WO2017038905A1 - 半導体装置、チップモジュール及び半導体モジュール - Google Patents

半導体装置、チップモジュール及び半導体モジュール Download PDF

Info

Publication number
WO2017038905A1
WO2017038905A1 PCT/JP2016/075578 JP2016075578W WO2017038905A1 WO 2017038905 A1 WO2017038905 A1 WO 2017038905A1 JP 2016075578 W JP2016075578 W JP 2016075578W WO 2017038905 A1 WO2017038905 A1 WO 2017038905A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
terminal group
outer peripheral
inner peripheral
supply terminal
Prior art date
Application number
PCT/JP2016/075578
Other languages
English (en)
French (fr)
Inventor
成瀬峰信
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to EP19163276.9A priority Critical patent/EP3598488B1/en
Priority to JP2017538091A priority patent/JP6468360B2/ja
Priority to EP21184794.2A priority patent/EP3916779A1/en
Priority to KR1020187001545A priority patent/KR102035947B1/ko
Priority to US15/742,269 priority patent/US10707159B2/en
Priority to EP16841935.6A priority patent/EP3312878A4/en
Priority to CN201680047924.4A priority patent/CN107949909B/zh
Priority to EP21184620.9A priority patent/EP3916778A1/en
Publication of WO2017038905A1 publication Critical patent/WO2017038905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0262Arrangements for regulating voltages or for using plural voltages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device, a chip module, and a semiconductor module including a circuit board having a plurality of wiring layers and through holes, and a semiconductor module or a chip module.
  • Patent Document 1 discloses a technique of a circuit board that allows easy wiring and enables stable power supply.
  • a BGA (Ball Grid Array) type semiconductor module having many connection terminals is mounted on a circuit board, it is difficult to complete all wiring with only the wiring layer on the surface layer of the circuit board.
  • a circuit board on which such a semiconductor module is mounted generally has a plurality of wiring layers and through holes that connect the plurality of wiring layers. Also, such semiconductor modules tend to increase power consumption, and it is required to secure a wide wiring width for power supply wiring for supplying power.
  • the power supply wiring around the through hole is removed, so that the power supply wiring is prevented from being divided or the area is reduced. Yes.
  • the through-holes that penetrate the power supply wiring regularly, the wiring removal area in the power supply wiring is prevented from being connected, and the width and area of the power supply wiring are sufficiently secured and stable. Power supply is possible.
  • the through-hole penetrates the power supply wiring, the effective area of the power supply wiring in the region occupied by the power supply wiring is reduced by the provision of the wiring removal region for preventing conduction with the through-hole. Therefore, a technique for providing a power supply wiring having a high effective area without being affected by a through hole is desired.
  • a semiconductor device has, as one aspect, A rectangular plate-like module substrate for supporting and fixing at least one semiconductor chip, on which at least one semiconductor die is supported on a package substrate, and a planar arrangement along the lower surface of the module substrate and electrically connected to the semiconductor chip
  • a chip module having a plurality of connection terminals connected to A through-hole having a plurality of wiring layers, wherein the chip module is surface-mounted via the plurality of connection terminals, and through which the plurality of wiring layers can be electrically connected
  • the semiconductor chip has a plurality of chip terminals arranged in a plane along a supported surface supported by the module substrate and electrically connected to the module substrate;
  • the plurality of chip terminals include a plurality of chip power supply terminals for supplying power to the semiconductor chip,
  • the plurality of chip power terminals are arranged inside the outer edge of the arrangement area where the plurality of chip terminals are arranged in a plane,
  • the semiconductor chip is mounted on the module substrate, and the
  • a plurality of connection terminals are arranged in a rectangular ring shape along each side of the module substrate, and the plurality of connection terminals are arranged from an inner peripheral side terminal group arranged on the center side of the module substrate, and the inner peripheral side terminal group Including an outer peripheral side terminal group arranged on the outer peripheral side,
  • the inner peripheral side terminal group includes an inner peripheral side power supply terminal group that supplies power to the semiconductor chip
  • the outer peripheral terminal group includes an outer peripheral power terminal group of the same system as at least a part of the inner peripheral power terminal group,
  • the inner peripheral power supply terminal group is disposed at a position where at least a portion overlaps with the semiconductor chip when viewed in a direction orthogonal to the plate surface of the module substrate,
  • the outer periphery side power supply terminal group is arranged so as to be continuously arranged from the inner periphery side power supply terminal group to the outermost periphery terminal of the outer periphery side terminal group,
  • the main board has a surface power supply path for supplying power to the semiconductor
  • a rectangular plate-like module substrate that supports and fixes at least one semiconductor chip having at least one semiconductor die supported on the package substrate on the upper surface, and a planar arrangement along the lower surface of the module substrate and the semiconductor chip
  • a chip module including a plurality of connection terminals that are electrically connected is, as one aspect,
  • the semiconductor chip has a plurality of chip terminals arranged in a plane along a supported surface supported by the module substrate and electrically connected to the module substrate;
  • the plurality of chip terminals include a plurality of chip power supply terminals for supplying power to the semiconductor chip,
  • the plurality of chip power terminals are arranged inside the outer edge of the arrangement area where the plurality of chip terminals are arranged in a plane,
  • the semiconductor chip is mounted on the module substrate,
  • the arrangement of the plurality of chip terminals and the arrangement of the plurality of connection terminals are rearranged on the module substrate,
  • the plurality of connection terminals are arranged in a plurality of rows and columns along each side of the module substrate,
  • the outer peripheral side terminal group arranged on the outer peripheral side than the inner peripheral side terminal group,
  • the inner periphery side terminal group includes an inner periphery side power supply terminal group connected to a power supply terminal of the semiconductor chip,
  • the outer peripheral terminal group includes an outer peripheral power terminal group of the same system as at least a part of the inner peripheral power terminal group,
  • the inner periphery side power supply terminal group is disposed at a position where at least a part of the semiconductor chip overlaps when viewed in a direction orthogonal to the plate surface of the module substrate,
  • the outer peripheral side power supply terminal group is arranged so as to be continuously arranged from the inner peripheral side power supply terminal group to the outermost peripheral terminal of the outer peripheral side terminal group.
  • the inner peripheral power supply terminal group is disposed at a position at least partially overlapping with the semiconductor chip when viewed in the direction orthogonal to the plate surface of the module substrate.
  • a peripheral power supply terminal group is arranged. Therefore, the power supply terminal of the semiconductor chip and the power supply terminal of the chip module can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • the chip power terminal is generally provided directly under the semiconductor die (since the module substrate and the package substrate are generally arranged in parallel, A chip power supply terminal is provided at a position overlapping with at least a part of the semiconductor die when viewed in a direction perpendicular to the plate surface of the module substrate (package substrate). Therefore, it can also be said that the inner peripheral power supply terminal group is disposed at a position at least partially overlapping with the semiconductor die when viewed in the direction orthogonal to the plate surface of the module substrate.
  • a surface power supply path for supplying power to the semiconductor chip is formed in the surface wiring layer on which the chip module is mounted.
  • the surface layer power supply path overlaps with the inner peripheral power supply terminal group and the outer peripheral power supply terminal group that supply power to the semiconductor chip via the module substrate when viewed in the orthogonal direction. Therefore, when the surface mounting is performed on the surface wiring layer, the inner peripheral power supply terminal group and the outer peripheral power supply terminal group of the chip module are directly connected to the surface power supply path. Further, since it is not necessary to provide a through hole for extracting other signals in the surface layer power supply path, and it is not necessary to provide a hole or an insulating region, the impedance of the surface layer power supply path can be kept low. Thus, according to the above configuration, it is possible to provide a semiconductor device and a chip module that can suppress a reduction in the effective area of wiring due to a through hole and can stably supply power.
  • the terminal arrangement (terminal arrangement of the chip terminals) is determined by the semiconductor vendor. That is, there are many cases where the terminal arrangement is not suitable for a device manufacturer that produces devices using these microcomputers and DSPs. It is not impossible to produce as a dedicated product so that the terminal layout of microcomputers and DSPs is suitable for equipment manufacturers, but it is not practical and profitable considering development costs for the commercialization of dedicated products. is not.
  • the terminal arrangement can be converted by wiring on the module substrate, the terminal arrangement of the connection terminals in the chip module can be a terminal arrangement suitable for the device manufacturer. As a result, as described above, power can be supplied to the semiconductor chip through the surface power supply path formed in the surface wiring layer of the main substrate.
  • the semiconductor device is A rectangular plate-like support substrate that supports and fixes at least one semiconductor element on the upper surface, and a semiconductor including a plurality of connection terminals that are arranged in a plane along the lower surface of the support substrate and are electrically connected to the semiconductor element Module, A through-hole having a plurality of wiring layers, wherein the semiconductor module is surface-mounted through the plurality of connection terminals, and through which the plurality of wiring layers can be electrically connected
  • the plurality of connection terminals are arranged in a plurality of rows and columns along each side of the support substrate, and the plurality of connection terminals include an inner peripheral side terminal group arranged on the center side of the support substrate;
  • the outer peripheral side terminal group arranged on the outer peripheral side than the inner peripheral side terminal group,
  • the inner periphery side terminal group includes an inner periphery side power supply terminal group that supplies power to a target semiconductor element that is one of the semiconductor elements,
  • the outer peripheral terminal group includes an outer peripheral power terminal group of
  • a rectangular plate-like support substrate that supports and fixes at least one semiconductor element on the upper surface; and a plurality of connection terminals that are arranged in a plane along the lower surface of the support substrate and are electrically connected to the semiconductor element.
  • the semiconductor module The plurality of connection terminals are arranged in a plurality of rows and columns along each side of the support substrate, and the plurality of connection terminals include an inner peripheral side terminal group arranged on the center side of the support substrate; The outer peripheral side terminal group arranged on the outer peripheral side than the inner peripheral side terminal group, The inner peripheral terminal group includes an inner peripheral power terminal group connected to a power terminal of a target semiconductor element that is one of the semiconductor elements,
  • the outer peripheral terminal group includes an outer peripheral power terminal group of the same system as at least a part of the inner peripheral power terminal group,
  • the inner periphery side power supply terminal group is disposed at a position where at least a part overlaps the target semiconductor element when viewed in a direction orthogonal to the plate surface of the support substrate,
  • the inner peripheral power supply terminal group is disposed at a position at least partially overlapping with the target semiconductor element when viewed in a direction orthogonal to the plate surface of the support substrate.
  • the inner peripheral side power supply terminal group is arranged. Therefore, the power supply terminal of the target semiconductor element and the power supply terminal of the semiconductor module can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • a surface power supply path for supplying power to the target semiconductor element is formed in the surface wiring layer on which the semiconductor module is mounted. The surface layer power supply path overlaps with the inner peripheral power supply terminal group and the outer peripheral power supply terminal group that supply power to the target semiconductor element via the support substrate when viewed in the orthogonal direction.
  • the inner peripheral power supply terminal group and the outer peripheral power supply terminal group of the semiconductor module that is surface-mounted in the surface wiring layer are directly connected to the surface power supply path. Further, since it is not necessary to provide a through hole for extracting other signals in the surface layer power supply path, and it is not necessary to provide a hole or an insulating region, the impedance of the surface layer power supply path can be kept low. Thus, according to the above configuration, it is possible to provide a semiconductor device and a semiconductor module that can suppress the effective area of the wiring from being reduced by the through hole and can stably supply power.
  • FIG. 1 Schematic external view of semiconductor device Schematic perspective view showing an example of terminal arrangement of a semiconductor module
  • SOC semiconductor module
  • MCM semiconductor module
  • SIP semiconductor module
  • a semiconductor device 1 includes a circuit board 3 (main board) of a plurality of layers (31, 32, 33, 39) having wiring layers on the surface layer and an inner layer, and a semiconductor mounted on the circuit board 3.
  • Module 5 is provided.
  • the semiconductor module 5 includes at least one semiconductor element 51 and a support substrate 21 that supports and fixes the semiconductor element 51 to the upper surface 21a.
  • a plurality of terminals 10 (connection terminals) electrically connected to the semiconductor element 51 are arranged on the lower surface 21b of the support substrate 21 so as to protrude from the lower surface 21b.
  • FIG. 8 schematically shows a general structure of a semiconductor module 5 (system LSI 5C) configured to include a single semiconductor element 51 (semiconductor die 51d).
  • FIG. 9 schematically shows the structure of a semiconductor module 5 (system LSI (SOC) 5C) in which a plurality of semiconductor elements 51 (semiconductor die 51d) are sealed in one package.
  • the semiconductor die 51d is supported and fixed to the upper surface 21a of the support substrate 21 (package substrate).
  • Reference numeral “51C” represents the semiconductor element 51 in the system LSI 5C.
  • the semiconductor module 5 is configured to include a single semiconductor element 51 (semiconductor die 51d), a plurality of circuit blocks (megacells) having a specific function can be combined into a single semiconductor element 51 (semiconductor die 51).
  • the system LSI 5C may be configured as a large scale LSI (Large Scale Integration Circuit) integrated thereon.
  • FIG. 10 illustrates a configuration in which the semiconductor module 5 is configured as a hybrid IC called a multichip module 5M (MCM (Multi Chip Module)).
  • the multichip module 5M (chip module) has at least one semiconductor element 51 (such as a semiconductor chip denoted by reference numeral "51M") having a specific function on one support substrate 21 (module substrate 21m). It is configured as a mounted module. That is, the multi-chip module 5M (chip module) is a rectangular plate-shaped module substrate 21m that supports and fixes at least one semiconductor chip 51M (semiconductor element 51) having at least one semiconductor die D supported on the package substrate B on the upper surface.
  • semiconductor element 51 such as a semiconductor chip denoted by reference numeral "51M”
  • the multichip module 5M may include one semiconductor chip 51M.
  • a processor 51p such as a microcomputer or DSP (Digital Signal Processor) and a peripheral chip such as a memory 51m include a module substrate 21m (supported) as a plurality of semiconductor elements 51 (semiconductor chips 51M) having specific functions. The form mounted on the board
  • a chip power supply terminal 56 see FIG. 17 and the like
  • an inner peripheral power supply terminal group 141g, 14g: FIG. 16). Etc.
  • at least one semiconductor chip 51M having a feature in the positional relationship with the surface power supply wiring 40 is called a target semiconductor chip.
  • the multichip module 5M may include one semiconductor chip 51M. In this case, the one semiconductor chip 51M corresponds to the target semiconductor chip.
  • the processor 51p corresponds to a target semiconductor chip that is one of the semiconductor chips 51M.
  • the target semiconductor chip (here, the processor 51p) has a plurality of chip terminals 55 which are arranged in a plane along the supported surface 51b supported by the module substrate 21m and are electrically connected to the module substrate 21m.
  • the plurality of chip terminals 55 include a plurality of chip power supply terminals 56 that supply power to the target semiconductor chip (here, the processor 51p).
  • FIG. 11 exemplifies a form in which the semiconductor module 5 is configured as a hybrid IC called a SIP (System in Package) 5P.
  • the semiconductor module 5 as the SIP 5P is configured as, for example, a hybrid IC in which a plurality of semiconductor elements 51 (such as a semiconductor chip indicated by reference numeral “51P”) having a specific function are integrated in one package.
  • the semiconductor element 51 has a terminal arrangement corresponding to the semiconductor element 51, but the terminal arrangement can be changed on the support substrate 21 (for example, a module substrate 21m described later). That is, the arrangement of the terminals 10 of the semiconductor module 5 can be set on the support substrate 21 so that the terminal arrangement is suitable when mounted on the circuit board 3.
  • the semiconductor element 51 target semiconductor element 51T described later
  • the terminal arrangement is determined by the semiconductor vendor. .
  • the terminal arrangement of the chip terminal 55 which is a terminal of the processor 51p is converted in the module substrate 21m (support substrate 21).
  • a terminal 10 (connection terminal) of 5 multi-chip module 5M
  • a suitable terminal arrangement can be obtained.
  • FIG. 17 the terminal arrangement of the processor 51p and the multichip module 5M is shown in a perspective view of the lower surface (side with terminals) viewed from the upper surface (side without terminals) of the processor 51p and multichip module 5M (see FIG. 17). Same as FIG.
  • the processor 51p (target semiconductor element 51T) is arranged in a plane along a supported surface 51b (see FIGS. 10 and 16) supported by the module substrate 21m (support substrate 21).
  • 21 has a plurality of chip terminals 55 electrically connected to 21.
  • the plurality of chip terminals 55 are arranged in the arrangement region R1.
  • the chip terminal 55 has a plurality of chip power supply terminals 56 for supplying power to the processor 51p, and is shown in black in FIG.
  • the multichip module 5M includes a plurality of terminals 10 (connection terminals) that are arranged in a plane along the lower surface 21b of the module substrate 21m (support substrate 21) and are electrically connected to the processor 51p.
  • the terminals shown in black are power terminals (first power terminals 11 described later).
  • the chip power supply terminal 56 of the processor 51p is arranged at a position where power can be appropriately supplied to the semiconductor die D (see FIGS. 10 and 16) mounted on the processor 51p.
  • the terminal arrangement is converted in the module substrate 21m (support substrate 21), and in the multichip module 5M, the first power supply terminals 11 are arranged so as to be continuously arranged up to the outermost terminal (outermost terminal 18). .
  • the terminals 10 can be arranged more appropriately.
  • the multi-chip module 5M illustrated in FIGS. 10, 16, and 17 includes a processor 51p and a memory 51m as the semiconductor chip 51M (semiconductor element 51) constituting the semiconductor module 5.
  • the processor 51p is provided with a terminal connected to the memory 51m. Since the terminals connected to the memory 51m include bus signals such as an address bus and a data bus, the number of terminals is large.
  • the terminals of such a bus signal can be reduced from the terminals 10 of the semiconductor module 5 (multichip module 5M). .
  • the semiconductor device 1 is configured by mounting such a multichip module 5M on the circuit board 3, as shown in FIG. 17, the power supply circuit PW mounted on the circuit board 3 and the multichip module 5M are They can be connected by a surface layer power wiring 40 (first power wiring 41) formed in the surface wiring layer (first surface wiring layer 31). That is, the path from the power supply circuit PW to the semiconductor module 5 (multichip module 5M) is shortened, and power supply can be realized in a low impedance environment.
  • the terminal arrangement (terminal arrangement of the chip terminal 55) is determined by the semiconductor vendor. That is, there are many cases where the terminal arrangement is not suitable for a device manufacturer that produces devices using these microcomputers and DSPs. It is not impossible to produce as a dedicated product so that the terminal layout of microcomputers and DSPs is suitable for equipment manufacturers, but it is not practical and profitable considering development costs for the commercialization of dedicated products. is not.
  • the terminal arrangement can be converted by the wiring on the module substrate 21m (support substrate 21), and therefore the terminal arrangement of the terminals 10 (connection terminals) in the semiconductor module 5 (multichip module 5M) is changed. Therefore, a terminal arrangement suitable for the device manufacturer can be obtained.
  • the chip power supply terminal 56 of the processor 51p is arranged only inside the outer edge R1e of the arrangement region R1 of the chip terminal 55, and the chip power supply terminal 56 continues to the outer edge R1e. It is not arranged. For this reason, for example, when the processor 51p is directly mounted on the circuit board 3, the power supply circuit PW and the chip power supply terminal 56 can be connected in the surface wiring layer (first surface wiring layer 31) of the circuit board 3. Can not. However, by rearranging the terminal arrangement on the module substrate 21m (support substrate 21), the wiring (first power wiring 41) for supplying power to the processor 51p is replaced with the surface wiring layer (first surface wiring) of the circuit board 3. Layer 31). That is, as described above, power can be supplied to the semiconductor element 51 (semiconductor chip 51M) by the surface layer power supply wiring 40 formed on the surface layer wiring layer (first surface layer wiring layer 31) of the circuit board 3.
  • FIGS. 12 to 14 schematically show configuration examples of the semiconductor device 1 configured by mounting the semiconductor module 5 illustrated in FIGS. 9 to 11 on the circuit board 3.
  • FIG. 12 schematically shows a configuration in which the system LSI 5C as the semiconductor module 5 is surface-mounted on the circuit board 3 to constitute the semiconductor device 1 (1C).
  • FIG. 13 schematically shows a configuration in which a multi-chip module 5M as the semiconductor module 5 is surface-mounted on the circuit board 3 to constitute the semiconductor device 1 (1M).
  • FIG. 14 schematically shows a configuration in which the SIP 5P as the semiconductor module 5 is surface-mounted on the circuit board 3 to constitute the semiconductor device 1 (1P).
  • the semiconductor device 1 an information processing apparatus for in-vehicle information equipment mounted on a vehicle is illustrated.
  • the semiconductor device 1 is configured as an ECU (Electronic Control Unit) having a semiconductor module 5 as a core.
  • the semiconductor module 5 can be an in-vehicle information terminal SOC.
  • An example of such an in-vehicle information terminal SOC is a web page of a semiconductor vendor ⁇ http://japan.renesas.com/applications/automotive/cis/cis_highend/rcar_h2/index.jsp> [searched on August 25, 2015 ] Is disclosed.
  • This in-vehicle information terminal SOC 500 includes nine CPU cores (four CPUs CORE A, four CPUs CORE B, and one CPU CORE C), an image processor (Graphics Processor), and an image recognition engine (Image Megacells such as Recognition Engine are integrated.
  • the semiconductor module 5 of this embodiment is also not shown in the figure, but a plurality of such megacells are integrated. Megacells such as CPU cores, image processing arithmetic units, and image recognition engines often perform complex calculations at high speed (at a high clock frequency), and consume large amounts of power (current consumption).
  • the cross-sectional view of FIG. 8 schematically shows a general structure of the semiconductor module 5 including the single semiconductor element 51 (semiconductor die 51d).
  • the semiconductor module 5 includes a semiconductor element 51 (semiconductor die 51 d), a support substrate 21 (module substrate), a bonding wire 25, an electrode pattern 26, and a mold part 22.
  • the semiconductor element 51 is mounted on an upper surface 21 a (component mounting surface) that is one surface of the support substrate 21.
  • electrode patterns 26 corresponding to the respective electrode pads (not shown) formed on the semiconductor element 51 are formed. Each electrode pad and each electrode pattern 26 are electrically connected by a bonding wire 25.
  • the electrode pattern 26 is electrically connected to the lower surface 21b (terminal surface) side, which is a surface on the back surface side with respect to the upper surface 21a, through the through hole 27.
  • the lower surface 21b spherical bumps serving as the terminals 10 (connection terminals) of the semiconductor module 5 are formed so as to be electrically connected to the electrode patterns 26.
  • the semiconductor element 51 and the bonding wire 25 are molded by a resin material, for example.
  • the support substrate 21 and the mold part 22 correspond to the package 2 that houses the semiconductor element 51.
  • the terminals 10 are formed by projecting ball-shaped terminals (spherical bumps), which are of the BGA (Ball Grid Array) type.
  • a semiconductor module 5 is formed.
  • the semiconductor modules 5 (5C, 5M, 5P) illustrated in FIGS. 9 to 11 are also BGA type semiconductor modules 5.
  • FIG. 2 schematically shows a perspective view of the lower surface (the lower surface 21b of the support substrate 21 and the back surface 2b of the package 2) when the semiconductor module 5 is viewed from the upper surface (the upper surface 21a of the support substrate 21).
  • the broken-line circle indicates the terminal 10, but the number and size of the terminals 10, the interval between the terminals 10, and the like are schematic.
  • the terminals 10 are arranged in a plurality of rows of rectangular rings along each side of the support substrate 21.
  • the terminals 10 include an inner peripheral terminal group 15 arranged in a rectangular shape at the center of the package 2, and an outer peripheral terminal group 17 arranged closer to the outer peripheral side than the inner peripheral terminal group 15. It is comprised by.
  • the inner peripheral side terminal group 15 is assigned with terminals 10 mainly connected to the power supply electrode pads of the semiconductor element 51.
  • the inner peripheral side terminal group 15 has the terminal 10 also in the center portion, and has no gap in the center portion.
  • the inner peripheral side terminal group 15 having 36 terminals 10 has four terminals 10 at the center, 20 terminals 10 at the outermost periphery, and 12 terminals therebetween in a rectangular ring shape. It can be said that they are arranged side by side (three rounds of rectangular rings are arranged side by side). Therefore, even if the terminals 10 are densely laid like the inner peripheral terminal group 15 illustrated in FIG. 2, it can be said that the terminals 10 are arranged in a rectangular ring shape.
  • the inner peripheral terminal group 15 is disposed almost directly below the semiconductor element 51 (at a position at least partially overlapping with the semiconductor element 51 when viewed in a direction orthogonal to the plate surface of the support substrate 21 (a direction orthogonal to the support substrate)). ing.
  • the direction orthogonal to the board surface of the circuit board 3 (orthogonal direction Z; see, for example, FIGS. If the error is ignored, it is almost synonymous with the direction orthogonal to the support substrate. Therefore, unless otherwise specified, in the present specification and drawings, the “orthogonal direction Z” is treated as a direction common to the support substrate orthogonal direction and the direction orthogonal to the substrate surface of the circuit board 3.
  • the inner peripheral side terminal group 15 is arranged almost immediately below the semiconductor element 51, and the power supply terminals are allocated to the inner peripheral side terminal group 15, so that the electric power is supplied to the semiconductor element 51 in a state where the influence of electric resistance and inductance is minimized. Can be supplied. As illustrated in FIGS. 9, 10, and 11, when the semiconductor module 5 includes a plurality of semiconductor elements 51, power to be supplied via the inner peripheral terminal group 15 is to be supplied.
  • the inner peripheral side terminal group 15 is disposed immediately below the semiconductor element 51 (target semiconductor element 51T).
  • the outer peripheral terminal group 17 is mainly assigned signal terminals connected to an in-vehicle information terminal (monitor device, camera, disk device, etc.).
  • an in-vehicle information terminal monitoring device, camera, disk device, etc.
  • the signal terminals are preferably assigned to the outer peripheral side terminal group 17 arranged on the outer peripheral side.
  • the terminals 10 and 10 The number of signal wirings that can be passed between is limited. In order to facilitate understanding, it is assumed here that there is one signal wiring that can be passed between the terminals 10 and 10.
  • 15 schematically shows a perspective view of the lower surface (the lower surface 21b of the support substrate 21 and the back surface 2b of the package 2) when the semiconductor module 5 is viewed from the upper surface (the upper surface 21a of the support substrate 21) as in FIG. Show.
  • the symbol “W” schematically shows signal wirings drawn from the terminals 10 on the circuit board 3 on which the semiconductor module 5 is mounted. 2 and 15, the terminal 10 denoted by reference numeral “18” is the outermost peripheral terminal arranged on the outermost peripheral side.
  • each of the outermost peripheral terminals 18 does not have the terminal 10 on the outer peripheral side of the terminal (own terminal; outermost peripheral terminal 18), so the signal wiring W can be freely arranged on the outer peripheral side of the own terminal. Can be pulled out.
  • Each of the terminals 10 on the inner periphery side by one turn from the outermost peripheral terminal 18 has one turn on the outer peripheral side than the own terminal, and therefore passes between the outermost peripheral terminals 18 and more than the own terminal.
  • the signal wiring W can be drawn out to the outer peripheral side.
  • each of the terminals 10 on the inner peripheral side for one turn further passes between the terminals 10 on the outer peripheral side than the own terminal. In many cases, the signal wiring W cannot be drawn to the outer peripheral side of the terminal.
  • the terminal 10 arranged on the innermost peripheral side in the outer peripheral side terminal group 17 passes only through the first surface wiring layer 31 and has an outer periphery than the own terminal. It can be referred to as a difficult connection terminal 19 where it is not easy to pull out the signal wiring W to the side. Many of the difficult connection terminals 19 shown in FIG. 15 cannot lead out the signal wiring W to the outer peripheral side of the own terminal.
  • the difficult connection terminal 19 indicated by reference numeral “19A” can lead the signal wiring W to the outer peripheral side of the own terminal.
  • the difficult connection terminal 19 is from the terminal 10 arranged on the outer peripheral side of the own terminal in a state where the semiconductor module 5 is mounted on the circuit board 3 among the terminals 10 included in the outer peripheral side terminal group 17.
  • the terminal 10 is arranged at a position where the signal wiring W may not be drawn to the outer peripheral side from the outermost peripheral terminal 18 without passing through the through hole TH.
  • the difficult connection terminal 19 is assigned to an application that does not require the signal wiring W to be drawn to the outer peripheral side of the outermost peripheral terminal 18.
  • the difficult connection terminal 19 is, for example, a terminal for power supply, a ground terminal, a terminal to which no signal is input / output, and an NC terminal used for bonding when the semiconductor module 5 is bonded to the circuit board 3 with solder or the like. It is preferable to be assigned. Although details will be described later, for example, a land indicated by a symbol “L19” in FIG. 3 is a land to which the difficult connection terminal 19 shown in FIG. 2 is connected. In the present embodiment, these difficult connection terminals 19 are assigned to terminals for power supply (an outer power supply terminal 16 described later).
  • the in-vehicle information terminal SOC 500 requires a plurality of power sources.
  • a power source for input / output terminals 3.3 [V] /1.8 [V]
  • a power source for memory indicated as “SDRAM I / F” in FIG. 7
  • SDRAM I / F a power source for memory
  • a power source for a CPU core indicated as “CPU CORE A, CPU CORE B, CPU CORE C” in FIG. 7.
  • the semiconductor module 5 includes a first power supply terminal 11 connected to one of these two types of power supplies and a second power supply terminal 12 connected to the other.
  • a plurality of terminals 10 are assigned to the power supply terminals.
  • a set of terminals 10 assigned as the first power supply terminals 11 is referred to as a first power supply terminal group 11g
  • a set of terminals 10 assigned as the second power supply terminals 12 is referred to as a second power supply terminal group 12g.
  • the power supply terminals are basically assigned to the inner peripheral side terminal group 15, and the signal terminals are basically assigned to the outer peripheral side terminal group 17.
  • the outer terminal group 17 also includes power terminals (first power terminal group 11g).
  • the inner peripheral terminal group 15 includes a first power terminal group 11g (first inner peripheral power terminal group 141g) and a second power terminal group 12g (second inner peripheral power terminal group 142g). ).
  • the first power supply terminal 11 and the second power supply terminal 12 in the inner peripheral side terminal group 15 are collectively referred to as an inner peripheral power supply terminal 14, and a set of inner peripheral power supply terminals 14, that is, a first inner peripheral side.
  • the power terminal group 141g and the second inner peripheral power terminal group 142g are collectively referred to as an inner peripheral power terminal group 14g.
  • the circuit board 3 has wiring layers on the surface layer and the inner layer.
  • the surface wiring layers (31, 39) are wiring layers formed on the front surface and the back surface of the circuit board 3.
  • the inner wiring layers (32, 33) are wiring layers formed on the inner surface of the circuit board 3.
  • different power wirings first power wiring 41 (first power wiring 41 ()) are used for both the wiring layer (first surface wiring layer 31) of the surface layer and the wiring layer (second inner wiring layer 33) of the inner layer.
  • First power supply path) and second power supply wiring 42 (second power supply path)) are provided (see FIGS. 1 and 16).
  • FIG. 3 shows a partial view of the first surface wiring layer 31 formed on one of the surface layers (31, 39) of the circuit board 3, here referred to as a component mounting surface, a front surface, a first surface, and the like.
  • a simple wiring pattern is schematically shown.
  • the wiring patterns illustrated in FIGS. 3 to 6 and 20 are all viewed from the side on which the semiconductor module 5 is mounted (first surface wiring layer 31), as in FIG.
  • the electrode pattern of the part where the terminal 10 of the semiconductor module 5 contacts and the pattern of the power supply wiring are mainly illustrated, and the pattern of the signal wiring W is omitted.
  • FIGS. 4 to 6 and FIG. In FIG. 3 and FIG.
  • the symbol “L” indicates a land as an electrode pattern.
  • the terminal 10 is joined to the circuit board 3 by solder.
  • a circle at the center of the land L indicates a through hole TH that can penetrate the circuit board 3 and electrically connect a plurality of different wiring layers.
  • a land L indicated by a symbol “L19n” in FIG. 3 is a land to which a later-described non-signal connection terminal is connected among the difficult connection lands L19 to which the difficult connection terminals 19 are connected.
  • the land L that is not particularly distinguished (the land L blacked out in FIGS. 3 to 6 and 20) is a land that conducts with a signal terminal or the like.
  • the first surface layer wiring layer 31 is provided on the side of the substrate outer peripheral edge 3 e (in FIG. 3, an example reaching the substrate outer peripheral edge 3 e) and the semiconductor module 5.
  • a first power supply line 41 (first power supply path, surface layer power supply line 40 (surface layer power supply path)) that connects the first power supply terminal 11 is arranged.
  • the first power supply land L ⁇ b> 1 is formed integrally with the first power supply wiring 41.
  • the first power supply wiring 41 (surface power supply wiring 40) and the first power supply land L1 are illustrated as being continuously provided.
  • the wiring pattern may be partially omitted around the first power supply land L1.
  • the first power supply land L1 has a substantially annular buffer region (annular with a radial bridge portion that is partially connected to the first power supply land L1 and the first power supply wiring 41) around the first power supply land L1. Also good.
  • a part of the signal terminal land L and the second power supply land L2 are also arranged in the pattern of the first power supply wiring 41. For this reason, the periphery (outer periphery) of the signal terminal land L and the second power supply so that the first power supply wiring 41 and the land L of the signal terminal and the first power supply wiring 41 and the second power supply land L2 are not conductive.
  • An annular insulating region S is provided around the outer land L2 (outer periphery).
  • the second inner layer wiring layer 33 has the second outer power supply of the semiconductor module 5 and the side of the outer periphery 3 e of the substrate (in FIG. 4, an example reaching the outer periphery 3 e of the substrate).
  • a second power supply wiring 42 (second power supply path) connecting the terminal 12 is arranged separately from the first power supply wiring 41.
  • the signal lines W can be provided on the first surface wiring layer 31 in the terminals 10 arranged outside the outer terminal group 17.
  • the inner wiring layer may also have a wiring pattern.
  • a through hole TH (a portion corresponding to two rounds on the outer peripheral side) indicated by a broken line in FIG. 4 indicates that the through hole TH may be formed when a wiring pattern is provided in the inner wiring layer.
  • each of the first power supply wiring 41 and the second power supply wiring 42 is an integral belt-like wiring pattern. Formation of the signal wiring W connected to each terminal 10 may be performed in the first surface wiring layer 31 in connection with the terminal 10, and the surface wiring layer is easier than the inner wiring layer.
  • the power supply wiring has a strip-like wiring pattern. If the width (W1) of the power supply wiring formed on the surface wiring layer is narrower than the width (W2) of the power supply wiring formed on the inner wiring layer, the surface wiring In the layer (31), a large area that can be used for wiring of other signal lines can be secured, which is preferable.
  • the width of the second power supply wiring 42 (second power supply wiring width W2) in the width direction X is equal to the width of the first power supply wiring 41 in the same direction (first It is larger than one power supply wiring width W1).
  • the wiring pattern having a relatively wide width corresponds to a power supply terminal having a large rated current value.
  • the second power supply terminal 12 is preferably a power supply terminal having a larger rated current value than the first power supply terminal 11.
  • the inductance component increases when it is formed in the inner wiring layer.
  • the first surface wiring layer 31 is not the power supply wiring corresponding to the power supply terminal with the maximum rated current value, but the power supply wiring corresponding to the power supply terminal with the second highest rated current value. Is preferably formed.
  • the power source has a positive electrode and a negative electrode, and the direction of current flow is opposite between the positive-side wiring and the negative-side wiring. For this reason, when the positive electrode side wiring and the negative electrode side wiring are parallel to each other, it is possible to cancel the electromagnetic waves generated by the current flow.
  • the negative electrode side of the power supply is connected to the ground, and the ground absorbs noise (electromagnetic waves) generated by the fluctuation of the signal flowing through the signal line and acts as a shield.
  • a circuit board having a plurality of wiring layers including the inner wiring layer is often provided with a wiring layer (so-called solid ground layer) in which a ground pattern is formed over a wide area.
  • a ground layer is provided in the wiring layer between these wiring layers (31, 33). It is preferable to be provided. In the case of the present embodiment, between the first surface wiring layer 31 where the first power wiring 41 is formed and one inner wiring layer (second inner wiring layer 33) where the second power wiring 42 is formed. In addition, another inner wiring layer (first inner wiring layer 32) on which a ground layer is formed is provided.
  • the power supply wiring is provided with a third power supply wiring 43 and a fourth power supply wiring 44 in addition to the first power supply wiring 41 and the second power supply wiring 42.
  • a third power supply land L3 is provided as a land connected to a third power supply terminal (not shown), and a fourth power supply land L4 is provided as a land connected to a fourth power supply terminal (not shown).
  • the power supply wiring (second power supply wiring 42) connected to the power supply having the largest rated current value among the four types of power supplies is arranged in the inner wiring layer (second inner wiring layer 33). Then, the power supply wiring (first power supply wiring 41) connected to the power supply whose rated current value is the second or lower is arranged in the surface wiring layer (first surface wiring layer 31). For the same reason as the second power supply wiring 42, the fourth power supply wiring 44 connected to the power supply having a larger rated current value among the remaining two power supplies is arranged in the second inner wiring layer 33. Similar to the first power supply line 41, the third power supply line 43 connected to the power supply having the smallest rated current value is disposed in the first surface wiring layer 31.
  • the rated current value of the power supply connected to the fourth power supply wiring 44 is larger than the rated current value of the power supply connected to the first power supply wiring 41. Therefore, the first power supply wiring 41 is a power supply wiring connected to the third power supply having a rated current value.
  • the fourth power supply wiring 44 instead of the first power supply wiring 41 in the first surface wiring layer 31.
  • the width of the fourth power supply wiring 44 (fourth power supply wiring width W4) is larger than the width of the first power supply wiring 41 (first power supply wiring width W1). .
  • the first power supply wiring 41 is arranged in the first surface wiring layer 31 from the viewpoint of sufficiently securing the signal terminal lands L and signal wirings in the first surface wiring layer 31.
  • the semiconductor device 1 including the semiconductor module 5 and the circuit board 3 (main board) is configured as follows at least.
  • the semiconductor module 5 is arranged in a plane along the rectangular plate-like support substrate 21 that supports and fixes at least one semiconductor element 51 on the upper surface 21 a and the lower surface 21 b of the support substrate 21, and is electrically connected to the semiconductor element 51.
  • a plurality of terminals 10 connection terminals.
  • the circuit board 3 (main board) has a plurality of wiring layers (31, 32, 33, 39), and is a board on which the semiconductor module 5 is surface-mounted via a plurality of terminals 10.
  • the circuit board 3 is formed with a plurality of through holes TH that can penetrate the board and electrically connect a plurality of wiring layers (31, 32, 33, 39).
  • Each of the through holes TH is formed at the same position in all layers of the plurality of wiring layers (31, 32, 33, 39). That is, the through hole TH penetrates along the orthogonal direction Z, and the holes formed by the through holes TH in the multiple wiring layers (31, 32, 33, 39) all overlap along the orthogonal direction Z. Yes.
  • the plurality of terminals 10 are arranged in a plurality of rows and columns along each side of the support substrate 21.
  • the plurality of terminals 10 include an inner peripheral terminal group 15 arranged on the center side of the support substrate 21 and an outer peripheral terminal group 17 arranged on the outer peripheral side with respect to the inner peripheral terminal group 15.
  • the inner peripheral terminal group 15 includes an inner peripheral power supply terminal group 14g that supplies power to the target semiconductor element 51T that is one of the semiconductor elements 51
  • the outer peripheral terminal group 17 includes an inner peripheral power supply terminal group.
  • 14g includes an outer peripheral side power supply terminal group 16g of the same system as at least a part of 14g.
  • the inner peripheral power supply terminal group 14g is arranged at a position at least partially overlapping the target semiconductor element 51T when viewed in a direction orthogonal to the plate surface of the support substrate 21 (substantially the same direction as the orthogonal direction Z).
  • the outer peripheral power supply terminal group 16g is arranged so as to be continuously arranged from the inner peripheral power supply terminal group 14g to the outermost peripheral terminal 18 of the outer peripheral terminal group 17.
  • the circuit board 3 supplies power to the target semiconductor element 51T to the surface layer wiring layer (first surface layer wiring layer 31) on which the semiconductor module 5 is mounted via the inner peripheral power terminal group 14g and the outer peripheral power terminal group 16g.
  • the surface layer power supply wiring 40 (surface layer power supply path) is provided.
  • the surface power supply wiring 40 overlaps with the inner peripheral power supply terminal group 14g and the outer peripheral power supply terminal group 16g when viewed in the orthogonal direction Z orthogonal to the substrate surface of the circuit board in a state where the semiconductor module 5 is mounted on the circuit board 3.
  • the circuit board 3 is continuously formed so as to extend from the position connected to the inner peripheral power supply terminal group 14g toward the outer peripheral side of the circuit board 3 (in the direction of the outer peripheral edge 3e).
  • the inner peripheral power supply terminal group 14g is, as described above, the first power supply terminal group 11g (first inner peripheral side) as a power supply terminal group that supplies at least two different powers of the target semiconductor element 51T.
  • Power terminal group 141g) and second power terminal group 12g second inner peripheral power terminal group 142g.
  • the outer peripheral side power terminal group 16g does not include terminals of the same system as the second power terminal group 12g (second inner peripheral power terminal group 142g), and the first power terminal group 11g (first inner peripheral power terminal). It includes terminals of the same system as group 141g).
  • the surface layer power supply wiring 40 (surface layer power supply path) does not overlap with the second power supply terminal group 12g (second inner peripheral power supply terminal group 142g) when viewed in the orthogonal direction Z, and the first power supply terminal group 11g (the first power supply terminal group 11g). 1st inner power terminal group 141g and outer power terminal group 16g) are connected to the first power terminal group 11g (first inner power terminal group 141g and outer power terminal group 16g).
  • One power supply wiring 41 (first power supply path).
  • the circuit board 3 since the second power supply terminal group 12g is also included, the circuit board 3 (main board) has a second wiring layer different from the surface layer wiring layer (first surface wiring layer 31) on which the semiconductor module 5 is mounted.
  • a second power supply wiring (second power supply path) is continuously provided so as to extend from the position connected to the power supply terminal group 12g toward the outer peripheral side of the circuit board 3 (in the direction of the outer peripheral edge 3e). ing. As schematically shown in FIG. 16, the first power supply wiring 41 and the second power supply wiring 42 overlap at least partially when viewed in the orthogonal direction Z.
  • the direction from the center of the support substrate 21 toward the outer periphery of the support substrate 21 along the normal to the side of the support substrate 21 on the side where the outer peripheral power supply terminal group 16g is arranged is defined as the outer peripheral direction Y.
  • the power supply terminal group 11g (first inner peripheral power supply terminal group 141g) is disposed on the outer peripheral side of the second power supply terminal group 12g (second inner peripheral power supply terminal group 142g).
  • the power supplied to the semiconductor module 5 via the first power supply wiring 41 is referred to as a first power supply
  • the power supplied to the semiconductor module 5 via the second power supply wiring 42 is referred to as a second power supply.
  • the length in the width direction X of the first power supply wiring 41 (first power supply path) is set to the first power supply wiring width W1.
  • the length of the second power supply wiring 42 (second power supply path) in the width direction X is determined as the second power supply wiring width.
  • W2 second path width
  • the area that can be used as the first power supply wiring width W1 is determined by the length in which the outer peripheral power supply terminal group 16g is continuously arranged in the width direction X. That is, the outer peripheral power supply terminal group 16g is arranged so as to be continuously arranged in the width direction X so as to ensure the required first power supply wiring width W1.
  • the length required as the first power supply wiring width W1 is an electric reference value (first value) of the first power supply when power is supplied to the first power supply of the semiconductor module 5 through the first power supply wiring 41. 1 reference value).
  • the first power supply wiring width W1 (first path width) satisfies the first reference value that is an electrical reference value of the first power supply supplied to the semiconductor module 5 via the first power supply wiring 41.
  • the outer peripheral power supply terminal group 16g is arranged so as to be continuously arranged in the width direction X.
  • the electrical reference value includes, for example, impedance (inductance component depending on frequency (reactance), resistance component affecting voltage drop, both of them), rated current value, amplitude of current and voltage pulsation, etc. Including electrical parameters.
  • the second reference value which is an electrical reference value of the second power supply supplied to the semiconductor module 5 via the second power supply wiring 42, is a reference value whose allowable range is narrower than the first reference value.
  • “the allowable range becomes narrow” means that, for example, when the reference value is an impedance, the impedance is lower, and when the reference value is a rated current value, the rated current is large, and pulsation occurs. In this case, the allowable amplitude is smaller.
  • the first reference value may include a first rated current value that is a rated current value of the first power source, and the second reference value may be a second rated current value that is a rated current value of the second power source.
  • the second rated current value as the second reference value whose allowable range is narrower than the first reference value is larger than the first rated current value.
  • the first reference value can include a first impedance that is a maximum allowable value of the impedance of the first power supply wiring 41, and the second reference value is a first impedance that is a maximum allowable value of the impedance of the second power supply wiring 42. Two impedances can be included. The second impedance as the second reference value, whose allowable range is narrower than the first reference value, is lower than the first impedance.
  • the difficult connection terminal 19 is assigned to an application that does not require the signal wiring W to be drawn to the outer peripheral side of the outermost peripheral terminal 18.
  • non-signal connection terminal a terminal assigned to an application that does not require the signal wiring W to be drawn out is referred to as a “non-signal connection terminal”.
  • a non-signal output terminal is, as described above with reference to FIGS. 2 to 4 and 15, the second power supply wiring width W ⁇ b> 2 (second path) that is the length in the width direction X of the second power supply wiring 42. (Width) is arranged in a row in the width direction X so as to satisfy the second reference value.
  • the second power supply wiring width W2 (second path width) is larger than the first power supply wiring width W1 (first path width).
  • the second power supply wiring 42 (second power supply path) when viewed in the orthogonal direction Z with the semiconductor module 5 mounted on the circuit board 3 among the terminals 10 included in the outer peripheral terminal group 17.
  • the positions of the terminals 10 that are not included in the outer peripheral power supply terminal group 16g and the non-signal connection terminals can be pulled out to the outer peripheral side of the outermost peripheral terminal 18 without passing through the through hole TH. Is arranged. In the example shown in FIG. 2 or FIG.
  • such a terminal 10 is not assigned as the outer peripheral side power supply terminal group 16 g among the terminal 10 in the first round from the outer peripheral side and the terminal 10 in the second round from the outer peripheral side.
  • these terminals 10 can lead out the signal wiring W to the outer peripheral side of the outermost peripheral terminal 18 without passing through the through hole TH.
  • the terminals 10 other than the terminals 10 assigned to the outer peripheral power supply terminal group 16g to satisfy the first reference value are preferably ground terminals or signals. Assigned to NC terminals that are not output.
  • the hard connection terminals 19 include the terminals 10 belonging to the outer power terminal group 16 g, the ground A terminal 10 having two or more attributes of a terminal and a signal terminal can be assigned. In such a case, it is preferable to assign the terminals 10, the ground terminals, and the signal terminals in the order of priority from the center side of the support substrate 21 toward the outer peripheral side (in the outer peripheral direction Y).
  • the innermost hard connection terminal “10a” among these three terminals 10 belongs to the outer power supply terminal group 16g. It is preferable that the hard connection terminal “10b” in the middle is a ground terminal and the hard connection terminal “10c” on the outermost side of the three is a signal terminal.
  • the first power supply wiring 41 and the third power supply wiring 43 are arranged in the first surface layer wiring layer 31, but the first power supply wiring 41 and the third power supply wiring 43 are They are formed so as to extend in opposite directions.
  • the power supply lines may be formed to extend in the same direction (for example, the outer peripheral direction Y).
  • the inner peripheral side terminal group 15 further includes a first power supply terminal group 11g (first inner peripheral side power supply terminal group 141g) and a second power supply terminal group 12g (second second) as compared with the example shown in FIGS.
  • the third power supply terminal group 13g (third inner peripheral power supply terminal group 143g) of a system different from the inner peripheral power supply terminal group 142g) is included.
  • the outer power terminal group 16g includes a third power terminal group 13g (third power terminal group) in addition to the first outer power terminal group 161g of the same system as the first power terminal group 11g (first inner power terminal group 141g).
  • the inner peripheral power supply terminal group 14g at least some of the first power supply terminal group 11g and the third power supply terminal group 13g are arranged adjacent to each other in the width direction X.
  • the first outer peripheral side power supply terminal group 161g and the second outer peripheral side power supply terminal group 162g are arranged such that at least some of the terminals are adjacent to each other in the width direction X.
  • the first power source to which power is supplied via the first power terminal group 11g including the first outer power terminal group 161g is the second outer power terminal group 162g. Is a power source having a larger rated current than the third power source to which power is supplied via the third power source terminal group 13g.
  • the surface power supply wiring 40 also includes a first power supply wiring 41 (first power supply path) that supplies power to the first power supply, and a third power supply wiring 43 (third power supply) that supplies power to the third power supply. And a power supply path) are formed.
  • the first power supply wiring width W1 of the first power supply wiring 41 is larger than the third power supply wiring width W3 of the third power supply wiring 43 in accordance with the rated current.
  • the terminal 10 of the semiconductor module 5 has been described by exemplifying a form in which the terminal group 10 includes two inner terminal groups 15 and the outer terminal group 17. Further, it is described that the inner peripheral power supply terminal group 14g included in the inner peripheral terminal group 15 is disposed at a position at least partially overlapping with the semiconductor element 51 (target semiconductor element 51T) when viewed in the orthogonal direction Z. did.
  • the number of terminal groups formed in the semiconductor module 5 may be three or more.
  • the terminal 10 includes a first terminal group 101 arranged on the most center side, a second terminal group 103 arranged on the outer peripheral side of the first terminal group 101, and a second terminal group 101. You may have three terminal groups with the 3rd terminal group 105 arranged in the outer peripheral side rather than the terminal group 103.
  • FIG. 21 the terminal 10 includes a first terminal group 101 arranged on the most center side, a second terminal group 103 arranged on the outer peripheral side of the first terminal group 101, and a second terminal group 101. You may have three terminal groups
  • the first terminal group 101 is the inner peripheral terminal.
  • the first terminal group 101 as the inner peripheral terminal group 15 includes an inner peripheral power supply terminal group 14g.
  • the second terminal group 103 corresponds to the outer terminal group 17, and the second terminal group 103 as the outer terminal group 17 includes the outer power terminal group 16 g.
  • the surface layer power wiring 40 overlaps with the first terminal group 101 (inner peripheral power terminal group 14g) and the second terminal group 103 (outer peripheral power terminal group 16g) when viewed in the orthogonal direction Z. Formed as follows.
  • the second terminal group 103 and the third terminal group 105 may correspond to the outer terminal group 17.
  • the second terminal group 103 and the third terminal group 105 include the outer peripheral power supply terminal group 16 g, and the surface power supply wiring 40 overlaps with the third terminal group 105 in addition to the second terminal group 103.
  • the second terminal group 103 is arranged on the inner peripheral side.
  • the second terminal group 103 as the inner peripheral terminal group 15 includes an inner peripheral power supply terminal group 14g.
  • the third terminal group 105 corresponds to the outer terminal group 17, and the third terminal group 105 as the outer terminal group 17 includes the outer power terminal group 16 g.
  • the surface layer power supply wiring 40 overlaps with the second terminal group 103 (inner peripheral side power supply terminal group 14g) and the third terminal group 105 (outer peripheral side power supply terminal group 16g) when viewed in the orthogonal direction Z. Formed as follows.
  • first inner wiring layer 32 is provided as another inner wiring layer in which a ground layer is formed.
  • the circuit board can be formed without sandwiching such a ground layer between the surface layer wiring layer (31) where the first power supply wiring 41 is formed and one inner wiring layer where the second power supply wiring 42 is formed. This does not prevent 3 from being configured.
  • the semiconductor device (1) is, as one aspect, A rectangular plate-shaped module substrate (21m) for supporting and fixing at least one semiconductor chip (51M), on which at least one semiconductor die (D) is supported on the package substrate (B), and the module substrate (21m)
  • a chip module (5M) provided with a plurality of connection terminals arranged in a plane along the lower surface (21b) of the semiconductor chip and electrically connected to the semiconductor chip (51M);
  • a plurality of through holes (TH) capable of electrically connecting the plurality of wiring layers (31, 32, 33, 39), and a main substrate (3)
  • the semiconductor chip (51M (51p)) is arranged in a plane along a supported surface (51b) supported by the module substrate (21m) and is electrically connected to the module substrate (21m).
  • the plurality of chip terminals (55) include a plurality of chip power supply terminals (56) for supplying power to the semiconductor chip (51M (51p)),
  • the plurality of chip power terminals (56) are arranged on the inner side of the outer edge (R1e) of the arrangement region (R1) where the plurality of chip terminals (55) are arranged in a plane,
  • the semiconductor chip (51M (51p)) is mounted on the module substrate (21m), and a plurality of chip terminals (55) and a plurality of connection terminals (10) are arranged.
  • the terminal (10) includes an inner peripheral terminal group (15) arranged on the center side of the module substrate (21m), and an outer peripheral terminal group arranged more on the outer peripheral side than the inner peripheral terminal group (15).
  • the inner peripheral side terminal group (15) includes an inner peripheral side power supply terminal group (14g) for supplying power to the semiconductor chip (51M (51p)),
  • the outer peripheral terminal group (17) includes an outer peripheral power terminal group (16g) of the same system as at least a part of the inner peripheral power terminal group (14g),
  • the inner peripheral power supply terminal group (14g) is disposed at a position at least partially overlapping with the semiconductor chip (51M (51p)) when viewed in a direction perpendicular to the plate surface of the module substrate (21m)
  • the outer peripheral side power terminal group (16g) is arranged so as to be continuously arranged from the inner peripheral side power terminal group (14g) to the outermost peripheral terminal (18) of the outer peripheral side terminal group (17),
  • the main substrate (3) is connected to the surface wiring layer (31) on which the chip module (5M) is mounted via the inner peripheral power terminal group (14g) and the outer peripheral power terminal group (16g).
  • the surface power supply path (40) is viewed in an orthogonal direction (Z) perpendicular to the substrate surface of the main board (3) in a state where the chip module (5M) is mounted on the main board (3). It overlaps with the inner periphery side power supply terminal group (14g) and the outer periphery side power supply terminal group (16g), and moves from the position connected to the inner periphery side power supply terminal group (14g) toward the outer periphery side of the main board (3). It is formed continuously so as to extend.
  • a chip module (5M) having a plurality of connection terminals arranged in a plane along the lower surface (21b) of 21m) and electrically connected to the semiconductor chip (51M) is, as one aspect,
  • the semiconductor chip (51M (51p)) is arranged in a plane along a supported surface (51b) supported by the module substrate (21m) and is electrically connected to the module substrate (21m).
  • the plurality of chip terminals (55) include a plurality of chip power supply terminals (56) for supplying power to the semiconductor chip (51M (51p)),
  • the plurality of chip power terminals (56) are arranged on the inner side of the outer edge (R1e) of the arrangement region (R1) where the plurality of chip terminals (55) are arranged in a plane,
  • the semiconductor chip (51M (51p)) is mounted on the module substrate (21m)
  • the arrangement of the plurality of chip terminals (55) and the arrangement of the plurality of connection terminals are rearranged on the module substrate (21m)
  • the plurality of connection terminals (10) are arranged in a plurality of rows of rectangular rings along each side of the module substrate (21m), and the plurality of connection terminals (10) are arranged on the module substrate (21m).
  • the inner peripheral side terminal group (15) includes an inner peripheral side power terminal group (14g) connected to a power source terminal of the semiconductor chip (51M (51p)),
  • the outer peripheral terminal group (17) includes an outer peripheral power terminal group (16g) of the same system as at least a part of the inner peripheral power terminal group (14g),
  • the inner peripheral power supply terminal group (14g) is disposed at a position at least partially overlapping with the semiconductor chip (51M (51p)) when viewed in a direction perpendicular to the plate surface of the module substrate (21m).
