WO2017043099A1 - 巻鉄心の製造方法および巻鉄心の製造装置 - Google Patents
巻鉄心の製造方法および巻鉄心の製造装置 Download PDFInfo
- Publication number
- WO2017043099A1 WO2017043099A1 PCT/JP2016/053807 JP2016053807W WO2017043099A1 WO 2017043099 A1 WO2017043099 A1 WO 2017043099A1 JP 2016053807 W JP2016053807 W JP 2016053807W WO 2017043099 A1 WO2017043099 A1 WO 2017043099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wound
- winding
- core
- iron core
- manufacturing
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000011162 core material Substances 0.000 claims abstract description 142
- 238000004804 winding Methods 0.000 claims abstract description 82
- 238000005520 cutting process Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000000465 moulding Methods 0.000 description 9
- 229910000976 Electrical steel Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0233—Manufacturing of magnetic circuits made from sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/341—Preventing or reducing no-load losses or reactive currents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/263—Fastening parts of the core together
Definitions
- Embodiments of the present invention relate to a method for manufacturing a wound core and an apparatus for manufacturing the wound core.
- iron loss which is a power loss generated in iron cores
- a laminated iron core in which cut thin silicon steel plates are laminated and a wound iron core in which cut thin silicon steel plates are wound are known.
- the wound iron core is more advantageous than the laminated iron core from the viewpoint of reducing iron loss because the flow of magnetic flux in the iron core is not easily inhibited.
- Patent Document 1 discloses an example of a method for manufacturing such a wound iron core.
- This type of wound iron core is generally manufactured by the following method. That is, an iron core material is wound from a thin silicon steel plate for one turn, that is, one turn, and wound into a circular winding mold and laminated. Thereafter, the rolled iron core material is pressed against the inner side and the outer side and pressed to form a rectangular frame having a substantially rectangular window at the center. At this time, bending stress that causes an increase in iron loss is generated in the iron core material constituting the wound iron core.
- a treatment for relieving the residual stress and restoring the iron loss characteristics that is, an annealing treatment in which the wound iron core is gradually cooled after being heated to, for example, about 800 ° C. is performed.
- annealing also serves to maintain the shape of the iron core material after pressing.
- the wound iron core is once opened at the cut portion of each core material, and after the winding wire is assembled to the straight portion (leg portion) of the wound core, the wound core is closed again. Like that.
- an annular core is formed by winding the core that has been cut every turn into a circular winding mold, and then the annular core is formed into a rectangular shape. It is necessary to press-mold into a frame shape. Since it is a two-stage assembly process in this way, it is difficult to construct a continuous production line, and an intermediate product buffer is provided for each process, leading to an increase in inventory assets.
- a “winding die” for winding in an annular shape and a “molding die” for press-molding into a rectangular frame shape are necessary, and production management to supply a large number of these molds to the manufacturing process Is also required.
- the present embodiment eliminates the need for press-molding the annular core material into a rectangular frame shape, thereby eliminating the intermediate product buffer, which has been necessary in the past, and eliminating the need for a winding die or molding die.
- a method for manufacturing a wound iron core and an apparatus for manufacturing a wound iron core that can facilitate production management and can improve productivity can be provided.
- a plurality of iron core materials each having at least one cut portion are wound and stacked for each turn, and a wound core having a rectangular window portion at the center is manufactured.
- a plurality of the cut iron core materials are stacked while being wound into a rectangular frame shape by a winding device.
- the manufacturing apparatus of the wound core which concerns on this embodiment rolls and laminates the core material which has a cutting
- An apparatus for manufacturing comprising: a cutting device that cuts the iron core material; and a winding device that stacks a plurality of the iron core materials cut by the cutting device while winding them into a rectangular frame shape.
- FIG. 3 equivalent view showing another form in the case of binding the wound iron core with a binding member
- the wound iron core 1 shown in FIG. 3 has a configuration in which a plurality of iron core materials 2 obtained by cutting a silicon steel plate are wound and laminated, as will be described later. It has a shape and has a substantially rectangular window 3 at the center.
- the wound iron core 1 has a pair of long side portions 4 and 4 facing each other in a straight line around the window portion 3 and a pair of short side portions 5 facing each other in a straight line slightly shorter than the long side portion 4. , 5 and four corner portions 6.
- each corner portion 6 has a curved surface shape (arc shape).
- the binding member 7 is bound to each long side portion 4 and short side portion 5.
- the binding member 7 is made of, for example, a steel band, which is a material having heat resistance, and is wound around the wound iron core 1 in such a manner that it passes through the window portion 3 once.
- FIG. 1 shows a schematic configuration of a manufacturing apparatus 10 for manufacturing the wound core 1.
- the manufacturing apparatus 10 includes a cutting device 11, a transport unit 12, and a winding device 13.
- the cutting device 11 draws the iron core material from the silicon steel sheet S wound in a coil shape, and cuts the iron core material to a required length by the cutting means 14. From the outlet 15 of the cutting device 11, the iron core material 2 cut for each winding is sequentially sent out toward the transport unit 12.
- the conveyance part 12 is comprised by the belt conveyor, for example, and conveys the iron core material 2 sent out from the exit 15 toward the winding device 13 with the belt 12a.
- the iron core material 2 has cutting portions 17 at both ends, and is fed to the winding device 13 by the pinch roller 16 after being conveyed by the belt 12a.
- the winding device 13 includes a winding core 18, a belt 19 that functions as a pressing means, and a plurality of guide rollers 20 that guide the movement of the belt 19.
- the winding core 18 includes a base 21 that is rotated around a rotation center O, and four rollers 22 that are provided on the base 21. As the winding core 18 rotates about the rotation center O in the direction of arrow A in FIG. 1, the iron core material 2 is wound around the four rollers 22 and sequentially laminated. As shown in FIG. 2, each cutting portion 17 of the iron core material 2 is positioned on one short side portion 5 in the wound core 1 so that the positions are sequentially shifted.
- the belt 19 is arranged so as to surround the outermost core material 2, and presses the core material 2 wound around the core 18 from the outside toward the core 18 that is the inside in the stacking direction. While moving in the direction of arrow B in synchronization with the rotation of the winding core 18. Further, the rotation operation of the winding core 18 is synchronized with the cutting operation of the cutting device 11, and the iron core material 2 sent out from the cutting device 11 is sequentially wound up by the winding device 13. In this way, a predetermined number of the iron core materials 2 are wound around the core 18 and laminated, whereby a rectangular frame-shaped wound iron core 1 is formed.
- a plurality of pressing rollers 23 are arranged on the outer periphery of the belt 19, and the iron core material 2 is arranged by the pressing rollers 23. The molding can be facilitated by pressing.
- the wound iron core 1 is bound at a plurality of locations by the binding member 7 (see FIG. 3).
- the binding member 7 is bound to each of the long side portion 4 and each short side portion 5 of the wound core 1 through the window portion 3, thereby The shape will not collapse.
- the wound core 1 is removed from the winding device 13 in a state where the wound core 1 is bound with the binding member 7.
- an additional plate-like auxiliary member 24 is inserted between the wound iron core 1 and the binding member 7 as shown in FIG. Deformation can be suppressed.
- the four rollers 22 of the winding core 18 form a rectangular window 3 in the wound core 1.
- the four rollers 22 are configured to be movable in the longitudinal direction of the window 3 (see arrow C1 in FIG. 1) and in the short direction perpendicular to the window 3 (see C2 in FIG. 1). By adjusting the positions of these four rollers 22, the size (size) of the window portion 3 can be changed.
- the wound iron core 1 removed from the winding device 13 is annealed in a state of being bound by the binding member 7.
- the wound core 1 is heated to about 800 ° C. and then slowly cooled.
- the wound core 1 is once opened at the cutting portion 17 of each core material 2, and the winding is wound on the long side portion 4 of the wound core 1. After assembly, the wound core 1 is closed.
- a plurality of iron core materials 2 cut for each winding are stacked while being wound in a rectangular frame shape by the winding device 13, so that the rectangular window portion 3 is formed at the center.
- the wound iron core 1 is produced.
- a winding mold for winding the iron core material in an annular shape is not required.
- the productivity of the wound core 1 can be further improved. It becomes possible.
- the belt 19 is provided in the winding device 13 as a pressing means for pressing the iron core material 2 wound around the core 18 in the laminating direction, the iron core material 2 can be wound around the core 18 satisfactorily. become. Further, since the belt 19 is configured to move in synchronization with the rotation of the core 18, the iron core material 2 can be wound around the core 18 more satisfactorily.
- the manufacturability of the wound core 1 can be further improved.
- the winding device 13 can take up the iron core material 2. It becomes possible to wind up the iron core material 2 to be favorably wound into a rectangular frame shape, and to further prevent the shape of the wound iron core material 2 from being broken.
- each corner portion 6 at the four corners has a curved surface shape (arc shape).
- the wound iron core 30 shown in FIG. 5 has a shape in which the corner portions 31 at the four corners are planar, and the long side portion 4 and the short side portion 5 are connected obliquely.
- the size of the window 3 of the wound core 1 can be changed by changing the positions of the four rollers 22 of the winding core 18. Accordingly, there is an advantage that it is possible to manufacture the wound core 1 having a different size of the window portion 3 with a single core 18.
- the wound core 1 After winding a plurality of iron core materials 2 into a rectangular frame shape by a winding device 13, the wound core 1 is removed from the winding device 13 in a state of being bound by a binding member 7. According to this, since the shape of the wound core 1 can be held by being bound by the binding member 7, it is easy to remove the wound core 1 from the winding device 13, and storage after the removal and subsequent It can be easily transported to the process. Since the binding member 7 is a member having heat resistance, the wound core 1 can be annealed while being bound by the binding member 7.
- a plurality of iron core materials having at least one cut portion are wound and stacked for each winding, and a wound iron core having a rectangular window portion at the center is manufactured.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Metal Rolling (AREA)
Abstract
Description
まず、図3に示す巻鉄心1は、後述するように、珪素鋼板を切断することにより得られた複数枚の鉄心材2が巻回されて積層された構成のもので、全体としてほぼ矩形枠状をなしていて、中心部にほぼ矩形状の窓部3を有している。巻鉄心1は、窓部3の周りに、直線状をなして対向する一対の長辺部4,4と、長辺部4よりもやや短い直線状をなして対向する一対の短辺部5,5と、四隅のコーナー部6を有している。この場合、各コーナー部6は曲面状(円弧状)をなしている。図3に示す巻鉄心1においては、各長辺部4および短辺部5に緊縛部材7が縛り付けられている。緊縛部材7は、耐熱性を有する材料である例えばスチールバンドにより構成されていて、それぞれ一度窓部3を通過する形態で巻鉄心1に巻き付けられている。
また、鉄心材2を巻取り装置13により巻き取る前のいずれかの工程において、鉄心材2をプレス成形により折り曲げるように成形する構成として折り曲げぐせを付加すれば、巻取り装置13にて巻き取られる鉄心材2を、矩形枠状に良好に巻き取ることが可能になり、巻き取られた鉄心材2の形状が崩れることを一層防止することが可能となる。
巻芯18に巻き取られる鉄心材2を巻芯18側へ押圧する押圧手段としては、ベルト19に代えて、例えば複数個のローラで構成することも可能である。
Claims (11)
- 一巻きごとに少なくとも1箇所の切断部を有する鉄心材を複数枚巻回して積層し、中心部に矩形状の窓部を有する巻鉄心を製造する方法であって、
切断された複数枚の前記鉄心材を、巻取り装置により矩形枠状に巻き取りながら積層する巻鉄心の製造方法。 - 前記鉄心材の切断工程と、前記巻き取り装置による巻取り工程が連続している請求項1記載の巻鉄心の製造方法。
- 前記巻取り装置には、巻き取られる前記鉄心材を積層方向に押圧する押圧手段が設けられている請求項1記載の巻鉄心の製造方法。
- 前記巻取り装置は、前記鉄心材を巻き取る巻芯を備え、
前記押圧手段は、前記巻芯の回転に同期して移動するベルトである請求項3記載の巻鉄心の製造方法。 - 前記巻取り装置は、前記鉄心材を巻き取る巻芯を備え、
前記巻取り工程において前記巻芯の回転動作が、前記切断工程における切断動作と同期している請求項2記載の巻鉄心の製造方法。 - 前記鉄心材は、前記巻取り装置により巻き取るよりも前のいずれかの工程で、前記鉄心材を折り曲げ成形する請求項1記載の巻鉄心の製造方法。
- 前記巻取り装置は、前記鉄心材を巻き取る巻芯を備え、
前記巻芯は、前記窓部の寸法を変えることができる構成となっている請求項1記載の巻鉄心の製造方法。 - 複数枚の前記鉄心材を前記巻取り装置により矩形枠状に巻き取った後、この巻き取られた巻鉄心を、耐熱性を有する緊縛部材により緊縛した状態で前記巻取り装置から外す工程を有する請求項1記載の巻鉄心の製造方法。
- 前記緊縛部材による緊縛は、その緊縛部材が前記巻鉄心の前記窓部を少なくとも一度通って行われる請求項8記載の巻鉄心の製造方法。
- 前記巻鉄心を前記緊縛部材により緊縛した後、前記巻鉄心を焼鈍する請求項8記載の巻鉄心の製造方法。
- 一巻きごとに少なくとも1箇所の切断部を有する鉄心材を複数枚巻回して積層し、中心部に矩形状の窓部を有する巻鉄心を製造する装置であって、
前記鉄心材を切断する切断装置と、
前記切断装置で切断された複数枚の前記鉄心材を矩形枠状に巻き取りながら積層する巻取り装置と、を備えた巻鉄心の製造装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018004616A BR112018004616A2 (pt) | 2015-09-10 | 2016-02-09 | método de produção de núcleo enrolado e aparelho de produção de núcleo enrolado |
CN201680051242.0A CN108028130A (zh) | 2015-09-10 | 2016-02-09 | 卷铁心的制造方法以及卷铁心的制造装置 |
AU2016319854A AU2016319854A1 (en) | 2015-09-10 | 2016-02-09 | Production method for wound iron cores and production device for wound iron cores |
EP16843965.1A EP3349227A4 (en) | 2015-09-10 | 2016-02-09 | MANUFACTURING PROCESS FOR SPIRAL IRON CROP AND MANUFACTURING DEVICE FOR SPIRAL IRON CROPS |
US15/759,439 US20180182541A1 (en) | 2015-09-10 | 2016-02-09 | Wound-core production method and wound-core production apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-178484 | 2015-09-10 | ||
JP2015178484A JP2017054962A (ja) | 2015-09-10 | 2015-09-10 | 巻鉄心の製造方法および巻鉄心の製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043099A1 true WO2017043099A1 (ja) | 2017-03-16 |
Family
ID=58239512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053807 WO2017043099A1 (ja) | 2015-09-10 | 2016-02-09 | 巻鉄心の製造方法および巻鉄心の製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180182541A1 (ja) |
EP (1) | EP3349227A4 (ja) |
JP (1) | JP2017054962A (ja) |
CN (1) | CN108028130A (ja) |
AU (1) | AU2016319854A1 (ja) |
BR (1) | BR112018004616A2 (ja) |
WO (1) | WO2017043099A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6416346B1 (ja) * | 2017-09-01 | 2018-10-31 | 株式会社ダイヘン | 鉄心巻締装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6820779B2 (ja) | 2017-03-21 | 2021-01-27 | 株式会社小糸製作所 | 点灯回路および車両用灯具 |
JP6894307B2 (ja) * | 2017-06-26 | 2021-06-30 | 東芝産業機器システム株式会社 | 巻鉄心の製造装置、巻鉄心の製造方法 |
CN109243803A (zh) * | 2018-11-22 | 2019-01-18 | 广东安沛电力有限公司 | 一种双开口卷铁心的加工制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55132027A (en) * | 1979-04-02 | 1980-10-14 | Kitamura Kikai:Kk | Rolled core material forming device and rolled core forming device |
JPS5935410A (ja) * | 1982-08-24 | 1984-02-27 | Toshiba Corp | 巻鉄心の製造方法 |
JPS5974616A (ja) * | 1982-10-21 | 1984-04-27 | Toshiba Corp | 巻鉄心の製造方法 |
JPH1167566A (ja) * | 1997-08-26 | 1999-03-09 | Daihen Corp | 巻鉄心製造装置 |
JP2015141930A (ja) * | 2014-01-27 | 2015-08-03 | 東芝産業機器システム株式会社 | 巻鉄心および巻鉄心の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2657456A (en) * | 1948-12-14 | 1953-11-03 | Gen Electric | Method of making joints in wound cores |
US3008222A (en) * | 1954-04-23 | 1961-11-14 | Mc Graw Edison Co | Method of winding a magnetic core |
JP2975142B2 (ja) * | 1991-03-29 | 1999-11-10 | 株式会社日立製作所 | アモルファス鉄心製造方法及びその装置 |
US20110024051A1 (en) * | 2009-03-20 | 2011-02-03 | Sanford Kyle L | Automated lamination stacking system for a transformer core former |
-
2015
- 2015-09-10 JP JP2015178484A patent/JP2017054962A/ja active Pending
-
2016
- 2016-02-09 BR BR112018004616A patent/BR112018004616A2/pt not_active Application Discontinuation
- 2016-02-09 WO PCT/JP2016/053807 patent/WO2017043099A1/ja active Application Filing
- 2016-02-09 CN CN201680051242.0A patent/CN108028130A/zh active Pending
- 2016-02-09 EP EP16843965.1A patent/EP3349227A4/en not_active Withdrawn
- 2016-02-09 US US15/759,439 patent/US20180182541A1/en not_active Abandoned
- 2016-02-09 AU AU2016319854A patent/AU2016319854A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55132027A (en) * | 1979-04-02 | 1980-10-14 | Kitamura Kikai:Kk | Rolled core material forming device and rolled core forming device |
JPS5935410A (ja) * | 1982-08-24 | 1984-02-27 | Toshiba Corp | 巻鉄心の製造方法 |
JPS5974616A (ja) * | 1982-10-21 | 1984-04-27 | Toshiba Corp | 巻鉄心の製造方法 |
JPH1167566A (ja) * | 1997-08-26 | 1999-03-09 | Daihen Corp | 巻鉄心製造装置 |
JP2015141930A (ja) * | 2014-01-27 | 2015-08-03 | 東芝産業機器システム株式会社 | 巻鉄心および巻鉄心の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6416346B1 (ja) * | 2017-09-01 | 2018-10-31 | 株式会社ダイヘン | 鉄心巻締装置 |
JP2019046969A (ja) * | 2017-09-01 | 2019-03-22 | 株式会社ダイヘン | 鉄心巻締装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3349227A4 (en) | 2019-05-08 |
US20180182541A1 (en) | 2018-06-28 |
CN108028130A (zh) | 2018-05-11 |
JP2017054962A (ja) | 2017-03-16 |
AU2016319854A1 (en) | 2018-04-05 |
EP3349227A1 (en) | 2018-07-18 |
BR112018004616A2 (pt) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6224468B2 (ja) | 巻鉄心および巻鉄心の製造方法 | |
WO2017043099A1 (ja) | 巻鉄心の製造方法および巻鉄心の製造装置 | |
WO2012101812A1 (ja) | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 | |
WO2016067702A1 (ja) | 順送加工方法 | |
JP6595278B2 (ja) | セパレータの製造方法 | |
KR20180033549A (ko) | 적층 철심 제조 장치 및 적층 철심 제조 방법 | |
CN110918738B (zh) | 铁芯的制造方法 | |
JP3787074B2 (ja) | 変圧器鉄心の成形保持装置 | |
WO2012073565A1 (ja) | アモルファス材を使用したリアクトル装置及びその製造方法 | |
KR20100060023A (ko) | 마그네슘 합금 시트의 리코일링 설비 | |
JP2013115942A (ja) | 積層鉄心の製造方法 | |
JP2013226014A (ja) | 積層コアの製造方法及び積層コアの製造装置 | |
JP4606942B2 (ja) | 巻鉄心製造装置 | |
KR20180033550A (ko) | 적층 철심 제조 장치 및 적층 철심 제조 방법 | |
JP2018160502A (ja) | 巻鉄心の製造方法 | |
JP6841635B2 (ja) | 磁心の製造方法 | |
JP4369164B2 (ja) | アモルファス鉄心変圧器の製造方法 | |
JP7122172B2 (ja) | 積層鉄心の製造方法 | |
KR102124788B1 (ko) | 변압기 코어용 금속판 가공방법 | |
CN111424160B (zh) | 合金薄带的制造方法 | |
JP2970424B2 (ja) | 巻鉄心の製造方法及びその装置 | |
JP2003324861A (ja) | 積層鉄心の製造方法及び積層鉄心の製造装置 | |
JP2023181024A (ja) | 積層鉄心の製造方法、積層鉄心、及び積層鉄心を用いた回転電機 | |
JP2004283904A (ja) | 鉄心用薄板加工装置及び加工方法 | |
JPH0417313A (ja) | 静止誘導器用鉄心の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16843965 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15759439 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018004616 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016319854 Country of ref document: AU Date of ref document: 20160209 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016843965 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112018004616 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180308 |