WO2017038578A1 - ファン装置 - Google Patents

ファン装置 Download PDF

Info

Publication number
WO2017038578A1
WO2017038578A1 PCT/JP2016/074653 JP2016074653W WO2017038578A1 WO 2017038578 A1 WO2017038578 A1 WO 2017038578A1 JP 2016074653 W JP2016074653 W JP 2016074653W WO 2017038578 A1 WO2017038578 A1 WO 2017038578A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply voltage
side mosfet
braking
unit
Prior art date
Application number
PCT/JP2016/074653
Other languages
English (en)
French (fr)
Inventor
基 大塚
Original Assignee
日本電産サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サーボ株式会社 filed Critical 日本電産サーボ株式会社
Priority to EP16841610.5A priority Critical patent/EP3346599A4/en
Priority to JP2017537782A priority patent/JP6814736B2/ja
Priority to CN201680050687.7A priority patent/CN108028618B/zh
Priority to US15/756,634 priority patent/US10626874B2/en
Publication of WO2017038578A1 publication Critical patent/WO2017038578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking

Definitions

  • the present invention relates to a fan device.
  • Patent Document 1 a technique for reducing the number of rotations by braking the rotation of a motor due to an external force is known (see, for example, Patent Document 1).
  • One aspect of the present invention is to reduce the number of rotations of a motor due to an external force while reducing power consumption.
  • a fan device includes an electric rotating body drive signal generation circuit unit, an output stage including an upper stage side MOSFET and a lower stage side MOSFET, and a motor unit driven by the output stage.
  • a fan device having a driving circuit for a rotating body, wherein the power supply voltage of the electric rotating body is supplied to any one of the upper MOSFET and the lower MOSFET and the other non-braking MOSFET.
  • the counter electromotive force supply unit that supplies power to the braking side MOSFET by the counter electromotive force, and the power supplied by the counter electromotive force supply unit causes the braking side MOSFET to And an electromagnetic braking unit that performs electromagnetic braking of the motor unit.
  • FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a circuit diagram illustrating an example of a circuit configuration of a fan device.
  • FIG. 2 is a diagram illustrating an example of a waveform of a drive signal generated by the drive signal generation circuit unit.
  • FIG. 3 is a diagram illustrating an example of a signal waveform when the power supply voltage is interrupted.
  • FIG. 4 is a diagram illustrating an example of a back electromotive force supply path of the fan device.
  • FIG. 5 is a diagram illustrating an example of a waveform of a potential change due to the counter electromotive force after the power is shut off.
  • FIG. 6 is a graph showing an example of the rotational speed of the motor unit when braking after power-off is not performed.
  • FIG. 7 is a graph showing an example of the number of rotations of the motor unit when braking after power-off is performed.
  • FIG. 1 is a circuit diagram illustrating an example of a circuit configuration of the fan device 100.
  • the fan device 100 includes a regulator circuit unit 1, a drive signal generation circuit unit 2, transistors 3 and 4, transistors 13 and 14, a motor unit 19, a capacitor 20, a diode 21, and an output stage.
  • the output stage includes upper MOSFETs 15 and 16 and lower MOSFETs 17 and 18.
  • the output stage may be a three-phase full bridge circuit.
  • the drive current id1 is supplied to the motor unit 19. Is supplied. Further, when the power supply voltage V is supplied, when the upper stage side MOSFET 15 and the lower stage side MOSFET 18 in the output stage are each in an off state and the upper stage side MOSFET 16 and the lower stage side MOSFET 17 are respectively in an on state, the motor unit 19 is driven. A current id2 is supplied.
  • the upper MOSFETs 15 and 16 are P-channel MOSFETs, which are turned off when an H (high) level signal is supplied to the gate terminal, and turned on when an L (low) level signal is supplied to the gate terminal. become.
  • Lower-stage MOSFETs 17 and 18 are N-channel MOSFETs, which are turned on when an H level signal is supplied to the gate terminal, and turned off when an L level signal is supplied to the gate terminal.
  • the lower MOSFETs 17 and 18 may be described as braking MOSFETs
  • the upper MOSFETs 15 and 16 may be described as non-braking MOSFETs.
  • the regulator circuit unit 1 generates a control power supply voltage A for the drive signal generation circuit unit 2 from the power supply voltage V supplied to the fan device 100.
  • the drive signal generation circuit unit 2 generates drive signals B, C, D, and E for driving the output stage based on the control power supply voltage A supplied from the regulator circuit unit 1, respectively.
  • the drive signal generation circuit unit 2 includes a power supply voltage monitoring circuit unit 2-1.
  • the power supply voltage monitoring circuit unit 2-1 detects whether or not the power supply voltage V is supplied. Specifically, the power supply voltage monitoring circuit unit 2-1 monitors the potential of the power supply voltage V and notifies the drive signal generation circuit unit 2 of a decrease in the power supply voltage V.
  • the drive signal generation circuit unit 2 stops outputting the drive signals B, C, D, and E. Specifically, the drive signal generation circuit unit 2 sets the drive signals B, C, D, and E to a Hi-Z (high impedance) state when the power supply voltage V becomes lower than a certain potential.
  • the transistor 3 drives the upper stage MOSFET 15.
  • the transistor 3 is an NPN transistor.
  • the transistor 3 has a base terminal connected to the drive signal generation circuit 2, a collector terminal connected to the gate terminal of the upper MOSFET 15 via the resistor 5, and an emitter terminal connected to the ground side of the power supply voltage V, that is, to the ground potential GND. Connected.
  • the transistor 3 is turned on when the drive signal B of H level is supplied from the drive signal generation circuit unit 2 to the base terminal, and the gate terminal of the upper MOSFET 15 is set to L level.
  • the transistor 3 is turned off when an L level drive signal B is supplied from the drive signal generation circuit 2 to the base terminal, and the gate terminal of the upper MOSFET 15 is supplied by the power supply voltage V supplied through the resistor 7. To H level. *
  • the transistor 4 drives the upper MOSFET 16 by the drive signal C supplied from the drive signal generation circuit unit 2.
  • a specific example of the transistor 4 is the same as that of the transistor 3, and thus description thereof is omitted. *
  • the transistor 13 drives the lower MOSFET 17 by the drive signal D supplied from the drive signal generation circuit unit 2.
  • the transistor 13 is an NPN digital transistor.
  • the transistor 13 has a base terminal connected to the drive signal generation circuit unit 2, a collector terminal connected to the gate terminal of the lower MOSFET 17 via the resistor 10, and an emitter terminal connected to the ground potential GND.
  • the transistor 13 is turned on when the drive signal D of H level is supplied from the drive signal generation circuit unit 2 to the base terminal, and the gate terminal of the lower MOSFET 17 is set to L level.
  • the transistor 13 is turned off when an L level drive signal D is supplied from the drive signal generation circuit unit 2 to the base terminal, and the transistor 13 is turned on by the control power supply voltage A supplied via the diode 21 and the resistor 9.
  • the gate terminal of the side MOSFET 17 is set to H level. *
  • the transistor 14 drives the lower MOSFET 18 by the drive signal E supplied from the drive signal generation circuit unit 2.
  • a specific example of the transistor 14 is the same as that of the transistor 13, and thus description thereof is omitted. *
  • Capacitor 20 is connected between power supply voltage V and ground potential GND, and stabilizes power supply voltage V. *
  • the motor unit 19 rotates a fan (not shown) by drive currents id1 and id2 supplied from the output stage.
  • a counter electromotive force is generated in the motor unit 19 when the fan is rotated by an external force such as an air flow.
  • the current generated by the counter electromotive force of the motor unit 19 flows into the power supply voltage V through the upper MOSFETs 15 and 16, that is, the parasitic diodes of the non-braking MOSFETs.
  • FIG. 2 is a diagram illustrating an example of a waveform of a drive signal generated by the drive signal generation circuit unit 2.
  • the power supply voltage V as indicated by the waveform W V in the figure, is supplied at time t7 from time t0, is interrupted at time t7 or later.
  • the power supply voltage V is 54 [V] as an example.
  • Control power supply voltage A as shown by the waveform W A in the figure, depending on the cut-off the supply of power supply voltage V, becomes the operating potential at time t7 from the time t0, becomes stopped potential at time t7 or later.
  • the operating potential of the control power supply voltage A is 12 [V].
  • the stop potential of the control power supply voltage A is 0 [V].
  • Driving signals B submitted C, D, waveform W B of E, W C, W D, the W E in FIG respectively.
  • the drive signals B, C, D, and E are switched between the H level and the L level according to the control of the drive signal generation circuit unit 2.
  • the drive signal B when the drive signal B is at H level, the drive signal C is at L level, the drive signal D is at H level, and the drive signal E is at L level.
  • the drive signal B is at L level
  • the drive signal C is at H level
  • the drive signal D is at L level
  • the drive signal E is at H level.
  • the drive signal generation circuit unit 2 drives the motor unit 19 by sequentially switching the level of each drive signal from time t0 to time t7.
  • FIG. 3 is a diagram illustrating an example of a signal waveform when the power supply voltage V is interrupted.
  • the control power supply voltage A decreases from time t71 and becomes a stop potential at time t72.
  • Drive signal D is at the H level at time t71.
  • the drive signal E is at the L level at time t71.
  • the drive signals D and E are in the Hi-Z state after time t71. *
  • the lower MOSFET 17 has a parasitic capacitance between the gate terminal and the source terminal.
  • the drive signal D is Hi-Z state
  • the lower side MOSFET17 is the charge stored in the parasitic capacitance
  • the potential D2 of the gate terminal of the lower side MOSFET17 is, as shown in the waveform W D2 in FIG , Maintained at the H level.
  • Lower side MOSFET17 as shown in the waveform W 17 in the figure, the ON state when the potential D2 of the gate terminal exceeds a threshold potential V THD2.
  • the potential D2 of the gate terminal is maintained exceeding the threshold potential VthD2 due to the parasitic capacitance between the gate terminal and the source terminal, so that the time from the time t71 to the time t7 Off is maintained.
  • the on state is maintained.
  • the lower MOSFET 18 has a parasitic capacitance between the gate terminal and the source terminal. If the driving signal E is Hi-Z state, the lower side MOSFET18 is the charge stored in the parasitic capacitance, the potential E2 of the gate terminal of the lower side MOSFET18 is, as shown in the waveform W E2 in FIG , Maintained at the H level. That is, in the same way as the lower-stage side MOSFET 17, the lower-stage side MOSFET 18 maintains the potential E2 of the gate terminal exceeding the threshold potential VthE2 due to the parasitic capacitance between the gate terminal and the source terminal. From time t7 to time t7 Off . That is, the lower-stage MOSFETs 17 and 18 are both turned on between time t71 and time t7 Off .
  • the diode 21 prevents the charge stored in the parasitic capacitance from flowing into the regulator circuit unit 1 and the drive signal generation circuit unit 2. Therefore, the gate terminal potentials D2 and E2 do not decrease rapidly but are maintained for a certain period.
  • the ON state of the lower side MOSFETs 17 and 18 continues until the gate terminal potentials D2 and E2 become equal to or lower than the threshold potentials VthD2 and VthE2 .
  • a parasitic diode exists between the drain terminal and the source terminal.
  • the source terminal connected to the ground potential GND is an anode
  • the drain terminal connected to the motor unit 19 is a cathode. That is, the parasitic diode can flow current from the ground potential GND to the motor unit 19. Due to the presence of this parasitic diode and the lower MOSFETs 17 and 18 both being turned on, both ends of the winding of the motor unit 19 are connected to the ground potential GND. Therefore, according to the fan apparatus 100, when the power supply voltage V is interrupted, an electromagnetic brake is generated in the motor unit 19, and the rotational speed of the fan is reduced.
  • the fan device 100 includes a back electromotive force supply unit.
  • the back electromotive force supply unit includes a diode D1, a resistor R1, and a supply line LN1.
  • the diode D1, the resistor R1, and the supply line LN1 are connected in series between the power supply voltage V and the braking side MOSFET.
  • the diode D1 has an anode connected to the power supply voltage V and a cathode connected to the resistor R1.
  • the resistor R1 has one end connected to the cathode of the diode D1 and the other end connected to the connection point P.
  • the connection point P is connected to the gate terminal of the lower MOSFET 17 via the resistors R9 and R10.
  • the connection point P is connected to the gate terminal of the lower MOSFET 18 via the resistors R11 and R12. *
  • FIG. 4 is a diagram illustrating an example of a back electromotive force supply path of the fan device 100.
  • the drive signal generation circuit unit 2 sets the drive signals B, C, D, and E to the Hi-Z state, respectively. Therefore, after the power is shut off, the upper MOSFETs 15 and 16 and the lower MOSFETs 17 and 18 are both turned off. It is assumed that the fan is rotated by an external force at time t8 in FIG. A counter electromotive force is generated in the motor unit 19 by the rotation of the fan.
  • the motor unit 19 generates the current ic1 or the current ic2 by this back electromotive force.
  • the current ic1 and the current ic2 are not distinguished, they are collectively referred to as a current ic. *
  • parasitic diodes exist in both the upper MOSFETs 15 and 16 and the lower MOSFETs 17 and 18. Even when the upper-stage MOSFETs 15 and 16 and the lower-stage MOSFETs 17 and 18 are in the OFF state, the current ic can flow from the ground potential GND side to the power supply voltage V side via this parasitic diode.
  • the current ic1 flows from the ground potential GND to the power supply voltage V through the parasitic diode of the lower stage side MOSFET 17, the motor unit 19, and the parasitic diode of the upper stage side MOSFET 16. That is, the current ic1 flows through the counter electromotive force supply path Rt1.