  • the outer periphery side power supply terminal group (16g) is arranged so as to be continuously arranged from the inner periphery side power supply terminal group (14g) to the outermost periphery terminal (18) of the outer periphery side terminal group (17).
  • the inner peripheral power supply terminal group (14g) is at a position at least partially overlapping with the semiconductor chip (51M (51p)) when viewed in the direction orthogonal to the plate surface of the module substrate (21m). Therefore, the inner peripheral power supply terminal group (14g) is arranged immediately below the semiconductor chip (51M (51p)). Therefore, the power supply terminal of the semiconductor chip (51M (51p)) and the power supply terminal of the chip module (5M) can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • the chip power supply terminal (56) is generally provided directly below the semiconductor die (D) (generally with the module substrate (21m)).
  • the inner peripheral side power supply terminal group (14g) is at least in contact with the semiconductor die (D) (the semiconductor die (D) of the semiconductor chip 51M (51p)) when viewed in the direction orthogonal to the plate surface of the module substrate (21m). It can also be said that some of them are arranged at overlapping positions.
  • the surface power supply path (40) for supplying power to the semiconductor chip (51M (51p)) is formed in the surface wiring layer (31) on which the chip module (5M) is mounted.
  • the surface layer power supply path (40) includes an inner peripheral power supply terminal group (14g) and an outer peripheral power supply terminal group (16g) that supply power to the semiconductor chip (51M (51p)) via the module substrate (21m), Overlapping when viewed in the orthogonal direction (Z). Therefore, when the surface mounting is performed on the surface wiring layer (31), the inner peripheral power supply terminal group (14g) and the outer peripheral power supply terminal group (16g) of the chip module (5M) are directly connected to the surface power supply path (40). Is done.
  • the surface layer power supply path (40) does not need to be provided with a through hole (TH) for extracting other signals, and it is not necessary to provide a hole or an insulating region, the impedance of the surface layer power supply path (40) is also low. Can be suppressed.
  • the semiconductor device (1) and the chip module (5M) that can suppress the effective area of the wiring from being reduced by the through hole (TH) and can stably supply power are provided. can do.
  • the terminal arrangement (terminal arrangement of the chip terminal (55)) is determined by the semiconductor vendor. That is, there are many cases where the terminal arrangement is not suitable for a device manufacturer that produces devices using these microcomputers and DSPs. It is not impossible to produce as a dedicated product so that the terminal layout of microcomputers and DSPs is suitable for equipment manufacturers, but it is not practical and profitable considering development costs for the commercialization of dedicated products. is not.
  • the terminal arrangement can be converted by wiring on the module substrate (21m), so that the terminal arrangement of the connection terminal (10) in the chip module (5M) is a terminal arrangement suitable for the device manufacturer. it can.
  • power can be supplied to the semiconductor chip (51M (51p)) through the surface power supply path (40) formed in the surface wiring layer (31) of the main substrate (3).
  • the chip module (5M) includes a first internal terminal group (14g) as a power terminal group connected to at least two different power terminals of the semiconductor chip (51M (51p)). It includes a peripheral power terminal group (141g) and a second inner peripheral power terminal group (142g), and the outer peripheral power terminal group (16g) is the same as the second inner peripheral power terminal group (142g). It is preferable that a terminal of the same system as the first inner peripheral power supply terminal group (141g) is included without including a terminal of the system.
  • the semiconductor device (1) is configured as follows. That is, the inner peripheral power terminal group (14g) is a first inner peripheral power terminal group (141g) as a power terminal group that supplies at least two different powers of the semiconductor chip (51M (51p)). , A second inner peripheral power terminal group (142g), and the outer peripheral power terminal group (16g) does not include a terminal of the same system as the second inner peripheral power terminal group (142g).
  • the first inner peripheral side power supply terminal group (141g) includes terminals of the same system, and the surface layer power supply path (40) is different from the second inner peripheral side power supply terminal group (142g) when viewed in the orthogonal direction (X).
  • the first inner peripheral power supply terminal group (141g) and the outer peripheral power supply terminal group overlap with the first inner peripheral power supply terminal group (141g) and the outer peripheral power supply terminal group (16g) without overlapping.
  • a first power supply path (41) connected to (16g) The substrate (3) is connected to the second inner peripheral power supply terminal group (142g) on a wiring layer (33) different from the surface wiring layer (31) on which the chip module (5M) is mounted.
  • a second power supply path (42) continuously formed so as to extend from the main board (3) toward the outer peripheral side of the main board (3), the first power supply path (41) and the second power supply path (42) It is preferable that at least a portion overlaps when viewed in the orthogonal direction (Z).
  • the power supply terminal group corresponding to the two power supply terminals of the semiconductor chip (51M (51p)) to the inner peripheral power supply terminal group (14g) By assigning the power supply terminal group corresponding to the two power supply terminals of the semiconductor chip (51M (51p)) to the inner peripheral power supply terminal group (14g), the power supply terminal of the semiconductor chip (51M (51p)) and the semiconductor module ( 5) can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • the two types of power supply terminal groups belonging to the inner peripheral power supply terminal group (14g) only the terminals of the same system as the first inner peripheral power supply terminal group (141g) continue to the outermost peripheral terminal (18). It is included in the outer peripheral side power supply terminal group (16g). Accordingly, at least the first inner peripheral power supply terminal group (141g) and the outer peripheral power supply terminal group (16g) can be supplied with electric power via the continuous power supply wiring on the mounting board.
  • the first inner peripheral side power supply terminal group (141g) and the outer peripheral side power supply terminal group (16g) of the chip module (5M) mounted on the main substrate (3) include the surface wiring layer (31). Power can be supplied through the surface power supply path (40) (first power supply path (41)) formed in the above.
  • the second inner peripheral power supply terminal group (142g) of the chip module (5M) mounted on the main substrate (3) is a second wiring layer (33) formed on a different wiring layer (33) from the surface wiring layer (31). Power is supplied through the power supply path (42).
  • the first power supply path (41) and the second power supply path (42) overlap at least partially when viewed in the orthogonal direction (Z), and the first power supply path group (41) includes a first inner peripheral power supply terminal group.
  • the outer peripheral side power supply terminal group (16g) overlap in the orthogonal direction (Z). Since it is not necessary to provide a through hole (TH) in the first power supply path (41), at least a portion overlapping the first power supply path (41) transmits another power supply or signal to the second power supply path (42). No through hole (TH) is provided for this purpose. Therefore, the effective area of the second power supply path (42) is suppressed from being reduced by the through hole (TH). That is, it is possible to provide the semiconductor device (1) capable of stably supplying power via the first power supply path (41) and the second power supply path (42).
  • the semiconductor device (1) includes the chip module (5M) mounted on the main substrate (3) and the outer power supply terminal group (16g) on the side where the outer peripheral power supply terminal group (16g) is disposed.
  • the direction along the side of the module substrate (21m) is defined as the width direction (X), and the first path width (W1) that is the length in the width direction (X) of the first power supply path (41) is the first width.
  • the outer peripheral side power supply terminal group (16g) is configured to satisfy the first reference value that is an electrical reference value of the first power supplied to the semiconductor module (5) through the power supply path (41). It is preferable that they are arranged so as to be continuously arranged in the width direction (X).
  • the wiring for supplying power has a larger wiring width than the signal wiring so that the cross-sectional area of the wiring is larger because the current flowing is larger than that of the signal wiring.
  • the first power supply path (41) can secure a necessary wiring width by arranging the outer peripheral power supply terminal group (16g) continuously in the width direction (X) so as to satisfy the first reference value. .
  • the second reference value which is an electrical reference value of the second power source supplied to the chip module (5M) via the second power source path (42), is within an allowable range than the first reference value. Is a reference value that narrows.
  • the second power supply path (42) is compared with the first power supply path (41).
  • the formation conditions may be prioritized. Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the chip module (5M) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • connection terminal (10) arranged at a position where the signal wiring (W) may not be pulled out may be referred to as a difficult connection terminal (19), and the outermost peripheral terminal (18) among the difficult connection terminals (19).
  • the second power supply path (42) can secure a necessary wiring width.
  • the second path width (W2) is larger than the first path width (W1), and the connection terminals (10) included in the outer peripheral terminal group (18),
  • the chip module (5M) overlaps with the second power supply path (42) when viewed in the orthogonal direction (Z), and the outer peripheral side power supply terminal group (16g) and the The connection terminal (10) that is not included in the non-signal connection terminal can lead out the signal wiring (W) to the outer peripheral side from the outermost peripheral terminal (18) without passing through the through hole (TH). It is suitable if it is arranged in a position.
  • connection terminals (10) other than the connection terminals (10) assigned to the outer peripheral power supply terminal group (16g) in order to satisfy the first reference value among the non-signal connection terminals. Is preferably assigned to a ground terminal or an NC terminal to which no signal is input / output.
  • ground terminal and the NC terminal do not need to be connected to other wiring layers through the through hole (TH), they are suitable as non-signal connection terminals.
  • the difficult connection terminal (19) has at least two attributes of the connection terminal (10), the ground terminal, and the signal terminal belonging to the outer peripheral power supply terminal group (16g).
  • the connection terminal (10) is allocated, from the center side of the module substrate (21m) toward the outer peripheral side, the connection terminal (10), the ground terminal, and the ground terminal belonging to the outer peripheral power supply terminal group (16g) It is preferable that the signal terminals are assigned in the priority order.
  • connection terminal (10) arranged on the outer peripheral side passes through the surface layer wiring layer (31) without passing through the through hole (TH), and the signal wiring (W ) Is likely to be able to pull out. Therefore, it is preferable that the connection terminals (10) are assigned with the above-mentioned priority order.
  • the first reference value includes a first rated current value that is a rated current value of the first power source
  • the second reference value is a second rated current value that is a rated current value of the second power source.
  • the second rated current value is larger than the first rated current value.
  • the second rated current value is larger than the first rated current value, for example, when the formation condition of the second power supply path (42) is prioritized over the first power supply path (41), for example, by increasing the cross-sectional area of the wiring There is. Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the chip module (5M) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • the first reference value includes a first impedance that is a maximum allowable value of the impedance of the first power supply path (41), and the second reference value is a maximum allowable value of the impedance of the second power supply path. It is preferable that the second impedance is lower than the first impedance.
  • the formation condition of the second power supply path (42) may be given priority over the first power supply path (41). Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the semiconductor module (5) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • the semiconductor chip (51M (51p)) has at least three power supply terminals
  • the inner peripheral terminal group (14g) further includes the first inner peripheral power supply terminal group. (141g) and the third inner power terminal group (143g) of a different system from the second inner power terminal group (142g), and the outer power terminal group (16g)
  • the second outer peripheral power supply terminal group of the same system as the third inner peripheral power supply terminal group (143g) ( 162g) is preferred.
  • the surface layer power supply path (40) can be provided corresponding to two power sources, the reduction of the effective area of the wiring due to the through hole (TH) is suppressed, and the chip module (5M) is stably supplied with power. It is possible to provide a semiconductor device (1) capable of performing the above.
  • the direction along the side of the module board (21m) on the side where the outer peripheral power supply terminal group (16g) is arranged As for the width direction (X), at least some of the first inner peripheral power supply terminal group (141g) and the third inner peripheral power supply terminal group (143g) are adjacent to each other in the width direction (X).
  • the first outer peripheral power supply terminal group (161g) and the second outer peripheral power supply terminal group (162g) are arranged such that at least some of the terminals are adjacent to each other in the width direction (X). It is preferable.
  • the two surface power supply paths (41, 43) corresponding to the two power sources can be arranged in parallel in the width direction (X), the two surface power supply paths (41, 43) are formed with high wiring efficiency. be able to.
  • the outer periphery of the module substrate (21m) along the normal line from the center of the module substrate (21m) to the side of the module substrate (21m) on the side where the outer peripheral power supply terminal group (16g) is disposed.
  • the first inner peripheral power supply terminal group (141g) is disposed closer to the outer peripheral direction (Y) than the second inner peripheral power supply terminal group (142g), with the direction toward the outer peripheral direction (Y). It is preferable that
  • the first power supply path (41) which is the surface layer power supply path (40) extends toward the outer peripheral side, the first inner peripheral power supply terminal group (141g) in the inner peripheral power supply terminal group (14g) is provided.
  • the first power supply path (41) can be formed with high wiring efficiency.
  • the semiconductor device (1) has, as one aspect, A rectangular plate-like support substrate (21) for supporting and fixing at least one semiconductor element (51) to the upper surface (21a), and a planar arrangement along the lower surface (21b) of the support substrate (21).
  • a semiconductor module (5) comprising a plurality of connection terminals (10) electrically connected to (51);
  • the plurality of connection terminals (10) are arranged in a plurality of rows of rectangular rings along each side of the support substrate (21), and the plurality of connection terminals (10) are arranged on the support substrate (21).
  • the inner peripheral terminal group (15) includes an inner peripheral power supply terminal group (14g) that supplies power to a target semiconductor element (51T) that is one of the semiconductor elements (51),
  • the outer peripheral terminal group (17) includes an outer peripheral power terminal group (16g) of the same system as at least a part of the inner peripheral power terminal group (14g),
  • the inner peripheral power supply terminal group (14g) is disposed at a position at least partially overlapping with the target semiconductor element (51T) when viewed in a direction orthogonal to the plate surface of the support substrate (21).
  • the outer peripheral side power terminal group (16g) is arranged so as to be continuously arranged from the inner peripheral side power terminal group (14g) to the outermost peripheral terminal (18) of the outer peripheral side terminal group (17),
  • the main substrate (3) is connected to the surface wiring layer (31) on which the semiconductor module (5) is mounted via the inner peripheral power terminal group (14g) and the outer peripheral power terminal group (16g).
  • the surface layer power supply path (40) is viewed in an orthogonal direction (Z) orthogonal to the substrate surface of the main substrate (3) in a state where the semiconductor module (5) is mounted on the main substrate (3).
  • a rectangular plate-like support substrate (21) that supports and fixes at least one semiconductor element (51) to the upper surface (21a), and a lower surface (21b) of the support substrate (21) are arranged in a plane.
  • a semiconductor module (5) including a plurality of connection terminals (10) electrically connected to the semiconductor element (51) is, as one aspect, The plurality of connection terminals (10) are arranged in a plurality of rows of rectangular rings along each side of the support substrate (21), and the plurality of connection terminals (10) are arranged on the support substrate (21).
  • the inner peripheral terminal group (15) includes an inner peripheral power terminal group (14g) connected to a power terminal of a target semiconductor element (51) which is one of the semiconductor elements (51),
  • the outer peripheral terminal group (17) includes an outer peripheral power terminal group (16g) of the same system as at least a part of the inner peripheral power terminal group (14g),
  • the inner periphery side power supply terminal group (14g) is disposed at a position at least partially overlapping with the target semiconductor element (51T) when viewed in a direction perpendicular to the plate surface of the support substrate (21).
  • the outer periphery side power supply terminal group (16g) is arranged so as to be continuously arranged from the inner periphery side power supply terminal group (14g) to the outermost periphery terminal (18) of the outer periphery side terminal group (17).
  • the inner peripheral power supply terminal group (14g) is disposed at a position at least partially overlapping with the target semiconductor element (51T) when viewed in the direction orthogonal to the plate surface of the support substrate (21). Therefore, the inner peripheral side power supply terminal group (14g) is arranged immediately below the target semiconductor element (51T). Therefore, the power supply terminal of the target semiconductor element (51T) and the power supply terminal of the semiconductor module (5) can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • the surface layer power supply path (40) for supplying power to the target semiconductor element (51T) is formed in the surface layer wiring layer (31) on which the semiconductor module (5) is mounted.
  • the surface power supply path (40) is orthogonal to the inner peripheral power supply terminal group (14g) and the outer peripheral power supply terminal group (16g) that supply power to the target semiconductor element (51T) through the support substrate (21). It overlaps as seen in (Z). Therefore, the inner peripheral side power supply terminal group (14g) and the outer peripheral side power supply terminal group (16g) of the semiconductor module (5) surface-mounted in the surface layer wiring layer (31) are directly connected to the surface layer power supply path (40).
  • the surface layer power supply path (40) does not need to be provided with a through hole (TH) for extracting other signals, and it is not necessary to provide a hole or an insulating region, the impedance of the surface layer power supply path (40) is also low. Can be suppressed.
  • the semiconductor module (5) includes a first inner peripheral side as a power terminal group in which the inner peripheral power terminal group (14g) is connected to at least two different power terminals of the target semiconductor element (51T).
  • a power terminal group (141g) and a second inner peripheral power terminal group (142g), and the outer peripheral power terminal group (16g) is of the same system as the second inner peripheral power terminal group (142g). It is preferable to include terminals of the same system as the first inner peripheral power supply terminal group (141g) without including terminals.
  • the semiconductor device (1) is configured as follows. That is, the inner periphery side power supply terminal group (14g) includes a first inner periphery side power supply terminal group (141g) as a power supply terminal group for supplying at least two different powers of the target semiconductor element (51T), 2 outer peripheral power supply terminal group (142g), the outer peripheral power supply terminal group (16g) does not include a terminal of the same system as the second inner peripheral power supply terminal group (142g), and
  • the peripheral power supply terminal group (141g) includes the same system of terminals, and the surface power supply path (40) overlaps the second inner peripheral power supply terminal group (142g) when viewed in the orthogonal direction (X).
  • the first inner peripheral power terminal group (141g) and the outer peripheral power terminal group (16g) overlap with the first inner peripheral power terminal group (141g) and the outer peripheral power terminal group (16g).
  • Connected to the main board (41). Is connected to the wiring layer (33) different from the surface layer wiring layer (31) on which the semiconductor module (5) is mounted from the position connected to the second inner peripheral power supply terminal group (142g).
  • the power supply terminal group corresponding to the two power supply terminals of the target semiconductor element (51T) By assigning the power supply terminal group corresponding to the two power supply terminals of the target semiconductor element (51T) to the inner peripheral power supply terminal group (14g), the power supply terminal of the target semiconductor element (51T) and the power supply of the semiconductor module (5)
  • the terminal can be connected with a short wiring distance, and the impedance in the wiring can be kept low.
  • the two types of power supply terminal groups belonging to the inner peripheral power supply terminal group (14g) only the terminals of the same system as the first inner peripheral power supply terminal group (141g) continue to the outermost peripheral terminal (18). It is included in the outer peripheral side power supply terminal group (16g). Accordingly, at least the first inner peripheral power supply terminal group (141g) and the outer peripheral power supply terminal group (16g) can be supplied with electric power via the continuous power supply wiring on the mounting board.
  • the first inner peripheral power supply terminal group (141g) and the outer peripheral power supply terminal group (16g) of the semiconductor module (5) mounted on the main substrate (3) are connected to the surface wiring layer (31). Power can be supplied through the surface power supply path (40) (first power supply path (41)) formed in the above.
  • the second inner peripheral power supply terminal group (142g) of the semiconductor module (5) mounted on the main substrate (3) is a second wiring layer (33) formed on a wiring layer (33) different from the surface wiring layer (31). Power is supplied through the power supply path (42).
  • the first power supply path (41) and the second power supply path (42) overlap at least partially when viewed in the orthogonal direction (Z), and the first power supply path group (41) includes a first inner peripheral power supply terminal group.
  • the outer peripheral side power supply terminal group (16g) overlap in the orthogonal direction (Z). Since it is not necessary to provide a through hole (TH) in the first power supply path (41), at least a portion overlapping the first power supply path (41) transmits another power supply or signal to the second power supply path (42). No through hole (TH) is provided for this purpose. Therefore, the effective area of the second power supply path (42) is suppressed from being reduced by the through hole (TH). That is, it is possible to provide the semiconductor device (1) capable of stably supplying power via the first power supply path (41) and the second power supply path (42).
  • the semiconductor device (1) includes the semiconductor module (5) mounted on the main substrate (3) and the outer power supply terminal group (16g) on the side where the outer peripheral power supply terminal group (16g) is disposed.
  • a direction along the side of the support substrate (21) is defined as a width direction (X), and a first path width (W1) that is the length of the first power supply path (41) in the width direction (X) is the first width.
  • the outer peripheral side power supply terminal group (16g) is configured to satisfy the first reference value that is an electrical reference value of the first power supplied to the semiconductor module (5) through the power supply path (41). It is preferable that they are arranged so as to be continuously arranged in the width direction (X).
  • the power supply wiring has a larger wiring width than the signal wiring so that the cross-sectional area of the wiring is larger because the current flowing is larger than the signal wiring.
  • the first power supply path (41) can secure a necessary wiring width by arranging the outer peripheral power supply terminal group (16g) continuously in the width direction (X) so as to satisfy the first reference value. .
  • the second reference value which is an electrical reference value of the second power supply supplied to the semiconductor module (5) via the second power supply path (42), is within an allowable range than the first reference value. Is a reference value that narrows.
  • the second power supply path (42) is compared with the first power supply path (41).
  • the formation conditions may be prioritized. Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the semiconductor module (5) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • connection terminal (10) arranged at a position where the signal wiring (W) may not be pulled out may be referred to as a difficult connection terminal (19), and the outermost peripheral terminal (18) among the difficult connection terminals (19).
  • the second power supply path (42) can secure a necessary wiring width.
  • the second path width (W2) is larger than the first path width (W1), and the connection terminals (10) included in the outer peripheral terminal group (18),
  • the semiconductor module (5) When the semiconductor module (5) is mounted on the main board (3), it overlaps the second power supply path (42) when viewed in the orthogonal direction (Z), and the outer peripheral power supply terminal group (16g) and the The connection terminal (10) that is not included in the non-signal connection terminal can lead out the signal wiring (W) to the outer peripheral side from the outermost peripheral terminal (18) without passing through the through hole (TH). It is suitable if it is arranged in a position.
  • connection terminals (10) other than the connection terminals (10) assigned to the outer peripheral power supply terminal group (16g) in order to satisfy the first reference value among the non-signal connection terminals. Is preferably assigned to a ground terminal or an NC terminal to which no signal is input / output.
  • ground terminal and the NC terminal do not need to be connected to other wiring layers through the through hole (TH), they are suitable as non-signal connection terminals.
  • the difficult connection terminal (19) has at least two attributes of the connection terminal (10), the ground terminal, and the signal terminal belonging to the outer peripheral power supply terminal group (16g).
  • the connection terminal (10) is allocated, the connection terminal (10), the ground terminal, and the ground terminal belonging to the outer peripheral power supply terminal group (16g) from the center side of the support substrate (21) toward the outer peripheral side. It is preferable that the signal terminals are assigned in the priority order.
  • connection terminal (10) arranged on the outer peripheral side passes through the surface layer wiring layer (31) without passing through the through hole (TH), and the signal wiring (W ) Is likely to be able to pull out. Therefore, it is preferable that the connection terminals (10) are assigned with the above-mentioned priority order.
  • the first reference value includes a first rated current value that is a rated current value of the first power source
  • the second reference value is a second rated current value that is a rated current value of the second power source.
  • the second rated current value is larger than the first rated current value.
  • the second rated current value is larger than the first rated current value, for example, when the formation condition of the second power supply path (42) is prioritized over the first power supply path (41), for example, by increasing the cross-sectional area of the wiring There is. Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the semiconductor module (5) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • the first reference value includes a first impedance that is a maximum allowable value of the impedance of the first power supply path (41), and the second reference value is a maximum allowable value of the impedance of the second power supply path. It is preferable that the second impedance is lower than the first impedance.
  • the formation condition of the second power supply path (42) may be given priority over the first power supply path (41). Since the second power supply path (42) is formed in a wiring layer different from the surface wiring layer (31) on which the semiconductor module (5) is mounted, mounting restrictions and signal wiring in the surface wiring layer (31) are formed. This is preferable because it can suppress restrictions on
  • the target semiconductor element (51T) has at least three power supply terminals
  • the inner peripheral terminal group (14g) further includes the first inner peripheral power supply terminal group (141g).
  • the outer peripheral power supply terminal group (16g) includes the first inner peripheral side
  • the second outer power terminal group (162g) of the same system as the third inner power terminal group (143g) Is preferably included.
  • the surface power supply path (40) can be provided corresponding to two power sources, the effective area of the wiring is prevented from being reduced by the through hole (TH), and the semiconductor module (5) is stably supplied with power. It is possible to provide a semiconductor device (1) capable of performing the above.
  • the direction along the side of the support substrate (21) on the side where the outer peripheral power supply terminal group (16g) is arranged is defined.
  • the width direction (X) at least some of the first inner peripheral power supply terminal group (141g) and the third inner peripheral power supply terminal group (143g) are adjacent to each other in the width direction (X).
  • the first outer peripheral power supply terminal group (161g) and the second outer peripheral power supply terminal group (162g) are arranged such that at least some of the terminals are adjacent to each other in the width direction (X). It is preferable.
  • the two surface power supply paths (41, 43) corresponding to the two power sources can be arranged in parallel in the width direction (X), the two surface power supply paths (41, 43) are formed with high wiring efficiency. be able to.
  • the first inner peripheral power supply terminal group (141g) is disposed closer to the outer peripheral direction (Y) than the second inner peripheral power supply terminal group (142g), with the direction toward the outer peripheral direction (Y). It is preferable that
  • the first power supply path (41) which is the surface layer power supply path (40) extends toward the outer peripheral side, the first inner peripheral power supply terminal group (141g) in the inner peripheral power supply terminal group (14g) is provided.
  • the first power supply path (41) can be formed with high wiring efficiency.
  • the semiconductor element (51) is a semiconductor die (51C, 51P)
  • the semiconductor module (5) is a plurality of the semiconductor dies (51C, 51P) including the support substrate (21).
  • the terminal arrangement of the semiconductor dies (51C, 51P) can be changed to realize the semiconductor module (5) having an appropriate terminal arrangement.
  • the semiconductor element (51) is a semiconductor chip (51M) in which at least one semiconductor die is enclosed in a package, and the semiconductor module (5) includes a plurality of the semiconductor chips (51M). Is a chip module (5M) mounted on the support substrate (21).
  • the semiconductor chip (5) having an appropriate terminal arrangement can be realized by changing the terminal arrangement of the semiconductor chip (51M).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

スルーホールによって配線の有効面積が減少することを抑制し、安定して電源供給が可能な技術を提供する。半導体装置(1)は、複数の配線層(31,32,33,39)及びスルーホール(TH)を有する主基板(3)においてチップモジュール(5M)が実装される表層配線層(31)に、内周側電源端子群(141g)及び外周側電源端子群(16g)を介して半導体チップ(51p)に電力を供給する表層電源経路(40)を有する。表層電源経路(40)は、直交方向(Z)に見て内周側電源端子群(141g)及び外周側電源端子群(16g)と重複し、内周側電源端子群(141g)と接続される位置から主基板(3)の外周側に向かう方向(Y)に延びるように連続して形成されている。

Description

半導体装置、チップモジュール及び半導体モジュール
 本発明は、複数層の配線層及びスルーホールを有する回路基板と、半導体モジュール又はチップモジュールとを備えた半導体装置、チップモジュール、半導体モジュールに関する。
 特開平10-303562号公報(特許文献1)には、配線の引き回しが容易であるとともに安定した電源の供給が可能な回路基板の技術が開示されている。回路基板に、多くの接続端子を持つBGA(Ball Grid Array)タイプの半導体モジュールなどを実装する場合、全ての配線を回路基板の表層の配線層のみで完結することは困難である。このため、そのような半導体モジュールを実装する回路基板は、一般的には、複数層の配線層、及び、複数層の配線層の間をつなぐスルーホールを有している。また、このような半導体モジュールは消費電力も大きくなる傾向があり、電源を供給する電源配線には広い配線幅を確保することが求められる。上記文献では、信号を伝達するスルーホールとの絶縁を保つために、スルーホールの周囲の電源配線が除去されることによって、電源配線が分断されたり、面積が狭くなったりすることを抑制している。具体的には、電源配線を貫通するスルーホールを規則的に並べることによって、電源配線の中での配線除去領域がつながってしまうことを避け、電源配線の幅や面積を充分確保して、安定した電源の供給を可能にしている。しかし、電源配線をスルーホールが貫通するので、スルーホールとの導通を防ぐための配線除去領域を設ける分だけ、電源配線が占める領域における電源配線の有効面積は低くなる。そこで、スルーホールの影響を受けることなく高い有効面積を有して電源配線を設ける技術が望まれる。
特開平10-303562号公報
 上記背景に鑑みて、スルーホールによって配線の有効面積が減少することを抑制し、安定して電源供給が可能な技術の提供が望まれる。
 半導体装置は、1つの態様として、
 パッケージ基板に少なくとも1つの半導体ダイが支持された半導体チップを少なくとも1つ上面に支持固定する矩形板状のモジュール基板、及び、前記モジュール基板の下面に沿って平面配置されて前記半導体チップと電気的に接続される複数の接続端子を備えたチップモジュールと、
 複数層の配線層を有し、前記チップモジュールが複数の前記接続端子を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層を電気的に接続可能なスルーホールが複数個形成された主基板と、を備え、
 前記半導体チップは、前記モジュール基板に支持される被支持面に沿って平面配置されて前記モジュール基板と電気的に接続される複数のチップ端子を有し、
 複数の前記チップ端子は、前記半導体チップに電力を供給する複数のチップ電源端子を含み、
 複数の前記チップ電源端子は、複数の前記チップ端子が平面配置された配置領域の外縁よりも内側に配置され、
 前記チップモジュールは、前記半導体チップが前記モジュール基板に実装され、複数の前記チップ端子の配置と複数の前記接続端子の配置とが前記モジュール基板において並び替えられており
 複数の前記接続端子は、前記モジュール基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記モジュール基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
 前記内周側端子群は、前記半導体チップに電力を供給する内周側電源端子群を含み、
 前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
 前記内周側電源端子群は、前記モジュール基板の板面に直交する方向に見て前記半導体チップと少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列され、
 前記主基板は、前記チップモジュールが実装される表層配線層に、前記内周側電源端子群及び前記外周側電源端子群を介して前記半導体チップに電力を供給する表層電源経路を有し、
 前記表層電源経路は、前記チップモジュールが前記主基板に実装された状態で、前記主基板の基板面に直交する直交方向に見て前記内周側電源端子群及び前記外周側電源端子群と重複し、前記内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成されている。
 また、パッケージ基板に少なくとも1つの半導体ダイが支持された半導体チップを少なくとも1つ上面に支持固定する矩形板状のモジュール基板、及び、前記モジュール基板の下面に沿って平面配置されて前記半導体チップと電気的に接続される複数の接続端子を備えたチップモジュールは、1つの態様として、
 前記半導体チップは、前記モジュール基板に支持される被支持面に沿って平面配置されて前記モジュール基板と電気的に接続される複数のチップ端子を有し、
 複数の前記チップ端子は、前記半導体チップに電力を供給する複数のチップ電源端子を含み、
 複数の前記チップ電源端子は、複数の前記チップ端子が平面配置された配置領域の外縁よりも内側に配置され、
 前記半導体チップは、前記モジュール基板に実装され、
 複数の前記チップ端子の配置と複数の前記接続端子の配置とは、前記モジュール基板において並び替えられており、
 複数の前記接続端子は、前記モジュール基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記モジュール基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
 前記内周側端子群は、前記半導体チップの電源端子に接続される内周側電源端子群を含み、
 前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
 前記内周側電源端子群は、前記モジュール基板の板面に直交する方向に見て、前記半導体チップと少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列されている。
 上記の構成によれば、内周側電源端子群がモジュール基板の板面に直交する方向に見て、半導体チップと少なくとも一部が重複する位置に配置されているから、半導体チップの直下に内周側電源端子群が配置されていることになる。従って、半導体チップの電源端子とチップモジュールの電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。尚、半導体ダイへの電源供給経路を短く形成するために、一般的にチップ電源端子は、半導体ダイの直下に設けられる(一般的にモジュール基板とパッケージ基板とは平行状に配置されるので、モジュール基板(パッケージ基板)の板面に直交する方向に見て、半導体ダイの少なくとも一部と重複する位置に、チップ電源端子が設けられる。)。従って、内周側電源端子群は、モジュール基板の板面に直交する方向に見て、半導体ダイと少なくとも一部が重複する位置に配置されているということもできる。
 また、半導体装置においては、半導体チップに電力を供給する表層電源経路が、チップモジュールが実装される表層配線層に形成される。この表層電源経路は、モジュール基板を介して半導体チップに電力を供給する内周側電源端子群及び外周側電源端子群と、直交方向に見て重複している。従って、表層配線層において表面実装されるとチップモジュールの内周側電源端子群及び外周側電源端子群は、直接、表層電源経路と接続される。また、表層電源経路には、他の信号を引き出すためのスルーホールを設ける必要もなく、孔や絶縁領域を設ける必要もないので、表層電源経路のインピーダンスも低く抑えることができる。このように、上記の構成によれば、スルーホールによって配線の有効面積が減少することを抑制し、安定して電源供給が可能な半導体装置並びにチップモジュールを提供することができる。
 例えば、半導体チップが汎用的なマイクロコンピュータやDSPのようなプロセッサである場合、その端子配置(チップ端子の端子配置)は、半導体ベンダーによって決定されている。つまり、これらのマイクロコンピュータやDSPを利用して装置を生産する装置メーカーにとって好適な端子配置とはなっていない場合も多い。マイクロコンピュータやDSPの端子配置が装置メーカーに好適な配置となるように、専用品として生産することは不可能ではないが、専用品化のための開発費等を考慮すると採算が取れず現実的ではない。チップモジュールでは、モジュール基板上の配線によって端子配置を変換できるので、チップモジュールにおける接続端子の端子配置を、装置メーカーにとって好適な端子配置とすることができる。その結果、上述したように、主基板の表層配線層に形成される表層電源経路により、半導体チップに電力を供給することができる。
 また、1つの態様として、半導体装置は、
少なくとも1つの半導体素子を上面に支持固定する矩形板状の支持基板、及び、前記支持基板の下面に沿って平面配置されて前記半導体素子と電気的に接続される複数の接続端子を備えた半導体モジュールと、
 複数層の配線層を有し、前記半導体モジュールが複数の前記接続端子を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層を電気的に接続可能なスルーホールが複数個形成された主基板と、を備え、
 複数の前記接続端子は、前記支持基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記支持基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
 前記内周側端子群は、前記半導体素子の内の1つである対象半導体素子に電力を供給する内周側電源端子群を含み、
 前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
 前記内周側電源端子群は、前記支持基板の板面に直交する方向に見て前記対象半導体素子と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列され、
 前記主基板は、前記半導体モジュールが実装される表層配線層に、前記内周側電源端子群及び前記外周側電源端子群を介して前記対象半導体素子に電力を供給する表層電源経路を有し、
 前記表層電源経路は、前記半導体モジュールが前記主基板に実装された状態で、前記主基板の基板面に直交する直交方向に見て前記内周側電源端子群及び前記外周側電源端子群と重複し、前記内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成されている。
 また、少なくとも1つの半導体素子を上面に支持固定する矩形板状の支持基板、及び、前記支持基板の下面に沿って平面配置されて前記半導体素子と電気的に接続される複数の接続端子を備えた半導体モジュールは、1つの態様として、
 複数の前記接続端子は、前記支持基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記支持基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
 前記内周側端子群は、前記半導体素子の内の1つである対象半導体素子の電源端子に接続される内周側電源端子群を含み、
 前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
 前記内周側電源端子群は、前記支持基板の板面に直交する方向に見て、前記対象半導体素子と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列されている。
 上記の構成によれば、内周側電源端子群が支持基板の板面に直交する方向に見て、対象半導体素子と少なくとも一部が重複する位置に配置されているから、対象半導体素子の直下に内周側電源端子群が配置されていることになる。従って、対象半導体素子の電源端子と半導体モジュールの電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。また、半導体装置においては、対象半導体素子に電力を供給する表層電源経路が、半導体モジュールが実装される表層配線層に形成される。この表層電源経路は、支持基板を介して対象半導体素子に電力を供給する内周側電源端子群及び外周側電源端子群と、直交方向に見て重複している。従って、表層配線層において表面実装される半導体モジュールの内周側電源端子群及び外周側電源端子群は、直接、表層電源経路と接続される。また、表層電源経路には、他の信号を引き出すためのスルーホールを設ける必要もなく、孔や絶縁領域を設ける必要もないので、表層電源経路のインピーダンスも低く抑えることができる。このように、上記の構成によれば、スルーホールによって配線の有効面積が減少することを抑制し、安定して電源供給が可能な半導体装置並びに半導体モジュールを提供することができる。
 半導体装置及び半導体モジュールのさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
半導体装置の模式的な外観図 半導体モジュールの端子配置の一例を示す模式的な透視図 表層配線層の電源配線を含む部分的な配線パターンの一例を模式的に示す図 内層配線層の電源配線を含む部分的な配線パターンの一例を模式的に示す図 表層配線層の電源配線を含む部分的な配線パターンの他の例を模式的に示す図 内層配線層の電源配線を含む部分的な配線パターンの他の例を模式的に示す図 システムLSIの一例を示す機能ブロック図 半導体モジュール(SOC)の構造を示す断面図 半導体モジュール(SOC)の構造を示す模式的な断面図 半導体モジュール(MCM)の構造を示す模式的な断面図 半導体モジュール(SIP)の構造を示す模式的な断面図 SOCを備えた半導体装置の構造を示す模式的な断面図 MCMを備えた半導体装置の構造を示す模式的な断面図 SIPを備えた半導体装置の構造を示す模式的な断面図 半導体モジュールの端子配置と回路基板上の配線との関係の一例を示す図 半導体装置の特徴を示す断面図 半導体装置の特徴を示す説明図 半導体モジュールの端子配置と回路基板上の配線との関係の他の例を示す図 半導体モジュールの端子配置の他の例を示す模式的な透視図 表層配線層の電源配線を含む部分的な配線パターンの別の例を模式的に示す図 支持基板に設けられた接続端子と支持基板における半導体素子の配置位置との関係を示す図
 以下、半導体モジュール及び半導体装置の実施形態を図面に基づいて説明する。図1に示すように、半導体装置1は、表層及び内層に配線層を有した複数層(31,32,33,39)の回路基板3(主基板)と、回路基板3に実装される半導体モジュール5とを備えている。半導体モジュール5は、例えば、図8から図11に示すように、少なくとも1つの半導体素子51と、半導体素子51を上面21aに支持固定する支持基板21とを備えて構成されている。支持基板21の下面21bには半導体素子51と電気的に接続される複数の端子10(接続端子)が、下面21bから突出して平面配置されている。
 図8は、単一の半導体素子51(半導体ダイ51d)を備えて構成されている半導体モジュール5(システムLSI5C)の一般的な構造を模式的に示している。図9は、複数の半導体素子51(半導体ダイ51d)が1つのパッケージに封入された半導体モジュール5(システムLSI(SOC(System on a Chip)5C))の構造を模式的に示している。半導体ダイ51dは支持基板21(パッケージ基板)の上面21aに支持固定されている。符号“51C”は、システムLSI5Cにおける半導体素子51を示している。尚、半導体モジュール5が、単一の半導体素子51(半導体ダイ51d)を備えて構成されている場合でも、特有の機能を有する複数の回路ブロック(メガセル)を単一の半導体素子51(半導体ダイ51d)上に集積した大規模LSI(Large Scale Integration Circuit)として、システムLSI5Cが構成されてもよい。
 図10は、半導体モジュール5が、マルチチップモジュール5M(MCM(Multi Chip Module))と称されるハイブリッドICとして構成されている形態を例示している。マルチチップモジュール5M(チップモジュール)は、特有の機能を有する複数の半導体素子51(符号“51M”で示す半導体チップなど)を少なくとも1つ、1枚の支持基板21(モジュール基板21m)の上に実装したモジュールとして構成されている。即ち、マルチチップモジュール5M(チップモジュール)は、パッケージ基板Bに少なくとも1つの半導体ダイDが支持された半導体チップ51M(半導体素子51)を少なくとも1つ上面に支持固定する矩形板状のモジュール基板21m(支持基板21)、及び、モジュール基板21mの下面21bに沿って平面配置されて半導体チップ51Mと電気的に接続される複数の端子10を備えている。尚、マルチチップモジュール5M(チップモジュール)は、1つの半導体チップ51Mを有して構成されていてもよい。
 図10では、例えばマイクロコンピュータやDSP(Digital Signal Processor)などのプロセッサ51pと、メモリ51mなどの周辺チップとが、特有の機能を有する複数の半導体素子51(半導体チップ51M)としてモジュール基板21m(支持基板21)に実装されている形態を例示している。マルチチップモジュール5M(チップモジュール)がこのように複数の半導体チップ51Mを有する場合、後述するように、チップ電源端子56(図17等参照)、内周側電源端子群(141g,14g:図16等参照)、表層電源配線40(図16等参照)等との位置関係に特徴を備える少なくとも1つの半導体チップ51Mを対象半導体チップと称する。上述したように、マルチチップモジュール5M(チップモジュール)は、1つの半導体チップ51Mを有して構成されていてもよく、この場合には当該1つの半導体チップ51Mが対象半導体チップに相当する。
 図10に示す形態において、プロセッサ51pは、半導体チップ51Mの内の1つである対象半導体チップに相当する。対象半導体チップ(ここではプロセッサ51p)は、モジュール基板21mに支持される被支持面51bに沿って平面配置されてモジュール基板21mと電気的に接続される複数のチップ端子55を有している。図17を参照して後述するが、複数のチップ端子55は、対象半導体チップ(ここではプロセッサ51p)に電力を供給する複数のチップ電源端子56を含む。
 図11は、半導体モジュール5が、SIP(System in a Package)5Pと称されるハイブリッドICとして構成されている形態を例示している。SIP5Pとしての半導体モジュール5は、例えば、特有の機能を有する複数の半導体素子51(符号“51P”で示す半導体チップなど)を1つのパッケージ内に集積したハイブリッドICとして構成される。
 半導体素子51は、半導体素子51に応じた端子配置を有しているが、その端子配置は支持基板21(例えば後述するモジュール基板21mなど)において変更することができる。つまり、回路基板3に実装された場合に適した端子配置となるように、半導体モジュール5の端子10の配置を支持基板21において設定することができる。例えば、半導体素子51(後述する対象半導体素子51T)が汎用的なマイクロコンピュータやDSPのようなプロセッサ51pである場合、その端子配置(チップ端子55の端子配置)は、半導体ベンダーによって決定されている。半導体モジュール5の一態様であるマルチチップモジュール5Mでは、プロセッサ51p(対象半導体素子51Tに相当)の端子であるチップ端子55の端子配置を、モジュール基板21m(支持基板21)において変換し、半導体モジュール5(マルチチップモジュール5M)の端子10(接続端子)として適切な端子配置とすることができる。図17には、プロセッサ51p及びマルチチップモジュール5Mの端子配置を、プロセッサ51p及びマルチチップモジュール5Mの上面(端子の無い側)から見た下面(端子の有る側)の透視図により示している(後述する図2等と同様。)
 図17に示すように、プロセッサ51p(対象半導体素子51T)は、モジュール基板21m(支持基板21)に支持される被支持面51b(図10、図16参照)に沿って平面配置されて支持基板21と電気的に接続される複数のチップ端子55を有している。複数のチップ端子55は、配置領域R1の中に配置されている。チップ端子55は、プロセッサ51pに電力を供給する複数のチップ電源端子56を有しており、図17では黒塗りで示している。尚、マルチチップモジュール5Mは、モジュール基板21m(支持基板21)の下面21bに沿って平面配置されてプロセッサ51pと電気的に接続される複数の端子10(接続端子)を備えており、その内、黒塗りで示す端子は、電源端子(後述する第1電源端子11)である。プロセッサ51pのチップ電源端子56は、プロセッサ51pに搭載された半導体ダイD(図10、図16参照)に対して適切に電力を供給できる位置に配置されており、図17に示すように、配置領域R1の外縁R1eよりも内側だけに(配置領域R1の外縁R1eまで連続することなく)配置されている。しかし、モジュール基板21m(支持基板21)において端子配置が変換され、マルチチップモジュール5Mでは、最外周の端子(最外周端子18)まで連続して並ぶように第1電源端子11が配列されている。
 ところで、複数の半導体素子51を支持基板21の上で接続することによって、それらの半導体素子51の間でのみ接続される端子を、半導体モジュール5の端子10から削減することができる。端子10の総数が削減されることによって、より適切に端子10を配列することができる。例えば、図10、図16、図17に例示するマルチチップモジュール5Mは、半導体モジュール5を構成する半導体チップ51M(半導体素子51)として、プロセッサ51pとメモリ51mとを備えている。多くの場合、プロセッサ51pには、メモリ51mと接続される端子が設けられている。メモリ51mと接続される端子は、アドレスバスやデータバスなどのバス信号を含むため、その本数は多い。プロセッサ51pとメモリ51mとがモジュール基板21m(支持基板21)の上で接続されると、そのようなバス信号の端子を、半導体モジュール5(マルチチップモジュール5M)の端子10から削減することができる。例えば、上述したように電源端子の配置を並び替えることも容易になる。このようなマルチチップモジュール5Mを回路基板3に実装して半導体装置1を構成した場合、図17に示すように、同じく回路基板3に実装された電源回路PWと、マルチチップモジュール5Mとを、表層配線層(第1表層配線層31)に形成された表層電源配線40(第1電源配線41)により接続することができる。つまり、電源回路PWから半導体モジュール5(マルチチップモジュール5M)までの経路が短くなり、低インピーダンス環境下での電力供給が実現できる。
 上述したように、半導体素子51が汎用的なマイクロコンピュータやDSPのようなプロセッサである場合、その端子配置(チップ端子55の端子配置)は、半導体ベンダーによって決定されている。つまり、これらのマイクロコンピュータやDSPを利用して装置を生産する装置メーカーにとって好適な端子配置とはなっていない場合も多い。マイクロコンピュータやDSPの端子配置が装置メーカーに好適な配置となるように、専用品として生産することは不可能ではないが、専用品化のための開発費等を考慮すると採算が取れず現実的ではない。上述したように、マルチチップモジュール5Mでは、モジュール基板21m(支持基板21)上の配線によって端子配置を変換できるので、半導体モジュール5(マルチチップモジュール5M)における端子10(接続端子)の端子配置を、装置メーカーにとって好適な端子配置とすることができる。
 図17に示すプロセッサ51pのチップ電源端子56の配置では、チップ端子55の配置領域R1の外縁R1eの内側だけにチップ電源端子56が配置されており、チップ電源端子56は外縁R1eまで連続して配置されてはいない。このため、例えば回路基板3に直接、プロセッサ51pを実装した場合に、電源回路PWと、チップ電源端子56とを、回路基板3の表層配線層(第1表層配線層31)において接続することができない。しかし、モジュール基板21m(支持基板21)で端子配置を並び替えることによって、プロセッサ51pへ電力を供給するための配線(第1電源配線41)を、回路基板3の表層配線層(第1表層配線層31)に形成することができる。即ち、上述したように、回路基板3の表層配線層(第1表層配線層31)に形成される表層電源配線40により、半導体素子51(半導体チップ51M)に電力を供給することができる。
 図12から図14は、図9から図11に例示した半導体モジュール5を回路基板3に搭載して構成された半導体装置1の構成例を模式的に示している。図12は、半導体モジュール5としてのシステムLSI5Cが、回路基板3に表面実装されて半導体装置1(1C)が構成されている形態を模式的に示している。図13は、半導体モジュール5としてのマルチチップモジュール5Mが、回路基板3に表面実装されて半導体装置1(1M)が構成されている形態を模式的に示している。図14は、半導体モジュール5としてのSIP5Pが、回路基板3に表面実装されて半導体装置1(1P)が構成されている形態を模式的に示している。
 以下、半導体装置1の実施形態について詳細に説明する。ここでは、半導体装置1として、車両に搭載される車載情報機器向け情報処理装置を例示する。半導体装置1は、半導体モジュール5を中核としたECU(Electronic Control Unit)として構成されている。図8,図9を参照して上述したように、1つの態様として、半導体モジュール5は、車載情報端末用SOCとすることができる。このような車載情報端末用SOCの一例は、半導体ベンダーのウェブページ<http://japan.renesas.com/applications/automotive/cis/cis_highend/rcar_h2/index.jsp>[2015年8月25日検索]に開示されている。図7は、このウェブページに示されている車載情報端末用SOC500の機能構成を示すブロック図を簡略化して転載したものである。この車載情報端末用SOC500には、9つのCPUコア(4つのCPU CORE A, 4つのCPU CORE B, 1つのCPU CORE C)をはじめ、画像処理演算器(Graphics Processor)や、画像認識エンジン(Image Recognition Engine)などのメガセルが集積されている。本実施形態の半導体モジュール5も、図示は省略するが、このようなメガセルが複数個集積されている。CPUコア、画像処理演算器、画像認識エンジンなどのようなメガセルは、高速で(高いクロック周波数で)複雑な演算を行うことが多く、その消費電力(消費電流)も大きい。
 上述したように、図8の断面図は、単一の半導体素子51(半導体ダイ51d)を備えて構成されている半導体モジュール5の一般的な構造を模式的に示している。半導体モジュール5は、半導体素子51(半導体ダイ51d),支持基板21(モジュール基板)、ボンディングワイヤー25、電極パターン26、モールド部22を備えている。半導体素子51は、支持基板21の一方側の面である上面21a(部品実装面)に実装されている。上面21aには、半導体素子51に形成された各電極パッド(不図示)に対応する電極パターン26が形成されている。各電極パッドと各電極パターン26とは、ボンディングワイヤー25によって電気的に接続される。電極パターン26は、スルーホール27を介して、上面21aに対して裏面側の面である下面21b(端子面)の側と導通される。下面21bには、各電極パターン26と導通するように、半導体モジュール5の端子10(接続端子)となる球状バンプが形成されている。
 半導体素子51及びボンディングワイヤー25は、例えば樹脂材料によってモールドされる。図2に示す半導体モジュール5において、支持基板21及びモールド部22は、半導体素子51を収容するパッケージ2に相当する。上述したように、支持基板21の下面21b、つまり、パッケージ2の裏面2bには、ボール状の端子(球状バンプ)を突出させて端子10が形成されており、BGA(Ball Grid Array)タイプの半導体モジュール5が形成されている。尚、図9から図11に例示された半導体モジュール5(5C,5M,5P)も、BGAタイプの半導体モジュール5である。
 図2は、半導体モジュール5を上面(支持基板21の上面21a)の側から見た下面(支持基板21の下面21b、パッケージ2の裏面2b)の透視図を模式的に示している。図2において、破線の丸は端子10を示しているが、端子10の数や大きさ、端子10の間隔等については、模式的なものである。端子10は、支持基板21の各辺に沿って複数列の矩形環状に配列されている。また、本実施形態では、端子10は、パッケージ2の中央部に矩形状に配列された内周側端子群15と、内周側端子群15よりも外周側に配列された外周側端子群17とにより構成されている。内周側端子群15は、主に半導体素子51の電源電極パッドと接続される端子10が割り当てられている。
 ところで、内周側端子群15は、中心部分にも端子10が存在して、中央部に隙間を有していない。しかし、図2において36本の端子10を有する内周側端子群15は、中央部の4本の端子10、最も外周の20本の端子10、その間の12本の端子が、それぞれ矩形環状に並んで(3周分の矩形状の環が並んで)配列されているということができる。従って、図2に例示する内周側端子群15のように端子10が密に敷き詰められた状態であっても、端子10は矩形環状に配列されているということができる。
 内周側端子群15は、半導体素子51のほぼ直下に(支持基板21の板面に直交する方向(支持基板直交方向)に見て半導体素子51と少なくとも一部が重複する位置に)配置されている。尚、半導体モジュール5が回路基板3(主基板)に実装された状態で、回路基板3の基板面に直交する方向(直交方向Z;例えば図12~図14等参照)は、部品公差や実装誤差を無視すれば、ほぼ支持基板直交方向と同義である。従って、特に断らない限り、本明細書及び図面において、「直交方向Z」は、支持基板直交方向、及び、回路基板3の基板面に直交する方向に共通する方向として扱う。
 内周側端子群15が半導体素子51のほぼ直下に配置され、内周側端子群15に電源端子が割り当てられることによって、電気抵抗やインダクタンスの影響ができるだけ小さくなる状態で半導体素子51に電力を供給することができる。尚、図9、図10、図11に例示するように、半導体モジュール5が複数の半導体素子51を有している場合には、内周側端子群15を介して電力を供給される対象の半導体素子51(対象半導体素子51T)の直下に、内周側端子群15が配置される。
 外周側端子群17には、主に、車載情報端末(モニター装置やカメラ、ディスク装置など)と接続される信号端子が割り当てられている。スルーホールを介さずに表層の配線層において内周側端子群15から半導体モジュール5の外側へ信号線を引き出すためには、外周側端子群17の端子10の間に信号配線を通す必要がある。しかし、信号数によっては、外周側端子群17の端子10の間に信号配線を通すことが困難な場合もある。従って、信号端子は、より外周側に配置される外周側端子群17に割り当てられていると好ましい。
 実際には、端子10のピッチ(端子間の長さ)、回路基板3に形成可能な信号配線の幅や、信号配線同士に求められる絶縁距離等に応じても異なるが、端子10と端子10との間に通すことのできる信号配線の数は有限である。理解を容易にするために、ここでは、端子10と端子10との間に、通すことが可能な信号配線が1本であるとする。図15は、図2と同様に、半導体モジュール5を上面(支持基板21の上面21a)の側から見た下面(支持基板21の下面21b、パッケージ2の裏面2b)の透視図を模式的に示している。図15において符号“W”は、半導体モジュール5が実装された回路基板3において、各端子10から引き出す信号配線を模式的に示している。また、図2及び図15において、符号“18”で示す端子10は、最も外周側に配置された最外周端子を示している。
 図15に示すように、最外周端子18のそれぞれは、当該端子(自端子;最外周端子18)よりも外周側に端子10が存在しないため、自由に信号配線Wを自端子よりも外周側に引き出すことができる。最外周端子18よりも1周分内周側の端子10のそれぞれは、自端子よりも外周側の端子10が1周分であるので、最外周端子18の間を通って、自端子よりも外周側に信号配線Wを引き出すことができる。端子10と端子10との間に、通すことが可能な信号配線が1本であると、さらに1周分内周側の端子10のそれぞれは、自端子よりも外周側の端子10の間を通って、自端子よりも外周側に信号配線Wを引き出すことができない場合が多くなる。
 つまり、自端子よりも外周側に信号配線Wを引き出すことができるか否かは、自端子よりも外周側に配列された端子10から引き出される信号配線Wの状態に依存する。換言すれば、図2及び図15に示す例において、外周側端子群17の内、最も内周側に配置されている端子10は、第1表層配線層31のみを通って自端子よりも外周側に信号配線Wを引き出すことが容易ではない難接続端子19と称することができる。図15に示す難接続端子19の多くは、自端子よりも外周側に信号配線Wを引き出すことはできない。しかし、符号“19A”で示す難接続端子19は、信号配線Wを自端子よりも外周側に引き出すことができる。このように、難接続端子19は、外周側端子群17に含まれる端子10の内、半導体モジュール5が回路基板3に実装された状態で、自端子よりも外周側に配置された端子10から引き出される信号配線Wの有無に応じて、スルーホールTHを経由しなければ最外周端子18よりも外周側へ信号配線Wを引き出すことができない場合がある位置に配置されている端子10である。
 難接続端子19は、最外周端子18よりも外周側へ信号配線Wを引き出す必要のない用途に割り当てられていると好適である。難接続端子19は、例えば、電源用の端子や、グラウンド端子、信号が入出力されない端子であり半導体モジュール5を回路基板3にハンダ等で接合する際の接合用として利用されるNC端子などに、割り当てられていると好適である。詳細は後述するが、例えば、図3に符号“L19”で示すランドは、図2に示す難接続端子19が接続されるランドである。本実施形態では、これらの難接続端子19は、電源用の端子(後述する外周側電源端子16)に割り当てられている。
 ところで、上記ウェブページを参照すると、車載情報端末用SOC500は、複数の電源を必要とする。例えば、入出力端子用の電源(3.3[V]/1.8[V])、高速読み書きが可能なメモリ(図7では、“SDRAM I/F”と表記)用の電源(1.5[V]/1.35[V])、CPUコア(図7では“CPU CORE A, CPU CORE B, CPU CORE C”と表記)用の電源(1.0[V])である。半導体モジュール5は、このように多数の電源ではなくても、2種類程度の異なる電源を必要とする場合がある。また、図7のように異なる種類のCPUコアを搭載している場合には、同じ電圧であっても消費電流(定格電流)の違いによって、複数の電源を必要とする場合がある。本実施形態では、少なくとも定格電流値が異なる電源であって、少なくとも2種類の電源が利用される。このため、半導体モジュール5は、これら2種類の電源の一方に接続される第1電源端子11と、他方に接続される第2電源端子12とを備えている。
 また、電源端子には信号端子に比べて非常に大きい電流が流れるため、複数の端子10が電源端子に割り当てられている。第1電源端子11として割り当てられている端子10の集合を第1電源端子群11gと称し、第2電源端子12として割り当てられている端子10の集合を第2電源端子群12gと称する。
 上述したように、電源端子は、基本的には、内周側端子群15に割り当てられ、信号端子は、基本的には、外周側端子群17に割り当てられる。しかし、本実施形態では、図2に示すように、外周側端子群17にも電源端子(第1電源端子群11g)を含む。詳細は、後述するが、内周側端子群15には、第1電源端子群11g(第1内周側電源端子群141g)と第2電源端子群12g(第2内周側電源端子群142g)とを含む。また、内周側端子群15における第1電源端子11と第2電源端子12とを総称して内周側電源端子14と称し、内周側電源端子14の集合、即ち、第1内周側電源端子群141gと第2内周側電源端子群142gとを総称して内周側電源端子群14gと称する。
 また、上述したように、回路基板3は、表層及び内層に配線層を有している。表層の配線層(31,39)は、回路基板3の表側の面及び裏側の面に形成された配線層である。内層の配線層(32,33)は、回路基板3の内部の面に形成された配線層である。後述するように、本実施形態では、表層の配線層(第1表層配線層31)と、内層の配線層(第2内層配線層33)との双方に異なる電源配線(第1電源配線41(第1電源経路),第2電源配線42(第2電源経路))が設けられている(図1、図16参照)。
 図3は、回路基板3の表層(31,39)の一方、ここでは、部品実装面、表側の面、第1面などと称される面に形成された第1表層配線層31の部分的な配線パターンを模式的に示している。以下、図3~図6、図20に例示する配線パターンは、全て図2と同様に、半導体モジュール5が実装される側(第1表層配線層31)の側から見たものである。図3では、主に、半導体モジュール5の端子10が接触する部分の電極パターンと、電源配線のパターンとを例示しており、信号配線Wのパターンについては省略している。図4~図6、図20に例示する配線パターンも同様である。図3、図20において符号“L”は、電極パターンとしてのランドを示している。第1表層配線層31では、ランドLにおいて、端子10がハンダによって回路基板3と接合される。ランドLの中央の丸は、回路基板3を貫通して複数の異なる配線層を電気的に接続可能なスルーホールTHを示している。
 図15を参照して上述したように、第1表層配線層31において、外周側端子群17の内、内周側の端子10から半導体モジュール5の外側へ向かって信号配線Wを引き出す場合には、自端子より外周側の端子10に対応するランドLの間に信号配線Wを通す必要がある。このため、信号配線Wが通すことができても、配線経路の自由度が低下したり、耐ノイズ性が低下したりする可能性がある。そこで、本実施形態では、外周側端子群17の内、最も内周側の端子10(難接続端子19)の多くは、スルーホールTHを介して内層の配線層に設けられた信号配線Wに接続されるように構成されている。図3に符号“L19s”で示すランドLは、難接続端子19が接続される難接続ランドL19の内、スルーホールTHを介して他の配線層に接続されるランドである。また、図3に符号“L19n”で示すランドLは、難接続端子19が接続される難接続ランドL19の内、後述する非信号接続端子が接続されるランドである。
 また、ランドLの内、“L1”は第1電源端子11と接合される第1電源用ランドを示しており、“L2”は第2電源端子12と接合される第2電源用ランドを示している。特に区別しないランドL(図3~図6、図20において黒く塗りつぶされたランドL)は、信号端子等と導通するランドである。
 また、図3に示すように、本実施形態では、第1表層配線層31に、基板外周縁3eの側(図3では基板外周縁3eまで達している形態を例示)と、半導体モジュール5の第1電源端子11とを接続する第1電源配線41(第1電源経路、表層電源配線40(表層電源経路))が配置されている。第1電源用ランドL1は、この第1電源配線41と一体的に形成されている。尚、図3(及び図5、図20)においては、第1電源配線41(表層電源配線40)と第1電源用ランドL1とが連続して設けられているように図示しているが、第1電源用ランドL1の周囲において部分的に配線パターンが省かれていてもよい。第1電源配線41(表層電源配線40)と第1電源用ランドL1とが連続していると、半導体モジュール5の実装時に熱が逃げてハンダの熔融温度よりも低下してしまう場合がある。このため、第1電源用ランドL1の周囲に略環状(部分的に第1電源用ランドL1と第1電源配線41と導通する放射状のブリッジ部を有した環状)の緩衝領域を有していてもよい。
 また、特に内周側端子群15が接続される領域では、信号端子のランドLの一部や、第2電源用ランドL2も、第1電源配線41のパターン内に配置されている。このため、第1電源配線41と信号端子のランドL、及び第1電源配線41と第2電源用ランドL2とが導通しないように、信号端子のランドLの周囲(外周)、及び第2電源用ランドL2の周囲(外周)には、環状の絶縁領域Sが設けられている。
 図4は、回路基板3の内層(32,33)の何れか、ここでは、第1表層配線層31との間に一層の内層配線層(第1内層配線層32)を挟んだ第2内層配線層33の部分的な配線パターンを模式的に示している。本実施形態では、図4に示すように、第2内層配線層33に、基板外周縁3eの側(図4では基板外周縁3eまで達している形態を例示)と半導体モジュール5の第2電源端子12とを接続する第2電源配線42(第2電源経路)が、第1電源配線41とは別に配置されている。上述したように、外周側端子群17の内、外側に配置されている端子10は、第1表層配線層31に信号配線Wを設けることができる。しかし、内層配線層にも配線パターンを有していてもよい。図4に破線で示すスルーホールTH(外周側2周分に対応する部分)は、そのように内層配線層に配線パターンを設ける場合にスルーホールTHが形成されても良いことを示している。
 図3及び図4に示すように、第1電源配線41及び第2電源配線42のそれぞれは、一体的な帯状の配線パターンである。各端子10に接続される信号配線Wの形成は、端子10との接続が第1表層配線層31にて行われることもあり、内層配線層よりも表面配線層の方が容易である。電源配線は帯状の配線パターンを有するが、内層配線層に形成される電源配線の幅(W2)に比べて表層配線層に形成される電源配線の幅(W1)の方が細いと、表層配線層(31)において他の信号線の配線に利用できる領域を多く確保することができて好適である。本実施形態では、幅方向X(基板外周縁3eに沿う方向とも略一致)における第2電源配線42の幅(第2電源配線幅W2)が、同方向における第1電源配線41の幅(第1電源配線幅W1)よりも大きい。
 配線パターンの幅を広くすることができると、導体の断面積が広くなるので、電気抵抗は低くなる。従って、相対的に配線パターンの幅が広い方を定格電流値の大きい電源端子に対応させると好適である。本実施形態の場合には、第2電源端子12が、第1電源端子11よりも定格電流値が大きい電源端子であると好適である。尚、電源配線は、第1表層配線層31に形成される場合に比べ、内層配線層に形成される場合には、インダクタンス成分が増加する。しかし、定格電流値が大きい電源端子に対応する電源配線を第1表層配線層31に形成すると、配線幅を広くする必要があるため、外周側端子群17の中で電源端子に割り当てなければならない端子10が増加してしまい、その分信号端子が減少してしまう。従って、本実施形態のように、第1表層配線層31には定格電流値が最大の電源端子に対応する電源配線ではなく、定格電流値が最大から2番目以下の電源端子に対応する電源配線が形成されると好適である。
 ところで、電源には、正極と負極とがあり、正極側の配線と負極側の配線とでは、電流が流れる方向が逆である。このため、正極側の配線と負極側の配線とが平行であると電流が流れることによって生じる電磁波を相殺することができる。また、一般的に電源の負極側はグラウンドに接続され、グラウンドは信号線を流れる信号の変動によって生じるノイズ(電磁波)を吸収し、シールドとして作用する。このため、内層配線層を含めた複数層の配線を有する回路基板では、しばしば広い領域に亘ってグラウンドパターンを形成した配線層(いわゆるベタ・グラウンド層)が設けられる。本実施形態のように、2種類の電源配線(41,42)が異なる配線層(31,33)に配置される場合、これらの配線層(31,33)の間の配線層にグラウンド層が設けられると好適である。本実施形態の場合には、第1電源配線41が形成される第1表層配線層31と、第2電源配線42が形成される1つの内層配線層(第2内層配線層33)との間に、グラウンド層が形成された別の内層配線層(第1内層配線層32)を有する。
 ところで、上記においては、定格電流値が異なる2種類の電源が利用される形態を例示したが、当然ながら、3種類以上の電源が利用されてもよい。図5及び図6は、4種類の電源が利用される形態を例示している。電源配線は、第1電源配線41、第2電源配線42に加えて、第3電源配線43及び第4電源配線44が設けられている。また、不図示の第3電源端子に接続されるランドとして第3電源用ランドL3、不図示の第4電源端子に接続されるランドとして第4電源用ランドL4が設けられている。
 この例でも、4種類の電源の内、最も定格電流値が大きい電源に接続される電源配線(第2電源配線42)は、内層配線層(第2内層配線層33)に配置される。そして、定格電流値の大きさが2番目以下の電源に接続される電源配線(第1電源配線41)は、表層配線層(第1表層配線層31)に配置される。残りの2つの電源の内、より定格電流値の大きい電源に接続される第4電源配線44は、第2電源配線42と同様の理由で、第2内層配線層33に配置されている。定格電流値が最も小さい電源に接続される第3電源配線43は、第1電源配線41と同様に第1表層配線層31に配置されている。
 尚、図5及び図6に例示する形態では、第1電源配線41に接続される電源の定格電流値よりも、第4電源配線44に接続される電源の定格電流値の方が大きい。従って、第1電源配線41は、定格電流値の大きさが3番目の電源に接続される電源配線である。当然ながら、第1表層配線層31に、第1電源配線41ではなく、第4電源配線44を配置することも可能である。しかし、図5及び図6から明らかなように、第1電源配線41の幅(第1電源配線幅W1)に比べて第4電源配線44の幅(第4電源配線幅W4)の方が大きい。第1表層配線層31において信号端子のランドLや信号配線を充分に確保するという観点より、本形態では、第1電源配線41を第1表層配線層31に配置している。
 上記においては、定格電流値が異なる2種類以上の電源が利用される形態を例示したが、当然ながら、単一の電源が利用されてもよい。つまり、上記においては、第1表層配線層31に形成される第1電源配線41と、第2内層配線層33に形成される第2電源配線42との2つの電源配線を有する形態を例示したが、第1電源配線41(表層電源配線40)のみを有する形態であってもよい。
 即ち、半導体モジュール5と、回路基板3(主基板)とを備えた半導体装置1は、少なくとも以下のように構成される。半導体モジュール5は、少なくとも1つの半導体素子51を上面21aに支持固定する矩形板状の支持基板21、及び、支持基板21の下面21bに沿って平面配置されて半導体素子51と電気的に接続される複数の端子10(接続端子)を備える。回路基板3(主基板)は、複数層の配線層(31,32,33,39)を有し、半導体モジュール5が複数の端子10を介して表面実装される基板である。回路基板3には、当該基板を貫通して複数の配線層(31,32,33,39)を電気的に接続可能なスルーホールTHが複数個形成されている。スルーホールTHのそれぞれは、複数層の配線層(31,32,33,39)の全ての層において同じ位置に形成されている。つまり、スルーホールTHは、直交方向Zに沿って貫通しており、複数層の配線層(31,32,33,39)においてスルーホールTHによる孔は、直交方向Zに沿って全て重複している。
 複数の端子10は、支持基板21の各辺に沿って複数列の矩形環状に配列されている。また、複数の端子10は、支持基板21の中心側に配列された内周側端子群15と、内周側端子群15よりも外周側に配列された外周側端子群17とを含む。内周側端子群15は、半導体素子51の内の1つである対象半導体素子51Tに電力を供給する内周側電源端子群14gを含み、外周側端子群17は、内周側電源端子群14gの少なくとも一部と同一系統の外周側電源端子群16gを含む。内周側電源端子群14gは、支持基板21の板面に直交する方向(直交方向Zと略同じ方向)に見て対象半導体素子51Tと少なくとも一部が重複する位置に配置されている。外周側電源端子群16gは、内周側電源端子群14gから外周側端子群17の最外周端子18まで連続して並ぶように配列されている。
 回路基板3は、半導体モジュール5が実装される表層配線層(第1表層配線層31)に、内周側電源端子群14g及び外周側電源端子群16gを介して対象半導体素子51Tに電力を供給する表層電源配線40(表層電源経路)を有する。表層電源配線40は、半導体モジュール5が回路基板3に実装された状態で、回路基板の基板面に直交する直交方向Zに見て内周側電源端子群14g及び外周側電源端子群16gと重複し、内周側電源端子群14gと接続される位置から回路基板3の外周側(基板外周縁3eの方向)に向かって延びるように連続して形成されている。
 好適な形態として、内周側電源端子群14gは、上述したように、対象半導体素子51Tの少なくとも2系統の異なる電力を供給する電源端子群として、第1電源端子群11g(第1内周側電源端子群141g)と、第2電源端子群12g(第2内周側電源端子群142g)とを含む。一方、外周側電源端子群16gは、第2電源端子群12g(第2内周側電源端子群142g)と同一系統の端子を含まず、第1電源端子群11g(第1内周側電源端子群141g)と同一系統の端子を含む。また、表層電源配線40(表層電源経路)は、直交方向Zに見て第2電源端子群12g(第2内周側電源端子群142g)とは重複せず、第1電源端子群11g(第1内周側電源端子群141g及び外周側電源端子群16g)と重複して、第1電源端子群11g(第1内周側電源端子群141g及び外周側電源端子群16g)に接続される第1電源配線41(第1電源経路)である。この形態では、第2電源端子群12gも有するため、回路基板3(主基板)は、半導体モジュール5が実装される表層配線層(第1表層配線層31)とは異なる配線層に、第2電源端子群12gと接続される位置から回路基板3の外周側(基板外周縁3eの方向)に向かって延びるように連続して形成される第2電源配線42(第2電源経路)をさらに備えている。図16に模式的に示すように、これらの第1電源配線41と第2電源配線42とは、直交方向Zに見て少なくとも一部が重複している。
 尚、支持基板21の中心から、外周側電源端子群16gが配置される側の支持基板21の辺への法線に沿って支持基板21の外周側へ向かう方向を外周方向Yとして、第1電源端子群11g(第1内周側電源端子群141g)は、第2電源端子群12g(第2内周側電源端子群142g)よりも外周方向の側に配置されている。
 ここで、第1電源配線41を介して半導体モジュール5に供給される電力を第1電源、第2電源配線42を介して半導体モジュール5に供給される電力を第2電源とする。また、第1電源配線41(第1電源経路)の幅方向Xの長さ(特に外周側端子群17と直交方向で重複する領域での幅方向Xの長さ)を第1電源配線幅W1(第1経路幅)とする。同様に、第2電源配線42(第2電源経路)の幅方向Xの長さ(特に外周側端子群17と直交方向で重複する領域での幅方向Xの長さ)を第2電源配線幅W2(第2経路幅)とする。
 外周側電源端子群16gが、幅方向Xに連続して並ぶ長さによって、第1電源配線幅W1として利用できる領域が決定される。つまり、必要な長さの第1電源配線幅W1を確保できるように、外周側電源端子群16gは、幅方向Xに連続して並ぶように配置されている。ここで、第1電源配線幅W1として必要な長さとは、第1電源配線41を介して半導体モジュール5の第1電源に電力を供給する際に、第1電源の電気的な基準値(第1基準値)を満たすことのできる長さである。換言すれば、第1電源配線幅W1(第1経路幅)が第1電源配線41を介して半導体モジュール5に供給される第1電源の電気的な基準値である第1基準値を満たすように、外周側電源端子群16gが、幅方向Xに連続して並ぶように配置されている。
 尚、電気的な基準値とは、例えば、インピーダンス(周波数に依存するインダクタンス成分(リアクタンス)、電圧降下に影響する抵抗成分、それらの両方)、定格電流値、電流や電圧の脈動の振幅等を含む、電気的なパラメータである。第2電源配線42を介して半導体モジュール5に供給される第2電源の電気的な基準値である第2基準値は、第1基準値よりも許容範囲が狭くなる基準値である。ここで、「許容範囲が狭くなる」とは、例えば、基準値がインピーダンスの場合には、より低いインピーダンスであることであり、定格電流値の場合には、定格電流が大きいことであり、脈動の場合には許容可能な振幅がより小さいこと、などである。
 一例として、第1基準値は、第1電源の定格電流値である第1定格電流値を含むことができ、第2基準値は、第2電源の定格電流値である第2定格電流値を含むことができる。この場合、第1基準値よりも許容範囲が狭くなる第2基準値としての第2定格電流値は、第1定格電流値よりも大きい。また、第1基準値は、第1電源配線41のインピーダンスの最大許容値である第1インピーダンスを含むことができ、第2基準値は、第2電源配線42のインピーダンスの最大許容値である第2インピーダンスを含むことができる。第1基準値よりも許容範囲が狭くなる第2基準値としての第2インピーダンスは第1インピーダンスよりも低い。
 ところで、上述したように、外周側端子群17に含まれる端子10の内、半導体モジュール5が回路基板3に実装された状態で、自端子よりも外周側に配置された端子10から引き出される信号配線Wの有無に応じて、スルーホールTHを経由しなければ最外周端子18よりも外周側へ信号配線Wを引き出すことができない場合がある位置に配置されている端子10を難接続端子19と称する。好ましくは、難接続端子19は、最外周端子18よりも外周側へ信号配線Wを引き出す必要のない用途に割り当てられている。このように、信号配線Wを引き出す必要のない用途に割り当てられている端子を「非信号接続端子」と称する。このような非信号出力端子は、図2から図4、図15を参照して上述したように、第2電源配線42の幅方向Xの長さである第2電源配線幅W2(第2経路幅)が第2基準値を満たすように、幅方向Xに連続して並ぶように配置されている。
 図3及び図4を参照して、上述したように、第2電源配線幅W2(第2経路幅)は、第1電源配線幅W1(第1経路幅)よりも大きい。図2に示すように、外周側端子群17に含まれる端子10の内、半導体モジュール5が回路基板3に実装された状態で直交方向Zに見て第2電源配線42(第2電源経路)と重複し、外周側電源端子群16g及び非信号接続端子に含まれない端子10は、スルーホールTHを経由することなく最外周端子18よりも外周側へ信号配線Wを引き出すことが可能な位置に配置されている。このような端子10は、図2や図15に示す例では、外周側から1周目の端子10、及び外周側から2周目の端子10の内、外周側電源端子群16gとして割り当てられない端子10に対応する。図15を参照して上述したように、これらの端子10は、スルーホールTHを経由することなく最外周端子18よりも外周側へ信号配線Wを引き出すことが可能である。
 尚、上述したように、非信号接続端子の内、第1基準値を満たすために外周側電源端子群16gに割り当てられる端子10以外の端子10は、好適には、グラウンド端子、又は信号が入出力されないNC端子に割り当てられている。図18に例示するように、難接続端子19が、外周側端子群17において複数列(複数周)存在する場合には、難接続端子19に、外周側電源端子群16gに属する端子10、グラウンド端子、及び信号端子の何れか2つ以上の属性の端子10を割り当てることができる。このような場合、支持基板21の中心側から外周側に向かって(外周方向Yに向かって)、外周側電源端子群16gに属する端子10、グラウンド端子、信号端子の優先順位で割り当てると好適である。例えば、図18に例示する3本の端子“10a,10b,10c”の場合には、これら3本の内最も内周側の難接続端子“10a”を外周側電源端子群16gに属する端子10とし、真ん中の難接続端子“10b”をグラウンド端子とし、3本の内最も外周側の難接続端子“10c”を信号端子とすると好適である。
 上記においては、図5及び図6を参照して、4種類の電源が利用される形態を例示した。図5及び図6に示した形態では、第1電源配線41及び第3電源配線43が、第1表層配線層31に配置されているが、第1電源配線41及び第3電源配線43は、互いに逆方向に延びるように形成されている。しかし、第1表層配線層31に複数種類の電源配線が形成される場合に、同一方向(例えば外周方向Y)に向かって電源配線が延びるように形成されてもよい。
 図19及び図20は、対象半導体素子51Tが、少なくとも3系統の電源端子を有している場合の例を示している。内周側端子群15は、図2及び図3に示した例に比べて、さらに、第1電源端子群11g(第1内周側電源端子群141g)及び第2電源端子群12g(第2内周側電源端子群142g)とは異なる系統の第3電源端子群13g(第3内周側電源端子群143g)を含む。外周側電源端子群16gは、第1電源端子群11g(第1内周側電源端子群141g)と同一系統の第1外周側電源端子群161gに加えて、第3電源端子群13g(第3内周側電源端子群143g)と同一系統の第2外周側電源端子群162gを含む。内周側電源端子群14gにおいて、第1電源端子群11gと第3電源端子群13gとは、少なくとも一部の端子が幅方向Xにおいて隣り合って配置されている。また、第1外周側電源端子群161gと第2外周側電源端子群162gとは、少なくとも一部の端子が幅方向Xにおいて隣り合って配置されている。
 図19及び図20を参照する例では、第1外周側電源端子群161gを含む第1電源端子群11gを介して電力を供給される第1電源の方が、第2外周側電源端子群162gを含む第3電源端子群13gを介して電力を供給される第3電源に比べて定格電流が大きい電源である。図20に示すように、表層電源配線40も、第1電源に電力を供給する第1電源配線41(第1電源経路)と、第3電源に電力を供給する第3電源配線43(第3電源経路)との2つが形成されている。これらの電源配線は、定格電流に応じて、第1電源配線41の第1電源配線幅W1の方が、第3電源配線43の第3電源配線幅W3よりも大きい。
〔その他の実施形態〕
 以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記においては、半導体モジュール5の端子10が、内周側端子群15と外周側端子群17との大きく2つの端子群を有している形態を例示して説明した。また、内周側端子群15に含まれる内周側電源端子群14gは、直交方向Zに見て半導体素子51(対象半導体素子51T)と少なくとも一部が重複する位置に配置されていると説明した。しかし、半導体モジュール5に形成される端子群は、3つ以上であってもよい。例えば、図21に例示するように、端子10は、最も中心側に配列された第1端子群101と、第1端子群101よりも外周側に配列された第2端子群103と、第2端子群103よりも外周側に配列された第3端子群105と、の3つの端子群を有していてもよい。
 ここで、図21に示すように、直交方向Zに見て第1端子群101に重複するように、半導体素子51(51A)が備えられている場合、第1端子群101が内周側端子群15に対応し、内周側端子群15としての第1端子群101に内周側電源端子群14gが含まれる。また、少なくとも第2端子群103が外周側端子群17に対応し、外周側端子群17としての第2端子群103に外周側電源端子群16gが含まれる。図21に示すように、表層電源配線40は、直交方向Zに見て第1端子群101(内周側電源端子群14g)及び第2端子群103(外周側電源端子群16g)と重複するように形成される。図示は省略するが、当然ながら、第2端子群103及び第3端子群105が、外周側端子群17に対応する形態であってもよい。この場合、第2端子群103及び第3端子群105に外周側電源端子群16gが含まれ、表層電源配線40は、第2端子群103に加えて第3端子群105とも重複する。
 また、図21に示すように、直交方向Zに見て第2端子群102に重複するように、半導体素子51(51B)が備えられている場合には、第2端子群103が内周側端子群15に対応し、内周側端子群15としての第2端子群103に内周側電源端子群14gが含まれる。この場合には、第3端子群105が外周側端子群17に対応し、外周側端子群17としての第3端子群105に外周側電源端子群16gが含まれる。図21に示すように、表層電源配線40は、直交方向Zに見て第2端子群103(内周側電源端子群14g)及び第3端子群105(外周側電源端子群16g)と重複するように形成される。
(2)上記においては、第1電源配線41が形成される表層配線層(第1表層配線層31)と、第2電源配線42が形成される1つの内層配線層(第2内層配線層33)との間に、グラウンド層が形成された別の内層配線層で(第1内層配線層32)を有する形態を例示した。しかし、第1電源配線41が形成される表層配線層(31)と、第2電源配線42が形成される1つの内層配線層との間に、そのようなグラウンド層を挟むことなく、回路基板3が構成されることを妨げるものではない。
〔実施形態の概要〕
 以下、上記において説明した半導体装置(1)、チップモジュール(5M)、半導体モジュール(5)の概要について簡単に説明する。
 半導体装置(1)は、1つの態様として、
 パッケージ基板(B)に少なくとも1つの半導体ダイ(D)が支持された半導体チップ(51M)を少なくとも1つ上面に支持固定する矩形板状のモジュール基板(21m)、及び、前記モジュール基板(21m)の下面(21b)に沿って平面配置されて前記半導体チップ(51M)と電気的に接続される複数の接続端子を備えたチップモジュール(5M)と、
 複数層の配線層(31,32,33,39)を有し、前記チップモジュール(5M)が複数の前記接続端子(10)を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層(31,32,33,39)を電気的に接続可能なスルーホール(TH)が複数個形成された主基板(3)と、を備え、
 前記半導体チップ(51M(51p))は、前記モジュール基板(21m)に支持される被支持面(51b)に沿って平面配置されて前記モジュール基板(21m)と電気的に接続される複数のチップ端子(55)を有し、
 複数の前記チップ端子(55)は、前記半導体チップ(51M(51p))に電力を供給する複数のチップ電源端子(56)を含み、
 複数の前記チップ電源端子(56)は、複数の前記チップ端子(55)が平面配置された配置領域(R1)の外縁(R1e)よりも内側に配置され、
 前記チップモジュール(5M)は、前記半導体チップ(51M(51p))が前記モジュール基板(21m)に実装され、複数の前記チップ端子(55)の配置と複数の前記接続端子(10)の配置とが前記モジュール基板(21m)において並び替えられており
 複数の前記接続端子(10)は、前記モジュール基板(21m)の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子(10)は、前記モジュール基板(21m)の中心側に配列された内周側端子群(15)と、前記内周側端子群(15)よりも外周側に配列された外周側端子群(17)とを含み、
 前記内周側端子群(15)は、前記半導体チップ(51M(51p))に電力を供給する内周側電源端子群(14g)を含み、
 前記外周側端子群(17)は、前記内周側電源端子群(14g)の少なくとも一部と同一系統の外周側電源端子群(16g)を含み、
 前記内周側電源端子群(14g)は、前記モジュール基板(21m)の板面に直交する方向に見て前記半導体チップ(51M(51p))と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群(16g)は、前記内周側電源端子群(14g)から前記外周側端子群(17)の最外周端子(18)まで連続して並ぶように配列され、
 前記主基板(3)は、前記チップモジュール(5M)が実装される表層配線層(31)に、前記内周側電源端子群(14g)及び前記外周側電源端子群(16g)を介して前記半導体チップ(51M(51p))に電力を供給する表層電源経路(40)を有し、
 前記表層電源経路(40)は、前記チップモジュール(5M)が前記主基板(3)に実装された状態で、前記主基板(3)の基板面に直交する直交方向(Z)に見て前記内周側電源端子群(14g)及び前記外周側電源端子群(16g)と重複し、前記内周側電源端子群(14g)と接続される位置から前記主基板(3)の外周側に向かって延びるように連続して形成されている。
 また、パッケージ基板(B)に少なくとも1つの半導体ダイ(D)が支持された半導体チップ(51M)を少なくとも1つ上面に支持固定する矩形板状のモジュール基板(21m)、及び、前記モジュール基板(21m)の下面(21b)に沿って平面配置されて前記半導体チップ(51M)と電気的に接続される複数の接続端子を備えたチップモジュール(5M)は、1つの態様として、
 前記半導体チップ(51M(51p))は、前記モジュール基板(21m)に支持される被支持面(51b)に沿って平面配置されて前記モジュール基板(21m)と電気的に接続される複数のチップ端子(55)を有し、
 複数の前記チップ端子(55)は、前記半導体チップ(51M(51p))に電力を供給する複数のチップ電源端子(56)を含み、
 複数の前記チップ電源端子(56)は、複数の前記チップ端子(55)が平面配置された配置領域(R1)の外縁(R1e)よりも内側に配置され、
 前記半導体チップ(51M(51p))は、前記モジュール基板(21m)に実装され、
 複数の前記チップ端子(55)の配置と複数の前記接続端子の配置とは、前記モジュール基板(21m)において並び替えられており、
 複数の前記接続端子(10)は、前記モジュール基板(21m)の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子(10)は、前記モジュール基板(21m)の中心側に配列された内周側端子群(15)と、前記内周側端子群(15)よりも外周側に配列された外周側端子群(17)とを含み、
 前記内周側端子群(15)は、前記半導体チップ(51M(51p))の電源端子に接続される内周側電源端子群(14g)を含み、
 前記外周側端子群(17)は、前記内周側電源端子群(14g)の少なくとも一部と同一系統の外周側電源端子群(16g)を含み、
 前記内周側電源端子群(14g)は、前記モジュール基板(21m)の板面に直交する方向に見て、前記半導体チップ(51M(51p))と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群(16g)は、前記内周側電源端子群(14g)から前記外周側端子群(17)の最外周端子(18)まで連続して並ぶように配列されている。
 上記の構成によれば、内周側電源端子群(14g)がモジュール基板(21m)の板面に直交する方向に見て、半導体チップ(51M(51p))と少なくとも一部が重複する位置に配置されているから、半導体チップ(51M(51p))の直下に内周側電源端子群(14g)が配置されていることになる。従って、半導体チップ(51M(51p))の電源端子とチップモジュール(5M)の電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。尚、半導体ダイ(D)への電源供給経路を短く形成するために、一般的にチップ電源端子(56)は、半導体ダイ(D)の直下に設けられる(一般的にモジュール基板(21m)とパッケージ基板(B)とは平行状に配置されるので、モジュール基板(21m)(パッケージ基板(B))の板面に直交する方向に見て、半導体ダイ(D)の少なくとも一部と重複する位置に、チップ電源端子(56)が設けられる。)。従って、内周側電源端子群(14g)は、モジュール基板(21m)の板面に直交する方向に見て、半導体ダイ(D)(半導体チップ51M(51p)の半導体ダイ(D))と少なくとも一部が重複する位置に配置されているということもできる。
 また、半導体装置(1)においては、半導体チップ(51M(51p))に電力を供給する表層電源経路(40)が、チップモジュール(5M)が実装される表層配線層(31)に形成される。この表層電源経路(40)は、モジュール基板(21m)を介して半導体チップ(51M(51p))に電力を供給する内周側電源端子群(14g)及び外周側電源端子群(16g)と、直交方向(Z)に見て重複している。従って、表層配線層(31)において表面実装されるとチップモジュール(5M)の内周側電源端子群(14g)及び外周側電源端子群(16g)は、直接、表層電源経路(40)と接続される。また、表層電源経路(40)には、他の信号を引き出すためのスルーホール(TH)を設ける必要もなく、孔や絶縁領域を設ける必要もないので、表層電源経路(40)のインピーダンスも低く抑えることができる。このように、上記の構成によれば、スルーホール(TH)によって配線の有効面積が減少することを抑制し、安定して電源供給が可能な半導体装置(1)並びにチップモジュール(5M)を提供することができる。
 例えば、半導体チップ(51M(51p))が汎用的なマイクロコンピュータやDSPのようなプロセッサである場合、その端子配置(チップ端子(55)の端子配置)は、半導体ベンダーによって決定されている。つまり、これらのマイクロコンピュータやDSPを利用して装置を生産する装置メーカーにとって好適な端子配置とはなっていない場合も多い。マイクロコンピュータやDSPの端子配置が装置メーカーに好適な配置となるように、専用品として生産することは不可能ではないが、専用品化のための開発費等を考慮すると採算が取れず現実的ではない。チップモジュール(5M)では、モジュール基板(21m)上の配線によって端子配置を変換できるので、チップモジュール(5M)における接続端子(10)の端子配置を、装置メーカーにとって好適な端子配置とすることができる。その結果、上述したように、主基板(3)の表層配線層(31)に形成される表層電源経路(40)により、半導体チップ(51M(51p))に電力を供給することができる。
 また、チップモジュール(5M)は、前記内周側電源端子群(14g)が、前記半導体チップ(51M(51p))の少なくとも2系統の異なる電源端子に接続される電源端子群として、第1内周側電源端子群(141g)と、第2内周側電源端子群(142g)とを含み、前記外周側電源端子群(16g)が、前記第2内周側電源端子群(142g)と同一系統の端子を含まず、前記第1内周側電源端子群(141g)と同一系統の端子を含むと好適である。
 また、半導体装置(1)は、以下のように構成されていると好適である。即ち、前記内周側電源端子群(14g)は、前記半導体チップ(51M(51p))の少なくとも2系統の異なる電力を供給する電源端子群として、第1内周側電源端子群(141g)と、第2内周側電源端子群(142g)とを含み、前記外周側電源端子群(16g)は、前記第2内周側電源端子群(142g)と同一系統の端子を含まず、前記第1内周側電源端子群(141g)と同一系統の端子を含み、前記表層電源経路(40)は、前記直交方向(X)に見て前記第2内周側電源端子群(142g)とは重複せず、前記第1内周側電源端子群(141g)及び前記外周側電源端子群(16g)と重複して、前記第1内周側電源端子群(141g)及び前記外周側電源端子群(16g)に接続される第1電源経路(41)であり、前記主基板(3)は、前記チップモジュール(5M)が実装される前記表層配線層(31)とは異なる配線層(33)に、前記第2内周側電源端子群(142g)と接続される位置から前記主基板(3)の外周側に向かって延びるように連続して形成される第2電源経路(42)をさらに備え、前記第1電源経路(41)と前記第2電源経路(42)とは、前記直交方向(Z)に見て少なくとも一部が重複すると好適である。
 半導体チップ(51M(51p))の2系統の電源端子に対応する電源端子群を内周側電源端子群(14g)に割り当てることで、半導体チップ(51M(51p))の電源端子と半導体モジュール(5)の電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。また、内周側電源端子群(14g)に属する2種類の電源端子群の内、第1内周側電源端子群(141g)と同一系統の端子のみが、最外周端子(18)まで連続して並ぶ外周側電源端子群(16g)に含まれる。従って、少なくとも第1内周側電源端子群(141g)及び外周側電源端子群(16g)は、実装先の基板において連続した電源配線を介して電力の供給を受けることができる。
 半導体装置(1)では、主基板(3)に実装されたチップモジュール(5M)の第1内周側電源端子群(141g)及び外周側電源端子群(16g)は、表層配線層(31)に形成された表層電源経路(40)(第1電源経路(41))を介して、電力の供給を受けることができる。また、主基板(3)に実装されたチップモジュール(5M)の第2内周側電源端子群(142g)は、表層配線層(31)とは異なる配線層(33)に形成された第2電源経路(42)を介して電力の供給を受ける。第1電源経路(41)と第2電源経路(42)とは、直交方向(Z)に見て少なくとも一部が重複し、第1電源経路(41)には第1内周側電源端子群(141g)及び外周側電源端子群(16g)が直交方向(Z)に見て重複している。第1電源経路(41)にはスルーホール(TH)を設ける必要がないから、少なくとも第1電源経路(41)と重複する部分では第2電源経路(42)にも他の電源や信号を伝達するためのスルーホール(TH)は設けられない。従って、スルーホール(TH)によって第2電源経路(42)の有効面積が減少することが抑制される。即ち、第1電源経路(41)及び第2電源経路(42)を介して、安定して電源供給が可能な半導体装置(1)を提供することができる。
 また、1つの態様として、半導体装置(1)は、前記チップモジュール(5M)が前記主基板(3)に実装された状態で、前記外周側電源端子群(16g)が配置される側の前記モジュール基板(21m)の辺に沿った方向を幅方向(X)として、前記第1電源経路(41)の前記幅方向(X)の長さである第1経路幅(W1)が前記第1電源経路(41)を介して前記半導体モジュール(5)に供給される第1電源の電気的な基準値である第1基準値を満たすように、前記外周側電源端子群(16g)が、前記幅方向(X)に連続して並ぶように配置されていると好適である。
 一般的に電源を供給する配線は、信号配線に比べて流れる電流が大きいため、配線の断面積が大きくなるように、信号配線に比べて広い配線幅を有する。第1基準値を満たすように、外周側電源端子群(16g)が、幅方向(X)に連続して並ぶことで、第1電源経路(41)は必要な配線幅を確保することができる。
 ここで、前記第2電源経路(42)を介して前記チップモジュール(5M)に供給される第2電源の電気的な基準値である第2基準値は、前記第1基準値よりも許容範囲が狭くなる基準値であると好適である。
 第2基準値が第1基準値よりも許容範囲が狭く、よい厳しい条件の場合、例えば配線の断面積を大きくするなど、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、チップモジュール(5M)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、1つの態様として、前記外周側端子群(16g)に含まれる前記接続端子(10)の内、前記チップモジュール(5M)が前記主基板(3)に実装された状態で、自端子よりも外周側に配置された前記接続端子(10)から引き出される信号配線(W)の有無に応じて、前記スルーホール(TH)を経由しなければ前記最外周端子(18)よりも外周側へ信号配線(W)を引き出すことができない場合がある位置に配置されている前記接続端子(10)を難接続端子(19)とし、前記難接続端子(19)の内、前記最外周端子(18)よりも外周側へ信号配線(W)を引き出す必要のない用途に割り当てられている端子を非信号接続端子とし、前記非信号接続端子は、前記第2電源経路(42)の前記幅方向(X)の長さである第2経路幅(W2)が前記第2基準値を満たすように、前記幅方向(X)に連続して並ぶように配置されていると好適である。
 非信号接続端子が接続される位置には、接続端子(10)が難接続端子(19)であってもスルーホール(TH)を設ける必要がない。第2基準値を満たすように、非信号接続端子が、幅方向(X)に連続して並ぶことで、第2電源経路(42)は必要な配線幅を確保することができる。
 また、1つの態様として、前記第2経路幅(W2)は、前記第1経路幅(W1)よりも大きく、前記外周側端子群(18)に含まれる前記接続端子(10)の内、前記チップモジュール(5M)が前記主基板(3)に実装された状態で前記直交方向(Z)に見て前記第2電源経路(42)と重複し、前記外周側電源端子群(16g)及び前記非信号接続端子に含まれない前記接続端子(10)は、前記スルーホール(TH)を経由することなく前記最外周端子(18)よりも外周側へ信号配線(W)を引き出すことが可能な位置に配置されていると好適である。
 第2電源経路(42)と直交方向(Z)に見て重複する接続端子(10)が接続される位置の全てが、スルーホール(TH)を設ける必要がない位置となるので、第2電源経路(42)の有効面積が減少することが抑制され、安定した電源供給が可能となる。
 また、1つの態様として、前記非信号接続端子の内、前記第1基準値を満たすために前記外周側電源端子群(16g)に割り当てられる前記接続端子(10)以外の前記接続端子(10)は、グラウンド端子、又は信号が入出力されないNC端子に割り当てられていると好適である。
 グラウンド端子及びNC端子は、スルーホール(TH)を介して他の配線層と接続しなくてもよいので、非信号接続端子として好適である。
 また、1つの態様として、前記難接続端子(19)に、前記外周側電源端子群(16g)に属する前記接続端子(10)、前記グラウンド端子、及び信号端子の何れか2つ以上の属性の前記接続端子(10)が割り当てられる場合、前記モジュール基板(21m)の中心側から外周側に向かって、前記外周側電源端子群(16g)に属する前記接続端子(10)、前記グラウンド端子、前記信号端子の優先順位で割り当てられていると好適である。
 より外周側に配置されている接続端子(10)の方が、スルーホール(TH)を介さず、表層配線層(31)を通って最外周端子(18)よりも外周側へ信号配線(W)を引き出すことができる可能性が高い。従って、上記の優先順位で接続端子(10)が割り当てられると好適である。
 ここで、前記第1基準値は、前記第1電源の定格電流値である第1定格電流値を含み、前記第2基準値は、前記第2電源の定格電流値である第2定格電流値を含み、前記第2定格電流値は、前記第1定格電流値よりも大きいと好適である。
 第2定格電流値が第1定格電流値よりも大きい場合、例えば配線の断面積を大きくするなど、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、チップモジュール(5M)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、前記第1基準値は、前記第1電源経路(41)のインピーダンスの最大許容値である第1インピーダンスを含み、前記第2基準値は、前記第2電源経路のインピーダンスの最大許容値である第2インピーダンスを含み、前記第2インピーダンスは前記第1インピーダンスよりも低いと好適である。
 第2インピーダンスが第1インピーダンスよりも低い場合、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、半導体モジュール(5)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、1つの態様として、前記半導体チップ(51M(51p))は、少なくとも3系統の電源端子を有し、前記内周側端子群(14g)は、さらに、前記第1内周側電源端子群(141g)及び前記第2内周側電源端子群(142g)とは異なる系統の第3内周側電源端子群(143g)を含み、前記外周側電源端子群(16g)は、前記第1内周側電源端子群(141g)と同一系統の第1外周側電源端子群(161g)に加えて、前記第3内周側電源端子群(143g)と同一系統の第2外周側電源端子群(162g)を含むと好適である。
 2系統の電源に対応させて表層電源経路(40)を設けることができるので、スルーホール(TH)によって配線の有効面積が減少することを抑制し、安定してチップモジュール(5M)に電源供給が可能な半導体装置(1)を提供することができる。
 また、前記チップモジュール(5M)が前記主基板(3)に実装された状態で、前記外周側電源端子群(16g)が配置される側の前記モジュール基板(21m)の辺に沿った方向を幅方向(X)として、前記第1内周側電源端子群(141g)と前記第3内周側電源端子群(143g)とは、少なくとも一部の端子が前記幅方向(X)において隣り合って配置され、前記第1外周側電源端子群(161g)と前記第2外周側電源端子群(162g)とは、少なくとも一部の端子が前記幅方向(X)において隣り合って配置されていると好適である。
 2系統の電源に対応した2つの表層電源経路(41,43)を、幅方向(X)に並べて並行させることができるので、高い配線効率で2つの表層電源経路(41,43)を形成することができる。
 また、前記モジュール基板(21m)の中心から、前記外周側電源端子群(16g)が配置される側の前記モジュール基板(21m)の辺への法線に沿って前記モジュール基板(21m)の外周側へ向かう方向を外周方向(Y)として、前記第1内周側電源端子群(141g)は、前記第2内周側電源端子群(142g)よりも前記外周方向(Y)の側に配置されていると好適である。
 表層電源経路(40)である第1電源経路(41)が外周側に向かって延伸する側に、内周側電源端子群(14g)の内の第1内周側電源端子群(141g)が配置されるので、高い配線効率で第1電源経路(41)を形成することができる。
 また、半導体装置(1)は、1つの態様として、
 少なくとも1つの半導体素子(51)を上面(21a)に支持固定する矩形板状の支持基板(21)、及び、前記支持基板(21)の下面(21b)に沿って平面配置されて前記半導体素子(51)と電気的に接続される複数の接続端子(10)を備えた半導体モジュール(5)と、
 複数層の配線層(31,32,33,39)を有し、前記半導体モジュール(5)が複数の前記接続端子(10)を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層(31,32,33,39)を電気的に接続可能なスルーホール(TH)が複数個形成された主基板(3)と、を備え、
 複数の前記接続端子(10)は、前記支持基板(21)の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子(10)は、前記支持基板(21)の中心側に配列された内周側端子群(15)と、前記内周側端子群(15)よりも外周側に配列された外周側端子群(17)とを含み、
 前記内周側端子群(15)は、前記半導体素子(51)の内の1つである対象半導体素子(51T)に電力を供給する内周側電源端子群(14g)を含み、
 前記外周側端子群(17)は、前記内周側電源端子群(14g)の少なくとも一部と同一系統の外周側電源端子群(16g)を含み、
 前記内周側電源端子群(14g)は、前記支持基板(21)の板面に直交する方向に見て前記対象半導体素子(51T)と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群(16g)は、前記内周側電源端子群(14g)から前記外周側端子群(17)の最外周端子(18)まで連続して並ぶように配列され、
 前記主基板(3)は、前記半導体モジュール(5)が実装される表層配線層(31)に、前記内周側電源端子群(14g)及び前記外周側電源端子群(16g)を介して前記対象半導体素子(51T)に電力を供給する表層電源経路(40)を有し、
 前記表層電源経路(40)は、前記半導体モジュール(5)が前記主基板(3)に実装された状態で、前記主基板(3)の基板面に直交する直交方向(Z)に見て前記内周側電源端子群(14g)及び前記外周側電源端子群(16g)と重複し、前記内周側電源端子群(14g)と接続される位置から前記主基板(3)の外周側に向かって延びるように連続して形成されている。
 また、少なくとも1つの半導体素子(51)を上面(21a)に支持固定する矩形板状の支持基板(21)、及び、前記支持基板(21)の下面(21b)に沿って平面配置されて前記半導体素子(51)と電気的に接続される複数の接続端子(10)を備えた半導体モジュール(5)は、1つの態様として、
 複数の前記接続端子(10)は、前記支持基板(21)の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子(10)は、前記支持基板(21)の中心側に配列された内周側端子群(15)と、前記内周側端子群(15)よりも外周側に配列された外周側端子群(17)とを含み、
 前記内周側端子群(15)は、前記半導体素子(51)の内の1つである対象半導体素子(51)の電源端子に接続される内周側電源端子群(14g)を含み、
 前記外周側端子群(17)は、前記内周側電源端子群(14g)の少なくとも一部と同一系統の外周側電源端子群(16g)を含み、
 前記内周側電源端子群(14g)は、前記支持基板(21)の板面に直交する方向に見て、前記対象半導体素子(51T)と少なくとも一部が重複する位置に配置され、
 前記外周側電源端子群(16g)は、前記内周側電源端子群(14g)から前記外周側端子群(17)の最外周端子(18)まで連続して並ぶように配列されている。
 上記の構成によれば、内周側電源端子群(14g)が支持基板(21)の板面に直交する方向に見て、対象半導体素子(51T)と少なくとも一部が重複する位置に配置されているから、対象半導体素子(51T)の直下に内周側電源端子群(14g)が配置されていることになる。従って、対象半導体素子(51T)の電源端子と半導体モジュール(5)の電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。また、半導体装置(1)においては、対象半導体素子(51T)に電力を供給する表層電源経路(40)が、半導体モジュール(5)が実装される表層配線層(31)に形成される。この表層電源経路(40)は、支持基板(21)を介して対象半導体素子(51T)に電力を供給する内周側電源端子群(14g)及び外周側電源端子群(16g)と、直交方向(Z)に見て重複している。従って、表層配線層(31)において表面実装される半導体モジュール(5)の内周側電源端子群(14g)及び外周側電源端子群(16g)は、直接、表層電源経路(40)と接続される。また、表層電源経路(40)には、他の信号を引き出すためのスルーホール(TH)を設ける必要もなく、孔や絶縁領域を設ける必要もないので、表層電源経路(40)のインピーダンスも低く抑えることができる。このように、上記の構成によれば、スルーホール(TH)によって配線の有効面積が減少することを抑制し、安定して電源供給が可能な半導体装置(1)並びに半導体モジュール(5)を提供することができる。
 また、半導体モジュール(5)は、前記内周側電源端子群(14g)が、前記対象半導体素子(51T)の少なくとも2系統の異なる電源端子に接続される電源端子群として、第1内周側電源端子群(141g)と、第2内周側電源端子群(142g)とを含み、前記外周側電源端子群(16g)が、前記第2内周側電源端子群(142g)と同一系統の端子を含まず、前記第1内周側電源端子群(141g)と同一系統の端子を含むと好適である。
 また、半導体装置(1)は、以下のように構成されていると好適である。即ち、前記内周側電源端子群(14g)は、前記対象半導体素子(51T)の少なくとも2系統の異なる電力を供給する電源端子群として、第1内周側電源端子群(141g)と、第2内周側電源端子群(142g)とを含み、前記外周側電源端子群(16g)は、前記第2内周側電源端子群(142g)と同一系統の端子を含まず、前記第1内周側電源端子群(141g)と同一系統の端子を含み、前記表層電源経路(40)は、前記直交方向(X)に見て前記第2内周側電源端子群(142g)とは重複せず、前記第1内周側電源端子群(141g)及び前記外周側電源端子群(16g)と重複して、前記第1内周側電源端子群(141g)及び前記外周側電源端子群(16g)に接続される第1電源経路(41)であり、前記主基板(3)は、前記半導体モジュール(5)が実装される前記表層配線層(31)とは異なる配線層(33)に、前記第2内周側電源端子群(142g)と接続される位置から前記主基板(3)の外周側に向かって延びるように連続して形成される第2電源経路(42)をさらに備え、前記第1電源経路(41)と前記第2電源経路(42)とは、前記直交方向(Z)に見て少なくとも一部が重複すると好適である。
 対象半導体素子(51T)の2系統の電源端子に対応する電源端子群を内周側電源端子群(14g)に割り当てることで、対象半導体素子(51T)の電源端子と半導体モジュール(5)の電源端子とを短い配線距離で接続することができ、配線におけるインピーダンスを低く抑えることができる。また、内周側電源端子群(14g)に属する2種類の電源端子群の内、第1内周側電源端子群(141g)と同一系統の端子のみが、最外周端子(18)まで連続して並ぶ外周側電源端子群(16g)に含まれる。従って、少なくとも第1内周側電源端子群(141g)及び外周側電源端子群(16g)は、実装先の基板において連続した電源配線を介して電力の供給を受けることができる。
 半導体装置(1)では、主基板(3)に実装された半導体モジュール(5)の第1内周側電源端子群(141g)及び外周側電源端子群(16g)は、表層配線層(31)に形成された表層電源経路(40)(第1電源経路(41))を介して、電力の供給を受けることができる。また、主基板(3)に実装された半導体モジュール(5)の第2内周側電源端子群(142g)は、表層配線層(31)とは異なる配線層(33)に形成された第2電源経路(42)を介して電力の供給を受ける。第1電源経路(41)と第2電源経路(42)とは、直交方向(Z)に見て少なくとも一部が重複し、第1電源経路(41)には第1内周側電源端子群(141g)及び外周側電源端子群(16g)が直交方向(Z)に見て重複している。第1電源経路(41)にはスルーホール(TH)を設ける必要がないから、少なくとも第1電源経路(41)と重複する部分では第2電源経路(42)にも他の電源や信号を伝達するためのスルーホール(TH)は設けられない。従って、スルーホール(TH)によって第2電源経路(42)の有効面積が減少することが抑制される。即ち、第1電源経路(41)及び第2電源経路(42)を介して、安定して電源供給が可能な半導体装置(1)を提供することができる。
 また、1つの態様として、半導体装置(1)は、前記半導体モジュール(5)が前記主基板(3)に実装された状態で、前記外周側電源端子群(16g)が配置される側の前記支持基板(21)の辺に沿った方向を幅方向(X)として、前記第1電源経路(41)の前記幅方向(X)の長さである第1経路幅(W1)が前記第1電源経路(41)を介して前記半導体モジュール(5)に供給される第1電源の電気的な基準値である第1基準値を満たすように、前記外周側電源端子群(16g)が、前記幅方向(X)に連続して並ぶように配置されていると好適である。
  一般的に電源を供給する配線は、信号配線に比べて流れる電流が大きいため、配線の断面積が大きくなるように、信号配線に比べて広い配線幅を有する。第1基準値を満たすように、外周側電源端子群(16g)が、幅方向(X)に連続して並ぶことで、第1電源経路(41)は必要な配線幅を確保することができる。
 ここで、前記第2電源経路(42)を介して前記半導体モジュール(5)に供給される第2電源の電気的な基準値である第2基準値は、前記第1基準値よりも許容範囲が狭くなる基準値であると好適である。
 第2基準値が第1基準値よりも許容範囲が狭く、よい厳しい条件の場合、例えば配線の断面積を大きくするなど、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、半導体モジュール(5)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、1つの態様として、前記外周側端子群(16g)に含まれる前記接続端子(10)の内、前記半導体モジュール(5)が前記主基板(3)に実装された状態で、自端子よりも外周側に配置された前記接続端子(10)から引き出される信号配線(W)の有無に応じて、前記スルーホール(TH)を経由しなければ前記最外周端子(18)よりも外周側へ信号配線(W)を引き出すことができない場合がある位置に配置されている前記接続端子(10)を難接続端子(19)とし、前記難接続端子(19)の内、前記最外周端子(18)よりも外周側へ信号配線(W)を引き出す必要のない用途に割り当てられている端子を非信号接続端子とし、前記非信号接続端子は、前記第2電源経路(42)の前記幅方向(X)の長さである第2経路幅(W2)が前記第2基準値を満たすように、前記幅方向(X)に連続して並ぶように配置されていると好適である。
 非信号接続端子が接続される位置には、接続端子(10)が難接続端子(19)であってもスルーホール(TH)を設ける必要がない。第2基準値を満たすように、非信号接続端子が、幅方向(X)に連続して並ぶことで、第2電源経路(42)は必要な配線幅を確保することができる。
 また、1つの態様として、前記第2経路幅(W2)は、前記第1経路幅(W1)よりも大きく、前記外周側端子群(18)に含まれる前記接続端子(10)の内、前記半導体モジュール(5)が前記主基板(3)に実装された状態で前記直交方向(Z)に見て前記第2電源経路(42)と重複し、前記外周側電源端子群(16g)及び前記非信号接続端子に含まれない前記接続端子(10)は、前記スルーホール(TH)を経由することなく前記最外周端子(18)よりも外周側へ信号配線(W)を引き出すことが可能な位置に配置されていると好適である。
 第2電源経路(42)と直交方向(Z)に見て重複する接続端子(10)が接続される位置の全てが、スルーホール(TH)を設ける必要がない位置となるので、第2電源経路(42)の有効面積が減少することが抑制され、安定した電源供給が可能となる。
 また、1つの態様として、前記非信号接続端子の内、前記第1基準値を満たすために前記外周側電源端子群(16g)に割り当てられる前記接続端子(10)以外の前記接続端子(10)は、グラウンド端子、又は信号が入出力されないNC端子に割り当てられていると好適である。
 グラウンド端子及びNC端子は、スルーホール(TH)を介して他の配線層と接続しなくてもよいので、非信号接続端子として好適である。
 また、1つの態様として、前記難接続端子(19)に、前記外周側電源端子群(16g)に属する前記接続端子(10)、前記グラウンド端子、及び信号端子の何れか2つ以上の属性の前記接続端子(10)が割り当てられる場合、前記支持基板(21)の中心側から外周側に向かって、前記外周側電源端子群(16g)に属する前記接続端子(10)、前記グラウンド端子、前記信号端子の優先順位で割り当てられていると好適である。
 より外周側に配置されている接続端子(10)の方が、スルーホール(TH)を介さず、表層配線層(31)を通って最外周端子(18)よりも外周側へ信号配線(W)を引き出すことができる可能性が高い。従って、上記の優先順位で接続端子(10)が割り当てられると好適である。
 ここで、前記第1基準値は、前記第1電源の定格電流値である第1定格電流値を含み、前記第2基準値は、前記第2電源の定格電流値である第2定格電流値を含み、前記第2定格電流値は、前記第1定格電流値よりも大きいと好適である。
 第2定格電流値が第1定格電流値よりも大きい場合、例えば配線の断面積を大きくするなど、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、半導体モジュール(5)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、前記第1基準値は、前記第1電源経路(41)のインピーダンスの最大許容値である第1インピーダンスを含み、前記第2基準値は、前記第2電源経路のインピーダンスの最大許容値である第2インピーダンスを含み、前記第2インピーダンスは前記第1インピーダンスよりも低いと好適である。
 第2インピーダンスが第1インピーダンスよりも低い場合、第1電源経路(41)に比べて第2電源経路(42)の形成条件を優先する場合がある。第2電源経路(42)は、半導体モジュール(5)が実装される表層配線層(31)とは異なる配線層に形成されるので、実装の制約や、表層配線層(31)における信号の配線への制約を抑制することができて好適である。
 また、1つの態様として、前記対象半導体素子(51T)は、少なくとも3系統の電源端子を有し、前記内周側端子群(14g)は、さらに、前記第1内周側電源端子群(141g)及び前記第2内周側電源端子群(142g)とは異なる系統の第3内周側電源端子群(143g)を含み、前記外周側電源端子群(16g)は、前記第1内周側電源端子群(141g)と同一系統の第1外周側電源端子群(161g)に加えて、前記第3内周側電源端子群(143g)と同一系統の第2外周側電源端子群(162g)を含むと好適である。
 2系統の電源に対応させて表層電源経路(40)を設けることができるので、スルーホール(TH)によって配線の有効面積が減少することを抑制し、安定して半導体モジュール(5)に電源供給が可能な半導体装置(1)を提供することができる。
 また、前記半導体モジュール(51)が前記主基板(3)に実装された状態で、前記外周側電源端子群(16g)が配置される側の前記支持基板(21)の辺に沿った方向を幅方向(X)として、前記第1内周側電源端子群(141g)と前記第3内周側電源端子群(143g)とは、少なくとも一部の端子が前記幅方向(X)において隣り合って配置され、前記第1外周側電源端子群(161g)と前記第2外周側電源端子群(162g)とは、少なくとも一部の端子が前記幅方向(X)において隣り合って配置されていると好適である。
 2系統の電源に対応した2つの表層電源経路(41,43)を、幅方向(X)に並べて並行させることができるので、高い配線効率で2つの表層電源経路(41,43)を形成することができる。
 また、前記支持基板(21)の中心から、前記外周側電源端子群(16g)が配置される側の前記支持基板(21)の辺への法線に沿って前記支持基板(21)の外周側へ向かう方向を外周方向(Y)として、前記第1内周側電源端子群(141g)は、前記第2内周側電源端子群(142g)よりも前記外周方向(Y)の側に配置されていると好適である。
 表層電源経路(40)である第1電源経路(41)が外周側に向かって延伸する側に、内周側電源端子群(14g)の内の第1内周側電源端子群(141g)が配置されるので、高い配線効率で第1電源経路(41)を形成することができる。
 また、1つの態様として、前記半導体素子(51)は、半導体ダイ(51C,51P)であり、前記半導体モジュール(5)は、複数の前記半導体ダイ(51C,51P)が、前記支持基板(21)を備えたパッケージ(2)に封入された半導体チップ(5C,5P)であると好適である。
 支持基板(21)上において、半導体ダイ(51C,51P)の端子配置を入れ替えて適切な端子配置の半導体モジュール(5)を実現することができる。
 また、1つの態様として、前記半導体素子(51)は、少なくとも1つの半導体ダイがパッケージに封入された半導体チップ(51M)であり、前記半導体モジュール(5)は、複数の前記半導体チップ(51M)が前記支持基板(21)に実装されたチップモジュール(5M)であると好適である。
 支持基板(21)上において、半導体チップ(51M)の端子配置を入れ替えて適切な端子配置の半導体モジュール(5)を実現することができる。
1    :半導体装置
3    :回路基板(主基板)
5    :半導体モジュール
5M   :マルチチップモジュール(チップモジュール)
10   :端子(接続端子)
11g  :第1電源端子群(第1内周側電源端子群)
12g  :第2電源端子群(第2内周側電源端子群)
13g  :第3電源端子群(第3内周側電源端子群)
14    :内周側電源端子
14g  :内周側電源端子群
15   :内周側端子群
16    :外周側電源端子
16g  :外周側電源端子群
17   :外周側端子群
18    :最外周端子
19    :難接続端子
21   :支持基板
21a  :上面
21b  :下面
21m  :モジュール基板(支持基板)
31   :第1表層配線層(半導体モジュールが実装される表層配線層)
32   :第1内層配線層(内層配線層)
33   :第2内層配線層(内層配線層)
40   :表層電源配線(表層電源経路)
41   :第1電源配線(第1電源経路)
42   :第2電源配線(第2電源経路)
43   :第3電源配線(第3電源経路)
44   :第4電源配線(第4電源経路)
51   :半導体素子
51T  :対象半導体素子
51b  :被支支持面
51p  :プロセッサ(半導体チップ、対象半導体素子)
51M  :半導体チップ
55   :チップ端子
56   :チップ電源端子
R1   :配置領域
R1e  :配置領域の外縁
TH   :スルーホール
B    :パッケージ基板
D    :半導体ダイ
W      :信号配線
W1   :第1電源配線幅(第1経路幅)
W2   :第2電源配線幅(第2経路幅)
X    :幅方向
Z    :直交方向

Claims (32)

  1.  パッケージ基板に少なくとも1つの半導体ダイが支持された半導体チップを少なくとも1つ上面に支持固定する矩形板状のモジュール基板、及び、前記モジュール基板の下面に沿って平面配置されて前記半導体チップと電気的に接続される複数の接続端子を備えたチップモジュールと、
     複数層の配線層を有し、前記チップモジュールが複数の前記接続端子を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層を電気的に接続可能なスルーホールが複数個形成された主基板と、を備え、
     前記半導体チップは、前記モジュール基板に支持される被支持面に沿って平面配置されて前記モジュール基板と電気的に接続される複数のチップ端子を有し、
     複数の前記チップ端子は、前記半導体チップに電力を供給する複数のチップ電源端子を含み、
     複数の前記チップ電源端子は、複数の前記チップ端子が平面配置された配置領域の外縁よりも内側に配置され、
     前記チップモジュールは、前記半導体チップが前記モジュール基板に実装され、複数の前記チップ端子の配置と複数の前記接続端子の配置とが前記モジュール基板において並び替えられており
     複数の前記接続端子は、前記モジュール基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記モジュール基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
     前記内周側端子群は、前記半導体チップに電力を供給する内周側電源端子群を含み、
     前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
     前記内周側電源端子群は、前記モジュール基板の板面に直交する方向に見て前記半導体チップと少なくとも一部が重複する位置に配置され、
     前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列され、
     前記主基板は、前記チップモジュールが実装される表層配線層に、前記内周側電源端子群及び前記外周側電源端子群を介して前記半導体チップに電力を供給する表層電源経路を有し、
     前記表層電源経路は、前記チップモジュールが前記主基板に実装された状態で、前記主基板の基板面に直交する直交方向に見て前記内周側電源端子群及び前記外周側電源端子群と重複し、前記内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成されている、半導体装置。
  2.  前記内周側電源端子群は、前記半導体チップの少なくとも2系統の異なる電力を供給する電源端子群として、第1内周側電源端子群と、第2内周側電源端子群とを含み、
     前記外周側電源端子群は、前記第2内周側電源端子群と同一系統の端子を含まず、前記第1内周側電源端子群と同一系統の端子を含み、
     前記表層電源経路は、前記直交方向に見て前記第2内周側電源端子群とは重複せず、前記第1内周側電源端子群及び前記外周側電源端子群と重複して、前記第1内周側電源端子群及び前記外周側電源端子群に接続される第1電源経路であり、
     前記主基板は、前記チップモジュールが実装される前記表層配線層とは異なる配線層に、前記第2内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成される第2電源経路をさらに備え、
     前記第1電源経路と前記第2電源経路とは、前記直交方向に見て少なくとも一部が重複する、請求項1に記載の半導体装置。
  3.  前記チップモジュールが前記主基板に実装された状態で、前記外周側電源端子群が配置される側の前記モジュール基板の辺に沿った方向を幅方向として、
     前記第1電源経路の前記幅方向の長さである第1経路幅が前記第1電源経路を介して前記チップモジュールに供給される第1電源の電気的な基準値である第1基準値を満たすように、前記外周側電源端子群が、前記幅方向に連続して並ぶように配置されている、請求項2に記載の半導体装置。
  4.  前記第2電源経路を介して前記チップモジュールに供給される第2電源の電気的な基準値である第2基準値は、前記第1基準値よりも許容範囲が狭くなる基準値である、請求項3に記載の半導体装置。
  5.  前記外周側端子群に含まれる前記接続端子の内、前記チップモジュールが前記主基板に実装された状態で、自端子よりも外周側に配置された前記接続端子から引き出される信号配線の有無に応じて、前記スルーホールを経由しなければ前記最外周端子よりも外周側へ信号配線を引き出すことができない場合がある位置に配置されている前記接続端子を難接続端子とし、
     前記難接続端子の内、前記最外周端子よりも外周側へ信号配線を引き出す必要のない用途に割り当てられている端子を非信号接続端子とし、
     前記非信号接続端子は、前記第2電源経路の前記幅方向の長さである第2経路幅が前記第2基準値を満たすように、前記幅方向に連続して並ぶように配置されている、請求項4に記載の半導体装置。
  6.  前記第2経路幅は、前記第1経路幅よりも大きく、
     前記外周側端子群に含まれる前記接続端子の内、前記チップモジュールが前記主基板に実装された状態で前記直交方向に見て前記第2電源経路と重複し、前記外周側電源端子群及び前記非信号接続端子に含まれない前記接続端子は、前記スルーホールを経由することなく前記最外周端子よりも外周側へ信号配線を引き出すことが可能な位置に配置されている、請求項5に記載の半導体装置。
  7.  前記非信号接続端子の内、前記第1基準値を満たすために前記外周側電源端子群に割り当てられる前記接続端子以外の前記接続端子は、グラウンド端子、又は信号が入出力されないNC端子に割り当てられている、請求項5又は6に記載の半導体装置。
  8.  前記難接続端子に、前記外周側電源端子群に属する前記接続端子、前記グラウンド端子、及び信号端子の何れか2つ以上の属性の前記接続端子が割り当てられる場合、前記モジュール基板の中心側から外周側に向かって、前記外周側電源端子群に属する前記接続端子、前記グラウンド端子、前記信号端子の優先順位で割り当てられている、請求項7に記載の半導体装置。
  9.  前記第1基準値は、前記第1電源の定格電流値である第1定格電流値を含み、前記第2基準値は、前記第2電源の定格電流値である第2定格電流値を含み、前記第2定格電流値は、前記第1定格電流値よりも大きい、請求項4から8の何れか一項に記載の半導体装置。
  10.  前記第1基準値は、前記第1電源経路のインピーダンスの最大許容値である第1インピーダンスを含み、前記第2基準値は、前記第2電源経路のインピーダンスの最大許容値である第2インピーダンスを含み、前記第2インピーダンスは前記第1インピーダンスよりも低い、請求項4から9の何れか一項に記載の半導体装置。
  11.  前記半導体チップは、少なくとも3系統の電源端子を有し、
     前記内周側端子群は、さらに、前記第1内周側電源端子群及び前記第2内周側電源端子群とは異なる系統の第3内周側電源端子群を含み、
     前記外周側電源端子群は、前記第1内周側電源端子群と同一系統の第1外周側電源端子群に加えて、前記第3内周側電源端子群と同一系統の第2外周側電源端子群を含む、請求項2から10の何れか一項に記載の半導体装置。
  12.  前記チップモジュールが前記主基板に実装された状態で、前記外周側電源端子群が配置される側の前記モジュール基板の辺に沿った方向を幅方向として、
     前記第1内周側電源端子群と前記第3内周側電源端子群とは、少なくとも一部の端子が前記幅方向において隣り合って配置され、前記第1外周側電源端子群と前記第2外周側電源端子群とは、少なくとも一部の端子が前記幅方向において隣り合って配置されている、請求項11に記載の半導体装置。
  13.  前記モジュール基板の中心から、前記外周側電源端子群が配置される側の前記モジュール基板の辺への法線に沿って前記モジュール基板の外周側へ向かう方向を外周方向として、
     前記第1内周側電源端子群は、前記第2内周側電源端子群よりも前記外周方向の側に配置されている、請求項2から12の何れか一項に記載の半導体装置。
  14.  パッケージ基板に少なくとも1つの半導体ダイが支持された半導体チップを少なくとも1つ上面に支持固定する矩形板状のモジュール基板、及び、前記モジュール基板の下面に沿って平面配置されて前記半導体チップと電気的に接続される複数の接続端子を備えたチップモジュールであって、
     前記半導体チップは、前記モジュール基板に支持される被支持面に沿って平面配置されて前記モジュール基板と電気的に接続される複数のチップ端子を有し、
     複数の前記チップ端子は、前記半導体チップに電力を供給する複数のチップ電源端子を含み、
     複数の前記チップ電源端子は、複数の前記チップ端子が平面配置された配置領域の外縁よりも内側に配置され、
     前記半導体チップは、前記モジュール基板に実装され、
     複数の前記チップ端子の配置と複数の前記接続端子の配置とは、前記モジュール基板において並び替えられており、
     複数の前記接続端子は、前記モジュール基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記モジュール基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
     前記内周側端子群は、前記半導体チップの電源端子に接続される内周側電源端子群を含み、
     前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
     前記内周側電源端子群は、前記モジュール基板の板面に直交する方向に見て、前記半導体チップと少なくとも一部が重複する位置に配置され、
     前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列されている、チップモジュール。
  15.  前記内周側電源端子群は、前記半導体チップの少なくとも2系統の異なる電源端子に接続される電源端子群として、第1内周側電源端子群と、第2内周側電源端子群とを含み、
     前記外周側電源端子群は、前記第2内周側電源端子群と同一系統の端子を含まず、前記第1内周側電源端子群と同一系統の端子を含む、請求項14に記載のチップモジュール。
  16.  少なくとも1つの半導体素子を上面に支持固定する矩形板状の支持基板、及び、前記支持基板の下面に沿って平面配置されて前記半導体素子と電気的に接続される複数の接続端子を備えた半導体モジュールと、
     複数層の配線層を有し、前記半導体モジュールが複数の前記接続端子を介して表面実装される基板であって、当該基板を貫通して複数の前記配線層を電気的に接続可能なスルーホールが複数個形成された主基板と、を備え、
     複数の前記接続端子は、前記支持基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記支持基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
     前記内周側端子群は、前記半導体素子の内の1つである対象半導体素子に電力を供給する内周側電源端子群を含み、
     前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
     前記内周側電源端子群は、前記支持基板の板面に直交する方向に見て前記対象半導体素子と少なくとも一部が重複する位置に配置され、
     前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列され、
     前記主基板は、前記半導体モジュールが実装される表層配線層に、前記内周側電源端子群及び前記外周側電源端子群を介して前記対象半導体素子に電力を供給する表層電源経路を有し、
     前記表層電源経路は、前記半導体モジュールが前記主基板に実装された状態で、前記主基板の基板面に直交する直交方向に見て前記内周側電源端子群及び前記外周側電源端子群と重複し、前記内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成されている、半導体装置。
  17.  前記内周側電源端子群は、前記対象半導体素子の少なくとも2系統の異なる電力を供給する電源端子群として、第1内周側電源端子群と、第2内周側電源端子群とを含み、
     前記外周側電源端子群は、前記第2内周側電源端子群と同一系統の端子を含まず、前記第1内周側電源端子群と同一系統の端子を含み、
     前記表層電源経路は、前記直交方向に見て前記第2内周側電源端子群とは重複せず、前記第1内周側電源端子群及び前記外周側電源端子群と重複して、前記第1内周側電源端子群及び前記外周側電源端子群に接続される第1電源経路であり、
     前記主基板は、前記半導体モジュールが実装される前記表層配線層とは異なる配線層に、前記第2内周側電源端子群と接続される位置から前記主基板の外周側に向かって延びるように連続して形成される第2電源経路をさらに備え、
     前記第1電源経路と前記第2電源経路とは、前記直交方向に見て少なくとも一部が重複する、請求項16に記載の半導体装置。
  18.  前記半導体モジュールが前記主基板に実装された状態で、前記外周側電源端子群が配置される側の前記支持基板の辺に沿った方向を幅方向として、
     前記第1電源経路の前記幅方向の長さである第1経路幅が前記第1電源経路を介して前記半導体モジュールに供給される第1電源の電気的な基準値である第1基準値を満たすように、前記外周側電源端子群が、前記幅方向に連続して並ぶように配置されている、請求項17に記載の半導体装置。
  19.  前記第2電源経路を介して前記半導体モジュールに供給される第2電源の電気的な基準値である第2基準値は、前記第1基準値よりも許容範囲が狭くなる基準値である、請求項18に記載の半導体装置。
  20.  前記外周側端子群に含まれる前記接続端子の内、前記半導体モジュールが前記主基板に実装された状態で、自端子よりも外周側に配置された前記接続端子から引き出される信号配線の有無に応じて、前記スルーホールを経由しなければ前記最外周端子よりも外周側へ信号配線を引き出すことができない場合がある位置に配置されている前記接続端子を難接続端子とし、
     前記難接続端子の内、前記最外周端子よりも外周側へ信号配線を引き出す必要のない用途に割り当てられている端子を非信号接続端子とし、
     前記非信号接続端子は、前記第2電源経路の前記幅方向の長さである第2経路幅が前記第2基準値を満たすように、前記幅方向に連続して並ぶように配置されている、請求項19に記載の半導体装置。
  21.  前記第2経路幅は、前記第1経路幅よりも大きく、
     前記外周側端子群に含まれる前記接続端子の内、前記半導体モジュールが前記主基板に実装された状態で前記直交方向に見て前記第2電源経路と重複し、前記外周側電源端子群及び前記非信号接続端子に含まれない前記接続端子は、前記スルーホールを経由することなく前記最外周端子よりも外周側へ信号配線を引き出すことが可能な位置に配置されている、請求項20に記載の半導体装置。
  22.  前記非信号接続端子の内、前記第1基準値を満たすために前記外周側電源端子群に割り当てられる前記接続端子以外の前記接続端子は、グラウンド端子、又は信号が入出力されないNC端子に割り当てられている、請求項20又は21に記載の半導体装置。
  23.  前記難接続端子に、前記外周側電源端子群に属する前記接続端子、前記グラウンド端子、及び信号端子の何れか2つ以上の属性の前記接続端子が割り当てられる場合、前記支持基板の中心側から外周側に向かって、前記外周側電源端子群に属する前記接続端子、前記グラウンド端子、前記信号端子の優先順位で割り当てられている、請求項22に記載の半導体装置。
  24.  前記第1基準値は、前記第1電源の定格電流値である第1定格電流値を含み、前記第2基準値は、前記第2電源の定格電流値である第2定格電流値を含み、前記第2定格電流値は、前記第1定格電流値よりも大きい、請求項19から23の何れか一項に記載の半導体装置。
  25.  前記第1基準値は、前記第1電源経路のインピーダンスの最大許容値である第1インピーダンスを含み、前記第2基準値は、前記第2電源経路のインピーダンスの最大許容値である第2インピーダンスを含み、前記第2インピーダンスは前記第1インピーダンスよりも低い、請求項19から24の何れか一項に記載の半導体装置。
  26.  前記対象半導体素子は、少なくとも3系統の電源端子を有し、
     前記内周側端子群は、さらに、前記第1内周側電源端子群及び前記第2内周側電源端子群とは異なる系統の第3内周側電源端子群を含み、
     前記外周側電源端子群は、前記第1内周側電源端子群と同一系統の第1外周側電源端子群に加えて、前記第3内周側電源端子群と同一系統の第2外周側電源端子群を含む、請求項17から25の何れか一項に記載の半導体装置。
  27.  前記半導体モジュールが前記主基板に実装された状態で、前記外周側電源端子群が配置される側の前記支持基板の辺に沿った方向を幅方向として、
     前記第1内周側電源端子群と前記第3内周側電源端子群とは、少なくとも一部の端子が前記幅方向において隣り合って配置され、前記第1外周側電源端子群と前記第2外周側電源端子群とは、少なくとも一部の端子が前記幅方向において隣り合って配置されている、請求項26に記載の半導体装置。
  28.  前記支持基板の中心から、前記外周側電源端子群が配置される側の前記支持基板の辺への法線に沿って前記支持基板の外周側へ向かう方向を外周方向として、
     前記第1内周側電源端子群は、前記第2内周側電源端子群よりも前記外周方向の側に配置されている、請求項17から27の何れか一項に記載の半導体装置。
  29.  前記半導体素子は、半導体ダイであり、前記半導体モジュールは、複数の前記半導体ダイが、前記支持基板を備えたパッケージに封入された半導体チップである、請求項16から28の何れか一項に記載の半導体装置。
  30.  前記半導体素子は、少なくとも1つの半導体ダイがパッケージに封入された半導体チップであり、前記半導体モジュールは、複数の前記半導体チップが前記支持基板に実装されたチップモジュールである請求項16から28の何れか一項に記載の半導体装置。
  31.  少なくとも1つの半導体素子を上面に支持固定する矩形板状の支持基板、及び、前記支持基板の下面に沿って平面配置されて前記半導体素子と電気的に接続される複数の接続端子を備えた半導体モジュールであって、
     複数の前記接続端子は、前記支持基板の各辺に沿って複数列の矩形環状に配列されると共に、複数の前記接続端子は、前記支持基板の中心側に配列された内周側端子群と、前記内周側端子群よりも外周側に配列された外周側端子群とを含み、
     前記内周側端子群は、前記半導体素子の内の1つである対象半導体素子の電源端子に接続される内周側電源端子群を含み、
     前記外周側端子群は、前記内周側電源端子群の少なくとも一部と同一系統の外周側電源端子群を含み、
     前記内周側電源端子群は、前記支持基板の板面に直交する方向に見て、前記対象半導体素子と少なくとも一部が重複する位置に配置され、
     前記外周側電源端子群は、前記内周側電源端子群から前記外周側端子群の最外周端子まで連続して並ぶように配列されている、半導体モジュール。
  32.  前記内周側電源端子群は、前記対象半導体素子の少なくとも2系統の異なる電源端子に接続される電源端子群として、第1内周側電源端子群と、第2内周側電源端子群とを含み、
     前記外周側電源端子群は、前記第2内周側電源端子群と同一系統の端子を含まず、前記第1内周側電源端子群と同一系統の端子を含む、請求項31に記載の半導体モジュール。
PCT/JP2016/075578 2015-08-31 2016-08-31 半導体装置、チップモジュール及び半導体モジュール WO2017038905A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19163276.9A EP3598488B1 (en) 2015-08-31 2016-08-31 Semiconductor device, chip module, and semiconductor module
JP2017538091A JP6468360B2 (ja) 2015-08-31 2016-08-31 半導体装置、チップモジュール及び半導体モジュール
EP21184794.2A EP3916779A1 (en) 2015-08-31 2016-08-31 Semiconductor device, chip module, and semiconductor module
KR1020187001545A KR102035947B1 (ko) 2015-08-31 2016-08-31 반도체 장치, 칩 모듈 및 반도체 모듈
US15/742,269 US10707159B2 (en) 2015-08-31 2016-08-31 Semiconductor device, chip module, and semiconductor module
EP16841935.6A EP3312878A4 (en) 2015-08-31 2016-08-31 Semiconductor device, chip module, and semiconductor module
CN201680047924.4A CN107949909B (zh) 2015-08-31 2016-08-31 半导体装置、芯片模块及半导体模块
EP21184620.9A EP3916778A1 (en) 2015-08-31 2016-08-31 Semiconductor device, chip module, and semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170409 2015-08-31
JP2015170409 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038905A1 true WO2017038905A1 (ja) 2017-03-09

Family

ID=58187693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075578 WO2017038905A1 (ja) 2015-08-31 2016-08-31 半導体装置、チップモジュール及び半導体モジュール

Country Status (6)

Country Link
US (1) US10707159B2 (ja)
EP (4) EP3598488B1 (ja)
JP (1) JP6468360B2 (ja)
KR (1) KR102035947B1 (ja)
CN (1) CN107949909B (ja)
WO (1) WO2017038905A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012796A1 (ja) * 2018-07-10 2020-01-16 アイシン・エィ・ダブリュ株式会社 回路モジュール及び電源チップモジュール
JP2020053492A (ja) * 2018-09-25 2020-04-02 富士ゼロックス株式会社 画像形成装置および基板
JP2020141061A (ja) * 2019-02-28 2020-09-03 アイシン・エィ・ダブリュ株式会社 半導体装置
WO2020179109A1 (ja) 2019-03-04 2020-09-10 アイシン・エィ・ダブリュ株式会社 半導体装置
WO2020183802A1 (ja) 2019-03-08 2020-09-17 アイシン・エィ・ダブリュ株式会社 半導体モジュール及び半導体装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272881A (en) * 1992-08-27 1993-12-28 The Boc Group, Inc. Liquid cryogen dispensing apparatus and method
DE102016224631B4 (de) * 2016-12-09 2020-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch leitende Verbindung zwischen mindestens zwei elektrischen Komponenten an einem mit elektronischen und/oder elektrischen Bauelementen bestücktem Träger, die mit einem Bonddraht ausgebildet ist
JP6853774B2 (ja) * 2017-12-21 2021-03-31 ルネサスエレクトロニクス株式会社 半導体装置
JP6958529B2 (ja) * 2018-10-02 2021-11-02 株式会社デンソー 半導体装置
JP7400536B2 (ja) * 2020-02-27 2023-12-19 セイコーエプソン株式会社 半導体装置
CN111816628B (zh) * 2020-09-11 2020-12-04 甬矽电子(宁波)股份有限公司 半导体封装结构和封装方法
CN111933590B (zh) * 2020-09-11 2021-01-01 甬矽电子(宁波)股份有限公司 封装结构和封装结构制作方法
US20220310497A1 (en) * 2021-03-25 2022-09-29 Dialog Semiconductor (Uk) Limited Partially Staggered Ball Array for Reduced Noise Injection
JP2022160267A (ja) 2021-04-06 2022-10-19 株式会社デンソー マルチチップモジュール、およびマルチチップモジュールを備えた電子制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349448A (ja) * 1999-06-09 2000-12-15 Toshiba Corp 回路モジュール、この回路モジュールに用いる多層配線基板、回路部品および半導体パッケージ
JP2011124549A (ja) * 2009-11-11 2011-06-23 Canon Inc 半導体装置
JP2016134543A (ja) * 2015-01-21 2016-07-25 セイコーエプソン株式会社 半導体モジュール、半導体装置、及び電気光学装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303562A (ja) 1997-04-30 1998-11-13 Toshiba Corp プリント配線板
US6057596A (en) * 1998-10-19 2000-05-02 Silicon Integrated Systems Corp. Chip carrier having a specific power join distribution structure
JP4963144B2 (ja) * 2000-06-22 2012-06-27 ルネサスエレクトロニクス株式会社 半導体集積回路
TW522764B (en) * 2001-08-28 2003-03-01 Via Tech Inc Power layout structure on host bridge chip substrate and motherboard
US7005736B2 (en) * 2002-09-30 2006-02-28 Intel Corporation Semiconductor device power interconnect striping
EP1577945A3 (en) * 2004-02-04 2007-11-28 International Business Machines Corporation Module power distribution network
US20070080441A1 (en) * 2005-08-18 2007-04-12 Scott Kirkman Thermal expansion compensation graded IC package
US8120162B2 (en) * 2007-09-28 2012-02-21 Integrated Device Technology, Inc. Package with improved connection of a decoupling capacitor
JPWO2011024939A1 (ja) 2009-08-28 2013-01-31 日本電気株式会社 半導体装置およびその製造方法
US20120068339A1 (en) * 2010-09-21 2012-03-22 Mosys, Inc. VLSI Package for High Performance Integrated Circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349448A (ja) * 1999-06-09 2000-12-15 Toshiba Corp 回路モジュール、この回路モジュールに用いる多層配線基板、回路部品および半導体パッケージ
JP2011124549A (ja) * 2009-11-11 2011-06-23 Canon Inc 半導体装置
JP2016134543A (ja) * 2015-01-21 2016-07-25 セイコーエプソン株式会社 半導体モジュール、半導体装置、及び電気光学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312878A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335633B2 (en) 2018-07-10 2022-05-17 Aisin Corporation Circuit module and power supply chip module
WO2020012796A1 (ja) * 2018-07-10 2020-01-16 アイシン・エィ・ダブリュ株式会社 回路モジュール及び電源チップモジュール
JPWO2020012796A1 (ja) * 2018-07-10 2021-05-13 アイシン・エィ・ダブリュ株式会社 回路モジュール及び電源チップモジュール
JP7120309B2 (ja) 2018-07-10 2022-08-17 株式会社アイシン 回路モジュール及び電源チップモジュール
JP2020053492A (ja) * 2018-09-25 2020-04-02 富士ゼロックス株式会社 画像形成装置および基板
JP7247503B2 (ja) 2018-09-25 2023-03-29 富士フイルムビジネスイノベーション株式会社 画像形成装置および基板
JP2020141061A (ja) * 2019-02-28 2020-09-03 アイシン・エィ・ダブリュ株式会社 半導体装置
JP7192573B2 (ja) 2019-02-28 2022-12-20 株式会社アイシン 半導体装置
WO2020179109A1 (ja) 2019-03-04 2020-09-10 アイシン・エィ・ダブリュ株式会社 半導体装置
KR20210114991A (ko) 2019-03-04 2021-09-24 가부시키가이샤 아이신 반도체 장치
US20220108944A1 (en) * 2019-03-08 2022-04-07 Aisin Corporation Semiconductor module and semiconductor device
KR20210116534A (ko) 2019-03-08 2021-09-27 가부시키가이샤 아이신 반도체 모듈 및 반도체 장치
WO2020183802A1 (ja) 2019-03-08 2020-09-17 アイシン・エィ・ダブリュ株式会社 半導体モジュール及び半導体装置

Also Published As

Publication number Publication date
CN107949909B (zh) 2020-06-16
KR20180016602A (ko) 2018-02-14
JPWO2017038905A1 (ja) 2018-05-24
US20180197801A1 (en) 2018-07-12
EP3312878A1 (en) 2018-04-25
US10707159B2 (en) 2020-07-07
JP6468360B2 (ja) 2019-02-13
EP3312878A4 (en) 2018-11-14
EP3916778A1 (en) 2021-12-01
CN107949909A (zh) 2018-04-20
EP3598488B1 (en) 2021-08-25
EP3916779A1 (en) 2021-12-01
KR102035947B1 (ko) 2019-10-23
EP3598488A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6468360B2 (ja) 半導体装置、チップモジュール及び半導体モジュール
TWI695464B (zh) 半導體裝置
JP6429647B2 (ja) 半導体装置
JP2003007750A (ja) 半導体装置
JP4904601B2 (ja) 集積回路チップ上における電源及びグランドラインルーティングのための受動集積基板を有する集積回路組立体
KR20100002113A (ko) 반도체장치 및 반도체 집적회로
US8115321B2 (en) Separate probe and bond regions of an integrated circuit
US11335633B2 (en) Circuit module and power supply chip module
US20190198446A1 (en) Printed wiring board
JP2006313855A (ja) 半導体回路
JP5884854B2 (ja) 半導体装置および半導体モジュール
US20120273972A1 (en) Semiconductor device
JP2003086754A (ja) 半導体集積回路モジュールとその製造方法及び使用方法
CN209981206U (zh) 一种芯片封装基板、芯片及图像形成装置
US9226386B2 (en) Printed circuit board with reduced emission of electro-magnetic radiation
JP2015177171A (ja) 半導体装置
US8698325B2 (en) Integrated circuit package and physical layer interface arrangement
US8912656B2 (en) Integrated circuit package and physical layer interface arrangement
JP2018137486A (ja) 半導体装置
JP2007281011A (ja) アナログ・デジタル混載半導体装置
JP2012146979A (ja) 集積回路内における、インターフェースデバイスの面積効率の良い配列
CN117174694A (zh) 封装基板、电源噪声测试装置及电源噪声测试方法
JP2008060215A (ja) 半導体装置
JP2010062328A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016841935

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE