WO2017035848A1 - 烟气脱硝催化剂及其制备方法 - Google Patents
烟气脱硝催化剂及其制备方法 Download PDFInfo
- Publication number
- WO2017035848A1 WO2017035848A1 PCT/CN2015/089037 CN2015089037W WO2017035848A1 WO 2017035848 A1 WO2017035848 A1 WO 2017035848A1 CN 2015089037 W CN2015089037 W CN 2015089037W WO 2017035848 A1 WO2017035848 A1 WO 2017035848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- parts
- mixing
- mud
- flue gas
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
Definitions
- the invention relates to a catalyst and a preparation method thereof, in particular to a flue gas denitration catalyst and a preparation method thereof.
- the widely used denitration catalyst has low mechanical strength, and often wears, breaks and even collapses during use, and cannot be regenerated, which greatly affects the service life of the catalyst, resulting in increased investment and waste of resources.
- SO 2 oxidation rate is high, corrosion of downstream equipment is serious, it is easy to cause blockage of air preheater, increase flue resistance, increase fan load, and increase fan power consumption.
- the widely used denitration catalyst itself has certain toxicity, and if the eliminated catalyst is improperly treated, it will pollute the groundwater and cause secondary pollution. Therefore, the development of a denitration catalyst with high efficiency and environmental protection, low SO 2 oxidation rate, high mechanical strength, long service life and independent intellectual property rights has become an urgent problem to be solved.
- the object of the present invention is to provide a flue gas denitration catalyst, improve the mechanical strength of the catalyst, increase the number of regeneration of the catalyst, prolong the service life of the catalyst, reduce the oxidation rate of the SO 2 during the use of the catalyst, and solve the waste.
- the catalyst re-contaminates the environment; the invention also provides a preparation method thereof, and the process is reasonable.
- the flue gas denitration catalyst of the invention adopts one or more of TiO 2 composite Al 2 O 3 , SiO 2 , BaO or ZrO 2 as a carrier, and takes glass fiber as a skeleton, and uses tungsten, molybdenum, iron and bismuth as skeletons.
- One or more of cerium, lanthanum or manganese is the active component.
- the active component is a mixture of tungsten, molybdenum and ruthenium in a weight ratio of 0.5 to 5:0.5 to 5:1 to 6, preferably the active component, the synergistic effect of each component is strong, the raw material is easily available, and the denitration efficiency of the catalyst can be improved. .
- the carrier is one or two of TiO 2 composite SiO 2 or ZrO 2 .
- the weight ratio of TiO 2 to SiO 2 is 99.5-98:0.5-2; when the carrier is TiO 2
- ZrO 2 is compounded, the weight ratio of TiO 2 to ZrO 2 is 99.5-95:0.5-5; when the carrier is TiO 2 composite SiO 2 and ZrO 2 , the weight ratio of TiO 2 , SiO 2 and ZrO 2 is 99-93. : 0.5 to 2: 0.5 to 5.
- the flue gas denitration catalyst of the present invention comprises the following parts by weight: carrier 402-476 parts by weight, skeleton 20-40 parts by weight, 2-50 parts by weight of the active ingredient and 2-8 parts by weight of the clay.
- the flue gas denitration catalyst of the invention comprises the following parts by weight of raw materials: carrier 402-476 parts by weight, active component precursor aqueous solution, glass fiber 20-40 parts by weight and clay 2-8 parts by weight, active component
- the precursor aqueous solution is preferably from 2 to 50 parts by weight based on the active component, and the active component precursor aqueous solution is preferably present in a concentration of from 15 to 30% by mass.
- Also included are the following parts by weight of raw materials: 3-7 parts by weight of oleic acid, 1.0-3.0 parts by weight of kapok, 3-7 parts by weight of polyethylene oxide, 3-7 parts by weight of methylcellulose, and a concentration of 15-25%.
- Ammonia water is 45-90 parts by weight.
- the preparation method of the flue gas denitration catalyst of the invention comprises the mixing, and the mixing comprises the following steps:
- Step 1 adding a part of the carrier to the intensive mixer, and then adding oleic acid, clay and an active ingredient precursor aqueous solution for kneading;
- Step 2 adding the remaining carrier and part of the water to the intensive mixer for mixing
- Step 3 Add some ammonia water with a concentration of 15-25% to the intensive mixer for mixing.
- the temperature of the mud reaches above 95 °C, the gas generated by the mixed mud is discharged, and the moisture in the mud reaches 26.5-28.5%, ending step 3;
- Step 4 further adding glass fiber, kapok and the remaining water to the intensive mixer for mixing, when the moisture in the mud reaches 30-32%, ending step 4;
- Step 5 further adding a part of methyl cellulose and a part of polyethylene oxide to an intensive mixer for mixing;
- Step 6 Add the remaining methyl cellulose and the remaining polyethylene oxide and the remaining 15-25% ammonia water to the intensive mixer for mixing, when the moisture of the mud reaches 28-29%. , end the mixing.
- the mixing comprises the following steps:
- Step 1 Add 322-356 parts by weight of the carrier to the intensive mixer, then add 3-7 parts by weight of oleic acid, 2-8 parts by weight of clay, aqueous solution of the active component precursor for kneading, active component precursor
- the aqueous solution is in an amount of 2-50 parts by weight based on the active component; the mixing time is 45-60 minutes, and the temperature of the slurry is greater than 70 ° C;
- Step 2 further adding 80-120 parts by weight of the carrier and 20-50 parts by weight of water to the intensive mixer for mixing;
- Step 3 Add 40-80 parts by weight of 15-25% ammonia water to the intensive mixer for mixing. When the temperature of the mud reaches 95 ° C, the gas generated by the mixed sludge is discharged. Step 3 After the end, the moisture in the mud reaches 26.5-28.5%;
- Step 4 Add 20-40 parts by weight of glass fiber, 1.0-3.0 parts by weight of kapok and 80-100 parts by weight of water to the intensive mixer for mixing, when the moisture in the mud reaches 30-32 %, end step 4;
- Step 5 further adding 1.5-3.5 parts by weight of methyl cellulose and 1.5-3.5 parts by weight of polyethylene oxide to an intensive mixer for kneading, and kneading for 15 minutes;
- Step 6 further adding 1.5-3.5 parts by weight of methylcellulose and 1.5-3.5 parts by weight of polyethylene oxide and 5-10 parts by weight of 15-25% ammonia water to the intensive mixer for mixing. When the moisture content of the mud reaches 28-29%, the mixing is finished.
- the aqueous solution of the active component precursor is an aqueous solution of a water-soluble salt of the active component, such as a nitrate or the like.
- the method for preparing a flue gas denitration catalyst according to the present invention comprises the following steps:
- the kneaded mud is placed in a twin-screw kneader for kneading for 30-60 minutes;
- the filtered mud material is pre-formed into a pre-extruder, and the pre-formed mud material is cut into square dicing pieces by the steel wire on the pre-extrusion conveyor;
- the extruder extrudes the pre-extruded mud into a honeycomb body
- the product obtained after drying is calcined, the calcination temperature is controlled at 500 to 650 ° C, and the calcination time is controlled at 25 to 33 hours.
- Step (6) is dried for one drying and two drying, one drying is from 20 ° C to 60 ° C, the drying humidity is reduced from 80% to 20%, the time is 10-15 days; the secondary drying temperature is 50- 65 ° C, time is 40-48 hours.
- the calcination in the step (7) is to place the dried product on the mesh belt of the mesh belt kiln, and the arrangement direction is consistent with the direction in which the mesh belt runs.
- the present invention has the following advantages:
- the catalyst of the invention has high mechanical strength, lateral compressive strength ⁇ 3.5 MPa, wear strength ⁇ 0.11%/Kg, and the transverse compressive strength of the currently used denitration catalyst product is generally 2.5 MPa, and the wear strength ⁇ 0.15%/Kg.
- the improvement of mechanical properties reduces the wear, crushing and collapse of the catalyst during use, ensures that the catalyst can be regenerated 2-3 times, prolongs the service life of the catalyst, and is more suitable for the working conditions of dust in the flue gas of power plants in China.
- the cost of denitration is reduced. Taking a 300,000 kW unit as an example, the catalyst can be regenerated once, which can save about 2.4 million/year.
- the oxidation rate of SO 2 is ⁇ 0.35%, and the oxidation rate of the currently used denitration catalyst is 1%, the corrosion of the catalyst of the present invention on downstream equipment and the blockage of the air preheater It greatly reduces the load on the fan and saves electricity for the fan.
- the catalyst of the invention is resistant to water and moisture, and the selected raw materials are more environmentally friendly.
- the spent catalyst is not hazardous waste, and the treatment is easy. It can be added to the cement as a building material or directly made into a hollow brick, seeping water. Bricks, etc., can save 5000-6000 yuan/cubic only by processing costs.
- the catalyst of the invention is used on a 300,000-kilowatt unit, and the denitration efficiency can reach 92.3% or more, and can be widely applied in the fields of power plants, glass factories, cement plants and chemical plants.
- the catalyst of the invention is tested and tested, and is used on a 300,000-kilowatt unit, and the NOx ⁇ 50 mg/m 3 (dry basis) is exported to achieve ultra-low emission, and the operation is stable for more than 2 years, and the effect is excellent.
- a flue gas denitration catalyst wherein TiO 2 composite SiO 2 and ZrO 2 are used as carriers, and the weight ratio of TiO 2 , SiO 2 and ZrO 2 is 95:1:2, and the glass fiber is used as the skeleton, and the weight ratio is 2:3.
- a mixture of tungsten, molybdenum and niobium of 3 is an active component.
- the preparation method of the flue gas denitration catalyst is:
- Step 1 340 parts by weight of the carrier is added to an intensive mixer, and then 4 parts by weight of oleic acid, 5 parts by weight of clay, and an aqueous solution of the active component precursor are added for kneading, and the active component precursor aqueous solution is used as an active group.
- the weight content is 25 parts by weight; the mixing time is 55 minutes, and the temperature of the mud is greater than 70 ° C;
- Step 2 further adding 100 parts by weight of the carrier and 35 parts by weight of water to the intensive mixer for mixing;
- Step 3 50 parts by weight of 20% ammonia water is added to the intensive mixer for kneading.
- the temperature of the mud reaches 95 ° C, the gas generated by the kneading mud is discharged, and after the end of step 3, the mud is discharged.
- the water content reached 27.5%;
- Step 4 further 30 parts by weight of glass fiber, 2 parts by weight of kapok and 90 parts by weight of water are added to the intensive mixer for mixing, when the moisture in the mud reaches 31%, the end of step 4;
- Step 5 further adding 2 parts by weight of methyl cellulose and 2 parts by weight of polyethylene oxide to an intensive kneader for kneading, and kneading for 15 minutes;
- Step 6 further adding 2 parts by weight of methyl cellulose and 3 parts by weight of polyethylene oxide and 7 parts by weight of 20% aqueous ammonia to a kneader for mixing, when the moisture of the mud reaches 28% , end the mixing.
- the kneaded mud is placed in a twin-screw kneader for kneading for 45 minutes;
- the filtered mud material is pre-formed into a pre-extruder, and the pre-formed mud material is cut into square dicing pieces by the steel wire on the pre-extrusion conveyor;
- the extruder extrudes the pre-extruded mud into a honeycomb body
- the step (6) is dried for one drying and the second drying, and the first drying is from 20 ° C to 60 ° C, the drying humidity is reduced from 80% to 20%; the second drying temperature is 55 ° C, and the time is 44 hours;
- the product obtained after drying was calcined, the calcination temperature was controlled at 600 ° C, and the calcination time was controlled at 28 hours.
- the catalyst prepared in Example 1 had high mechanical strength, lateral compressive strength of 3.7 MPa, and abrasion strength of 0.09%/Kg. During use, the oxidation rate of SO 2 was 0.32%, and the denitration efficiency was 92.6% or more.
- the utility model relates to a flue gas denitration catalyst, which comprises TiO 2 composite SiO 2 as a carrier, a weight ratio of TiO 2 to SiO 2 of 99.5:2, a glass fiber as a skeleton and tungsten as an active component.
- the preparation method of the flue gas denitration catalyst is:
- Step 1 356 parts by weight of the carrier is added to an intensive mixer, and then 7 parts by weight of oleic acid, 8 parts by weight of clay, and an aqueous solution of the active component precursor are added for kneading, and the active component precursor aqueous solution is used as an active group.
- the weight content is 10 parts by weight; the mixing time is 60 minutes, and the temperature of the mud is greater than 70 ° C;
- Step 2 further adding 120 parts by weight of the carrier and 50 parts by weight of water to the intensive mixer for mixing;
- Step 3 80 parts by weight of ammonia water having a concentration of 25% is added to the intensive mixer for kneading.
- the temperature of the mud reaches 95 ° C, the gas generated by the kneading mud is discharged, and after the end of step 3, the mud is discharged.
- the water content reached 28.5%;
- Step 4 40 parts by weight of glass fiber, 3.0 parts by weight of kapok and 100 parts by weight of water are added to the intensive mixer for mixing, when the moisture in the mud reaches 32%, the end of step 4;
- Step 5 further adding 3.5 parts by weight of methyl cellulose and 3.5 parts by weight of polyethylene oxide to an intensive mixer for kneading and kneading for 15 minutes;
- Step 6 further adding 3.5 parts by weight of methyl cellulose and 3.5 parts by weight of polyethylene oxide and 10 parts by weight of 25% ammonia water to a kneader for mixing, when the moisture of the mud reaches 29% , end the mixing.
- the kneaded mud is placed in a twin-screw kneader for kneading for 60 minutes;
- the filtered mud material is pre-formed into a pre-extruder, and the pre-formed mud material is cut into square dicing pieces by the steel wire on the pre-extrusion conveyor;
- the extruder extrudes the pre-extruded mud into a honeycomb body
- the step (6) is dried for one drying and the second drying, the first drying is from 20 ° C to 60 ° C, the drying humidity is reduced from 80% to 20%; the second drying temperature is 50 ° C, the time is 48 hours;
- the product obtained after drying was calcined, the calcination temperature was controlled at 650 ° C, and the calcination time was controlled at 25 hours.
- the catalyst prepared in Example 2 had high mechanical strength, lateral compressive strength of 3.5 MPa, and abrasion strength of 0.10%/Kg. During the use, the oxidation rate of SO 2 was 0.34%, and the denitration efficiency was over 92.4%.
- a flue gas denitration catalyst comprises TiO 2 composite Al 2 O 3 , SiO 2 , BaO and ZrO 2 as a carrier, a glass fiber as a skeleton, and tungsten, molybdenum, iron, lanthanum, cerium and manganese as active components.
- the preparation method of the flue gas denitration catalyst is:
- Step 1 322 parts by weight of the carrier is added to an intensive mixer, and then 3 parts by weight of oleic acid, 2 parts by weight of clay, and an aqueous solution of the active component precursor are added for kneading, and the active component precursor aqueous solution is used as an active group.
- the weight content is 50 parts by weight; the mixing time is 45 minutes, and the temperature of the mud is greater than 70 ° C;
- Step 2 further adding 80 parts by weight of the carrier and 20 parts by weight of water to the intensive mixer for mixing;
- Step 3 40 parts by weight of 15% ammonia water is added to the intensive mixer for kneading.
- the temperature of the mud reaches 95 ° C, the gas generated by the kneading mud is discharged, and after the end of step 3, the mud is discharged.
- the water content reached 26.5%;
- Step 4 20 parts by weight of glass fiber, 1.0 part by weight of kapok and 80 parts by weight of water are added to the intensive mixer for mixing, when the moisture in the mud reaches 30%, the end of step 4;
- Step 5 Add 1.5 parts by weight of methylcellulose and 1.5 parts by weight of polyethylene oxide to the intensive mixer Mix and mix for 15 minutes;
- Step 6 further adding 1.5 parts by weight of methyl cellulose and 1.5 parts by weight of polyethylene oxide and 5 parts by weight of 15% aqueous ammonia to a kneader for mixing, when the moisture of the mud reaches 28% , end the mixing.
- the kneaded mud is placed in a twin-screw kneader for kneading for 30 minutes;
- the filtered mud material is pre-formed into a pre-extruder, and the pre-formed mud material is cut into square dicing pieces by the steel wire on the pre-extrusion conveyor;
- the extruder extrudes the pre-extruded mud into a honeycomb body
- the step (6) is dried for one drying and the second drying, the first drying is from 20 ° C to 60 ° C, the drying humidity is reduced from 80% to 20%; the second drying temperature is 65 ° C, the time is 40 hours;
- the product obtained after drying was calcined, the calcination temperature was controlled at 500 ° C, and the calcination time was controlled at 33 hours.
- the catalyst prepared in Example 3 had high mechanical strength, lateral compressive strength of 3.6 MPa, and abrasion strength of 0.11%/Kg. During use, the oxidation rate of SO 2 was 0.32%, and the denitration efficiency was 92.6% or more.
- a flue gas denitration catalyst comprising TiO 2 composite ZrO 2 as a carrier, a weight ratio of TiO 2 to ZrO 2 of 95:5, a glass fiber as a skeleton, and a weight ratio of 5:0.5:6 tungsten, molybdenum and niobium
- the mixture is the active ingredient.
- the preparation method of the flue gas denitration catalyst is:
- Step 1 330 parts by weight of the carrier is added to an intensive mixer, and then 4 parts by weight of oleic acid, 7 parts by weight of clay, and an aqueous solution of the active component precursor are added for kneading, and the active component precursor aqueous solution is an active group.
- the weight content is 40 parts by weight; the mixing time is 55 minutes, and the temperature of the mud is greater than 70 ° C;
- Step 2 further adding 90 parts by weight of the carrier and 30 parts by weight of water to the intensive mixer for mixing;
- Step 3 70 parts by weight of 20% ammonia water is added to the intensive mixer for kneading.
- the temperature of the mud reaches 95 ° C, the gas generated by the kneading mud is discharged, and after the end of step 3, the mud is discharged.
- the water content reached 27.0%;
- Step 4 further 25 parts by weight of glass fiber, 2.5 parts by weight of kapok and 88 parts by weight of water are added to the intensive mixer for mixing, when the moisture in the mud reaches 31%, the end of step 4;
- Step 5 further adding 3 parts by weight of methyl cellulose and 3 parts by weight of polyethylene oxide to an intensive mixer for kneading, and kneading for 15 minutes;
- Step 6 further adding 3 parts by weight of methyl cellulose and 3 parts by weight of polyethylene oxide and 7 parts by weight of 20% aqueous ammonia to a kneader for mixing, when the moisture of the mud reaches 28% , end the mixing.
- the kneaded mud is placed in a twin-screw kneader for kneading for 50 minutes;
- the filtered mud material is pre-formed into a pre-extruder, and the pre-formed mud material is cut into square dicing pieces by the steel wire on the pre-extrusion conveyor;
- the extruder extrudes the pre-extruded mud into a honeycomb body
- the step (6) is dried for one drying and the second drying, the first drying is from 20 ° C to 60 ° C, the drying humidity is reduced from 80% to 20%; the second drying temperature is 65 ° C, the time is 40 hours;
- the product obtained after drying was calcined, the calcination temperature was controlled at 600 ° C, and the calcination time was controlled at 27 hours.
- the catalyst prepared in Example 4 had high mechanical strength, lateral compressive strength of 3.7 MPa, and abrasion strength of 0.10%/Kg. During the use, the oxidation rate of SO 2 was 0.33%, and the denitration efficiency was over 92.3%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
本发明涉及一种催化剂及其制备方法,具体涉及一种烟气脱硝催化剂及其制备方法。本发明所述的烟气脱硝催化剂以TiO2复合Al2O3、SiO2、BaO或ZrO2中的一种或多种为载体,以玻璃纤维为骨架,以钨、钼、铁、铈、铌或锰中的一种或多种为活性组分。该催化剂机械强度高,横向抗压强度≥3.5Mpa,磨损强度≤0.11%/Kg,在30万千瓦机组上使用,脱硝效率可以达到92.3%以上;本发明增加了催化剂的再生次数,延长了催化剂的使用寿命,降低了催化剂使用过程中SO2氧化率,解决了废弃催化剂对环境的再次污染问题;本发明还提供其制备方法,工艺合理。
Description
本发明涉及一种催化剂及其制备方法,具体涉及一种烟气脱硝催化剂及其制备方法。
近年来,我国经济一直保持快速增长,污染物排放也急剧增加,特别是氮氧化物(NOx)排放量居高不下,NOx排放到大气中易形成光化学烟雾、破坏臭氧层和造成温室效应。NOx形成酸雨沉降到水中容易造成水体富营养化,直接促进藻类(如蓝藻)等有害微生物的生长,严重威胁饮用水安全。要实现氮氧化物减排,就要实施脱硝工程,其中最核心的部件便是脱硝催化剂。
目前广泛使用的脱硝催化剂机械强度偏低,使用过程中经常出现磨损、破碎甚至坍塌的现象,无法再生,大大影响了催化剂的使用寿命,造成了投资的加大和资源的浪费。在使用过程中,除进行脱硝反应外,SO2氧化率高,对下游设备的腐蚀严重,极易造成空气预热器的堵塞,使烟道阻力增加,提高风机负荷,导致风机用电量增加。其次,目前广泛使用的脱硝催化剂本身具有一定的毒性,淘汰下来的催化剂如处理不当,会污染地下水,造成二次污染。因此,开发一种高效环保、SO2氧化率低、机械强度高、使用寿命长且具有自主知识产权的脱硝催化剂成为迫切需要解决的问题。
发明内容
针对现有技术的不足,本发明的目的是提供一种烟气脱硝催化剂,提高催化剂的机械强度,增加催化剂的再生次数,延长催化剂的使用寿命,降低催化剂使用过程中SO2氧化率,解决废弃催化剂对环境的再次污染;本发明还提供其制备方法,工艺合理。
本发明所述的烟气脱硝催化剂,以TiO2复合Al2O3、SiO2、BaO或ZrO2中的一种或多种为载体,以玻璃纤维为骨架,以钨、钼、铁、铈、铌或锰中的一种或多种为活性组分。
其中:
活性组分为重量比为0.5~5:0.5~5:1~6的钨、钼和铈的混合物,优选该活性组分,各组分协同作用强,原材料易得,能够提高催化剂的脱硝效率。
载体为TiO2复合SiO2或ZrO2中的一种或两种,当载体为TiO2复合SiO2时,TiO2与SiO2的重量比为99.5~98:0.5~2;当载体为TiO2复合ZrO2时,TiO2与ZrO2的重量比为99.5~95:0.5~5;当载体为TiO2复合SiO2和ZrO2时,TiO2、SiO2、ZrO2的重量比为99~93:0.5~2:0.5~5。
本发明所述的烟气脱硝催化剂,包括以下重量份数的成分:载体402-476重量份、骨架
20-40重量份、活性组分2-50重量份和粘土2-8重量份。
本发明所述的烟气脱硝催化剂,包括以下重量份数的原料:载体402-476重量份、活性组分前驱体水溶液、玻璃纤维20-40重量份和粘土2-8重量份,活性组分前驱体水溶液中以活性组分计,重量含量为2-50重量份,活性组分前驱体水溶液优选质量浓度为15-30%。还包括以下重量份数的原料:油酸3-7重量份、木棉1.0-3.0重量份、聚氧化乙烯3-7重量份、甲基纤维素3-7重量份和浓度为15-25%的氨水45-90重量份。
本发明所述的烟气脱硝催化剂的制备方法,包括混料,混料包括以下步骤:
步骤1:将部分载体加入强力混炼机,然后加入油酸、粘土和活性组分前驱体水溶液进行混炼;
步骤2:再将剩余的载体与部分水加入到强力混炼机中进行混炼;
步骤3:再将部分浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃以上时,排出混炼泥料产生的气体,泥料中的水分达到26.5-28.5%,结束步骤3;
步骤4:再将玻璃纤维、木棉和剩余的水加入到强力混炼机中进行混炼,当泥料中的水分达到30-32%,结束步骤4;
步骤5:再将部分甲基纤维素和部分聚氧化乙烯加入到强力混炼机中进行混炼;
步骤6:再将剩余的甲基纤维素和剩余的聚氧化乙烯和剩余的浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28-29%时,结束混炼。
作为一种优选方案,混料包括以下步骤:
步骤1:将322-356重量份的载体加入强力混炼机,然后加入3-7重量份的油酸、2-8重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为2-50重量份;混炼时间为45-60分钟,泥料的温度大于70℃;
步骤2:再将80-120重量份的载体与20-50重量份的水加入到强力混炼机中进行混炼;
步骤3:再将40-80重量份的浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到26.5-28.5%;
步骤4:再将20-40重量份的玻璃纤维、1.0-3.0重量份的木棉和80-100重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到30-32%,结束步骤4;
步骤5:再将1.5-3.5重量份的甲基纤维素和1.5-3.5重量份的聚氧化乙烯加入到强力混炼机中进行混炼,混炼15分钟;
步骤6:再将1.5-3.5重量份的甲基纤维素和1.5-3.5重量份的聚氧化乙烯和5-10重量份的15-25%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28-29%时,结束混炼。
其中,活性组分前驱体水溶液为活性组分的水溶性盐的水溶液,如硝酸盐等。
本发明所述的烟气脱硝催化剂的制备方法,包括以下步骤:
(1)混料
(2)捏合
将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为30-60分钟;
(3)过滤
将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;
(4)压坯
过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;
(5)挤出
在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;
(6)干燥
将挤出的产品进行干燥;
(7)煅烧
将干燥后得到的产品进行煅烧,煅烧温度的控制在500-650℃,煅烧时间控制在25-33小时。
其中:
步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%,时间为10-15天;二次干燥的温度为50-65℃,时间为40-48小时。
步骤(7)中煅烧为将干燥后的产品放置在网带窑的网带上,排列方向与网带运行的方向一致。
综上所述,本发明具有以下优点:
(1)本发明催化剂机械强度高,横向抗压强度≥3.5Mpa,磨损强度≤0.11%/Kg,而目前应用的脱硝催化剂产品横向抗压强度一般为2.5Mpa,磨损强度≤0.15%/Kg。机械性能的提高,减少了催化剂在使用过程中的磨损,破碎和坍塌,保证催化剂可以再生2-3次,延长了催化剂的使用寿命,更加适合我国电厂烟气中粉尘较高的工况条件,降低了脱硝的成本,以1台30万千瓦的机组为例,催化剂多再生一次,可以节约投入约240万/年。
(2)本发明所述的催化剂在使用过程中,SO2的氧化率≤0.35%,目前应用的脱硝催化剂的氧化率为1%,本发明催化剂对下游设备的腐蚀及空气预热器的堵塞大大减小,降低了风
机的负荷,节省了风机用电。
(3)相比于目前应用的催化剂,本发明催化剂耐水防湿,选用的原材料更加环保,失效的催化剂不属于危险废弃物,处理容易,可加入到水泥中作为建筑材料或直接做成空心砖,渗水砖等,仅处理费用就可以节约5000~6000元/立方。
(4)本发明催化剂在30万千瓦机组上使用,脱硝效率可以达到92.3%以上,可以广泛应用在电厂、玻璃厂、水泥厂及化工厂等领域。对本发明催化剂进行试验测试,在某30万千瓦机组上使用,出口NOx<50mg/m3(干基),实现超低排放,运行2年多,性能稳定,效果优良。
下面结合实施例对本发明做进一步说明。
实施例1
一种烟气脱硝催化剂,以TiO2复合SiO2和ZrO2为载体,TiO2、SiO2、ZrO2的重量比为95:1:2,以玻璃纤维为骨架,以重量比为2:3:3的钨、钼和铈的混合物为活性组分。
所述的烟气脱硝催化剂的制备方法为:
(1)混料
步骤1:将340重量份的载体加入强力混炼机,然后加入4重量份的油酸、5重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为25重量份;混炼时间为55分钟,泥料的温度大于70℃;
步骤2:再将100重量份的载体与35重量份的水加入到强力混炼机中进行混炼;
步骤3:再将50重量份的浓度为20%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到27.5%;
步骤4:再将30重量份的玻璃纤维、2重量份的木棉和90重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到31%,结束步骤4;
步骤5:再将2重量份的甲基纤维素和2重量份的聚氧化乙烯加入到强力混炼机中进行混炼,混炼15分钟;
步骤6:再将2重量份的甲基纤维素和3重量份的聚氧化乙烯和7重量份的20%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28%时,结束混炼。
(2)捏合
将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为45分钟;
(3)过滤
将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;
(4)压坯
过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;
(5)挤出
在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;
(6)干燥
步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%;二次干燥的温度为55℃,时间为44小时;
(7)煅烧
将干燥后得到的产品进行煅烧,煅烧温度的控制在600℃,煅烧时间控制在28小时。
实施例1制备的催化剂机械强度高,横向抗压强度3.7Mpa,磨损强度0.09%/Kg,在使用过程中,SO2的氧化率0.32%,脱硝效率达到92.6%以上。
实施例2
一种烟气脱硝催化剂,以TiO2复合SiO2为载体,TiO2与SiO2的重量比为99.5:2,以玻璃纤维为骨架,以钨为活性组分。
所述的烟气脱硝催化剂的制备方法为:
(1)混料
步骤1:将356重量份的载体加入强力混炼机,然后加入7重量份的油酸、8重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为10重量份;混炼时间为60分钟,泥料的温度大于70℃;
步骤2:再将120重量份的载体与50重量份的水加入到强力混炼机中进行混炼;
步骤3:再将80重量份的浓度为25%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到28.5%;
步骤4:再将40重量份的玻璃纤维、3.0重量份的木棉和100重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到32%,结束步骤4;
步骤5:再将3.5重量份的甲基纤维素和3.5重量份的聚氧化乙烯加入到强力混炼机中进行混炼,混炼15分钟;
步骤6:再将3.5重量份的甲基纤维素和3.5重量份的聚氧化乙烯和10重量份的25%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到29%时,结束混炼。
(2)捏合
将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为60分钟;
(3)过滤
将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;
(4)压坯
过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;
(5)挤出
在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;
(6)干燥
步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%;二次干燥的温度为50℃,时间为48小时;
(7)煅烧
将干燥后得到的产品进行煅烧,煅烧温度的控制在650℃,煅烧时间控制在25小时。
实施例2制备的催化剂机械强度高,横向抗压强度3.5Mpa,磨损强度0.10%/Kg,在使用过程中,SO2的氧化率0.34%,脱硝效率达到92.4%以上。
实施例3
一种烟气脱硝催化剂,以TiO2复合Al2O3、SiO2、BaO和ZrO2为载体,以玻璃纤维为骨架,以钨、钼、铁、铈、铌和锰为活性组分。
所述的烟气脱硝催化剂的制备方法为:
(1)混料
步骤1:将322重量份的载体加入强力混炼机,然后加入3重量份的油酸、2重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为50重量份;混炼时间为45分钟,泥料的温度大于70℃;
步骤2:再将80重量份的载体与20重量份的水加入到强力混炼机中进行混炼;
步骤3:再将40重量份的浓度为15%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到26.5%;
步骤4:再将20重量份的玻璃纤维、1.0重量份的木棉和80重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到30%,结束步骤4;
步骤5:再将1.5重量份的甲基纤维素和1.5重量份的聚氧化乙烯加入到强力混炼机中进
行混炼,混炼15分钟;
步骤6:再将1.5重量份的甲基纤维素和1.5重量份的聚氧化乙烯和5重量份的15%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28%时,结束混炼。
(2)捏合
将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为30分钟;
(3)过滤
将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;
(4)压坯
过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;
(5)挤出
在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;
(6)干燥
步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%;二次干燥的温度为65℃,时间为40小时;
(7)煅烧
将干燥后得到的产品进行煅烧,煅烧温度的控制在500℃,煅烧时间控制在33小时。
实施例3制备的催化剂机械强度高,横向抗压强度3.6Mpa,磨损强度0.11%/Kg,在使用过程中,SO2的氧化率0.32%,脱硝效率达到92.6%以上。
实施例4
一种烟气脱硝催化剂,以TiO2复合ZrO2为载体,TiO2与ZrO2的重量比为95:5,以玻璃纤维为骨架,以重量比为5:0.5:6的钨、钼和铈的混合物为活性组分。
所述的烟气脱硝催化剂的制备方法为:
(1)混料
步骤1:将330重量份的载体加入强力混炼机,然后加入4重量份的油酸、7重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为40重量份;混炼时间为55分钟,泥料的温度大于70℃;
步骤2:再将90重量份的载体与30重量份的水加入到强力混炼机中进行混炼;
步骤3:再将70重量份的浓度为20%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到27.0%;
步骤4:再将25重量份的玻璃纤维、2.5重量份的木棉和88重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到31%,结束步骤4;
步骤5:再将3重量份的甲基纤维素和3重量份的聚氧化乙烯加入到强力混炼机中进行混炼,混炼15分钟;
步骤6:再将3重量份的甲基纤维素和3重量份的聚氧化乙烯和7重量份的20%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28%时,结束混炼。
(2)捏合
将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为50分钟;
(3)过滤
将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;
(4)压坯
过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;
(5)挤出
在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;
(6)干燥
步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%;二次干燥的温度为65℃,时间为40小时;
(7)煅烧
将干燥后得到的产品进行煅烧,煅烧温度的控制在600℃,煅烧时间控制在27小时。
实施例4制备的催化剂机械强度高,横向抗压强度3.7Mpa,磨损强度0.10%/Kg,在使用过程中,SO2的氧化率0.33%,脱硝效率达到92.3%以上。
Claims (10)
- 一种烟气脱硝催化剂,其特征在于:以TiO2复合Al2O3、SiO2、BaO或ZrO2中的一种或多种为载体,以玻璃纤维为骨架,以钨、钼、铁、铈、铌或锰中的一种或多种为活性组分。
- 根据权利要求1所述的烟气脱硝催化剂,其特征在于:活性组分为重量比为0.5~5:0.5~5:1~6的钨、钼和铈的混合物;载体为TiO2复合SiO2或ZrO2中的一种或两种。
- 根据权利要求1所述的烟气脱硝催化剂,其特征在于:包括以下重量份数的成分:载体402-476重量份、骨架20-40重量份、活性组分2-50重量份和粘土2-8重量份。
- 根据权利要求1所述的烟气脱硝催化剂,其特征在于:包括以下重量份数的原料:载体402-476重量份、活性组分前驱体水溶液、玻璃纤维20-40重量份和粘土2-8重量份,活性组分前驱体水溶液中以活性组分计,重量含量为2-50重量份。
- 根据权利要求4所述的烟气脱硝催化剂,其特征在于:还包括以下重量份数的原料:油酸3-7重量份、木棉1.0-3.0重量份、聚氧化乙烯3-7重量份、甲基纤维素3-7重量份和浓度为15-25%的氨水45-90重量份。
- 一种权利要求1-5任一所述的烟气脱硝催化剂的制备方法,其特征在于:包括混料,混料包括以下步骤:步骤1:将部分载体加入强力混炼机,然后加入油酸、粘土和活性组分前驱体水溶液进行混炼;步骤2:再将剩余的载体与部分水加入到强力混炼机中进行混炼;步骤3:再将部分浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃以上时,排出混炼泥料产生的气体,泥料中的水分达到26.5-28.5%,结束步骤3;步骤4:再将玻璃纤维、木棉和剩余的水加入到强力混炼机中进行混炼,当泥料中的水分达到30-32%,结束步骤4;步骤5:再将部分甲基纤维素和部分聚氧化乙烯加入到强力混炼机中进行混炼;步骤6:再将剩余的甲基纤维素和剩余的聚氧化乙烯和剩余的浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28-29%时,结束混炼。
- 根据权利要求6所述的烟气脱硝催化剂的制备方法,其特征在于:混料包括以下步骤:步骤1:将322-356重量份的载体加入强力混炼机,然后加入3-7重量份的油酸、2-8重量份的粘土、活性组分前驱体水溶液进行混炼,活性组分前驱体水溶液中以活性组分计,重量含量为2-50重量份;混炼时间为45-60分钟,泥料的温度大于70℃;步骤2:再将80-120重量份的载体与20-50重量份的水加入到强力混炼机中进行混炼;步骤3:再将40-80重量份的浓度为15-25%的氨水加入到强力混炼机中进行混炼,当泥料温度达到95℃时,排出混炼泥料产生的气体,步骤3结束后泥料中的水分达到26.5-28.5%;步骤4:再将20-40重量份的玻璃纤维、1.0-3.0重量份的木棉和80-100重量份的水加入到强力混炼机中进行混炼,当泥料中的水分达到30-32%,结束步骤4;步骤5:再将1.5-3.5重量份的甲基纤维素和1.5-3.5重量份的聚氧化乙烯加入到强力混炼机中进行混炼,混炼15分钟;步骤6:再将1.5-3.5重量份的甲基纤维素和1.5-3.5重量份的聚氧化乙烯和5-10重量份的15-25%的氨水加入到强力混炼机中进行混炼,当泥料的水分达到28-29%时,结束混炼。
- 根据权利要求6所述的烟气脱硝催化剂的制备方法,其特征在于:包括以下步骤:(1)混料(2)捏合将混炼好的泥料放入双螺杆捏合机中进行捏合,时间为30-60分钟;(3)过滤将捏合好的泥料添加到过滤机料斗,过滤机出口装有筛网,对泥料进行梳理;(4)压坯过滤后的泥料加入到预挤出机预成型,预成型的泥料在预挤出输送机上被钢丝切割成方形切块;(5)挤出在挤出阶段,挤出机将预挤出的泥料挤出成为蜂窝体;(6)干燥将挤出的产品进行干燥;(7)煅烧将干燥后得到的产品进行煅烧,煅烧温度的控制在500-650℃,煅烧时间控制在25-33小时。
- 根据权利要求8所述的烟气脱硝催化剂的制备方法,其特征在于:步骤(6)干燥为一次干燥和二次干燥,一次干燥为由20℃升温至60℃,将干燥湿度由80%降至20%;二次干燥的温度为50-65℃,时间为40-48小时。
- 根据权利要求8所述的烟气脱硝催化剂的制备方法,其特征在于:步骤(7)中煅烧为将干燥后的产品放置在网带窑的网带上,排列方向与网带运行的方向一致。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510539733.7A CN105126816A (zh) | 2015-08-28 | 2015-08-28 | 烟气脱硝催化剂及其制备方法 |
CN201510539733.7 | 2015-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017035848A1 true WO2017035848A1 (zh) | 2017-03-09 |
Family
ID=54712586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/089037 WO2017035848A1 (zh) | 2015-08-28 | 2015-09-07 | 烟气脱硝催化剂及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105126816A (zh) |
WO (1) | WO2017035848A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110237839A (zh) * | 2019-05-27 | 2019-09-17 | 内蒙古希捷环保科技有限责任公司 | 稀土基中低温烟气蜂窝式脱硝催化剂及其制备方法 |
CN113019451A (zh) * | 2021-03-06 | 2021-06-25 | 山东福源节能环保工程有限公司 | 干法脱硫、脱硝一体化催化剂 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105727986A (zh) * | 2016-01-29 | 2016-07-06 | 华电电力科学研究院 | 可再生低温选择性催化还原脱硝催化剂的制备方法 |
CN106111150A (zh) * | 2016-06-16 | 2016-11-16 | 浙江三龙催化剂有限公司 | 船舶用脱硝催化剂 |
CN106111149A (zh) * | 2016-06-16 | 2016-11-16 | 浙江三龙催化剂有限公司 | 船舶用脱硝催化剂及其制备方法 |
CN106076368A (zh) * | 2016-07-04 | 2016-11-09 | 无锡市华东电力设备有限公司 | 脱硝催化剂及其制备方法以及烟气脱硝方法 |
CN106807346A (zh) * | 2016-12-30 | 2017-06-09 | 洛阳中超新材料股份有限公司 | 一种脱硝催化剂载体及其制备方法和脱硝催化剂 |
CN106902823B (zh) * | 2017-03-22 | 2019-04-23 | 中国人民大学 | 一种耐氯耐硫中毒的核壳结构脱硝催化剂及其制备方法 |
CN108311156A (zh) * | 2018-02-01 | 2018-07-24 | 广州市新稀冶金化工有限公司 | 基于纳米稀土水溶胶的无矾脱硝催化剂及其制备方法 |
CN110385123B (zh) * | 2019-08-02 | 2022-02-08 | 山东众皓环保科技有限公司 | 有效抵抗硫酸氢铵毒害的脱硝催化剂及其制备方法 |
CN110694640B (zh) * | 2019-10-22 | 2023-01-17 | 邢台旭阳科技有限公司 | 一种耐水耐硫脱硝催化剂及其制备方法 |
CN112206766A (zh) * | 2020-10-23 | 2021-01-12 | 湖北群有长物环保科技有限公司 | 一种蜂窝状高温550℃的scr脱硝催化剂及其制备方法 |
CN112844424B (zh) * | 2020-12-30 | 2022-05-17 | 山东天璨环保科技有限公司 | 低温脱硝催化剂及其制备方法 |
CN113996286A (zh) * | 2021-10-20 | 2022-02-01 | 浙江程润云环境科技有限公司 | 一种高机械强度薄壁耐硫的船舶脱硝催化剂及其制备方法 |
CN114917895B (zh) * | 2022-07-21 | 2022-09-16 | 山东天璨环保科技有限公司 | 稀土脱硝催化剂的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103769137A (zh) * | 2012-10-25 | 2014-05-07 | 中国石油化工股份有限公司 | 一种高强度烟气脱硝催化剂的制备方法 |
CN104258856A (zh) * | 2014-09-16 | 2015-01-07 | 东营信拓汽车消声器有限公司 | 一种高比表面积多孔蜂窝陶瓷催化剂的制备方法 |
WO2015072567A1 (ja) * | 2013-11-18 | 2015-05-21 | 日立造船株式会社 | 脱硝触媒、およびその製造方法 |
CN104815644A (zh) * | 2015-03-16 | 2015-08-05 | 南通亚泰工程技术有限公司 | 轮船脱硝用多孔蜂窝式脱硝催化剂及其制备方法及其应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102008952B (zh) * | 2010-12-08 | 2012-07-25 | 南京工业大学 | 一种蜂窝状scr脱硝复合氧化物催化剂及其制备方法 |
CN102921405B (zh) * | 2012-09-29 | 2014-10-08 | 重庆大学 | 一种添加SiO2的脱硝催化剂及其制备方法 |
-
2015
- 2015-08-28 CN CN201510539733.7A patent/CN105126816A/zh active Pending
- 2015-09-07 WO PCT/CN2015/089037 patent/WO2017035848A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103769137A (zh) * | 2012-10-25 | 2014-05-07 | 中国石油化工股份有限公司 | 一种高强度烟气脱硝催化剂的制备方法 |
WO2015072567A1 (ja) * | 2013-11-18 | 2015-05-21 | 日立造船株式会社 | 脱硝触媒、およびその製造方法 |
CN104258856A (zh) * | 2014-09-16 | 2015-01-07 | 东营信拓汽车消声器有限公司 | 一种高比表面积多孔蜂窝陶瓷催化剂的制备方法 |
CN104815644A (zh) * | 2015-03-16 | 2015-08-05 | 南通亚泰工程技术有限公司 | 轮船脱硝用多孔蜂窝式脱硝催化剂及其制备方法及其应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110237839A (zh) * | 2019-05-27 | 2019-09-17 | 内蒙古希捷环保科技有限责任公司 | 稀土基中低温烟气蜂窝式脱硝催化剂及其制备方法 |
CN113019451A (zh) * | 2021-03-06 | 2021-06-25 | 山东福源节能环保工程有限公司 | 干法脱硫、脱硝一体化催化剂 |
Also Published As
Publication number | Publication date |
---|---|
CN105126816A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017035848A1 (zh) | 烟气脱硝催化剂及其制备方法 | |
CN102824922B (zh) | 用于低温烟气脱硝的scr整体蜂窝催化剂及其制备方法 | |
CN103464139B (zh) | 一种结构化烟气脱硝催化剂的制备方法 | |
CN106582596A (zh) | 一种粉煤灰基蜂窝式脱硝催化剂陶瓷载体的成型方法 | |
CN101428215B (zh) | 一种烟气脱硝催化剂的制备方法及由该方法制备的烟气脱硝催化剂 | |
CN104741113B (zh) | 一种低成本的脱硝催化剂及其制备方法 | |
WO2020135202A1 (zh) | 具有三维多级孔道结构的蜂窝式scr脱硝催化剂及制备方法 | |
CN103769239B (zh) | 具有多级孔结构的蜂窝型脱硝催化剂及其制备方法 | |
WO2019006895A1 (zh) | 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用 | |
CN103143396A (zh) | 一种蜂窝式烟气脱硝催化剂及其制备方法 | |
CN101428212B (zh) | 复合载体烟气选择性催化还原法脱硝催化剂及制备方法 | |
CN106140150A (zh) | 一种蜂窝式铈锆锰钛基脱硝催化剂及其制备方法 | |
CN111545040B (zh) | 一种复合脱硝剂及其制备方法 | |
CN101474581B (zh) | 具有活性的催化剂模块边缘硬化液 | |
WO2019062454A1 (zh) | 胶凝材料及其制造方法 | |
CN103877970A (zh) | 一种蜂窝状废气脱硝催化剂 | |
CN106000455A (zh) | 一种环境友好的scr催化剂及其制备方法 | |
CN103861653A (zh) | 改性钛白粉、超细晶形陶瓷粉体和高强度火电厂脱硝催化剂及其制备方法 | |
CN106268786A (zh) | 一种低温脱硝催化剂及其制备方法 | |
CN113813955A (zh) | 一种利用城市污泥制备脱硝催化剂涂覆浆料的方法 | |
CN103301831A (zh) | 一种脱除排放废气中氮氧化物的催化剂及其制备方法 | |
CN108837823A (zh) | 一种钙钛矿型催化剂及其整体式成型方法和应用 | |
CN100361924C (zh) | 一种纳米光催化水泥基地面材料 | |
CN107754810A (zh) | 一种非钒基整体式宽温烟气脱硝催化剂、制备方法和应用 | |
CN107335423A (zh) | 一种蜂窝式无钒铈锆钛脱硝催化剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15902655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15902655 Country of ref document: EP Kind code of ref document: A1 |