WO2017043295A1 - 車載用電源装置 - Google Patents

車載用電源装置 Download PDF

Info

Publication number
WO2017043295A1
WO2017043295A1 PCT/JP2016/074350 JP2016074350W WO2017043295A1 WO 2017043295 A1 WO2017043295 A1 WO 2017043295A1 JP 2016074350 W JP2016074350 W JP 2016074350W WO 2017043295 A1 WO2017043295 A1 WO 2017043295A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
converter
vehicle
power supply
Prior art date
Application number
PCT/JP2016/074350
Other languages
English (en)
French (fr)
Inventor
章生 石原
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201680048703.9A priority Critical patent/CN107921917A/zh
Priority to US15/755,265 priority patent/US20180244221A1/en
Publication of WO2017043295A1 publication Critical patent/WO2017043295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to an in-vehicle power supply device.
  • Patent Document 1 describes a vehicle power control device having a main power storage means and a reserve power storage means.
  • the reserve power storage means is an electric double layer capacitor, and its charge / discharge is controlled by a DC-DC converter.
  • the DC-DC converter uses the power generated by the alternator when the vehicle decelerates to charge the reserve power storage means, and supplies power to the vehicle electrical load when the vehicle is not decelerating.
  • Patent Document 2 describes an electric power steering device.
  • the electric power steering apparatus is provided with an electric motor for supplying a steering assist force.
  • the motor control apparatus for controlling the electric motor is provided with a main power supply, an auxiliary power supply, and a charge / discharge circuit.
  • the charge / discharge circuit switches between charging and discharging of the auxiliary power source.
  • Patent Documents 1 and 2 do not describe or suggest a configuration for charging a regenerative power storage device and an auxiliary power storage device when both are provided.
  • the in-vehicle power supply device is an in-vehicle power supply device mounted on a vehicle, and is a bidirectional converter, a first power storage device that is charged via the converter and discharged to a load via the converter, and the converter A first switch that selects ON / OFF between the first power storage device and the first power storage device, a second power storage device that is charged via the converter and discharges to the load through a path that bypasses the converter, and the converter A second switch for selecting on / off with the second power storage device.
  • the regenerative and auxiliary power storage devices can be charged with suitable voltages, respectively, and the manufacturing cost can be reduced.
  • FIG. 1 is a diagram schematically showing an example of the configuration of an in-vehicle power supply device 100 mounted on a vehicle.
  • a generator 1 is provided.
  • the generator 1 is an alternator, for example, and generates electric power based on a driving force that drives the vehicle and outputs a DC voltage.
  • a main power storage device 31 is connected to the generator 1.
  • the main power storage device 31 is charged by the generator 1.
  • the main power storage device 31 is, for example, a lead storage battery.
  • a power storage device 32 for regeneration is connected to the generator 1 via a bidirectional DC-DC converter 4 (hereinafter referred to as “regenerative power storage device” in the drawings).
  • the DC-DC converter 4 is connected between the generator 1 and the regenerative power storage device 32.
  • a capacitor may be employed as the regeneration power storage device 32.
  • a switch 52 is connected between the DC-DC converter 4 and the regenerative power storage device 32.
  • Switch 52 selects on / off between DC-DC converter 4 and regeneration power storage device 32. On / off of the switch 52 is controlled by the control unit 41.
  • the bidirectional DC-DC converter 4 is, for example, a step-up / down circuit, and controls charging / discharging of the regenerative power storage device 32.
  • the DC-DC converter 4 is controlled by the control unit 41.
  • the control unit 41 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized.
  • the control unit 41 is not limited to this, and various procedures executed by the control unit 41 or various means or various functions to be realized may be realized by hardware.
  • the DC-DC converter 4 appropriately boosts or lowers the regenerative power obtained from the generator 1, for example, when the vehicle is decelerated, specifically, the generated DC voltage. If the switch 52 is on, the boosted or stepped down voltage is output to the regenerative power storage device 32 and the regenerative power storage device 32 is charged. On the other hand, during powering of the vehicle, the DC-DC converter 4 discharges the regeneration power storage device 32. For example, during power running of the vehicle, the DC voltage of the regenerative power storage device 32 input via the switch 52 is appropriately boosted or stepped down and output to the general load 21 and the important load 22 described later, thereby The device 32 is discharged.
  • auxiliary power storage device 33 (hereinafter referred to as “auxiliary power storage device”) is also connected to the generator 1 via a DC-DC converter 4.
  • the auxiliary power storage device 33 is, for example, a capacitor.
  • a switch for example, a relay
  • the switch 53 is connected between the DC-DC converter 4 and the auxiliary power storage device 33.
  • one end of the switch 53 is connected to a connection point connecting the DC-DC converter 4 and the switch 52, and the other end is connected to the auxiliary power storage device 33.
  • Switch 53 selects on / off between DC-DC converter 4 and auxiliary power storage device 33. On / off of the switch 53 is controlled by the control unit 41.
  • the DC-DC converter 4 also controls charging of the auxiliary power storage device 33.
  • the DC-DC converter 4 charges the auxiliary power storage device 33 by, for example, appropriately raising or lowering the DC voltage from the generator 1 and outputting the voltage to the auxiliary power storage device 33 via the switch 53.
  • the switches 52 and 53 can charge, for example, the regeneration power storage device 32 and the auxiliary power storage device 33 at different timings. If the control unit 41 turns off the switch 52 and turns on the switch 53, the DC-DC converter 4 can charge the auxiliary power storage device 33 during that period. If the control unit 41 turns on the switch 52 and turns off the switch 53, the DC-DC converter 4 can charge the regenerative power storage device 32 during that period. Thus, by turning on the switches 52 and 53 exclusively, these can be charged with a DC voltage suitable for each of the regeneration power storage device 32 and the auxiliary power storage device 33.
  • a general load 21 and an important load 22 are also connected to the main power storage device 31. Therefore, the general load 21 and the important load 22 are fed from the generator 1 or the main power storage device 31.
  • the general load 21 and the important load 22 are also connected to the regenerative power storage device 32 via the DC-DC converter 4 and the switch 52. Therefore, the general load 21 and the important load 22 are also fed from the regeneration power storage device 32.
  • the important load 22 is connected to the auxiliary power storage device 33 through a path that bypasses the DC-DC converter 4. In the illustration of FIG. 1, the auxiliary power storage device 33 is directly connected to the important load 22. Therefore, the important load 22 is also fed from the auxiliary power storage device 33.
  • auxiliary power storage device 33 can supply power to the important load 22 without going through the DC-DC converter 4, even if the switch 53 is kept off after the auxiliary power storage device 33 is charged, Can be fed.
  • the important load 22 is a load for which power supply is desired to be maintained even when the power supply from the main power storage device 31 is lost (including loss due to malfunction of the main power storage device 31).
  • An electronically controlled braking force distribution system can be cited as an example.
  • power can be supplied from the regeneration power storage device 32 and the auxiliary power storage device 33 to the important load 22.
  • General load 21 is a load that does not need to be a backup target of auxiliary power storage device 33, and is, for example, an in-vehicle air conditioner. Since the general load 21 is a known load and does not have a characteristic characteristic in the present embodiment, detailed description thereof is omitted. When the power supply from the main power storage device 31 disappears, the power supply to the general load 21 may be stopped. For example, power supply to the general load 21 can be stopped by stopping the operation of the DC-DC converter 4.
  • the DC-DC converter 4 is provided corresponding to both the regeneration power storage device 32 and the auxiliary power storage device 33. Therefore, the DC-DC converter 4 can charge both the regeneration power storage device 32 and the auxiliary power storage device 33. Therefore, the manufacturing cost can be reduced as compared with the case where a dedicated charging circuit is provided in each of the regeneration power storage device 32 and the auxiliary power storage device 33.
  • the capacity of the regenerative power storage device 32 is larger than the capacity of the auxiliary power storage device 33, for example.
  • the capacity can be grasped as, for example, the amount of charge when charging is completed.
  • the capacity can be grasped, for example, as an ampere time at the completion of charging.
  • the current supply capability of the DC-DC converter 4 is selected corresponding to the regeneration power storage device 32 having a large capacity. Therefore, the DC-DC converter 4 can output a larger current with respect to the capacity of the auxiliary power storage device 33, and can charge the auxiliary power storage device 33 quickly.
  • the auxiliary power storage device 33 is connected to the important load 22 through a path that bypasses the DC-DC converter 4.
  • the auxiliary power storage device 33 is directly connected to the important load 22. Therefore, even if the auxiliary power storage device 33 is disconnected from the DC-DC converter 4 after being charged, power can be supplied to the important load 22. Therefore, the switch 53 may be turned off after the auxiliary power storage device 33 is charged.
  • the switch 53 may be mainly kept off.
  • the DC-DC converter 4 is able to store the regenerative power in the regenerative power storage device 32 or use the stored power so that the regenerative power storage device 32 is charged and discharged. Used. Therefore, it is desirable to keep switch 52 mainly on while the vehicle is traveling, regardless of the state of charge of regeneration power storage device 32.
  • the control unit 41 turn on / off the switches 52, 53 after turning on / off the switches 52, 53, respectively. Specifically, the switches 52 and 53 are turned off / on to charge the auxiliary power storage device 33 before the vehicle travels, and then the switches 52 and 53 are turned off / on, respectively. Thereby, charging and discharging of the regenerative power storage device 32 can be performed while the vehicle is traveling, while charging of the auxiliary power storage device 33 is completed and preparation for feeding power to the important load 22 is made.
  • the vehicle includes an input unit (for example, an ignition key) for a user to input a vehicle start instruction (for example, an engine start instruction) or an open / close detection unit for detecting the opening / closing of the door of the vehicle.
  • an input unit for example, an ignition key
  • a vehicle start instruction for example, an engine start instruction
  • an open / close detection unit for detecting the opening / closing of the door of the vehicle.
  • the input unit 221 and the open / close detection unit 222 are displayed as an example of the important load 22. However, at least one of these may be grasped as the general load 21.
  • the vehicle start instruction is given before the vehicle travels, and before the vehicle travels, the door is opened for the driver to get into the vehicle. Therefore, these can be employed as the trigger described above.
  • the input unit 221 notifies the control unit 41 that a vehicle start instruction has been input, and the open / close detection unit 222 notifies the control unit 41 that the door has opened.
  • FIG. 3 is a diagram illustrating an example of the operation of the control unit 41.
  • the control unit 41 determines whether an engine start instruction has been input or whether the door has been opened.
  • step S1 is executed again.
  • the control unit 41 turns off the switch 52 and turns on the switch 53 in step S2.
  • the control unit 41 controls the DC-DC converter 4 and causes the DC-DC converter 4 to output a DC voltage appropriate for charging the auxiliary power storage device 33.
  • step S4 the control unit 41 determines whether or not charging of the auxiliary power storage device 33 is completed.
  • a detection unit that detects the charging rate of the auxiliary power storage device 33 may be provided, and it may be determined that charging is complete when the charging rate exceeds a reference value.
  • step S4 is executed again. If a positive determination is made in step S4, the control unit 41 turns on the switch 52 and turns off the switch 53 in step S5. Thereafter, the control unit 41 causes the DC-DC converter 4 to increase or decrease the DC voltage of the generator 1 to output a DC voltage suitable for charging the regenerative power storage device 32 when the vehicle is decelerated, for example. Further, the control unit 41 outputs a DC voltage suitable for the general load 21 and the important load 22 by causing the DC-DC converter 4 to increase or decrease the voltage across the regeneration power storage device 32, for example, when the vehicle is not decelerated.
  • FIG. 4 is a flowchart showing an example of the operation of the control unit 41.
  • control unit 41 determines whether or not the power supply from main power storage device 31 has disappeared.
  • the disappearance of the main power storage device 31 can be detected as follows, for example.
  • a voltage detection unit that detects the DC voltage of the main power storage device 31 is provided, and the disappearance of the main power storage device 31 can be detected when the DC voltage of the main power storage device 31 is smaller than, for example, a predetermined abnormality reference value.
  • step S11 is executed again.
  • the control unit 41 turns on both the switches 52 and 53 in step S12.
  • the regenerative power storage device 32 can supply power to the important load 22 via the switches 52 and 53 and the auxiliary power storage device 33 while bypassing the DC-DC converter 4. This is desirable because the following situation can be avoided.
  • the power supply from the main power storage device 31 disappears. In this case, the DC-DC converter 4 cannot appropriately output a DC voltage to the important load 22. Therefore, the regenerative power storage device 32 cannot supply power to the important load 22 via the DC-DC converter 4.
  • the regenerative power storage device 32 can supply power to the important load 22 via the auxiliary power storage device 33 while bypassing the DC-DC converter 4. Therefore, it is possible to appropriately supply power to the important load 22.
  • FIG. 5 is a flowchart showing an example of the operation of the control unit 41.
  • the control unit 41 further executes step S13.
  • Step S13 is executed between steps S11 and S12.
  • control unit 41 determines whether or not the voltage across regeneration power storage device 32 is greater than the voltage across auxiliary power storage device 33.
  • the voltages at both ends are detected, for example, by providing voltage detection units in the regenerative power storage device 32 and the auxiliary power storage device 33, respectively.
  • the magnitude of the voltage at both ends can be discriminated using a comparator.
  • the voltage between both ends of the regenerative power storage device 32 is decreased by discharging and increased by charging.
  • the voltage across the terminal changes in proportion to the charge. Therefore, compared with the case where a storage battery is employ
  • the regenerative power storage device 32 can be charged to a voltage (for example, 16V) higher than the DC voltage (for example, 12V) of the generator 1, and at the time of discharging, a voltage (for example, lower than the DC voltage of the generator 1) 7V), the regenerative power storage device 32 can be discharged.
  • the auxiliary power storage device 33 may not be discharged.
  • a diode is provided between the main power storage device 31 and the important load 22, and a diode is provided between the auxiliary power storage device 33 and the important load 22.
  • the forward direction of these diodes is the direction toward the important load 22.
  • the important load 22 is supplied with power from the main power storage device 31 instead of the auxiliary power storage device 33. . Therefore, auxiliary power storage device 33 is not discharged when power supply to main power storage device 31 is functioning. In this case, the voltage across the auxiliary power storage device 33 is substantially constant.
  • the auxiliary power storage device 33 when a storage battery (for example, a lithium ion battery) is employed as the auxiliary power storage device 33, the amount of change in the voltage at both ends thereof is small compared to the capacitor.
  • the auxiliary power storage device 33 is charged with a voltage (for example, 12 V) that is approximately the same as the DC voltage of the generator 1.
  • the voltage at both ends of the regeneration power storage device 32 may be smaller than the voltage at both ends of the auxiliary power storage device 33 at the time of execution of step S13.
  • auxiliary power storage device 33 is discharged to regeneration power storage device 32. This current is not preferable because it does not contribute to power supply to the important load 22.
  • step S13 if it is determined in step S13 that the voltage across the regeneration power storage device 32 is smaller than the voltage across the auxiliary power storage device 33, step S13 is executed again without executing step S12.
  • step S12 is executed.
  • a plurality of regeneration power storage devices 32 may be provided, and a plurality of auxiliary power storage devices 33 may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

回生用および補助用の蓄電装置をそれぞれ適した電圧で充電可能であり、製造コストを低減できる車両用電源装置を提供する。第1蓄電装置は、双方向のコンバータを介して充電され、コンバータを介して負荷に放電する。第1スイッチは、コンバータと第1蓄電装置とのオン/オフを選択する。第2蓄電装置は、コンバータを介して充電され、コンバータを迂回した経路で負荷に放電する。第2スイッチは、コンバータと第2蓄電装置とのオン/オフを選択する。

Description

車載用電源装置
 この発明は、車載用電源装置に関する。
 特許文献1には、主蓄電手段と予備蓄電手段とを有する車両用電力制御装置が記載されている。予備蓄電手段は電気二重層コンデンサであって、その充放電はDC-DCコンバータによって制御される。DC-DCコンバータは、車両の減速時にオルタネータによって発電される電力を用いて予備蓄電手段を充電し、減速時以外では、車両電気負荷に電力を供給する。
 特許文献2には、電動パワーステアリング装置が記載されている。電動パワーステアリング装置には、操舵補助力を供給する電動モータが設けられており、この電動モータを制御するモータ制御装置には、主電源、補助電源および充放電回路が設けられている。充放電回路は補助電源の充電と放電とを切り替える。
特開平6-296332号公報 特開2009-120159号公報
 回生用の蓄電装置と補助用の蓄電装置の両方を設けた場合に、これらをどのような構成で充電するかの考察は、特許文献1,2には記載も示唆もされていない。
 ところで、回生用の蓄電装置と補助用の蓄電装置とは、それぞれに適した電圧で充電することが望ましい。また製造コストは小さいことが望まれる。
 本願は、回生用および補助用の蓄電装置をそれぞれ適した電圧で充電可能であり、製造コストを低減できる車両用電源装置を提供することを目的とする。
 車載用電源装置は、車両に搭載される車載用電源装置であって、双方向のコンバータと、前記コンバータを介して充電され、前記コンバータを介して負荷に放電する第1蓄電装置と、前記コンバータと前記第1蓄電装置との間のオン/オフを選択する第1スイッチと、前記コンバータを介して充電され、前記コンバータを迂回した経路で前記負荷に放電する第2蓄電装置と、前記コンバータと前記第2蓄電装置との間のオン/オフを選択する第2スイッチとを備える。
 車載用電源装置によれば、回生用および補助用の蓄電装置をそれぞれ適した電圧で充電可能であり、製造コストを低減できる。
車載用電源装置の構成の一例を概略的に示す図である。 車載用電源装置の構成の一例を概略的に示す図である。 制御部の動作の一例を示すフローチャートである。 制御部の動作の一例を示すフローチャートである。 制御部の動作の一例を示すフローチャートである。
 <車載用電源装置の構成>
 図1は、車両に搭載される車載用電源装置100の構成の一例を概略的に示す図である。図1の例示では、発電機1が設けられている。発電機1は例えばオルタネータであり、車両を駆動させる駆動力に基づいて発電して、直流電圧を出力する。
 図1の例示では、発電機1には主蓄電装置31が接続されている。主蓄電装置31は発電機1によって充電される。主蓄電装置31は例えば鉛蓄電池などである。
 発電機1には、双方向のDC-DCコンバータ4を介して回生用の蓄電装置32(図面及び以下では「回生用蓄電装置」と称す)が接続されている。言い換えれば、DC-DCコンバータ4は発電機1と回生用蓄電装置32との間に接続される。回生用蓄電装置32には例えばキャパシタを採用できる。
 図1の例示では、DC-DCコンバータ4と回生用蓄電装置32との間には、スイッチ(例えばリレー)52が接続されている。スイッチ52は、DC-DCコンバータ4と回生用蓄電装置32との間のオン/オフを選択する。スイッチ52のオン/オフは制御部41によって制御される。
 双方向のDC-DCコンバータ4は例えば昇降圧回路であって、回生用蓄電装置32の充放電を制御する。DC-DCコンバータ4は制御部41によって制御される。
 なおここでは、制御部41はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部41はこれに限らず、制御部41によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。
 DC-DCコンバータ4は、例えば車両の減速時に発電機1から得られる回生電力を、具体的には発電された直流電圧を、適宜に昇圧または降圧する。スイッチ52がオンしていれば、昇圧または降圧された電圧は回生用蓄電装置32へと出力されて、回生用蓄電装置32が充電される。一方で、車両の力行時には、DC-DCコンバータ4は回生用蓄電装置32を放電させる。例えば車両の力行時に、スイッチ52を介して入力する回生用蓄電装置32の直流電圧を適宜に昇圧または降圧し、これを後述する一般負荷21および重要負荷22へと出力することで、回生用蓄電装置32を放電させる。
 発電機1には、DC-DCコンバータ4を介して補助用の蓄電装置33(図及び以下では「補助蓄電装置」と称す)も接続されている。この補助蓄電装置33は例えばキャパシタなどである。
 図1の例示では、DC-DCコンバータ4と補助蓄電装置33との間には、スイッチ(例えばリレー)53が接続されている。例えばスイッチ53の一端は、DC-DCコンバータ4とスイッチ52とを接続する接続点に接続され、他端が補助蓄電装置33に接続される。スイッチ53はDC-DCコンバータ4と補助蓄電装置33との間のオン/オフを選択する。スイッチ53のオン/オフは制御部41によって制御される。
 DC-DCコンバータ4はこの補助蓄電装置33の充電も制御する。DC-DCコンバータ4は例えば発電機1からの直流電圧を適宜に昇圧または降圧して、スイッチ53を介して、これを補助蓄電装置33へと出力することで、補助蓄電装置33を充電する。
 スイッチ52,53により、例えば回生用蓄電装置32と補助蓄電装置33とを互いに異なるタイミングで充電することができる。制御部41がスイッチ52をオフし、スイッチ53をオンすれば、その期間においてDC-DCコンバータ4は補助蓄電装置33を充電することができる。また制御部41がスイッチ52をオンし、スイッチ53をオフすれば、その期間において、DC-DCコンバータ4は回生用蓄電装置32を充電できる。このようにスイッチ52,53を排他的にオンさせることにより、回生用蓄電装置32および補助蓄電装置33のそれぞれに適した直流電圧で、これらを充電することができる。
 主蓄電装置31には、例えば、一般負荷21及び重要負荷22も接続されている。よって一般負荷21及び重要負荷22は発電機1あるいは主蓄電装置31から給電される。また一般負荷21及び重要負荷22はDC-DCコンバータ4およびスイッチ52を介して、回生用蓄電装置32にも接続されている。よって、一般負荷21及び重要負荷22は回生用蓄電装置32からも給電される。さらに重要負荷22はDC-DCコンバータ4を迂回した経路で補助蓄電装置33と接続されている。図1の例示では、補助蓄電装置33は重要負荷22と直接に接続されている。よって、重要負荷22は補助蓄電装置33からも給電される。
 なお補助蓄電装置33はDC-DCコンバータ4を経由せずに重要負荷22へと給電できるので、補助蓄電装置33が充電された後は、スイッチ53をオフに維持しても、重要負荷22へと給電を行うことができる。
 重要負荷22は主蓄電装置31からの給電が消失(主蓄電装置31の機能不全による消失を含む)しても電力供給が維持されることが望まれる負荷であり、たとえばシフトバイワイヤー用アクチュエータや、電子制御制動力配分システムを例として挙げることができる。この車載用電源装置100においては、主蓄電装置31からの給電が消失しても、回生用蓄電装置32および補助蓄電装置33から重要負荷22への給電が可能である。
 一般負荷21は補助蓄電装置33のバックアップの対象となる必要がない負荷であり、例えば車載エアコンディショナーである。一般負荷21は公知の負荷であり、本実施の形態において特有の特徴を有する物ではないので、詳細な説明は省略する。主蓄電装置31からの給電が消失したときには、一般負荷21への給電を停止してもよい。例えばDC-DCコンバータ4の動作を停止することにより、一般負荷21への給電を停止することができる。
 上述の車両用電源装置によれば、DC-DCコンバータ4が回生用蓄電装置32および補助蓄電装置33の両方に対応して設けられている。よって、DC-DCコンバータ4は回生用蓄電装置32および補助蓄電装置33の両方を充電することができる。よって、回生用蓄電装置32および補助蓄電装置33の各々に専用の充電回路を設ける場合に比べて、製造コストを低減することができる。
 また、回生用蓄電装置32の容量は例えば補助蓄電装置33の容量よりも大きい。なお、蓄電装置がキャパシタであるときには、当該容量は、例えば充電完了時の電荷量として把握することができる。また蓄電装置が電池である場合には、当該容量は、例えば充電完了時のアンペア時として把握することができる。DC-DCコンバータ4の電流供給能力は、容量の大きな回生用蓄電装置32に対応して選定される。よって、DC-DCコンバータ4は、補助蓄電装置33の容量に対してより大きな電流を出力することができ、補助蓄電装置33を速やかに充電することができる。
 <充電動作>
 補助蓄電装置33は、DC-DCコンバータ4を迂回した経路で、重要負荷22へと接続される。図1の例示では、補助蓄電装置33は重要負荷22に直接に接続される。よって、補助蓄電装置33は充電後にDC-DCコンバータ4から切り離されても、重要負荷22への給電は可能である。よって、補助蓄電装置33が充電された後はスイッチ53はオフされてもよい。また、補助蓄電装置33が主蓄電装置31の消失時のみに給電する場合には、車両の走行中に補助蓄電装置33を充電する必要性は低く、補助蓄電装置33が充電された後は走行中には、主としてスイッチ53をオフに維持しても構わない。
 一方で車両の走行中は、回生用蓄電装置32に回生電力を蓄えたり、蓄えられた電力を使用したりすることで、回生用蓄電装置32の充電時にも放電時にもDC-DCコンバータ4が用いられる。よって、スイッチ52は、回生用蓄電装置32の充電状況によらずに、車両の走行中には、主としてオンに維持することが望ましい。
 回生用蓄電装置32は、車両の走行中に充電される機会があるので、補助蓄電装置33を回生用蓄電装置32よりも先に、具体的には例えば車両の走行前に充電することが望ましい。よって制御部41はスイッチ52,53をそれぞれオフ/オンさせた後に、スイッチ52,53をそれぞれオン/オフすることが望ましい。具体的には、車両の走行前に、スイッチ52,53をそれぞれオフ/オンして補助蓄電装置33を充電し、その後、スイッチ52,53をそれぞれオフ/オンさせるとよい。これにより、補助蓄電装置33の充電を完了して重要負荷22への給電を準備しつつ、車両の走行中に回生用蓄電装置32の充放電を行うことができる。
 次に、スイッチ52,53をそれぞれオフ/オンするトリガの一例について説明する。車両には、車両の始動指示(例えばエンジンの始動指示)をユーザが入力する入力部(例えばイグニッションキー)、または、車両のドアの開閉を検知する開閉検知部が含まれている。図2の例示では、入力部221および開閉検知部222が重要負荷22の一例として表示されている。ただし、これらの少なくともいずれか一方は一般負荷21として把握されてもよい。
 車両の始動指示は車両の走行前に行われ、また、車両の走行前には、運転手が車両に乗り込むためにドアが開かれる。よって、これらを上述のトリガとして採用することができる。なお、入力部221は車両の始動指示が入力されたことを制御部41に通知し、開閉検知部222はドアが開いたことを制御部41に通知する。
 図3は制御部41の動作の一例を示す図である。まずステップS1にて、制御部41はエンジンの始動指示が入力されたか否か、若しくは、ドアが開いたか否かを判断する。
 ステップS1にて否定的な判断がなされたときには、再びステップS1を実行する。ステップS1にて肯定的な判断がなされたときには、ステップS2にて、制御部41はスイッチ52をオフし、スイッチ53をオンする。またステップS3にて制御部41はDC-DCコンバータ4を制御し、DC-DCコンバータ4に補助蓄電装置33の充電に適切な直流電圧を出力させる。
