WO2017043609A1 - 窒化処理鋼部品及びその製造方法 - Google Patents

窒化処理鋼部品及びその製造方法 Download PDF

Info

Publication number
WO2017043609A1
WO2017043609A1 PCT/JP2016/076529 JP2016076529W WO2017043609A1 WO 2017043609 A1 WO2017043609 A1 WO 2017043609A1 JP 2016076529 W JP2016076529 W JP 2016076529W WO 2017043609 A1 WO2017043609 A1 WO 2017043609A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
less
value
compound layer
average value
Prior art date
Application number
PCT/JP2016/076529
Other languages
English (en)
French (fr)
Inventor
崇秀 梅原
将人 祐谷
大藤 善弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/754,641 priority Critical patent/US10837096B2/en
Priority to JP2017538527A priority patent/JP6521079B2/ja
Priority to KR1020187005947A priority patent/KR102125804B1/ko
Priority to EP16844470.1A priority patent/EP3348664B1/en
Priority to BR112018003454-1A priority patent/BR112018003454A2/ja
Priority to CN201680047996.9A priority patent/CN107923028B/zh
Publication of WO2017043609A1 publication Critical patent/WO2017043609A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts

Definitions

  • the present invention relates to a nitrided steel part, particularly a nitrided steel part such as a crankshaft having excellent bending straightness and bending fatigue characteristics, and a method for producing the same.
  • Steel parts used in automobiles and various industrial machines such as carburizing and quenching, induction hardening, nitriding, and soft nitriding are used to improve mechanical properties such as fatigue strength, wear resistance, and seizure resistance.
  • a surface hardening heat treatment is applied.
  • Nitriding treatment and soft nitriding treatment are performed in a ferrite region of A 1 point or less, and since there is no phase transformation during the treatment, heat treatment strain can be reduced. Therefore, nitriding treatment and soft nitriding treatment are often used for parts having high dimensional accuracy and large parts, and are applied to gears used for transmission parts of automobiles and crankshafts used for engines, for example.
  • Nitriding is a treatment method in which nitrogen penetrates the steel material surface.
  • the medium used for nitriding include gas, salt bath, and plasma.
  • Gas nitriding treatment with excellent productivity is mainly applied to automobile transmission parts.
  • a compound layer having a thickness of 10 ⁇ m or more is formed on the surface of the steel material, and further, a hardened layer that is a nitrogen diffusion layer is formed on the steel material layer below the compound layer.
  • the compound layer is mainly composed of Fe 2-3 N and Fe 4 N, and the hardness of the compound layer is extremely higher than that of steel as a base material. Therefore, the compound layer improves the wear resistance and pitting resistance of the steel part in the initial stage of use.
  • the compound layer has low toughness and low deformability, the interface between the compound layer and the mother layer may peel off during use, and the strength of the part may be reduced. For this reason, it is difficult to use the gas nitriding component as a component to which an impact stress or a large bending stress is applied.
  • the thickness of the compound layer can be controlled by the nitriding potential K N obtained by the following equation from the processing temperature of the nitriding treatment and the NH 3 partial pressure and the H 2 partial pressure.
  • the compound layer can be made thinner and further the compound layer can be eliminated.
  • the nitriding potential K N is lowered, it becomes difficult for nitrogen to penetrate into the steel. In this case, the hardness of the hardened layer becomes low and the depth becomes shallow. As a result, the fatigue strength, wear resistance, and seizure resistance of the nitrided parts are reduced.
  • there is a method of removing the compound layer by performing mechanical polishing or shot blasting on the nitrided part after the gas nitriding treatment In order to cope with this performance degradation, there is a method of removing the compound layer by performing mechanical polishing or shot blasting on the nitrided part after the gas nitriding treatment. However, this method increases the manufacturing cost.
  • Patent Document 2 proposes a gas nitriding method capable of forming a hardened layer (nitriding layer) without forming a compound layer.
  • the method of Patent Document 2 is a method in which an oxide film of a component is first removed by fluorination treatment, and then nitriding treatment is performed. is required.
  • Patent Document 1 Even if the nitriding parameter proposed by Patent Document 1 is useful for controlling the hardened layer depth, it does not improve the function as a part.
  • Patent Document 2 in the case of a method in which a non-nitriding jig is prepared and the fluorination treatment is first performed, there arises a problem of selection of the jig and an increase in work man-hours.
  • the object of the present invention is to solve the difficult problem of reducing the thickness of the compound layer with low toughness and low deformability and to increase the depth of the hardened layer, and to reduce the size and weight of parts or to demand high load capacity. It is an object of the present invention to provide a nitriding steel part excellent in bending straightness and bending fatigue characteristics and a nitriding method thereof that can be met.
  • the present inventors have studied a method of thinning a compound layer formed on the surface of a steel material by nitriding and obtaining a deep hardened layer. Furthermore, nitriding treatment at (particularly high during treatment with K N value), in the vicinity of the surface of the steel material, nitrogen was studied also to a method of suppressing the voids gasified is formed. In addition, the relationship between nitriding conditions, bending straightening properties, and bending fatigue properties was investigated. As a result, the present inventors obtained the following findings (a) to (d).
  • K N value is a NH 3 partial pressure of an atmosphere in a furnace (hereinafter referred to as “nitriding atmosphere” or simply “atmosphere”) in which gas nitriding is performed, and Using H 2 partial pressure, it is defined by the following formula.
  • K N (NH 3 partial pressure) / [(H 2 partial pressure) 3/2 ]
  • the K N value can be controlled by the gas flow rate. However, after setting the gas flow rate, a certain time is required until the nitriding atmosphere reaches an equilibrium state. For this reason, the K N value changes from moment to moment until the K N value reaches the equilibrium state. In addition, when the K N value is changed during the gas nitriding process, the K N value varies until the equilibrium state is reached.
  • K N value affects the compound layer, surface hardness, and hardened layer depth. Therefore, not only the target value of K N value, it is necessary to control in K N value range is also given range of variations in the gas nitriding process.
  • the inventors have a thin compound layer, few voids in the compound layer, and within a certain range of surface hardness. I found it excellent.
  • the generated compound layer is decomposed and used as a nitrogen supply source to the cured layer.
  • a gas nitriding treatment (high KN value treatment) with a high nitriding potential is performed to form a compound layer.
  • a gas nitriding process (low K N value process) is performed in which the nitriding potential is lower than that of the high K N value process.
  • the compound layer formed by the high K N value treatment is decomposed into Fe and N, and N diffuses to promote formation of a nitrogen diffusion layer (cured layer).
  • the compound layer can be made thinner in the nitrided part, the surface hardness can be increased, and the depth of the hardened layer can be increased.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the steel material contains one or two of Mo: 0.01 to less than 0.50% and V: 0.01 to less than 0.50% instead of part of Fe.
  • the steel material contains one or two of Cu: 0.01 to less than 0.50% and Ni: less than 0.01 to less than 0.50% instead of part of Fe.
  • the total processing time A is 1.5 to 10 hours comprising the step of subjecting said gas nitriding treatment, become the processing time and high K N value processing to X times, the subsequent processing time in the high K N value processing from a low K N value processing to Y hours, the high K
  • the N- value processing is obtained by the equation (2) because the nitriding potential K NX obtained by the equation (1) is 0.15 to 1.50
  • the average value K NXave of the nitriding potential K NX is 0.30 to 0.80, and the low K N value process is such that the nitriding potential K NY obtained by the equation (3) is 0.02 to 0.25.
  • K NYave of the nitriding potential K NY obtained by the equation (4) is 0.03 to 0.20
  • K Nave of the nitriding potential obtained by the equation (5) is 0.07 to 0.00 .
  • K NX (NH 3 partial pressure) X / [(H 2 partial pressure) 3/2 ] X (1)
  • the subscript i is a number representing the number of times of measurement at regular time intervals
  • X 0 is the measurement interval (time) of the nitriding potential K NX
  • Y 0 is the nitriding potential K.
  • K NXi is the nitriding potential in the i-th measurement during the high K N value processing
  • K NYi is the nitriding potential in the i-th measurement during the low K N value processing.
  • the steel material contains one or two of Mo: 0.01 to less than 0.50% and V: 0.01 to less than 0.50% instead of part of Fe.
  • the steel material may contain one or two of Cu: 0.01 to less than 0.50% and Ni: less than 0.01 to less than 0.50% instead of part of Fe.
  • the method for producing a nitrided steel part according to any one of [5] to [7].
  • the compound layer is thin, the formation of voids (porous layer) is suppressed, and furthermore, the nitriding process has a constant surface hardness and a deep hardened layer, and is excellent in bending straightness and bending fatigue characteristics. Steel parts can be obtained.
  • the average value K NXave nitride potential high K N value processing is a diagram showing the relationship between the surface hardness and the compound layer thickness.
  • the average value K NYave nitride potential low K N value processing is a diagram showing the relationship between the surface hardness and the compound layer thickness. It is a figure which shows the relationship between the average value KNave of nitriding potential, surface hardness, and a compound layer thickness. It is the shape of the square-shaped test piece for a static bending test used in order to evaluate a bending straightening property. It is the shape of a cylindrical test piece for evaluating bending fatigue characteristics.
  • C is an element necessary for securing the core hardness of the component. If the C content is less than 0.2%, the core strength is too low, and the bending fatigue strength is greatly reduced. When the content of C exceeds 0.6%, the high K N values during processing tends to increase the compound layer thickness, and the compound layer is less likely to decompose during low K N value processing. Therefore, it becomes difficult to reduce the thickness of the compound layer after the nitriding treatment, and the bending straightness and bending fatigue strength are greatly reduced.
  • a preferred range for the C content is 0.25 to 0.55%.
  • Si 0.05 to 1.5%
  • Si increases the core hardness by solid solution strengthening. It is also a deoxidizing element. In order to exhibit these effects, 0.05% or more is contained.
  • the Si content exceeds 1.5%, the strength after steel bar, wire rod, and hot forging becomes too high, so that the machinability is greatly lowered and the bending straightness is also lowered.
  • a preferred range for the Si content is 0.08 to 1.3%.
  • Mn increases the core hardness by solid solution strengthening. Furthermore, Mn forms fine nitrides (Mn 3 N 2 ) in the hardened layer during nitriding, and improves bending fatigue strength by precipitation strengthening. In order to obtain these effects, Mn needs to be 0.2% or more. On the other hand, when the Mn content exceeds 2.5%, the effect of increasing the bending fatigue strength is saturated. Furthermore, since the effective hardened layer depth becomes shallow, pitting strength and bending fatigue strength are lowered. Moreover, since the hardness after the steel bar used as a raw material, a wire, and hot forging becomes high too much, a bending straightening property and cutting workability will fall large. A preferable range of the Mn content is 0.4 to 2.3%.
  • P 0.025% or less
  • P is an impurity and segregates at the grain boundaries to embrittle the part. Therefore, the content is preferably small. If the P content exceeds 0.025%, the bending straightness and bending fatigue strength may be reduced. A preferable upper limit of the P content for preventing a decrease in bending straightness and bending fatigue strength is 0.018%. It is difficult to make the content completely zero, and the practical lower limit is 0.001%.
  • S 0.003 to 0.05%
  • S combines with Mn to form MnS and improves cutting workability. In order to obtain this effect, S needs to be 0.003% or more. However, when the S content exceeds 0.05%, coarse MnS is easily generated, and the bending straightness and bending fatigue strength are greatly reduced. A preferred range for the S content is 0.005 to 0.03%.
  • Cr forms fine nitride (CrN) in the hardened layer during nitriding, and improves bending fatigue strength by precipitation strengthening.
  • Cr needs to be 0.5% or more.
  • the Cr content exceeds 0.5%, the precipitation strengthening ability is saturated.
  • the effective hardened layer depth becomes shallow, pitting strength and bending fatigue strength are lowered.
  • the hardness after the steel bar, wire, and hot forging used as raw materials becomes too high, the bending straightness and the cutting workability are remarkably lowered.
  • a preferable range of the Cr content is 0.07 to 0.4%.
  • Al 0.01 to 0.05%
  • Al is a deoxidizing element, and 0.01% or more is necessary for sufficient deoxidation.
  • Al tends to form hard oxide inclusions, and if the Al content exceeds 0.05%, the bending fatigue strength is significantly reduced, and the desired bending can be achieved even if other requirements are satisfied. Fatigue strength cannot be obtained.
  • a preferable range of the Al content is 0.02 to 0.04%.
  • N combines with Al, V, and Ti to form AlN, VN, and TiN.
  • AlN, VN, and TiN have the effect of refining the structure of the steel material before nitriding by the pinning action of austenite grains and reducing the variation in mechanical properties of nitriding steel parts. This effect is difficult to obtain when the N content is less than 0.003%. On the other hand, when the content of N exceeds 0.025%, coarse AlN is likely to be formed, and thus the above effect is difficult to obtain.
  • a preferable range of the N content is 0.005 to 0.020%.
  • the steel used as the material of the nitriding steel part of the present invention may contain the following elements in addition to the above elements.
  • Mo forms fine nitride (Mo 2 N) in the hardened layer at the time of nitriding, and improves bending fatigue strength by precipitation strengthening.
  • Mo exhibits an age hardening action during nitriding to improve the core hardness.
  • the Mo content for obtaining these effects needs to be 0.01% or more.
  • the Mo content is 0.50% or more, the hardness after the steel bar, wire rod, and hot forging becomes too high, so that the bending straightness and machinability are significantly reduced, and the alloy cost is low.
  • the upper limit with preferable Mo content is less than 0.40%.
  • V forms fine nitride (VN) during nitriding and improves bending fatigue strength by precipitation strengthening.
  • V exhibits an age hardening action during nitriding to improve the core hardness.
  • the pinning action of the austenite grains also has the effect of refining the structure of the steel material before nitriding. In order to obtain these effects, V needs to be 0.01% or more.
  • the content of V is 0.50% or more, the hardness after the steel bar, wire rod, and hot forging becomes too high, so that bending straightness and machinability are significantly reduced, and the alloy cost is low. Increase.
  • a preferred range for the V content is less than 0.40%.
  • Cu 0.01 to 0.50%
  • Cu as a solid solution strengthening element, improves the core hardness of the component and the hardness of the nitrogen diffusion layer.
  • it is necessary to contain 0.01% or more.
  • the Cu content exceeds 0.50%, the hardness after the steel bar, wire rod, and hot forging becomes too high, so that the bending straightness and the machinability are significantly reduced. Since ductility is lowered, it causes surface flaws during hot rolling and hot forging.
  • a preferred range for the Cu content is less than 0.40%.
  • Ni 0.01 to 0.50%
  • Ni improves the core hardness and surface hardness by solid solution strengthening.
  • the content of 0.01% or more is necessary.
  • a preferred range for the Ni content is less than 0.40%.
  • Ti 0.005 to 0.05%
  • Ti combines with N to form TiN and improves core hardness and surface hardness. In order to obtain this effect, Ti needs to be 0.005% or more. On the other hand, if the Ti content is 0.05% or more, the effect of improving the core hardness and the surface layer hardness is saturated, and the alloy cost increases. A preferred range for the Ti content is 0.007 to less than 0.04%.
  • the balance of steel is Fe and impurities. Impurities are components that are contained in raw materials or mixed in during the manufacturing process and are not intentionally contained in steel.
  • the above optional additive elements, Mo, V, Cu, Ni, and Ti may be mixed in an amount less than the above lower limit. However, in this case, the effect of each element described above cannot be sufficiently obtained. Since the effects of improving the pitting resistance and bending fatigue characteristics of the invention can be obtained, there is no problem.
  • the manufacturing method of the nitriding steel part of the present invention will be described.
  • the manufacturing method described below is an example, and the nitrided steel part of the present invention may have a compound layer thickness of 3 ⁇ m or less and an effective hardened layer depth of 160 to 410 ⁇ m, and is limited to the following manufacturing method. It is not done.
  • a gas nitriding treatment is performed on the steel having the above-described components.
  • the processing temperature of the gas nitriding process is 550 to 620 ° C., and the processing time A of the entire gas nitriding process is 1.5 to 10 hours.
  • the gas nitriding temperature (nitriding temperature) is mainly correlated with the diffusion rate of nitrogen and affects the surface hardness and the hardened layer depth. If the nitriding temperature is too low, the diffusion rate of nitrogen is slow, the surface hardness is low, and the hardened layer depth is shallow. On the other hand, if it exceeds nitriding temperature the C1 point A, ferrite phase (alpha phase) the nitrogen diffusion rate is small austenite phase than (gamma phase) is generated in the steel, the surface hardness becomes low, hardening depth Becomes shallower. Therefore, in this embodiment, the nitriding temperature is 550 to 620 ° C. around the ferrite temperature range. In this case, it can suppress that surface hardness becomes low, and can suppress that hardened layer depth becomes shallow.
  • processing time A for the entire gas nitriding process 1.5 to 10 hours
  • the gas nitriding treatment is performed in an atmosphere containing NH 3 , H 2 , and N 2 .
  • the entire time of nitriding treatment that is, the time from the start to the end of nitriding treatment (treatment time A) correlates with the formation and decomposition of the compound layer and the penetration of nitrogen, and affects the surface hardness and the depth of the hardened layer Effect.
  • processing time A is too short, surface hardness will become low and hardened layer depth will become shallow.
  • the treatment time A is too long, denitrification occurs and the surface hardness of the steel decreases. If the processing time A is too long, the manufacturing cost further increases. Accordingly, the processing time A of the entire nitriding process is 1.5 to 10 hours.
  • the atmosphere of the gas nitriding treatment of the present embodiment inevitably contains impurities such as oxygen and carbon dioxide in addition to NH 3 , H 2 and N 2 .
  • a preferable atmosphere is 99.5% (volume%) or more in total of NH 3 , H 2 and N 2 . Since the K N value described later is calculated from the ratio of NH 3 and H 2 partial pressure in the atmosphere, it is not affected by the magnitude of the N 2 partial pressure. However, the N 2 partial pressure is preferably 0.2 to 0.5 atm in order to enhance the stability of the K N control.
  • the gas nitriding process described above includes a process of performing a high K N value process and a process of performing a low K N value process.
  • the gas nitriding process is performed with a higher nitriding potential K Nx than in the low K N value process.
  • low K N value processing is performed after high K N value processing.
  • the gas nitriding process is performed with a lower nitriding potential K NY than in the high K N value process.
  • two-stage gas nitriding treatment (high K N value processing, low K N value processing) is performed.
  • high K N value treatment By increasing the nitriding potential K N value in the first half of the gas nitriding treatment (high K N value treatment), a compound layer is formed on the surface of the steel.
  • low K N value process by lowering the nitriding potential K N value in the latter half of the gas nitriding process (low K N value process), the compound layer formed on the surface of the steel is decomposed into Fe and N, and nitrogen (N) is dissolved in the steel. Permeate and diffuse.
  • a two-stage gas nitriding treatment a sufficient hardened layer depth is obtained using nitrogen obtained by the decomposition of the compound layer while reducing the thickness of the compound layer generated by the high K N value treatment.
  • the nitriding potential for high K N value processing is set to K NX, and the nitriding potential for low K N value processing is set to K NY .
  • the nitriding potentials K NX and K NY are defined by the following equations.
  • K NX (NH 3 partial pressure) X / [(H 2 partial pressure) 3/2 ]
  • X K NY (NH 3 partial pressure) Y / [(H 2 partial pressure) 3/2 ] Y
  • the partial pressure of NH 3 and H 2 in the gas nitriding atmosphere can be controlled by adjusting the gas flow rate.
  • the processing time of the high K N value processing is “X” (time), and the processing time of the low K N value processing is “Y” (time).
  • the total of the processing time X and the processing time Y is within the processing time A of the entire nitriding treatment, and is preferably the processing time A.
  • K NX the nitriding potential during high K N value processing
  • K NY the nitriding potential during low K N value processing
  • K NXave the average value of the nitriding potential during the high K N value processing
  • K NYave the average value of the nitriding potential during the low K N value processing
  • the subscript i is a number representing the number of times of measurement at a certain time interval
  • X 0 is the measurement interval (time) of the nitriding potential K NX
  • Y 0 is the measurement interval (time) of the nitriding potential K NY
  • K NXi is The nitriding potential in the i-th measurement during the high K N value processing
  • K NYi is the nitriding potential in the i-th measurement during the low K N value processing.
  • K Nxave is calculated by measuring n times that can be measured until the processing time.
  • K NYave is calculated in the same way.
  • K Nave Average K Nave is defined by the following equation.
  • K Nave (X ⁇ K NXave + Y ⁇ K NYave) / A
  • the average value K Nave satisfies the following conditions (I) to (IV).
  • Average value K Nave : 0.07 to 0.30 The conditions (I) to (IV) will be described below.
  • FIG. 2 is a diagram showing the average value K NXave and the relationship between the surface hardness and the compound layer thickness.
  • FIG. 2 was obtained by the following experiment.
  • Gas nitriding treatment was performed in a gas atmosphere containing NH 3 , H 2, and N 2 using steel a (see Table 1, hereinafter referred to as a test material) having a chemical component defined in the present invention.
  • a test material steel a
  • inserts the test materials to control possible heat treatment furnace atmosphere was heated to a predetermined temperature, were introduced into the gas NH 3, N 2 and H 2.
  • the gas flow rate was adjusted while measuring the partial pressure of NH 3 and H 2 in the atmosphere of the gas nitriding treatment to control the nitriding potential K N value.
  • the K N value was determined by NH 3 partial pressure and H 2 partial pressure.
  • the H 2 partial pressure during the gas nitriding treatment was measured by converting a difference in thermal conductivity between the standard gas and the measurement gas into a gas concentration using a heat conduction type H 2 sensor directly attached to the gas nitriding furnace body.
  • the H 2 partial pressure was continuously measured during the gas nitriding process.
  • the NH 3 partial pressure during the gas nitriding treatment was measured by attaching a manual glass tube NH 3 analyzer outside the furnace, and calculating the partial pressure of residual NH 3 every 15 minutes.
  • the nitriding potential K N value was calculated every 15 minutes when the NH 3 partial pressure was measured, and the NH 3 flow rate and the N 2 flow rate were adjusted so as to converge to the target value.
  • the temperature of the atmosphere is 590 ° C.
  • the treatment time X is 1.0 hour
  • the treatment time Y is 2.0 hours
  • K NYave is 0.05
  • K NXave is 0.10 to 1.00. It was changed until.
  • the total processing time A was 3.0 hours.
  • the cross section of the specimen was polished, etched and observed with an optical microscope. Etching was performed with a 3% nital solution for 20-30 seconds. The compound layer is present on the steel surface and is observed as a white, uncorroded layer.
  • the thickness of four compound layers was measured every 30 ⁇ m from 5 visual fields (field area: 2.2 ⁇ 10 4 ⁇ m 2 ) taken at 500 times with an optical microscope. The average value of the measured 20 points was defined as the compound thickness ( ⁇ m).
  • the compound layer thickness is 3 ⁇ m or less, the occurrence of peeling and cracking is greatly suppressed. Therefore, in the present embodiment, the compound layer thickness needs to be 3 ⁇ m or less.
  • the compound layer thickness may be zero.
  • phase structure of compound layer is preferably such that ⁇ ′ (Fe 4 N) is 50% or more in terms of area ratio.
  • the balance is ⁇ (Fe 2-3 N).
  • the compound layer is mainly composed of ⁇ (Fe 2 to 3 N), but according to the nitriding treatment of the present invention, the proportion of ⁇ ′ (Fe 4 N) is increased.
  • the phase structure of the compound layer can be examined by SEM-EBSD method.
  • the area ratio of the voids in the surface layer structure in the cross section of the test material was measured by observation with an optical microscope. 5 fields of view at a magnification of 1000 times (field area: 5.6 ⁇ 10 3 ⁇ m 2 ), and the ratio of voids in an area of 25 ⁇ m 2 in the range of 5 ⁇ m depth from the outermost surface for each field (hereinafter referred to as void area) Rate).
  • void area ratio is 10% or more, the surface roughness of the nitrided part after the gas nitriding treatment becomes rough, and the compound layer becomes brittle, so that the fatigue strength of the nitrided part decreases. Therefore, in the embodiment of the present invention, the void area ratio needs to be less than 10%.
  • the void area ratio is preferably less than 8%, more preferably less than 6%.
  • the surface hardness and effective hardened layer depth of the test material after the gas nitriding treatment were determined by the following method.
  • the Vickers hardness in the depth direction from the sample surface was measured with a test force of 1.96 N in accordance with JIS Z 2244.
  • pieces of the Vickers hardness in a 50 micrometer depth position from the surface was defined as surface hardness (HV).
  • the target surface hardness is 350 HV or more and 500 HV or less as the same surface hardness as in the case of a general gas nitriding treatment in which a compound layer exceeding 3 ⁇ m remains.
  • the effective hardened layer depth ( ⁇ m) is the Vickers hardness measured in the depth direction from the surface of the test material using the hardness distribution in the depth direction obtained in the above Vickers hardness test. Is defined as a depth in a range of 250 HV or more.
  • the effective hardened layer depth is given by the following formula (A)
  • the value obtained in A) is ⁇ 20 ⁇ m.
  • Effective hardened layer depth ( ⁇ m) 130 ⁇ ⁇ treatment time A (hour) ⁇ 1/2 (A)
  • the effective hardened layer depth is 130 ⁇ ⁇ treatment time A (hour) ⁇ 1/2 .
  • the processing time A of the entire gas nitriding process is 1.5 to 10 hours as described above, the effective hardened layer depth is set to 160 to 410 ⁇ m.
  • FIG. 2 was created based on the surface hardness of the specimen and the thickness of the compound layer obtained by the gas nitriding treatment at each average value K NXave among the measurement test results.
  • the solid line in FIG. 2 is a graph showing the relationship between the average value K NXave and the surface hardness (HV).
  • the broken line in FIG. 2 is a graph showing the relationship between the average value K NXave and the thickness ( ⁇ m) of the compound layer.
  • the compound thickness decreases significantly.
  • the average value K NXave becomes 0.80
  • the thickness of the compound layer is 3 ⁇ m or less.
  • the average value K NXave of the nitriding potential in the high K N value processing is set to 0.30 to 0.80.
  • the surface hardness of the nitrided steel can be increased and the thickness of the compound layer can be suppressed. Furthermore, a sufficient effective hardened layer depth can be obtained. If the average value K NXave is less than 0.30, the formation of the compound is insufficient, the surface hardness is lowered, and a sufficient effective effect layer depth cannot be obtained. If the average value K NXave exceeds 0.80, the thickness of the compound layer may exceed 3 ⁇ m, and the void area ratio may be 10% or more.
  • a preferable lower limit of the average value K NXave is 0.35.
  • the preferable upper limit of the average value K NXave is 0.70.
  • Average value of nitriding potential K NYave in low K N value processing Average K NYave nitride potential low K N value processing is from 0.03 to 0.20.
  • FIG. 3 is a diagram showing the relationship between the average value K NYave , the surface hardness, and the compound layer thickness.
  • FIG. 3 was obtained by the following test.
  • the temperature of the nitriding atmosphere is 590 ° C.
  • the processing time X is 1.0 hour
  • the processing time Y is 2.0 hours
  • the average value K NXave is constant at 0.40
  • the average value K NYave is 0.01 to 0.00 .
  • the gas a nitriding treatment was performed on the steel a having the chemical composition defined in the present invention.
  • the total processing time A was 3.0 hours.
  • the surface hardness (HV), effective hardened layer depth ( ⁇ m), and compound layer thickness ( ⁇ m) at each average value K NYave were measured by the above-described method.
  • HV surface hardness
  • ⁇ m effective hardened layer depth
  • ⁇ m compound layer thickness
  • FIG. 3 was created by plotting the surface hardness and the compound thickness obtained by the measurement test.
  • the solid line in FIG. 3 is a graph showing the relationship between the average value K NYave and the surface hardness
  • the broken line is a graph showing the relationship between the average value K NYave and the depth of the compound layer.
  • the thickness of the compound layer is substantially constant until the average value K NYave decreases from 0.30 to 0.25.
  • the thickness of the compound layer decreases significantly.
  • the thickness of the compound layer is 3 ⁇ m or less.
  • the average value K NYave is 0.20 or less, along with the reduction of the mean K NYave, the thickness of the compound layer but it decreases, as compared with the case where the average value K NYave is higher than 0.20, There is little reduction in the thickness of the compound layer.
  • the average value K NYave of the low K N value processing is limited to 0.03 to 0.20.
  • the surface hardness of the gas-nitrided steel can be increased, and the thickness of the compound layer can be suppressed. Furthermore, a sufficient effective hardened layer depth can be obtained. If the average value K NYave is less than 0.03, denitrification occurs from the surface and the surface hardness decreases. On the other hand, if it exceeds the average value K NYave 0.20, decomposition of the compound is insufficient, effective case depth is shallow, the surface hardness is lowered.
  • a preferable lower limit of the average value K NYave is 0.05.
  • a preferable upper limit of the average value K NYave is 0.18.
  • K Ni value affects the compound layer and the cured layer depth. Therefore, in the high K N value processing and the low K N value treatment, not only the above-described average value K Nxave and average value K NYave are in the above range, but also the nitriding potential K Nx during the high K N value processing and the low The nitriding potential K NY during the K N value processing is also controlled within a predetermined range.
  • the nitriding potential K NX during high K N value treatment is 0.15 to 1.50
  • the compound layer is thin
  • the hardened layer depth is 0.02 to 0.25.
  • Table 1 shows C: 0.45%, Si: 0.70%, Mn: 1.01%, P: 0.015%, S: 0.015%, Cr: 0.25%, Al: 0.00.
  • Nitride parts in which steel containing 028%, N: 0.009% and the balance being Fe and impurities (hereinafter referred to as “steel a”) is subjected to nitriding treatment with various nitriding potentials K NX and K NY Compound layer thickness ( ⁇ m), void area ratio (%), effective hardened layer depth ( ⁇ m) and surface hardness (HV) are shown. Table 1 was obtained by the following test.
  • the gas nitriding treatment (high K N value treatment and low K N value treatment) shown in Table 1 was performed to produce a nitrided part.
  • the gas nitriding atmosphere temperature for each test number is 590 ° C.
  • the processing time X is 1.0 hour
  • the processing time Y is 2.0 hours
  • K NXave is 0.40
  • K NYave is 0.00 . 10 and constant.
  • the minimum value K NXmin , K NYmin , the maximum value K NXmax , and K NYmax of K NX and K NY were changed to perform the high K N value process and the low K N value process.
  • the processing time A for the entire nitriding treatment was set to 3.0 hours.
  • the minimum value K NXmin and the maximum value K NXmax are 0.15 to 1.50, and the minimum value K NYmin and the maximum value K NYmax are It was 0.02 to 0.25.
  • the compound thickness was as thin as 3 ⁇ m or less, and the voids were suppressed to less than 10%.
  • the effective hardened layer depth was 225 ⁇ m or more, and the surface hardness was 350 HV or more.
  • test numbers 1 and 2 since K NXmin was less than 0.15, the surface hardness was less than 570 HV. In Test No. 1, since K NXmin is less than 0.14, the effective hardened layer depth was less than 225 ⁇ m.
  • test numbers 7 and 8 since K NXmax exceeded 1.5, the voids in the compound layer were 10% or more. In Test No. 8, since K NXmax exceeded 1.55, the thickness of the compound layer exceeded 3 ⁇ m.
  • the nitriding potential K NX in the high K N value processing is set to 0.15 to 1.50, and the nitriding potential K NY in the low K N value processing is set to 0.02 to 0.25.
  • the thickness of the compound layer can be sufficiently reduced, and the voids can also be suppressed.
  • the effective hardened layer depth can be sufficiently deep and high surface hardness can be obtained.
  • the nitriding potential K NX is less than 0.15, the effective hardened layer is too shallow or the surface hardness is too low. If the nitriding potential K NX exceeds 1.50, the compound layer becomes too thick, or excessive voids remain.
  • the nitriding potential K NY is less than 0.02, denitrification occurs and the surface hardness decreases. On the other hand, if the nitriding potential K NY exceeds 0.20, the compound layer becomes too thick. Therefore, in this embodiment, the nitriding potential K NX during the high K N value processing is 0.15 to 1.50, and the nitriding potential K NY during the low K N value processing is 0.02 to 0.25. It is.
  • a preferable lower limit of the nitriding potential K NX is 0.25.
  • Preferred upper limit of K NX is 1.40.
  • a preferable lower limit of K NY is 0.03.
  • a preferable upper limit of K NY is 0.22.
  • K Nave (X ⁇ K NXave + Y ⁇ K NYave ) / A (2)
  • FIG. 4 is a diagram showing the relationship among the average value K Nave , the surface hardness (HV), and the compound layer depth ( ⁇ m).
  • FIG. 4 was obtained by conducting the following test. Gas nitriding was performed using steel a as a test material. The atmospheric temperature in the gas nitriding treatment was 590 ° C. Then, gas nitriding treatment (high K N value treatment and low K N value treatment) is performed by changing the treatment time X, treatment time Y, the range of nitriding potential and the average value (K NX , K NY, K NXave , K NYave ). Carried out.
  • the thickness of the compound layer and the surface hardness were measured for the test materials after the gas nitriding treatment under each test condition by the above-described methods. The obtained compound layer thickness and surface hardness were measured, and FIG. 4 was created.
  • the solid line in FIG. 4 is a graph showing the relationship between the average value K Nave of the nitriding potential and the surface hardness (HV).
  • the broken line in FIG. 4 is a graph showing the relationship between the average value K Nave and the thickness ( ⁇ m) of the compound layer.
  • the surface hardness increases significantly, when the average value K Nave becomes 0.07, it becomes more 350 HV.
  • the compound thickness becomes significantly thinner, and when the average value K Nave becomes 0.30, 3 ⁇ m It becomes as follows.
  • the average value K Nave is less than 0.30, in accordance with the average value K Nave is low, although the compounds thickness gradually becomes thinner, compared with the case where the average value K Nave is higher than 0.30 Thus, there is little reduction in the thickness of the compound layer.
  • the average value K Nave defined by the equation (2) is set to 0.07 to 0.30.
  • the compound layer in the component after the gas nitriding treatment, the compound layer can be made sufficiently thin. Furthermore, high surface hardness is obtained. If the average value K Nave is less than 0.07, the surface hardness is low. On the other hand, if the average value K Nave exceeds 0.30, the compound layer exceeds 3 ⁇ m. A preferable lower limit of the average value K Nave is 0.08. A preferable upper limit of the average value K Nave is 0.27.
  • Processing time of the high K N value processing and low K N value processing High K N value processing of the processing time X, and the processing time Y of the low K N value processing, if the average value K Nave that is defined from 0.07 to 0.30 formula (2) is not particularly limited .
  • the processing time X is 0.50 hours or longer and the processing time Y is 0.50 hours or longer.
  • Gas nitriding treatment is performed under the above conditions. Specifically, high K N value processing is performed under the above conditions, and then low K N value processing is performed under the above conditions. After the low K N value process, the gas nitriding process is terminated without increasing the nitriding potential.
  • a nitrided part is manufactured by performing the above gas nitriding treatment on steel having the components specified in the present invention.
  • the surface hardness is sufficiently deep and the compound layer is sufficiently thin.
  • the effective hardened layer depth is sufficiently deep, and voids in the compound layer can also be suppressed.
  • the surface hardness is 350 HV or more and the compound layer depth is 3 ⁇ m or less in terms of Vickers hardness.
  • the void area ratio is less than 10%.
  • Formula (B) is satisfy
  • the effective hardened layer depth is 160 to 410 ⁇ m.
  • Steels a to z having chemical components shown in Table 2 were melted in a 50 kg vacuum melting furnace to produce molten steel. Ingots were manufactured by casting molten steel.
  • a to q are steels having chemical components defined in the present invention.
  • the steels r to z are comparative steels which are at least one element or more and deviate from the chemical components defined in the present invention.
  • This ingot was hot forged into a round bar with a diameter of 35 mm. Subsequently, after each round bar was annealed, cutting was performed to prepare a plate-like test piece for evaluating the thickness of the compound layer, the volume ratio of the voids, the depth of the effective hardened layer, and the surface hardness.
  • the plate-shaped test piece was 20 mm long, 20 mm wide, and 2 mm thick. Moreover, the square-shaped test piece for a 4-point bending test for evaluating bending straightness was produced (FIG. 5). Furthermore, a cylindrical test piece for evaluating bending fatigue characteristics was produced (FIG. 6).
  • a gas nitriding treatment was performed on the collected specimen under the following conditions.
  • the test piece was charged into a gas nitriding furnace, and NH 3 , H 2 , and N 2 gases were introduced into the furnace. Then, conduct high K N value processing under the conditions shown in Tables 3 and 4 before performing the low K N value processing. Oil cooling was performed using 80 ° C. oil on the test piece after the gas nitriding treatment.
  • the compound layer can be confirmed as a white uncorroded layer present in the surface layer.
  • the compound layer was observed from 5 visual fields (field area: 2.2 ⁇ 10 4 ⁇ m 2 ) photographed at 500 ⁇ , and the thickness of 4 compound layers was measured every 30 ⁇ m. And the measured average value of 20 points
  • the depth in the range of 250 HV or higher was defined as the effective hardened layer depth ( ⁇ m).
  • the thickness of the compound layer was 3 ⁇ m or less, the void ratio was less than 10%, and the surface hardness was 350 to 500 HV. Furthermore, when the effective hardened layer depth was 160 to 410 ⁇ m, it was determined to be good.
  • a static bending test was carried out on the square specimen subjected to the gas nitriding treatment.
  • the shape of the square test piece is shown in FIG.
  • the unit of the dimension in FIG. 5 is “mm”.
  • the static bending test was performed by four-point bending with an inner fulcrum distance of 30 mm and an outer fulcrum distance of 80 mm, and the strain rate was 2 mm / min.
  • a strain gauge was attached to the R portion in the longitudinal direction of the square test piece, and the maximum strain amount (%) when a crack occurred in the R portion and the strain gauge could not be measured was determined as bending correctability. In the parts of the present invention, it was aimed that the bending straightness was 1.3% or more.
  • the treatment temperature in the gas nitriding treatment was 550 to 620 ° C., and the treatment time A was 1.5 to 10 hours.
  • K NX in the high K N value processing was 0.15 to 1.50
  • the average value K NXave was 0.30 to 0.80.
  • K NY in the low K N value process was 0.02 to 0.25
  • the average value K NYave was 0.03 to 0.20.
  • the average value K Nave obtained by (Expression 2) was 0.07 to 0.30. Therefore, in any test number, the thickness of the compound layer after nitriding was 3 ⁇ m or less, and the void area ratio was less than 10%.
  • the effective cured layer satisfied 160 to 410 ⁇ m and the surface hardness was 350 to 500 HV.
  • the bending straightness and bending fatigue strength also satisfied the target of 1.3% and 500 MPa or more, respectively.
  • the minimum value of K NX in the high K N value processing was less than 0.15. Therefore, since the compound layer was not stably formed during the high K N value treatment, the effective hardened layer depth was less than 160 ⁇ m, and the bending fatigue strength was less than 500 MPa.
  • the average value K NXave in the high K N value process was less than 0.30. Therefore, not compound layer having a sufficient thickness in the high K N value processing is formed, since the low K N value processing in early compound layer had been decomposed, effective case depth is less than 160 .mu.m, the surface hardness Since it was less than 350 HV, the bending fatigue strength was less than 500 MPa.
  • test number 45 the average value K NXave in the high K N value process exceeded 0.80. Therefore, the compound layer thickness exceeded 3 ⁇ m, the void area ratio became 10% or more, the bending straightness was less than 1.3%, and the bending fatigue strength was less than 500 MPa.
  • the minimum value of K NY in the low K N value process was less than 0.02. Therefore, since the compound layer was decomposed early during the low K N value treatment, the effective hardened layer depth was less than 160 ⁇ m, and the surface hardness was also less than 350 HV, so that the bending fatigue strength was less than 500 MPa.
  • the minimum value of K NY in the low K N value process was less than 0.02, and the average value K Yave in the low K N value process was less than 0.03. Therefore, since the effective hardened layer depth was less than 160 ⁇ m and the surface hardness was also less than 350 HV, the bending fatigue strength was less than 500 MPa.
  • the average value K Nave is less than 0.07. Therefore, since the surface hardness was less than 350 HV, the bending fatigue strength was less than 500 MPa.
  • test number 50 the average value K Nave exceeded 0.30. Therefore, since the compound layer thickness exceeded 3 ⁇ m, the bending straightness was less than 1.3% and the bending fatigue strength was less than 500 MPa.
  • test No. 51 the high K N low K N value processing was not performed, and control was performed so that the average value K Nave was 0.07 to 0.30.
  • the compound layer thickness exceeded 3 ⁇ m, the bending straightness was less than 1.3%, and the bending fatigue strength was less than 500 MPa.
  • test numbers 52 to 60 nitriding treatment specified in the present invention was performed using steels r to z having components outside the range specified in the present invention. As a result, at least one of the bending straightness and bending fatigue strength did not satisfy the target value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