  • the current ic2 flows from the ground potential GND to the power supply voltage V via the parasitic diode of the lower-stage side MOSFET 18, the motor unit 19, and the parasitic diode of the upper-stage side MOSFET 15. That is, the current ic2 flows through the counter electromotive force supply path Rt2.
  • the power supply voltage V and the connection point P are connected via the diode D1 and the resistor R1.
  • the current ic flowing into the power supply voltage V from the back electromotive force supply path Rt1 and the back electromotive force supply path Rt2 flows into the connection point P through the diode D1 and the resistor R1. That is, the current ic flows into the connection point P via the counter electromotive force supply path Rt.
  • the potential at the connection point P increases. The change in potential at the connection point P will be described with reference to FIG. *
  • FIG. 5 is a diagram illustrating an example of a waveform of a potential change due to the counter electromotive force after the power is shut off.
  • Waveform W A of the control power supply voltage A keeps the stop potential at time t84 from the time t81 after the power shutdown.
  • the drive signals D and E are both in the Hi-Z state.
  • counter electromotive force is generated in the motor unit 19 from time t81 to time t83. Due to this back electromotive force, the current ic flows into the connection point P via the back electromotive force supply path Rt, and the potential at the connection point P increases from time t81 to time t82.
  • the constant voltage diode ZD1 is, for example, a Zener diode, and suppresses the potential at the connection point P to be equal to or lower than the Zener voltage VZD1 .
  • the potential at the connection point P is maintained with the Zener voltage V ZD1 as the upper limit value from time t82 to time t83.
  • the potential D2 of the gate terminal of the lower MOSFET 17 changes as the potential at the connection point P changes.
  • the lower MOSFET 17 is turned on.
  • the potential D2 of the gate terminal exceeds the threshold potential V thD2 from time t8 on to time t8 off .
  • the lower MOSFET 17 is turned on from time t8 on to time t8 off as shown by the waveform W17.
  • the potential E2 at the gate terminal of the lower MOSFET 18 also changes in the same manner as the potential D2 at the gate terminal. That is, the potential E2 of the gate terminal changes as the potential of the connection point P changes.
  • the lower MOSFET 18 is turned on. In this example, the potential E2 of the gate terminal exceeds the threshold potential VthE2 from time t8 on to time t8 off . In this case, the lower MOSFET 18 is turned on from time t8 on to time t8 off as indicated by the waveform W18.
  • the lower-stage MOSFETs 17 and 18 are both turned on from time t8 on to time t8 off .
  • both the braking side MOSFETs are turned on, an electromagnetic brake is generated in the motor unit 19 and the rotational speed of the fan is reduced.
  • the zener voltage VZD1 of the constant voltage diode ZD1 and the resistance value of the resistor R1 are determined as follows.
  • the power supply voltage V is higher than the control power supply voltage A.
  • the power supply voltage V is 54 [V]
  • the control power supply voltage A is 12 [V].
  • a control power supply voltage A is applied to the connection point P via the diode 21.
  • a voltage is applied to the connection point P through the diode D1 and the resistor R1 of the counter electromotive force supply unit.
  • the zener voltage V ZD1 of the constant voltage diode ZD1 is determined based on the allowable value of the voltage applied to the connection point P when the power supply voltage V is supplied. Specifically, the Zener voltage V ZD1 is determined based on the control power supply voltage A. As an example, when the control power supply voltage A is 12 [V], the Zener voltage V ZD1 of the constant voltage diode ZD1 is 12 [V]. That is, the breakdown voltage of the constant voltage diode ZD1 is determined based on the control power supply voltage A for control generated from the power supply voltage V.
  • the Zener voltage V ZD1 of the constant voltage diode ZD1 is lower than the power supply voltage V. For this reason, when the power supply voltage V is supplied, the current iz flows from the power supply voltage V to the ground potential GND through the diode D1, the resistor R1, and the constant voltage diode ZD1 of the counter electromotive force supply unit. This current iz does not contribute to driving of the motor unit 19.
  • the fan device 100 can reduce power consumption by reducing the current iz. Current iz is determined by (the resistance value of the resistor R1) (supply voltage V- Zener voltage V ZD1) /. That is, the fan device 100 can reduce the current iz by relatively increasing the resistance value of the resistor R1. As an example, the resistance value of the resistor R1 is 47 [k ⁇ ].
  • FIG. 6 is a graph showing an example of the number of rotations of the motor unit 19 when braking is not performed after power is shut off.
  • FIG. 7 is a graph showing an example of the number of rotations of the motor unit 19 when braking is performed after power is shut off. *
  • the motor unit 19 is rotated by an external force at time t11. Specifically, at time t11, the fan is rotated by wind power by applying wind to the fan of the fan device 100.
  • the rotational speed of the motor unit 19 is 2800 [rpm] (46.7 [r / s]) after time t11 as shown in FIG. *
  • the rotational speed of the motor unit 19 is 1600 [rpm] (26.7 [r / s]) after time t11 as shown in FIG.
  • the fan device 100 performs the braking after the power is turned off, so that the rotational speed of the motor unit 19 is 1400 [rpm] (23.3 [r / s] as compared with the case where the braking after the power is not turned off. ) Reduced.
  • the fan device 100 can reduce the number of rotations of the motor due to an external force without supplying electric power from the outside. That is, according to the fan device 100, the number of rotations of the motor due to external force can be reduced while reducing power consumption.
  • the fan device 100 also performs braking when the power is shut off in addition to braking after the power is shut off. Even during braking when the power is shut off, the fan device 100 reduces the rotational speed of the motor due to external force without supplying electric power from the outside. That is, according to the fan device 100, the number of rotations of the motor due to external force can be reduced while reducing power consumption.
  • the case where the upper stage MOSFETs 15 and 16 are non-braking side MOSFETs and the lower stage MOSFETs 17 and 18 are braking side MOSFETs has been described as an example, but the present invention is not limited thereto.
  • the upper stage MOSFETs 15 and 16 may be braking side MOSFETs, and the lower stage side MOSFETs 17 and 18 may be non-braking side MOSFETs.
  • SYMBOLS 1 ... Regulator circuit part, 2 ... Drive signal generation circuit part, 2-1 ... Power supply voltage monitoring circuit part, 3, 4 ... NPN transistor, 13, 14 ... NPN digital transistor, 15, 16 ... Upper stage MOSFET, 17, 18 ... Lower stage side MOSFET, 19 ... Motor part, 20 ... Capacitor, 21, D1 ... Diode, 100 ... Fan device, A ... Control power supply voltage, B, C, D, E ... Drive signal, P ... Connection point, LN1 ... Supply line, ZD1... Constant voltage diode, R1... Resistor, GND... Ground potential, Rt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

ファン装置は、電動回転体の駆動信号生成回路部と、上段側MOSFET及び下段側MOSFETを備える出力段と、出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、電動回転体の電源電圧が供給されていない状態において、モータ部の回転によって生じる逆起電力による電力を制動側MOSFETに供給する逆起電力供給部と、逆起電力供給部が供給する電力によって、制動側MOSFETをオン状態にしてモータ部の電磁的な制動を行う電磁制動部とを更に備える。

Description

ファン装置
本発明は、ファン装置に関する。
従来、外力によるモータの回転を制動することにより回転数を低減する技術が知られている(例えば、特許文献1参照)。
日本国公開公報特開2013-188000号公報
しかしながら、特許文献1に記載の技術によると、外力によるモータの回転数を低減するためには、外部から電力を供給する必要があり、消費電力を低減することができないという問題があった。 
本発明の一つの態様は、消費電力を低減しつつ、外力によるモータの回転数を低減することを目的とする。
本発明の一つの態様に係るファン装置は、電動回転体の駆動信号生成回路部と、上段側MOSFET及び下段側MOSFETを備える出力段と、前記出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、前記上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、電動回転体の電源電圧が供給されていない状態において、前記モータ部の回転によって生じる逆起電力による電力を前記制動側MOSFETに供給する逆起電力供給部と、前記逆起電力供給部が供給する前記電力によって、前記制動側MOSFETをオン状態にして前記モータ部の電磁的な制動を行う電磁制動部とを更に備える。
本発明の一つの態様によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。
図1は、本発明の実施の形態を示す図であって、ファン装置の回路構成の一例を示す回路図である。 図2は、駆動信号生成回路部が生成する駆動信号の波形の一例を示す図である。 図3は、電源電圧が遮断された場合の信号波形の一例を示す図である。 図4は、ファン装置の逆起電力供給経路の一例を示す図である。 図5は、電源遮断後における逆起電力による電位変化の波形の一例を示す図である。 図6は、電源遮断後の制動を行わない場合のモータ部の回転数の一例を示すグラフである。 図7は、電源遮断後の制動を行う場合のモータ部の回転数の一例を示すグラフである。
[実施形態] 以下、本発明のファン装置100の実施の形態を、図を参照して説明する。なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。 
図1は、ファン装置100の回路構成の一例を示す回路図である。ファン装置100は、レギュレータ回路部1と、駆動信号生成回路部2と、トランジスタ3,4と、トランジスタ13,14と、モータ部19と、コンデンサ20と、ダイオード21と、出力段とを備える。出力段は、上段側MOSFET15,16と、下段側MOSFET17,18とを備える。なお、この一例では、出力段が、単相フルブリッジ回路である場合について説明するが、これに限られない。例えば、モータ部19が三相モータである場合には、出力段は、三相フルブリッジ回路であってもよい。 
電源電圧Vが供給される場合、出力段のうち、上段側MOSFET15及び下段側MOSFET18がそれぞれオン状態であり、上段側MOSFET16及び下段側MOSFET17がそれぞれオフ状態であると、モータ部19に駆動電流id1が供給される。また、電源電圧Vが供給される場合、出力段のうち、上段側MOSFET15及び下段側MOSFET18がそれぞれオフ状態であり、上段側MOSFET16及び下段側MOSFET17がそれぞれオン状態であると、モータ部19に駆動電流id2が供給される。 上段側MOSFET15,16は、PチャネルMOSFETであり、ゲート端子にH(ハイ)レベルの信号が供給されるとオフ状態になり、ゲート端子にL(ロー)レベルの信号が供給されるとオン状態になる。 下段側MOSFET17,18は、NチャネルMOSFETであり、ゲート端子にHレベルの信号が供給されるとオン状態になり、ゲート端子にLレベルの信号が供給されるとオフ状態になる。 なお、以下の説明において、下段側MOSFET17,18を制動側MOSFETと記載し、上段側MOSFET15,16を非制動側MOSFETと記載することがある。 
レギュレータ回路部1は、ファン装置100に供給される電源電圧Vから、駆動信号生成回路部2の制御用電源電圧Aを生成する。 駆動信号生成回路部2は、レギュレータ回路部1から供給される制御用電源電圧Aに基づいて、出力段を駆動する駆動信号B,C,D,Eをそれぞれ生成する。駆動信号生成回路部2は、電源電圧監視回路部2-1を備えている。電源電圧監視回路部2-1は、電源電圧Vが供給されているか否かを検知する。具体的には、電源電圧監視回路部2-1は、電源電圧Vの電位を監視し、電源電圧Vの低下を駆動信号生成回路部2に通知する。駆動信号生成回路部2は、電源電圧監視回路部2-1が電源電圧Vの低下を検知すると、駆動信号B,C,D,Eの出力を停止する。具体的には、駆動信号生成回路部2は、電源電圧Vがある電位以下になった場合、駆動信号B,C,D,EをHi-Z(ハイ・インピーダンス)状態にする。 
トランジスタ3は、上段側MOSFET15を駆動する。具体的には、トランジスタ3は、NPN型トランジスタである。トランジスタ3は、ベース端子が駆動信号生成回路部2に接続され、コレクタ端子が抵抗5を介して上段側MOSFET15のゲート端子に接続され、エミッタ端子が電源電圧Vの接地側、すなわちグランド電位GNDに接続される。トランジスタ3は、駆動信号生成回路部2からベース端子にHレベルの駆動信号Bが供給されるとオン状態になり、上段側MOSFET15のゲート端子をLレベルにする。また、トランジスタ3は、駆動信号生成回路部2からベース端子にLレベルの駆動信号Bが供給されるとオフ状態になり、抵抗7を介して供給される電源電圧Vによって上段側MOSFET15のゲート端子をHレベルにする。 
トランジスタ4は、駆動信号生成回路部2から供給される駆動信号Cによって上段側MOSFET16を駆動する。トランジスタ4の具体例は、トランジスタ3と同様であるため、その説明を省略する。 
トランジスタ13は、駆動信号生成回路部2から供給される駆動信号Dによって下段側MOSFET17を駆動する。具体的には、トランジスタ13は、NPN型デジタルトランジスタである。トランジスタ13は、ベース端子が駆動信号生成回路部2に接続され、コレクタ端子が抵抗10を介して下段側MOSFET17のゲート端子に接続され、エミッタ端子がグランド電位GNDに接続される。トランジスタ13は、駆動信号生成回路部2からベース端子にHレベルの駆動信号Dが供給されるとオン状態になり、下段側MOSFET17のゲート端子をLレベルにする。また、トランジスタ13は、駆動信号生成回路部2からベース端子にLレベルの駆動信号Dが供給されるとオフ状態になり、ダイオード21及び抵抗9を介して供給される制御用電源電圧Aによって下段側MOSFET17のゲート端子をHレベルにする。 
トランジスタ14は、駆動信号生成回路部2から供給される駆動信号Eによって下段側MOSFET18を駆動する。トランジスタ14の具体例は、トランジスタ13と同様であるため、その説明を省略する。 
コンデンサ20は、電源電圧Vとグランド電位GNDとの間に接続され、電源電圧Vを安定化する。 
モータ部19は、出力段から供給される駆動電流id1,id2によって不図示のファンを回転させる。モータ部19には、ファンが空気流などの外力によって回転されることにより逆起電力が生じる。モータ部19の逆起電力によって生じた電流は、上段側MOSFET15,16、つまり非制動側MOSFETの寄生ダイオードを介して、電源電圧Vに流入する。 
次に、図2を参照して、駆動信号生成回路部2が生成する駆動信号の一例を説明する。 図2は、駆動信号生成回路部2が生成する駆動信号の波形の一例を示す図である。この一例では、電源電圧Vは、同図の波形Wに示すように、時刻t0から時刻t7において供給され、時刻t7以降において遮断される。電源電圧Vは、一例として54[V]である。 制御用電源電圧Aは、同図の波形Wに示すように、電源電圧Vの供給と遮断とに応じて、時刻t0から時刻t7において動作電位になり、時刻t7以降において停止電位になる。制御用電源電圧Aの動作電位は、一例として12[V]である。制御用電源電圧Aの停止電位は、一例として0[V]である。 駆動信号B,C,D,Eの波形W,W,W,Wをそれぞれ同図に示す。駆動信号B,C,D,Eは、駆動信号生成回路部2の制御に応じてHレベルと、Lレベルとに切り替えられる。この一例では、駆動信号BがHレベルのとき、駆動信号CがLレベルであり、駆動信号DがHレベルであり、駆動信号EがLレベルである。また、駆動信号BがLレベルのとき、駆動信号CがHレベルであり、駆動信号DがLレベルであり、駆動信号EがHレベルである。 駆動信号生成回路部2は、時刻t0から時刻t7まで各駆動信号のレベルを順次切り替えることにより、モータ部19を駆動する。 
[電源遮断時の制動] 図2に示すように、時刻t7において電源電圧Vが遮断されると、制御用電源電圧Aは、動作電位から停止電位に変化する。駆動信号生成回路部2は、制御用電源電圧Aが停止電位になると、駆動信号B,C,D,Eの出力を停止する。この結果、時刻t7以降においては、駆動信号B,C,D,Eが、それぞれHi-Z状態になる。ここで、時刻t7における回路の動作の詳細について、図3を参照して説明する。 
図3は、電源電圧Vが遮断された場合の信号波形の一例を示す図である。時刻t71において電源電圧Vが遮断されると、制御用電源電圧Aが時刻t71から低下し、時刻t72において停止電位になる。駆動信号Dは、時刻t71においてHレベルである。駆動信号Eは、時刻t71においてLレベルである。駆動信号D,Eは、時刻t71以降においてHi-Z状態である。 
下段側MOSFET17には、ゲート端子とソース端子との間に寄生容量が存在する。駆動信号DがHi-Z状態である場合には、下段側MOSFET17は、この寄生容量に蓄えられた電荷によって、下段側MOSFET17のゲート端子の電位D2が、同図の波形WD2に示すように、Hレベルに維持される。下段側MOSFET17は、同図の波形W17に示すように、ゲート端子の電位D2がしきい値電位VthD2を超える場合にオン状態になる。つまり、下段側MOSFET17は、ゲート端子とソース端子との間に寄生容量により、ゲート端子の電位D2がしきい値電位VthD2を超えて維持されることにより、時刻t71から時刻t7Offまでの間、オン状態が維持される。 
下段側MOSFET18には、ゲート端子とソース端子との間に寄生容量が存在する。駆動信号EがHi-Z状態である場合には、下段側MOSFET18は、この寄生容量に蓄えられた電荷によって、下段側MOSFET18のゲート端子の電位E2が、同図の波形WE2に示すように、Hレベルに維持される。つまり、下段側MOSFET18は、下段側MOSFET17と同様に、ゲート端子とソース端子との間に寄生容量により、ゲート端子の電位E2がしきい値電位VthE2を超えて維持されることにより、時刻t71
から時刻t7Offまでの間、オン状態が維持される。つまり、下段側MOSFET17,18は、時刻t71から時刻t7Offまでの間において、いずれもオン状態になる。 
ダイオード21は、寄生容量に蓄えられた電荷がレギュレータ回路部1や、駆動信号生成回路部2に流れ込むことを抑止する。したがって、ゲート端子電位D2,E2は、急速には低下せず、ある期間維持される。下段側MOSFET17,18のオン状態は、ゲート端子電位D2,E2がしきい値電位VthD2,thE2以下になるまで継続する。 
下段側MOSFET17,18には、ドレイン端子とソース端子との間に寄生ダイオードが存在している。この寄生ダイオードは、グランド電位GNDに接続されるソース端子側がアノードであり、モータ部19に接続されるドレイン端子側がカソードである。つまり、寄生ダイオードは、グランド電位GNDからモータ部19に電流を流すことができる。この寄生ダイオードの存在と、下段側MOSFET17,18がいずれもオン状態になることとにより、モータ部19の巻線両端が、いずれもグランド電位GNDに接続された状態になる。したがって、ファン装置100によれば、電源電圧Vが遮断されるとモータ部19に電磁ブレーキが生じ、ファンの回転数が低減される。 
[電源遮断後の制動] ここまで、制動側MOSFETによる電源遮断時のモータ部19の制動について説明した。次に、電源遮断後のモータ部19の制動について説明する。 
図1に戻り、ファン装置100は、逆起電力供給部を備えている。この逆起電力供給部は、ダイオードD1と、抵抗R1と、供給線LN1とを備えている。ダイオードD1、と抵抗R1、及び供給線LN1は、電源電圧Vと、制動側MOSFETとの間に直列に接続されている。図1に示す一例においては、ダイオードD1は、アノードが電源電圧Vに接続され、カソードが抵抗R1に接続される。抵抗R1は、一端がダイオードD1のカソードに接続され、他端が接続点Pに接続される。接続点Pは、抵抗R9と抵抗R10とを介して、下段側MOSFET17のゲート端子に接続される。また、接続点Pは、抵抗R11と抵抗R12とを介して、下段側MOSFET18のゲート端子に接続される。 
ここで、図2の時刻t8以降、すなわち、電源遮断後においては、制動側MOSFETの寄生容量の電荷が減少し、この寄生容量の電荷だけでは制動側MOSFETをオン状態に維持することができなくなる場合がある。つまり、ファン装置100は、電源遮断後においては、制動側MOSFETの寄生容量の電荷だけでは、モータ部19に電磁ブレーキを生じさせることができない場合がある。ファン装置100が、電源遮断後にモータ部19に電磁ブレーキを生じさせる仕組みについて、図4及び図5を参照して説明する。 
図4は、ファン装置100の逆起電力供給経路の一例を示す図である。上述したように、図2の時刻t7以降、つまり電源遮断時以降においては、駆動信号生成回路部2は、駆動信号B,C,D,EをそれぞれHi-Z状態にする。したがって、電源遮断時以降においては、上段側MOSFET15,16と、下段側MOSFET17,18とは、いずれもオフ状態になる。図2の時刻t8において、外力によりファンが回転したとする。モータ部19には、このファンの回転により逆起電力が生じる。モータ部19は、この逆起電力により、電流ic1又は電流ic2を生じさせる。以下の説明において、電流ic1及び電流ic2を区別しない場合には、電流icと総称する。 
上述したように、上段側MOSFET15,16と、下段側MOSFET17,18とには、いずれも寄生ダイオードが存在する。上段側MOSFET15,16、及び下段側MOSFET17,18は、オフ状態であっても、この寄生ダイオードを介してグランド電位GND側から電源電圧V側に電流icを流すことが可能である。電流ic1は、グランド電位GNDから、下段側MOSFET17の寄生ダイオード、モータ部19、上段側MOSFET16の寄生ダイオードを介して、電源電圧Vに流入する。すなわち、電流ic1は、逆起電力供給経路Rt1を流れる。また、電流ic2は、グランド電位GNDから、下段側MOSFET18の寄生ダイオード、モータ部19、上段側MOSFET15の寄生ダイオードを介して、電源電圧Vに流入する。すなわち、電流ic2は、逆起電力供給経路Rt2を流れる。 
上述したように、電源電圧Vと、接続点Pとは、ダイオードD1及び抵抗R1を介して接続されている。逆起電力供給経路Rt1、及び逆起電力供給経路Rt2から電源電圧Vに流入した電流icは、ダイオードD1及び抵抗R1を介して接続点Pに流入する。すなわち、電流icは、逆起電力供給経路Rtを介して接続点Pに流入する。この構成により、接続点Pの電位が上昇する。この接続点Pの電位の変化について、図5を参照して説明する。 
図5は、電源遮断後における逆起電力による電位変化の波形の一例を示す図である。制御用電源電圧Aの波形Wは、電源遮断後の時刻t81から時刻t84において停止電位を保つ。この結果、時刻t81から時刻t84において駆動信号D,Eは、いずれもHi-Z状態になる。 この一例では、モータ部19には、時刻t81から時刻t83までの間に、逆起電力が生じる。この逆起電力により、接続点Pには、逆起電力供給経路Rtを介して電流icが流入し、時刻t81から時刻t82にかけて接続点Pの電位が上昇する。接続点Pとグランド電位GNDとの間には、定電圧ダイオードZD1のカソード側が接続点Pに、アノード側がグランド電位GNDに、それぞれ接続されている。この定電圧ダイオードZD1は、例えば、ツェナーダイオードであり、接続点Pの電位をツェナー電圧VZD1以下に抑制する。この結果、接続点Pの電位は、時刻t82から時刻t83にかけてツェナー電圧VZD1を上限値として維持される。 
下段側MOSFET17のゲート端子の電位D2は、接続点Pの電位の変化に伴い変化する。ゲート端子の電位D2がしきい値電位VthD2を超えると、下段側MOSFET17がオン状態になる。この一例では、ゲート端子の電位D2は、時刻t8onから時刻t8offの間、しきい値電位VthD2を超える。この場合、下段側MOSFET17は、波形W17に示すように、時刻t8onから時刻t8offの間、オン状態になる。 
下段側MOSFET18のゲート端子の電位E2も、ゲート端子の電位D2と同様に変化する。すなわち、ゲート端子の電位E2は、接続点Pの電位の変化に伴い変化する。ゲート端子の電位E2がしきい値電位VthE2を超えると、下段側MOSFET18がオン状態になる。この一例では、ゲート端子の電位E2は、時刻t8onから時刻t8offの間、しきい値電位VthE2を超える。この場合、下段側MOSFET18は、波形W18に示すように、時刻t8onから時刻t8offの間、オン状態になる。 
すなわち、下段側MOSFET17,18は、時刻t8onから時刻t8offの間、いずれもオン状態になる。制動側MOSFETがいずれもオン状態になると、モータ部19には電磁ブレーキが生じ、ファンの回転数が低減される。 
[駆動時の消費電力低減] このファン装置100において、定電圧ダイオードZD1のツェナー電圧VZD1と、抵抗R1の抵抗値とは、次のようにして定められている。電源電圧Vは、制御用電源電圧Aよりも電圧が高い。この一例では、電源電圧Vは、54[V]であり、制御用電源電圧Aは、12[V]である。接続点Pには、ダイオード21を介して制御用電源電圧Aが印加される。ここで、ファン装置100に電源電圧Vが供給されている場合、逆起電力供給部のダイオードD1及び抵抗R1を介して、接続点Pに電圧が印加される。 定電圧ダイオードZD1のツェナー電圧VZD1は、電源電圧Vが供給されている場合に接続点Pに印加される電圧の許容値に基づいて定められている。具体的には、ツェナー電圧VZD1は、制御用電源電圧Aに基づいて定めされている。一例として、制御用電源電圧Aが12[V]である場合、定電圧ダイオードZD1のツェナー電圧VZD1は、12[V]である。つまり、定電圧ダイオードZD1の降伏電圧は、電源電圧Vから生成される制御用の制御用電源電圧Aに基づいて定められている。 
定電圧ダイオードZD1のツェナー電圧VZD1は、電源電圧Vよりも低い。このため、電源電圧Vが供給されると、逆起電力供給部のダイオードD1、抵抗R1、及び定電圧ダイオードZD1を介して電源電圧Vからグランド電位GNDに電流izが流れる。この電流izは、モータ部19の駆動に寄与しない。ファン装置100は、電流izを低減することにより、消費電力を低減することができる。電流izは、(電源電圧V-ツェナー電圧VZD1)/(抵抗R1の抵抗値)によって求められる。つまり、ファン装置100は、抵抗R1の抵抗値を比較的大きくすることにより、電流izを低減することができる。一例として、抵抗R1の抵抗値は、47[kΩ]である。 
[実験結果] 図6及び図7を参照して、電源遮断後の制動の実験結果を説明する。図6は、電源遮断後の制動を行わない場合のモータ部19の回転数の一例を示すグラフである。図7は、電源遮断後の制動を行う場合のモータ部19の回転数の一例を示すグラフである。 
この実験では、時刻t10において電源電圧Vを遮断した後、時刻t11においてモータ部19を外力によって回転させる。具体的には、時刻t11において、ファン装置100のファンに風を当てることにより、風力によってファンを回転させる。電源遮断後の制動を行わない場合、モータ部19の回転数は、図6に示すように時刻t11以降において2800[rpm](46.7[r/s])である。 
一方、電源遮断後の制動を行う場合、モータ部19の回転数は、図7に示すように時刻t11以降において1600[rpm](26.7[r/s])である。つまり、ファン装置100は、電源遮断後の制動を行うことにより、電源遮断後の制動を行わない場合に比べて、モータ部19の回転数を1400[rpm](23.3[r/s])低減している。 
以上説明したように、ファン装置100は、外部から電力を供給することなく、外力によるモータの回転数を低減することができる。つまり、ファン装置100によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。 
また、ファン装置100は、電源遮断後の制動に加え、電源遮断時の制動も行う。この電源遮断時の制動の際にも、ファン装置100は、外部から電力を供給することなく、外力によるモータの回転数を低減する。つまり、ファン装置100によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。 
なお、これまで、上段側MOSFET15,16が、非制動側MOSFETであり、下段側MOSFET17,18が制動側MOSFETである場合を一例にして説明したが、これに限られない。上段側MOSFET15,16が制動側MOSFETであり、下段側MOSFET17,18が非制動側MOSFETであってもよい。
1…レギュレータ回路部、2…駆動信号生成回路部、2-1…電源電圧監視回路部、3,4…NPNトランジスタ、13,14…NPNデジタルトランジスタ、15,16…上段側MOSFET、17,18…下段側MOSFET、19…モータ部
、20…コンデンサ、21,D1…ダイオード、100…ファン装置、A…制御用電源電圧、B,C,D,E…駆動信号、P…接続点、LN1…供給線、ZD1…定電圧ダイオード、R1…抵抗、GND…グランド電位、Rt…逆起電力供給経路

Claims (5)

  1. 電動回転体の駆動信号生成回路部と、 上段側MOSFET及び下段側MOSFETを備える出力段と、 前記出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、 前記上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、 電動回転体の電源電圧が供給されていない状態において、前記モータ部の回転によって生じる逆起電力による電力を前記制動側MOSFETに供給する逆起電力供給部と、 前記逆起電力供給部が供給する前記電力によって、前記制動側MOSFETをオン状態にして前記モータ部の電磁的な制動を行う電磁制動部と を更に備えるファン装置。
  2. 前記電源電圧が供給されているか否かを検知する電源電圧監視回路部と、 前記電源電圧から制御用電源電圧を生成する制御用電源電圧生成部と、 前記制御用電源電圧生成部の電源出力端子と、前記制動側MOSFETのゲート端子との間に備えられ、前記電源出力端子側にアノードが、前記ゲート端子側にカソードがそれぞれ接続されたダイオードと、 前記駆動信号生成回路部が出力する駆動信号と、前記制御用電源電圧とが供給され、前記制動側MOSFETの前記ゲート端子を駆動する駆動回路と、 を更に備え、 前記駆動信号生成回路部は、 前記電源電圧監視回路部が前記電源電圧の供給の停止を検知した場合に、前記非制動側MOSFETをオフ状態に制御する 請求項1に記載のファン装置。
  3. 前記逆起電力供給部は、 前記非制動側MOSFETに生じる寄生ダイオードと、 一端が前記寄生ダイオードのカソード側に、他端が前記電源電圧の接地側に、それぞれ接続された逆起電力供給ダイオードと抵抗との直列回路と、 前記寄生ダイオードを介して前記直列回路に供給される電力を、前記制動側MOSFETのゲート端子に供給する供給線と を更に備える請求項1又は請求項2に記載のファン装置。
  4. 前記逆起電力供給部は、 前記直列回路と前記供給線との接続点と、前記電源電圧の接地側との間に接続された定電圧ダイオード を更に備える請求項3に記載のファン装置。
  5. 前記定電圧ダイオードの降伏電圧が、前記電源電圧から生成される制御用電源電圧に基づいて定められている 請求項4に記載のファン装置。
PCT/JP2016/074653 2015-09-02 2016-08-24 ファン装置 WO2017038578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16841610.5A EP3346599A4 (en) 2015-09-02 2016-08-24 FAN DEVICE
JP2017537782A JP6814736B2 (ja) 2015-09-02 2016-08-24 ファン装置
CN201680050687.7A CN108028618B (zh) 2015-09-02 2016-08-24 风扇装置
US15/756,634 US10626874B2 (en) 2015-09-02 2016-08-24 Fan apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172713 2015-09-02
JP2015-172713 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038578A1 true WO2017038578A1 (ja) 2017-03-09