 次に、ステップS4にて、制御部41は補助蓄電装置33への充電が完了したか否かを判断する。例えば補助蓄電装置33の充電率を検出する検出部を設け、その充電率が基準値を超えたときに、充電が完了したと判断してもよい。
 ステップS4にて否定的な判断がなされた場合には、ステップS4を再び実行する。ステップS4にて肯定的な判断がなされた場合には、ステップS5にて制御部41はスイッチ52をオンし、スイッチ53をオフする。その後は、制御部41は、例えば車両の減速時において、DC-DCコンバータ4に発電機1の直流電圧を昇圧または降圧させて、回生用蓄電装置32の充電に適切な直流電圧を出力させる。また制御部41は、例えば車両の減速時以外において、DC-DCコンバータ4に、回生用蓄電装置32の両端電圧を昇圧または降圧させて、一般負荷21および重要負荷22に適した直流電圧を出力させる。
 <主蓄電装置からの給電の消失>
 主蓄電装置31からの給電が消失したときには、スイッチ52,53を次のように制御してもよい。図4は制御部41の動作の一例を示すフローチャートである。ステップS11にて、制御部41は主蓄電装置31からの給電が消失したか否かを判断する。主蓄電装置31の消失は、例えば次のようにして検出することができる。例えば主蓄電装置31の直流電圧を検出する電圧検出部を設け、主蓄電装置31の直流電圧が例えば所定の異常基準値よりも小さいときに、主蓄電装置31の消失を検出することができる。
 ステップS11にて否定的な判断がなされたときには、ステップS11を再び実行する。ステップS11にて肯定的な判断がなされたときには、ステップS12にて、制御部41はスイッチ52,53の両方をオンする。
 これにより、回生用蓄電装置32は、DC-DCコンバータ4を迂回しつつ、スイッチ52,53および補助蓄電装置33を経由して、重要負荷22へと給電することができる。これは以下の事態を回避できる点で望ましい。DC-DCコンバータ4と重要負荷22との間に短絡異常が生じると、主蓄電装置31からの給電が消失する。この場合、DC-DCコンバータ4は重要負荷22へと直流電圧を適切に出力することができない。よって、回生用蓄電装置32はDC-DCコンバータ4を経由して重要負荷22へと給電できない。しかるに、スイッチ52,53の両方をオンすることで、回生用蓄電装置32はDC-DCコンバータ4を迂回しつつ、補助蓄電装置33を経由して重要負荷22へ給電することができる。よって、重要負荷22へと適切に給電することができるのである。
 また、主蓄電装置31からの給電の消失時に、補助蓄電装置33のみならず回生用蓄電装置32からも重要負荷22へと給電できる。よって、給電の安定性を向上することができる。
 図5は制御部41の動作の一例を示すフローチャートである。図4と比較して、制御部41はステップS13を更に実行する。ステップS13はステップS11,S12の間で実行される。ステップS13にて、制御部41は、回生用蓄電装置32の両端電圧が補助蓄電装置33の両端電圧よりも大きいか否かを判断する。各両端電圧は、例えばそれぞれ電圧検出部を回生用蓄電装置32および補助蓄電装置33に設けることで検出される。両端電圧の大小は比較器を用いて判別できる。
 ところで、回生用蓄電装置32の両端電圧は放電によって低下し、充電によって増大する。特に、回生用蓄電装置32としてキャパシタを採用した場合には、電荷に対して比例して両端電圧が変化する。よって蓄電池を採用した場合に比べて、この両端電圧の変化量が大きくなる。例えば充電時には、発電機1の直流電圧(例えば12V)よりも高い電圧(例えば16V)まで回生用蓄電装置32を充電することができ、放電時には、発電機1の直流電圧よりも低い電圧(例えば7V)まで回生用蓄電装置32を放電することができる。
 一方で、主蓄電装置31の給電が機能する場合には、補助蓄電装置33は放電しなくてもよい。例えば、主蓄電装置31と重要負荷22との間にダイオードを設け、補助蓄電装置33と重要負荷22との間にダイオードを設ける。これらのダイオードの順方向は、重要負荷22へと向かう方向である。かかる構造において、補助蓄電装置33の両端電圧を主蓄電装置31の電圧(例えば12V)よりもわずかに小さく設定すれば、重要負荷22へは補助蓄電装置33ではなく主蓄電装置31から給電される。よって主蓄電装置31の給電が機能しているときには、補助蓄電装置33は放電しない。この場合、補助蓄電装置33の両端電圧はほぼ一定である。
 あるいは、例えば、補助蓄電装置33として蓄電池(例えばリチウムイオン電池)を採用した場合には、その両端電圧の変化量はキャパシタに比べて小さい。例えば、発電機1の直流電圧と同程度の電圧(例えば12V)で補助蓄電装置33が充電される。
 このような場合には、ステップS13の実行時点で、回生用蓄電装置32の両端電圧が補助蓄電装置33の両端電圧よりも小さくなる場合がある。このときにスイッチ52,53の両方をオンすると、補助蓄電装置33が回生用蓄電装置32へと放電する。この電流は重要負荷22への給電には寄与しないので、好ましくない。
 そこで、ステップS13にて、回生用蓄電装置32の両端電圧が補助蓄電装置33の両端電圧よりも小さいと判断された場合には、ステップS12を実行することなく、ステップS13を再び実行する。そして、ステップS13にて、回生用蓄電装置32の両端電圧が補助蓄電装置33の両端電圧よりも大きいと判断したときに、ステップS12を実行する。
 これによれば、補助蓄電装置33から回生用蓄電装置32へと放電することを防止でき、重要負荷22への給電に資する。
 なお、回生用蓄電装置32は複数設けられてもよく、また、補助蓄電装置33は複数設けられてもよい。
 上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせることができる。
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 発電機
 4 DC-DCコンバータ
 22 重要負荷
 31 主蓄電装置
 32 回生用蓄電装置(第1蓄電装置)
 33 補助蓄電装置(第2蓄電装置)
 52,53 スイッチ
 100 車載用電源装置

Claims (4)

  1.  双方向のコンバータと、
     前記コンバータを介して充電され、前記コンバータを介して負荷に放電する第1蓄電装置と、
     前記コンバータと前記第1蓄電装置との間のオン/オフを選択する第1スイッチと、
     前記コンバータを介して充電され、前記コンバータを迂回した経路で前記負荷に放電する第2蓄電装置と、
     前記コンバータと前記第2蓄電装置との間のオン/オフを選択する第2スイッチと
    を備える、車載用電源装置。
  2.  請求項1に記載の車載用電源装置であって、
     前記第1スイッチおよび前記第2スイッチがそれぞれオフ/オンした後に、それぞれオン/オフする、車載用電源装置。
  3.  請求項2に記載の車載用電源装置であって、
     前記車載用電源装置が搭載される車両は、前記車両の始動指示が入力される入力部、および、ドアの開閉を検知する開閉検知部を備え、
     前記始動指示が入力されたとき、または、前記ドアが開いたときに、前記第1スイッチおよび前記第2スイッチはそれぞれオフ/オンする、車載用電源装置。
  4.  請求項1から請求項3のいずれか1項に記載の車載用電源装置であって、
     前記負荷に接続される主蓄電装置を備え、
     前記主蓄電装置の電圧が異常基準値よりも小さく、かつ、前記第1蓄電装置の電圧が前記第2蓄電装置の電圧以上であるときに、前記第1スイッチおよび前記第2スイッチはオンする、車載用電源装置。
PCT/JP2016/074350 2015-09-11 2016-08-22 車載用電源装置 WO2017043295A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680048703.9A CN107921917A (zh) 2015-09-11 2016-08-22 车载用电源装置
US15/755,265 US20180244221A1 (en) 2015-09-11 2016-08-22 In-vehicle power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179487A JP6406188B2 (ja) 2015-09-11 2015-09-11 車載用電源装置
JP2015-179487 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043295A1 true WO2017043295A1 (ja) 2017-03-16

