WO2017037872A1 - 光学ユニット及びこれを備えた分光器 - Google Patents

光学ユニット及びこれを備えた分光器 Download PDF

Info

Publication number
WO2017037872A1
WO2017037872A1 PCT/JP2015/074861 JP2015074861W WO2017037872A1 WO 2017037872 A1 WO2017037872 A1 WO 2017037872A1 JP 2015074861 W JP2015074861 W JP 2015074861W WO 2017037872 A1 WO2017037872 A1 WO 2017037872A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
receiving element
unit
output values
light
Prior art date
Application number
PCT/JP2015/074861
Other languages
English (en)
French (fr)
Inventor
悠悟 石原
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2017537122A priority Critical patent/JP6544433B2/ja
Priority to US15/756,406 priority patent/US10337919B2/en
Priority to PCT/JP2015/074861 priority patent/WO2017037872A1/ja
Publication of WO2017037872A1 publication Critical patent/WO2017037872A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Definitions

  • the present invention relates to an optical unit that includes an image sensor having a plurality of light receiving elements, converts an output signal from each light receiving element of the image sensor by an A / D converter, and a spectroscope including the optical unit.
  • Patent Document 1 discloses a spectrometer that includes a photodiode array detector, which is an example of an image sensor, and converts an output signal from each light receiving element of the photodiode array detector using an A / D converter. Yes.
  • each light receiving element of this type of image sensor electric charges are accumulated according to the amount of received light, and an analog signal corresponding to the amount of electric charge is converted into a digital signal by an A / D converter.
  • conversion processing sequentially for a plurality of light receiving elements at a high speed, one output value corresponding to the amount of light received by each light receiving element is obtained one by one, and the amount of light received at each wavelength based on these output values Are acquired as spectral data.
  • FIG. 7 is a timing chart for explaining a conventional mode when converting output signals from a plurality of light receiving elements by an A / D converter.
  • n is a natural number
  • the waveform of the analog signal output from each light receiving element appears as a rectangular wave with a slow rise due to the influence of the time constant of the image sensor and the circuit. Therefore, the analog signal output from each light receiving element is converted by the A / D converter at a constant timing T n (n is a natural number) at which the waveform has risen sufficiently, and then switched to the next light receiving element.
  • Such a process is sequentially executed at the timings T 1 to T n corresponding to the respective light receiving elements, whereby one scan operation is completed. That is, one output value for each light receiving element is acquired by one scanning operation. During the analysis, the scanning operation is repeatedly executed, so that the output value for each light receiving element is acquired at a constant period.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical unit that is not easily affected by noise and a spectroscope including the same.
  • An optical unit includes an image sensor, an A / D converter, a conversion processing unit, and an average value calculation unit.
  • the image sensor has a plurality of light receiving elements.
  • the A / D converter converts an output signal from each light receiving element of the image sensor.
  • the conversion processing unit performs a conversion process of acquiring two or more output values by converting an output signal from the same light receiving element twice or more by the A / D converter within a preset time range. The process is sequentially performed for a plurality of light receiving elements.
  • the average value calculation unit calculates an average value of two or more output values for each light receiving element acquired by the processing of the conversion processing unit.
  • the optical unit may further include an integrating unit and a signal holding unit.
  • the integration unit converts an output signal from each light receiving element of the image sensor into a voltage.
  • the signal holding unit holds the voltage converted by the integrating unit.
  • the A / D converter may convert the voltage held by the signal holding unit into a digital value.
  • the conversion process is a process of acquiring two or more output values by converting the holding voltage from the same light receiving element twice or more by the A / D converter within a preset time range. May be.
  • two or more output values are acquired for each light receiving element by a series of conversion processes for a plurality of light receiving elements, and an average value of the two or more output values is obtained for each light receiving element. Calculated. Therefore, even if one of the output values becomes an inaccurate value due to the influence of noise, an average value with another accurate value is calculated, so that it is not easily affected by the noise.
  • the optical unit may further include a setting receiving unit that receives setting of a cycle.
  • the conversion processing unit may repeatedly execute a series of conversion processes for the plurality of light receiving elements at a cycle received by the setting receiving unit.
  • the number of output values for each light receiving element acquired within the preset time range may vary according to the period received by the setting reception unit.
  • a series of conversion processing for a plurality of light receiving elements is repeatedly executed at a set cycle, and for each series of conversion processing, the number of output values corresponding to the cycle is obtained for each light receiving device.
  • the number corresponding to the period is, for example, a larger value as the period is longer, and a smaller value as the period is shorter. In this case, the longer the set cycle is, the more output values can be acquired and the average value can be calculated.
  • the number of output values for each light receiving element acquired within the preset time range may be a fixed number.
  • the optical unit may further include a setting reception unit that receives, for each light receiving element, a setting of the number of output values for each light receiving element acquired within the preset time range.
  • the spectroscope according to the present invention includes the optical unit, and a diffraction grating that splits light on a grating surface and causes the light beams of the divided wavelengths to enter the plurality of light receiving elements.
  • FIG. 2 is a block diagram showing an electrical configuration of the spectroscopic analyzer of FIG. 1. It is a timing chart for demonstrating the specific aspect of a conversion process. It is the flowchart which showed an example of the process by the data processing part in analysis. It is the flowchart which showed an example of the process by the data processing part in analysis in 2nd Embodiment. It is the flowchart which showed an example of the process by the data processing part in analysis in 3rd Embodiment. It is a timing chart for demonstrating the conventional aspect at the time of converting the output signal from a some light receiving element with an A / D converter.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a spectral analysis device according to a first embodiment of the present invention.
  • the spectroscopic analysis apparatus includes an optical system 10 including a light source 1, a condenser lens 2, a slit plate 3, a diffraction grating 4, a PDA (photodiode array detector) 5, and the like.
  • a sample cell 20 made of, for example, a flow cell is disposed on the optical path L formed by the optical system 10, and light such as white light is irradiated on the sample in the sample cell 20.
  • the light emitted from the light source 1 is collected by the condenser lens 2 and irradiated on the sample in the sample cell 20.
  • the light that has passed through the slit plate 3 enters the diffraction grating 4.
  • the diffraction grating 4 has, for example, a concave grating surface 7, and the light transmitted through the sample cell 20 is split into light for each wavelength by the grating surface 7.
  • the condensing lens 2 is an example of a condensing element, and may be composed of other members such as a parabolic mirror as long as it condenses the light from the light source 1.
  • the PDA 5 is an example of an image sensor and includes a plurality of light receiving elements 6 arranged in a line.
  • the light of each wavelength dispersed by the diffraction grating 4 is incident on different light receiving elements 6 of the PDA 5. Therefore, the light quantity of each wavelength can be calculated based on the output signal from each light receiving element 6.
  • FIG. 2 is a block diagram showing the electrical configuration of the spectroscopic analyzer of FIG.
  • the spectroscopic analysis apparatus includes an A / D converter 30, a data processing unit 40, a storage unit 50, an operation unit 60, and the like. Based on the operations of these units, the PDA 5 The signals from the respective light receiving elements 6 are processed.
  • the PDA 5, the A / D converter 30, and the data processing unit 40 constitute an optical unit 100. Further, the optical unit 100 and the diffraction grating 4 constitute a spectroscope for spectrally dividing incident light and acquiring spectral data.
  • an analog signal (output signal) from each light receiving element 6 of the PDA 5 is converted into a digital signal.
  • a value representing the amount of light received by each light receiving element 6 digitally converted by the A / D converter 30 is input to the data processing unit 40 as an output value.
  • the data processing unit 40 includes, for example, a CPU (Central Processing Unit), and functions as a setting reception unit 41, a conversion processing unit 42, an average value calculation unit 43, and the like when the CPU executes a program.
  • the storage unit 50 is configured by, for example, a hard disk or a RAM (Random-Access Memory).
  • the operation unit 60 is configured by, for example, a keyboard or a mouse.
  • the setting reception unit 41 performs processing for receiving the setting. Specifically, parameters such as analysis conditions set using the operation unit 60 are received by the setting receiving unit 41, and the data processing unit 40 controls the operation of the PDA 5 or A / D based on the parameters. Processing for the output value from the converter 30 is performed.
  • the conversion processing unit 42 causes the A / D converter 30 to convert the output signal from each light receiving element 6 by sequentially outputting signals from each light receiving element 6 of the PDA 5 to the A / D converter 30 (conversion processing). )I do.
  • each light receiving element 6 charges are accumulated according to the amount of received light, and an output value corresponding to the amount of charge is converted by the A / D converter 30 to obtain an output value.
  • the conversion process of the output signal from each light receiving element 6 is performed for all the light receiving elements 6 according to a certain order.
  • a series of conversion processes (scanning operations) for all the light receiving elements 6 are repeatedly performed a plurality of times, whereby output values for the respective light receiving elements 6 are acquired at a constant period.
  • a preamplifier circuit (not shown) may be provided between the PDA 5 and the A / D converter 30.
  • the preamplifier circuit includes, for example, an integration unit and a signal holding unit.
  • the integrator converts the output signal from each light receiving element 6 of the PDA 5 into a voltage.
  • the signal holding unit holds the voltage converted by the integrating unit.
  • the A / D converter 30 may convert the voltage held by the signal holding unit into a digital value.
  • the conversion processing unit 42 may cause the A / D converter 30 to convert the output signal (holding voltage by the signal holding unit) from each light receiving element 6 of the PDA 5 by controlling the preamplifier circuit (signal holding unit).
  • the operator can arbitrarily set the above cycle by operating the operation unit 60. That is, the conversion processing unit 42 repeatedly executes a series of conversion processing for the plurality of light receiving elements 6 at a cycle received by the setting receiving unit 41. The longer the period, the greater the amount of light received by each light receiving element 6 and the less affected by noise.
  • the conversion processing unit 42 causes the A / D converter 30 to convert the output signal from the same light receiving element 6 twice or more in the series of conversion processes as described above. Thereby, two or more output values are acquired for each light receiving element 6 in one scanning operation.
  • the average value calculation unit 43 calculates an average value for each light receiving element 6 by averaging two or more output values for each light receiving element 6 acquired by the processing of the conversion processing unit 42.
  • the average value for each light receiving element 6 calculated as described above is stored in the storage unit 50 as spectrum data representing the amount of light received at each wavelength.
  • the spectrum data stored in the storage unit 50 is output as an analysis result in various modes such as display on a display unit (not shown) or printing from a printer (not shown).
  • FIG. 3 is a timing chart for explaining a specific mode of conversion processing.
  • the PDA 5 includes n (n is a natural number of 2 or more) light receiving elements 6 and an analog signal from each light receiving element 6 is converted into a digital signal by the A / D converter 30 will be described. .
  • each light receiving element 6 is subjected to four conversion processes within a preset time range R.
  • the timing of conversion processing for each light receiving element 6 is set as much as possible within the time range R after the waveform rises sufficiently.
  • the conversion process is performed for each light receiving element 6 at four timings T n1 to T n4 , but the number of conversion processes is not limited to four, It varies according to the length of the time range R.
  • the time range R is set in advance according to a cycle when a series of conversion processes are repeatedly executed. Therefore, the number of output values (four in the example of FIG. 3) for each light receiving element 6 acquired within the preset time range R varies according to the period received by the setting reception unit 41. It becomes. Specifically, the number of the output values becomes larger as the period becomes longer, and becomes smaller as the period becomes shorter.
  • FIG. 4 is a flowchart showing an example of processing by the data processing unit 40 under analysis.
  • step S101 and S102 an output signal from the first light receiving element 6 is input to the A / D converter 30 (steps S101 and S102). Thereafter, after a predetermined time has elapsed and the waveform has risen sufficiently (Yes in step S103), A / D conversion is repeated as much as possible within a predetermined time range R, and processing for integrating the obtained output values is performed. Is performed (steps S104 to S106).
  • step S106 When the predetermined time range R is exceeded (No in step S106), the integrated value of output values at that time is divided by the number of acquired output values (number of times of A / D conversion), An average value of the output values is calculated (step S107). Next, for the second light receiving element 6 (No in steps S108 and S109), the processes in steps S102 to S108 are performed.
  • steps S102 to S108 are sequentially executed up to the nth light receiving element 6.
  • This series of conversion processing (steps S101 to S109) is repeatedly executed at a preset cycle until the analysis is completed (until Yes in step S110).
  • a series of conversion processes for a plurality of light receiving elements 6 are repeatedly executed at a set cycle, and for each series of conversion processes, a number of output values corresponding to the cycle (see FIG. (4 in the example of 3) is acquired for each light receiving element 6.
  • Second Embodiment In the first embodiment, the number of output values for each light receiving element 6 acquired within a preset time range R varies according to the cycle when a series of conversion processes are repeatedly executed. The configuration as described above has been described. In contrast, the second embodiment is different in that the number of output values for each light receiving element 6 acquired within a preset time range R is a fixed number (two or more). ing.
  • FIG. 5 is a flowchart showing an example of processing by the data processing unit 40 under analysis in the second embodiment.
  • step S201 and S202 an output signal from the first light receiving element 6 is input to the A / D converter 30 (steps S201 and S202). Thereafter, after a certain time has elapsed and the waveform has risen sufficiently (Yes in step S203), the A / D conversion is repeated until a certain number of times (a predetermined number of times equal to or more than two) is reached. Processing for integrating the output values is performed (steps S204 to S206).
  • step S206 When the number of A / D conversions reaches a certain number (Yes in step S206), the integrated value of the output values at that time is divided by the number of A / D conversions that is the certain number of times. An average value of the output values is calculated (step S207). Next, for the second light receiving element 6 (No in steps S208 and S209), the processes in steps S202 to S208 are performed.
  • steps S202 to S208 are sequentially executed up to the nth light receiving element 6.
  • This series of conversion processing (steps S201 to S209) is repeatedly executed at a preset period until the analysis is completed (until Yes in step S210).
  • two or more output values are obtained for each light receiving element 6 by a series of conversion processes (one scan operation) for the plurality of light receiving elements 6, An average value of two or more output values is calculated for each light receiving element 6. Therefore, even if one of the output values becomes an inaccurate value due to the influence of noise, an average value with another accurate value is calculated, so that it is not easily affected by the noise.
  • the number of output values for each light receiving element 6 acquired within a preset time range R varies according to the cycle when a series of conversion processes are repeatedly executed. The configuration as described above has been described.
  • setting of the number of output values for each light receiving element 6 acquired within a preset time range R is received by the setting receiving unit 41 for each light receiving element 6. Is different.
  • FIG. 6 is a flowchart showing an example of processing by the data processing unit 40 under analysis in the third embodiment.
  • step S301 and S302 an output signal from the first light receiving element 6 is input to the A / D converter 30 (steps S301 and S302). Thereafter, after a predetermined time has elapsed and the waveform has risen sufficiently (Yes in step S303), A / D conversion is repeated until the number of times set for each light receiving element 6 (two or more set times) is reached. Then, a process of integrating the obtained output values is performed (steps S304 to S306).
  • step S306 When the number of A / D conversions reaches the set number of times (Yes in step S306), the integrated value of the output value at that time is divided by the number of A / D conversions that is the set number of times. An average value of the output values is calculated (step S307). Next, for the second light receiving element 6 (No in steps S308 and S309), the processes in steps S302 to S308 are performed.
  • steps S302 to S308 are sequentially executed up to the nth light receiving element 6.
  • This series of conversion processes (steps S301 to S309) is repeatedly executed at a preset cycle until the analysis is completed (Yes in step S310).
  • two or more output values are obtained for each light receiving element 6 by a series of conversion processes (one scan operation) for the plurality of light receiving elements 6, An average value of two or more output values is calculated for each light receiving element 6. Therefore, even if one of the output values becomes an inaccurate value due to the influence of noise, an average value with another accurate value is calculated, so that it is not easily affected by the noise.
  • an average value can be calculated by obtaining a different number of output values for each light receiving element 6, if an appropriate value is set in consideration of noise for each light receiving element 6, It can be made less susceptible to noise.
  • the diffraction grating 4 is not limited to the configuration having the concave grating surface 7 but may have a configuration having a grating surface of another shape such as a convex shape.
  • the diffraction grating 4 is not limited to a reflection type diffraction grating that divides light when reflecting incident light, but may be a transmission type diffraction grating that divides light when transmitting incident light.
  • the optical unit 100 is not limited to such a configuration, and the optical unit 100 may receive light incident from other than the diffraction grating 4 by the plurality of light receiving elements 6 and can be applied to various optical devices other than the spectroscopic analyzer. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PDA5は、複数の受光素子を有する。A/D変換器30は、PDA5の各受光素子からの出力信号を変換する。変換処理部42は、予め設定された時間範囲内で同一の受光素子からの出力信号をA/D変換器30により2回以上変換させて2つ以上の出力値を取得する変換処理を、複数の受光素子について順次実行する。平均値算出部43は、変換処理部42の処理により取得された各受光素子についての2つ以上の出力値の平均値を算出する。

Description

光学ユニット及びこれを備えた分光器
 本発明は、複数の受光素子を有するイメージセンサを備え、当該イメージセンサの各受光素子からの出力信号をA/D変換器で変換する光学ユニット及びこれを備えた分光器に関するものである。
 分光分析装置などの各種光学装置において、複数の受光素子を有するイメージセンサが用いられている。例えば下記特許文献1には、イメージセンサの一例であるフォトダイオードアレイ検出器を備え、フォトダイオードアレイ検出器の各受光素子からの出力信号をA/D変換器で変換する分光器が開示されている。
 この種のイメージセンサの各受光素子では、受光した光量に応じて電荷が蓄積され、その電荷量に応じたアナログ信号がA/D変換器でデジタル信号に変換される。このような変換処理が複数の受光素子について高速で順次実行されることにより、各受光素子における受光量に応じた出力値が1つずつ取得され、それらの出力値に基づいて各波長における受光量がスペクトルデータとして取得される。
 図7は、複数の受光素子からの出力信号をA/D変換器で変換する際の従来の態様について説明するためのタイミングチャートである。この例では、n個(nは自然数)の受光素子からのアナログ信号をA/D変換器でデジタル信号に変換する場合について説明する。
 図7に示すように、各受光素子から出力されるアナログ信号の波形は、イメージセンサや回路の時定数の影響により、立ち上がりが緩やかな矩形波として現れる。そのため、各受光素子から出力されるアナログ信号は、波形が十分に立ち上がった一定のタイミングT(nは自然数)でA/D変換器により変換され、その後に次の受光素子に切り替えられる。
 このような処理が各受光素子に対応するタイミングT~Tで順次実行されることにより、1回のスキャン動作が終了する。すなわち、1回のスキャン動作で各受光素子についての出力値が1つずつ取得されることとなる。分析中は、このようなスキャン動作が繰り返し実行されることにより、各受光素子についての出力値が一定周期で取得される。
特開平8-193945号公報
 上記のような従来の態様では、1回のスキャンで、各受光素子について1つの出力値しか取得することができない。そのため、フォトダイオードアレイ検出器における光ショットノイズや回路上のノイズといった各種ノイズの影響により、いずれかの受光素子における出力値が不正確な値となった場合に、分析結果に与える影響が大きいという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、ノイズの影響を受けにくい光学ユニット及びこれを備えた分光器を提供することを目的とする。
(1)本発明に係る光学ユニットは、イメージセンサと、A/D変換器と、変換処理部と、平均値算出部とを備える。前記イメージセンサは、複数の受光素子を有する。前記A/D変換器は、前記イメージセンサの各受光素子からの出力信号を変換する。前記変換処理部は、予め設定された時間範囲内で同一の受光素子からの出力信号を前記A/D変換器により2回以上変換させて2つ以上の出力値を取得する変換処理を、前記複数の受光素子について順次実行する。前記平均値算出部は、前記変換処理部の処理により取得された各受光素子についての2つ以上の出力値の平均値を算出する。前記光学ユニットは、積分部と、信号保持部とをさらに備えていてもよい。前記積分部は、前記イメージセンサの各受光素子からの出力信号を電圧に変換する。前記信号保持部は、前記積分部により変換された電圧を保持する。この場合、前記A/D変換器は、前記信号保持部による保持電圧をデジタル値に変換してもよい。また、前記変換処理は、予め設定された時間範囲内で同一の受光素子からの前記保持電圧を前記A/D変換器により2回以上変換させて2つ以上の出力値を取得する処理であってもよい。
 このような構成によれば、複数の受光素子についての一連の変換処理により、各受光素子について2つ以上の出力値が取得され、それらの2つ以上の出力値の平均値が受光素子ごとに算出される。したがって、ノイズの影響により、いずれかの出力値が不正確な値となった場合でも、他の正確な値との平均値が算出されるため、ノイズの影響を受けにくい。
(2)前記光学ユニットは、周期の設定を受け付ける設定受付部をさらに備えていてもよい。この場合、前記変換処理部は、前記複数の受光素子についての一連の変換処理を前記設定受付部により受け付けられた周期で繰り返し実行してもよい。また、前記予め設定された時間範囲内で取得される各受光素子についての出力値の数は、前記設定受付部により受け付けられた周期に応じて変動してもよい。
 このような構成によれば、複数の受光素子についての一連の変換処理が、設定された周期で繰り返し実行され、一連の変換処理ごとに、その周期に応じた数の出力値が各受光素子について取得される。上記周期に応じた数は、例えば周期が長いほど大きい値となり、周期が短いほど小さい値となる。この場合、設定された周期が長いほど、より多くの出力値を取得して平均値を算出することができるため、よりノイズの影響を受けにくくなる。
(3)前記予め設定された時間範囲内で取得される各受光素子についての出力値の数は、一定数であってもよい。
 このような構成によれば、常に一定数の出力値を取得して平均値を算出することができるため、安定してノイズの影響を受けにくくすることができる。
(4)前記光学ユニットは、前記予め設定された時間範囲内で取得される各受光素子についての出力値の数の設定を受光素子ごとに受け付ける設定受付部をさらに備えていてもよい。
 このような構成によれば、受光素子ごとに異なる数の出力値を取得して平均値を算出することができるため、受光素子ごとのノイズを考慮して適切な値を設定すれば、よりノイズの影響を受けにくくすることができる。
(5)本発明に係る分光器は、前記光学ユニットと、格子面で光を分光し、分光した各波長の光を前記複数の受光素子に入射させる回折格子とを備える。
 本発明によれば、ノイズの影響により、いずれかの出力値が不正確な値となった場合でも、他の正確な値との平均値が算出されるため、ノイズの影響を受けにくい。
本発明の第1実施形態に係る分光分析装置の構成例を示した概略図である。 図1の分光分析装置の電気的構成を示したブロック図である。 変換処理の具体的態様について説明するためのタイミングチャートである。 分析中のデータ処理部による処理の一例を示したフローチャートである。 第2実施形態における分析中のデータ処理部による処理の一例を示したフローチャートである。 第3実施形態における分析中のデータ処理部による処理の一例を示したフローチャートである。 複数の受光素子からの出力信号をA/D変換器で変換する際の従来の態様について説明するためのタイミングチャートである。
1.分光分析装置の構成
 図1は、本発明の第1実施形態に係る分光分析装置の構成例を示した概略図である。この分光分析装置は、光源1、集光レンズ2、スリット板3、回折格子4及びPDA(フォトダイオードアレイ検出器)5などを含む光学系10を備えている。分析時には、光学系10により形成される光路L上に、例えばフローセルなどからなる試料セル20が配置され、当該試料セル20内の試料に白色光などの光が照射される。
 光源1から照射された光は、集光レンズ2により集光され、試料セル20内の試料に照射される。試料セル20内を透過した光のうち、スリット板3を通過した光は、回折格子4に入射する。回折格子4は、例えば凹状の格子面7を有しており、この格子面7により、試料セル20内を透過した光が波長ごとの光に分光される。集光レンズ2は、集光素子の一例であり、光源1からの光を集光させるものであれば、放物面鏡などの他の部材により構成されていてもよい。
 PDA5は、イメージセンサの一例であり、1列に並べて配置された複数の受光素子6を備えている。回折格子4により分光された各波長の光は、PDA5のそれぞれ異なる受光素子6に入射する。したがって、各受光素子6からの出力信号に基づいて、各波長の光量を算出することができる。
 図2は、図1の分光分析装置の電気的構成を示したブロック図である。図2に示すように、本実施形態に係る分光分析装置は、A/D変換器30、データ処理部40、記憶部50及び操作部60などを備え、これらの各部の動作に基づいて、PDA5の各受光素子6からの信号が処理される。
 PDA5、A/D変換器30及びデータ処理部40は、光学ユニット100を構成している。また、光学ユニット100及び回折格子4により、入射した光を分光してスペクトルデータを取得するための分光器が構成されている。
 A/D変換器30では、PDA5の各受光素子6からのアナログ信号(出力信号)が、デジタル信号に変換される。データ処理部40には、A/D変換器30によりデジタル変換された各受光素子6の受光量を表す値が出力値として入力される。
 データ処理部40は、例えばCPU(Central Processing Unit)を含む構成であり、当該CPUがプログラムを実行することにより、設定受付部41、変換処理部42及び平均値算出部43などとして機能する。記憶部50は、例えばハードディスク又はRAM(Random-Access Memory)などにより構成される。操作部60は、例えばキーボード又はマウスなどにより構成される。
 設定受付部41は、作業者が操作部60を用いて設定操作を行った場合に、その設定を受け付ける処理を行う。具体的には、操作部60を用いて設定された分析条件などのパラメータが設定受付部41により受け付けられ、当該パラメータに基づいて、データ処理部40がPDA5の動作の制御、又は、A/D変換器30からの出力値に対する処理などを行う。
 変換処理部42は、PDA5の各受光素子6からA/D変換器30に信号を順次出力させることにより、各受光素子6からの出力信号をA/D変換器30で変換させる処理(変換処理)を行う。各受光素子6では、受光量に応じて電荷が蓄積され、その電荷量に応じた出力信号がA/D変換器30で変換されることにより出力値が得られる。各受光素子6からの出力信号の変換処理は、一定の順序に従って、全ての受光素子6について行われる。その全ての受光素子6についての一連の変換処理(スキャン動作)が、複数回繰り返して行われることにより、各受光素子6についての出力値が一定周期で取得される。なお、PDA5とA/D変換器30との間には、プリアンプ回路(図示せず)が設けられていてもよい。プリアンプ回路は、例えば積分部及び信号保持部を備える。積分部は、PDA5の各受光素子6からの出力信号を電圧に変換する。信号保持部は、積分部により変換された電圧を保持する。この場合、A/D変換器30は、信号保持部による保持電圧をデジタル値に変換してもよい。変換処理部42は、プリアンプ回路(信号保持部)に対する制御により、PDA5の各受光素子6からの出力信号(信号保持部による保持電圧)をA/D変換器30により変換させてもよい。
 本実施形態では、上記周期を操作部60の操作によって作業者が任意に設定できるようになっている。すなわち、変換処理部42は、複数の受光素子6についての一連の変換処理を設定受付部41により受け付けられた周期で繰り返し実行する。上記周期が長いほど、各受光素子6における受光量は多くなり、ノイズの影響を受けにくくなる。
 変換処理部42は、上記のような一連の変換処理において、同一の受光素子6からの出力信号をA/D変換器30により2回以上変換させる。これにより、1回のスキャン動作で各受光素子6について2つ以上の出力値が取得される。平均値算出部43は、変換処理部42の処理により取得された各受光素子6についての2つ以上の出力値を平均化することにより、各受光素子6について平均値を算出する。
 上記のようにして算出された各受光素子6についての平均値は、各波長における受光量を表すスペクトルデータとして記憶部50に記憶される。記憶部50に記憶されたスペクトルデータは、例えば表示部(図示せず)への表示、又は、プリンタ(図示せず)からの印刷といった各種態様で、分析結果として出力される。
2.変換処理の具体的態様
 図3は、変換処理の具体的態様について説明するためのタイミングチャートである。この例では、PDA5がn個(nは2以上の自然数)の受光素子6を備えており、各受光素子6からのアナログ信号をA/D変換器30でデジタル信号に変換する場合について説明する。
 図3に示すように、各受光素子6から出力されるアナログ信号の波形は、PDA5や回路の時定数の影響により、立ち上がりが緩やかな矩形波として現れる。この例では、各受光素子6について、予め設定された時間範囲R内で4回の変換処理が行われるようになっている。各受光素子6についての変換処理のタイミングは、波形が十分に立ち上がった後、時間範囲R内で可能な限り多く設定される。
 すなわち、この例では、各受光素子6について4回のタイミングTn1~Tn4で変換処理が行われるようになっているが、変換処理の回数は4回に限られるものではなく、その回数は時間範囲Rの長さに応じて変動する。時間範囲Rは、一連の変換処理が繰り返し実行される際の周期に応じて予め設定される。したがって、予め設定された時間範囲R内で取得される各受光素子6についての出力値の数(図3の例では4つ)は、設定受付部41により受け付けられた周期に応じて変動することとなる。具体的には、上記出力値の数は、周期が長いほど大きい値となり、周期が短いほど小さい値となる。
3.分析中のデータ処理部による処理
 図4は、分析中のデータ処理部40による処理の一例を示したフローチャートである。分析中は、PDA5におけるx番目(x=1,2,3,・・・,n)の受光素子6からの出力信号が、A/D変換器30により順次変換される。
 具体的には、分析が開始されると、まず1番目の受光素子6からの出力信号がA/D変換器30に入力される(ステップS101,S102)。その後、一定時間が経過して波形が十分に立ち上がった後(ステップS103でYes)、所定の時間範囲R内で可能な限りA/D変換が繰り返され、得られた出力値を積算する処理が行われる(ステップS104~S106)。
 所定の時間範囲Rを超えた場合には(ステップS106でNo)、その時点における出力値の積算値が、取得された出力値の数(A/D変換の回数)で除算されることにより、出力値の平均値が算出される(ステップS107)。そして、次は2番目の受光素子6について(ステップS108,S109でNo)、ステップS102~S108の処理が行われる。
 このようにして、n番目の受光素子6までステップS102~S108の処理が順次実行される。この一連の変換処理(ステップS101~S109)は、分析が終了するまで(ステップS110でYesとなるまで)、予め設定された周期で繰り返し実行される。
4.第1実施形態の作用効果
(1)本実施形態では、複数の受光素子6についての一連の変換処理(1回のスキャン動作)により、各受光素子6について2つ以上の出力値(図3の例では4つ)が取得され、それらの2つ以上の出力値の平均値が受光素子6ごとに算出される。したがって、ノイズの影響により、いずれかの出力値が不正確な値となった場合でも、他の正確な値との平均値が算出されるため、ノイズの影響を受けにくい。
(2)特に、本実施形態では、複数の受光素子6についての一連の変換処理が、設定された周期で繰り返し実行され、一連の変換処理ごとに、その周期に応じた数の出力値(図3の例では4つ)が各受光素子6について取得される。具体的には、設定された周期が長いほど、より多くの出力値を取得して平均値を算出することができるため、よりノイズの影響を受けにくくなる。
5.第2実施形態
 第1実施形態では、予め設定された時間範囲R内で取得される各受光素子6についての出力値の数が、一連の変換処理が繰り返し実行される際の周期に応じて変動するような構成について説明した。これに対して、第2実施形態では、予め設定された時間範囲R内で取得される各受光素子6についての出力値の数が、一定数(2以上の数)となっている点が異なっている。
 図5は、第2実施形態における分析中のデータ処理部40による処理の一例を示したフローチャートである。分析中は、PDA5におけるx番目(x=1,2,3,・・・,n)の受光素子6からの出力信号が、A/D変換器30により順次変換される。
 具体的には、分析が開始されると、まず1番目の受光素子6からの出力信号がA/D変換器30に入力される(ステップS201,S202)。その後、一定時間が経過して波形が十分に立ち上がった後(ステップS203でYes)、一定回数(2回以上の予め定められた回数)に到達するまでA/D変換が繰り返され、得られた出力値を積算する処理が行われる(ステップS204~S206)。
 A/D変換の回数が一定回数に到達した場合には(ステップS206でYes)、その時点における出力値の積算値が、上記一定回数であるA/D変換の回数で除算されることにより、出力値の平均値が算出される(ステップS207)。そして、次は2番目の受光素子6について(ステップS208,S209でNo)、ステップS202~S208の処理が行われる。
 このようにして、n番目の受光素子6までステップS202~S208の処理が順次実行される。この一連の変換処理(ステップS201~S209)は、分析が終了するまで(ステップS210でYesとなるまで)、予め設定された周期で繰り返し実行される。
 本実施形態では、第1実施形態と同様に、複数の受光素子6についての一連の変換処理(1回のスキャン動作)により、各受光素子6について2つ以上の出力値が取得され、それらの2つ以上の出力値の平均値が受光素子6ごとに算出される。したがって、ノイズの影響により、いずれかの出力値が不正確な値となった場合でも、他の正確な値との平均値が算出されるため、ノイズの影響を受けにくい。
 特に、本実施形態では、常に一定数の出力値を取得して平均値を算出することができるため、安定してノイズの影響を受けにくくすることができる。
6.第3実施形態
 第1実施形態では、予め設定された時間範囲R内で取得される各受光素子6についての出力値の数が、一連の変換処理が繰り返し実行される際の周期に応じて変動するような構成について説明した。これに対して、第3実施形態では、予め設定された時間範囲R内で取得される各受光素子6についての出力値の数の設定が、設定受付部41により受光素子6ごとに受け付けられるようになっている点が異なっている。
 図6は、第3実施形態における分析中のデータ処理部40による処理の一例を示したフローチャートである。分析中は、PDA5におけるx番目(x=1,2,3,・・・,n)の受光素子6からの出力信号が、A/D変換器30により順次変換される。
 具体的には、分析が開始されると、まず1番目の受光素子6からの出力信号がA/D変換器30に入力される(ステップS301,S302)。その後、一定時間が経過して波形が十分に立ち上がった後(ステップS303でYes)、受光素子6ごとに設定された回数(2回以上の設定回数)に到達するまでA/D変換が繰り返され、得られた出力値を積算する処理が行われる(ステップS304~S306)。
 A/D変換の回数が設定回数に到達した場合には(ステップS306でYes)、その時点における出力値の積算値が、上記設定回数であるA/D変換の回数で除算されることにより、出力値の平均値が算出される(ステップS307)。そして、次は2番目の受光素子6について(ステップS308,S309でNo)、ステップS302~S308の処理が行われる。
 このようにして、n番目の受光素子6までステップS302~S308の処理が順次実行される。この一連の変換処理(ステップS301~S309)は、分析が終了するまで(ステップS310でYesとなるまで)、予め設定された周期で繰り返し実行される。
 本実施形態では、第1実施形態と同様に、複数の受光素子6についての一連の変換処理(1回のスキャン動作)により、各受光素子6について2つ以上の出力値が取得され、それらの2つ以上の出力値の平均値が受光素子6ごとに算出される。したがって、ノイズの影響により、いずれかの出力値が不正確な値となった場合でも、他の正確な値との平均値が算出されるため、ノイズの影響を受けにくい。
 特に、本実施形態では、受光素子6ごとに異なる数の出力値を取得して平均値を算出することができるため、受光素子6ごとのノイズを考慮して適切な値を設定すれば、よりノイズの影響を受けにくくすることができる。
7.変形例
 以上の実施形態では、複数の受光素子6を有するイメージセンサの一例として、PDA5を用いた場合について説明した。しかし、このような構成に限らず、CCD(Charge-Coupled Device)イメージセンサなどの他の各種イメージセンサを用いることが可能である。
 回折格子4は、凹状の格子面7を有するような構成に限らず、例えば凸状などの他の形状の格子面を有するような構成であってもよい。また、回折格子4は、入射する光を反射させる際に分光する反射型回折格子に限らず、入射する光を透過させる際に分光する透過型回折格子であってもよい。
 以上の実施形態では、本発明に係る光学ユニット100が、回折格子4と組み合わせられた分光器として分光分析装置に用いられる場合について説明した。しかし、このような構成に限らず、光学ユニット100は、回折格子4以外から入射する光を複数の受光素子6で受光するものであってもよく、分光分析装置以外の各種光学装置に適用可能である。
1   光源
2   集光レンズ
3   スリット板
4   回折格子
5   PDA(フォトダイオードアレイ検出器)
6   受光素子
7   格子面
10  光学系
20  試料セル
30  A/D変換器
40  データ処理部
41  設定受付部
42  変換処理部
43  平均値算出部
50  記憶部
60  操作部
100 光学ユニット

Claims (5)

  1.  複数の受光素子を有するイメージセンサと、
     前記イメージセンサの各受光素子からの出力信号を変換するA/D変換器と、
     予め設定された時間範囲内で同一の受光素子からの出力信号を前記A/D変換器により2回以上変換させて2つ以上の出力値を取得する変換処理を、前記複数の受光素子について順次実行する変換処理部と、
     前記変換処理部の処理により取得された各受光素子についての2つ以上の出力値の平均値を算出する平均値算出部とを備えたことを特徴とする光学ユニット。
  2.  周期の設定を受け付ける設定受付部をさらに備え、
     前記変換処理部は、前記複数の受光素子についての一連の変換処理を前記設定受付部により受け付けられた周期で繰り返し実行し、
     前記予め設定された時間範囲内で取得される各受光素子についての出力値の数は、前記設定受付部により受け付けられた周期に応じて変動することを特徴とする請求項1に記載の光学ユニット。
  3.  前記予め設定された時間範囲内で取得される各受光素子についての出力値の数は、一定数であることを特徴とする請求項1に記載の光学ユニット。
  4.  前記予め設定された時間範囲内で取得される各受光素子についての出力値の数の設定を受光素子ごとに受け付ける設定受付部をさらに備えることを特徴とする請求項1に記載の光学ユニット。
  5.  請求項1~4のいずれかに記載の光学ユニットと、
     格子面で光を分光し、分光した各波長の光を前記複数の受光素子に入射させる回折格子とを備えたことを特徴とする分光器。
PCT/JP2015/074861 2015-09-01 2015-09-01 光学ユニット及びこれを備えた分光器 WO2017037872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017537122A JP6544433B2 (ja) 2015-09-01 2015-09-01 光学ユニット及びこれを備えた分光器
US15/756,406 US10337919B2 (en) 2015-09-01 2015-09-01 Optical unit and spectrometer provided with same
PCT/JP2015/074861 WO2017037872A1 (ja) 2015-09-01 2015-09-01 光学ユニット及びこれを備えた分光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074861 WO2017037872A1 (ja) 2015-09-01 2015-09-01 光学ユニット及びこれを備えた分光器

Publications (1)

Publication Number Publication Date
WO2017037872A1 true WO2017037872A1 (ja) 2017-03-09

Family

ID=58187121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074861 WO2017037872A1 (ja) 2015-09-01 2015-09-01 光学ユニット及びこれを備えた分光器

Country Status (3)

Country Link
US (1) US10337919B2 (ja)
JP (1) JP6544433B2 (ja)
WO (1) WO2017037872A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156323A (ja) * 1989-09-27 1991-07-04 Shimadzu Corp 分光光度計
JPH03225284A (ja) * 1990-01-30 1991-10-04 Nec Corp 固体撮像装置の出力信号計測方法
JP2001324390A (ja) * 2000-05-17 2001-11-22 Denso Corp 熱型赤外線イメージセンサ
JP2003043369A (ja) * 2001-08-03 2003-02-13 Olympus Optical Co Ltd レーザ走査型顕微鏡
JP2015141033A (ja) * 2014-01-27 2015-08-03 株式会社デンソー 光センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193945A (ja) 1995-01-20 1996-07-30 Shimadzu Corp フォトダイオードアレイ検出器
JP2013124990A (ja) * 2011-12-15 2013-06-24 Canon Inc 画像処理装置および画像処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156323A (ja) * 1989-09-27 1991-07-04 Shimadzu Corp 分光光度計
JPH03225284A (ja) * 1990-01-30 1991-10-04 Nec Corp 固体撮像装置の出力信号計測方法
JP2001324390A (ja) * 2000-05-17 2001-11-22 Denso Corp 熱型赤外線イメージセンサ
JP2003043369A (ja) * 2001-08-03 2003-02-13 Olympus Optical Co Ltd レーザ走査型顕微鏡
JP2015141033A (ja) * 2014-01-27 2015-08-03 株式会社デンソー 光センサ

Also Published As

Publication number Publication date
JP6544433B2 (ja) 2019-07-17
JPWO2017037872A1 (ja) 2018-07-26
US20180245980A1 (en) 2018-08-30
US10337919B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
JP7410340B2 (ja) 装置および方法
JP2007198938A (ja) 光スペクトラムアナライザ
WO2004072624A1 (ja) 蛍光相関分光解析装置
US4330209A (en) Spectrophotometer receiving a variable quantity of light
JPS6111622A (ja) 分光光度計
Daigle et al. The darkest EMCCD ever
KR102013474B1 (ko) 분광 광도계 및 분광 광도 측정 방법
WO2017037872A1 (ja) 光学ユニット及びこれを備えた分光器
JP6314762B2 (ja) イメージセンサの信号処理装置及び信号読出方法
JP5018409B2 (ja) 光量測定装置
JPH05340816A (ja) 分光測定装置
JP7419029B2 (ja) 光学測定装置のリニアリティ補正方法、光学測定方法及び光学測定装置
JP6091291B2 (ja) パルス光源用分光測定装置
JP2004037282A (ja) 回折手段の0次回折光を利用した分光測定器
JP2013088263A (ja) 分光装置校正方法
Kostrin et al. Optimization of the process of biomedical signals registration using an optical spectrometer
JPH0626930A (ja) 分光スペクトル測定器
JP7201868B2 (ja) 分光測定装置および分光測定方法
JP6873288B1 (ja) 分光イメージング装置
RU2766416C1 (ru) Способ формирования сигнала изображения с помощью матричных приборов с зарядовой связью
KR102339811B1 (ko) 누화, 에코신호 및 비선형 현상을 개선한 소형 oct용 분광기
JPS63243725A (ja) 分光装置
JPH04113037U (ja) 分光分析装置
JP2006201094A (ja) マルチチャンネル分光光度計
JP2017187414A (ja) リニアイメージセンサを使用した分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902992

Country of ref document: EP

Kind code of ref document: A1