Family

ID=58187296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074653 WO2017038578A1 (ja) 2015-09-02 2016-08-24 ファン装置

Country Status (5)

Country Link
US (1) US10626874B2 (ja)
EP (1) EP3346599A4 (ja)
JP (1) JP6814736B2 (ja)
CN (1) CN108028618B (ja)
WO (1) WO2017038578A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978419B2 (ja) * 2016-08-08 2021-12-08 日本電産サーボ株式会社 モータ駆動回路
CN109405670A (zh) * 2018-10-22 2019-03-01 西安微电子技术研究所 一种用于制导修正组件的高旋发电机舵控装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335273A (ja) * 1993-05-20 1994-12-02 Toshiba Corp 交流電動機の制御装置
JP2004343988A (ja) * 2003-05-16 2004-12-02 Samsung Electronics Co Ltd モーター電源供給装置
JP2009131105A (ja) * 2007-11-27 2009-06-11 Nidec Servo Corp モータの駆動回路
JP2009213234A (ja) * 2008-03-04 2009-09-17 Hitachi Ltd モーター制御装置
JP2013146142A (ja) * 2012-01-13 2013-07-25 Denso Corp モータ駆動装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732094A1 (de) * 1997-07-25 1999-01-28 Bosch Gmbh Robert Steuerschaltung für einen Gleichstrommotor
US6078156A (en) 1998-10-02 2000-06-20 Eastman Kodak Company Method and apparatus for improved electronic braking of a DC motor
US6545886B1 (en) * 2001-05-05 2003-04-08 Anthony J. Ireland Power conditioning for model railroad control decoders
US6741047B2 (en) * 2002-06-28 2004-05-25 Sunonwealth Electric Machine Industry Co., Ltd. Dual current-limiting circuit for DC brushless motor
JP4039280B2 (ja) * 2003-03-14 2008-01-30 ミツミ電機株式会社 モータ駆動回路
JP2007259617A (ja) * 2006-03-24 2007-10-04 Japan Servo Co Ltd 電動回転体のブレーキ装置
EP2003772A2 (en) * 2006-03-29 2008-12-17 Rohm Co., Ltd. Motor drive circuit, method, and disc device using the same
US7397212B2 (en) * 2006-10-30 2008-07-08 Square D Company DC motor phase estimation with phase-locked loop
JP4445978B2 (ja) * 2007-04-12 2010-04-07 ローム株式会社 モータ駆動装置、モータの制御方法およびそれを用いた冷却装置
US7889977B2 (en) * 2007-12-18 2011-02-15 Minebea Co., Ltd. Single output H-bridge drive
TWI381719B (zh) * 2008-02-18 2013-01-01 Univ Nat Taiwan 穩定全幅式視訊之方法
JP5408893B2 (ja) * 2008-03-27 2014-02-05 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー モータ駆動回路
WO2010033101A1 (en) 2008-09-18 2010-03-25 Moog Inc. Improved motor driver for damping movement of an oscillatory load, and method of damping movement of an oscillatory load
IT1404232B1 (it) * 2010-12-16 2013-11-15 Gate Srl Sistema di controllo della velocita' di rotazione di un elettroventilatore associato a scambiatori di calore di un autoveicolo
JP5923822B2 (ja) * 2012-02-09 2016-05-25 ミネベア株式会社 ブラシレスモータの駆動制御装置
JP2013165627A (ja) * 2012-02-13 2013-08-22 U-Tec Corp 駆動装置
JP5804984B2 (ja) 2012-03-07 2015-11-04 株式会社ツバキE&M モータ駆動装置
CN104682792B (zh) * 2013-11-27 2020-01-31 德昌电机(深圳)有限公司 直流电机控制电路
US9513653B2 (en) * 2014-09-15 2016-12-06 Freescale Semiconductor, Inc. Method and apparatus for control of a switched current circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335273A (ja) * 1993-05-20 1994-12-02 Toshiba Corp 交流電動機の制御装置
JP2004343988A (ja) * 2003-05-16 2004-12-02 Samsung Electronics Co Ltd モーター電源供給装置
JP2009131105A (ja) * 2007-11-27 2009-06-11 Nidec Servo Corp モータの駆動回路
JP2009213234A (ja) * 2008-03-04 2009-09-17 Hitachi Ltd モーター制御装置
JP2013146142A (ja) * 2012-01-13 2013-07-25 Denso Corp モータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346599A4 *

Also Published As

Publication number Publication date
CN108028618B (zh) 2021-09-24
EP3346599A1 (en) 2018-07-11
CN108028618A (zh) 2018-05-11
US20180258939A1 (en) 2018-09-13
US10626874B2 (en) 2020-04-21
JP6814736B2 (ja) 2021-01-20
JPWO2017038578A1 (ja) 2018-07-26
EP3346599A4 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
KR101069485B1 (ko) 모터 구동 회로
US7535189B2 (en) Motor drive circuit
JP2015175290A (ja) 電動ポンプ
JP2007158154A (ja) 静電破壊保護回路及びこれを備えた半導体集積回路装置
JP6361531B2 (ja) 半導体装置およびモータ制御装置
JP4922749B2 (ja) ファンシステム
WO2017038578A1 (ja) ファン装置
EP2678941B1 (en) Driver circuit for a semiconductor power switch
KR20120031463A (ko) 모터
JP2005176454A (ja) モータ制御装置およびそれを用いた電動工具
TWI403086B (zh) 用於控制刷型電動機之旋轉方向及速度之裝置及方法
JP4821394B2 (ja) 半導体素子駆動回路
US9722527B2 (en) Power supply of an electric motor
JP2012114986A (ja) モータドライバ及びこれを用いた車両
JP5182791B2 (ja) ループ技術を利用してモータの逆誘導起電力を制御する機構
JP5399085B2 (ja) ブラシレスモータの駆動回路、モータユニット、ならびにそれを用いた電子機器
JP2010226794A (ja) ホール素子を用いたブラシレスモータ駆動回路
JP2016163467A (ja) モータ制御装置
JP2003250286A (ja) 制御装置
JP2012114681A (ja) スイッチング駆動回路
JP2013009244A (ja) 半導体素子制御装置
EP1589651A1 (en) Apparatus for powering electric motors
EP2066016B1 (en) Static switch for motors of climate control units and climate control unit comprising the switch
JP2010104150A (ja) インダクタ駆動回路
JP2013099206A (ja) 単相ブラシレスモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537782

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756634

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841610

Country of ref document: EP