JP6978419B2 - モータ駆動回路 - Google Patents

モータ駆動回路 Download PDF

Info

Publication number
JP6978419B2
JP6978419B2 JP2018533471A JP2018533471A JP6978419B2 JP 6978419 B2 JP6978419 B2 JP 6978419B2 JP 2018533471 A JP2018533471 A JP 2018533471A JP 2018533471 A JP2018533471 A JP 2018533471A JP 6978419 B2 JP6978419 B2 JP 6978419B2
Authority
JP
Japan
Prior art keywords
drive circuit
switching element
motor
motor drive
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533471A
Other languages
English (en)
Other versions
JPWO2018030362A1 (ja
Inventor
理朋 石川
正博 槌家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Servo Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Publication of JPWO2018030362A1 publication Critical patent/JPWO2018030362A1/ja
Application granted granted Critical
Publication of JP6978419B2 publication Critical patent/JP6978419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0693Details or arrangements of the wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Description

本発明は、モータ駆動回路に関する。
従来、ブラシレスDC(direct current)モータは、様々な機器に利用されるが、特に送風機に搭載される場合がある。このような送風機に搭載されるブラシレスDCモータの近年におけるニーズとして、モータの静音化および効率化が求められる。この目的のためには正弦波駆動またはベクトル制御を採用する必要がある。このとき、モータ駆動回路としては、いわゆる120度通電方式では対応できず、180度通電方式を採用する必要がある。
一方、送風機においては、無通電状態において、プロペラ(羽根車)が外部より風を受けて回転することがある。特に、強い風の場合には、プロペラがかなり高速に回転する場合がある。送風機の設置またはメンテナンス等の場合に、プロペラが高速回転したままであると、作業者にとって作業の妨げとなる虞がある。そのため、このような送風機におけるプロペラを回転させるモータは、無通電状態においてブレーキをかける必要が生じる。
ここで、例えば特許文献1には、次のようなブラシレスモータの駆動制御装置が開示される。この駆動制御装置は、インバータ回路のスイッチング素子を駆動するプリドライブ回路と、制御回路部を備える。制御回路部は、インバータ回路に電圧を印加させる直流電源からの電力供給の停止を検出すると、プリドライブ回路に短絡制動信号を出力する。
特開2013−165536号公報
しかしながら、上記特許文献1の駆動制御装置では、短絡制動動作時にプリドライバ回路および制御回路部には電源が供給される必要があり、無通電状態においてモータにブレーキをかけることはできない。
上記状況に鑑み、本発明は、ブラシレスDCモータを180度通電方式により駆動可能であると共に、無通電状態においてモータにブレーキをかけることのできるモータ駆動回路を提供することを目的とする。
本発明の例示的なモータ駆動回路は、上側スイッチング素子と、前記上側スイッチング素子と直列に接続される下側スイッチング素子と、を備え、ブラシレスDCモータを駆動するモータ駆動回路であって、 前記下側スイッチング素子を駆動するゲート駆動回路と、 前記ブラシレスDCモータによって発生した誘起電圧を利用して前記ゲート駆動回路を介して前記下側スイッチング素子のゲート端子に電圧を印加させて前記下側スイッチング素子をオンとさせるブレーキ回路と、を備え、 前記ゲート駆動回路は、 オンとなることで前記ゲート端子に所定の電源電圧を印加させるプッシュ素子と、 オンとなることで前記ゲート端子から電荷を引抜くプル素子と、 前記プッシュ素子と前記ゲート端子との間に配置され、前記プッシュ素子から前記ゲート端子へ向かう方向に整流する整流部と、を有する構成としている。
例示的な本発明のモータ駆動回路によれば、ブラシレスDCモータを180度通電方式により駆動可能であると共に、無通電状態においてモータにブレーキをかけることができる。
図1は、本発明の一実施形態に係るモータ駆動回路の全体構成を示す図である。 図2は、第1上側FETゲート駆動回路の具体的な構成例を示す図である。 図3は、第1下側FETゲート駆動回路の具体的な構成例を示す図である。 図4は、通電状態である通常時における第1下側FETゲート駆動回路による駆動動作を説明する図である。 図5は、モータ駆動回路によりモータの各相巻線に印加させる電圧の波形例を示す図である。 図6は、上側スイッチング素子と下側スイッチング素子の相補的スイッチング、およびプッシュ素子とプル素子のスイッチングの一例を示すタイミングチャートである。 図7Aは、無通電状態においてモータに外力が加わった直後のモータ駆動回路の状態を示す図である。 図7Bは、無通電状態においてモータにショートブレーキがかかったときのモータ駆動回路の状態を示す図である。 図8は、一変形例に係るモータ駆動回路の構成を示す図である。 図9は、送風機の一構成例を示す側面断面図である。
以下に本発明の例示的な実施形態について図面を参照して説明する。
<モータ駆動回路の構成> 図1は、本発明の一実施形態に係るモータ駆動回路の全体構成を示す図である。図1に示すモータ駆動回路1は、モータ10を駆動する回路である。モータ駆動回路1とモータ10とにより、本実施形態に係るモータ装置が構成される。
モータ駆動回路1は、第1上側スイッチング素子Q11、第1下側スイッチング素子Q12、第2上側スイッチング素子Q21、第2下側スイッチング素子Q22、第3上側スイッチング素子Q31、および第3下側スイッチング素子Q32を含んで構成されるインバータ部を備える。それに加えて、モータ駆動回路1は、コンデンサCb1〜Cb3と、第1上側FET(field-effect transistor)ゲート駆動回路21、図示しない第2上側FETゲート駆動回路22、図示しない第3上側FETゲート駆動回路23、第1下側FETゲート駆動回路31、第2下側FETゲート駆動回路32、第3下側FETゲート駆動回路33、ブレーキ回路4、直流電源5、およびスイッチSW1を備える。
モータ10は、ブラシレスDCモータにより構成される。ここでは、一例として、モータ10は、3相ブラシレスDCモータであるとして説明する。モータ10は、ステータと、ロータを備える。ロータは、ステータと空隙を介して対向して相対的に回転し、永久磁石を有する。ステータは、U相巻線、V相巻線、およびW相巻線を有する。
モータ駆動回路1およびモータ10は、例えば送風機に搭載される。その場合、モータ10のロータには、不図示のプロペラが固定される。モータ10は、プロペラを回転させることにより風を生じさせ、冷却対象を冷却する。冷却対象は、一例として通信機器が挙げられる。
第1上側スイッチング素子Q11および第1下側スイッチング素子Q12は、共にnチャネルMOSFET(metal-oxide-semiconductor field-effect transistor)により構成される。第1上側スイッチング素子Q11のドレイン端子は、スイッチSW1がオンの場合に直流電源5により生じる電圧VMが印加されるラインLn1に接続される。第1上側スイッチング素子Q11のソース端子は、第1下側スイッチング素子Q12のドレイン端子に接続される。第1下側スイッチング素子Q12のソース端子には、グランド電位が印加される。すなわち、第1下側スイッチング素子Q12は、第1上側スイッチング素子Q11と直列に接続される。第1上側スイッチング素子Q11のソース端子と第1下側スイッチング素子Q12のドレイン端子とが接続される接続点は、モータ10のU相巻線に接続される。
第2上側スイッチング素子Q21および第2下側スイッチング素子Q22は、共にnチャネルMOSFETで構成され、上述の第1上側スイッチング素子Q11および第1下側スイッチング素子Q12と同様に直列に接続される。第2上側スイッチング素子Q21のソース端子と第2下側スイッチング素子Q22のドレイン端子とが接続される接続点は、モータ10のV相巻線に接続される。
第3上側スイッチング素子Q31および第3下側スイッチング素子Q32は、共にnチャネルMOSFETで構成され、上述の第1上側スイッチング素子Q11および第1下側スイッチング素子Q12と同様に直列に接続される。第3上側スイッチング素子Q31のソース端子と第3下側スイッチング素子Q32のドレイン端子とが接続される接続点は、モータ10のW相巻線に接続される。
このように、上側スイッチング素子と下側スイッチング素子を含む一組の構成(Q11とQ12、Q21とQ22、Q31とQ32)は、ブラシレスDCモータ(10)の複数相に応じて複数組設けられ、ゲート駆動回路(31、32、33)は、複数の下側スイッチング素子(Q12、Q22、Q32)に応じて複数設けられる。
これにより、モータ10の複数相に、例えば不図示のMCU(Micro Control Unit)からの指示通りに電圧および電流を印加することができる。
第1上側FETゲート駆動回路21は、第1上側スイッチング素子Q11を駆動する。図2は、第1上側FETゲート駆動回路21の具体的な構成例を示す図である。第1上側FETゲート駆動回路21は、プッシュ素子M21と、プル素子M22と、ゲート駆動部211と、ダイオードDb1を有する。
ダイオードDb1のアノードには、電源電圧VCCが印加される。ダイオードDbのカソードは、コンデンサCb1の一端に接続される。コンデンサCb1の他端は、第1上側スイッチング素子Q11と第1下側スイッチング素子Q12とが接続される接続点に接続される。ダイオードDb1とコンデンサCb1は、ブートストラップ用に設けられる。
プッシュ素子M21とプル素子M22は、共にnチャネルMOSFETにより構成される。プッシュ素子M21のドレイン端子は、ダイオードDb1のカソードに接続される。プッシュ素子M21のソース端子は、プル素子M22のドレイン端子に接続される。プル素子M22のソース端子は、第1上側スイッチング素子Q11と第1下側スイッチング素子Q12とが接続される接続点に接続される。プッシュ素子M21のソース端子とプル素子M22のドレイン端子とが接続される接続点は、第1上側スイッチング素子Q11のゲート端子に接続される。
ゲート駆動部211は、入力される上側ゲート制御信号Sc1に応じて、プッシュ素子M21のゲート端子およびプル素子M22のゲート端子それぞれに電圧を印加することで、プッシュ素子M21およびプル素子M22それぞれをオンオフ駆動する。なお、上側ゲート制御信号Sc1は、例えば不図示のMCUから入力される。
ゲート駆動部211によりプッシュ素子M21がオフ、プル素子M22がオンとされた場合、第1上側スイッチング素子Q11のゲート端子とソース端子が短絡されるので、第1上側スイッチング素子Q11はオフとなる。このとき、直流電圧VCCによりダイオードDb1を介してコンデンサCb1は充電される。
そして、ゲート駆動部211によりプッシュ素子M21がオン、プル素子M22がオフとされた場合、第1上側スイッチング素子Q11のゲート端子に印加される電圧は、コンデンサCb1への充電によって、第1上側スイッチング素子Q11のソース端子に印加される電圧に対して、電源電圧VCCからダイオードDb1の順方向電圧だけ降下した電圧を足した電圧となる。これにより、第1上側スイッチング素子Q11はオンとなる。
このように、プッシュ素子M21とプル素子M22によりプッシュプル回路として構成される第1上側FETゲート駆動回路21により、第1上側スイッチング素子Q11はオンオフ駆動される。
モータ駆動回路1においては、図1では不図示であるが、上述した第1上側FETゲート駆動回路21と同様の構成である第2上側FETゲート駆動回路22と第3上側FETゲート駆動回路23が、それぞれ第2上側スイッチング素子Q21とブートストラップ用のコンデンサCb2の組、第3上側スイッチング素子Q31とブートストラップ用のコンデンサCb3の組に応じて設けられる。これにより、第2上側FETゲート駆動回路22は第2上側スイッチング素子Q21をオンオフ駆動し、第3上側FETゲート駆動回路23は第3上側スイッチング素子Q31をオンオフ駆動する。
<下側FETゲート駆動回路の構成> 図1において、第1下側FETゲート駆動回路31は、第1下側スイッチング素子Q12を駆動する。図3は、第1下側FETゲート駆動回路31の具体的な構成例を示す図である。第1下側FETゲート駆動回路31は、プッシュ素子M31と、プル素子M32と、プル素子M33と、第1のダイオードD31と、第2のダイオードD32と、ゲート駆動部311と、を有する。
プッシュ素子M31とプル素子M32は、共にnチャネルMOSFETにより構成される。プッシュ素子M31のドレイン端子には、電源電圧VCCが印加される。プッシュ素子M31のソース端子は、プル素子M32のドレイン端子に接続される。プル素子M32のソース端子には、グランド電位が印加される。すなわち、ゲート駆動回路(31)は、プッシュ素子(M31)に直列に接続される第2のプル素子(M32)を有する。
ゲート駆動部311により、下側ゲート制御信号Sc2に応じてプッシュ素子M31およびプル素子M32のゲート端子にゲート電圧が印加されることにより、プッシュ素子M31およびプル素子M32はオンオフ駆動される。プッシュ素子M31とプル素子M32とが接続される接続点に仮にスイッチング素子のゲート端子を接続した場合、プッシュ素子M31とプル素子M32により構成されるプッシュプル回路によって、上記スイッチング素子をオンオフ駆動させることは可能であるが、本実施形態において、プッシュプル回路を構成するプル素子M32についてはその機能を利用しない。これにより、プッシュプル回路として構成される汎用ICを利用し、このうちプル素子M32を利用しないで、プッシュ素子M31のみを利用することとなる。
プル素子M33は、nチャネルMOSFETにより構成され、制御端子としてのゲート端子と、電流流入端子としてのドレイン端子と、電流流出端子としてのソース端子と、を有する。プル素子M33のドレイン端子は、第1下側スイッチング素子Q12のゲート端子に接続される。プル素子M33のソース端子には、グランド電位が印加される。プル素子M33のゲート端子に下側FET制御信号Sc3が印加されることにより、プル素子M33はオンオフ駆動される。これにより、プル素子M33は、オープンドレイン回路を構成する。なお、下側ゲート制御信号Sc2,Sc3は、例えば不図示のMCUにより入力される。このように、プル素子(M33)は、制御端子と、電流流入端子と、電流流出端子と、を有するトランジスタであり、電流流入端子は、下側スイッチング素子(Q12)のゲート端子に接続され、電流流出端子には、上記ゲート端子よりも低い電位が印加される。
なお、プル素子M33は、MOSFETに限らず、例えばバイポーラトランジスタにより構成してもよい。この場合、プル素子M33は、オープンコレクタ回路を構成する。
整流部としての第1のダイオードD31のアノードは、プッシュ素子M31とプル素子M32とが接続される接続点に接続される。第1のダイオードD31のカソードは、第1下側スイッチング素子Q12のゲート端子に接続される。すなわち、整流部は第1のダイオード(D31)であり、第1のダイオードのアノードは、プッシュ素子(M31)に接続され、第1のダイオードのカソードは、上記ゲート端子に接続される。第1のダイオードD31は、プッシュ素子M31と第1下側スイッチング素子Q12のゲート端子との間に配置され、プッシュ素子M31から上記ゲート端子へ向かう方向に整流する。
第2のダイオードD32のカソードは、第1下側スイッチング素子Q12のゲート端子に接続される。第2のダイオードD32のアノードは、後述するブレーキ回路4を介してラインLn1に接続される。すなわち、ゲート駆動回路(31)は、第2のダイオード(D32)を有し、第2のダイオードのカソードは、上記ゲート端子に接続され、第2のダイオードのアノードは、ブレーキ回路(4)に接続される。
モータ駆動回路1においては、図1で図示したように、第1下側FETゲート駆動回路31と同様の構成である第2下側FETゲート駆動回路32および第3下側FETゲート駆動回路33が、それぞれ第2下側スイッチング素子Q22、第3下側スイッチング素子Q32に応じて設けられる。すなわち、下側FETゲート駆動回路は、複数(3つ)の下側スイッチング素子に応じて複数(3つ)設けられる。
第2下側FETゲート駆動回路32と第3下側FETゲート駆動回路33は、それぞれ第1下側FETゲート駆動回路31の第2のダイオードD32と同様のダイオードを有する。これら3つの第2のダイオードのアノード同士は、ブレーキ回路4よりも後段において接続される。
<下側FETゲート駆動回路による駆動動作> 次に、図4を用いて下側FETゲート駆動回路による駆動動作について説明する。図4は、通電状態である通常時における第1下側FETゲート駆動回路31による駆動動作を説明する図である。通常時においては、スイッチSW1はオンとされており、ラインLn1には直流電源5による電圧VMが印加される。
下側ゲート制御信号Sc2によりプッシュ素子M31がオンとされ(プル素子M32はオフ)、下側ゲート制御信号Sc3によりプル素子M33がオフとされた場合、プッシュ素子M31は、電源電圧VCCを第1のダイオードD31を介して第1下側スイッチング素子Q12のゲート端子に印加させる(実線矢印)。これにより、第1下側スイッチング素子Q12のゲート容量が充電され、第1下側スイッチング素子Q12はオンとなる。
一方、下側ゲート制御信号Sc2によりプッシュ素子M31がオフとされ(プル素子M32はオン)、下側ゲート制御信号Sc3によりプル素子M33がオンとされた場合、プル素子M33は、第1下側スイッチング素子Q12のゲート端子から速やかに電荷を引抜く(破線矢印)。これにより、第1下側スイッチング素子Q12はオフとなる。
このように、プッシュ素子M31とプル素子M33によるプッシュプル回路構成により、第1下側スイッチング素子Q12を高速にスイッチング駆動することが可能となる。同様の動作によって、第2下側FETゲート駆動回路32、第3下側FETゲート駆動回路33により、第2下側スイッチング素子Q22、第3下側スイッチング素子Q32をそれぞれ高速にスイッチング駆動することが可能となる。
このとき、各下側FETゲート駆動回路には、第2のダイオードD32に相当するダイオードが設けられるため、下側スイッチング素子のゲート端子に電源電圧VCCを印加させる際に、他の相の下側FETゲート駆動回路側へ電流が逆流することを抑制し、各相の下側スイッチング素子のゲート端子への電圧印加の独立性を保持できる。
<180度通電方式によるモータ駆動> 次に、本実施形態に係るモータ駆動回路1によるモータ10の駆動について説明する。図5は、モータ駆動回路1によりモータ10の各相巻線に印加させる電圧の波形例を示す図である。図5の上段から順に、U相巻線に印加させる電圧Vu、V相巻線に印加させる電圧Vv、W相巻線に印加させる電圧Vwを示す。また、図5の横方向の角度は、モータ10におけるロータの回転角度位置を示す。なお、図1に示すように、電圧Vuは、第1上側スイッチング素子Q11と第1下側スイッチング素子Q12とが接続される接続点に生じ、電圧Vvは、第2上側スイッチング素子Q21と第2下側スイッチング素子Q22とが接続される接続点に生じ、電圧Vwは、第3上側スイッチング素子Q31と第3下側スイッチング素子Q32とが接続される接続点に生じる。
一方、図5における電圧Vu、Vv、Vwを生じさせるために、対応する相の上側スイッチング素子と下側スイッチング素子を相補的にPWM(pulse width modulation)スイッチング駆動させる。図6は、上側スイッチング素子と下側スイッチング素子の相補的スイッチング、および、そのときのプッシュ素子とプル素子(第1下側FETゲート駆動回路31であればM31とM33)のスイッチングの一例を示すタイミングチャートである。
上側スイッチング素子と下側スイッチング素子は、一方がオンのときに他方がオフとなるような相補的なスイッチングが行われ、オン時間のデューティ(スイッチング周期に対するオン時間の比率)は可変である。なお、スイッチングの切替わりタイミングにおいて、双方のスイッチング素子がオフとなるデッドタイムを設けるようにして、貫通電流の発生を抑制してもよい。このようなスイッチング方法も相補的なスイッチングに含まれる。
図5における0°から360°までの期間において、上側スイッチング素子と下側スイッチング素子の相補的なスイッチングをデューティを変化させながら繰り返すことで、各相の電圧Vu、Vv、Vwを正弦波状としてモータ10を駆動する。正弦波の電圧は、グランド電位から電圧VMの範囲で変動し、電圧Vu、Vv、Vwは各相間で位相が120°ずつずれる。
図6に示すように、下側スイッチング素子がオフのときは、プッシュ素子はオフ、プル素子はオンとされ、下側スイッチング素子がオンのときは、プッシュ素子はオン、プル素子はオフとされる。上述したように本実施形態では、プッシュ素子とプル素子を用いて下側スイッチング素子を駆動する構成により、下側スイッチング素子の高速なスイッチング駆動が可能となる。従って、上側スイッチング素子と下側スイッチング素子の相補的なPWMスイッチングが可能となり、180度通電方式によるモータ10の駆動が実現される。
<ショートブレーキについて> 次に、本発明の実施形態に係るモータ駆動回路1による無通電状態におけるモータ10のブレーキ動作について説明する。
図1に示すように、モータ駆動回路1が備えるブレーキ回路4は、抵抗R41と、抵抗R42と、ツェナーダイオードZ1と、を有する。抵抗R41と抵抗R42は、ラインLn1と第2のダイオードD32のアノードとの間に直列に接続される。なお、図1では、ブレーキ回路4は、2つの抵抗R41、R42を有することとしたが、3つ以上の抵抗または1つのみの抵抗を有してもよい。すなわち、ブレーキ回路4は、少なくとも1つの抵抗素子を有すればよい。ブレーキ回路(4)は、少なくとも1つの抵抗素子(R41、R42)を有し、抵抗素子を用いて、ブラシレスDCモータ(10)によって発生した誘起電圧(後述)を上記誘起電圧よりも低い電圧に変換して下側スイッチング素子(Q12)のゲート端子に印加する。
ツェナーダイオードZ1のカソードは、抵抗R41と抵抗R42とが接続される接続点に接続される。ツェナーダイオードZ1のアノードには、グランド電位が印加される。すなわち、ブレーキ回路(4)は、ツェナーダイオード(Z1)をさらに有し、ツェナーダイオードのカソードは、上記誘起電圧に基づいて上記ゲート端子に電圧を印加させる経路に接続され、ツェナーダイオードのアノードは、所定の電位が印加される。
ここで、図7Aは、無通電状態においてモータ10に外力が加わった直後のモータ駆動回路1の状態を示す。例えば、モータ10に外力が加わった場合とは、モータ10が有するロータに固定されたプロペラが風を受けて回転する場合である。
無通電状態においては図7Aに示すように、スイッチSW1はオフであり、プッシュ素子M31、プル素子M32、およびプル素子M33に加えて、第1上側スイッチング素子Q11、第1下側スイッチング素子Q12、第2上側スイッチング素子Q21、第2下側スイッチング素子Q22、第3上側スイッチング素子Q31、および第3下側スイッチング素子Q32は、いずれもオフである。
ここで、モータ10のロータが外力によって回転すると、モータ10のU相巻線、V相巻線およびW相巻線に誘起電圧が発生す
る。誘起電圧は3相交流電圧であり,回転速度とロータ位置に応じて変化する。図7Aは、3相の誘起電圧のうち,W相が最小値でU相が最大値の場合の例である。W相誘起電圧は第3下側スイッチング素子Q32の寄生ダイオードを介してグランド電位に固定される。そのため、ラインLn1には、U相誘起電圧とW相誘起電圧の電位差に等しい誘起電圧V1が発生する。
ブレーキ回路4は、抵抗R41および抵抗R42を用いて誘起電圧V1を誘起電圧V1よりも低い電圧に変換し、第2のダイオードD32を介して第1下側スイッチング素子Q12のゲート端子に印加する。すなわち、ブレーキ回路4は、誘起電圧V1を利用して第1下側FETゲート駆動回路31を介して第1下側スイッチング素子Q12のゲート端子に電圧を印加させて第1下側スイッチング素子Q12をオンとさせる。その状態を図7Bに示す。ここで、第1下側スイッチング素子Q12のオンは、線形領域におけるオン動作となる。これにより、第1下側スイッチング素子Q12の完全なオンによって第1上側スイッチング素子Q11側への電流が遮断され、第1下側スイッチング素子Q12がオンオフを繰り返すことを抑止できる。すなわち、第1上側スイッチング素子Q11側への電流を流しつつ、第1下側スイッチング素子Q12に電流を流すことが可能となり、第1下側スイッチング素子Q12のオン状態を維持できる。
このとき、第2のダイオードD32と下側スイッチング素子Q12との間からプッシュ素子M31に電流が流れることを第1のダイオードD31により抑止するので、ゲート端子に印加される電圧が低下することを抑制できる。また、抵抗R41、R42を用いて誘起電圧V1を低い電圧に変換することで、第1下側スイッチング素子Q12の耐圧に応じた印加電圧に調整可能となる。
図7Bでは図示していないが、同様にブレーキ回路4は、誘起電圧V1に基づいて第2下側FETゲート駆動回路32を介して第2下側スイッチング素子Q22のゲート端子に電圧を印加させて第2下側スイッチング素子Q22を線形領域においてオン動作させると共に、誘起電圧V1に基づいて第3下側FETゲート駆動回路33を介して第3下側スイッチング素子Q32のゲート端子に電圧を印加させて第3下側スイッチング素子Q32を線形領域においてオン動作させる。
従って、図7Bに示すように、モータ10のU相巻線から線形領域においてオン動作する第1下側スイッチング素子Q12を介してグランド側へ電流が流れ、モータ10のV相巻線から線形領域においてオン動作する第2下側スイッチング素子Q22を介してグランド側へ電流が流れ、第3下側スイッチング素子Q32の寄生ダイオードを介してモータ10に電流が流れる。これにより、モータ10にショートブレーキがかかる。なお、モータ10における巻線とロータとの位置関係に応じて、電流が流れる下側スイッチング素子は変化する。
また、ツェナーダイオードZ1のカソードは、抵抗R41と抵抗R42とが接続される接続点に接続される。ツェナーダイオードZ1のアノードには、グランド電位が印加される。すなわち、ツェナーダイオードZ1のカソードは、誘起電圧V1に基づいて下側スイッチング素子のゲート端子に電圧を印加させる経路に接続され、ツェナーダイオードZ1のアノードには、所定の電位が印加される。これにより、過大な誘起電圧V1が発生した場合でも、抵抗R41と抵抗R42とが接続される接続点での電圧をツェナーダイオードZ1のツェナー電圧に制限することができる。従って、下側スイッチング素子のゲート端子に耐圧を超えた電圧が印加されて下側スイッチング素子が破壊されることを抑制できる。
以上の通り、本実施形態に係るモータ駆動回路(1)は、上側スイッチング素子(Q11)と、前記上側スイッチング素子と直列に接続される下側スイッチング素子(Q12)と、を備え、ブラシレスDCモータ(10)を駆動するモータ駆動回路であって、 前記下側スイッチング素子を駆動するゲート駆動回路(31)と、 前記ブラシレスDCモータによって発生した誘起電圧を利用して前記ゲート駆動回路を介して前記下側スイッチング素子のゲート端子に電圧を印加させて前記下側スイッチング素子をオンとさせるブレーキ回路(4)と、を備える。 そして、前記ゲート駆動回路(31)は、 オンとなることで前記ゲート端子に所定の電源電圧を印加させるプッシュ素子(M31)と、 オンとなることで前記ゲート端子から電荷を引抜くプル素子(M33)と、 前記プッシュ素子と前記ゲート端子との間に配置され、前記プッシュ素子から前記ゲート端子へ向かう方向に整流する整流部(D31)と、を有する。
このような本実施形態に係るモータ駆動回路1によれば、ブラシレスDCモータであるモータ10を180度通電方式により駆動可能であると共に、無通電状態においてモータ10にショートブレーキをかけることが可能となる。
<モータ駆動回路の変形例> 図8は、一変形例に係るモータ駆動回路1’の構成を示す図である。モータ駆動回路1’の先述した実施形態との構成上の相違点は、第1下側FETゲート駆動回路31’の構成である。第1下側FETゲート駆動回路31’では、プッシュ素子M31に直列に接続されるプル素子を設けない構成とする。先述した実施形態でプル素子M32は機能させないので、本実施形態のようにそもそもプル素子を設けないことも可能である。なお、図8では図示していないが、第2下側FETゲート駆動回路および第3下側FETゲート駆動回路についても同様にプル素子を設けない構成とすることができる。
<送風機の構成例> 次に、本発明の実施形態に係るモータ駆動回路の適用対象の一例として、送風機の構成を図9を用いて説明する。図9は、送風機の一構成例を示す側面断面図である。なお、図9におけるモータ10の回転軸Jの延びる方向を上下方向として以下説明する。但し、この上下方向は、実際に送風機を設置する際の方向を示すものではない。
図9に示す送風機20は、モータ10と、ハウジング11と、軸受部12A、12Bと、回路基板13と、プロペラ14と、を備える。
モータ10は、ロータ101と、ステータ102と、を有する。ロータ101は、回転軸Jを中心に回転する。ロータ101は、ロータケース101Aと、ロータシャフト101Bと、ロータマグネット101Cと、を有する。ロータケース101Aは、一方側に蓋を有する円筒状に形成される。ロータシャフト101Bは、ロータケース101Aの中央部に固定され、回転軸Jを中心に回転する。ロータマグネット101Cは、ロータケース101Aの内壁部に固定される。
プロペラ14は、ロータケース101Aの外周面に固定される。プロペラ14は、ロータ101の周方向に配列された複数の羽部14Aを有する。これにより、プロペラ14は、ロータ101の回転と共に回転する。
ハウジング11は、ロータ101、ステータ102、回路基板13、およびプロペラ14を内部に収容する。ハウジング11は、中央部に軸受保持部11Aを有する。軸受部12A、12Bは、軸受保持部11Aに保持される。軸受部12A、12Bは、ボールベアリングにより構成される。ロータ101は、ロータシャフト101Bを介して軸受部12A、12Bに回転可能に支持される。
ステータ102は、軸受保持部11Aに固定され、ロータ101の内周側に配置される。ステータ102は、ステータコア102Aと、巻線102Bと、インシュレータ102C、120Dと、を有する。ステータコア102Aは、複数の突極を有する。上下のインシュレータ102C、102Dは、ステータコア102Aの上下面およびスロット内面を覆う。巻線102Bは、ステータコア102Aの各突極にインシュレータ102C、102Dを介して巻かれる。ステータコア102Aの各突極の外周面は、ロータマグネット101Cの内周面にエアギャップを介して対向する。
円板状の回路基板13は、ハウジング11の下部とステータ102との間に配置される。インシュレータ102Dには、巻線102Bの端部が絡げられる絡げピンが設けられる。絡げピンが回路基板13の接続孔に通されて半田付けされることにより、回路基板13がステータ102に支持されると共に、絡げピンを介して巻線102Bの端部が回路基板13上のパターンに電気的接続される。
先述した実施形態に係るモータ駆動回路は、回路基板13に実装可能である。すなわち、送風機20は、モータ駆動回路とモータ10とを備えるモータ装置と、モータ10によって回転駆動されるプロペラ(羽根車)14と、を有する。
先述したように本発明の実施形態に係るモータ駆動回路は、モータ10を180度通電方式により駆動できるので、静音性および高効率が特に要求される送風機20にとって適した駆動方式を実現できる。また、送風機20が例えば携帯電話等の基地局におけるルータ等の装置を冷却するためのファンとして用いられる場合、複数台の送風機を並べて使用するので、動作中の他の送風機からの強い風を受けて、無通電状態で停止中の送風機20のプロペラ14が回転する場合がある。このとき、モータ10が外力を受けるが、先述したようにモータ駆動回路によってショートブレーキをモータ10にかけることができる。従って、作業者が送風機20を設置したり、メンテナンス等する場合に、作業の妨げとならない。
<その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。
例えば、整流部として第1のダイオードD31の代わりに、オンオフを切替えるスイッチを設けてもよい。この場合、モータ10を駆動させる通常時は上記スイッチをオンとし、無通電状態においては上記スイッチをオフとすればよい。なお、整流部としてダイオードを用いたほうが構成は簡易となる。
また、上記実施形態では全ての下側スイッチング素子に対して、ブレーキ回路に接続される下側FETゲート駆動回路を設けるようにしたが、一部の下側スイッチング素子のみに対して、ブレーキ回路に接続される下側FETゲート駆動回路を設けて、それ以外の下側スイッチング素子に対しては、ブレーキ回路とは接続されないプッシュプル回路を設けてもよい。
本発明は、例えば、送風機に搭載されるブラシレスDCモータを駆動するモータ駆動回路に利用することができる。
1・・・モータ駆動回路、21・・・第1上側FETゲート駆動回路、211・・・ゲート駆動部、31・・・第1下側FETゲート駆動回路、311・・・ゲート駆動部、32・・・第2下側FETゲート駆動回路、33・・・第3下側FETゲート駆動回路、4・・・ブレーキ回路、5・・・直流電源、10・・・モータ、Q11・・・第1上側スイッチング素子、Q12・・・第1下側スイッチング素子、Q21・・・第2上側スイッチング素子、Q22・・・第2下側スイッチング素子、Q31・・・第3上側スイッチング素子、Q32・・・第3下側スイッチング素子、Cb1〜Cb3・・・コンデンサ、Ln1・・・ライン、SW1・・・スイッチ、R41、R42・・・抵抗、Z1・・・ツェナーダイオード、Db1・・・ダイオード、M21・・・プッシュ素子、M22・・・プル素子、21・・・ゲート駆動部、Sc1・・・上側ゲート制御信号、M31・・・プッシュ素子、M32・・・プル素子、D31・・・第1のダイオード、D32・・・第2のダイオード、Sc2、Sc3・・・下側ゲート制御信号、M33・・・プル素子、V1・・・誘起電圧、101・・・ロータ、101A・・・ロータケース、101B・・・ロータシャフト、101C・・・ロータマグネット、102・・・ステータ、102A・・・ステータコア、102B・・・巻線、102C、102D・・・インシュレータ
、11・・・ハウジング、11A・・・軸受保持部、12A、12B・・・軸受部、13・・・回路基板、14・・・プロペラ、14A・・・羽部、20・・・送風機

Claims (14)

  1. 上側スイッチング素子と、前記上側スイッチング素子と直列に接続される下側スイッチング素子と、を備え、ブラシレスDCモータを駆動するモータ駆動回路であって、 前記下側スイッチング素子を駆動するゲート駆動回路と、 前記ブラシレスDCモータによって発生した誘起電圧を利用して前記ゲート駆動回路を介して前記下側スイッチング素子のゲート端子に電圧を印加させて前記下側スイッチング素子をオンとさせるブレーキ回路と、を備え、 前記ゲート駆動回路は、 オンとなることで前記ゲート端子に所定の電源電圧を印加させるプッシュ素子と、 オンとなることで前記ゲート端子から電荷を引抜くプル素子と、 前記プッシュ素子と前記ゲート端子との間に配置され、前記プッシュ素子から前記ゲート端子へ向かう方向に整流する整流部と、を有する、 モータ駆動回路。
  2. 前記上側スイッチング素子と前記下側スイッチング素子を含む一組の構成は、前記ブラシレスDCモータの複数相に応じて複数組設けられる、請求項1に記載のモータ駆動回路。
  3. 前記ゲート駆動回路は、複数の前記下側スイッチング素子に応じて複数設けられる、請求項2に記載のモータ駆動回路。
  4. 前記整流部は、第1のダイオードであり、 前記第1のダイオードのアノードは、前記プッシュ素子に接続される、 請求項1に記載のモータ駆動回路。
  5. 前記第1のダイオードのカソードは、前記ゲート端子に接続される、請求項4に記載のモータ駆動回路。
  6. 前記プル素子は、制御端子と、電流流入端子と、電流流出端子と、を有するトランジスタであり、 前記電流流入端子は、前記ゲート端子に接続され、 前記電流流出端子には、前記ゲート端子よりも低い電位が印加される、請求項1〜請求項5のいずれか1項に記載のモータ駆動回路。
  7. 前記ゲート駆動回路は、第2のダイオードを有し、 前記第2のダイオードのカソードは、前記ゲート端子に接続される、請求項1〜請求項6のいずれか1項に記載のモータ駆動回路。
  8. 前記第2のダイオードのアノードは、前記ブレーキ回路に接続される、請求項7に記載のモータ駆動回路。
  9. 前記ブレーキ回路は、少なくとも1つの抵抗素子をさらに有し、前記抵抗素子を用いて前記誘起電圧を前記誘起電圧よりも低い電圧に変換して前記ゲート端子に印加する、請求項1〜請求項8のいずれか1項に記載のモータ駆動回路。
  10. 前記ブレーキ回路は、ツェナーダイオードをさらに有し、 前記ツェナーダイオードのカソードは、前記誘起電圧に基づいて前記ゲート端子に電圧を印加させる経路に接続される、 請求項1〜請求項9のいずれか1項に記載のモータ駆動回路。
  11. 前記ツェナーダイオードのアノードは、所定の電位が印加される、請求項10に記載のモータ駆動回路。
  12. 前記ゲート駆動回路は、前記プッシュ素子に直列に接続される第2のプル素子をさらに有する、請求項1〜請求項11のいずれか1項に記載のモータ駆動回路。
  13. 請求項1〜請求項12のいずれか1項に記載のモータ駆動回路と、前記モータ駆動回路によって駆動されるブラシレスDCモータと、を備えるモータ装置。
  14. 請求項13に記載のモータ装置と、前記ブラシレスDCモータによって回転駆動される羽根車と、を備える送風機。
JP2018533471A 2016-08-08 2017-08-08 モータ駆動回路 Active JP6978419B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016155627 2016-08-08
JP2016155627 2016-08-08
PCT/JP2017/028657 WO2018030362A1 (ja) 2016-08-08 2017-08-08 モータ駆動回路

Publications (2)

Publication Number Publication Date
JPWO2018030362A1 JPWO2018030362A1 (ja) 2019-06-13
JP6978419B2 true JP6978419B2 (ja) 2021-12-08

Family

ID=61162788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533471A Active JP6978419B2 (ja) 2016-08-08 2017-08-08 モータ駆動回路

Country Status (3)

Country Link
US (1) US10848080B2 (ja)
JP (1) JP6978419B2 (ja)
WO (1) WO2018030362A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584196U (ja) 1992-04-16 1993-11-12 日本電気ホームエレクトロニクス株式会社 モータ制御回路
JP2007259617A (ja) * 2006-03-24 2007-10-04 Japan Servo Co Ltd 電動回転体のブレーキ装置
JP5067786B2 (ja) * 2007-01-12 2012-11-07 ルネサスエレクトロニクス株式会社 電力用半導体装置
JP5923822B2 (ja) 2012-02-09 2016-05-25 ミネベア株式会社 ブラシレスモータの駆動制御装置
US9114536B2 (en) * 2012-04-13 2015-08-25 Rethink Robotics, Inc. Electronic emergency-stop braking circuit for robotic arms
US10626874B2 (en) * 2015-09-02 2020-04-21 Nidec Servo Corporation Fan apparatus
CN106559025B (zh) * 2015-09-30 2020-05-12 德昌电机(深圳)有限公司 电动工具及其电机驱动系统

Also Published As

Publication number Publication date
US20190253008A1 (en) 2019-08-15
WO2018030362A1 (ja) 2018-02-15
JPWO2018030362A1 (ja) 2019-06-13
US10848080B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP7056584B2 (ja) モータ制御装置、ブラシレスモータ、送風装置及びモータ制御方法
JP3993564B2 (ja) シリーズハイブリッド電気自動車
JP2011055703A (ja) ブラシレスdcモータおよびそれを搭載した電気機器
US20110291605A1 (en) Single-phase ac synchronized motor
JPS6335158A (ja) 単相ブラシレスモ−タ
US20090074594A1 (en) Arrangement with a ventilator and a pump
KR100971594B1 (ko) Ac 입력형 브러시리스 dc 모터 및 그것을 탑재한 전기 기기
KR101184461B1 (ko) 스위치드 릴럭턴스 모터
US8054020B2 (en) Electric motor
JP2003189672A (ja) ブラシレス回転電機の始動方法
US7034500B2 (en) Electric drive assembly
JP6978419B2 (ja) モータ駆動回路
JP2010268674A (ja) ブラシレスモータ制御装置、ブラシレスモータ、及びブラシレスモータの制御方法
WO2023067862A1 (ja) モータ装置、ワイパー装置、及びモータ制御方法
US20110187220A1 (en) Reverse electromotive force generating motor
JP5193519B2 (ja) Dcモータおよびそれを備えたポンプ
CN106849586A (zh) 双绕组两相无刷直流电动机
CN206585448U (zh) 双绕组两相无刷直流电动机
JP2005176529A (ja) ブラシレスモータのコントローラおよびファンモータ装置
JP2004350384A (ja) モータ
JP7450822B2 (ja) 誘導電動装置および送風機
JP2005312145A (ja) ブラシレスモータの駆動装置
JP2000299996A (ja) リラクタンスモータ駆動制御装置
US20080137239A1 (en) Motor power device and motor including the same
EP1225687A1 (en) Output switch circuit of generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6978419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150