部品の小型軽量化あるいは高い負荷容量の要求に応えることのできる、曲げ矯正性及び曲げ疲労特性に優れた窒化処理鋼部品であって、質量%で、C:0.2~0.6%、Si:0.05~1.5%、Mn:0.2~2.5%、P:0.025%以下、S:0.003~0.05%、Cr:0.05~0.5%、Al:0.01~0.05%、及びN:0.003~0.025%を含有し、残部がFe及び不純物である鋼材を素材とし、鋼表面に形成された、鉄、窒素及び炭素からなる厚さ3μm以下の化合物層と、化合物層の下に形成された硬化層とを有し、有効硬化層深さが160~410μmであることを特徴とする。

Description

窒化処理鋼部品及びその製造方法
 本発明は、窒化処理を施された鋼部品、特に曲げ矯正性および曲げ疲労特性に優れるクランク軸などの窒化処理鋼部品、及びその製造方法に関する。
 自動車や各種産業機械などに使用される鋼部品には、疲労強度、耐摩耗性、及び耐焼付き性などの機械的性質を向上させるために、浸炭焼入れ、高周波焼入れ、窒化、及び軟窒化などの表面硬化熱処理が施される。
 窒化処理及び軟窒化処理は、A点以下のフェライト域で行われ、処理中に相変態がないため、熱処理ひずみを小さくすることができる。そのため、窒化処理及び軟窒化処理は、高い寸法精度を有する部品や大型の部品に用いられることが多く、例えば自動車のトランスミッション部品に用いられる歯車や、エンジンに用いられるクランク軸に適用されている。
 窒化処理は、鋼材表面に窒素を侵入させる処理方法である。窒化処理に用いる媒体には、ガス、塩浴、プラズマなどがある。自動車のトランスミッション部品には、主に、生産性に優れるガス窒化処理が適用されている。ガス窒化処理によって、鋼材表面には、厚さが10μm以上の化合物層が形成され、さらに、化合物層の下側の鋼材表層には窒素拡散層である硬化層が形成される。化合物層は主にFe2~3NとFeNで構成され、化合物層の硬さは母材となる鋼と比較して極めて高い。そのため、化合物層は、使用の初期において、鋼部品の耐摩耗性及び耐ピッティング性を向上させる。
 しかしながら、化合物層は低靭性で、かつ変形能が低いため、使用中に化合物層と母層の界面が剥離し、部品の強度が低下することがある。そのため、ガス窒化部品を、衝撃的な応力や大きな曲げ応力が負荷される部品として用いることは難しい。
 したがって、衝撃的な応力や大きな曲げ応力が負荷される部品として用いるためには、化合物層の厚さを薄くし、更には、化合物層を無くすことが求められている。ところで、化合物層の厚さは、窒化処理の処理温度と、NH3分圧及びH2分圧から次式で求められる窒化ポテンシャルKにより制御できることが知られている。
   K=(NH3分圧)/[(H2分圧)3/2
 窒化ポテンシャルKを低くすれば、化合物層を薄くし、さらには化合物層を無くすことも可能である。しかしながら、窒化ポテンシャルKを低くすれば、鋼中に窒素が侵入しにくくなる。この場合、硬化層の硬さが低くなり、かつ、その深さが浅くなる。その結果、窒化部品の疲労強度、耐摩耗性、及び耐焼付き性が低下する。この性能低下に対処するため、ガス窒化処理後の窒化部品に対して機械研磨又はショットブラスト等を実施して、化合物層を除去する方法がある。しかしながら、この方法では製造コストが高くなる。
 特許文献1には、このような問題に対して、ガス窒化処理の雰囲気を、上記の窒化ポテンシャルとは異なる窒化パラメータK ´=(NH分圧)/[(H分圧)1/2]によって制御し、硬化層深さのばらつきを小さくする方法が提案されている。
 特許文献2には、化合物層を形成させることなく、硬化層(窒化層)を形成させることができるガス窒化方法が提案されている。特許文献2の方法は、最初にフッ化処理により部品の酸化皮膜を除去し、その後に窒化処理を行うものであり、処理炉内に被処理物を配置するための治具として非窒化性材料が必要である。
 しかし、特許文献1によって提案された窒化パラメータが硬化層深さの制御に有用であるとしても、部品としての機能を向上させるものではない。
 特許文献2で提案されているように、非窒化性の治具を用意し、始めにフッ化処理を行う方法の場合、治具の選択及び作業工数の増加という問題が生じる。
特開2006-28588号公報 特開2007-31759号公報
 本発明の目的は、低靱性かつ低変形能の化合物層を薄層化し、かつ硬化層深さを大きくするという、両立が難しい課題を解決し、部品の小型軽量化あるいは高い負荷容量の要求に応えることのできる、曲げ矯正性及び曲げ疲労特性に優れた窒化処理鋼部品及びその窒化処理方法を提供することである。
 本発明者らは、窒化処理によって鋼材の表面に形成される化合物層を薄くし、かつ、深い硬化層を得る方法について検討を行った。さらに、窒化処理時(特に高いK値での処理時)において、鋼材の表面近傍に、窒素がガス化して空隙が形成されるのを抑制する方法も併せて検討した。加えて、窒化処理条件と曲げ矯正性、及び曲げ疲労特性との関係を調査した。その結果、本発明者らは、下記(a)~(d)の知見を得た。
 (a)ガス窒化処理におけるK値について
 一般に、K値は、ガス窒化処理を行う炉内の雰囲気(以下「窒化処理雰囲気」、又は単に「雰囲気」という)のNH分圧、及び、H分圧を用いて、下記式で定義される。
  K=(NH分圧)/[(H分圧)3/2
 K値は、ガス流量によって制御することができる。しかしながら、ガス流量を設定した後、窒化処理雰囲気が平衡状態に達するまでには、一定の時間が必要である。そのため、K値が平衡状態に達するまでの間にもK値は時々刻々と変化している。また、ガス窒化処理の途中でK値を変更する場合も、平衡状態に達するまでの間にK値は変動する。
 上述のようなK値の変動は、化合物層、表面硬さ及び硬化層深さに影響を及ぼす。そのため、K値の目標値だけでなく、ガス窒化処理中のK値のばらつきの範囲も所定範囲内に制御する必要がある。
 (b)化合物層生成の抑制と表面硬さ及び硬化層深さの確保との両立について
 本発明者らの種々の実験では、窒化部品の曲げ矯正性及び曲げ疲労特性には、化合物層の厚さ、化合物層中の空隙、表面硬さ及び硬化層深さが関わっていた。化合物層が厚く、また化合物層中の空隙が多いと、化合物層を起点として割れが生じやすく、曲げ矯正性及び曲げ疲労強度が低下した。
 また、表面硬さが低く、硬化層深さが浅いほど、拡散層を起点として亀裂や割れが発生し、曲げ疲労強度が低下した。さらに、表面硬さが高すぎると、曲げ矯正性が悪化した。すなわち、本発明者らは、化合物層が薄く、化合物層中の空隙が少なく、表面硬さ一定の範囲内にあることに加え、硬化層深さが深い程、曲げ矯正性及び曲げ疲労特性に優れることを知見した。
 以上のことから、曲げ矯正性及び曲げ疲労特性を両立するには、化合物層を極力生成させず、かつ表面硬さを一定の範囲に制御し、さらに、硬化層深さを大きくすることが重要である。
 最終的に化合物層の生成を抑制し、硬化層深さを確保するためには、一度化合物層を生成させた後、生成した化合物層を分解して硬化層への窒素供給源として利用するのが効率的である。具体的には、ガス窒化処理の前半では、窒化ポテンシャルを高くしたガス窒化処理(高K値処理)を実施して化合物層を形成させる。そして、ガス窒化処理の後半では、高K値処理よりも窒化ポテンシャルを低くしたガス窒化処理(低K値処理)を実施する。この結果、高K値処理で形成された化合物層は、FeとNに分解され、Nが拡散することで窒素拡散層(硬化層)の形成を促進する。最終的に、窒化部品において化合物層を薄くし、かつ表面硬さを高め、硬化層深さを深くすることができる。
 (c)空隙の生成の抑制について
 ガス窒化処理の前半に高K値で窒化処理する際に、化合物層中に空隙を含む層(ポーラス層)が生成される場合がある(図1(a))。この場合、窒化物が分解して窒素拡散層(硬化層)が形成された後も、窒素拡散層内に空隙がそのまま残存する。窒素拡散層内に空隙が残存すれば、窒化部品の疲労強度が低下する。高K値処理において化合物層を生成させる際にK値の上限を制限すれば、ポーラス層及び空隙の生成を抑制することができる(図1(b))。
 (d)鋼材成分と化合物層および窒素拡散層の関係について
 鋼材に、Cが存在すると、化合物層厚さが厚くなりやすく、また、MnやCrなどの窒化物形成元素が存在すると、窒素拡散層の硬さや拡散層深さが変化する。曲げ矯正性は、化合物層厚さが薄い程、また表面硬さが低い程向上し、曲げ疲労特性は、表面硬さが高い程、また拡散層が深い程向上するため、鋼材成分の最適範囲を設定することが必要となる。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、以下のとおりである。
 [1]質量%で、C:0.2~0.6%、Si:0.05~1.5%、Mn:0.2~2.5%、P:0.025%以下、S:0.003~0.05%、Cr:0.05~0.5%、Al:0.01~0.05%、及びN:0.003~0.025%を含有し、残部がFe及び不純物である鋼材を素材とし、鋼表面に形成された、鉄、窒素及び炭素からなる厚さ3μm以下の化合物層と、化合物層の下に形成された硬化層とを有し、有効硬化層深さが160~410μmであることを特徴とする窒化処理鋼部品。
 [2]前記鋼材がFeの一部に代えて、Mo:0.01~0.50%未満、V:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする前記[1]の窒化処理鋼部品。
 [3]前記鋼材がFeの一部に代えて、Cu:0.01~0.50%未満、Ni:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする前記[1]又は[2]の窒化処理鋼部品。
 [4]前記鋼材がFeの一部に代えて、Ti:0.005~0.05%未満を含有することを特徴とする前記[1]~[3]のいずれかの窒化処理部品。
 [5]質量%で、C:0.2~0.6%、Si:0.05~1.5%、Mn:0.2~2.5%、P:0.025%以下、S:0.003~0.05%、Cr:0.05~0.5%、Al:0.01~0.05%、及びN:0.003~0.025%を含有し、残部はFe及び不純物である鋼材を素材とし、NH、H及びNを含むガス雰囲気で上記鋼材を550~620℃に加熱し、全体の処理時間Aを1.5~10時間とするガス窒化処理を施す工程を備え、上記ガス窒化処理は、処理時間をX時間とする高K値処理と、高K値処理に続く処理時間をY時間とする低K値処理からなり、上記高K値処理は、式(1)によって求められる窒化ポテンシャルKNXが0.15~1.50であり、式(2)によって求められる上記窒化ポテンシャルKNXの平均値KNXaveが0.30~0.80であり、上記低K値処理は、式(3)によって求められる窒化ポテンシャルKNYが0.02~0.25であり、式(4)によって求められる上記窒化ポテンシャルKNYの平均値KNYaveが0.03~0.20であり、式(5)によって求められる窒化ポテンシャルの平均値KNaveが0.07~0.30であることを特徴とする窒化処理方法。
   KNX=(NH3分圧)/[(H2分圧)3/2   ・・・ (1)
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、式(2)及び式(4)において、添字iは一定時間間隔毎の測定回を表す数であり、Xは窒化ポテンシャルKNXの測定間隔(時間)、Yは窒化ポテンシャルKNYの測定間隔(時間)、KNXiは高K値処理中のi回目の測定における窒化ポテンシャル、KNYiは低K値処理中のi回目の測定における窒化ポテンシャルである。
 [6]前記ガス雰囲気は、NH、H及びNを合計で99.5体積%以上含むことを特徴とする前記[5]の窒化処理鋼部品の製造方法。
 [7]前記鋼材がFeの一部に代えて、Mo:0.01~0.50%未満、V:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする前記[5]又は[6]の窒化処理鋼部品の製造方法。
 [8]前記鋼材がFeの一部に代えて、Cu:0.01~0.50%未満、Ni:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする前記[5]~[7]のいずれかの窒化処理鋼部品の製造方法。
 [9]前記鋼材がFeの一部に代えて、Ti:0.005~0.05%未満を含有することを特徴とする前記[5]~[8]のいずれかの窒化処理部品の製造方法。
 本発明によれば、化合物層が薄く、空隙(ポーラス層)の生成が抑制され、さらに、一定の表面硬さ及び深い硬化層を有し、曲げ矯正性、及び曲げ疲労特性に優れた窒化処理鋼部品を得ることができるる。
窒化処理後の化合物層を示す図であり、(a)は化合物層中に空隙を含むポーラス層が生成された例、(b)はポーラス層及び空隙の生成が抑制された例である。 高K値処理の窒化ポテンシャルの平均値KNXaveと、表面硬さ及び化合物層厚さとの関係を示す図である。 低K値処理の窒化ポテンシャルの平均値KNYaveと、表面硬さ及び化合物層厚さとの関係を示す図である。 窒化ポテンシャルの平均値KNaveと、表面硬さ及び化合物層厚さとの関係を示す図である。 曲げ矯正性を評価するために用いた静的曲げ試験用の角型試験片の形状である。 曲げ疲労特性を評価するための円柱試験片の形状である。
 以下、本発明の各要件について詳しく説明する。はじめに、素材となる鋼材の化学組成について説明する。以下、各成分元素の含有量及び部品表面における元素濃度を表す「%」は「質量%」を意味する。
