WO2017038165A1 - 燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ - Google Patents

燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ Download PDF

Info

Publication number
WO2017038165A1
WO2017038165A1 PCT/JP2016/064799 JP2016064799W WO2017038165A1 WO 2017038165 A1 WO2017038165 A1 WO 2017038165A1 JP 2016064799 W JP2016064799 W JP 2016064799W WO 2017038165 A1 WO2017038165 A1 WO 2017038165A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
fuel cell
coating film
pressure surface
lower mold
Prior art date
Application number
PCT/JP2016/064799
Other languages
English (en)
French (fr)
Inventor
鈴木 幸弘
孝俊 浅岡
両角 英一郎
Original Assignee
トヨタ車体 株式会社
鈴木 幸弘
孝俊 浅岡
両角 英一郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ車体 株式会社, 鈴木 幸弘, 孝俊 浅岡, 両角 英一郎 filed Critical トヨタ車体 株式会社
Priority to EP16841197.3A priority Critical patent/EP3346530B1/en
Priority to JP2017537580A priority patent/JP6402831B2/ja
Priority to US15/557,729 priority patent/US20180069248A1/en
Publication of WO2017038165A1 publication Critical patent/WO2017038165A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/061Cushion plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/752Corrosion inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus for forming a coating film by thermal transfer on a base material constituting a fuel cell separator and a fuel cell separator.
  • the fuel cell stack is provided with a separator that forms a flow path for fuel gas, oxidizing gas, or cooling water.
  • a separator there is one having a base material formed by press-molding a metal plate material such as a stainless steel plate or a titanium plate.
  • a coating material including a binder made of a thermosetting resin and conductive particles is applied to the surface of the substrate, There is a method in which the base material is hot pressed to cure the binder.
  • a method of thermally transferring a coating film onto the surface of a substrate using a thermal transfer film is also a method of thermally transferring a coating film onto the surface of a substrate using a thermal transfer film.
  • a film 160 on which a coating film 162 is formed is prepared in advance.
  • the base material 150 is placed on the pressure surface of the lower mold 120, and the coating film 162 on the thermal transfer film 160 faces the base material 150 on the base material 150.
  • the film 160 is placed.
  • the upper mold 130 is moved toward the lower mold 120, and the substrate 150 and the thermal transfer film 160 are sandwiched between the pressure surface of the lower mold 120 and the pressure surface of the upper mold 130, and the lower mold 120 and the upper mold are also sandwiched. 130 is energized and heated.
  • the lower mold 120 and the upper mold 130 may be preheated before the substrate 150 and the thermal transfer film 160 are placed.
  • the coating film 162 of the thermal transfer film 160 is thermally transferred to the top surface of the protrusion 151 of the substrate 150.
  • the height of the top surfaces of the plurality of protrusions 151 of the base material 150 may vary in manufacturing. Therefore, even if the base 150 and the thermal transfer film 160 are clamped by the lower mold 120 and the upper mold 130, the coating film 162 of the thermal transfer film 160 is pressed against the lower surface of the top surface of the protrusion 151. As shown in FIG. 14, the coating film 162 is not properly thermally transferred. As a result, in the part where the coating film 162 is not thermally transferred, there arises a problem that the corrosion resistance cannot be increased and the contact resistance cannot be reduced.
  • An object of the present invention is to provide a fuel cell separator coating film forming apparatus and a fuel cell separator capable of appropriately thermally transferring a coating film to a substrate.
  • a fuel cell separator coating film forming apparatus for achieving the above object is an apparatus for forming a coating film by thermal transfer on a base material constituting a fuel cell separator, and includes a lower mold having a heating part and An upper die is provided, and at least one of the pressure surface of the lower die and the pressure surface of the upper die is formed of a heat-resistant elastic member.
  • the base material and the film are sandwiched between the lower die and the upper die with the thermal transfer film interposed between at least one of the lower die pressure surface and the upper die pressure surface and the substrate.
  • the coating film is thermocompression bonded to the surface of the substrate, and the coating film is thermally transferred from the thermal transfer film to the substrate.
  • the pressure surface in contact with the film is constituted by a heat-resistant elastic member, the pressure surface follows the surface of the base material due to elastic deformation of the elastic member, and the portion of the surface where the film is not pressed can be reduced. it can.
  • the coating film can be appropriately thermally transferred to the substrate.
  • Sectional drawing which shows the state which is coating the 3rd coating material on the surface of the flat separator of 2nd Embodiment.
  • Sectional drawing of the coating-film formation apparatus of 2nd Embodiment The expanded sectional view which shows the flat separator, the porous flow path board, and thermal transfer film before thermocompression bonding.
  • Sectional drawing which shows the coating-film formation apparatus of a modification, and is equivalent to the cross section of the apparatus of 1st Embodiment along the 12-12 line of FIG. 3 (A).
  • Sectional drawing which shows the state by which the base material and the film for thermal transfer were mounted on the lower mold
  • a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell) includes a plurality of cells 90 each having a membrane electrode assembly 96 and a pair of separators 91 and 92 sandwiching the membrane electrode assembly 96.
  • the membrane electrode assembly 96 includes an electrolyte membrane made of a solid polymer membrane, and a fuel electrode and an air electrode (both not shown) sandwiching the electrolyte membrane, and is referred to as a so-called MEGA (Mebrane Electrode Gas Diffusion Layer Assembly). Is done.
  • MEGA Mebrane Electrode Gas Diffusion Layer Assembly
  • the first separator 91 has a base material 50 formed by press-molding a titanium plate. As shown in FIG. 2, a plurality of ridges 51 are formed on the upper surface of the base material 50, and a concave groove 52 is formed between the ridges 51 adjacent to each other. Similarly, a plurality of protrusions 51 are formed on the lower surface of the first separator 91, and a concave groove 52 is formed between adjacent protrusions 51. A concave groove 52 on the lower surface is located on the opposite side of the protrusion 51 formed on the upper surface. A ridge 51 on the lower surface is located on the opposite side of the groove 52 formed on the upper surface.
  • a membrane electrode assembly 96 is in contact with the lower surface of the first separator 91.
  • a flat separator 93 that is a metal flat plate is in contact with the upper surface of the first separator 91.
  • the groove 52 facing the membrane electrode assembly 96 in the first separator 91 constitutes a fuel gas flow path, and the groove 52 facing the flat separator 93 in the first separator 91 is the flow of cooling water. Constitutes the road.
  • a coating 62 having corrosion resistance and conductivity is formed on the top surface of each protrusion 51 of the first separator 91 by thermal transfer.
  • the base material of the second separator 92 includes a flat separator 93 and a porous flow path plate 94 interposed between the flat separator 93 and the membrane electrode assembly 96.
  • the flat separator 93 and the porous flow path plate 94 are formed of a titanium plate.
  • the porous flow path plate 94 is made of, for example, lath cut metal.
  • a large number of through holes 941 are formed in the porous flow path plate 94, and an oxidant gas flow path 95 is formed by these through holes 941.
  • the coating film forming apparatus 10 that thermally transfers the coating film 62 to the top surface of the protrusions 51 of the substrate 50 will be described.
  • the coating film forming apparatus 10 includes a lower mold 20 and a plurality of guide pillars 11 fixed to the outer periphery of the lower mold 20 and extending upward.
  • the upper die 30 is located above the lower die 20 and is guided by the guide pillar 11 so as to be movable in the vertical direction.
  • the lower mold 20 is made of a metal material and has a heating part 21 protruding upward.
  • a heating wire 22 is built in the lower mold 20, and the heating unit 21 is heated by energizing the heating wire 22. Further, a sheet-like elastic member 40 that forms a pressure surface of the lower mold 20 is provided on the upper portion of the heating unit 21 of the lower mold 20.
  • the upper mold 30 is formed of a metal material and has a heating part 31 protruding downward.
  • a heating wire 32 is built in the upper mold 20, and the heating unit 31 is heated by energizing the heating wire 32.
  • a sheet-like elastic member 40 that forms a pressure surface of the upper mold 30 is provided below the heating unit 31 of the upper mold 30.
  • the elastic member 40 includes a pair of rubber sheets 41 formed of a heat-resistant rubber material such as fluoro rubber, and a direction along the pressure surface interposed between the pair of rubber sheets 41. And a regulating member 42 that regulates the expansion of the rubber sheet 41 in the left-right direction in FIG.
  • the restricting member 42 of the present embodiment is a reinforcing cloth formed of glass fiber, and is bonded to a pair of rubber sheets 41.
  • the lower mold 20 is formed with a plurality of receiving holes 25 positioned on the outer periphery of the elastic member 40. As shown in FIG. A plurality of support members 27 that are biased upward by springs 28 are accommodated in the plurality of accommodation holes 25, respectively. A support surface 271 is formed at the upper end of each support member 27.
  • the thermal transfer film 60 includes a base film 61 made of a synthetic resin such as polyethylene terephthalate and a coating film 62 provided on one surface of the base film 61.
  • the coating film 62 of this embodiment is composed of two layers 63 and 64.
  • the first layer 63 includes graphite particles 632 and a first binder 631 and is directly applied to the base film 61.
  • the first binding material 631 of this embodiment is, for example, polyvinylidene fluoride (PVDF) resin.
  • PVDF polyvinylidene fluoride
  • a preferable range of the particle diameter of the graphite particles 632 is 0.1 to 100 ⁇ m.
  • the first binder 631 may be omitted, and the first layer 63 may be configured by only the graphite particles 632.
  • the second layer 64 includes conductive particles 642 and a second binder 641, and is coated on the first layer 63.
  • the second binding material 641 of this embodiment is, for example, an epoxy resin 641.
  • As the conductive particles titanium nitride having a higher hardness than the titanium oxide film as the base material 50 and having conductivity is preferable.
  • a preferable range of the particle diameter of the conductive particles 642 is 0.1 to 10 ⁇ m.
  • the base film 61 is conveyed in the direction indicated by the arrow in the figure, and the coating head 81 of the coating machine (not shown) is applied to the upper surface of the base film 61.
  • First coating 63A is applied.
  • the first paint 63A contains a solvent in addition to the first binder 631 and the graphite particles 632, and these are uniformly mixed.
  • the solvent is, for example, N-methyl-2-pyrrolidone (NMP).
  • the base film 61 is conveyed in the direction indicated by the arrow in the figure, and the surface of the first layer 61 (first coating 63A) formed on the base film 61 is applied.
  • the second coating 64A is applied through the coating head 82 of a coating machine (not shown).
  • the second paint 64A contains a solvent in addition to the second binder 641 and the conductive particles 642, and these are uniformly mixed.
  • the solvent is, for example, methyl ethyl ketone (MEK).
  • the thermal transfer film 60 shown in FIG. 6C is formed.
  • a procedure for thermally transferring the coating film 62 onto the surface of the substrate 50 will be described.
  • the pressure surface of the upper mold 30 is spaced upward from the pressure surface of the lower mold 20, and the support surface 271 of the support member 27 is the pressure surface of these pressure surfaces.
  • the pair of thermal transfer films 60 and the substrate 50 are placed on the support surface 271 of the support member 27.
  • the pair of thermal transfer films 60 and the base material 50 are supported by the support member 27 at positions separated from both the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30.
  • the upper mold 30 is moved toward the lower mold 20, and a pair of upper and lower thermal transfer films 60 and a base are formed by the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30.
  • the coating film 62 of the pair of upper and lower thermal transfer films 60 is pressed against the top surfaces of the protrusions 51 on the upper surface and the lower surface of the substrate 50.
  • the substrate 50 is heated to a predetermined temperature by energizing the heating wires 22 and 32 and heating the heating portions 21 and 31 respectively.
  • the predetermined temperature is a temperature at which an epoxy resin that is a thermosetting resin constituting the second layer 64 is cured, and is 200 ° C. in the present embodiment.
  • the coating film 62 is thermocompression bonded to the top surface of each protrusion 51 of the base material 50, and the coating film 62 is thermally transferred from the thermal transfer film 60 to the base material 50.
  • the pair of thermal transfer films 60 and the base material 50 are supported by the support member 27 at positions separated from both the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30. From this state, the pressure and heating of the pair of thermal transfer films 60 and the base material 50 are sequentially performed. For this reason, the pair of thermal transfer films 60 and the substrate 50 do not come into contact with the pressing surface of the lower mold 20 before being pressed, and the pair of thermal transfer films 60 and the substrate are received by receiving heat through the pressing surfaces. It can suppress that the temperature of 50 rises and the epoxy resin which comprises the 2nd layer 64 thermosets. Thus, by applying pressure before the epoxy resin is thermally cured, the conductive particles and the graphite particles are easily moved between the epoxy resins. For this reason, the conductive particles 642 pass through the oxide film of the substrate 50 and come into contact with the main body of the substrate 50, and the conductive particles 642 and the graphite particles 632 come into contact with each other.
  • the pair of thermal transfer films 60 and the base material 50 may be sandwiched between the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30 that are cooled to room temperature, and the heating units 21 and 31 may be heated from this state. Conceivable. However, in this case, since the coating film forming apparatus 10 cannot be operated until the pressing surface of the lower mold 20 and the pressing surface of the upper mold 30 are cooled to room temperature, the operating efficiency of the coating film forming apparatus 10 is low. Become.
  • the lower mold 20 and the upper mold are caused by elastic deformation of the elastic member 40.
  • the 30 pressure surfaces follow the top surfaces of the protrusions 51 on the front surface and the back surface of the substrate 50, respectively, and the portion of the top surface of the protrusions 51 where the thermal transfer film 60 is not pressed is reduced. Therefore, the coating film 62 is appropriately thermally transferred to the substrate 50.
  • the height of the protrusions 51 on the upper surface of the base material 50 is exaggerated so as to differ depending on the position.
  • both the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30 constituting the coating film forming apparatus 10 are formed by a heat-resistant elastic member 40.
  • the pressure surfaces of the lower mold 20 and the upper mold 30 follow the top surfaces of the protrusions 51 on the front surface and the back surface of the base member 50 due to the elastic deformation of the elastic member 40, respectively.
  • the coating film is applied to the entire portion of the top surface of each protrusion 51 of the substrate 50 that is pressed by the pressing surface. 62 can be appropriately thermally transferred.
  • a regulating member 42 for regulating the expansion of the rubber sheet 41 in the direction along the pressing surface is interposed.
  • the extension of the rubber sheet 41 in the direction along the pressing surface is regulated by the regulating member 42, when the base material 50 is clamped by the elastic member 40, the pressing surface becomes the base material 50.
  • the rubber sheet 41 is effectively elastically deformed so as to follow the top surface of each protrusion 51. For this reason, it is possible to easily reduce the portion of the top surface of the ridge 51 where the thermal transfer film 60 is not pressed.
  • the restricting member 42 is configured by a reinforcing cloth formed of glass fiber, it is possible to effectively restrict the extension of the rubber sheet 41 in the direction along the pressing surface.
  • the substrate 50 and the thermal transfer film 60 are separated from both of these pressure surfaces.
  • the supporting member 27 is supported.
  • the lower mold 20 is provided with a spring 28 that urges the support member 27 upward.
  • the support member 27 is moved upward by the biasing force of the spring 28 only by separating the upper mold 30 upward from the lower mold 20. Thereby, the support surface 271 of the support member 27 is arrange
  • the surface of the porous flow path plate 94 that constitutes the base material of the second separator 92 that contacts the membrane electrode assembly 96 (upper surface in FIG. 8) has corrosion resistance.
  • the coating film 62 which has electroconductivity is formed by thermal transfer.
  • the configuration of the coating film 62 is the same as the coating film 62 of the first embodiment, and includes a first layer 63 and a second layer 64.
  • the flat separator 93 and the porous flow path plate 94 constituting the second separator 92 are thermocompression bonded by a third bonding material 65 made of a thermosetting resin.
  • the third binding material 65 of this embodiment is an epoxy resin.
  • the flat separator 93 and the porous flow path plate 94 are bonded together by the third bonding material 65 in a state where they are overlapped with each other at a predetermined surface pressure.
  • the periphery of the contact surface between the flat separator 93 and the porous flow path plate 94 is surrounded by the third binder 65 over the entire circumference.
  • the third binding material 65 is slightly present between the contact surfaces of the flat separator 93 and the porous flow path plate 94.
  • the third paint 65A contains a solvent in addition to the above-described epoxy resin, and is uniformly mixed.
  • the solvent is, for example, methyl ethyl ketone (MEK).
  • the flat separator 93, the porous flow path plate 94, and the thermal transfer film 60 in which the third binding material 65 is formed on the support surface 271 of the support member 27 of the coating film forming apparatus 10. are placed in the same order.
  • the coating film forming apparatus 10 of the second embodiment has the same configuration as the coating film forming apparatus 10 of the first embodiment.
  • the upper mold 30 is moved toward the lower mold 20, and the flat separator 93, the porous flow path plate 94, and the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30, and The thermal transfer film 60 is clamped.
  • the flat separator 93 and the porous flow path plate 94 are heated to a predetermined temperature by energizing the heating wires 22 and 32 and heating the heating portions 21 and 31 respectively.
  • This predetermined temperature is a temperature at which the epoxy resin that is the second bonding material 641 and the third bonding material 65 constituting the second layer 64 of the coating film 62 is cured, and is 200 ° C. in this embodiment.
  • the coating film 62 is thermocompression bonded to one surface of the porous flow path plate 94, and the coating film 62 is thermally transferred from the thermal transfer film 60 to the porous flow path plate 94.
  • the porous flow path plate 94 and the flat separator 93 are thermocompression bonded to each other by the third bonding material 65 in a state where the flat separator 93 is superimposed on the lower surface of the porous flow path plate 94.
  • the third binding material 65 on the flat separator 93 is pushed out to the outer peripheral side from between the contact surfaces of the flat separator 93 and the porous flow path plate 94.
  • the third bonding material 65 thus pushed out surrounds the entire periphery of the contact surface between the flat separator 93 and the porous flow path plate 94.
  • the upper mold 30 is separated from the lower mold 20, and the integrated porous flow path plate 94 and flat separator 93 are taken out from the coating film forming apparatus 10.
  • the following effects are newly obtained in addition to the effects (1) to (6) of the first embodiment. It is done.
  • the flat separator 93 and the porous flow path plate 94 are bonded by the third bonding material 65 in a state where they are overlapped with each other. For this reason, the base material of the flat separator 93 and the base material of the porous flow path plate 94 are in direct contact. Thereby, for example, the coating film 62 is formed on the surface of the flat separator 93, the coating film 62 is formed on the surface of the porous flow path plate 94, and the coating film 62 of the flat separator 93 and the coating film of the porous flow path plate 94.
  • the contact resistance can be reduced as compared with the configuration in which 62 is brought into contact with the contact.
  • the said embodiment can also be changed as follows, for example.
  • the lower mold 20 and the upper mold 30 may be preheated before the base material 50 and the thermal transfer film 60 are placed.
  • the second embodiment the same applies to the second embodiment.
  • the 1st separator 91, the flat separator 93, and the porous flow-path board 94 can also be formed with metal plates other than a stainless steel plate and a titanium plate.
  • the coating film 62 can also be formed with respect to at least one surface of the porous flow-path board 94 shown in FIG.
  • the third paint 65A may be applied to the surface of the porous flow path plate 94 facing the flat separator 93. In this case, the application of the third paint 65A to the flat separator 93 may be omitted.
  • thermal transfer is performed on the surface of the flat separator 93 opposite to the surface facing the porous flow path plate 94.
  • the coating film may be thermally transferred using a film similar to the film 60 for use.
  • the support member 27 can be omitted.
  • the thermal transfer film 260 may be transported between the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30 by the transport device 70 using the rollers 71 and 72. That is, the conveying device 70 includes a roller 71 around which a belt-shaped heat transfer film 260 is wound and a roller 72 that winds up the heat transfer film 260. These rollers 71 and 72 are rotationally driven by a motor (not shown). . In this case, the portion of the thermal transfer film 260 that has been subjected to thermal transfer can be automatically sent out from between the pressure surface of the lower mold 20 and the pressure surface of the upper mold 30. The trouble of placing a thermal transfer film thereon can be omitted.
  • FIG. 12 shows a structure corresponding to the cross-sectional structure taken along the line 12-12 in FIG. Further, in the same figure, illustration of the support member 27 is omitted.
  • the elastic member 40 can be provided only on one of the lower mold 20 and the upper mold 30.
  • the regulating member 42 can also be formed of a fiber material other than glass fiber, for example, heat-resistant synthetic fiber such as aramid fiber, or carbon fiber.
  • the regulating member 42 can be omitted.
  • the elastic member 40 can be formed by a single rubber sheet 41.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

塗膜形成装置(10)は、燃料電池用セパレータを構成する基材(50)に対して熱転写により塗膜を形成するものであり、加熱部(21,31)をそれぞれ有する下型(20)及び上型(30)を備え、下型(20)の加圧面及び上型(30)の加圧面の双方が、耐熱性の弾性部材(40)によって形成されている。

Description

燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ
 本発明は、燃料電池用セパレータを構成する基材に対して熱転写により塗膜を形成する装置及び燃料電池用セパレータに関する。
 燃料電池スタックには、燃料ガスや酸化ガス、あるいは冷却水などの流路を形成するセパレータが設けられている。こうしたセパレータとしては、ステンレス鋼板やチタン板などの金属板材をプレス成形することによって形成された基材を有するものがある。
 従来、基材の表面に耐腐食性及び導電性を有する塗膜を形成することにより、セパレータの耐腐食性を高めるとともにセパレータと同セパレータに隣接して設けられる膜電極接合体との間の接触抵抗を低減するようにしている(例えば特許文献1参照)。
 こうした塗膜を基材の表面に形成する方法としては、特許文献1に記載の技術のように、熱硬化性樹脂製の結合材及び導電性粒子を含む塗料を基材の表面に塗布し、基材を熱間プレスして結合材を硬化させる方法がある。
 また、熱転写用フィルムを用いて基材の表面に塗膜を熱転写する方法がある。まず、塗膜162が形成されたフィルム160が予め用意される。次に、図13に示すように、下型120の加圧面上に基材150を載置するとともに、同基材150の上に、熱転写用フィルム160上の塗膜162が基材150に対向するように、同フィルム160を載置する。そして、上型130を下型120に向けて移動させて、下型120の加圧面と上型130の加圧面とによって基材150及び熱転写用フィルム160を挟圧するとともに、下型120及び上型130を通電加熱する。また、下型120及び上型130が、基材150及び熱転写用フィルム160が載置される前に予め加熱されている場合もある。これにより、基材150の突条151の頂面に熱転写用フィルム160の塗膜162が熱転写される。
特開2015-22885号公報
 図13に示すように、基材150の複数の突条151の頂面の高さには製造上、ばらつきが生じることがある。そのため、下型120と上型130とによって基材150及び熱転写用フィルム160を挟圧しても上記突条151の頂面のうち高さの低い部位では熱転写用フィルム160の塗膜162が圧接されず、図14に示すように、塗膜162が適切に熱転写されない。その結果、塗膜162が熱転写されていない部位では、耐腐食性を高めることや接触抵抗を低減することができないといった問題が生じる。
 本発明の目的は、基材に対して塗膜を適切に熱転写することのできる燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータを提供することにある。
 上記目的を達成するための燃料電池用セパレータの塗膜形成装置は、燃料電池用セパレータを構成する基材に対して熱転写により塗膜を形成する装置であって、加熱部をそれぞれ有する下型及び上型を備え、前記下型の加圧面及び前記上型の加圧面の少なくとも一方は、耐熱性の弾性部材によって形成されている。
 同構成によれば、下型の加圧面及び上型の加圧面の少なくとも一方と基材との間に熱転写用フィルムを介在させた状態で、下型及び上型によって同基材及びフィルムを挟圧するとともに加熱することにより、基材の表面に塗膜が熱圧着され、熱転写用フィルムから基材に塗膜が熱転写される。このとき、フィルムに接する加圧面を耐熱性の弾性部材によって構成すれば、弾性部材の弾性変形によって加圧面が基材の表面に追従し、同表面のうちフィルムが圧接されない部位を少なくすることができる。
 本発明によれば、基材に対して塗膜を適切に熱転写することができる。
燃料電池用セパレータの塗膜形成装置の第1実施形態について、1つのセルを中心とした燃料電池のスタックの断面図。 同セルを構成する第1セパレータを破断して示す斜視図。 第1実施形態の塗膜形成装置の断面図であって、(A)は下型の加圧面と上型の加圧面とが離間している状態を示す図、(B)は加圧中の状態を示す図。 同塗膜形成装置に設けられた弾性部材の断面図。 第1実施形態の熱転写用フィルムの断面図。 第1実施形態の熱転写用フィルムを製造する手順を示す断面図であって、(A)はベースフィルムの表面に第1塗料を塗工している状態を示す図、(B)はベースフィルムに形成された第1層の表面に第2塗料を塗工している状態を示す図、(C)は得られた熱転写用フィルムの拡大断面図。 第1実施形態の作用を説明するための図であって、下型及び上型によって挟持された状態の基材及び熱転写用フィルムを示す断面図。 第2実施形態のセルを構成する第2セパレータの断面図。 第2実施形態のフラットセパレータの表面に第3塗料を塗工している状態を示す断面図。 第2実施形態の塗膜形成装置の断面図。 熱圧着される前のフラットセパレータ、多孔性流路板、及び熱転写フィルムを示す拡大断面図。 変形例の塗膜形成装置を示し、図3(A)の12-12線に沿った第1実施形態の装置の断面に相当する断面図。 従来の燃料電池用セパレータの塗膜形成装置について、下型の上に基材及び熱転写用フィルムが載置された状態を示す断面図。 従来のセパレータの断面図。
 <第1実施形態>
 以下、図1~図7を参照して、第1実施形態について説明する。
 図1に示すように、固体高分子形燃料電池(以下、燃料電池)は、膜電極接合体96と、膜電極接合体96を挟む一対のセパレータ91,92とを有するセル90が複数積層されることによって構成されるスタックを備えている。
 膜電極接合体96は、固体高分子膜よりなる電解質膜と、同電解質膜を挟む燃料極及び空気極(いずれも図示略)を備えており、所謂MEGA(Membrane Electrode Gas Diffusion Layer Assembly)と称される。
 図1及び図2に示すように、第1セパレータ91は、チタン板をプレス成形して形成された基材50を有している。図2に示すように、基材50の上面には、複数の突条51が形成されており、互いに隣り合う突条51の間には、凹溝52が形成されている。また、第1セパレータ91の下面には、同様に、複数の突条51が形成されており、互いに隣り合う突条51の間には、凹溝52が形成されている。上面に形成された突条51の反対側に下面の凹溝52が位置している。上面に形成された凹溝52の反対側に下面の突条51が位置している。
 図1に示すように、第1セパレータ91の下面には、膜電極接合体96が接している。第1セパレータ91の上面には、金属製の平板であるフラットセパレータ93が接している。本実施形態では、第1セパレータ91における膜電極接合体96に対向する凹溝52が燃料ガスの流路を構成し、第1セパレータ91におけるフラットセパレータ93に対向する凹溝52が冷却水の流路を構成している。
 図1及び図2に示すように、第1セパレータ91の各突条51の頂面には、耐腐食性及び電導性を有する塗膜62が熱転写により形成されている。
 図1に示すように、第2セパレータ92の基材は、フラットセパレータ93と、フラットセパレータ93と膜電極接合体96との間に介在された多孔性流路板94とによって構成されている。フラットセパレータ93及び多孔性流路板94はチタン板によって形成されている。また、多孔性流路板94は例えばラスカットメタルによって形成されている。多孔性流路板94には、多数の貫通孔941が形成されており、これらの貫通孔941によって酸化剤ガスの流路95が形成される。
 次に、基材50の突条51の頂面に対して塗膜62を熱転写する塗膜形成装置10について説明する。
 図3(A)及び図3(B)に示すように、塗膜形成装置10は、下型20と、下型20の外周部に固設され、上方に向けて延びる複数の案内柱11と、下型20の上方に位置し、案内柱11により上下方向に移動可能に案内される上型30とを備えている。
 下型20は、金属材料により形成され、上方に突出する加熱部21を有している。下型20には電熱線22が内蔵されており、電熱線22への通電により加熱部21を加熱する。また、下型20の加熱部21の上部には、下型20の加圧面を形成するシート状の弾性部材40が設けられている。
 上型30は、金属材料により形成され、下方に突出する加熱部31を有している。上型20には電熱線32が内蔵されており、電熱線32への通電により加熱部31を加熱する。上型30の加熱部31の下部には、上型30の加圧面を形成するシート状の弾性部材40が設けられている。
 図4に示すように、弾性部材40は、例えばフッ素ゴムなどの耐熱性のゴム材料により形成された一対のゴムシート41と、一対のゴムシート41の間に介在されて加圧面に沿った方向(同図の左右方向)へのゴムシート41の伸びを規制する規制部材42とを有している。本実施形態の規制部材42は、ガラス繊維により形成された補強クロスであり、一対のゴムシート41に接着されている。
 図3(A)及び図3(B)に示すように、下型20には、弾性部材40の外周に位置する複数の収容孔25が形成されている。複数の収容孔25内には、ばね28によって上方に向けて付勢される複数の支持部材27がそれぞれ収容されている。各支持部材27の上端には支持面271が形成されている。
 図3(A)に示すように、上型30の加圧面が下型20の加圧面から上方に離間している状態において、各支持部材27の支持面271は、2つの加圧面の間に位置している。
 次に、熱転写用フィルム60について説明する。
 図5に示すように、熱転写用フィルム60は、例えばポリエチレンテレフタレートなどの合成樹脂製のベースフィルム61と、ベースフィルム61の片面に設けられた塗膜62とを有している。本実施形態の塗膜62は、2つの層63,64から構成されている。
 第1層63は、グラファイト粒子632と第1結合材631とを含み、ベースフィルム61に直接塗工されている。本実施形態の第1結合材631は例えばポリフッ化ビニリデン(PVDF)樹脂である。グラファイト粒子632の粒径の好適な範囲は0.1~100μmである。なお、第1結合材631を省略し、グラファイト粒子632のみによって第1層63を構成することもできる。
 第2層64は、導電性粒子642と第2結合材641とを含み、第1層63の上に塗工されている。本実施形態の第2結合材641は例えばエポキシ樹脂641である。導電性粒子としては、基材50であるチタンの酸化被膜よりも硬度が高く、且つ導電性を有する窒化チタンなどが好ましい。導電性粒子642の粒径の好適な範囲は0.1~10μmである。
 ここで、熱転写フィルム60を製造する手順について説明する。
 図6(A)に示すように、まずは、同図の矢印にて示す方向にベースフィルム61を搬送するとともに、ベースフィルム61の上面に対して、塗工機(図示略)の塗工ヘッド81から第1塗料63Aを塗布する。第1塗料63Aには、第1結合材631及びグラファイト粒子632の他に溶剤が含まれ、これらが均一に混合されている。なお、溶剤は例えばN-メチル-2-ピロリドン(NMP)である。
 続いて、図6(B)に示すように、同図の矢印にて示す方向にベースフィルム61を搬送するとともに、ベースフィルム61に形成された第1層61(第1塗料63A)の表面に対して、塗工機(図示略)の塗工ヘッド82を通じて第2塗料64Aを塗布する。第2塗料64Aには、第2結合材641及び導電性粒子642の他に溶剤が含まれ、これらが均一に混合されている。なお、溶剤は例えばメチルエチルケトン(MEK)である。
 このようにして、図6(C)に示す熱転写用フィルム60が形成される。
 次に、基材50の表面に塗膜62を熱転写する手順について説明する。
 図3(A)に示すように、熱転写に際しては、まず、上型30の加圧面が下型20の加圧面から上方に離間しており、支持部材27の支持面271がこれらの加圧面の間に位置している状態において、支持部材27の支持面271上に、一対の熱転写用フィルム60及び基材50を載置する。このとき、一対の熱転写用フィルム60及び基材50は、下型20の加圧面及び上型30の加圧面の双方からそれぞれ離間した位置において支持部材27によって支持される。
 続いて、図3(B)に示すように、上型30を下型20に向けて移動させて下型20の加圧面と上型30の加圧面とによって上下一対の熱転写用フィルム60と基材50とを挟圧することにより、基材50の上面及び下面における突条51の各頂面に、上下一対の熱転写用フィルム60の塗膜62を押し付ける。
 続いて、電熱線22,32に通電して加熱部21,31をそれぞれ加熱することにより、基材50を所定の温度まで加熱する。所定の温度は、第2層64を構成する熱硬化性樹脂であるエポキシ樹脂が硬化する温度であり、本実施形態では200℃である。これにより、基材50の各突条51の頂面に塗膜62が熱圧着され、熱転写用フィルム60から基材50に塗膜62が熱転写される。
 その後、上型30を下型20から離間させて塗膜形成装置10から基材50を取り出す。
 次に、本実施形態の作用について説明する。
 一対の熱転写用フィルム60及び基材50が、下型20の加圧面及び上型30の加圧面の双方からそれぞれ離間した位置において支持部材27によって支持される。そして、この状態から、一対の熱転写用フィルム60及び基材50の加圧及び加熱が順次行われる。このため、一対の熱転写用フィルム60及び基材50が、加圧される前に下型20の加圧面に当接することはなく、加圧面を介した受熱によって一対の熱転写用フィルム60及び基材50の温度が上昇して第2層64を構成するエポキシ樹脂が熱硬化することを抑制することができる。このように、エポキシ樹脂が熱硬化する前に加圧することによって、エポキシ樹脂の間を導電性粒子やグラファイト粒子が移動しやすくなる。このため、導電性粒子642が基材50の酸化被膜を貫通して基材50の本体に接触するとともに、導電性粒子642とグラファイト粒子632とが互いに接触する。
 なお、室温まで冷却された状態の下型20の加圧面及び上型30の加圧面によって一対の熱転写用フィルム60及び基材50を挟圧し、その状態から加熱部21,31を加熱することも考えられる。しかしながらこの場合には、下型20の加圧面及び上型30の加圧面が室温まで冷却されるまでは塗膜形成装置10を稼動させることができないため、塗膜形成装置10の稼動効率が低くなる。
 また、図7に示すように、塗膜形成装置10により基材50の突条51の頂面に対して塗膜を熱転写する際には、弾性部材40の弾性変形によって下型20及び上型30の加圧面が基材50の表面及び裏面の突条51の頂面にそれぞれ追従し、突条51の頂面のうち熱転写用フィルム60が圧接されない部位が少なくなる。したがって、基材50に対して塗膜62が適切に熱転写される。なお、図7においては、基材50の上面の突条51の高さが位置によって異なるように誇張して示している。
 以上説明した本実施形態に係る燃料電池用セパレータの塗膜形成装置によれば、以下に示す効果が得られる。
 (1)塗膜形成装置10を構成する下型20の加圧面及び上型30の加圧面の双方が、耐熱性の弾性部材40によって形成されている。このため、弾性部材40の弾性変形によって下型20及び上型30の加圧面が基材50の表面及び裏面の各突条51の頂面にそれぞれ追従し、各突条51の頂面のうち熱転写用フィルム60が圧接されない部位を少なくすることができる。したがって、基材50に対して塗膜62を適切に熱転写することができる。よって、第1セパレータ91の接触抵抗を低減することができる。
 (2)弾性部材40を下型20及び上型30の加圧面全体にわたってそれぞれ設けたため、基材50の各突条51の頂面のうち加圧面によって加圧される部位全体に対して塗膜62を適切に熱転写することができる。
 (3)弾性部材40を構成する一対のゴムシート41の間に、加圧面に沿った方向へのゴムシート41の伸びを規制する規制部材42を介在させた。
 こうした構成によれば、加圧面に沿った方向へのゴムシート41の伸びが規制部材42によって規制されるため、弾性部材40によって基材50が挟圧された際に、加圧面が基材50の各突条51の頂面に追従するようにゴムシート41が効果的に弾性変形する。このため、突条51の頂面のうち熱転写用フィルム60が圧接されない部位を少なくすることが容易にできる。
 (4)規制部材42をガラス繊維により形成された補強クロスによって構成したため、加圧面に沿った方向へのゴムシート41の伸びを効果的に規制することができる。
 (5)塗膜形成装置10は、下型20の加圧面と上型30の加圧面とが離間しているときに、基材50及び熱転写用フィルム60をこれら加圧面の双方から離間した状態で支持する支持部材27を備えている。
 こうした構成によれば、エポキシ樹脂が早期に熱硬化することを抑制することができ、エポキシ樹脂の間における導電性粒子やグラファイト粒子の移動が制限されることを回避することができる。このため、導電性粒子を基材50の酸化被膜を貫通させて基材50の本体に接触させることができるとともに、導電性粒子とグラファイト粒子とを互いに接触させることができる。したがって、基材50の本体、導電性粒子、及びグラファイト粒子による導電経路が形成されやすくなり、第1セパレータ91の接触抵抗を適切に低減することができる。
 また、上記構成によれば、下型20の加圧面及び上型30の加圧面が冷却されるまで待機する必要がないため、塗膜形成装置10の稼動効率を高めることができる。
 (6)下型20には、支持部材27を上方に向けて付勢するばね28が設けられている。
 こうした構成によれば、上型30を下型20から上方に離間させるだけで、ばね28の付勢力によって支持部材27が上方に移動する。これにより、支持部材27の支持面271がこれら加圧面の間に配置される。したがって、簡易な構成によって支持部材27の位置を変更することができる。
 <第2実施形態>
 以下、図8~図11を参照して、第2実施形態について説明する。
 第2実施形態では、図8に示すように、第2セパレータ92の基材を構成する多孔性流路板94における膜電極接合体96に当接する面(同図の上面)に、耐腐食性及び電導性を有する塗膜62が熱転写により形成されている。この塗膜62の構成は、第1実施形態の塗膜62と同一であり、第1層63及び第2層64を有している。
 また、第2セパレータ92を構成するフラットセパレータ93と多孔性流路板94とが熱硬化性樹脂からなる第3結合材65により熱圧着されている。本実施形態の第3結合材65はエポキシ樹脂である。
 フラットセパレータ93と多孔性流路板94とは所定の面圧にて互いに重ね合わせられた状態で第3結合材65により結合されている。フラットセパレータ93と多孔性流路板94との接触面の周囲は全周にわたって第3結合材65により囲まれている。なお、第3結合材65はフラットセパレータ93及び多孔性流路板94の接触面の間にも僅かに存在している。
 次に、フラットセパレータ93の表面に第3結合材65を形成する手順について説明する。
 図9に示すように、同図の矢印にて示す方向にフラットセパレータ93を搬送するとともに、フラットセパレータ93の上面に対して、塗工機(図示略)の塗工ヘッド83を通じて第3塗料65Aを塗布する。これにより、第3結合材65の層が形成される。第3塗料65Aには、上述したエポキシ樹脂の他に溶剤が含まれ、均一に混合されている。なお、溶剤は例えばメチルエチルケトン(MEK)である。
 次に、多孔性流路板94の上面に塗膜62を形成すると同時に下面にフラットセパレータ93を熱圧着する方法について説明する。
 図10及び図11に示すように、塗膜形成装置10の支持部材27の支持面271上に、第3結合材65が形成されたフラットセパレータ93、多孔性流路板94、熱転写用フィルム60を同順にて載置する。第2実施形態の塗膜形成装置10は、第1実施形態の塗膜形成装置10と同一の構成である。
 続いて、図10に示すように、上型30を下型20に向けて移動させて下型20の加圧面と上型30の加圧面とによってフラットセパレータ93、多孔性流路板94、及び熱転写用フィルム60を挟圧する。
 続いて、電熱線22,32に通電して加熱部21,31をそれぞれ加熱することにより、フラットセパレータ93及び多孔性流路板94を所定の温度まで加熱する。この所定の温度は、塗膜62の第2層64を構成する第2結合材641及び第3結合材65であるエポキシ樹脂が硬化する温度であり、本実施形態では200℃とされている。これにより、多孔性流路板94の一方の面に塗膜62が熱圧着され、熱転写用フィルム60から多孔性流路板94に塗膜62が熱転写される。また、多孔性流路板94の下面にフラットセパレータ93が重ね合わせられた状態で第3結合材65により多孔性流路板94とフラットセパレータ93とが互いに熱圧着される。このとき、フラットセパレータ93上の第3結合材65は、フラットセパレータ93と多孔性流路板94との接触面の間から外周側に押し出される。こうして押し出された第3結合材65により、フラットセパレータ93と多孔性流路板94との接触面の周囲が全周にわたって囲まれる。
 その後、上型30を下型20から離間させて塗膜形成装置10から、一体化された多孔性流路板94及びフラットセパレータ93を取り出す。
 以上説明した本実施形態に係る燃料電池用セパレータの塗膜形成装置及び燃料電池セパレータによれば、第1実施形態の効果(1)~(6)に加えて、新たに以下に示す効果が得られる。
 (7)多孔性流路板94における膜電極接合体96に当接する面に塗膜62を形成する工程と、フラットセパレータ93と多孔性流路板94とを熱圧着する工程とが同時に行われる。このため、セル90、ひいてはスタックを効率的に製造することができる。
 (8)フラットセパレータ93と多孔性流路板94とが位置決めされた状態で熱圧着して固定される。このため、スタックを組み立てる際に、フラットセパレータ93と多孔性流路板94との位置ずれを回避することができる。したがって、スタックを容易且つ精度よく組み立てることができる。
 (9)フラットセパレータ93と多孔性流路板94とは互いに重ね合わせられた状態で第3結合材65により結合されている。このため、フラットセパレータ93の基材と多孔性流路板94の基材とが直接接触する。これにより、例えばフラットセパレータ93の表面に塗膜62が形成され、多孔性流路板94の表面に塗膜62が形成され、フラットセパレータ93の塗膜62と多孔性流路板94の塗膜62とが当接されるようにした構成に比べて、接触抵抗を低減することができる。
 (10)フラットセパレータ93と多孔性流路板94との接触面の周囲は全周にわたって第3結合材65により囲まれている。このため、フラットセパレータ93と多孔性流路板94との接触面の間が第3結合材65によりシールされる。また、フラットセパレータ93における上記接触面以外の部分が第3結合材65によりコーティングされる。これらのことから、フラットセパレータ93の腐食の進行が阻止され、耐久性を向上させることができる。
 <変形例>
 なお、上記実施形態は、例えば以下のように変更することもできる。
 ・第1実施形態において、下型20及び上型30が、基材50及び熱転写用フィルム60が載置される前に予め加熱されていてもよい。また、第2実施形態においても同様である。
 ・第1セパレータ91、フラットセパレータ93、及び多孔性流路板94をステンレス鋼板やチタン板以外の金属板によって形成することもできる。
 ・図1に示す多孔性流路板94の少なくとも一方の面に対して塗膜62を形成することもできる。
 ・第2実施形態において、多孔性流路板94におけるフラットセパレータ93に対向する面に対して第3塗料65Aを塗布するようにしてもよい。この場合、フラットセパレータ93に対する第3塗料65Aの塗布を省略してもよい。
 ・第2実施形態において、多孔性流路板94とフラットセパレータ93とを熱圧着するときに、フラットセパレータ93における多孔性流路板94に対向する面とは反対側の面に対して、熱転写用フィルム60と同様なフィルムを用いて塗膜を熱転写するようにしてもよい。
 ・支持部材27を省略することもできる。
 ・図12に示すように、ローラ71,72を用いた搬送装置70によって下型20の加圧面と上型30の加圧面との間に熱転写用フィルム260を搬送するようにしてもよい。すなわち、搬送装置70は、帯状の熱転写用フィルム260が巻かれたローラ71と、熱転写用フィルム260を巻き取るローラ72とを備えており、これらローラ71,72は図示しないモータによって回転駆動される。この場合、熱転写用フィルム260のうち熱転写に供された部分を下型20の加圧面と上型30の加圧面との間から自動的に送り出すことが可能となるため、下型20の加圧面上に熱転写用フィルムを載置するなどの手間を省略することができる。なお、図12は、図3(A)の12-12線に沿った断面構造に対応した構造を示している。また、同図においては、支持部材27の図示を省略している。
 ・基材50の片面にのみ塗膜62を熱転写する場合には、下型20及び上型30の一方にのみ弾性部材40を設けるようにすることもできる。
 ・ガラス繊維以外の繊維材料、例えばアラミド繊維などの耐熱性の合成繊維や、炭素繊維によって規制部材42を形成することもできる。
 ・規制部材42を省略することもできる。この場合、弾性部材40を1枚のゴムシート41によって形成することができる。
 10…塗膜形成装置、11…案内柱、20…下型、21…加熱部、22…電熱線、25…収容孔、27…支持部材、271…支持面、28…ばね(付勢部材)、30…上型、31…加熱部、32…電熱線、40…弾性部材、41…ゴムシート、42…規制部材、50…基材、51…突条、52…凹溝、60,260…熱転写用フィルム、61…ベースフィルム、62…塗膜、63…第1層、63A…第1塗料、631…第1結合材、632…グラファイト粒子、64…第2層、64A…第2塗料、641…第2結合材、642…導電性粒子、65…第3結合材、65A…第3塗料、70…搬送装置、71,72…ローラ、81~83…塗工ヘッド、90…セル、91…第1セパレータ、92…第2セパレータ、93…フラットセパレータ(基材)、94…多孔性流路板(基材)、941…貫通孔、95…流路、96…膜電極接合体。

Claims (7)

  1.  燃料電池用セパレータを構成する基材に対して熱転写により塗膜を形成する装置であって、
     加熱部をそれぞれ有する下型及び上型を備え、
     前記下型の加圧面及び前記上型の加圧面の少なくとも一方は、耐熱性の弾性部材によって形成されている、
     燃料電池用セパレータの塗膜形成装置。
  2.  前記弾性部材は前記加圧面全体にわたって設けられている、
     請求項1に記載の燃料電池用セパレータの塗膜形成装置。
  3.  前記弾性部材は、前記加圧面を形成する耐熱性のゴムシートと、同加圧面に沿った方向への同ゴムシートの伸びを規制する規制部材と、を有している、
     請求項1または請求項2に記載の燃料電池用セパレータの塗膜形成装置。
  4.  前記規制部材は、繊維材料により形成された補強クロスである、
     請求項3に記載の燃料電池用セパレータの塗膜形成装置。
  5.  前記下型の加圧面及び前記上型の加圧面の双方が、前記弾性部材によって形成されている、
     請求項1~請求項4のいずれか一項に記載の燃料電池用セパレータの塗膜形成装置。
  6.  前記下型の加圧面と前記上型の加圧面とが離間しているときに、前記基材及び熱転写用フィルムをこれら加圧面の双方から離間した状態で支持する支持部材を備えている、
     請求項1~請求項5のいずれか一項に記載の燃料電池用セパレータの塗膜形成装置。
  7.  平板状のフラットセパレータ及び多孔性流路板を含む基材と、
     前記フラットセパレータと前記多孔性流路板とを互いに重ね合わせた状態で結合する結合材とを有し、
     前記結合材は、前記フラットセパレータと前記多孔性流路板との接触面の周囲を囲んでいる、
     燃料電池用セパレータ。
PCT/JP2016/064799 2015-08-31 2016-05-18 燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ WO2017038165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16841197.3A EP3346530B1 (en) 2015-08-31 2016-05-18 Device for forming coating for fuel cell separator, and fuel cell separator
JP2017537580A JP6402831B2 (ja) 2015-08-31 2016-05-18 燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ
US15/557,729 US20180069248A1 (en) 2015-08-31 2016-05-18 Device for forming coating for fuel cell separator, and fuel cell separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171192 2015-08-31
JP2015171192 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038165A1 true WO2017038165A1 (ja) 2017-03-09

Family

ID=58187005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064799 WO2017038165A1 (ja) 2015-08-31 2016-05-18 燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ

Country Status (4)

Country Link
US (1) US20180069248A1 (ja)
EP (1) EP3346530B1 (ja)
JP (1) JP6402831B2 (ja)
WO (1) WO2017038165A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121523A (ja) * 2018-01-09 2019-07-22 トヨタ車体株式会社 燃料電池用セパレータの製造方法
JP2019204659A (ja) * 2018-05-23 2019-11-28 トヨタ車体株式会社 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP2020102394A (ja) * 2018-12-25 2020-07-02 トヨタ車体株式会社 燃料電池用セパレータの表面処理方法
JP2021077527A (ja) * 2019-11-11 2021-05-20 トヨタ車体株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法、及び熱転写用シートの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897471B2 (ja) * 2017-10-04 2021-06-30 トヨタ車体株式会社 燃料電池用ガス流路形成板および燃料電池スタック
JP7081307B2 (ja) * 2018-05-28 2022-06-07 トヨタ紡織株式会社 燃料電池用セパレータ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722042A (ja) * 1993-06-30 1995-01-24 Toyota Motor Corp エネルギ変換装置および燃料電池並びに燃料電池の製造方法
JP2002158014A (ja) * 2000-11-17 2002-05-31 Asahi Glass Co Ltd 固体高分子型燃料電池用触媒層・膜接合体の製造方法
JP2002170582A (ja) * 2000-12-04 2002-06-14 Nisshin Steel Co Ltd 燃料電池用セパレータ及びその製造方法
JP2007172844A (ja) * 2005-12-19 2007-07-05 Toshiba Fuel Cell Power Systems Corp 燃料電池製造方法および燃料電池製造装置
WO2009063751A1 (ja) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha 燃料電池用セパレータの製造方法
WO2015008838A1 (ja) * 2013-07-18 2015-01-22 トヨタ車体 株式会社 燃料電池のセパレータ及び燃料電池のセパレータの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002240151A (ja) * 2001-02-16 2002-08-28 Araco Corp 化粧フィルムを貼り付けた繊維板の製造方法および製造装置
JP5204429B2 (ja) * 2007-05-23 2013-06-05 三ツ星ベルト株式会社 熱プレス用クッション材
JP4440963B2 (ja) * 2007-12-07 2010-03-24 ヤマウチ株式会社 熱プレス用クッション材および積層板の製造方法
JP4176817B1 (ja) * 2007-12-14 2008-11-05 ミカドテクノス株式会社 薄板状被加工部材用ホットプレス加工装置及びホットプレス加工方法
JP5521018B2 (ja) * 2012-10-31 2014-06-11 ヤマウチ株式会社 熱プレス用クッション材
JP6137042B2 (ja) * 2014-04-28 2017-05-31 トヨタ車体株式会社 燃料電池のセパレータの製造方法及び熱圧着装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722042A (ja) * 1993-06-30 1995-01-24 Toyota Motor Corp エネルギ変換装置および燃料電池並びに燃料電池の製造方法
JP2002158014A (ja) * 2000-11-17 2002-05-31 Asahi Glass Co Ltd 固体高分子型燃料電池用触媒層・膜接合体の製造方法
JP2002170582A (ja) * 2000-12-04 2002-06-14 Nisshin Steel Co Ltd 燃料電池用セパレータ及びその製造方法
JP2007172844A (ja) * 2005-12-19 2007-07-05 Toshiba Fuel Cell Power Systems Corp 燃料電池製造方法および燃料電池製造装置
WO2009063751A1 (ja) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha 燃料電池用セパレータの製造方法
WO2015008838A1 (ja) * 2013-07-18 2015-01-22 トヨタ車体 株式会社 燃料電池のセパレータ及び燃料電池のセパレータの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346530A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121523A (ja) * 2018-01-09 2019-07-22 トヨタ車体株式会社 燃料電池用セパレータの製造方法
JP2019204659A (ja) * 2018-05-23 2019-11-28 トヨタ車体株式会社 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
WO2019225114A1 (ja) * 2018-05-23 2019-11-28 トヨタ車体株式会社 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
CN112204782A (zh) * 2018-05-23 2021-01-08 丰田车体株式会社 燃料电池用隔板及燃料电池用隔板的制造方法
JP7020291B2 (ja) 2018-05-23 2022-02-16 トヨタ車体株式会社 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
US11349132B2 (en) 2018-05-23 2022-05-31 Toyota Shatai Kabushiki Kaisha Fuel cell separator and method for manufacturing fuel cell separator
JP2020102394A (ja) * 2018-12-25 2020-07-02 トヨタ車体株式会社 燃料電池用セパレータの表面処理方法
JP7095588B2 (ja) 2018-12-25 2022-07-05 トヨタ車体株式会社 燃料電池用セパレータの表面処理方法
JP2021077527A (ja) * 2019-11-11 2021-05-20 トヨタ車体株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法、及び熱転写用シートの製造方法
JP7247864B2 (ja) 2019-11-11 2023-03-29 トヨタ車体株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法、及び熱転写用シートの製造方法

Also Published As

Publication number Publication date
EP3346530B1 (en) 2023-06-21
EP3346530A4 (en) 2019-08-07
JPWO2017038165A1 (ja) 2018-02-01
EP3346530A1 (en) 2018-07-11
JP6402831B2 (ja) 2018-10-10
US20180069248A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6402831B2 (ja) 燃料電池用セパレータの塗膜形成装置及び燃料電池用セパレータ
US9831504B2 (en) Single fuel cell and method of manufacturing single fuel cell
KR101825269B1 (ko) 연료 전지 단위 셀의 제조 방법
US11056703B2 (en) Manufacturing method of unit cell of fuel cell
JP2016162651A (ja) 燃料電池単セル及び燃料電池単セルの製造方法
JP4736787B2 (ja) 固体高分子形燃料電池における膜電極接合体および補強型電解質膜の製造方法
JP6973121B2 (ja) 燃料電池用セパレータの製造方法
WO2019225114A1 (ja) 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP2016126911A (ja) 燃料電池単セル
JP6137042B2 (ja) 燃料電池のセパレータの製造方法及び熱圧着装置
US8669019B2 (en) Water vapor transfer membrane attachment to gas diffusion separators
JP2016162650A (ja) 燃料電池単セルの製造方法
JP2005216598A (ja) 固体高分子膜型燃料電池セルおよびその製造方法
JP6432398B2 (ja) 燃料電池単セル
JP5298453B2 (ja) 燃料電池セルの製造方法および製造装置
JP2008166138A (ja) 燃料電池スタックおよび燃料電池スタックの製造方法
JP2000182632A (ja) 固体高分子電解質燃料電池用電極の製造方法
US7651581B2 (en) Catalyst coated diffusion media
JP2005129343A (ja) 膜電極接合体とそれを用いた燃料電池およびそれらの製造方法
JP5924233B2 (ja) 接合装置および接合方法
WO2008123528A1 (ja) 燃料電池とその製造方法
JP2019121523A (ja) 燃料電池用セパレータの製造方法
JP6947048B2 (ja) 燃料電池用セパレータの製造方法
JP4164808B2 (ja) 膜−電極接合体の製造方法および固体高分子膜・電極膜の加熱圧着装置。
WO2019017341A1 (ja) 電極圧着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841197

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016841197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557729

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017537580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE