WO2017034058A1 - 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법 - Google Patents

열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법 Download PDF

Info

Publication number
WO2017034058A1
WO2017034058A1 PCT/KR2015/009045 KR2015009045W WO2017034058A1 WO 2017034058 A1 WO2017034058 A1 WO 2017034058A1 KR 2015009045 W KR2015009045 W KR 2015009045W WO 2017034058 A1 WO2017034058 A1 WO 2017034058A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
alumina
oxide
beta alumina
present
Prior art date
Application number
PCT/KR2015/009045
Other languages
English (en)
French (fr)
Inventor
범진형
양기덕
김수석
Original Assignee
(주)화인테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)화인테크 filed Critical (주)화인테크
Publication of WO2017034058A1 publication Critical patent/WO2017034058A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a beta alumina electrolyte for sodium secondary battery and a method of manufacturing the same.
  • sodium secondary batteries that have precise particle precision and excellent strength and improve the conductivity of sodium by using the hot round pressure method.
  • Beta alumina is an excellent alkali metal-ceramic silver conductor at temperatures below 500 ° C that only pass sodium ions.
  • Alkaline a charge carrier of beta alumina, is substituted by other ions and ion exchange reactions. It is possible to convert various electrical properties into ceramic electrolytes.
  • ⁇ -alumina It is collectively referred to as beta alumina, including a single phase and a mixture of ⁇ " ⁇ -alumina, ⁇ "-alumina, and ⁇ " -alumina have higher ion conductivity for Na than ⁇ -alumina, so the mixture of ⁇ "-alumina or ⁇ " -alumina and ⁇ -alumina is mainly used as a solid electrolyte. do.
  • Beta alumina used as a solid electrolyte in sodium secondary batteries, is particularly dense
  • the structure is required because the battery's durability and electrical characteristics are significantly reduced when the porosity increases.
  • Beta alumina is usually manufactured by using a solid reaction method in which raw materials are mixed and heat treated, as disclosed in Japanese Patent Application Laid-Open No. 2002-241174.
  • a solid reaction method in which raw materials are mixed and heat treated, as disclosed in Japanese Patent Application Laid-Open No. 2002-241174.
  • the problem of low sintering density and Sodium is volatilized by high temperature heat treatment, making it difficult to control the composition.
  • the present invention is to provide a beta alumina solid electrolyte having a high density and a fine particle density by using a hot isotropic method in manufacturing as a solid electrolyte using beta alumina, and a method for producing the same.
  • the sintering process is a factor in determining the particle density of high density.
  • the hot isotropic pressing (HIP) process has a high density and compact structure with a sintered strength of more than 250Mpa and a specific resistance of 4.0 ⁇ ⁇ cm or less.
  • a beta alumina solid electrolyte and its preparation method are provided.
  • the present invention relates to a) alumina, b) sodium oxide, c) ether boom oxide, and d) lithium oxide.
  • a compound common to ... comprises at least one metal oxide selected from magnesium oxide thoracic and titanium oxide;
  • beta alumina solid electrolyte including [10].
  • the present invention provides 5 to 20% by weight of sodium oxide in the preparation of the mixture.
  • boom oxide 0.01 to 1%% by weight of boom oxide, 0.1 to 8 weight ⁇ 3 ⁇ 4 metal oxide and 75 to 75
  • a method for producing beta alumina solid electrolyte comprising 93% by weight of alumina can be provided.
  • the present invention can provide a method for producing beta alumina solid electrolyte further comprising the step of heat treatment from 1400 ° C to 1700 prior to the step of hot isotropic pressing.
  • the present invention may include beta alumina solid electrolyte prepared by the manufacturing method.
  • the present invention may also include a sintered secondary battery using the beta alumina solid electrolyte.
  • the beta alumina solid electrolyte has an average particle diameter of ⁇ ⁇ 4; Mn, breaking strength
  • the sintered body is manufactured by using the hot round pressure method, and the strength of the sintered body is 250 Mpa or more and the resistivity is 4.0?. It can be utilized as beta alumina solid electrolyte with superior physical properties by providing beta alumina solid electrolyte which forms a very dense structure of high density having a characteristic of cm or less.
  • 1 is an SEM image of beta alumina solid electrolyte obtained by the embodiment of the present invention.
  • the present invention can produce beta alumina solid electrolyte by using hot round pressure method.
  • the present invention includes at least one metal oxide selected from a) alumina, b) sodium oxide, c) ytterbium oxide, and d) lithium oxide, magnesium oxide and titanium oxide. Preparing a complex comprising; and
  • the present invention relates to a) alumina, b) sodium oxide, c) ether boom oxide, and d) lithium oxide.
  • Preparing a complex comprising at least one metal oxide selected from magnesium oxide and titanium oxide.
  • the beta alumina solid electrolyte according to one embodiment of the present invention comprises 5 to 20% by weight of sodium oxide, ⁇ to 1% by weight of ytterbium oxide, ⁇ . ⁇ to 8% by weight of metal oxide and 75 to 93% by weight. It may contain% alumina. Although the composition ratio is not limited, it is desirable to have an extremely dense structure because abnormal particle growth is inhibited, uniform particle growth and very rapid densification are required.
  • Beta alumina may be used as a raw material to achieve the purpose of the present invention.
  • the metal oxide can act as a stabilizer to stabilize the phase of the alumina.
  • beta alumina can have two different phases of ⁇ -alumina and ⁇ "-alumina.
  • the stabilizer can be stabilized with ⁇ " -alumina, which has better sodium conductivity.
  • the metal oxide may be an oxide of one or more metal elements selected from lithium, potassium, rudanum, sage, magnesium, calcium, strontium, barium, tin, tantalum, and titanium, and lithium oxide for better ion conductivity. It may be, but is not limited to, magnesium oxide, titanium oxide or a combination thereof.
  • the beta alumina of the present invention contains an extremely small amount of ether boom oxide of 0 ⁇ 1 to 1% by weight, thereby suppressing abnormal grain growth, having a uniform grain size, and having a very high density. With its compact structure, the sodium ion conductivity can be prevented from dropping.
  • the mixed powder of alumina, sodium oxide, metal oxide and ytterbium oxide described above may further include a step of crushing through a conventional grinding process such as a ball mill.
  • the mixed powder may be dissolved in a solvent, and may be mixed.
  • the solvent is not limited to a solvent which is easily volatilized by drying, and water, ethanol, methane, propanol, isopropanol, acetone, and fluorene And one or more selected from the group consisting of nucleic acids.
  • the solvent mixture is not limited, for example, beta alumina 50 to 70 wt%, ethanol 30 to 50 ⁇ ⁇ % for 10 to 30 hours. It is desirable to mix and mix. [33] Next, the hot isotropic pressing of the present invention will be described.
  • the present invention includes the step of room pressure (HIP), etc.
  • HIP room pressure
  • the common hot combined beta-alumina in a nitrogen or argon atmosphere at 1200 o C to 1400 ° C.
  • Hot Isostatic Pressing is characterized by the fact that pressure is applied to the workpiece in the same direction at high temperature to allow diffusion to proceed, thereby enabling the production of high-density and dense sintered compacts.
  • the HIP device has a structure in which resistance heating is built into the pressure vessel.
  • High pressure and high temperature treatment are performed by supplying gas pressure (argon black and silver nitrogen) and heating power.
  • Hot round pressurization can be performed. '
  • the beta-alumina as subjected to hot dungbang pressure the stirring densification rate is remarkably improved, 1200 o C to at a low temperature of 1400 ° C 10 minutes to 3 hours, to 10 minutes and more characteristically Even after heat treatment for a short time of 1 hour, beta alumina of extremely dense structure can be produced.
  • the present invention provides a more compact structure prior to hot isotropic pressurization, in which the mixture of beta alumina solidified solution is present in the presence of oxygen in the range of 1400 ° C to 1700 ° C, preferably 1500 ° C to 1600
  • the process may be carried out further by a heat treatment at ° C.
  • the heat treatment atmosphere may be any atmosphere that provides a rich oxidation atmosphere and may be, for example, an oxygen atmosphere or an air atmosphere.
  • the present invention relates to the sintering process of beta alumina obtained through all the processes of hot pressing the raw materials including beta alumina as described above, including the above mixing process, which satisfies the following conditions (a) to (c): It provides beta alumina solid electrolyte.
  • the beta alumina solid electrolyte of the present invention has a breaking strength. Is more than 250 MPa, and if less than that, the sintered body is more likely to be damaged. Role is difficult.
  • the present invention may include a sodium secondary battery using the beta alumina solid electrolyte prepared above.
  • the sodium secondary battery may be formed by a micron that moves through a solid electrolyte from a cathode to an anode and / or from an anode to a cathode. It may comprise a conventional sodium secondary battery where charging and / or discharging is carried out.
  • beta alumina according to one embodiment of the present invention may be bulk or powdery.
  • the solid electrolyte is sodium.
  • beta alumina may be a flat plate shape.
  • the beta alumina may be in the shape of a lob that is open at one end and sealed at the other end.
  • these powders are shaped to conform to the structure of the sodium secondary battery by molding Can be used as raw powder.
  • beta alumina solid electrolyte having excellent properties as described above.
  • the secondary battery used is usefully available. In one embodiment, large capacity
  • the sodium sulfur battery which is a power storage cell, may use sodium as the cathode active material, sulfur as the cathode active material, and solid beta alumina according to the present invention as the electrolyte.
  • the beta alumina solid electrolyte prepared according to the present invention passes only sodium silver. Excellent alkali metal ceramic at low temperature below 500 ° C
  • alkali As an ion conductor, alkali, a charge carrier of beta alumina, can be replaced by ions and ion exchange reactions, and can be converted into a ceramic electrolyte of various electrical characteristics and functions.
  • the beta alumina is used as an electrolyte of a secondary battery.
  • the battery can be manufactured with high energy density and charging and discharging efficiency, no self-discharging, long life of more than 15 years and no deterioration in performance even with irregular charging and discharging.
  • beta alumina solid electrolyte was heated by HIP (Hot isostatic pressing) for 1 hour by heat treatment at 1350 ° C. at a pressure of 180 MPa in argon gas.
  • HIP Hot isostatic pressing
  • the particle diameter of the prepared beta alumina solid electrolyte was in the range of 0.1-4.
  • the SEM photograph of the beta alumina solid electrolyte is shown in Fig. 1.
  • the average particle diameter was measured by the Microtrac S3500 (Tri Laser System), and the physical properties of the manufactured beta alumina solid electrolyte were measured according to the following standards. Shown in
  • Fracture strength immediate method O-ring test (Diametral ring compression strength)
  • Beta alumina under the same conditions as in Example 1 except for performing the sintering process at 1650 ° C. for 1 hour after CIP (Cold Isostatic Pressing) at 250 Mpa instead of the HIP process of Example 1.
  • the physical properties of the prepared beta alumina sintered body were measured in the same manner as in Example 1, and SEM photographs are shown in Fig. 2. As a result, beta alumina particles having a particle size distribution of 0.5 ⁇ 7 // m were observed. .
  • Example 1 is a cross-sectional view of the beta alumina sintered body prepared in Example 1
  • FIG. 2 is a cross-sectional view of the beta alumina sintered body prepared by Comparative Example 1.
  • FIG. 2 is a cross-sectional view of the beta alumina sintered body prepared by Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 소듐 이차전지용 베타알루미나 전해질 및 그 제조 방법에 관한 것으로,더욱 상세하게는 열간등방가압법을 이용하여 치밀한 입자 정밀도와 우수한 강도를 가지며, 소듐 이온전도도가 향상되는 소듐 이차전지용 베타알루미나 전해질 및 그의 제조방법에 관한 것이다. 본 발명은 열간등방가압법을 이용하여 소결체를 제조함으로써, 고밀도의 매우 치밀한 구조를 형성하는 베타알투미나 고체 전해질을 제공하여 보다 뛰어난 물성을 가진 베타알루미나 고체 전해질로서 활용이 가능하다.

Description

명세서
발명의명칭:열간둥방가압법에의한베타알루미나고체전해질및 이의제조방법
기술분야
[1] 본발명은소듐이차전지용베타알루미나전해질및그제조방법에관한
것으로,더욱상세하게는열간둥방가압법을이용하여치밀한입자정밀도와 우수한강도를가지며,소듐이은전도도가향상되는소듐이차전지용
베타알루미나전해질및그의제조방법에관한것이다.
배경기술
[2] 베타알루미나는나트륨이온만을통과시키는성질을가진 500°C이하의낮은 온도에서우수한알칼리금속세라믹이은전도체이다.베타알루미나의 전하운반자인알칼리이온은다른이온들과이온교환반웅에의한치환이 가능하여다양한전기적특성의세라믹전해질로의전환이가능하다.
[3] 베타알루미나는 Ν 0·χΑ1203 (χ=5~11)의조성식으로표현되며, β-알루미나와 β"-알루미나의두개의상이한결정구조가존재한다.일반적으로는 β-알루미나, β"-알루미나각각의단일상및이들흔합물올포함하여,베타알루미나로 통칭하고있다. β-알루미나와 β"-알루미나증, β"-알루미나는 β-알루미나에 비하여 Na에대한이온전도도가높기때문에 β"-알루미나또는 β"-알루미나와 β-알루미나의흔합물을고체전해질로주로사용한다.
[4] 소듐이차전지의고체전해질로사용되는베타알루미나는특히,치밀한
구조가요구되는데,기공률이커지는경우전지의내구성과전기적특성이 현저하게감소하기때문이다.
[5] 베타알루미나는일본공개특허제 2002-241174호와같이,원료들을혼합한후 열처리하는고상반웅법을이용하여제조되는것이통상적이다.그러나이러한 고상반웅법의경우,소결밀도가낮은문제점및고온열처리에의해소듐이 휘발되어조성이제어되기힘든문제점이있다.
발명의상세한설명
기술적과제 ᅳ
[6] 본발명은베타알루미나를이용하여고체전해질로서제조하는데있어서, 열간등방가압법을이용하여고밀도와입자정밀도가우수한베타알루미나고체 전해질및이의제조방법을제공하고자한다.
[7] 본발명은상기고밀도의입자정밀도를좌우하는요인이소결공정임을
인식하여,열간등방가압법 (HIP)공정을통해소결체의강도가 250Mpa이상, 비저항 4.0Ω · cm이하의특성을가지는고밀도의치밀한구조를갖를
베타알루미나고체전해질및이의제조방법을제공하고자한다.
과제해결수단 [8] 본발명은 a)알루미나, b)소듐산화물, c)이터붐산화물및 d)리튬산화물과
... 마그네슴산화물과티타늄산화물에서선택되는하나이상의금속산화물을 포함하는흔합물을제조하는단계;및
[9] 상기혼합물을질소또는아르곤분위기에서 1200°C내지 1400°C온도로
열간등방가압 (HIP)하는단계;
[10] 를포함하는베타알루미나고체전해질의제조방법을제공할수있다.
[11] 본발명은상기흔합물을제조하는단계에서 5내지 20중량 %의소듐산화물,
0.01내지 1증량 %>의이터붐산화물, 0.1내지 8중량 <¾의금속산화물및 75내지
93중량 %의알루미나를포함하는베타알루미나고체전해질의제조방법을 제공할수있다.
[12] 본발명은열간등방가압하는단계이전에 1400°C내지 1700 로열처리하는 단계를더포함하는베타알루미나고체전해질의제조방법을제공할수있다.
[13] 본발명은상기제조방법에의해제조되는베타알루미나고체전해질을포함할 수있다.또한본발명은상기베타알루미나고체전해질을이용하는소듬 이차전지를포함할수있다.
[14] 본발명은상기베타알루미나고체전해질이평균입경이 αΐ ~ 4;Mn,파괴강도가
250 - 400MPa,및비저항이 2 - 4Ω . cm인베타알루미나고체전해질일수있다. 발명의효과
[15] 본발명은열간둥방가압법을이용하여소결체를제조함으로써,상기소결체의 강도가 250Mpa이상,비저항 4.0Ω . cm이하의특성을가지는고밀도의매우 치밀한구조를형성하는베타알루미나고체전해질을제공하여보다뛰어난 물성을가진베타알루미나고체전해질로서활용이가능하다.
도면의간단한설명
[16] 도 1은본발명의실시예에의해얻어진베타알루미나고체전해질의 SEM 이미지이다.
[17] 도 2는본발명의비교예에의해얻어진베타알루미나고체전해질의 SEM 이미지이다.
발명의실시를위한형태
[18] 이하첨부한도면들을참조하여본발명의베타알루미나및이의제조방법을 상세히설명한다.이때,사용되는기술용어및과학용어에있어서다른정의가 없다면,이발명이속하는기술분야에서통상의지식을가진자가통상적으로 이해하고있는의미를가지며,하기의설명및첨부도면에서본발명의요지를 불필요하게흐릴수있는공지기능및구성에대한설명은생략한다.
[19] 본발명은열간둥방가압법을이용하여베타알루미나고체전해질을제조할수 있다.
[20] 본발명은 a)알루미나, b)소듐산화물, c)이터븀산화물및 d)리륨산화물과 마그네슴산화물과티타늄산화물에서선택되는하나이상의금속산화물을 포함하는흔합물을제조하는단계;및
[21] 상기흔합물을질소또는아르곤분위기에서 1200°C내지 1400oC온도로
열간등방가압 (HIP)하는단계;
[22] 를포함하는베타알루미나고체전해질의제조방법으로제조할수있다.
[23]
[24] 이하에서상기단계별로자세히설명한다.
[25] 본발명은 a)알루미나, b)소듐산화물, c)이터붐산화물및 d)리튬산화물과
마그네슴산화물과티타늄산화물에서선택되는하나이상의금속산화물을 포함하는흔합물을제조하는단계를포함한다.
[26] 본발명의일실시예에따른베타알루미나고체전해질은 5내지 20증량 %의 소듐산화물 , αοι내지 1증량 %의이터븀산화물 , ο.ι내지 8중량 %의금속 산화물및 75내지 93중량 %의알루미나를포함할수있다.상기조성비는 제한되는것은아니지만,비정상입자성장이억제되고균일한입자성장및 매우빠른치밀화가야기되어극히치밀한구조를가질수있어바람직하다.
[27] 본발명의목적을달성하기위해원료물질로베타알루미나를사용할수있다. 본발명의베타알루미나에있어서,금속산화물은알루미나의상 (phase)을 안정화시키는안정화제의역할을수행할수있다.상세하게,베타알루미나는 β-알루미나와 β"-알루미나의서로다른두상을가질수있는데,이러한 안정화제에의해소듐이은전도성이보다우수한 β"-알루미나로상이안정화될 수있다.
[28] 상기금속산화물은리튬,칼륨,루비듬,세슴,마그네슘,칼슴,스트론튬,바륨, 주석,탄탈륨및티타늄등에서선택되는하나이상의금속원소의산화물일수 있으며,이온전도도가보다우수하기위해서는리륨산화물,마그네슘산화물, 티타늄산화물또는이들의흔합물일수있으나,이에제한되는것은아니다.
[29] 우수한소듬이은전도도를갖기위해서는가능한소량의첨가제로소결
거동을제어하는것이바람직하다.본발명의베타알루미나는 0Ό1내지 1 중량 %라는극미량의이터붐산화물을함유함으로써,비정상입자성장이 억제되고,균일한입자 (grain)크기를가지며,밀도가극히높은치밀한구조를 가짐에따라,소듐이온전도도저하가방지될수있다.
[30] 상기상술한알루미나,소듐산화물,금속산화물및이터븀산화물을흔합한 혼합분말은볼밀과같은통상의분쇄공정을통해파쇄되는공정을더포함할수 있다.
[31] 또한상기흔합분말은용매에용해되어흔합될수있음은물론이며,용매로는 건조에의해용이하게휘발되는용매면제한되지않으며,물,에탄올,메탄을, 프로판올,이소프로판올,아세톤,를루엔및핵산으로이루어진군으로부터하나 또는둘이상선택하여사용할수있다.상기용매흔합은제한되는것은아니나, 예를들어,베타알루미나 50내지 70 wt%,에탄올 30내지 50 \^%로 10내지 30 시간동안흔합하여믹싱하는것이바람직하다. [33] 다음으로는본발명의열간등방가압하는단계에대하여설명한다.
[34] 본발명은상기흔합한베타알루미나를질소또는아르곤분위기에서 1200oC 내지 1400°C온도로열간등방가압 (HIP)하는단계를포함한다.