 [C:0.2~0.6%]
 Cは、部品の芯部硬さを確保するために必要な元素である。Cの含有量が0.2%未満では、芯部強度が低くなりすぎるため、曲げ疲労強度が大きく低下する。また、Cの含有量が0.6%を超えると、高K値処理中に化合物層厚さが大きくなりやすく、また低K値処理中に化合物層が分解しにくくなる。そのため、窒化処理後の化合物層厚さを小さくすること難しくなり、曲げ矯正性や曲げ疲労強度が大きく低下する。C含有量の好ましい範囲は0.25~0.55%である。
 [Si:0.05~1.5%]
 Siは、固溶強化によって、芯部硬さを高める。また、脱酸元素でもある。これらの効果を発揮させるため、0.05%以上を含有させる。一方、Siの含有量が1.5%を超えると、棒鋼、線材や熱間鍛造後の強度が高くなりすぎるため、切削加工性が大きく低下する他、曲げ矯正性が低下する。Si含有量の好ましい範囲は0.08~1.3%である。
 [Mn:0.2~2.5%]
 Mnは、固溶強化によって、芯部硬さを高める。さらに、Mnは、窒化処理時には、硬化層中に微細な窒化物(Mn32)を形成し、析出強化によって曲げ疲労強度を向上させる。これらの効果を得るため、Mnは0.2%以上が必要である。一方、Mnの含有量が2.5%を超えると、曲げ疲労強度を高める効果が飽和。さらに、有効硬化層深さが浅くなるため、ピッティング強度および曲げ疲労強度が低下する。また、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が大きく低下する。Mn含有量の好ましい範囲は0.4~2.3%である。
 [P:0.025%以下]
 Pは不純物であって、粒界偏析して部品を脆化させるので、含有量は少ない方が好ましい。Pの含有量が0.025%を超えると、曲げ矯正性や曲げ疲労強度が低下する場合がある。曲げ矯正性や曲げ疲労強度の低下を防止するためのP含有量の好ましい上限は0.018%である。含有量を完全に0とするのは難しく、現実的な下限は0.001%である。
 [S:0.003~0.05%]
 Sは、Mnと結合してMnSを形成し、切削加工性を向上させる。この効果を得るために、Sは0.003%以上が必要である。しかしながら、Sの含有量が0.05%を超えると、粗大なMnSを生成しやすくなり、曲げ矯正性や曲げ疲労強度が大きく低下する。S含有量の好ましい範囲は0.005~0.03%である。
 [Cr:0.05~0.5%]
 Crは、窒化処理時に、微細な窒化物(CrN)を硬化層中に形成し、析出強化によって曲げ疲労強度を向上させる。これらの効果を得るため、Crは0.5%以上が必要である。一方、Crの含有量が0.5%を超えると、析出強化能が飽和する。さらに、有効硬化層深さが浅くなるため、ピッティング強度および曲げ疲労強度が低下する。また、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が著しく低下する。Cr含有量の好ましい範囲は0.07~0.4%である。
 [Al:0.01~0.05%]
 Alは、脱酸元素であり、十分な脱酸のために0.01%以上が必要である。一方で、Alは硬質な酸化物系介在物を形成しやすく、Alの含有量が0.05%を超えると、曲げ疲労強度の低下が著しくなり、他の要件を満たしていても所望の曲げ疲労強度が得られなくなる。Al含有量の好ましい範囲は0.02~0.04%である。
 [N:0.003~0.025%]
 Nは、Al、V、Tiと結合してAlN、VN、TiNを形成する。AlN、VN、TiNはオーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化し、窒化処理鋼部品の機械的特性のばらつきを低減する効果を持つ。Nの含有量が0.003%未満ではこの効果は得難い。一方で、Nの含有量が0.025%を超えると、粗大なAlNが形成されやすくなるため、上記の効果は得難くなる。N含有量の好ましい範囲は0.005~0.020%である。
 本発明の窒化処理鋼部品の素材となる鋼は、上記の元素の他、以下に示す元素を含有してもよい。
 [Mo:0.01~0.50%未満]
 Moは、窒化時に微細な窒化物(Mo2N)を硬化層中に形成し、析出強化によって曲げ疲労強度を向上させる。また、Moは、窒化時に時効硬化作用を発揮して芯部硬さを向上させる。これらの効果を得るためのMo含有量は0.01%以上が必要である。一方、Moの含有量が0.50%以上では、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が著しく低下する他、合金コストが増大する。Mo含有量の好ましい上限は0.40%未満である。
 [V:0.01~0.50%未満]
 Vは、窒化時に微細な窒化物(VN)を形成し、析出強化によって曲げ疲労強度を向上させる。また、Vは、窒化時に時効硬化作用を発揮して芯部硬さを向上させる。更に、オーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化させる効果も有する。これらの作用を得るため、Vは0.01%以上が必要である。一方、Vの含有量が0.50%以上では、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が著しく低下する他、合金コストが増大する。V含有量の好ましい範囲は0.40%未満である。
 [Cu:0.01~0.50%]
 Cuは、固溶強化元素として部品の芯部硬さならびに窒素拡散層の硬さを向上させる。Cuの固溶強化の作用を発揮させるためには0.01%以上の含有が必要である。一方、Cuの含有量が0.50%を超えると、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が著しく低下する他、熱間延性が低下するため、熱間圧延時、熱間鍛造時に表面傷発生の原因となる。Cu含有量の好ましい範囲は0.40%未満である。
 [Ni:0.01~0.50%]
 Niは、固溶強化により芯部硬さおよび表層硬さを向上させる。Niの固溶強化の作用を発揮させるためには0.01%以上の含有が必要である。一方、Niの含有量が0.50%を超えると、棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、曲げ矯正性や切削加工性が著しく低下する他、合金コストが増大する。Ni含有量の好ましい範囲は0.40%未満である。
 [Ti:0.005~0.05%]
 Tiは、Nと結合してTiNを形成し、芯部硬さ及び表層硬さを向上させる。この作用を得るため、Tiは0.005%以上が必要である。一方、Tiの含有量が0.05%以上では、芯部硬さ及び表層硬さを向上させる効果が飽和する他、合金コストが増大する。Ti含有量の好ましい範囲は0.007~0.04%未満である。
 鋼の残部は、Fe及び不純物である。不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。上記の任意の添加元素、Mo、V、Cu、Ni、及びTiが上述の下限未満の量混入することもあるが、この場合、上述した各元素の効果が十分に得られないだけで、本発明の耐ピッティング性及び曲げ疲労特性向上の効果は得られるので、問題はない。
 以下、本発明の窒化処理鋼部品の製造方法を説明する。以下に説明する製造方法は一例であって、本発明の窒化処理鋼部品は、化合物層の厚さが3μm以下、有効硬化層深さが160~410μmであればよく、以下の製造方法に限定されるわけではない。
 本発明の窒化処理鋼部品の製造方法では、上述した成分を有する鋼に対してガス窒化処理を施す。ガス窒化処理の処理温度は550~620℃であり、ガス窒化処理全体の処理時間Aは1.5~10時間である。
 [処理温度:550~620℃]
 ガス窒化処理の温度(窒化処理温度)は、主に、窒素の拡散速度と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。窒化処理温度が低すぎれば、窒素の拡散速度が遅く、表面硬さが低くなり、硬化層深さが浅くなる。一方、窒化処理温度がAC1点を超えれば、フェライト相(α相)よりも窒素の拡散速度が小さいオーステナイト相(γ相)が鋼中に生成され、表面硬さが低くなり、硬化層深さが浅くなる。したがって、本実施形態では、窒化処理温度はフェライト温度域周囲である550~620℃である。この場合、表面硬さが低くなるのを抑制でき、かつ、硬化層深さが浅くなるのを抑制できる。
 [ガス窒化処理全体の処理時間A:1.5~10時間]
 ガス窒化処理は、NH、H、Nを含む雰囲気で実施する。窒化処理全体の時間、つまり、窒化処理の開始から終了までの時間(処理時間A)は、化合物層の形成及び分解と窒素の浸透と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。処理時間Aが短すぎると表面硬さが低くなり、硬化層深さが浅くなる。一方、処理時間Aが長すぎれば、脱窒が発生して鋼の表面硬さが低下する。処理時間Aが長すぎればさらに、製造コストが高くなる。したがって、窒化処理全体の処理時間Aは1.5~10時間である。
 なお、本実施形態のガス窒化処理の雰囲気は、NH、H及びNの他、不可避的に酸素、二酸化炭素などの不純物を含む。好ましい雰囲気は、NH、H及びNを合計で99.5%(体積%)以上である。後述するK値は、雰囲気中のNH及びH分圧の比率から算出されるため、N分圧の大小に影響されない。しかしながら、K制御の安定性を高めるため、N分圧は0.2~0.5atmであることが好ましい。
 [高K値処理及び低K値処理]
 上述のガス窒化処理は、高K値処理を実施する工程と、低K値処理を実施する工程とを含む。高K値処理では、低K値処理よりも高い窒化ポテンシャルKNXでガス窒化処理を実施する。さらに高K値処理後に低K値処理を実施する。低K値処理では、高K値処理よりも低い窒化ポテンシャルKNYでガス窒化処理を実施する。
 このように、本窒化処理方法では、2段階のガス窒化処理(高K値処理、低K値処理)を実施する。ガス窒化処理の前半(高K値処理)で窒化ポテンシャルK値を高くすることにより、鋼の表面に化合物層を生成させる。その後、ガス窒化処理の後半(低K値処理)で窒化ポテンシャルK値を下げることにより、鋼の表面に形成された化合物層をFeとNに分解し、鋼中に窒素(N)を浸透拡散させる。2段階のガス窒化処理とすることにより、高K値処理で生成した化合物層の厚さを低減しつつ、化合物層の分解により得られた窒素を用いて十分な硬化層深さを得る。
 高K値処理の窒化ポテンシャルをKNXとし、低K値処理の窒化ポテンシャルをKNYとする。このとき、窒化ポテンシャルKNXおよびKNYは、は、下式で定義される。
   KNX=(NH3分圧)/[(H2分圧)3/2
   KNY=(NH3分圧)/[(H2分圧)3/2
 ガス窒化処理の雰囲気のNH及びHの分圧は、ガスの流量を調整することにより制御することができる。
 高K値処理から低K値処理への移行するとき、K値を低下させるためにガス流量を調整すると、炉内のNH及びHの分圧が安定化するまでに、ある程度の時間を要する。K値を変更するためのガス流量の調整は1回でもよいし、必要に応じて複数回でもよい。K値の低下量をより大きくするために、NH流量を下げ、H流量を上げる方法が効果的である。高K値処理後のKNi値が、最後に0.25以下となった時点を、低K値処理の開始時期と定義する。
 高K値処理の処理時間を「X」(時間)とし、低K値処理の処理時間を「Y」(時間)とする。処理時間Xと処理時間Yとの合計は、窒化処理全体の処理時間A以内であり、好ましくは、処理時間Aである。
 [高K値処理及び低K値処理での諸条件]
 上述のとおり、高K値処理中の窒化ポテンシャルをKNX、低K値処理中の窒化ポテンシャルをKNYとする。さらに、高K値処理中の窒化ポテンシャルの平均値を「KNXave」とし、低K値処理中の窒化ポテンシャルの平均値を「KNYave」とする。KNXaveとKNYaveは、下式で定義する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、添字iは一定時間間隔毎の測定回を表す数であり、Xは窒化ポテンシャルKNXの測定間隔(時間)、Yは窒化ポテンシャルKNYの測定間隔(時間)、KNXiは高K値処理中のi回目の測定における窒化ポテンシャル、KNYiは低K値処理中のi回目の測定における窒化ポテンシャルである。
 たとえば、Xを15分として、処理開始から15分後を1回目(i=1)とし、以降15分おきに2回目(i=2)、3回目(i=3)と測定して、処理時間まで測定可能なn回を測定してKNXaveを計算する。KNYaveも同様に計算する。
 さらに、窒化処理全体の窒化ポテンシャルの平均値を「KNave」とする。平均値KNaveは、下式で定義される。
 KNave=(X×KNXave+Y×KNYave)/A
 本発明の窒化処理方法では、高K値処理の窒化ポテンシャルKNX、平均値KNXave、処理時間X、低K値処理の窒化ポテンシャルKNX、平均値KNYave、処理時間Y、及び、平均値KNaveが次の条件(I)~(IV)を満たす。
 (I)平均値KNXave:0.30~0.80
 (II)平均値KNYave:0.03~0.20
 (III)KNX:0.15~1.50、及び、KNY:0.02~0.25
 (IV)平均値KNave:0.07~0.30
 以下、条件(I)~(IV)について説明する。
 [(I)高K処理での窒化ポテンシャルの平均値KNXave
 高K値処理において、窒化ポテンシャルの平均値KNXaveは、十分な厚さの化合物層を形成させるため、0.30~0.80が必要である。
 図2は、平均値KNXaveと、表面硬さ及び化合物層厚さの関係とを示す図である。図2は次の実験により得られた。
 本発明で規定する化学成分を有する鋼a(表1参照。以下、供試材と呼ぶ)を用いて、NH、H及びNを含むガス雰囲気でガス窒化処理を実施した。ガス窒化処理では、所定の温度に加熱した雰囲気の制御が可能な熱処理炉内に供試材を挿入し、NH、N及びHのガスを流入させた。このとき、ガス窒化処理の雰囲気のNH及びHの分圧を測定しながらガスの流量を調整し、窒化ポテンシャルK値を制御した。K値は、NH分圧及びH分圧によって求めた。
 ガス窒化処理中のH分圧は、ガス窒化炉体に直接装着した熱伝導式Hセンサを用い、標準ガスと測定ガスとの熱伝導度の違いをガス濃度に換算して測定した。H分圧は、ガス窒化処理の間、継続して測定した。ガス窒化処理中のNH分圧は、炉外に手動ガラス管式NH分析計を取り付けて測定し、15分毎に残留NH3の分圧を算出して求めた。NH分圧を測定する15分毎に窒化ポテンシャルK値を算出し、目標値に収束するように、NH流量及びN流量を調整した。
 ガス窒化処理では、雰囲気の温度を590℃、処理時間Xを1.0時間、処理時間Yを2.0時間、KNYaveを0.05と一定とし、KNXaveを0.10~1.00まで変化させて行った。全体の処理時間Aは3.0時間とした。
 種々の平均値KNXaveでガス窒化処理された供試材に対して、次の測定試験を実施した。
 [化合物層の厚さ測定]
 ガス窒化処理後、供試材の断面を研磨し、エッチングして光学顕微鏡で観察した。エッチングは、3%ナイタール溶液で20~30秒間行った。化合物層は、鋼の表層に存在し、白い未腐食の層として観察される。光学顕微鏡により500倍で撮影した組織写真5視野(視野面積:2.2×104μm2)から、それぞれ30μm毎に4点の化合物層の厚さを測定した。測定された20点の値の平均値を、化合物厚さ(μm)と定義した。化合物層厚さが3μm以下の時、剥離や割れの発生が大きく抑制される。よって、本発明形態においては、化合物層厚さを3μm以下にすることが必要である。化合物層厚さは0でもよい。
 [化合物層の相構造]
 化合物層の相構造は、面積率でγ’(FeN)が50%以上となることが好ましい。残部はε(Fe2~3N)である。一般的な軟窒化処理によれば化合物層はε(Fe2~3N)が主体となるが、本発明の窒化処理によれば、γ’(FeN)の割合が大きくなる。化合物層の相構造はSEM-EBSD法で調べることができる。
 [空隙面積率の測定]
 更に、光学顕微鏡観察によって、供試材の断面における表層組織の空隙の面積率を測定した。倍率1000倍にて5視野測定(視野面積:5.6×103μm2)して、各視野について最表面から5μm深さの範囲の面積25μm2中に占める空隙の割合(以下、空隙面積率という)を算出した。空隙面積率が10%以上の場合、ガス窒化処理後の窒化部品の表面粗さが粗くなり、さらに、化合物層が脆化するため、窒化部品の疲労強度が低下する。したがって、本発明形態においては、空隙面積率が10%未満であることが必要である。空隙面積率は、好ましくは8%未満、より好ましくは6%未満である。
 [表面硬さの測定]
 さらに、ガス窒化処理後の供試材の表面硬さ及び有効硬化層深さを次の方法により求めた。試料表面から深さ方向のビッカース硬さを、JIS Z 2244に準拠して、試験力1.96Nで測定した。そして、表面から50μm深さ位置におけるビッカース硬さの3点の平均値を、表面硬さ(HV)と定義した。本発明では、3μm超の化合物層が残存する一般的なガス窒化処理の場合と同等の表面硬さとして350HV以上~500HV以下を目標とする。
 [有効硬化層深さの測定]
 本発明において、有効硬化層深さ(μm)は、上記のビッカース硬さ試験で得られた深さ方向の硬さ分布を用いて、供試材表面から深さ方向に測定されたビッカース硬さの分布のうち250HV以上となる範囲の深さと定義する。
 処理温度570~590℃において、化合物層が10μm以上生成される一般的なガス窒化処理の場合、ガス窒化処理全体の処理時間をA(時間)とすると、有効硬化層深さは、下記式(A)で求められる値±20μmになる。
 有効硬化層深さ(μm)=130×{処理時間A(時間)}1/2 ・・・ (A)
 本発明の窒化処理鋼部品では、有効硬化層深さは130×{処理時間A(時間)}1/2とする。本実施形態においては、ガス窒化処理全体の処理時間Aは、上述のとおり1.5~10時間であるので、有効硬化層深さは、160~410μmとなることを目標とする。
 上述の測定試験の結果、平均値KNYaveが0.20以上であれば、有効硬化層深さが160~410μmを満たした(A=3のとき、有効硬化層深さ225μm)。さらに、測定試験結果のうち、各平均値KNXaveでのガス窒化処理により得られた供試材の表面硬さ及び化合物層の厚さに基づいて、図2を作成した。
 図2中の実線は平均値KNXaveと表面硬さ(HV)との関係を示すグラフである。図2中の破線は平均値KNXaveと化合物層の厚さ(μm)との関係を示すグラフである。
 図2の実線のグラフを参照して、低K値処理での平均値KNYaveが一定である場合、高K値処理での平均値KNXaveが高くなるに従い、窒化部品の表面硬さが顕著に増大する。そして、平均値KNXaveが0.30以上となったとき、表面硬さは目標とした350HV以上となる。一方、平均値KNXaveが0.30よりも高い場合、平均値KNXaveがさらに高くなっても、表面硬さはほぼ一定のままである。つまり、平均値KNXaveと表面硬さのグラフ(図2中の実線)では、KNXave=0.30付近に変曲点が存在する。
 さらに、図2の破線のグラフを参照して、平均値KNXaveが1.00から低下するに従い、化合物厚さが顕著に減少する。そして、平均値KNXaveが0.80になったとき、化合物層の厚さは3μm以下となる。一方、平均値KNXaveが0.80以下では、平均値KNXaveが低下するに従い、化合物層の厚さが減少するものの、平均値KNXaveが0.80よりも高い場合と比較して、化合物層の厚さの減少代は小さい。つまり、平均値KNXaveと表面硬さのグラフ(図2中の実線)では、KNXave=0.80付近に変曲点が存在する。
 以上の結果より、本発明形態では、高K値処理の窒化ポテンシャルの平均値KNXaveは0.30~0.80とする。この範囲に制御することで、窒化処理された鋼の表面硬さを高め、かつ、化合物層の厚さを抑制することができる。さらに、十分な有効硬化層深さを得ることができる。平均値KNXaveが0.30未満であれば、化合物の生成が不十分であり、表面硬さが低下し、十分な有効効果層深さが得られない。平均値KNXaveが0.80を超えれば、化合物層の厚さが3μmを超え、さらに、空隙面積率が10%以上になる場合がある。平均値KNXaveの好ましい下限は0.35である。また、平均値KNXaveの好ましい上限は0.70である。
 [(II)低K値処理での窒化ポテンシャルの平均値KNYave
 低K値処理の窒化ポテンシャルの平均値KNYaveは0.03~0.20である。
 図3は、平均値KNYaveと、表面硬さ及び化合物層厚さとの関係を示す図である。図3は、次の試験により得られた。
 窒化処理雰囲気の温度を590℃、処理時間Xを1.0時間、処理時間Yを2.0時間、平均値KNXaveを0.40と一定として、平均値KNYaveを0.01~0.30まで変化させて、本発明で規定する化学成分を有する鋼aに対してガス窒化処理を行った。全体の処理時間Aは3.0時間であった。
 窒化処理後、上述の方法により、各平均値KNYaveにおける表面硬さ(HV)、有効硬化層深さ(μm)及び、化合物層厚さ(μm)を測定した。有効硬化層深さを測定した結果、平均値KNYaveが0.02以上であれば、有効硬化層深さが225μm以上となった。さらに、測定試験により得られた表面硬さ及び化合物厚さをプロットして、図3を作成した。
 図3中の実線は、平均値KNYaveと表面硬さとの関係を示すグラフであり、破線は、平均値KNYaveと化合物層の深さとの関係を示すグラフである。図3の実線のグラフを参照して、平均値KNYaveが0から高くなるに従い、表面硬さは顕著に増大する。そして、KNYaveが0.03となったとき、表面硬さは570HV以上となる。さらに、KNYaveが0.03以上の場合、KNYaveが高くなっても、表面硬さはほぼ一定である。以上より、平均値KNYaveと表面硬さとのグラフでは、平均値KNYave=0.03付近に変曲点が存在する。
 一方、図3中の破線のグラフを参照して、平均値KNYaveが0.30から0.25に低下するまでの間は、化合物層の厚さはほぼ一定である。しかしながら、平均値KNYaveが0.25から低下するに従い、化合物層の厚さは顕著に減少する。そして、平均値KNYaveが0.20となったとき、化合物層の厚さは3μm以下となる。さらに、平均値KNYaveが0.20以下の場合、平均値KNYaveの低下にともない、化合物層の厚さは減少するものの、平均値KNYaveが0.20よりも高い場合と比較して、化合物層の厚さの減少代は少ない。以上より、平均値KNYaveと化合物層の厚さとのグラフでは、平均値KNYave=0.20付近に変曲点が存在する。
 以上の結果より、本発明において、低K値処理の平均値KNYaveは0.03~0.20に限定する。この場合、ガス窒化処理された鋼の表面硬さが高くなり、かつ、化合物層の厚さを抑制することができる。さらに、十分な有効硬化層深さを得ることができる。平均値KNYaveが0.03未満であれば、表面から脱窒が生じて表面硬さが低下する。一方、平均値KNYaveが0.20を超えれば、化合物の分解が不十分であり、有効硬化層深さが浅く、表面硬さが低下する。平均値KNYaveの好ましい下限は0.05である。平均値KNYaveの好ましい上限は0.18である。
 [(III)窒化処理中の窒化ポテンシャルKNX及びKNYの範囲]
 ガス窒化処理において、雰囲気中のKNi値が平衡状態に達するまでには、ガス流量を設定してから一定の時間が必要である。そのため、KNi値が平行状態に達するまでの間にもKNi値は時々刻々と変化している。さらに、高K値処置から低K値処理へと移行するとき、ガス窒化処理の途中でKNi値の設定を変更することになる。この場合も、平衡状態に達するまでの間にKNi値は変動する。
 このようなKNi値の変動は、化合物層や硬化層深さに影響を及ぼす。したがって、高K値処理及び低K値処置において、上述の平均値KNXave及び平均値KNYaveを上記範囲とするだけでなく、高K値処理中の窒化ポテンシャルKNx、及び、低K値処理中の窒化ポテンシャルKNYも所定範囲内に制御する。
 具体的には、本発明では、十分な化合物層を形成するために、高K値処理中における窒化ポテンシャルKNXを0.15~1.50とし、化合物層を薄く、且つ硬化層深さを大きくするために、低K値処理中における窒化ポテンシャルKNYを0.02~0.25とする。
 表1は、C:0.45%、Si:0.70%、Mn:1.01%、P:0.015%、S:0.015%、Cr:0.25%、Al:0.028%、N:0.009%を含有し、残部がFe及び不純物である鋼(以下「鋼a」という)を種々の窒化ポテンシャルKNX及びKNYで窒化処理を実施した場合の、窒化部品の化合物層厚さ(μm)、空隙面積率(%)、有効硬化層深さ(μm)及び表面硬さ(HV)を示す。表1は、次の試験により得られた。
Figure JPOXMLDOC01-appb-T000007
 鋼aを供試材として、表1に示すガス窒化処理(高K値処理及び低K値処理)を実施して窒化部品を製造した。具体的には、各試験番号でのガス窒化処理の雰囲気温度を590℃、処理時間Xを1.0時間、処理時間Yを2.0時間、KNXaveを0.40、KNYaveを0.10と一定とした。そして、ガス窒化処理中において、KNX、KNYの最小値KNXmin、KNYmin、最大値KNXmax、KNYmaxを変化させて、高K値処理及び低K値処理を実施した。窒化処理全体の処理時間Aは3.0時間とした。
 処理温度570~590℃において、化合物層が10μm以上生成される一般的なガス窒化処理の場合、ガス窒化処理全体の処理時間を3.0時間とすると、有効硬化層深さは225μm±20μmになる。ガス窒化処理後の窒化部品に対して、上述の測定方法により、化合物層厚さ、空隙面積率、有効硬化層深さ及び表面硬さを測定し、表1を得た。
 表1を参照して、試験番号3~6、10~15では、最小値KNXmin及び最大値KNXmaxが0.15~1.50であり、かつ、最小値KNYmin及び最大値KNYmaxが0.02~0.25であった。その結果、化合物厚さが3μm以下と薄く、空隙は10%未満に抑制された。さらに、有効硬化層深さは225μm以上であり、表面硬さは350HV以上であった。
 一方、試験番号1及び2では、KNXminが0.15未満であるため、表面硬さが570HV未満であった。試験番号1ではさらに、KNXminが0.14未満であるため、有効硬化層深さが225μm未満であった。
 試験番号7及び8では、KNXmaxが1.5を超えたため、化合物層中の空隙が10%以上となった。試験番号8ではさらに、KNXmaxが1.55を超えたため、化合物層の厚さが3μmを超えた。