Family

ID=58240637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074350 WO2017043295A1 (ja) 2015-09-11 2016-08-22 車載用電源装置

Country Status (4)

Country Link
US (1) US20180244221A1 (ja)
JP (1) JP6406188B2 (ja)
CN (1) CN107921917A (ja)
WO (1) WO2017043295A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963729B2 (ja) * 2018-04-27 2021-11-10 株式会社オートネットワーク技術研究所 車載用のバックアップ回路及び車載用のバックアップ装置
US11135934B2 (en) * 2019-09-06 2021-10-05 Nio Usa, Inc. Vehicle power devices, systems, and methods for sleep mode
JP7013500B2 (ja) * 2020-01-30 2022-01-31 矢崎総業株式会社 車両電源システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307931A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 車両用二電源システム
JP2010068650A (ja) * 2008-09-11 2010-03-25 Autonetworks Technologies Ltd 電源システム
JP2012244864A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 車両用電源装置
JP2012244875A (ja) * 2011-05-24 2012-12-10 Toyota Motor Corp 車両の電源システムおよびそれを備える車両
JP2013500893A (ja) * 2009-07-31 2013-01-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車載システム用の回路装置
JP2014046737A (ja) * 2012-08-30 2014-03-17 Mazda Motor Corp 車両用電源制御装置および方法
JP2015084607A (ja) * 2012-02-08 2015-04-30 新神戸電機株式会社 蓄電システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125159A (ja) * 2006-11-08 2008-05-29 Auto Network Gijutsu Kenkyusho:Kk 電源装置
JP5015807B2 (ja) * 2008-01-08 2012-08-29 トヨタ自動車株式会社 電源制御装置
EP2272722B1 (en) * 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
WO2011014595A2 (en) * 2009-07-31 2011-02-03 Thermo King Corporation Bi-directional battery voltage converter
WO2011121974A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 車両用電源装置
US9577469B2 (en) * 2011-12-16 2017-02-21 Samsung Sdi Co., Ltd. Battery pack
JP5733292B2 (ja) * 2012-11-28 2015-06-10 トヨタ自動車株式会社 車両の電源システム
US9718375B2 (en) * 2014-01-23 2017-08-01 Johnson Controls Technology Company Passive architectures for batteries having two different chemistries
JP2015061424A (ja) * 2013-09-19 2015-03-30 株式会社オートネットワーク技術研究所 車両用電源装置
JP2015058821A (ja) * 2013-09-19 2015-03-30 株式会社オートネットワーク技術研究所 車両用電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307931A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 車両用二電源システム
JP2010068650A (ja) * 2008-09-11 2010-03-25 Autonetworks Technologies Ltd 電源システム
JP2013500893A (ja) * 2009-07-31 2013-01-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車載システム用の回路装置
JP2012244864A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 車両用電源装置
JP2012244875A (ja) * 2011-05-24 2012-12-10 Toyota Motor Corp 車両の電源システムおよびそれを備える車両
JP2015084607A (ja) * 2012-02-08 2015-04-30 新神戸電機株式会社 蓄電システム
JP2014046737A (ja) * 2012-08-30 2014-03-17 Mazda Motor Corp 車両用電源制御装置および方法

Also Published As

Publication number Publication date
US20180244221A1 (en) 2018-08-30
JP2017052478A (ja) 2017-03-16
CN107921917A (zh) 2018-04-17
JP6406188B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
US10308119B2 (en) Vehicle power supply control apparatus
JP6554151B2 (ja) 車両の電源システム
US8823206B2 (en) Power-supply control device
JP6493314B2 (ja) 電気自動車
JP2013252015A (ja) 車両用電源制御方法及び装置
US20150336474A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
JP6469424B2 (ja) 車両用電源装置
US9843184B2 (en) Voltage conversion apparatus
JP2004260903A (ja) 車載電源システム
JP2019043271A (ja) 車両の電源システム
WO2017043295A1 (ja) 車載用電源装置
CN109747420B (zh) 车辆用电源系统
JP2017061240A (ja) 車載用電源装置及びその制御方法
RU2711949C2 (ru) Способ снабжения напряжением бортовой сети автомобиля
WO2017043311A1 (ja) 車載用電源装置
JP6131533B2 (ja) 車両用電源制御方法及び装置
KR20190100678A (ko) 보조 에너지 저장 장치를 이용한 방전 차량 점프 스타트 시스템
JP6885302B2 (ja) 車両用電源システム
WO2017057211A1 (ja) 車載用電源装置
JP2018129936A (ja) 電源システム
JP2012205345A (ja) 電源回路制御システム
WO2017094668A1 (ja) 車載用電源装置および車載用電源システム
JP2016146699A (ja) 電源装置
JP6575402B2 (ja) 車載電源用の充電率監視装置および車載電源システム
JP6194709B2 (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755265

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844158

Country of ref document: EP

Kind code of ref document: A1