JPWO2017038578A1 - ファン装置 - Google Patents

ファン装置 Download PDF

Info

Publication number
JPWO2017038578A1
JPWO2017038578A1 JP2017537782A JP2017537782A JPWO2017038578A1 JP WO2017038578 A1 JPWO2017038578 A1 JP WO2017038578A1 JP 2017537782 A JP2017537782 A JP 2017537782A JP 2017537782 A JP2017537782 A JP 2017537782A JP WO2017038578 A1 JPWO2017038578 A1 JP WO2017038578A1
Authority
JP
Japan
Prior art keywords
power supply
supply voltage
braking
side mosfet
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017537782A
Other languages
English (en)
Other versions
JP6814736B2 (ja
Inventor
基 大塚
基 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Servo Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Publication of JPWO2017038578A1 publication Critical patent/JPWO2017038578A1/ja
Application granted granted Critical
Publication of JP6814736B2 publication Critical patent/JP6814736B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

ファン装置は、電動回転体の駆動信号生成回路部と、上段側MOSFET及び下段側MOSFETを備える出力段と、出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、電動回転体の電源電圧が供給されていない状態において、モータ部の回転によって生じる逆起電力による電力を制動側MOSFETに供給する逆起電力供給部と、逆起電力供給部が供給する電力によって、制動側MOSFETをオン状態にしてモータ部の電磁的な制動を行う電磁制動部とを更に備える。

Description

本発明は、ファン装置に関する。
従来、外力によるモータの回転を制動することにより回転数を低減する技術が知られている(例えば、特許文献1参照)。
日本国公開公報特開2013−188000号公報
しかしながら、特許文献1に記載の技術によると、外力によるモータの回転数を低減するためには、外部から電力を供給する必要があり、消費電力を低減することができないという問題があった。
本発明の一つの態様は、消費電力を低減しつつ、外力によるモータの回転数を低減することを目的とする。
本発明の一つの態様に係るファン装置は、電動回転体の駆動信号生成回路部と、上段側MOSFET及び下段側MOSFETを備える出力段と、前記出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、前記上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、電動回転体の電源電圧が供給されていない状態において、前記モータ部の回転によって生じる逆起電力による電力を前記制動側MOSFETに供給する逆起電力供給部と、前記逆起電力供給部が供給する前記電力によって、前記制動側MOSFETをオン状態にして前記モータ部の電磁的な制動を行う電磁制動部とを更に備える。
本発明の一つの態様によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。
図1は、本発明の実施の形態を示す図であって、ファン装置の回路構成の一例を示す回路図である。 図2は、駆動信号生成回路部が生成する駆動信号の波形の一例を示す図である。 図3は、電源電圧が遮断された場合の信号波形の一例を示す図である。 図4は、ファン装置の逆起電力供給経路の一例を示す図である。 図5は、電源遮断後における逆起電力による電位変化の波形の一例を示す図である。 図6は、電源遮断後の制動を行わない場合のモータ部の回転数の一例を示すグラフである。 図7は、電源遮断後の制動を行う場合のモータ部の回転数の一例を示すグラフである。
[実施形態] 以下、本発明のファン装置100の実施の形態を、図を参照して説明する。なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
図1は、ファン装置100の回路構成の一例を示す回路図である。ファン装置100は、レギュレータ回路部1と、駆動信号生成回路部2と、トランジスタ3,4と、トランジスタ13,14と、モータ部19と、コンデンサ20と、ダイオード21と、出力段とを備える。出力段は、上段側MOSFET15,16と、下段側MOSFET17,18とを備える。なお、この一例では、出力段が、単相フルブリッジ回路である場合について説明するが、これに限られない。例えば、モータ部19が三相モータである場合には、出力段は、三相フルブリッジ回路であってもよい。
電源電圧Vが供給される場合、出力段のうち、上段側MOSFET15及び下段側MOSFET18がそれぞれオン状態であり、上段側MOSFET16及び下段側MOSFET17がそれぞれオフ状態であると、モータ部19に駆動電流id1が供給される。また、電源電圧Vが供給される場合、出力段のうち、上段側MOSFET15及び下段側MOSFET18がそれぞれオフ状態であり、上段側MOSFET16及び下段側MOSFET17がそれぞれオン状態であると、モータ部19に駆動電流id2が供給される。 上段側MOSFET15,16は、PチャネルMOSFETであり、ゲート端子にH(ハイ)レベルの信号が供給されるとオフ状態になり、ゲート端子にL(ロー)レベルの信号が供給されるとオン状態になる。 下段側MOSFET17,18は、NチャネルMOSFETであり、ゲート端子にHレベルの信号が供給されるとオン状態になり、ゲート端子にLレベルの信号が供給されるとオフ状態になる。 なお、以下の説明において、下段側MOSFET17,18を制動側MOSFETと記載し、上段側MOSFET15,16を非制動側MOSFETと記載することがある。
レギュレータ回路部1は、ファン装置100に供給される電源電圧Vから、駆動信号生成回路部2の制御用電源電圧Aを生成する。 駆動信号生成回路部2は、レギュレータ回路部1から供給される制御用電源電圧Aに基づいて、出力段を駆動する駆動信号B,C,D,Eをそれぞれ生成する。駆動信号生成回路部2は、電源電圧監視回路部2−1を備えている。電源電圧監視回路部2−1は、電源電圧Vが供給されているか否かを検知する。具体的には、電源電圧監視回路部2−1は、電源電圧Vの電位を監視し、電源電圧Vの低下を駆動信号生成回路部2に通知する。駆動信号生成回路部2は、電源電圧監視回路部2−1が電源電圧Vの低下を検知すると、駆動信号B,C,D,Eの出力を停止する。具体的には、駆動信号生成回路部2は、電源電圧Vがある電位以下になった場合、駆動信号B,C,D,EをHi−Z(ハイ・インピーダンス)状態にする。
トランジスタ3は、上段側MOSFET15を駆動する。具体的には、トランジスタ3は、NPN型トランジスタである。トランジスタ3は、ベース端子が駆動信号生成回路部2に接続され、コレクタ端子が抵抗5を介して上段側MOSFET15のゲート端子に接続され、エミッタ端子が電源電圧Vの接地側、すなわちグランド電位GNDに接続される。トランジスタ3は、駆動信号生成回路部2からベース端子にHレベルの駆動信号Bが供給されるとオン状態になり、上段側MOSFET15のゲート端子をLレベルにする。また、トランジスタ3は、駆動信号生成回路部2からベース端子にLレベルの駆動信号Bが供給されるとオフ状態になり、抵抗7を介して供給される電源電圧Vによって上段側MOSFET15のゲート端子をHレベルにする。
トランジスタ4は、駆動信号生成回路部2から供給される駆動信号Cによって上段側MOSFET16を駆動する。トランジスタ4の具体例は、トランジスタ3と同様であるため、その説明を省略する。
トランジスタ13は、駆動信号生成回路部2から供給される駆動信号Dによって下段側MOSFET17を駆動する。具体的には、トランジスタ13は、NPN型デジタルトランジスタである。トランジスタ13は、ベース端子が駆動信号生成回路部2に接続され、コレクタ端子が抵抗10を介して下段側MOSFET17のゲート端子に接続され、エミッタ端子がグランド電位GNDに接続される。トランジスタ13は、駆動信号生成回路部2からベース端子にHレベルの駆動信号Dが供給されるとオン状態になり、下段側MOSFET17のゲート端子をLレベルにする。また、トランジスタ13は、駆動信号生成回路部2からベース端子にLレベルの駆動信号Dが供給されるとオフ状態になり、ダイオード21及び抵抗9を介して供給される制御用電源電圧Aによって下段側MOSFET17のゲート端子をHレベルにする。
トランジスタ14は、駆動信号生成回路部2から供給される駆動信号Eによって下段側MOSFET18を駆動する。トランジスタ14の具体例は、トランジスタ13と同様であるため、その説明を省略する。
コンデンサ20は、電源電圧Vとグランド電位GNDとの間に接続され、電源電圧Vを安定化する。
モータ部19は、出力段から供給される駆動電流id1,id2によって不図示のファンを回転させる。モータ部19には、ファンが空気流などの外力によって回転されることにより逆起電力が生じる。モータ部19の逆起電力によって生じた電流は、上段側MOSFET15,16、つまり非制動側MOSFETの寄生ダイオードを介して、電源電圧Vに流入する。
次に、図2を参照して、駆動信号生成回路部2が生成する駆動信号の一例を説明する。 図2は、駆動信号生成回路部2が生成する駆動信号の波形の一例を示す図である。この一例では、電源電圧Vは、同図の波形Wに示すように、時刻t0から時刻t7において供給され、時刻t7以降において遮断される。電源電圧Vは、一例として54[V]である。 制御用電源電圧Aは、同図の波形Wに示すように、電源電圧Vの供給と遮断とに応じて、時刻t0から時刻t7において動作電位になり、時刻t7以降において停止電位になる。制御用電源電圧Aの動作電位は、一例として12[V]である。制御用電源電圧Aの停止電位は、一例として0[V]である。 駆動信号B,C,D,Eの波形W,W,W,Wをそれぞれ同図に示す。駆動信号B,C,D,Eは、駆動信号生成回路部2の制御に応じてHレベルと、Lレベルとに切り替えられる。この一例では、駆動信号BがHレベルのとき、駆動信号CがLレベルであり、駆動信号DがHレベルであり、駆動信号EがLレベルである。また、駆動信号BがLレベルのとき、駆動信号CがHレベルであり、駆動信号DがLレベルであり、駆動信号EがHレベルである。 駆動信号生成回路部2は、時刻t0から時刻t7まで各駆動信号のレベルを順次切り替えることにより、モータ部19を駆動する。
[電源遮断時の制動] 図2に示すように、時刻t7において電源電圧Vが遮断されると、制御用電源電圧Aは、動作電位から停止電位に変化する。駆動信号生成回路部2は、制御用電源電圧Aが停止電位になると、駆動信号B,C,D,Eの出力を停止する。この結果、時刻t7以降においては、駆動信号B,C,D,Eが、それぞれHi−Z状態になる。ここで、時刻t7における回路の動作の詳細について、図3を参照して説明する。
図3は、電源電圧Vが遮断された場合の信号波形の一例を示す図である。時刻t71において電源電圧Vが遮断されると、制御用電源電圧Aが時刻t71から低下し、時刻t72において停止電位になる。駆動信号Dは、時刻t71においてHレベルである。駆動信号Eは、時刻t71においてLレベルである。駆動信号D,Eは、時刻t71以降においてHi−Z状態である。
下段側MOSFET17には、ゲート端子とソース端子との間に寄生容量が存在する。駆動信号DがHi−Z状態である場合には、下段側MOSFET17は、この寄生容量に蓄えられた電荷によって、下段側MOSFET17のゲート端子の電位D2が、同図の波形WD2に示すように、Hレベルに維持される。下段側MOSFET17は、同図の波形W17に示すように、ゲート端子の電位D2がしきい値電位VthD2を超える場合にオン状態になる。つまり、下段側MOSFET17は、ゲート端子とソース端子との間に寄生容量により、ゲート端子の電位D2がしきい値電位VthD2を超えて維持されることにより、時刻t71から時刻t7Offまでの間、オン状態が維持される。
下段側MOSFET18には、ゲート端子とソース端子との間に寄生容量が存在する。駆動信号EがHi−Z状態である場合には、下段側MOSFET18は、この寄生容量に蓄えられた電荷によって、下段側MOSFET18のゲート端子の電位E2が、同図の波形WE2に示すように、Hレベルに維持される。つまり、下段側MOSFET18は、下段側MOSFET17と同様に、ゲート端子とソース端子との間に寄生容量により、ゲート端子の電位E2がしきい値電位VthE2を超えて維持されることにより、時刻t71
から時刻t7Offまでの間、オン状態が維持される。つまり、下段側MOSFET17,18は、時刻t71から時刻t7Offまでの間において、いずれもオン状態になる。
ダイオード21は、寄生容量に蓄えられた電荷がレギュレータ回路部1や、駆動信号生成回路部2に流れ込むことを抑止する。したがって、ゲート端子電位D2,E2は、急速には低下せず、ある期間維持される。下段側MOSFET17,18のオン状態は、ゲート端子電位D2,E2がしきい値電位VthD2,thE2以下になるまで継続する。
下段側MOSFET17,18には、ドレイン端子とソース端子との間に寄生ダイオードが存在している。この寄生ダイオードは、グランド電位GNDに接続されるソース端子側がアノードであり、モータ部19に接続されるドレイン端子側がカソードである。つまり、寄生ダイオードは、グランド電位GNDからモータ部19に電流を流すことができる。この寄生ダイオードの存在と、下段側MOSFET17,18がいずれもオン状態になることとにより、モータ部19の巻線両端が、いずれもグランド電位GNDに接続された状態になる。したがって、ファン装置100によれば、電源電圧Vが遮断されるとモータ部19に電磁ブレーキが生じ、ファンの回転数が低減される。
[電源遮断後の制動] ここまで、制動側MOSFETによる電源遮断時のモータ部19の制動について説明した。次に、電源遮断後のモータ部19の制動について説明する。
図1に戻り、ファン装置100は、逆起電力供給部を備えている。この逆起電力供給部は、ダイオードD1と、抵抗R1と、供給線LN1とを備えている。ダイオードD1、と抵抗R1、及び供給線LN1は、電源電圧Vと、制動側MOSFETとの間に直列に接続されている。図1に示す一例においては、ダイオードD1は、アノードが電源電圧Vに接続され、カソードが抵抗R1に接続される。抵抗R1は、一端がダイオードD1のカソードに接続され、他端が接続点Pに接続される。接続点Pは、抵抗R9と抵抗R10とを介して、下段側MOSFET17のゲート端子に接続される。また、接続点Pは、抵抗R11と抵抗R12とを介して、下段側MOSFET18のゲート端子に接続される。
ここで、図2の時刻t8以降、すなわち、電源遮断後においては、制動側MOSFETの寄生容量の電荷が減少し、この寄生容量の電荷だけでは制動側MOSFETをオン状態に維持することができなくなる場合がある。つまり、ファン装置100は、電源遮断後においては、制動側MOSFETの寄生容量の電荷だけでは、モータ部19に電磁ブレーキを生じさせることができない場合がある。ファン装置100が、電源遮断後にモータ部19に電磁ブレーキを生じさせる仕組みについて、図4及び図5を参照して説明する。
図4は、ファン装置100の逆起電力供給経路の一例を示す図である。上述したように、図2の時刻t7以降、つまり電源遮断時以降においては、駆動信号生成回路部2は、駆動信号B,C,D,EをそれぞれHi−Z状態にする。したがって、電源遮断時以降においては、上段側MOSFET15,16と、下段側MOSFET17,18とは、いずれもオフ状態になる。図2の時刻t8において、外力によりファンが回転したとする。モータ部19には、このファンの回転により逆起電力が生じる。モータ部19は、この逆起電力により、電流ic1又は電流ic2を生じさせる。以下の説明において、電流ic1及び電流ic2を区別しない場合には、電流icと総称する。
上述したように、上段側MOSFET15,16と、下段側MOSFET17,18とには、いずれも寄生ダイオードが存在する。上段側MOSFET15,16、及び下段側MOSFET17,18は、オフ状態であっても、この寄生ダイオードを介してグランド電位GND側から電源電圧V側に電流icを流すことが可能である。電流ic1は、グランド電位GNDから、下段側MOSFET17の寄生ダイオード、モータ部19、上段側MOSFET16の寄生ダイオードを介して、電源電圧Vに流入する。すなわち、電流ic1は、逆起電力供給経路Rt1を流れる。また、電流ic2は、グランド電位GNDから、下段側MOSFET18の寄生ダイオード、モータ部19、上段側MOSFET15の寄生ダイオードを介して、電源電圧Vに流入する。すなわち、電流ic2は、逆起電力供給経路Rt2を流れる。
上述したように、電源電圧Vと、接続点Pとは、ダイオードD1及び抵抗R1を介して接続されている。逆起電力供給経路Rt1、及び逆起電力供給経路Rt2から電源電圧Vに流入した電流icは、ダイオードD1及び抵抗R1を介して接続点Pに流入する。すなわち、電流icは、逆起電力供給経路Rtを介して接続点Pに流入する。この構成により、接続点Pの電位が上昇する。この接続点Pの電位の変化について、図5を参照して説明する。
図5は、電源遮断後における逆起電力による電位変化の波形の一例を示す図である。制御用電源電圧Aの波形Wは、電源遮断後の時刻t81から時刻t84において停止電位を保つ。この結果、時刻t81から時刻t84において駆動信号D,Eは、いずれもHi−Z状態になる。 この一例では、モータ部19には、時刻t81から時刻t83までの間に、逆起電力が生じる。この逆起電力により、接続点Pには、逆起電力供給経路Rtを介して電流icが流入し、時刻t81から時刻t82にかけて接続点Pの電位が上昇する。接続点Pとグランド電位GNDとの間には、定電圧ダイオードZD1のカソード側が接続点Pに、アノード側がグランド電位GNDに、それぞれ接続されている。この定電圧ダイオードZD1は、例えば、ツェナーダイオードであり、接続点Pの電位をツェナー電圧VZD1以下に抑制する。この結果、接続点Pの電位は、時刻t82から時刻t83にかけてツェナー電圧VZD1を上限値として維持される。
下段側MOSFET17のゲート端子の電位D2は、接続点Pの電位の変化に伴い変化する。ゲート端子の電位D2がしきい値電位VthD2を超えると、下段側MOSFET17がオン状態になる。この一例では、ゲート端子の電位D2は、時刻t8onから時刻t8offの間、しきい値電位VthD2を超える。この場合、下段側MOSFET17は、波形W17に示すように、時刻t8onから時刻t8offの間、オン状態になる。
下段側MOSFET18のゲート端子の電位E2も、ゲート端子の電位D2と同様に変化する。すなわち、ゲート端子の電位E2は、接続点Pの電位の変化に伴い変化する。ゲート端子の電位E2がしきい値電位VthE2を超えると、下段側MOSFET18がオン状態になる。この一例では、ゲート端子の電位E2は、時刻t8onから時刻t8offの間、しきい値電位VthE2を超える。この場合、下段側MOSFET18は、波形W18に示すように、時刻t8onから時刻t8offの間、オン状態になる。
すなわち、下段側MOSFET17,18は、時刻t8onから時刻t8offの間、いずれもオン状態になる。制動側MOSFETがいずれもオン状態になると、モータ部19には電磁ブレーキが生じ、ファンの回転数が低減される。
[駆動時の消費電力低減] このファン装置100において、定電圧ダイオードZD1のツェナー電圧VZD1と、抵抗R1の抵抗値とは、次のようにして定められている。電源電圧Vは、制御用電源電圧Aよりも電圧が高い。この一例では、電源電圧Vは、54[V]であり、制御用電源電圧Aは、12[V]である。接続点Pには、ダイオード21を介して制御用電源電圧Aが印加される。ここで、ファン装置100に電源電圧Vが供給されている場合、逆起電力供給部のダイオードD1及び抵抗R1を介して、接続点Pに電圧が印加される。 定電圧ダイオードZD1のツェナー電圧VZD1は、電源電圧Vが供給されている場合に接続点Pに印加される電圧の許容値に基づいて定められている。具体的には、ツェナー電圧VZD1は、制御用電源電圧Aに基づいて定めされている。一例として、制御用電源電圧Aが12[V]である場合、定電圧ダイオードZD1のツェナー電圧VZD1は、12[V]である。つまり、定電圧ダイオードZD1の降伏電圧は、電源電圧Vから生成される制御用の制御用電源電圧Aに基づいて定められている。
定電圧ダイオードZD1のツェナー電圧VZD1は、電源電圧Vよりも低い。このため、電源電圧Vが供給されると、逆起電力供給部のダイオードD1、抵抗R1、及び定電圧ダイオードZD1を介して電源電圧Vからグランド電位GNDに電流izが流れる。この電流izは、モータ部19の駆動に寄与しない。ファン装置100は、電流izを低減することにより、消費電力を低減することができる。電流izは、(電源電圧V−ツェナー電圧VZD1)/(抵抗R1の抵抗値)によって求められる。つまり、ファン装置100は、抵抗R1の抵抗値を比較的大きくすることにより、電流izを低減することができる。一例として、抵抗R1の抵抗値は、47[kΩ]である。
[実験結果] 図6及び図7を参照して、電源遮断後の制動の実験結果を説明する。図6は、電源遮断後の制動を行わない場合のモータ部19の回転数の一例を示すグラフである。図7は、電源遮断後の制動を行う場合のモータ部19の回転数の一例を示すグラフである。
この実験では、時刻t10において電源電圧Vを遮断した後、時刻t11においてモータ部19を外力によって回転させる。具体的には、時刻t11において、ファン装置100のファンに風を当てることにより、風力によってファンを回転させる。電源遮断後の制動を行わない場合、モータ部19の回転数は、図6に示すように時刻t11以降において2800[rpm](46.7[r/s])である。
一方、電源遮断後の制動を行う場合、モータ部19の回転数は、図7に示すように時刻t11以降において1600[rpm](26.7[r/s])である。つまり、ファン装置100は、電源遮断後の制動を行うことにより、電源遮断後の制動を行わない場合に比べて、モータ部19の回転数を1400[rpm](23.3[r/s])低減している。
以上説明したように、ファン装置100は、外部から電力を供給することなく、外力によるモータの回転数を低減することができる。つまり、ファン装置100によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。
また、ファン装置100は、電源遮断後の制動に加え、電源遮断時の制動も行う。この電源遮断時の制動の際にも、ファン装置100は、外部から電力を供給することなく、外力によるモータの回転数を低減する。つまり、ファン装置100によれば、消費電力を低減しつつ、外力によるモータの回転数を低減することができる。
なお、これまで、上段側MOSFET15,16が、非制動側MOSFETであり、下段側MOSFET17,18が制動側MOSFETである場合を一例にして説明したが、これに限られない。上段側MOSFET15,16が制動側MOSFETであり、下段側MOSFET17,18が非制動側MOSFETであってもよい。
1…レギュレータ回路部、2…駆動信号生成回路部、2−1…電源電圧監視回路部、3,4…NPNトランジスタ、13,14…NPNデジタルトランジスタ、15,16…上段側MOSFET、17,18…下段側MOSFET、19…モータ部
、20…コンデンサ、21,D1…ダイオード、100…ファン装置、A…制御用電源電圧、B,C,D,E…駆動信号、P…接続点、LN1…供給線、ZD1…定電圧ダイオード、R1…抵抗、GND…グランド電位、Rt…逆起電力供給経路

Claims (5)

  1. 電動回転体の駆動信号生成回路部と、 上段側MOSFET及び下段側MOSFETを備える出力段と、 前記出力段によって駆動されるモータ部と、を備える電動回転体の駆動回路を有するファン装置であって、 前記上段側MOSFET及び下段側MOSFETのうち、いずれか一方の制動側MOSFETと、他方の非制動側MOSFETとについて、 電動回転体の電源電圧が供給されていない状態において、前記モータ部の回転によって生じる逆起電力による電力を前記制動側MOSFETに供給する逆起電力供給部と、 前記逆起電力供給部が供給する前記電力によって、前記制動側MOSFETをオン状態にして前記モータ部の電磁的な制動を行う電磁制動部と を更に備えるファン装置。
  2. 前記電源電圧が供給されているか否かを検知する電源電圧監視回路部と、 前記電源電圧から制御用電源電圧を生成する制御用電源電圧生成部と、 前記制御用電源電圧生成部の電源出力端子と、前記制動側MOSFETのゲート端子との間に備えられ、前記電源出力端子側にアノードが、前記ゲート端子側にカソードがそれぞれ接続されたダイオードと、 前記駆動信号生成回路部が出力する駆動信号と、前記制御用電源電圧とが供給され、前記制動側MOSFETの前記ゲート端子を駆動する駆動回路と、 を更に備え、 前記駆動信号生成回路部は、 前記電源電圧監視回路部が前記電源電圧の供給の停止を検知した場合に、前記非制動側MOSFETをオフ状態に制御する 請求項1に記載のファン装置。
  3. 前記逆起電力供給部は、 前記非制動側MOSFETに生じる寄生ダイオードと、 一端が前記寄生ダイオードのカソード側に、他端が前記電源電圧の接地側に、それぞれ接続された逆起電力供給ダイオードと抵抗との直列回路と、 前記寄生ダイオードを介して前記直列回路に供給される電力を、前記制動側MOSFETのゲート端子に供給する供給線と を更に備える請求項1又は請求項2に記載のファン装置。
  4. 前記逆起電力供給部は、 前記直列回路と前記供給線との接続点と、前記電源電圧の接地側との間に接続された定電圧ダイオード を更に備える請求項3に記載のファン装置。
  5. 前記定電圧ダイオードの降伏電圧が、前記電源電圧から生成される制御用電源電圧に基づいて定められている 請求項4に記載のファン装置。
JP2017537782A 2015-09-02 2016-08-24 ファン装置 Active JP6814736B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015172713 2015-09-02
JP2015172713 2015-09-02
PCT/JP2016/074653 WO2017038578A1 (ja) 2015-09-02 2016-08-24 ファン装置

Publications (2)

Publication Number Publication Date
JPWO2017038578A1 true JPWO2017038578A1 (ja) 2018-07-26
JP6814736B2 JP6814736B2 (ja) 2021-01-20

Family

ID=58187296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017537782A Active JP6814736B2 (ja) 2015-09-02 2016-08-24 ファン装置

Country Status (5)

Country Link
US (1) US10626874B2 (ja)
EP (1) EP3346599A4 (ja)
JP (1) JP6814736B2 (ja)
CN (1) CN108028618B (ja)
WO (1) WO2017038578A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978419B2 (ja) * 2016-08-08 2021-12-08 日本電産サーボ株式会社 モータ駆動回路
CN109405670A (zh) * 2018-10-22 2019-03-01 西安微电子技术研究所 一种用于制导修正组件的高旋发电机舵控装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213234A (ja) * 2008-03-04 2009-09-17 Hitachi Ltd モーター制御装置
JP2009240089A (ja) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd モータ駆動回路
JP2013165627A (ja) * 2012-02-13 2013-08-22 U-Tec Corp 駆動装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335273A (ja) * 1993-05-20 1994-12-02 Toshiba Corp 交流電動機の制御装置
DE19732094A1 (de) * 1997-07-25 1999-01-28 Bosch Gmbh Robert Steuerschaltung für einen Gleichstrommotor
US6078156A (en) 1998-10-02 2000-06-20 Eastman Kodak Company Method and apparatus for improved electronic braking of a DC motor
US6545886B1 (en) * 2001-05-05 2003-04-08 Anthony J. Ireland Power conditioning for model railroad control decoders
US6741047B2 (en) * 2002-06-28 2004-05-25 Sunonwealth Electric Machine Industry Co., Ltd. Dual current-limiting circuit for DC brushless motor
JP4039280B2 (ja) * 2003-03-14 2008-01-30 ミツミ電機株式会社 モータ駆動回路
KR100488528B1 (ko) 2003-05-16 2005-05-11 삼성전자주식회사 모터전원공급장치
JP2007259617A (ja) * 2006-03-24 2007-10-04 Japan Servo Co Ltd 電動回転体のブレーキ装置
WO2007122784A1 (ja) * 2006-03-29 2007-11-01 Rohm Co., Ltd. モータ駆動回路および方法ならびにそれを用いたディスク装置
US7397212B2 (en) * 2006-10-30 2008-07-08 Square D Company DC motor phase estimation with phase-locked loop
JP4445978B2 (ja) * 2007-04-12 2010-04-07 ローム株式会社 モータ駆動装置、モータの制御方法およびそれを用いた冷却装置
JP2009131105A (ja) 2007-11-27 2009-06-11 Nidec Servo Corp モータの駆動回路
US7889977B2 (en) * 2007-12-18 2011-02-15 Minebea Co., Ltd. Single output H-bridge drive
TWI381719B (zh) * 2008-02-18 2013-01-01 Univ Nat Taiwan 穩定全幅式視訊之方法
WO2010033101A1 (en) 2008-09-18 2010-03-25 Moog Inc. Improved motor driver for damping movement of an oscillatory load, and method of damping movement of an oscillatory load
IT1404232B1 (it) * 2010-12-16 2013-11-15 Gate Srl Sistema di controllo della velocita' di rotazione di un elettroventilatore associato a scambiatori di calore di un autoveicolo
JP2013146142A (ja) * 2012-01-13 2013-07-25 Denso Corp モータ駆動装置
JP5923822B2 (ja) * 2012-02-09 2016-05-25 ミネベア株式会社 ブラシレスモータの駆動制御装置
JP5804984B2 (ja) 2012-03-07 2015-11-04 株式会社ツバキE&M モータ駆動装置
CN104682792B (zh) * 2013-11-27 2020-01-31 德昌电机(深圳)有限公司 直流电机控制电路
US9513653B2 (en) * 2014-09-15 2016-12-06 Freescale Semiconductor, Inc. Method and apparatus for control of a switched current circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213234A (ja) * 2008-03-04 2009-09-17 Hitachi Ltd モーター制御装置
JP2009240089A (ja) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd モータ駆動回路
JP2013165627A (ja) * 2012-02-13 2013-08-22 U-Tec Corp 駆動装置

Also Published As

Publication number Publication date
CN108028618A (zh) 2018-05-11
CN108028618B (zh) 2021-09-24
WO2017038578A1 (ja) 2017-03-09
US10626874B2 (en) 2020-04-21
US20180258939A1 (en) 2018-09-13
JP6814736B2 (ja) 2021-01-20
EP3346599A4 (en) 2019-05-08
EP3346599A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
KR101069485B1 (ko) 모터 구동 회로
US7535189B2 (en) Motor drive circuit
JP2015175290A (ja) 電動ポンプ
JP2007158154A (ja) 静電破壊保護回路及びこれを備えた半導体集積回路装置
JP6361531B2 (ja) 半導体装置およびモータ制御装置
JP4922749B2 (ja) ファンシステム
WO2017038578A1 (ja) ファン装置
EP2678941B1 (en) Driver circuit for a semiconductor power switch
JP2006067786A (ja) ファンモーター回転速度制御回路およびその電圧調節モジュール
KR20120031463A (ko) 모터
US7872434B2 (en) Electric motor
JP4821394B2 (ja) 半導体素子駆動回路
TWM348423U (en) Driving circuit for driving motors
US9722527B2 (en) Power supply of an electric motor
JP5182791B2 (ja) ループ技術を利用してモータの逆誘導起電力を制御する機構
JP5399085B2 (ja) ブラシレスモータの駆動回路、モータユニット、ならびにそれを用いた電子機器
JP6331090B2 (ja) モータ駆動装置並びにパワーモジュール
EP1589651A1 (en) Apparatus for powering electric motors
JP2013009244A (ja) 半導体素子制御装置
EP2066016A1 (en) Static switch for motors of climate control units and climate control unit comprising the switch
JP2012114681A (ja) スイッチング駆動回路
JP2003250286A (ja) 制御装置
US20160268953A1 (en) Control circuit, semiconductor device, and constant voltage output method
JP2010104150A (ja) インダクタ駆動回路
JP2013099206A (ja) 単相ブラシレスモータ制御装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6814736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150