒素酸化物の濃度が低下したオゾンガスを第2容器から吐出する。一方、オゾンガスの流入が停止された第1容器については、第1吸着剤を加熱しつつ第1容器内にパージガスを導入して第1吸着剤に吸着した窒素酸化物を離脱させて第1吸着剤の窒素酸化物吸着能を回復させる。これにより、第1容器における窒素酸化物の除去を再度実施可能な状態とする。そして、再度第1容器にオゾンガスを導入し、窒素酸化物濃度が低下したオゾンガスを第1容器から吐出する。このようにしてオゾンガスの継続的な供給が可能となる。
 さらに、上記第1容器における再度の窒素酸化物の除去の前に、第3容器にオゾンガスを導入して、窒素酸化物を第3吸着剤にて吸着し、窒素酸化物の濃度が低下したオゾンガスを第3容器から吐出しつつ、第1容器にオゾンガスを導入して窒素酸化物吸着能が回復した第1吸着剤にオゾンガスを吸着させて第1吸着剤のオゾン吸着能を抑制する。これにより、窒素酸化物吸着能が回復した第1吸着剤を保持する第1容器に再びオゾンガスを導入してオゾンガス中の窒素酸化物の除去を行う際に、第1吸着剤のオゾン吸着能が抑制されていることにより、第1容器から吐出されるオゾンガスの濃度が低下することが抑制される。ここで、第3吸着剤および第3容器は、それぞれ上記第2吸着剤および第2容器と同一であってもよいし、第2吸着剤および第2容器とは異なる他のシリカゲルからなる吸着剤および当該吸着剤を保持する容器であってもよい。また、第1容器に導入されるオゾンガスの流量は、第3容器に導入されるオゾンガスの流量の10%以下とすることが好ましく、5%以下とすることがより好ましい。このようにすることで、窒素酸化物が除去されたオゾンの流量変動を抑制することが容易となる。このように、本発明の第2の局面に従った窒素酸化物の除去方法によれば、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することが可能となる。
 本発明の第2の局面に従ったオゾンガスの供給方法は、窒素酸化物を含むオゾンガスを準備する工程と、オゾンガスから窒素酸化物を除去する工程と、窒素酸化物が除去されたオゾンガスを供給する工程とを備える。窒素酸化物を除去する工程では、上記窒素酸化物の除去方法により窒素酸化物が除去される。本発明の第2の局面のオゾンガスの供給方法によれば、上記本発明の第2の局面の窒素酸化物の除去方法によってオゾンガス中の窒素酸化物が除去されるため、窒素酸化物が除去されたオゾンガスを安定した濃度で供給することができる。
 上記第2の局面のオゾンガスの供給方法において、オゾンガスを準備する工程では、酸素を保持する酸素源から供給される酸素ガスを主成分とするガス中における放電によりオゾンガスが準備され、オゾンガスから窒素酸化物を除去する工程では、上記酸素源からパージガスとして酸素ガスが供給されてもよい。これにより、オゾンガスの原料となる酸素源がパージガスの供給源としても使用されるので、設備の簡略化を図ることが可能となる。
 本発明の第2の局面に従ったオゾンガス供給装置は、酸素を保持する酸素源に接続され、酸素源から供給される酸素ガスを主成分とするガス中における放電により窒素酸化物を含むオゾンガスを生成するオゾン生成部と、シリカゲルからなる第1吸着剤を保持する第1容器と、シリカゲルからなる第2吸着剤を保持する第2容器と、第1容器に接続され、オゾン生成部から第1容器に流入するオゾンガスの流路を規定する第1オゾンガス配管と、第2容器に接続され、オゾン生成部から第2容器に流入するオゾンガスの流路を規定する第2オゾンガス配管と、第1オゾンガス配管に設置された第1オゾンガスバルブと、第2オゾンガス配管に設置された第2オゾンガスバルブと、を備える。さらに、本発明に従ったオゾンガス供給装置は、第1容器に接続され、第1容器に流入するパージガスの流路を規定する第1パージガス配管と、第2容器に接続され、第2容器に流入するパージガスの流路を規定する第2パ-ジガス配管と、第1パージガス配管に設置された第1パージガスバルブと、第2パージガス配管に設置された第2パージガスバルブと、第1容器に接続され、第1容器から流出するガスの流路を規定する第1流出配管と、第2容器に接続され、第2容器から流出するガスの流路を規定する第2流出配管と、第1容器内を加熱する第1加熱部と、第2容器内を加熱する第2加熱部と、上記酸素源から第1パージガス配管および第2パージガス配管にパージガスとして流入する酸素ガスの流路を規定するパージ用酸素ガス配管とを備える。
 本発明の第2の局面のオゾンガス供給装置を用いることで、上記本発明の第2の局面の窒素酸化物の除去方法を実施することができる。その結果、本発明の第2の局面のオゾンガス供給装置によれば、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することが可能となる。また、本発明の第2の局面のオゾンガス供給装置は、酸素源から第1パージガス配管および第2パージガス配管にパージガスとして流入する酸素ガスの流路を規定するパージ用酸素ガス配管を備える。これにより、オゾンガスの原料となる酸素源がパージガスの供給源としても使用されるので、設備の簡略化を図ることが可能となる。
 上記第2の局面のオゾンガス供給装置は、第1オゾンガスバルブ、第2オゾンガスバルブ、第1パージガスバルブおよび第2パージガスバルブに接続され、第1オゾンガスバルブ、第2オゾンガスバルブ、第1パージガスバルブおよび第2パージガスバルブの開閉を制御する制御部をさらに備えてもよい。これにより、オゾン生成部から供給されたオゾンガスから窒素酸化物を除去するためのオゾンガスの容器内へ導入と、吸着剤の窒素酸化物吸着能を回復させるための容器内へのパージガスの導入とを行うための1オゾンガスバルブ、第2オゾンガスバルブ、第1パージガスバルブおよび第2パージガスバルブの開閉操作を制御部により行うことができる。
 上記第2の局面のオゾンガス供給装置において、制御部は、シリカゲルへの窒素酸化物の吸着の状態を判断する吸着状態判断部を含んでもよい。これにより、オゾンガスおよびパージガスの流入および流出のタイミングを適切に制御することが可能となる。
 上記第2の局面のオゾンガス供給装置は、第1容器内を冷却する第1冷却部と、第2容器内を冷却する第2冷却部とをさらに備えてもよい。これにより、吸着剤から窒素酸化物を離脱させるために加熱された容器内の冷却を効率よく行うことができるとともに、導入されたオゾンガス中の窒素酸化物を吸着剤に吸着させる工程を低温下で行うことが可能となる。
 なお、一般的なプロセスにより製造された酸素には、不純物として窒素が含まれる。そのため、このような酸素ガスを主成分とするガス中における放電により、窒素酸化物を含むオゾンガスが生成する。また、放電によるオゾンガスの生成においては、上述のように、酸素ガスに意図的に窒素ガスを添加することにより、オゾンガスの濃度および経時安定性が向上する。このような混合ガス(酸素ガスを主成分とするガス)中における放電によっても、窒素酸化物を含むオゾンガスが生成する。後者の場合、オゾンガス源には酸素源だけでなく、窒素を保持する窒素源が接続される。前者の場合、オゾンガス源には酸素源が接続され、窒素源は接続されない。いずれの場合においても、オゾンガス源において窒素酸化物を含むオゾンガスが生成する。
 上記本発明の第1の局面と第2の局面とは、その内容を適宜組み合わせて実施することができる。
 以上の説明から明らかなように、本発明の第1の局面のオゾンガスの供給方法、およびオゾンガスの供給システムによれば、窒素酸化物が除去されたオゾンガスを安定した濃度で供給することを可能とするオゾンガスの供給方法、およびオゾンガスの供給システムを提供することができる。本発明の第2の局面の窒素酸化物の除去方法、オゾンガスの供給方法、およびオゾンガス供給装置によれば、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することが可能となる。
実施の形態1におけるオゾンガス供給システムの構成の一例を示す概略図である。 オゾン生成装置に含まれる放電ユニットの構造を示す概略断面図である。 除去筒の構造を示す概略断面図である。 実施の形態1におけるオゾンガスの供給経路の制御の一例を示すフローチャートである。 オゾン生成装置の制御の一例を示すフローチャートである。 除去筒の制御の一例を示すフローチャートである。 実施の形態1におけるオゾンガスの供給手順の一例を示すタイミングチャートである。 実施の形態2におけるオゾンガス供給システムの構成の一例を示す概略図である。 実施の形態2におけるオゾンガスの供給経路の制御の一例を示すフローチャートである。 実施の形態2におけるオゾンガスの供給手順の一例を示すタイミングチャートである。 実施の形態3におけるオゾンガス供給システムの構成の一例を示す概略図である。 実施の形態4におけるオゾンガス供給装置および窒素酸化物除去装置の構成の一例を示す概略図である。 除去筒の概略的な構成を示す図である。 窒素酸化物除去装置の概略的な電気的構成を示すブロック図である。 オゾンガスの供給方法の手順の一例を示すフローチャートである。 除去筒を用いた窒素酸化物の除去方法の手順の一例を示すフローチャートである。 実施の形態4における窒素酸化物除去工程の手順の一例を示すタイミングチャートである。 実施の形態5におけるオゾンガス供給装置および窒素酸化物除去装置の構成の一例を示す概略図である。 実施の形態5における窒素酸化物除去工程の手順の一例を示すタイミングチャートである。 供給ガス中のオゾンおよび窒素酸化物の濃度の経時的変化を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 (実施の形態1)
 1.オゾンガスの供給システムの構成
 図1を参照して、実施の形態1におけるオゾンガスの供給システムであるオゾン供給システム1は、オゾンガス源としてのオゾン生成装置10と、オゾン生成装置10に接続されたオゾン濃度検知部30と、オゾン濃度検知部30に接続された制御部40とを備える。
 オゾン濃度検知部30は、オゾン生成装置10内で発生するオゾンの濃度を検知し、濃度に異常がある場合に濃度異常信号を制御部40に出力する。制御部40は、濃度異常信号を受けた場合、オゾン生成装置10内の電極に五酸化二窒素が許容範囲を超えて付着したものと判断し、付着した五酸化二窒素を除去するようにオゾン生成装置10を制御するとともにオゾン生成装置10からのオゾンガスの供給対象物への供給経路を制御する。電極に付着した五酸化二窒素を除去すると、オゾン生成装置10から吐出される窒素酸化物の濃度が上昇する。したがって、上記濃度異常信号は、オゾンガスに含まれる窒素酸化物の濃度の上昇を予告する窒素酸化物濃度上昇情報である。
 オゾン供給システム1は、さらに酸素源51と、窒素源52と、第1流量調整部としての第1マスフローコントローラ56と、第2流量調整部としての第2マスフローコントローラ57と、第3流量調整部としての第3マスフローコントローラ58と、第1容器としての第1除去筒20Aとを備える。酸素源51および窒素源52としては、たとえば、それぞれ酸素および窒素を保持するLGC(Liquid Gas Container)、CE(Cold Evaporator)などを採用することができる。酸素源51と第1マスフローコントローラ56とは、配管80により接続されている。配管80は、酸素源51からの酸素ガスの流出路である。配管80には、弁61が設置されている。窒素源52と第2マスフローコントローラ57とは、配管81により接続されている。配管81には、弁62が設置されている。第1マスフローコントローラ56には、配管82が接続されている。配管82には、弁63が設置されている。第2マスフローコントローラ57には、配管83が接続されている。配管83には、弁64が設置されている。配管82および配管83は、配管84に接続されている。そして、配管84は、オゾン生成装置10に接続されている。配管84は、オゾン生成装置10への原料ガスの流入路である。このように、酸素源51および窒素源52はオゾン生成装置10に配管を介して接続されている。
 オゾン生成装置10には、配管85が接続されている。配管85は、オゾン生成装置10内で生成したオゾンガスの流出路である。配管85には、配管86および配管87が接続されている。配管86には、弁67が設置されている。配管80の弁61が設置される位置と酸素源51に接続される位置との間に、配管89が接続されている。配管89は第3マスフローコントローラ58に接続されている。配管89には、弁65が設置されている。第3マスフローコントローラ58には、配管99が接続されている。配管99には、弁66が設置されている。そして、配管99および配管86は、配管91Aに接続されている。配管91Aには、弁69Aが設置されている。配管91Aは、第1除去筒20Aに接続されている。配管91Aは、オゾンガスおよびパージガスとしての酸素ガスの第1除去筒20Aへの流入路である。配管80、配管89、配管99および配管91Aは、パージガス流入路を構成する。第1除去筒20Aには、配管92Aが接続されている。配管92Aは、第1除去筒20Aからのオゾンガスおよびパージガスとしての酸素ガスの流出路である。配管92Aには、弁71Aが設置されている。このように、オゾンガスの原料としての酸素ガスを保持する酸素源51がパージガスの供給源としても使用可能な構造が採用されることにより、設備の簡略化が図られている。
 配管92Aには、配管101と、配管96とが接続されている。配管101には弁74が設置されている。配管101は、排気部に接続されている。配管101は、不要なガスをオゾン供給システム1から排出する排気管である。配管96には、弁75が設置されている。配管96は、配管102に接続されている。配管102には、弁78が設置されている。配管102は、オゾンガスが供給されるべき供給対象物へとオゾンガスを吐出する吐出部に接続されている。配管102は、オゾン供給システム1からオゾンガスを供給対象物へと吐出する供給管である。配管87は、配管102に接続されている。配管87には、配管85に近い側から弁68、弁72および弁73が設置されている。配管92Aおよび配管101は、パージガス排出路を構成する。配管85、配管86、配管91A、配管92A、配管96および配管102は、第1の流路を構成する。配管85、配管87および配管102は、第2の流路を構成する。
 次に、オゾン生成装置10の構造について説明する。オゾン生成装置10は、複数の放電ユニットを含んでいる。オゾン生成装置10内には、複数の放電ユニットが並列に配置されている。図2を参照して、放電ユニット11は、第1電極12と、第2電極14と、誘電体管13とを含んでいる。第1電極12は、導電体からなり、両端部が開口する中空円筒状の形状を有している。第2電極14は、導電体からなり、第1電極12よりも直径の小さい中空円筒状の形状を有している。誘電体管13は、たとえばガラスからなり、両端部が閉塞された中空円筒状の形状を有している。
 第1電極12、第2電極14、および誘電体管13は、中心軸が一致するように配置されている。誘電体管13の内周面と第2電極14の外周面とが全域にわたって接触するように、第2電極14および誘電体管13は配置されている。誘電体管13の一方端の壁が、第2電極14の一方の端面に接触している。誘電体管13の他方端の壁が、第2電極14の他方の端面に接触している。すなわち、第2電極14に接触しつつ第2電極14を取り囲むように、誘電体管13は配置されている。誘電体管13の外周面と第1電極12の内周面とが対向している。
 誘電体管13の外周面と第1電極12の内周面とに挟まれる空間が放電空間15である。第1電極12と第2電極14との間に電圧が印加されることにより、放電空間15内において放電が生じる。このとき、矢印αに沿って酸素ガスを主成分とし、窒素ガスを含む原料ガスが流入する。原料ガスに含まれる酸素ガスが第1電極12と第2電極14との間の放電によりオゾン化し、矢印βに沿ってオゾンガスが吐出される。このようにして、放電ユニット11に流入した酸素ガスがオゾン化され、放電ユニット11からオゾンガスが吐出される。
 次に、第1除去筒20Aの構造について説明する。第1除去筒20Aは、図3に示す除去筒20と同様の構造を有している。除去筒20は、本体部21と、加熱部としてのリボンヒータ22と、ジャケット23と、温度センサ24とを含んでいる。本体部21は、円筒状の形状を有する。本体部21内には、円筒状の形状を有する中空領域である吸着剤保持部28が形成されている。吸着剤保持部28内には、シリカゲルからなる吸着剤29(第1吸着剤)が保持されている。吸着剤29を構成するシリカゲルは、たとえば純度99.99質量%以上に調整されている。吸着剤保持部28の一方の端部には配管91が接続されている。吸着剤保持部28の他方の端部には配管92が接続されている。配管91および配管92は、それぞれ図1の配管91Aおよび配管92Aに対応する。
 リボンヒータ22は、本体部21の外周を取り囲むように配置される。リボンヒータ22は、加熱用電源(図示しない)に接続され、本体部21を加熱することにより、吸着剤保持部28内の第1吸着剤29を所望の温度に加熱する。ジャケット23は、リボンヒータ22の外周を取り囲むように配置される。ジャケット23が装着されることによって、除去筒20が保温されるとともに、除去筒20が加熱された場合に除去筒20の温度が、除去筒20に隣接して配置される他の部材の温度に影響することを抑制することができる。温度センサ24は、本体部21内に設置される。温度センサ24は、吸着剤保持部28内の第1吸着剤29の温度を測定する。温度センサ24および上記加熱用電源は制御部40に接続される。制御部40は、温度センサ24から得られる第1吸着剤29の温度の情報に基づいて、第1吸着剤29を所望の温度に維持するように加熱用電源を制御する。
 2.オゾンガスの供給方法
 次に、図1~図7を参照して、本発明の実施の形態1におけるオゾンガスの供給方法について説明する。図4は、実施の形態1におけるオゾンガスの供給経路の制御の一例を示すフローチャートである。図5は、オゾン生成装置の制御の一例を示すフローチャートである。図6は、除去筒の制御の一例を示すフローチャートである。図7は、実施の形態1におけるオゾンガスの供給手順の一例を示すタイミングチャートである。
 (1)時刻t~t
 図7を参照して、時刻t~tの間は、オゾンガスの供給経路の制御において工程(S10)~(S30)が繰り返されるとともに、オゾン生成装置においては工程(T10)が実施される。第1除去筒は待機状態となっている。
 具体的には、図4を参照して、オゾンガスの供給経路の制御において、まず工程(S10)として、オゾン生成装置10からのオゾンガスを第2の流路を介して供給対象物に供給する工程が実施される。この工程(S10)では、図1を参照して、制御部40による制御によって、弁61~64,68,72,73,78が開の状態とされ、他の弁が閉の状態とされる。酸素源51から配管80を介して供給される酸素ガスは、第1マスフローコントローラ56において流量が調整され、配管82を介して配管84に到達する。窒素源52から配管81を介して供給される窒素ガスは、第2マスフローコントローラ57において流量が調整され、配管83を介して配管84に到達する。その結果、酸素ガスに所望の割合で窒素ガスが混合された原料ガス(たとえば数体積%の窒素ガスを含み、残部が酸素ガスからなる混合ガス)が配管84を介してオゾン生成装置10へと供給される。オゾン生成装置10に到達した原料ガスは、図2を参照して、矢印αに沿って放電空間15に流入する。このとき、第1電極12と第2電極14との間の放電により、オゾンガスが生成する。生成したオゾンガスは、矢印βに沿って放電空間15から吐出される。吐出されたオゾンガスは、図1を参照して、第2の流路を構成する配管85、配管87および配管102を介して供給対象物に供給される。
 そして、図4を参照して、供給対象物へのオゾンガスの供給が終了した場合(工程(S20)においてYESの場合)、オゾン供給システム1の運転は停止され、オゾンガスの供給は終了する。供給対象物へのオゾンガスの供給が終了していない場合(工程(S20)においてNOの場合)、オゾン生成装置10からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングの情報である窒素酸化物濃度上昇情報を検知したかどうかが確認される(工程(S30))。具体的には、図5および図1を参照して、オゾン濃度検知部30がオゾン生成装置10内で発生するオゾンの濃度を検知し、濃度に異常があるかどうかを確認する。たとえば、オゾン濃度検知部30は、オゾンの濃度が予め定められた濃度の範囲を下回っているかどうかを確認する(工程(T10))。オゾンの濃度が予め定められた濃度の範囲内であれば(工程(T10)においてNO)、窒素酸化物の濃度が上昇するタイミングが検知されないものと判断し(工程(S30)においてNO)、オゾンガスが第2の流路を介して供給対象物に引き続き供給される。オゾン濃度検知部30は、オゾン生成装置10内で発生するオゾンの濃度を引き続き検知する。時刻t~tにおいては、このように工程(S10)~(S30)が繰り返して実施されるとともに、工程(T10)が繰り返して実施される。第1の流路に設置された第1除去筒20Aは、待機状態となっている。
 (2)時刻t~t
 図7を参照して、時刻t~tの間は、オゾンガスの供給経路の制御において工程(S40)~(S60)が繰り返される。オゾン生成装置においては工程(T20)~(T30)が繰り返される。第1除去筒においては、工程(U10)が実施される。
 図1、図4および図5を参照して、時刻tにおいて、オゾンガスの濃度が予め定められた濃度の範囲外となったことをオゾン濃度検知部30が検知すると、たとえばオゾンガスの濃度が予め定められた濃度の範囲よりも低くなると(工程(T10)においてYES)、オゾン生成装置10の電極(図2参照)に五酸化二窒素が付着してオゾンの生成効率が低下しているものと考えられる。そのため、電極が加熱されて五酸化二窒素を除去されることとなる(工程(T20))。電極を加熱すると、生成したオゾンガスに含まれる窒素酸化物の濃度が上昇する。したがって、オゾンガス濃度の低下の情報は、オゾンガス源であるオゾン生成装置10からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングの情報である窒素酸化物濃度上昇情報である。
 オゾン濃度検知部30は窒素酸化物濃度上昇情報を出力し、制御部40がこれを検知する(工程(S30)においてYES)。制御部40は、窒素酸化物濃度上昇情報に基づいて、オゾン生成装置10からのオゾンガスを、第1の流路を介して供給対象物に供給する状態に切り替える(工程(S40))。具体的には、図1を参照して、弁68、弁72および弁73が閉の状態とされるとともに、弁67、弁69A、弁71Aおよび弁75が開の状態とされる。他の弁については、工程(S10)と同じ状態が維持される。これにより、オゾン生成装置10から吐出されたオゾンガスは、図1を参照して、第1の流路を構成する配管85、配管86、配管91A、配管92A、配管96および配管102を介して供給対象物に供給される。
 上記電極の加熱による五酸化二窒素の除去(工程(T20))は、第1の流路を介したオゾンガスの供給(工程(S40))の開始と同時に、または開始後に実施される。工程(T20)は、電極(第1電極12および第2電極14)を五酸化二窒素が気化する温度以上の温度に加熱することにより実施することができる。電極の加熱は、たとえば第1電極12と第2電極14との間の電圧を上昇させること、および第1電極12と第2電極14との間の電流を上昇させること、のうち一方または両方を実施することにより達成することができる。電極の加熱により、オゾン生成装置10内でのオゾンの発生効率が変化する場合がある。これに対応して、オゾン生成装置10に流入する原料ガス(酸素ガスを主成分とするガス)の成分組成、流量などを変化させてもよい。
 第1の流路を介してオゾンガスが供給される工程(S40)では、オゾン生成装置10から吐出されたオゾンガスが、シリカゲルからなる吸着剤29を保持する第1除去筒20A内に流入する。オゾンガスに含まれる窒素酸化物は、吸着剤29(第1吸着剤)に吸着され、窒素酸化物の濃度が低下したオゾンガスが第1除去筒20Aから吐出される(工程(U10))。そして、第1除去筒20Aから吐出されたオゾンガスは、配管92A、配管96および配管102を介して供給対象物に供給される。このように、電極が加熱される工程(T20)が実施されることによりオゾンガスに含まれる窒素酸化物の濃度が上昇するものの、第1の流路を介してオゾンガスが供給される状態に切り替えられ(工程(S40))、オゾン生成装置10から吐出されたオゾンガスが第1除去筒20Aに流入して窒素酸化物が吸着されることにより(工程(U10))、窒素酸化物の濃度が低下したオゾンガスが供給対象物に供給される。
 図1および図5を参照して、オゾン生成装置10の電極の加熱が開始された後、オゾン濃度検知部30は、オゾンガスの濃度が予め定められた濃度の範囲内に回復したかどうかを監視する(工程(T30))。オゾンガスの濃度が予め定められた濃度の範囲内となっていない場合(工程(T30)においてNO)、引き続き電極が加熱される。図1および図4を参照して、第1の流路を介したオゾンガスの供給が開始された後、窒素酸化物の濃度上昇の原因が除去されたかどうかが監視される(工程(S50))。窒素酸化物の濃度上昇の原因である電極の加熱が継続している場合(工程(S50)においてNO)、供給対象物へのオゾンガスの供給が終了したかどうかが判断される(工程(S60))。供給対象物へのオゾンガスの供給が終了した場合(工程(S60)においてYES)、オゾン供給システム1の運転は停止され、オゾンガスの供給は終了する。供給対象物へのオゾンガスの供給が終了していない場合(工程(S60)においてNOの場合)、第1の流路を介したオゾンガスの供給が継続される。
 時刻t~tにおいては、このように工程(S40)~(S60)、工程(T20)~(T30)が繰り返して実施されるとともに、工程(U10)が実施される。
 (3)時刻t~t
 図7を参照して、時刻t~tの間は、オゾンガスの供給経路の制御において工程(S10)~(S30)が繰り返される。オゾン生成装置においては工程(T10)が繰り返される。時刻t~tの間は、除去筒において工程(U20)~(U40)が実施される。
 図1、図4および図5を参照して、時刻tにおいて、オゾンガスの濃度が予め定められた濃度の範囲内となったことをオゾン濃度検知部30が検知すると(工程(T30)においてYES)、オゾン生成装置10の電極(図2参照)に付着した五酸化二窒素が十分に除去されたものと考えられる。そのため、電極の加熱を終了する。その後、再度工程(T10)に戻ってオゾンの濃度が監視される。以後、時刻t~tの場合と同様に、時刻tまで工程(T10)が繰り返して実施される。
 窒素酸化物の濃度上昇の原因である電極の加熱が終了すると(工程(S50)においてYES)、制御部40は、弁を制御してオゾン生成装置10からのオゾンガスが第2の流路を介して供給対象物に供給される状態に切り替える。その後、時刻t~tの場合と同様に、時刻tまで工程(S10)~(S30)が繰り返して実施される。
 一方、時刻tと同時または時刻tよりも後であって時刻tよりも前である時刻tにおいて、除去筒(第1除去筒20A)では、吸着剤(第1吸着剤29)の窒素酸化物の吸着能の回復が必要かどうかが判断される(工程(U20))。除去筒の稼働履歴等を考慮して吸着能が十分に残存しており、回復が不要であると判断された場合(工程(U20)においてNO)、除去筒は待機状態となる。一方、工程(U20)において回復が必要であると判断された場合、工程(U30)として吸着剤(第1吸着剤29)の窒素酸化物吸着能を回復させる工程が実施される。この工程(U30)では、第1除去筒20Aの第1吸着剤29を加熱しつつ第1除去筒20A内にパージガスを導入して第1吸着剤29に吸着した窒素酸化物を離脱させてパージガスにより第1除去筒20Aの外部へと排出することにより、第1吸着剤29の窒素酸化物吸着能を回復させる。
 具体的には、図1を参照して、弁65、弁66、弁69A、弁71Aおよび弁74が開の状態とされる。これにより、酸素源51から供給される酸素ガスが、配管80および配管89を介して第3マスフローコントローラ58に到達する。第3マスフローコントローラ58において所望の流量に調整された酸素ガスは、配管99および配管91Aを介してパージガスとして第1除去筒20A内に流入する。図3を参照して、工程(U30)では、第1除去筒20A内に保持される第1吸着剤29がリボンヒータ22により加熱される。第1吸着剤29の加熱温度は温度センサ24により監視される。これにより、第1吸着剤29に吸着された窒素酸化物が離脱し、パージガスである酸素ガスとともに第1除去筒20Aから配管92Aを介して排出される。そして、配管92Aに排出された窒素酸化物を含む排気ガスは、排気管である配管101を介して排気部へと送られる。このようにして、第1吸着剤29の窒素酸化物吸着能が回復し、工程(U30)が完了する。
 次に、除去筒(第1除去筒20A)では、工程(U40)として第1吸着剤29のオゾン吸着能を抑制する処理が実施される。この工程(U40)では、オゾン生成装置10からのオゾンガスの一部を第1除去筒20Aに導入することにより第1吸着剤にオゾンガスを吸着させ、第1吸着剤のオゾン吸着能を抑制する。
 具体的には、図1を参照して、まず、弁65および弁66が閉の状態とされる。これにより、第1除去筒20Aへのパージガスとしての酸素ガスの供給が停止する。その後、弁67が開の状態とされる。これにより、オゾン生成装置10から吐出されるオゾンガスの一部が配管86および配管91Aを介して第1除去筒20Aに流入する。第1除去筒20Aに流入したオゾンガスは第1吸着剤29に吸着される。その結果、第1吸着剤29のオゾン吸着能が抑制される。その後、第1除去筒20A内のオゾンガスは、配管92Aおよび配管101を介して排気部へと排出される。
 ここで、第1除去筒20Aに導入されるオゾンガスの流量は、オゾン生成装置10から吐出されるオゾンガスの流量のうち10%以下とすることが好ましく、さらには5%以下とすることが好ましい。このようにすることにより、供給対象物に供給されるオゾンガスの流量の変動を抑制することが容易となる。また、工程(U40)において第1除去筒20Aに導入されたオゾンガスは、配管96および配管102を介して供給対象物に供給されてもよい。すなわち、弁74を閉の状態とするとともに弁75を開の状態としてもよい。供給対象物へと供給されるオゾンガスの濃度をより安定させる観点からは、上述のように工程(U40)において第1除去筒20Aに導入されたオゾンガスは配管101を介して排気部に流され、供給対象物に供給されないことが好ましい。
 図7を参照して、時刻tよりも後であって時刻tと同時または時刻tよりも前である時刻tの時点で、上記工程(U40)が完了する。具体的には、図1を参照して、弁67、弁69A、弁71Aおよび弁74が閉の状態とされる。そして、時刻t~tの間、第1除去筒20Aは待機状態となる。すなわち、時刻t~tの間は、上記時刻t~tの間と同様に、オゾンガスの供給経路の制御において工程(S10)~(S30)が繰り返して実施されるとともに、オゾン生成装置において工程(T10)が繰り返して実施される。第1の流路に設置された第1除去筒20Aは、待機状態となっている。そして、オゾンガスの濃度が予め定められた濃度の範囲外となったことをオゾン濃度検知部30が検知した時点を時刻tとして、以後、上記制御が繰り返される。
 本実施の形態のオゾンガスの供給方法では、オゾン生成装置10からのオゾンガスを第2の流路を介して供給する工程(S10~S30;時刻t~t)が、第1の流路に設置された第1除去筒20A内の第1吸着剤のオゾン吸着能を抑制する工程(U40;時刻t~t)を含む。そして、オゾン生成装置10からのオゾンガスを第1の流路を介して供給する工程(S40~S60;時刻t~t)では、第1吸着剤のオゾン吸着能を抑制する工程(U40;時刻t~t)においてオゾン吸着能が抑制された第1吸着剤を保持する第1除去筒20Aをオゾンガスが通過する。そのため、第1吸着剤にオゾンガスが吸着されることが抑制され、オゾンガスの濃度が安定する。このように、本実施の形態のオゾンガスの供給方法によれば、窒素酸化物が除去されたオゾンガスを安定した濃度で供給対象物に供給することができる。
 さらに、本実施の形態のオゾンガスの供給方法では、オゾン生成装置10からのオゾンガスを第2の流路を介して供給する工程(S10~S30;時刻t~t)は、第1吸着剤29のオゾン吸着能を抑制する工程(U40;時刻t~t)の前に、第1除去筒20A内の第1吸着剤29を加熱しつつ第1除去筒20A内にパージガスを導入して第1吸着剤29に吸着した窒素酸化物を離脱させてパージガスにより第1除去筒20Aの外部へと排出することにより、第1吸着剤29の窒素酸化物吸着能を回復させる工程をさらに含んでいる(U30;時刻t~t)。
 第1吸着剤29の窒素酸化物吸着能を回復させる工程(U30)が実施された後に第1吸着剤29のオゾン吸着能を抑制する工程(U40)が実施されることにより、第1吸着剤29が十分な窒素酸化物吸着能を有し、かつオゾン吸着能が抑制された状態で、オゾンガスが第1の流路を介して供給対象物に供給される状態に切り替えられる。
 工程(U40)は、オゾン濃度検知部30が窒素酸化物濃度上昇情報を出力し、制御部40がこれを検知すると同時に、または検知した後に実施されてもよい。
 (実施の形態2)
 1.オゾンガスの供給システムの構成
 実施の形態2におけるオゾンガスの供給システムは、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態2においては、第2の流路にも吸着剤を保持する容器が設置されている点において、実施の形態1の場合とは異なっている。以下、実施の形態1の場合とは異なる点について説明する。
 図8を参照して、実施の形態2におけるオゾン供給システム1は、第2容器としての第2除去筒20Bを備える。
 配管99の弁66が設置される位置と第3マスフローコントローラ58に接続される位置との間に、配管88が接続されている。配管88には、弁70が設置されている。そして、配管88および配管87は、配管91Bに接続されている。配管91Bには、弁69Bが設置されている。配管91Bは、第2除去筒20Bに接続されている。配管91Bは、オゾンガスおよびパージガスとしての酸素ガスの第2除去筒20Bへの流入路である。配管80、配管89、配管99、配管88および配管91Bは、第2除去筒20Bへのパージガス流入路を構成する。第2除去筒20Bには、配管92Bが接続されている。配管92Bは、第2除去筒20Bからのオゾンガスおよびパージガスとしての酸素ガスの流出路である。配管92Bには、弁71Bが設置されている。第2除去筒20Bは、上記第1除去筒20Aと同様の構成を有し、同様に動作する。
 配管92Bには、配管97と、配管98とが接続されている。配管97には弁76が設置されている。配管97は、排気部に接続された配管101に接続されている。配管97は、不要なガスをオゾン供給システム1から排出する排気管である。配管98には、弁77が設置されている。配管98は、配管102に接続されている。配管92B、配管97および配管101は、パージガス排出路を構成する。配管85、配管87、配管91B、配管92B、配管98および配管102は、第2の流路を構成する。
 2.オゾンガスの供給方法
 次に、図8~図10、図5および図6を参照して、本発明の実施の形態2におけるオゾンガスの供給方法ついて説明する。図9は、実施の形態2におけるオゾンガスの供給経路の制御の一例を示すフローチャートである。図10は、実施の形態2におけるオゾンガスの供給手順の一例を示すタイミングチャートである。
 (1)時刻t11~t12
 図10を参照して、時刻t11~t12の間は、オゾンガスの供給経路の制御において工程(S110)~(S130)が繰り返されるとともに、オゾン生成装置においては工程(T10)が実施される。第1除去筒20Aは待機状態となっている。第2除去筒20Bにおいては工程(U10)が実施される。
 具体的には、図9を参照して、オゾンガスの供給経路の制御において、まず工程(S110)として、オゾン生成装置10からのオゾンガスを第2の流路を介して供給対象物に供給する工程が実施される。この工程(S110)では、図8を参照して、制御部40による制御によって、弁61~64,68,69B,71B,77,78が開の状態とされ、他の弁が閉の状態とされる。オゾン生成装置10では、上記実施の形態1の場合と同様にオゾンガスが生成され、第2の流路を構成する配管85、配管87、配管91B、配管92B、配管98および配管102を介して供給対象物に供給される。
 そして、図9を参照して、供給対象物へのオゾンガスの供給が終了した場合(工程(S120)においてYESの)、オゾン供給システム1の運転は停止され、オゾンガスの供給は終了する。供給対象物へのオゾンガスの供給が終了していない場合(工程(S120)においてNO)、オゾン生成装置10からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングの情報である窒素酸化物濃度上昇情報を検知したかどうかが実施の形態1の場合と同様に確認される(工程(S130))。窒素酸化物濃度上昇情報が検知されない場合(工程(S130)においてNO)、オゾンガスが第2の流路を介して供給対象物に引き続き供給される。オゾン濃度検知部30は、オゾン生成装置10内で発生するオゾンの濃度を引き続き検知する。
 オゾンガスを第2の流路を介して供給対象物に供給される時刻t11~t12の間、オゾン生成装置10から吐出されたオゾンガスが、シリカゲルからなる吸着剤29を保持する第2除去筒20B内に流入する。第2除去筒20Bは、図3に基づいて説明した第1除去筒20Aと同様の構造を有している。オゾンガスに含まれる窒素酸化物は、吸着剤29(第2吸着剤)に吸着され、窒素酸化物の濃度が低下したオゾンガスが第2除去筒20Bから吐出される(工程(U10))。そして、第2除去筒20Bから吐出されたオゾンガスは、配管92B、配管98および配管102を介して供給対象物に供給される。このように、オゾン生成装置10から吐出されたオゾンガスが第2除去筒20Bに流入して窒素酸化物が吸着されることにより(工程(U10))、窒素酸化物の濃度が低下したオゾンガスが供給対象物に供給される。
 時刻t11~t12においては、このように工程(S110)~(S130)が繰り返して実施されるとともに、工程(T10)が繰り返して実施される。また、第2の流路に設置された第2除去筒20Bにおいては、工程(U10)が実施される。
 (2)時刻t12~t16
 図10を参照して、時刻t12~t16の間は、オゾンガスの供給経路の制御において工程(S140)~(S160)が繰り返される。オゾン生成装置においては、時刻t12~t14の間に工程(T20)~(T30)が繰り返された後、時刻t14~t16の間に工程(T10)が繰り返して実施される。第1除去筒では、時刻t12~t16の間、工程(U10)が実施される。第2除去筒では、時刻t13~t15の間に工程(U20)~(U40)が実施される。
 図8、図9および図5を参照して、時刻t12において、オゾンガスの濃度が予め定められた濃度の範囲外となったことをオゾン濃度検知部30が検知すると、たとえばオゾンガスの濃度が予め定められた濃度の範囲よりも低くなると(工程(T10)においてYES)、実施の形態1の場合と同様に、オゾン濃度検知部30は窒素酸化物濃度上昇情報を出力し、制御部40がこれを検知する(工程(S130)においてYES)。制御部40は、窒素酸化物濃度上昇情報に基づいて、オゾン生成装置10からのオゾンガスを、第1の流路を介して供給対象物に供給する状態に切り替える(工程(S140))。具体的には、図8を参照して、弁68、弁69B、弁71Bおよび弁77が閉の状態とされるとともに、弁67、弁69A、弁71Aおよび弁75が開の状態とされる。他の弁については、工程(S110)と同じ状態が維持される。これにより、オゾン生成装置10から吐出されたオゾンガスは、図8を参照して、第1の流路を構成する配管85、配管86、配管91A、配管92A、配管96および配管102を介して供給対象物に供給される。
 第1の流路を介したオゾンガスの供給(工程(S140))の開始と同時に、または開始後に、オゾン生成装置10内の電極が加熱されて五酸化二窒素が除去される(工程(T20))。上記電極の加熱による五酸化二窒素の除去(工程(T20))は、上記実施の形態1の場合と同様に実施される。
 第1の流路を介してオゾンガスが供給される工程(S140)では、オゾン生成装置10から吐出されたオゾンガスが、シリカゲルからなる吸着剤29を保持する第1除去筒20A内に流入する。オゾンガスに含まれる窒素酸化物は、吸着剤29(第1吸着剤)に吸着され、窒素酸化物の濃度が低下したオゾンガスが第1除去筒20Aから吐出される(工程(U10))。そして、第1除去筒20Aから吐出されたオゾンガスは、配管92A、配管96および配管102を介して供給対象物に供給される。このように、電極が加熱される工程(T20)が実施されることによりオゾンガスに含まれる窒素酸化物の濃度が上昇するものの、第1の流路を介してオゾンガスが供給される状態に切り替えられ(工程(S140))、オゾン生成装置10から吐出されたオゾンガスが第1除去筒20Aに流入して窒素酸化物が吸着されることにより(工程(U10))、窒素酸化物の濃度が低下したオゾンガスが供給対象物に供給される。
 図8および図5を参照して、オゾン生成装置10の電極の加熱が開始された後、オゾン濃度検知部30は、オゾンガスの濃度が予め定められた濃度の範囲内に回復したかどうかを監視する(工程(T30))。オゾンガスの濃度が予め定められた濃度の範囲内となっていない場合(工程(T30)においてNO)、引き続き電極が加熱される。そして、時刻t14において、オゾンガスの濃度が予め定められた濃度の範囲内となったことをオゾン濃度検知部30が検知すると(工程(T30)においてYES)、電極の加熱を終了する。その後、再度工程(T10)に戻ってオゾンの濃度が監視される。以後、時刻t11~t12の場合と同様に、時刻t16まで工程(T10)が繰り返して実施される。
 図8および図9を参照して、第1の流路を介したオゾンガスの供給が開始された後、窒素酸化物濃度上昇情報を検知したかどうかが確認される(工程(S150))。窒素酸化物濃度上昇情報が検知されない場合(工程(S150)においてNO)、供給対象物へのオゾンガスの供給が終了したかどうかが確認される(工程(S160))。供給対象物へのオゾンガスの供給が終了した場合(工程(S160)においてYES)、オゾン供給システム1の運転は停止され、オゾンガスの供給は終了する。供給対象物へのオゾンガスの供給が終了していない場合(工程(S160)においてNO)、オゾンガスが第1の流路を介して供給対象物に引き続き供給される。オゾン濃度検知部30は、オゾン生成装置10内で発生するオゾンの濃度を引き続き検知する。
 一方、時刻t12と同時または時刻t12よりも後であって時刻t16よりも前である時刻t13において、第2除去筒20Bでは、第2吸着剤(吸着剤29)の窒素酸化物の吸着能の回復が必要かどうかが判断される(工程(U20))。第2除去筒20Bの稼働履歴等を考慮して吸着能が十分に残存しており、回復が不要であると判断された場合(工程(U20)においてNO)、第2除去筒20Bは待機状態となる。一方、工程(U20)において回復が必要であると判断された場合、工程(U30)として吸着剤29(第2吸着剤)の窒素酸化物吸着能を回復させる工程が実施される。この工程(U30)では、第2除去筒20Bの吸着剤29(第2吸着剤)を加熱しつつ第2除去筒20B内にパージガスを導入して吸着剤29に吸着した窒素酸化物を離脱させてパージガスにより第2除去筒20Bの外部へと排出することにより、吸着剤29の窒素酸化物吸着能を回復させる。第2除去筒20Bの吸着剤29(第2吸着剤)の窒素酸化物吸着能の回復は、上記実施の形態1の第1吸着剤の場合と同様の手順で実施することができる。
 次に、第2除去筒20Bでは、工程(U40)として吸着剤29(第2吸着剤)のオゾン吸着能を抑制する処理が実施される。この工程(U40)では、オゾン生成装置10からのオゾンガスの一部を第2除去筒20Bに導入することにより第2吸着剤にオゾンガスを吸着させ、第2吸着剤(吸着剤29)のオゾン吸着能を抑制する。第2吸着剤のオゾン吸着能の抑制は、上記実施の形態1の第1吸着剤の場合と同様の手順で実施することができる。
 図10を参照して、時刻t13および時刻t14よりも後であって時刻t16と同時または時刻t16よりも前である時刻t15の時点で、上記工程(U40)が完了する。具体的には、図8を参照して、弁68、弁69B、弁71Bおよび弁76が閉の状態とされる。そして、時刻t15~t16の間、第2除去筒20Bは待機状態となる。
 (3)時刻t16~t20
 図10を参照して、時刻t16~t20の間は、オゾンガスの供給経路の制御において工程(S110)~(S130)が繰り返される。オゾン生成装置においては、時刻t16~t18の間に工程(T20)~(T30)が繰り返された後、時刻t18~t20の間に工程(T10)が繰り返して実施される。第1除去筒では、時刻t17~t19の間に工程(U20)~(U40)が実施される。第2除去筒では、時刻t16~t20の間、工程(U10)が実施される。
 図8、図9および図5を参照して、時刻t16において、オゾンガスの濃度が予め定められた濃度の範囲外となったことをオゾン濃度検知部30が検知すると、たとえばオゾンガスの濃度が予め定められた濃度の範囲よりも低くなると(工程(T10)においてYES)、実施の形態1の場合と同様に、オゾン濃度検知部30は窒素酸化物濃度上昇情報を出力し、制御部40がこれを検知する(工程(S150)においてYES)。制御部40は、窒素酸化物濃度上昇情報に基づいて、オゾン生成装置10からのオゾンガスを、第2の流路を介して供給対象物に供給する状態に切り替える(工程(S110))。具体的には、図8を参照して、弁67、弁69A、弁71Aおよび弁75が閉の状態とされるとともに、弁68、弁69B、弁71Bおよび弁77が開の状態とされる。他の弁については、工程(S140)と同じ状態が維持される。これにより、オゾン生成装置10から吐出されたオゾンガスは、図8を参照して、第2の流路を構成する配管85、配管87、配管91B、配管92B、配管98および配管102を介して供給対象物に供給される。
 第2の流路を介したオゾンガスの供給(工程(S110))の開始と同時に、または開始後に、オゾン生成装置10内の電極が加熱されて五酸化二窒素が除去される(工程(T20))。上記電極の加熱による五酸化二窒素の除去(工程(T20))は、上記実施の形態1の場合と同様に実施される。
 第2の流路を介してオゾンガスが供給される工程(S110)では、オゾン生成装置10から吐出されたオゾンガスが、シリカゲルからなる吸着剤29を保持する除去筒(第2除去筒20B)内に流入する。オゾンガスに含まれる窒素酸化物は、吸着剤29(第2吸着剤)に吸着され、窒素酸化物の濃度が低下したオゾンガスが第2除去筒20Bから吐出される(工程(U10))。そして、第2除去筒20Bから吐出されたオゾンガスは、配管92B、配管98および配管102を介して供給対象物に供給される。このように、電極が加熱される工程(T20)が実施されることによりオゾンガスに含まれる窒素酸化物の濃度が上昇するものの、第2の流路を介してオゾンガスが供給される状態に切り替えられ(工程(S110))、オゾン生成装置10から吐出されたオゾンガスが第2除去筒20Bに流入して窒素酸化物が吸着されることにより(工程(U10))、窒素酸化物の濃度が低下したオゾンガスが供給対象物に供給される。
 図8および図5を参照して、オゾン生成装置10の電極の加熱が開始された後、オゾン濃度検知部30は、オゾンガスの濃度が予め定められた濃度の範囲内に回復したかどうかを監視する(工程(T30))。オゾンガスの濃度が予め定められた濃度の範囲内となっていない場合(工程(T30)においてNO)、引き続き電極が加熱される。そして、時刻t18において、オゾンガスの濃度が予め定められた濃度の範囲内となったことをオゾン濃度検知部30が検知すると(工程(T30)においてYES)、電極の加熱を終了する。その後、再度工程(T10)に戻ってオゾンの濃度が監視される。以後、時刻t11~t12の場合と同様に、時刻t20まで工程(T10)が繰り返して実施される。
 図8および図9を参照して、第2の流路を介したオゾンガスの供給が開始された後、供給対象物へのオゾンガスの供給が終了したかどうかが確認される(工程(S120))。供給対象物へのオゾンガスの供給が終了した場合(工程(S120)においてYES)、オゾン供給システム1の運転は停止され、オゾンガスの供給は終了する。供給対象物へのオゾンガスの供給が終了していない場合(工程(S120)においてNO)、窒素酸化物濃度上昇情報を検知したかどうかが確認される(工程(S130))。窒素酸化物濃度上昇情報が検知されない場合(工程(S130)においてNO)、オゾンガスが第2の流路を介して供給対象物に引き続き供給される。オゾン濃度検知部30は、オゾン生成装置10内で発生するオゾンの濃度を引き続き検知する。
 一方、時刻t16と同時または時刻t16よりも後であって時刻t20よりも前である時刻t17において、第1除去筒20Aでは、第1吸着剤(吸着剤29)の窒素酸化物の吸着能の回復が必要かどうかが判断される(工程(U20))。第1除去筒20Aの稼働履歴等を考慮して吸着能が十分に残存しており、回復が不要であると判断された場合(工程(U20)においてNO)、第1除去筒20Aは待機状態となる。一方、工程(U20)において回復が必要であると判断された場合(工程(U20)においてYES)、工程(U30)として吸着剤29(第1吸着剤)の窒素酸化物吸着能を回復させる工程が実施される。この工程(U30)では、第1除去筒20Aの吸着剤29(第1吸着剤)を加熱しつつ第1除去筒20A内にパージガスを導入して吸着剤29に吸着した窒素酸化物を離脱させてパージガスにより第1除去筒20Aの外部へと排出することにより、吸着剤29の窒素酸化物吸着能を回復させる。第1除去筒20Aの吸着剤29(第1吸着剤)の窒素酸化物吸着能の回復は、上記実施の形態1の場合と同様の手順で実施することができる。
 次に、第1除去筒20Aでは、工程(U40)として吸着剤29(第1吸着剤)のオゾン吸着能を抑制する処理が実施される。この工程(U40)では、オゾン生成装置10からのオゾンガスの一部を第1除去筒20Aに導入することにより第1吸着剤29にオゾンガスを吸着させ、第1吸着剤(吸着剤29)のオゾン吸着能を抑制する。第1吸着剤のオゾン吸着能の抑制は、上記実施の形態1の場合と同様の手順で実施することができる。
 図10を参照して、時刻t17および時刻t18よりも後であって時刻t20と同時または時刻t20よりも前である時刻t19の時点で、上記工程(U40)が完了する。具体的には、図8を参照して、弁67、弁69A、弁71Aおよび弁74が閉の状態とされる。そして、時刻t19~t20の間、第1除去筒20Aは待機状態となる。すなわち、時刻t19~t20の間は、上記時刻t11~t12の間と同様に、オゾンガスの供給経路の制御において工程(S110)~(S130)が繰り返して実施されるとともに、オゾン生成装置において工程(T10)が繰り返して実施される。第1の流路に設置された第1除去筒20Aは、待機状態となっている。第2の流路に設置された第2除去筒20Bでは、工程(U10)が実施される。そして、オゾンガスの濃度が予め定められた濃度の範囲外となったことをオゾン濃度検知部30が検知した時点を時刻t12として、以後、上記制御が繰り返される。
 本実施の形態のオゾンガスの供給方法では、オゾン生成装置10からのオゾンガスを第2の流路を介して供給する工程(S110~S130;時刻t16~t20)が、第1の流路に設置された第1除去筒20A内の第1吸着剤のオゾン吸着能を抑制する工程(U40;時刻t17~t19)を含む。そして、オゾン生成装置10からのオゾンガスを第1の流路を介して供給する工程(S140~S160;時刻t12~t16)では、第1吸着剤のオゾン吸着能を抑制する工程(U40;時刻t17~t19)においてオゾン吸着能が抑制された第1吸着剤を保持する第1除去筒20Aをオゾンガスが通過する。そのため、第1吸着剤にオゾンガスが吸着されることが抑制され、オゾンガスの濃度が安定する。また、本実施の形態のオゾンガスの供給方法では、オゾン生成装置10からのオゾンガスを第1の流路を介して供給する工程(S140~S160;時刻t12~t16)が、第2の流路に設置された第2除去筒20B内の第2吸着剤のオゾン吸着能を抑制する工程(U40;時刻t13~t15)を含む。そして、オゾン生成装置10からのオゾンガスを第2の流路を介して供給する工程(S110~S130;時刻t16~t20)では、第2吸着剤のオゾン吸着能を抑制する工程(U40;時刻t13~t15)においてオゾン吸着能が抑制された第2吸着剤を保持する第2除去筒20Bをオゾンガスが通過する。そのため、第2吸着剤にオゾンガスが吸着されることが抑制され、オゾンガスの濃度が安定する。このように、本実施の形態のオゾンガスの供給方法によれば、窒素酸化物が除去されたオゾンガスを安定した濃度で供給対象物に供給することができる。
 なお、上記実施の形態2において、第1の流路および第2の流路の一方から他方への切り替えは、他方に設置された除去筒が待機状態になっていることが確認された後に実施されることが好ましい。
 (実施の形態3)
 次に、他の実施の形態である実施の形態3におけるオゾンガスの供給システムについて説明する。実施の形態3におけるオゾンガスの供給システムは、基本的には上記実施の形態2の場合と同様の構造を有し、同様の効果を奏する。しかし、実施の形態3のオゾンガスの供給システムは、緩衝容器を有する点において実施の形態2の場合とは異なっている。
 図11を参照して、実施の形態3のオゾン供給システム1の配管102には、オゾンガスの濃度を平準化する緩衝容器としての緩衝筒105が配置されている。緩衝筒105の内部には、オゾンガスを吸着および脱着する材料であるシリカゲルが充填されていてもよいし、充填されていなくてもよい。緩衝筒105を配置することにより、安定した濃度のオゾンガスを供給対象物に供給することができる。
 上記実施の形態において待機状態とは、オゾン吸着能の抑制処理(U40)が実施され、かつ十分な窒素酸化物の除去能が確保された状態をいう。より具体的には、窒素酸化物の吸着能の回復処理(U30)およびオゾン吸着能の抑制処理(U40)が実施され、窒素酸化物の吸着能が十分に残存し、かつオゾン吸着能が抑制されている状態をいう。
 上記実施の形態では、第1の流路および第2の流路の2つの流路が切り替えられて制御される場合について説明したが、本発明のオゾンガスの供給方法およびオゾンガスの供給システムはこのような構成に限られない。たとえば、さらに第3の流路を含む3以上の流路が切り替えられて制御されてもよい。具体的には、たとえば第3吸着剤を保持する第3除去筒(第3容器)が設置された第3の流路が存在していてもよい。このようにすることにより、吸着剤の窒素酸化物吸着能の回復やオゾン吸着能の抑制を実施するための時間を確保することが容易となる。そのため、第1の流路と第2の流路とが交互に稼働する場合に比べて、安定した稼働が可能となる。また、上記実施の形態では、オゾンガス源(オゾン生成装置10)の電極に付着した窒素酸化物が除去される際にオゾンガスに含まれる窒素酸化物の濃度が上昇する場合を例として説明したが、本発明のオゾンガスの供給方法およびオゾンガスの供給システムの適用対象はこれに限られない。たとえば、オゾンガス源の下流側の配管(周辺配管)に付着した窒素酸化物が除去される際にオゾンガスに含まれる窒素酸化物の濃度が上昇する場合など、さまざまな原因によってオゾンガスに含まれる窒素酸化物の濃度が上昇する場合に、本発明のオゾンガスの供給方法およびオゾンガスの供給システムを適用することができる。
 (実施の形態4)
1.本実施の形態のオゾンガス供給装置および窒素酸化物除去装置の構成
 図12は、実施の形態4におけるオゾンガス供給装置および窒素酸化物除去装置の構成の一例を示す概略図である。図12においては、配管による接続が実線で示され、電気的接続が破線で示されている。図12を参照して、オゾンガス供給装置400は、微量の窒素ガスを添加した酸素ガスを原料としてオゾンガスを生成し、これを供給する装置である。オゾンガス供給装置400は、オゾン生成部としてのオゾン生成装置230と、オゾン生成装置230に接続され、オゾン生成装置230において生成された窒素酸化物を含むオゾンガスから窒素酸化物を除去する窒素酸化物除去装置300と、を備えている。オゾンガス供給装置400は、さらに酸素流量調整部243と、窒素流量調整部244と、パージガス流量調整部249と、プロセスライン(図示しない)に接続された配管217と、排出口(図示しない)に接続された配管222と、を備える。
 オゾン生成装置230は、合流管206および酸素ガス配管202を介して酸素を保持する酸素源としての酸素ガス貯蔵部241に接続されている。また、オゾン生成装置230は、合流管206および窒素ガス配管203を介して窒素を保持する窒素源としての窒素ガス貯蔵部242に接続されている。酸素ガス配管202および窒素ガス配管203は、合流管206に接続されている。酸素ガス配管202には、酸素流量調整部243が設置されている。酸素流量調整部243は、たとえばマスフローコントローラである。酸素流量調整部243は、酸素ガス配管202から合流管206へと流れる酸素ガスの流量を調整する。酸素ガス配管202において酸素ガス貯蔵部241と酸素流量調整部243とを接続する領域には、バルブ245が設置されている。また、酸素ガス配管202において酸素流量調整部243と合流管206とを接続する領域には、バルブ247が設置されている。酸素ガス配管202においてバルブ245と酸素流量調整部243との間には、パージ用酸素ガス配管208が接続される。パージ用酸素ガス配管208には、パージガス流量調整部249が設置される。パージガス流量調整部249は、たとえばマスフローコントローラである。
 窒素ガス配管203には、窒素流量調整部244が設置されている。窒素流量調整部244は、たとえばマスフローコントローラである。窒素流量調整部244は、窒素ガス配管203から合流管206へと流れる窒素ガスの流量を調整する。窒素ガス配管203において窒素ガス貯蔵部242と窒素流量調整部244とを接続する領域には、バルブ246が設置されている。また、窒素ガス配管203において窒素流量調整部244と合流管206とを接続する領域には、バルブ248が設置されている。オゾン生成装置230には、たとえば酸素ガスに数体積%未満の窒素ガスが添加された混合ガスが流入する。酸素ガスと窒素ガスとの混合比は、酸素流量調整部243および窒素流量調整部244において調整される。本実施の形態では、オゾン生成装置230には合流管206が接続され、合流管206を通って酸素ガスと窒素ガスとの混合ガスがオゾン生成装置230に流入する構造が採用されるが、酸素ガス配管202および窒素ガス配管203が直接オゾン生成装置230に接続されてもよい。
 オゾン生成装置230は、酸素を保持する酸素源である酸素ガス貯蔵部241および窒素を保持する窒素源である窒素ガス貯蔵部242から供給される酸素ガスおよび窒素ガスの混合ガス中における放電により窒素酸化物を含むオゾンガスを生成する。また、オゾン生成装置230にはオゾンガス輸送配管207が接続されている。オゾン生成装置230は、オゾンガス輸送配管207を介して窒素酸化物除去装置300と接続される。そして、オゾン生成装置230により生成されたオゾンガスがオゾンガス輸送配管207を介して窒素酸化物除去装置300に供給される。
 次に、窒素酸化物除去装置300について説明する。窒素酸化物除去装置300は、オゾンガスに含まれる窒素酸化物を除去する。窒素酸化物除去装置300は、シリカゲルからなる第1吸着剤209Aを保持する第1容器としての除去筒251と、シリカゲルからなる第2吸着剤209Bを保持する第2容器としての除去筒252と、除去筒251に接続され、オゾン生成装置230から除去筒251に流入するオゾンガスの流路を規定する第1オゾンガス配管211と、除去筒252に接続され、オゾン生成装置230から除去筒252に流入するオゾンガスの流路を規定する第2オゾンガス配管239と、第1オゾンガス配管211に設置された第1オゾンガスバルブ231と、第2オゾンガス配管239に設置された第2オゾンガスバルブ235と、を備える。さらに、窒素酸化物除去装置300は、除去筒251に接続され、除去筒251に流入するパージガスの流路を規定する第1パージガス配管212と、除去筒252に接続され、除去筒252に流入するパージガスの流路を規定する第2パ-ジガス配管240と、第1パージガス配管212に設置された第1パージガスバルブ232と、第2パージガス配管240に設置された第2パージガスバルブ236と、除去筒251に接続され、除去筒251から流出するガスの流路を規定する第1流出配管214と、除去筒252に接続され、除去筒252から流出するガスの流路を規定する第2流出配管223と、除去筒251内を加熱する第1加熱部としての温度調整部256Aと、除去筒252内を加熱する第2加熱部としての温度調整部256Bと、制御部260と、を備える。本実施の形態において、温度調整部256A,256Bは、リボンヒータである。窒素酸化物除去装置300は、パージ用酸素ガス配管208を介して酸素ガス配管202に接続されている。パージ用酸素ガス配管208は、第1パージガス配管212および第2パージガス配管240に接続されている。パージ用酸素ガス配管208は、酸素ガス貯蔵部241から第1パージガス配管212および第2パージガス配管240にパージガスとして流入する酸素ガスの流路を規定する。このように、オゾンガスの原料としての酸素ガスを保持する酸素ガス貯蔵部241がパージガスの供給源としても使用可能な構造が採用されることにより、設備の簡略化を図ることが可能となっている。
 次に除去筒251,252について説明する。除去筒251,252は、それぞれ内部に吸着剤209A,209Bを保持する。吸着剤209A,209Bを構成するシリカゲルは、たとえば純度99.99質量%以上に調整されている。除去筒251,252には、それぞれ温度を測定するための温度検出センサ255が設置されている。温度検出センサ255としては、たとえば熱電対、サーミスタなどを採用することができる。温度検出センサ255は、制御部260に接続され、除去筒251,252の内部の温度を検出する。
 除去筒251と除去筒252とは、同様の構成を有する。以下、除去筒251を例としてその構成を説明する。図13は、除去筒の概略的な構成を示す図である。図13を参照して、除去筒251は、両側の端部が円盤状の底壁部258,259により閉塞された中空円筒状の形状を有している。除去筒251の一方の底壁部258を貫通するように、ガスの進行方向Fに沿って流入するガスの流路となる合流管213が接続されている。また、除去筒251の他方の底壁部259にはガスの進行方向Fに沿って流出するガスの流路となる第1流出配管214が接続されている。除去筒251は、除去筒251内を加熱する温度調整部256Aを備える。温度調整部256Aであるリボンヒータは、除去筒251の外周表面に巻きつけられるように配置されている。温度調整部256Aは制御部260に接続され、制御部260からの指令に基づいて除去筒251の内部の温度を調整する。温度調整部256Aの外周を取り囲むように、断熱材を含むジャケット257Aが装着されている。ジャケット257Aが装着されることによって除去筒251を保温するとともに、除去筒251,252の一方の温度が他方の温度に影響することを抑制することができる。
 図12を参照して除去筒251には、第1オゾンガス配管211および第1パージガス配管212が合流管213を介して接続されている。第1オゾンガス配管211は、オゾンガス輸送配管207に接続され、オゾン生成装置230から除去筒251に流入するオゾンガスの流路を規定する。第1オゾンガス配管211には第1オゾンガスバルブ231が設置されている。第1パージガス配管212は、パージ用酸素ガス配管208に接続され、除去筒251に流入するパージガスの流路を規定する。第1パージガス配管212には第1パージガスバルブ232が設置されている。なお、第1オゾンガス配管211および第1パージガス配管212は、直接除去筒251に接続されてもよい。
 また、除去筒251には、第1流出配管214が接続されている。第1流出配管214は、除去筒251から流出するガスの流路を規定する。第1流出配管214は、配管215および配管216に接続されている。配管215は、図示しないプロセスラインに接続された配管217に接続されている。配管216は、図示しない排出口に接続された配管222に接続されている。配管215にはバルブ233が設置されている。配管216にはバルブ234が設置されている。
 除去筒252は、除去筒251と同様の構造を有している。そして、除去筒252には、除去筒251の第1吸着剤209Aに対応するシリカゲルからなる第2吸着剤209Bが保持されるとともに、第1オゾンガス配管211および第1パージガス配管212に接続された合流管213、第1流出配管214、温度調整部256Aおよびジャケット257Aにそれぞれ対応する第2オゾンガス配管239および第2パージガス配管240に接続された合流管218、第2流出配管223、温度調整部256B、ジャケット257Bが接続または設置されている。また、第2流出配管223は、配管220および配管221に接続されている。配管220は、図示しないプロセスラインに接続された配管217に接続されている。配管221は、図示しない排出口に接続された配管222に接続されている。配管220にはバルブ237が設置されている。配管221にはバルブ238が設置されている。
 なお、本実施の形態においては温度調整部256A,256Bがリボンヒータである場合について説明したが、温度調整部256A,256Bはリボンヒータと冷却部とを含むものであってもよい。すなわち、オゾンガス供給装置400に含まれる窒素酸化物除去装置300は、除去筒251内を冷却する第1冷却部としての温度調整部256Aと、除去筒252内を冷却する第2冷却部としての温度調整部256Bと、をさらに備えていてもよい。これにより、吸着剤209A,209Bから窒素酸化物を離脱させるために加熱された除去筒251,252内の冷却を効率よく行うことができるとともに、導入されたオゾンガス中の窒素酸化物を吸着剤209A,209Bに吸着させる工程を低温下で行うことが可能となる。
 次に、制御部260について説明する。図14は、窒素酸化物除去装置の概略的な電気的構成を示すブロック図である。制御部260は、除去筒251,252に設置される温度検出センサ255,255、温度調整部56(温度調整部256A,256B)、およびバルブ群262(バルブ231,232,233,234,235,236,237,238;図12参照)に接続されている。そして、制御部260は、バルブ群262の開閉制御および除去筒251,252の温度制御を行う。具体的には、図14を参照して、温度検出センサ255は、制御部260に接続されており、除去筒251,252の内部の温度を測定して、温度の情報を含む温度情報信号264を制御部260に出力する。制御部260は、温度情報信号264に基づいて温度制御情報信号265を出力する。そして、温度調整部56は、温度制御情報信号265に基づいて除去筒251,252の内部の温度を調整する。
 また、制御部260は、吸着剤209A,209Bへの窒素酸化物の吸着の状態を判断する吸着状態判断部261を含む。本実施の形態において、吸着状態判断部261は、オゾンガスが除去筒251,252に流入する時間や温度調整部256A,256Bによる加熱時間を計測するタイマーを含む。そして、吸着状態判断部261は、オゾンガスの流入時間や温度調整部256A,256Bによる加熱時間に基づいて吸着剤209A,209Bへの窒素酸化物の吸着の状態を判断する。制御部260は、吸着状態判断部261の判断の結果に基づいて、バルブ群262にバルブ開閉信号263を出力して、バルブ群262の開閉を制御する。
2.本実施の形態のオゾンガスの供給方法および窒素酸化物の除去方法
 次に、図12、図15、図16および図17を参照して、本発明の実施の形態4におけるオゾンガスの供給方法および窒素酸化物の除去方法について説明する。図15は、オゾンガス供給装置を用いたオゾンガスの供給方法の手順の一例を示すフローチャートである。また、図16は、窒素酸化物除去装置の除去筒を用いた窒素酸化物の除去方法の手順の一例を示すフローチャートである。また、図17は、実施の形態4における窒素酸化物除去工程の手順の一例を示すタイミングチャートである。図15を参照して、本実施の形態4におけるオゾンガスの供給方法は、オゾンガス準備工程(S210)と、窒素酸化物除去工程(S220)と、オゾンガス供給工程(S230)とを備える。
 (1)オゾンガス準備工程(S210)
 図15を参照して、本実施の形態4におけるオゾンガスの供給方法では、はじめにオゾンガス準備工程(S210)が実施される。本工程(S210)では、窒素酸化物を含むオゾンガスが準備される。
 図12を参照して、この工程(S210)では、バルブ245を開けて酸素ガス貯蔵部241から酸素ガスを流出させるとともに、バルブ246を開けて窒素ガス貯蔵部242から窒素ガスを流出させる。また、バルブ247およびバルブ248が開けられて、酸素流量調整部243にて流量が調整された酸素ガスと窒素流量調整部244にて流量が調整された窒素ガスとが合流管206において合流して混合ガスとなり、当該混合ガスがオゾン生成装置230に導入される。具体的には、酸素ガスに、たとえば数体積%未満の窒素ガスが添加された混合ガスが合流管206から原料ガスとしてオゾン生成装置230に導入される。そして、この混合ガス中における放電により窒素酸化物を含むオゾンガスがオゾン生成装置230により生成される(S210)。
 より詳細に説明すると、オゾン生成装置230では、放電により原料となる酸素ガスからオゾンガスが生成されると同時に、式(1)に示すように、酸素ガスに添加された窒素ガスの一部(添加した窒素ガス中の数%)が二酸化窒素(NO)となる。次に式(2)に示すように、二酸化窒素とオゾンガスとの反応により五酸化二窒素(N)が生成される。また、式(3)に示すように、水分と五酸化二窒素との反応によって硝酸(HNO)が生成する。このようにして生成する五酸化二窒素および硝酸を除去することにより、配管の腐食を抑制することができる。本実施の形態においては、シリカゲルからなる吸着剤209A,209Bにより五酸化二窒素および硝酸を除去する。
  NO+O→NO+O  ・・・(1)
  2NO+O→N+O・・・(2)
  N+HO→2HNO ・・・(3)
 (2)窒素酸化物除去工程(S220)
 次に、窒素酸化物除去工程(S220)が実施される。この工程(S220)では、除去筒251と除去筒252とにおいてタイミングをずらすことで交互に窒素酸化物の除去と吸着剤の再生とが実施される。図16は、各除去筒251,252での窒素酸化物の除去および吸着剤の再生の手順を示す。図16を参照して、各除去筒251,252での窒素酸化物の除去および吸着剤の再生プロセスは、除去筒251,252に導入されたオゾンガスの窒素酸化物を吸着剤209A,209Bに吸着させる窒素酸化物吸着工程(T210~T230)と、吸着剤209A,209Bの再生処理を行う再生工程および冷却工程と(T240~T310)、窒素酸化物吸着能が回復した吸着剤209A,209Bにオゾンを吸着させてオゾンの吸着能を抑制するオゾン吸着能抑制工程(T320)とを含む。
 図16を参照して、除去筒251,252における窒素酸化物の除去および吸着剤の再生の手順を除去筒251の場合を例に説明する。まず、窒素酸化物吸着工程(T210~T230)が実施される。この工程(T210~T230)では、はじめに、除去筒251にオゾンガスを導入し、オゾン中の窒素酸化物の吸着を開始する(図16において、ステップT210、以下、「ステップ」を省略する)。具体的には、図12を参照して、バルブ232,234が閉じられた状態で、バルブ231,233が開けられる。これにより、オゾン生成装置230において生成した窒素酸化物を含むオゾンガスが第1オゾンガス配管211および合流管213を介して除去筒251に導入される。除去筒251において、オゾンガス中の窒素酸化物はシリカゲルからなる第1吸着剤209Aに吸着され、窒素酸化物の濃度が低下したオゾンガスが第1流出配管214から吐出される。
 次に、吸着状態判断部261によりオゾンガスの導入時間が予め定められた時間に到達したか否かが判断される(T220)。オゾンガスの導入時間が予め定められた時間に到達すれば(T220でYES)、第1オゾンガスバルブ231を閉じてオゾンガスの導入を停止する(T230)。ここで、「予め定められた時間」は、除去筒251に保持されている第1吸着剤209Aの窒素酸化物吸着能が許容範囲を超えて低下するまでの時間を考慮して決定される。より具体的には、「予め定められた時間」は、第1吸着剤209Aの窒素酸化物の吸着能、単位時間あたりのガスの流量およびガス中の窒素酸化物の濃度に基づいて決定することができる。
 次に、第1吸着剤209Aの再生処理を行う再生工程および冷却工程(T240~T310)が実施される。まず、除去筒251へのパージガスの導入が開始される(T240)。具体的には、図12を参照して、バルブ231,233が閉じられた状態で、バルブ232,234が開けられる。これにより、酸素ガス貯蔵部241から、酸素ガス配管202、パージ用酸素ガス配管208、第1パージガス配管212、および合流管213を介してパージガスである酸素ガスが除去筒251に流入する。
 次に、除去筒251に設置された温度調整部256Aによる除去筒251の加熱を開始する(T250)。このとき温度検出センサ255が除去筒251の内部の温度を測定して、温度の情報を含む温度情報信号264を制御部260に出力する。温度調整部256Aは、制御部260から出力される温度制御情報信号265に基づいて除去筒251内部の温度を調整する。これにより、第1吸着剤209Aに吸着した窒素酸化物が離脱し、パージガスである酸素ガスにより外部へと排出される。このようにして、第1吸着剤209Aの窒素酸化物吸着能が回復する。パージガスの排出は、除去筒251から、第1流出配管214、配管216,222を介して窒素酸化物を含む酸素ガスを排出口へ流出させることにより行われる。
 次に、吸着状態判断部261により除去筒251の加熱時間が予め定められた時間に到達したか否かが判断される(T260)。加熱時間が予め定められた時間に到達すれば(T260でYES)、除去筒251の加熱を終了する(T270)。ここで、予め定められた時間とは、第1吸着剤209Aに吸着された窒素酸化物が十分に離脱して、第1吸着剤209Aが窒素酸化物の吸着に再度使用可能な程度に再生するために必要な時間である。
 次に、除去筒251の冷却を開始する(T280)。本実施の形態においては、除去筒251の冷却は、空冷により実施される。次に、除去筒251の温度が予め定められた温度に到達したか否かが判断される(T290)。除去筒251の温度が予め定められた温度に到達すれば(T290でYES)、除去筒251の冷却を終了(T300)する。その後、バルブ232,234を閉じてパージガスの導入を停止する(T310)。T240~T310の再生工程および冷却工程による第1吸着剤209Aの再生処理は、T210~T230のオゾンガス中の窒素酸化物吸除去処理の終了後に連続して行われてもよいし、T210~T230の工程終了後から所定の時間経過後に行うようにしてもよい。
 次に、再生工程および冷却工程が実施された第1吸着剤209Aのオゾン吸着能を抑制する工程(T320)が実施される。この工程(T320)では、除去筒251にオゾンガスを導入し、第1吸着剤209Aにオゾンを吸着させることで第1吸着剤209Aのオゾン吸着能を抑制する。具体的には、図12を参照して、第1パージガスバルブ232が閉じられた状態で、第1オゾンガスバルブ231が開けられる。これにより、オゾン生成装置230において生成したオゾンガスが第1オゾンガス配管211および合流管213を介して除去筒251に導入される。除去筒251において、オゾンガスが第1吸着剤209Aに吸着され、第1吸着剤209Aのオゾン吸着能が抑制される。なお、後述のように、この工程(T320)は、他の除去筒(たとえば除去筒252)における工程(T210~T230)と同時に実施される。また、除去筒251に導入されるオゾンガスの流量は、当該他の除去筒(たとえば除去筒252)に導入されるオゾンガスの流量の10%以下とすることが好ましく、5%以下とすることがより好ましい。このようにすることで、窒素酸化物が除去されたオゾンの流量変動を抑制することが容易となる。また、工程(T320)において除去筒251に導入されたオゾンガスは、配管217を介してプロセスラインに流されてもよいし、配管222を介して排出口に流されてもよい。プロセスラインへと供給されるオゾンガスの濃度をより安定させる観点からは、工程(T320)において除去筒251に導入されたオゾンガスは配管222を介して排出口に流され、プロセスラインに供給されないことが好ましい。
 なお、除去筒252においては、除去筒251に接続された配管211,212,213,214,215,216、当該配管に設置されたバルブ231,232,233,234および除去筒251に設置された温度調整部256Aに代えて、対応する配管239,240,218,223,220,221、当該配管に設置されたバルブ235,236,237,238、除去筒252に設置された温度調整部256Bが同様に動作することにより、窒素酸化物の除去および吸着剤の再生が実施される。
 本実施の形態においては、窒素酸化物除去工程(S220)における上記のT210~T320の工程が、2筒の除去筒251,252においてタイミングをずらして実施される。以下、2筒の除去筒251,252により、窒素酸化物除去工程(S220)を実施する手順について説明する。図17は、実施の形態4における除去筒で実施される窒素酸化物除去工程の手順の一例を示すタイミングチャートである。
 図17において、横軸は窒素酸化物除去工程における経過時間を示す。はじめに、時刻t201からt202において除去筒251で上述のオゾンガス中の窒素酸化物吸着工程(T210~T230)が行われる。次に、除去筒251の第1吸着剤209Aの窒素酸化物の吸着能が許容範囲を超えて低下する前の時刻t202において、オゾンガスの流入を除去筒251から除去筒252に切替える。そして、時刻t202からt206において除去筒252で上述のオゾンガス中の窒素酸化物吸着工程が行われる。一方、除去筒251において、時刻t202からt206の間に含まれる時刻t203からt204の間に再生工程および冷却工程(T240~T310)が行われる。
 また、時刻t202からt206の間に含まれる時刻t205からt206の間に、除去筒251においてオゾン吸着能抑制工程(T320)が行われる。具体的には、時刻t205からt206の間では、除去筒252にオゾンガスを導入して第2吸着剤209Bに窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを除去筒252から吐出しつつ、除去筒251にオゾンガスを導入して窒素酸化物吸着能が回復した第1吸着剤209Aにオゾンを吸着させて第1吸着剤209Aのオゾン吸着能を抑制する工程が行われる。そして、オゾン吸着能を抑制する工程が終了し、かつ除去筒252の第2吸着剤209Bの吸着能が許容範囲を超えて低下する前の時刻t206において、オゾンガスの流入を除去筒252から除去筒251に切替える。そして、時刻t206からt210において除去筒251で上述の窒素酸化物吸着工程が連続して行われる。
 一方、除去筒252においては、時刻t206からt210の間に含まれる時刻t207からt208の間に再生工程および冷却工程が行われる。また、時刻t206からt210の間に含まれる時刻t209からt210の間に、除去筒252においてオゾン吸着能抑制工程が行われる。
 上述のように、本実施の形態における窒素酸化物除去工程(S220)においては、オゾンガスの導入を除去筒252から除去筒251に切替える前に、除去筒251にオゾンガスを導入する。これにより、窒素酸化物吸着能が回復した第1吸着剤209Aにオゾンを吸着させて除去筒251の第1吸着剤209Aのオゾン吸着能を抑制する。そのため、窒素酸化物吸着能を回復させた第1吸着剤209Aを保持する除去筒251に再びオゾンガスを導入してオゾンガス中の窒素酸化物の除去を行う際に、除去筒251の第1吸着剤209Aのオゾン吸着能が抑制されていることにより、除去筒251から吐出されるオゾンガスの濃度が低下することが抑制される。そして、本実施の形態では、除去筒251と除去筒252とにおいて交互に上記窒素酸化物の除去と吸着剤の再生(吸着剤のオゾン吸着能の抑制を含む)とが実施される。このように、本実施の形態によれば、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することが可能となる。なお、本実施の形態では本願発明の第3吸着剤を保持する第3容器として除去筒252が用いられて窒素酸化物の除去が実施されている。
 (3)オゾンガス供給工程(S230)
 次に、オゾンガス供給工程(S230)が実施される。本工程(S230)では、窒素酸化物が除去されたオゾンガスを所望の被処理物等に対して供給する。具体的には、除去筒251からオゾンガスが供給される場合は、バルブ234が閉じられた状態で、バルブ233が開けられる。このとき、除去筒251から第1流出配管214、配管215,217を介して図示しない被処理物等に対してオゾンガスが供給される。また、除去筒252からオゾンガスが供給される場合は、バルブ238が閉じられた状態で、バルブ237が開けられる。このとき、除去筒252から、第2流出配管223、配管220,217を介して被処理物等に対してオゾンガスが供給される。以上の手順により、窒素酸化物が除去されたオゾンガスが被処理物等に対して供給される。
 このように、本実施の形態4においては、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することができる。
 (実施の形態5)
1.本実施の形態のオゾンガス供給装置および窒素酸化物除去装置の構成
 次に、本発明の他の実施の形態である実施の形態5について説明する。図18は、実施の形態5におけるオゾンガス供給装置および窒素酸化物除去装置の構成の一例を示す概略図である。実施の形態5のオゾンガス供給装置400および窒素酸化物除去装置300は、基本的には実施の形態4の場合と同様の構成を有し、同様に制御されることで同様の効果を奏する。しかし、実施の形態5においては、窒素酸化物除去装置300が除去筒251,252と同様の構成を有する除去筒253を含む点において、実施の形態4と異なっている。
 図18を参照して、実施の形態5におけるオゾンガス供給装置400は、上記実施の形態4の場合に加えて、除去筒251と同様の構造を有する除去筒253を備える。そして、除去筒253には、除去筒251の第1吸着剤209Aに対応するシリカゲルからなる第3吸着剤209Cが保持されるとともに、第1オゾンガス配管211および第1パージガス配管212に接続された合流管213、第1流出配管214、温度調整部256Aおよびジャケット257Aにそれぞれ対応する第3オゾンガス配管291および第3パージガス配管292に接続された合流管219、第3流出配管277、温度調整部256C、ジャケット257Cが接続または設置されている。また、第3流出配管277は、配管278および配管279に接続されている。配管278は、図示しないプロセスラインに接続された配管217に接続されている。配管279は、図示しない排出口に接続された配管222に接続されている。配管278にはバルブ275が設置されている。配管279にはバルブ276が設置されている。
 また、実施の形態5における制御部260の吸着状態判断部261は、実施の形態4の場合に加えて、第3吸着剤209Cにおける窒素酸化物の吸着の状態を判断する。そして、実施の形態5における制御部260は、除去筒253に設置された温度検出センサ255、温度調整部256Cおよびバルブ273,274,275,276(バルブ群262)に電気的に接続され、これらを除去筒251に設置された温度検出センサ255、温度調整部256Aおよびバルブ231,232,233,234と同様に制御する。
2.本実施の形態のオゾンガスの供給方法および窒素酸化物の除去方法
 実施の形態5におけるオゾンガスの供給方法および窒素酸化物の除去方法は、上記実施の形態4の場合と基本的には同様に実施され、同様の効果を奏する。実施の形態5においては、実施の形態4の場合と同様にオゾンガス準備工程(S210)が実施された後、窒素酸化物除去工程(S220)が実施される。実施の形態5の工程(S220)では、除去筒251、除去筒252および除去筒253において、タイミングをずらして窒素酸化物の除去と吸着剤の再生とが順次実施される。すなわち、実施の形態5においては、除去筒253においても、実施の形態4において図16に基づいて説明した除去筒251の場合と同様に、第3吸着剤209Cによる窒素酸化物吸着工程(T210~T230)、第3吸着剤209Cの再生処理を行う再生工程および冷却工程と(T240~T310)および窒素酸化物吸着能が回復した第3吸着剤209Cにオゾンを吸着させてオゾンの吸着能を抑制するオゾン吸着能抑制工程(T320)が実施される。除去筒253での窒素酸化物の吸着および第3吸着剤209Cの再生においては、バルブ231,232,233,234に代えてバルブ273,274,275,276が開閉される。
 実施の形態5においては、窒素酸化物除去工程(S220)における上記のT210~T320の工程が、3筒の除去筒251,252,253においてタイミングをずらして実施される。つまり、本実施の形態では第3吸着剤を保持する第3容器としての除去筒253が用いられて窒素酸化物の除去が実施される。以下、3筒の除去筒251,252,253により、窒素酸化物除去工程(S220)を実施する手順について説明する。図19は、実施の形態5における除去筒で実施される窒素酸化物除去工程の手順の一例を示すタイミングチャートである。
 図19において、横軸は窒素酸化物除去工程における経過時間を示す。はじめに、時刻t201からt202において除去筒251で窒素酸化物吸着工程(T210~T230)が行われる。次に、除去筒251の第1吸着剤209Aの窒素酸化物の吸着能が許容範囲を超えて低下する前の時刻t202において、オゾンガスの流入を除去筒251から除去筒252に切替える。そして、時刻t202からt205において除去筒252で窒素酸化物吸着工程が行われる。一方、除去筒251において、時刻t202からt205の間に含まれる時刻t203からt204の間に再生工程および冷却工程(T240~T310)が行われる。
 次に、除去筒252の第2吸着剤209Bの窒素酸化物の吸着能が許容範囲を超えて低下する前の時刻t205において、オゾンガスの導入を除去筒252から除去筒253に切替える。そして、時刻t205からt209において除去筒253で窒素酸化物吸着工程が行われる。一方、除去筒252において、時刻t205からt209の間に含まれる時刻t206からt207の間に再生工程および冷却工程が行われる。
 また、時刻t205からt209の間に含まれる時刻t208からt209の間に、除去筒251においてオゾン吸着能抑制工程(T320)が行われる。具体的には、時刻t208からt209の間では、除去筒253にオゾンガスを導入して第3吸着剤209Cに窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを除去筒253から吐出しつつ、除去筒251にオゾンガスを導入して窒素酸化物吸着能が回復した第1吸着剤209Aにオゾンを吸着させて第1吸着剤209Aのオゾン吸着能を抑制する工程が行われる。そして、オゾン吸着能を抑制する工程が終了し、かつ除去筒253の第3吸着剤209Cの吸着能が許容範囲を超えて低下する前の時刻t209において、オゾンガスの流入を除去筒253から除去筒251に切替える。さらに、時刻t209からt213において除去筒251で窒素酸化物吸着工程が連続して行われる。
 一方、除去筒253においては、時刻t209からt213の間に含まれる時刻t210からt211の間に再生工程および冷却工程が行われる。また、時刻t209からt213の間に含まれる時刻t212からt213の間に、除去筒252においてオゾン吸着能抑制工程が行われ、オゾン吸着能抑制工程が終了するt213から除去筒252において窒素酸化物吸着工程(図示しない)が引き続き行われる。
 上述のように、本実施の形態における窒素酸化物除去工程(S220)においては、オゾンガスの導入を除去筒253から除去筒251に切替える前に、除去筒251にオゾンガスを導入する。また、その後オゾンガスの導入を除去筒251から除去筒252に切替える前に、除去筒252にオゾンガスを導入する。さらに、その後オゾンガスの導入を除去筒252から除去筒253に切替える前に、除去筒253にオゾンガスを導入する。そして、実施の形態5では、上記手順を繰り返して実施することにより、窒素酸化物吸着能が回復し、かつオゾン吸着能が抑制された吸着剤を保持する除去筒においてオゾンガス中の窒素酸化物の除去が実施される。さらに、実施の形態4の場合と同様に、オゾンガス供給工程(S230)が実施される。本実施の形態によれば、上述のように窒素酸化物除去工程(S220)が実施されることにより、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給することが可能となる。なお、本実施の形態では本願発明の第3吸着剤を保持する第3容器として除去筒253が用いられて窒素酸化物の除去が実施されている。
 上記実施の形態においては、オゾンガス供給装置の窒素酸化物除去装置が2筒または3筒の除去筒を備える場合について説明したが、窒素酸化物除去装置は4筒以上の除去筒を備えていてもよい。また、上記実施の形態においては、除去筒が1筒ごとにタイミングをずらして動作する場合について説明したが、2筒以上の除去筒群ごとにタイミングをずらして動作することもできる。
 上記実施の形態においては、除去筒の内部の温度を調整するための温度調整部が各除去筒に配置される場合について説明したが、たとえば赤外線ヒータ等を用いて1つの加熱部により各除去筒を加熱するようにしてもよい。また、上記実施の形態においては、オゾン生成部としてのオゾン生成装置230に酸素源である酸素ガス貯留部41および窒素源である窒素ガス貯留部42が接続される場合について説明したが、オゾン生成装置230には酸素ガス貯留部41が接続され、窒素ガス貯留部42が接続されていなくてもよい。このような場合でも、酸素ガス貯留部41に保持された酸素に不純物として含まれる窒素に起因して、オゾン生成装置230において生成するオゾンガスには窒素酸化物が含まれる。
 上記実施の形態においては、吸着状態判断部が、オゾンガスの流入時間や温度調整部による加熱時間に基づいてシリカゲル(吸着剤)への窒素酸化物の吸着の状態を判断していたが、除去筒のガスの流出口に、たとえばFTIRスペクトロメータ(フーリエ変換赤外分光光度計)やQ-MS(四重極型質量分析計)、特開2014-163720号公報に開示される窒素酸化物検出装置などの窒素酸化物の濃度を測定する装置を配置し、除去筒から流出したガスの組成比に基づいてシリカゲル(吸着剤)への窒素酸化物の吸着の状態を判断するようにしてもよい。
 上記実施の形態4において説明したオゾンガス供給装置400を用いて実施の形態4の場合と同様にオゾンガスの供給方法を実施し、配管217から吐出されるガスに含まれるオゾンおよび窒素酸化物の濃度を経時的に確認する実験を行った。工程(T320)において除去筒に導入されたオゾンガスは、配管217へと流した(実施例)。オゾンおよび窒素酸化物の濃度は、FTIRスペクトロメータ(フーリエ変換赤外分光光度計)を用いて測定した。窒素酸化物除去装置300に導入されるガスのオゾン濃度は8.6体積%、流量は20L/minとした。一方、比較のため、吸着剤にオゾンを吸着させてオゾン吸着能を低下させる工程(T320)を省略した場合についても、同様にオゾンおよび窒素酸化物の濃度を経時的に確認した(比較例)。
 実施例および比較例におけるオゾンガス中のオゾンおよび窒素酸化物の濃度の測定結果を図20に示す。グラフにおける太い実線は実施例のオゾンの濃度を示し、細い実線は比較例のオゾンの濃度を示す。また、細い破線は実施例の五酸化二窒素の濃度を示し、太い破線は実施例の硝酸の濃度を示す。
 図20を参照して、実施例におけるオゾンガスの供給方法によれば、比較例の場合に比べて供給されるオゾンガスの濃度の安定性が向上していることが分かる。より詳細に説明すると、比較例の場合のオゾン濃度は、窒素酸化物の除去を実施する除去筒が切り替えられたb点およびd点の直後にオゾン濃度が急激に低下している。これは、窒素酸化物吸着能を回復させるための加熱によって吸着剤(シリカゲル)のオゾン吸着能も回復するため、窒素酸化物の除去開始直後の除去筒内では、導入されたオゾンが吸着剤により高効率で吸着されるためであると考えられる。
 これに対し、実施例の場合のオゾン濃度は、除去筒におけるオゾン吸着能を抑制する工程の開始時刻に対応するa点およびc点の直後においてオゾン濃度が低下するものの、当該時点においてオゾン吸着能が十分に抑制された他の除去筒において窒素酸化物の除去が同時に実施されているため、オゾン濃度の低下幅が明確に低減されている。また、五酸化二窒素および硝酸の濃度は十分に低減されている。
 以上の実験結果から、本発明の窒素酸化物の除去方法およびオゾンガスの供給方法によれば、窒素酸化物が除去されたオゾンガスを継続的にかつ安定した濃度で供給できることが確認された。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明のオゾンガスの供給方法およびオゾンガスの供給システムは、供給されるオゾンガスの濃度変動の抑制が求められるオゾンガスの供給方法およびオゾンガスの供給システムに、特に有利に適用され得る。
 1 オゾン供給システム、10 オゾン生成装置、11 放電ユニット、12 第1電極、13 誘電体管、14 第2電極、15 放電空間、20 除去筒、20A,20B 第1除去筒、21 本体部、22 リボンヒータ、23 ジャケット、24 温度センサ、28 吸着剤保持部、29 吸着剤、30 オゾン濃度検知部、40 制御部、51 酸素源、52 窒素源、56 第1マスフローコントローラ、57 第2マスフローコントローラ、58 第3マスフローコントローラ、59 第4マスフローコントローラ、61,62,63,64,65,66,67,68,69A,69B,71A,71B,72,73,74,75,76,77,78 弁、80,81,82,83,84,85,86,87,88,89,90,91,91A,91B,92,92A,92B,96,97,98,99,100,101,102 配管、202 酸素ガス配管、203 窒素ガス配管、206 合流管、207 オゾンガス輸送配管、208 パージ用酸素ガス配管、209A 第1吸着剤、209B 第2吸着剤、209C 第3吸着剤、211 第1オゾンガス配管、212 第1パージガス配管、213 合流管、214 第1流出配管、215,216,217 配管、218,219 合流管、220,221,222 配管、223 第2流出配管、230 オゾン生成装置、231 第1オゾンガスバルブ、232 第1パージガスバルブ、233,234 バルブ、235 第2オゾンガスバルブ、236 第2パージガスバルブ、237,238 バルブ、239 第2オゾンガス配管、240 第2パ-ジガス配管、241 酸素ガス貯蔵部、242 窒素ガス貯蔵部、243 酸素流量調整部、244 窒素流量調整部、245,246,247,248 バルブ、249 パージガス流量調整部、251,252,253 除去筒、255 温度検出センサ、256A,256B,256C 温度調整部、257A,257B,257C ジャケット、258,259 底壁部、260 制御部、261 吸着状態判断部、262 バルブ群、263 バルブ開閉信号、264 温度情報信号、265 温度制御情報信号、273,274,275,276 バルブ、277 第3流出配管、278,279 配管、291 第3オゾンガス配管、292 第3パージガス配管、300 窒素酸化物除去装置、400 オゾンガス供給装置。

Claims (12)

  1.  オゾンガス源からの窒素酸化物を含むオゾンガスを、シリカゲルからなる第1吸着剤を保持する第1容器が設置された第1の流路を介して供給対象物に供給する状態と、第2の流路を介して前記供給対象物に供給する状態と、を切り替えて、前記供給対象物に供給するオゾンガスの供給方法であって、
     前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給する工程と、
     前記オゾンガス源からのオゾンガスを、前記第1の流路を介して前記供給対象物に供給する状態に切り替えて、前記第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを前記供給対象物に供給する工程と、を備え、
     前記オゾンガス源からのオゾンガスを前記第2の流路を介して供給する工程は、前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給しつつ、前記オゾンガス源からのオゾンガスの一部を前記第1容器に導入することにより前記第1吸着剤にオゾンガスを吸着させ、前記第1吸着剤のオゾン吸着能を抑制する工程を含み、
     前記オゾンガス源からのオゾンガスを前記第1の流路を介して前記供給対象物に供給する工程では、前記第1吸着剤のオゾン吸着能を抑制する工程においてオゾン吸着能が抑制された前記第1吸着剤を保持する前記第1容器をオゾンガスが通過する、オゾンガスの供給方法。
  2.  前記オゾンガス源からのオゾンガスを、前記第1の流路を介して前記供給対象物に供給する状態に切り替えて、前記第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを前記供給対象物に供給する工程では、前記オゾンガス源からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングの情報である窒素酸化物濃度上昇情報を検知した場合に、前記窒素酸化物濃度上昇情報に基づいて、前記第1の流路を介してオゾンガスを前記供給対象物に供給する状態に切り替えられる、請求項1に記載のオゾンガスの供給方法。
  3.  前記オゾンガス源では、酸素ガスを主成分とするガス中に配置された電極間における放電によりオゾンガスが生成され、
     前記窒素酸化物濃度上昇情報は、前記電極が、五酸化二窒素が気化する温度以上の温度に加熱されて窒素酸化物の濃度が上昇するタイミングの情報である、請求項2に記載のオゾンガスの供給方法。
  4.  前記オゾンガス源からのオゾンガスを前記第2の流路を介して供給する工程は、前記第1吸着剤のオゾン吸着能を抑制する工程の前に、前記第1容器内の前記第1吸着剤を加熱しつつ前記第1容器内にパージガスを導入して前記第1吸着剤に吸着した窒素酸化物を離脱させて前記パージガスにより前記第1容器の外部へと排出することにより、前記第1吸着剤の窒素酸化物吸着能を回復させる工程をさらに含む、請求項1~3のいずれか1項に記載のオゾンガスの供給方法。
  5.  前記オゾンガス源では、酸素を保持する酸素源から供給される酸素ガスを主成分とするガス中における放電によりオゾンガスが生成され、
     前記第1吸着剤の窒素酸化物吸着能を回復させる工程では、前記酸素源から前記パージガスとして酸素ガスが供給される、請求項4に記載のオゾンガスの供給方法。
  6.  前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給する工程および前記オゾンガス源からのオゾンガスを前記第1の流路を介して前記供給対象物に供給する工程では、前記第1の流路に設置された前記第1容器または前記第2の流路を流れたオゾンガスが緩衝容器に流入して濃度が平準化された後、前記供給対象物に供給される、請求項1~5のいずれか1項に記載のオゾンガスの供給方法。
  7.  窒素酸化物を含むオゾンガスを提供するオゾンガス源と、
     前記オゾンガス源からのオゾンガスを供給対象物へと運搬するための第1の流路と、
     前記オゾンガス源からのオゾンガスを前記供給対象物へと運搬するための第2の流路と、
     前記オゾンガス源からのオゾンガスの前記供給対象物への供給経路を制御する制御部と、を備え、
     前記第1の流路には、シリカゲルからなる第1吸着剤を保持する第1容器が設置され、
     前記制御部は、
     前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給する状態と、
     前記オゾンガス源からのオゾンガスを、前記第1容器が設置された前記第1の流路を介して前記供給対象物に供給することで、前記第1吸着剤に窒素酸化物を吸着させ、窒素酸化物の濃度が低下したオゾンガスを前記供給対象物に供給する状態と、を切り替え、
     前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給する状態は、前記オゾンガス源からのオゾンガスを前記第2の流路を介して前記供給対象物に供給しつつ、前記オゾンガス源からのオゾンガスの一部を、前記第1容器に導入することにより前記第1吸着剤にオゾンガスを吸着させ、前記第1吸着剤のオゾン吸着能を抑制する状態を含み、
     前記制御部は、前記オゾンガス源からのオゾンガスの一部が前記第1容器に導入されることによってオゾン吸着能が抑制された前記第1吸着剤が前記第1容器に保持されている状態で、前記オゾンガス源からのオゾンガスを前記第1の流路を介して前記供給対象物に供給する状態に切り替える、オゾンガスの供給システム。
  8.  前記オゾンガス源からのオゾンガスに含まれる窒素酸化物の濃度が上昇するタイミングを検知して、オゾンガスに含まれる窒素酸化物の濃度の上昇を予告する窒素酸化物濃度上昇情報を出力する検知部をさらに備え、
     前記制御部は、前記窒素酸化物濃度上昇情報に基づいて前記第1の流路を介してオゾンガスを前記供給対象物に供給する状態に切り替える、請求項7に記載のオゾンガスの供給システム。
  9.  前記オゾンガス源は、酸素ガスを主成分とするガス中における放電によりオゾンガスを生成するための電極を含み、
     前記検知部は、前記電極が、五酸化二窒素が気化する温度以上の温度に加熱されるタイミングを前記窒素酸化物の濃度が上昇するタイミングとして検知する、請求項8に記載のオゾンガスの供給システム。
  10.  前記第1容器に接続されるパージガス流入路と、
     前記第1吸着剤を加熱する加熱部と、
     前記第1容器に接続されるパージガス排出路と、をさらに備える、請求項7~9のいずれか1項に記載のオゾンガスの供給システム。
  11.  前記オゾンガス源に接続される酸素源をさらに備え、
     前記オゾンガス源は、前記酸素源から供給される酸素ガスを主成分とするガス中における放電によりオゾンガスを生成し、
     前記酸素源は前記パージガス流入路に接続される、請求項10に記載のオゾンガスの供給システム。
  12.  前記第1の流路は、前記第1容器よりも下流側に前記第2の流路と合流した領域である合流領域を含み、
     前記合流領域にはオゾンガスの濃度を平準化する緩衝容器が設置される、請求項7~11のいずれか1項に記載のオゾンガスの供給システム。
PCT/JP2016/069299 2015-09-18 2016-06-29 オゾンガスの供給方法、およびオゾンガスの供給システム WO2017047201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187010780A KR102591018B1 (ko) 2015-09-18 2016-06-29 오존 가스의 공급 방법, 및 오존 가스의 공급 시스템
US15/761,040 US10597296B2 (en) 2015-09-18 2016-06-29 Method for supplying ozone gas and system for supplying ozone gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185747 2015-09-18
JP2015185747A JP6545589B2 (ja) 2015-09-18 2015-09-18 オゾンガスの供給方法、およびオゾンガスの供給システム

Publications (1)

Publication Number Publication Date
WO2017047201A1 true WO2017047201A1 (ja) 2017-03-23

Family

ID=58288693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069299 WO2017047201A1 (ja) 2015-09-18 2016-06-29 オゾンガスの供給方法、およびオゾンガスの供給システム

Country Status (5)

Country Link
US (1) US10597296B2 (ja)
JP (1) JP6545589B2 (ja)
KR (1) KR102591018B1 (ja)
TW (1) TWI704103B (ja)
WO (1) WO2017047201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167389A1 (ja) * 2018-03-02 2019-09-06 住友精密工業株式会社 オゾン発生装置及びオゾン発生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290004A (ja) * 1999-04-07 2000-10-17 Nippon Sanso Corp オゾン供給装置及び方法
WO2009069774A1 (ja) * 2007-11-30 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法
JP2014065620A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp オゾン供給システムおよび排水処理システム
JP2015010016A (ja) * 2013-06-28 2015-01-19 岩谷産業株式会社 オゾンガスに含まれる窒素酸化物除去方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910925B2 (ja) 1977-03-15 1984-03-12 三菱電機株式会社 酸素リサイクルオゾン発生装置
JPS57183304A (en) 1981-04-30 1982-11-11 Mitsubishi Electric Corp Ozonizer
EP0627253B1 (en) 1993-05-28 2000-03-08 Matsushita Electric Industrial Co., Ltd. Denitrification system
US6136284A (en) 1999-12-09 2000-10-24 The Boc Group, Inc. Process for the removal of nitrogen oxides from gas streams
US6916359B2 (en) 2002-04-25 2005-07-12 The Boc Group, Inc. Ozone production processes
JP2011121805A (ja) 2009-12-09 2011-06-23 Iwatani Internatl Corp オゾンガスに含まれる窒素酸化物および水分の除去方法
JP2013180931A (ja) 2012-03-02 2013-09-12 Iwatani Internatl Corp オゾンガスに含まれる窒素酸化物除去用吸着剤の前処理方法と窒素酸化物除去用吸着剤および前処理装置。
JP6067190B2 (ja) * 2014-06-27 2017-01-25 三菱電機株式会社 オゾン発生システムおよびその運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290004A (ja) * 1999-04-07 2000-10-17 Nippon Sanso Corp オゾン供給装置及び方法
WO2009069774A1 (ja) * 2007-11-30 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法
JP2014065620A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp オゾン供給システムおよび排水処理システム
JP2015010016A (ja) * 2013-06-28 2015-01-19 岩谷産業株式会社 オゾンガスに含まれる窒素酸化物除去方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167389A1 (ja) * 2018-03-02 2019-09-06 住友精密工業株式会社 オゾン発生装置及びオゾン発生方法

Also Published As

Publication number Publication date
JP6545589B2 (ja) 2019-07-17
JP2017057128A (ja) 2017-03-23
US20180257934A1 (en) 2018-09-13
TWI704103B (zh) 2020-09-11
TW201711952A (zh) 2017-04-01
US10597296B2 (en) 2020-03-24
KR20180056691A (ko) 2018-05-29
KR102591018B1 (ko) 2023-10-18

Similar Documents

Publication Publication Date Title
US7368000B2 (en) Treatment of effluent gases
TWI534074B (zh) Ozone gas concentration method and device thereof
JPH0779946B2 (ja) ガス吸着・脱離制御方法
JP6404116B2 (ja) 窒素酸化物の除去方法、オゾンガスの供給方法、およびオゾンガス供給装置
WO2017047201A1 (ja) オゾンガスの供給方法、およびオゾンガスの供給システム
KR20210045421A (ko) 유기 용제 회수 시스템
US11130092B2 (en) Method for concentrating ozone gas and apparatus for concentrating ozone gas
JP2007246302A (ja) アンモニア精製装置の再生方法
JP6413167B2 (ja) ヘリウムガス精製装置およびヘリウムガス精製方法
JP2004010391A (ja) 亜酸化窒素の回収精製法および回収精製装置
JP2009236586A (ja) 試料ガス捕集装置およびガスクロマトグラフ装置
KR102129988B1 (ko) 반도체 생산 시 발생하는 폐가스를 처리하기 위한 처리 장치 및 처리 방법
JP2000229213A (ja) 二重管式および多管式吸着装置
JP2007260605A (ja) ガス処理装置
JP6363407B2 (ja) Co2吸収部材の製造方法
US10544045B2 (en) Ozone generation system and method for operating same
JP2008136935A (ja) トリフルオロメタンの選択的処理方法、処理ユニットおよび該処理ユニットを用いた試料処理システム
EP0893401A1 (en) Ozone producing apparatus
JPS60242684A (ja) 封じ切りガスレ−ザのガス制御装置
JP2006122849A (ja) ガス処理装置
JP5036378B2 (ja) 二酸化炭素除去装置
TW202103772A (zh) 有機溶劑回收系統
RU2393003C1 (ru) Адсорбер
SU1230647A1 (ru) Устройство дл регенерации адсорбентов
JP2015010016A (ja) オゾンガスに含まれる窒素酸化物除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15761040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010780

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16846074

Country of ref document: EP

Kind code of ref document: A1