 試験番号9では、KNYminが0.02未満であったため、表面硬さが350HV未満であった。これは、低K値処理によって化合物層が消失するだけでなく、表層から脱窒が生じたためと考えられる。さらに、試験番号16では、KNYmaxが0.25を超えた。そのため、化合物層の厚さが3μmを超えた。KNYmaxが0.25を超えたため、十分に化合物層の分解が起こらなかったと考えられる。
 以上の結果より、高K値処理での窒化ポテンシャルKNXを0.15~1.50とし、かつ、低K値処理中における窒化ポテンシャルKNYを0.02~0.25とする。この場合、窒化処理後の部品において、化合物層の厚さを十分に薄くでき、空隙も抑制できる。さらに、有効硬化層深さを十分に深くでき、かつ、高い表面硬さが得られる。
 窒化ポテンシャルKNXが0.15未満であれば、有効硬化層が浅すぎたり、表面硬さが低すぎたりする。窒化ポテンシャルKNXが1.50を超えれば、化合物層が厚くなりすぎたり、空隙が過剰に残存したりする。
 また、窒化ポテンシャルKNYが0.02未満であれば、脱窒が生じて表面硬さが低下する。一方、窒化ポテンシャルKNYが0.20を超えれば、化合物層が厚くなりすぎる。したがって、本実施形態では、高K値処理中における窒化ポテンシャルKNXが0.15~1.50であり、かつ、低K値処理中における窒化ポテンシャルKNYが0.02~0.25である。
 窒化ポテンシャルKNXの好ましい下限は0.25である。KNXの好ましい上限は1.40である。KNYの好ましい下限は0.03である。KNYの好ましい上限は0.22である。
 [(IV)窒化処理中の窒化ポテンシャルの平均値KNave
 本実施形態のガス窒化処理ではさらに、式(2)で定義される窒化ポテンシャルの平均値KNaveが0.07~0.30である。
 KNave=(X×KNXave+Y×KNYave)/A ・・・ (2)
 図4は、平均値KNaveと、表面硬さ(HV)と、化合物層深さ(μm)との関係を示す図である。図4は次の試験を実施して得られた。鋼aを供試材として、ガス窒化処理を実施した。ガス窒化処理での雰囲気温度は590℃とした。そして、処理時間X、処理時間Y、窒化ポテンシャルの範囲及び平均値(KNX、KNY、NXave、KNYave)を変化させてガス窒化処理(高K値処理及び低K値処理)を実施した。
 各試験条件のガス窒化処理後の供試材に対して、上述の方法により、化合物層厚さと、表面硬さとを測定した。得られた化合物層厚さ及び表面硬さを測定し、図4を作成した。
 図4中の実線は、窒化ポテンシャルの平均値KNaveと表面硬さ(HV)との関係を示すグラフである。図4中の破線は、平均値KNaveと化合物層の厚さ(μm)との関係を示すグラフである。
 図4の実線のグラフを参照して、平均値KNaveが0から高くなるに従い、表面硬さは顕著に高まり、平均値KNaveが0.07となったときに、350HV以上となる。そして、平均値KNaveが0.07以上となった場合、平均値KNaveが高くなっても、表面硬さはほぼ一定である。つまり、平均値KNaveと表面硬さ(HV)とのグラフでは、平均値KNave=0.07付近に変曲点が存在する。
 さらに、図4の破線のグラフを参照して、平均値KNaveが0.35から低下するに従い、化合物厚さは顕著に薄くなり、平均値KNaveが0.30となったときに、3μm以下となる。そして、平均値KNaveが0.30未満となった場合、平均値KNaveが低くなるに従い、化合物厚さは徐々に薄くなるものの、平均値KNaveが0.30よりも高い場合と比較して、化合物層の厚さの減少代は少ない。以上より、平均値KNaveと化合物層の厚さとのグラフでは、平均値KNave=0.30付近に変曲点が存在する。
 以上の結果より、本実施形態のガス窒化処理では、式(2)で定義される平均値KNaveを0.07~0.30とする。この場合、ガス窒化処理後の部品では、化合物層を十分に薄くできる。さらに、高い表面硬さが得られる。平均値KNaveが0.07未満であれば、表面硬さが低い。一方、平均値KNaveが0.30を超えれば、化合物層が3μmを超える。平均値KNaveの好ましい下限は0.08である。平均値KNaveの好ましい上限は0.27である。
 [高K値処理及び低K値処理の処理時間]
 高K値処理の処理時間X、及び、低K値処理の処理時間Yは、式(2)で定義される平均値KNaveが0.07~0.30であれば、特に制限されない。好ましくは、処理時間Xは0.50時間以上であり、処理時間Yは0.50時間以上である。
 以上の諸条件により、ガス窒化処理を実施する。具体的には、上記条件で高K値処理を実施して、その後、上記条件で低K値処理を実施する。低K値処理の後、窒化ポテンシャルを上昇させることなくガス窒化処理を終了する。
 本発明で規定した成分を有する鋼に対し、上記ガス窒化処理を実施することにより、窒化部品を製造する。製造された窒化部品では、表面硬さが十分に深く、化合物層が十分に薄い。さらに、有効硬化層深さが十分に深く、化合物層中の空隙も抑えることができる。好ましくは、本実施形態の窒化処理を実施して製造された窒化部品では、表面硬さがビッカース硬さで350HV以上、化合物層深さが3μm以下となる。さらに、空隙面積率が10%未満となる。さらに、式(B)を満たす。さらに、有効硬化層深さは、160~410μmとなる。
 表2に示す化学成分を有する鋼a~zを、50kg真空溶解炉で溶解して溶鋼を製造した。溶鋼を鋳造してインゴットを製造した。なお、表2中のa~qは、本発明で規定する化学成分を有する鋼である。一方、鋼r~zは、少なくとも1元素以上、本発明で規定する化学成分から外れた比較例の鋼である。
Figure JPOXMLDOC01-appb-T000008
 このインゴットを熱間鍛造して直径35mmの丸棒とした。続いて、各丸棒を焼鈍した後、切削加工を施し、化合物層の厚さ、空隙の体積率、有効硬化層深さおよび表面硬さを評価するための板状試験片を作製した。板状試験片は、縦20mm、横20mm、厚さ2mmとした。また、曲げ矯正性を評価するための4点曲げ試験用の角型試験片を作製した(図5)。さらに、曲げ疲労特性を評価するための円柱型試験片を作製した(図6)。
 採取された試験片に対して、次の条件でガス窒化処理を実施した。試験片をガス窒化炉に装入し、炉内にNH、H、Nの各ガスを導入した。その後、表3、4に示す条件で高K値処理を実施し、その後、低K値処理を実施した。ガス窒化処理後の試験片に対して、80℃の油を用いて油冷を実施した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 [化合物層の厚さ及び空隙面積率の測定試験]
 ガス窒化処理後の試験片の、長さ方向に垂直な方向の断面を鏡面研磨し、エッチングした。光学顕微鏡を用いてエッチングされた断面を観察し、化合物層厚さの測定及び表層部の空隙の有無の確認を行った。エッチングは、3%ナイタール溶液で20~30秒間行った。
 化合物層は、表層に存在する白い未腐食の層として確認可能である。500倍で撮影した組織写真5視野(視野面積:2.2×104μm2)から、化合物層を観察し、それぞれ30μm毎に4点の化合物層の厚さを測定した。そして、測定された20点の平均値を、化合物厚さ(μm)と定義した。
 さらに、エッチングされた断面に対して1000倍で5視野観察し、最表面から5μm深さの範囲の面積25μm2中に占める空隙の総面積の比(空隙面積率、単位は%)を求めた。
 [表面硬さ及び有効硬化層測定試験]
 ガス窒化処理後の各試験番号の棒鋼に対して、JIS Z 2244に準拠し、試験力1.96Nで、表面から50μm、100μm、以降50μm毎に深さ1000μmまで、ビッカース硬さを測定した。ビッカース硬さ(HV)は、各5点ずつ測定し、平均値を求めた。表面硬さは、表面から50μm位置の5点の平均値とした。
 表面から深さ方向に測定されたビッカース硬さの分布のうち、250HV以上となる範囲の深さを、有効硬化層深さ(μm)と定義した。
 化合物層の厚さは3μm以下、空隙の割合は10%未満、表面硬さは350~500HVであれば良好と判定した。さらに、有効硬化層深さが160~410μmを満たせば、良好と判定した。
 以下、良好および不良である試験片を用いて、曲げ矯正性、回転曲げ疲労特性の評価を行った。
 [曲げ矯正性評価試験]
 ガス窒化処理に供した角型試験片に対し、静的曲げ試験を実施した。角型試験片の形状を図5に示す。なお、図5における寸法の単位は「mm」である。静的曲げ試験は、内側支点間距離を30mm、外側支点間距離80mmの4点曲げにて行い、ひずみ速度は2mm/minとした。角型試験片長手方向のR部にひずみゲージを取付け、R部に亀裂が生じ、ひずみゲージの測定が出来なくなった時の最大ひずみ量(%)を曲げ矯正性として求めた。
 本発明部品においては、曲げ矯正性が1.3%以上であることを目標とした。
 [曲げ疲労特性評価試験]
 ガス窒化処理に供した円柱試験片に対し、小野式回転曲げ疲労試験を実施した。回転数は3000rpm、試験打ち切り回数は、一般的な鋼の疲労限を示す107回とし、回転曲げ疲労試験片において、破断が生じずに10回に達した時の最大の応力振幅を回転曲げ疲労試験片の疲労限とした。試験片の形状を図6に示す。
 本発明部品においては、疲労限における最大応力が500MPa以上であることを目標にした。
 [試験結果]
 結果を表3、4に示す。表3中の「有効硬化層深さ(目標)」欄には、式(A)で算出された値(目標値)が記載されており、「有効硬化層深さ(実績)」には有効硬化層の測定値(μm)が記載されている。
 表3、4を参照して、試験番号17~41では、ガス窒化処理での処理温度が550~620℃であり、処理時間Aが1.5~10時間であった。さらに、高K値処理におけるKNXが0.15~1.50であり、平均値KNXaveが0.30~0.80であった。さらに、低K値処理におけるKNYが0.02~0.25であり、平均値KNYaveが0.03~0.20であった。さらに、(式2)で求められる平均値KNaveが0.07~0.30であった。そのため、いずれの試験番号においても、窒化処理後の化合物層の厚さは3μm以下であり、空隙面積率は10%未満であった。
 さらに、有効硬化層は160~410μmを満たし、表面硬さが350~500HVであった。曲げ矯正性および曲げ疲労強度も、それぞれ目標である1.3%、500MPa以上を満たしていた。なお、化合物層が存在する試験片の表層断面について、SEM-EBSD法により化合物層の相構造を調査したところ、面積比率でγ’(FeN)が50%以上、残部がε(Fe2~3N)であった。
 一方、試験番号42では、高K値処理におけるKNXの最小値が0.15未満であった。そのため、高K値処理中に化合物層が安定定期に形成されなかったため、有効硬化層深さが160μm未満となり、曲げ疲労強度が500MPa未満であった。
 試験番号43では、高K値処理におけるKNXの最大値が1.50を超えた。そのため、空隙面積率が10%以上となり、曲げ矯正性が1.3%未満かつ曲げ疲労強度が500MPa未満であった。
 試験番号44では、高K値処理における平均値KNXaveが0.30未満であった。そのため、高K値処理中に十分な厚さの化合物層が形成されず、低K値処理中早期に化合物層が分解されてしまったため、有効硬化層深さが160μm未満となり、表面硬さも350HV未満であったため、曲げ疲労強度が500MPa未満であった。
 試験番号45では、高K値処理における平均値KNXaveが0.80を超えた。そのため、化合物層厚さが3μmを超え、かつ空隙面積率が10%以上となり、曲げ矯正性が1.3%未満かつ曲げ疲労強度が500MPa未満であった。
 試験番号46では、低K値処理におけるKNYの最小値が0.02未満であった。そのため、低K値処理中早期に化合物層が分解されてしまったため、有効硬化層深さが160μm未満となり、表面硬さも350HV未満であったため、曲げ疲労強度が500MPa未満であった。
 試験番号47では、低K値処理におけるKNYの最小値が0.02未満であり、かつ低K値処理における平均値KYaveが0.03未満であった。そのため、有効硬化層深さが160μm未満となり、表面硬さも350HV未満であったため、曲げ疲労強度が500MPa未満であった。
 試験番号48では、平均値KNaveが0.07未満であった。そのため、表面硬さが350HV未満であったため、曲げ疲労強度が500MPa未満であった。
 試験番号49では、低K値処理における平均値KYaveが0.20を超えた。そのため、化合物層厚さが3μmを超えたため、曲げ矯正性が1.3%未満かつ曲げ疲労強度が500MPa未満であった。
 試験番号50では、平均値KNaveが0.30を超えた。そのため、化合物層厚さが3μmを超えたため、曲げ矯正性が1.3%未満かつ曲げ疲労強度が500MPa未満であった。
 試験番号51では、高K低K値処理を行わず、平均値KNaveが0.07~0.30となる制御を行った。その結果、化合物層厚さが3μmを超え、曲げ矯正性が1.3%未満かつ曲げ疲労強度が500MPa未満となった。
 試験番号52~60では、本発明で規定する範囲外の成分を有する鋼r~zを用いて、本発明で規定した窒化処理を行った。その結果、曲げ矯正性、曲げ疲労強度のうち少なくとも一方が目標値を満たさなかった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 1  ポーラス層
 2  化合物層
 3  窒素拡散層

Claims (9)

  1.  質量%で、
      C :0.2~0.6%、
      Si:0.05~1.5%、
      Mn:0.2~2.5%、
      P :0.025%以下、
      S :0.003~0.05%、
      Cr:0.05~0.5%、
      Al:0.01~0.05%、及び
      N :0.003~0.025%
    を含有し、残部がFe及び不純物である鋼材を素材とし、
     鋼表面に形成された、鉄、窒素及び炭素からなる厚さ3μm以下の化合物層と、化合物層の下に形成された硬化層とを有し、
     有効硬化層深さが160~410μmである
    ことを特徴とする窒化処理鋼部品。
  2.  前記鋼材がFeの一部に代えて、Mo:0.01~0.50%未満、V:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする請求項1に記載の窒化処理鋼部品。
  3.  前記鋼材がFeの一部に代えて、Cu:0.01~0.50%未満、Ni:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする請求項1又は2に記載の窒化処理鋼部品。
  4.  前記鋼材がFeの一部に代えて、Ti:0.005~0.05%未満を含有することを特徴とする請求項1~3のいずれか1項に記載の窒化処理部品。
  5. 質量%で、
      C :0.2~0.6%、
      Si:0.05~1.5%、
      Mn:0.2~2.5%、
      P :0.025%以下、
      S :0.003~0.05%、
      Cr:0.05~0.5%、
      Al:0.01~0.05%、及び
      N :0.003~0.025%
    を含有し、残部はFe及び不純物である鋼材を素材とし、
     NH、H及びNを含むガス雰囲気で上記鋼材を550~620℃に加熱し、全体の処理時間Aを1.5~10時間とするガス窒化処理を施す工程を備え、
     上記ガス窒化処理は、処理時間をX時間とする高K値処理と、高K値処理に続く処理時間をY時間とする低K値処理からなり、
     上記高K値処理は、式(1)によって求められる窒化ポテンシャルKNXが0.15~1.50であり、式(2)によって求められる上記窒化ポテンシャルKNXの平均値KNXaveが0.30~0.80であり、
     上記低K値処理は、式(3)によって求められる窒化ポテンシャルKNYが0.02~0.25であり、式(4)によって求められる上記窒化ポテンシャルKNYの平均値KNYaveが0.03~0.20であり、式(5)によって求められる窒化ポテンシャルの平均値KNaveが0.07~0.30である
    ことを特徴とする窒化処理方法。
       KNX=(NH3分圧)/[(H2分圧)3/2   ・・・ (1)
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     ここで、式(2)及び式(4)において、添字iは一定時間間隔毎の測定回を表す数であり、Xは窒化ポテンシャルKNXの測定間隔(時間)、Yは窒化ポテンシャルKNYの測定間隔(時間)、KNXiは高K値処理中のi回目の測定における窒化ポテンシャル、KNYiは低K値処理中のi回目の測定における窒化ポテンシャルである。
  6.  前記ガス雰囲気は、NH、H及びNを合計で99.5体積%以上含むことを特徴とする請求項5に記載の窒化処理鋼部品の製造方法。
  7.  前記鋼材がFeの一部に代えて、Mo:0.01~0.50%未満、V:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする請求項5又は6に記載の窒化処理鋼部品の製造方法。
  8.  前記鋼材がFeの一部に代えて、Cu:0.01~0.50%未満、Ni:0.01~0.50%未満のうち1種又は2種を含有することを特徴とする請求項5~7のいずれか1項に記載の窒化処理鋼部品の製造方法。
  9.  前記鋼材がFeの一部に代えて、Ti:0.005~0.05%未満を含有することを特徴とする請求項5~8のいずれか1項に記載の窒化処理部品の製造方法。
PCT/JP2016/076529 2015-09-08 2016-09-08 窒化処理鋼部品及びその製造方法 WO2017043609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/754,641 US10837096B2 (en) 2015-09-08 2016-09-08 Nitrided steel part and method of production of same
JP2017538527A JP6521079B2 (ja) 2015-09-08 2016-09-08 窒化処理鋼部品及びその製造方法
KR1020187005947A KR102125804B1 (ko) 2015-09-08 2016-09-08 질화 처리 강 부품 및 그의 제조 방법
EP16844470.1A EP3348664B1 (en) 2015-09-08 2016-09-08 Nitrided steel component and manufacturing method thereof
BR112018003454-1A BR112018003454A2 (ja) 2015-09-08 2016-09-08 A nitriding processing steel part article and a manufacturing method for the same
CN201680047996.9A CN107923028B (zh) 2015-09-08 2016-09-08 氮化处理钢部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015176498 2015-09-08
JP2015-176498 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017043609A1 true WO2017043609A1 (ja) 2017-03-16

Family

ID=58240030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076529 WO2017043609A1 (ja) 2015-09-08 2016-09-08 窒化処理鋼部品及びその製造方法

Country Status (7)

Country Link
US (1) US10837096B2 (ja)
EP (1) EP3348664B1 (ja)
JP (1) JP6521079B2 (ja)
KR (1) KR102125804B1 (ja)
CN (1) CN107923028B (ja)
BR (1) BR112018003454A2 (ja)
WO (1) WO2017043609A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124653A (ja) * 1997-10-21 1999-05-11 Mitsubishi Seiko Muroran Tokushuko Kk 窒化処理用鋼およびその窒化処理方法
JP2006022350A (ja) * 2004-07-06 2006-01-26 Aichi Steel Works Ltd 高強度ベイナイト型窒化部品及びその製造方法
JP2012036495A (ja) * 2010-07-16 2012-02-23 Sumitomo Metal Ind Ltd 窒化処理機械部品の製造方法
JP2015052150A (ja) * 2013-09-06 2015-03-19 タイ パーカライジング カンパニー リミテッドThai Parkerizing Co.,Ltd. 鉄鋼部材の表面硬化処理法及び表面硬化処理装置
WO2015136917A1 (ja) * 2014-03-13 2015-09-17 新日鐵住金株式会社 窒化処理方法、及び、窒化部品の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916948A (ja) * 1982-07-16 1984-01-28 Sumitomo Metal Ind Ltd 軟窒化用鋼
JPH05148612A (ja) * 1991-11-25 1993-06-15 Nippon Piston Ring Co Ltd ピストンリングの製造方法
JPH10226818A (ja) 1996-12-11 1998-08-25 Sumitomo Metal Ind Ltd 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP3495590B2 (ja) * 1997-06-30 2004-02-09 アイシン・エィ・ダブリュ株式会社 軟窒化処理を施した歯車並びにその製造方法
JP4230794B2 (ja) 2002-09-25 2009-02-25 大同特殊鋼株式会社 機械部品およびその製造方法
JP2006028588A (ja) 2004-07-16 2006-02-02 Toyota Motor Corp 窒化処理方法
JP4947932B2 (ja) 2005-07-26 2012-06-06 エア・ウォーターNv株式会社 金属のガス窒化方法
JP2007238969A (ja) 2006-03-06 2007-09-20 Toyota Motor Corp 窒化処理方法
ES2731643T3 (es) * 2009-01-16 2019-11-18 Nippon Steel Corp Acero para endurecimiento de superficies para uso estructural en máquinas y componente para uso estructural en máquinas
JP5343760B2 (ja) 2009-08-24 2013-11-13 新日鐵住金株式会社 調質型軟窒化部品
JP2011235318A (ja) * 2010-05-11 2011-11-24 Daido Steel Co Ltd ダイカスト金型の表面処理方法
US8876988B2 (en) 2010-11-17 2014-11-04 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding and nitrided part
JP5858422B2 (ja) * 2011-08-25 2016-02-10 Jfeスチール株式会社 鉄系材料およびその製造方法
JP5656908B2 (ja) 2012-04-18 2015-01-21 Dowaサーモテック株式会社 窒化鋼部材およびその製造方法
CN104271789B (zh) 2012-04-23 2017-06-06 株式会社神户制钢所 热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件
JP5994924B2 (ja) 2013-03-08 2016-09-21 新日鐵住金株式会社 高周波焼入れ部品の素形材及びその製造方法
CN104480424B (zh) * 2014-12-02 2017-02-22 贵州红林机械有限公司 一种氮化钢135材料的氮化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124653A (ja) * 1997-10-21 1999-05-11 Mitsubishi Seiko Muroran Tokushuko Kk 窒化処理用鋼およびその窒化処理方法
JP2006022350A (ja) * 2004-07-06 2006-01-26 Aichi Steel Works Ltd 高強度ベイナイト型窒化部品及びその製造方法
JP2012036495A (ja) * 2010-07-16 2012-02-23 Sumitomo Metal Ind Ltd 窒化処理機械部品の製造方法
JP2015052150A (ja) * 2013-09-06 2015-03-19 タイ パーカライジング カンパニー リミテッドThai Parkerizing Co.,Ltd. 鉄鋼部材の表面硬化処理法及び表面硬化処理装置
WO2015136917A1 (ja) * 2014-03-13 2015-09-17 新日鐵住金株式会社 窒化処理方法、及び、窒化部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIETER LIEDTKE ET AL.: "Nitriding and Nitrocarburizing on Iron Materials, first edition, first print", AGNE GIJUTSU CENTER INC., 30 August 2011 (2011-08-30), pages 11 - 12, XP009509010 *

Also Published As

Publication number Publication date
EP3348664A4 (en) 2019-01-23
KR102125804B1 (ko) 2020-06-23
CN107923028A (zh) 2018-04-17
US20180251883A1 (en) 2018-09-06
EP3348664A1 (en) 2018-07-18
KR20180037004A (ko) 2018-04-10
JPWO2017043609A1 (ja) 2018-07-05
BR112018003454A2 (ja) 2018-09-25
EP3348664B1 (en) 2020-06-24
JP6521079B2 (ja) 2019-05-29
CN107923028B (zh) 2020-01-24
US10837096B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6217840B2 (ja) 窒化処理方法、及び、窒化部品の製造方法
JP6769491B2 (ja) 窒化処理部品及びその製造方法
JP6521078B2 (ja) 窒化処理鋼部品及びその製造方法
JP5872863B2 (ja) 耐ピッチング性に優れた歯車およびその製造方法
JP6287390B2 (ja) 低合金鋼のガス軟窒化処理方法
JP2012036495A (ja) 窒化処理機械部品の製造方法
JP6766876B2 (ja) 窒化処理部品及びその製造方法
JP7013833B2 (ja) 浸炭部品
WO2017043609A1 (ja) 窒化処理鋼部品及びその製造方法
JP7063070B2 (ja) 浸炭部品
JP5821512B2 (ja) 窒化部品およびその製造方法
JP7063071B2 (ja) 浸炭部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754641

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187005947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003454

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016844470

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018003454

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180222