[35] HIP(Hot Isostatic Pressing:열간등방가압)의특징은,고온에서피처리체에같은 방향으로압력을가해확산을진행시키는점에있는데,이를통해고밀도의 치밀한소결체제조를가능하게할수있다.
[36] HIP장치는압력용기내부에저항가열로가내장된구조로,외부로부터
가스압 (아르곤흑은질소),가열전력을공급하여고압고온처리를시행한다.
[37] 본발명에서는치밀한구조의베타알루미나고체절해질을얻기위하여 , 50 ~
200MPa의압력과, 1200 - 1400oC의은도에서 10분내지 3시간동안
열간둥방가압을실시할수있다. '
[38] 본발명에따라,베타알루미나는열간둥방가압을실시함에따라,저은치밀화 속도가현저하게향상되어, 1200oC내지 1400°C의저온에서 10분내지 3시간, 보다특징적으로 10분내지 1시간의짧은시간동안열처리하여도극히치밀한 구조의베타알루미나가제조될수있다.
[39]
[40] 또한본발명은열간등방가압을실시하기이전에더욱치밀한구조를갖기 위해서,베타알루미나고체절해질의흔합물을산소의존재하 1400°C내지 1700°C,바람직하게 1500°C내지 1600°C로열처리하는단계를더포함하여 수행될수있다.열처리분위기는층분한산화분위기를제공하는분위기이면 무방하며,구체적인일예로,산소분위기또는공기분위기일수있다.
[41]
[42] 본발명은상기흔합과정을비롯한앞서상술한베타알루미나를포함하는 원료물질을열간둥방가압하는과정둥모든공정을통해얻어진베타 알루미나의소결체는이하 (a)~(c)조건올만족하는베타알루니마고체전해질을 제공한다.
[43] (a)하기식을만족하는소결체,
[44] 0.1< R raean < 4//m
[45] (상기식에서, R mean은입자의평균입경을의미한다.)
[46] (b)상기소결체의압축파괴강도가 250 ~ 400MPa,
[47] (c)상기소결체의비저항이 2 - 4Ω · cm.
[48]
[49] 본발명에따른제조방법에따라제조된베타알루미나고체전해질은
비이상적인입성장이없는균일한입자분포를가지며,상기 (a)~(c)의조건을 만족하는정상입자성장을갖는치수정밀도가높은입자사이즈를형성한다.본 발명의베타알루미나고체전해질은파괴강도가 250MPa이상인것이 바람직하며,그미만인경우에는소결체가파손될가능성이높아전해질의 역할이어렵다.
[50]
[51] 본발명은상기제조된베타알루미나고체전해질을이용하는소듐이차전지를 포함할수있다.소듐이차전지는음극에서양극으로및 /또는양극에서음극으로 고체전해질을통해이동하는소듬이은에의해전지의충전및 /또는방전이 수행되는통상의소듐이차전지를포함할수있다.
[52] 또한본발명의일실시예에따른베타알루미나는벌크 (bulk)상또는분말상일 수있다.베타알루미나가벌크상인경우,고체전해질의형상은소듐
이차전지의구조에따라달라질수있으며,소듬이차전지의음극과양극공간을 구획할수있는적절한형상을가질수있다.구체적인일예로,평판형소듐 이차전지인경우,베타알루미나는평판 (plate)형상일수있으며,튜브형 고체전해질인경우,베타알루미나는일단이개방되고다른일단이밀폐된 류브형상일수있다.베타알루미나가분말상인경우,이러한분말은성형에 의해소듐이차전지의구조에적화된형상을갖는성형체제조시원료분말로 사용될수있다.
[53]
[54] 상기상술한바와같은우수한물성을가진베타알루미나고체전해질을
이용하는이차전지는유용하게활용가능하다.일실시예로써,대용량
전력저장용전지인나트륨유황전지는음극활물질에나트륨을,양극활물질에 유황을,전해질에본발명에따른고체의베타알루미나를사용할수있다.본 발명에따라제조된베타알루미나고체전해질은나트륨이은만을통과시키는 성질을가진 500°C이하의낮은온도에서우수한알칼리금속세라믹
이온전도체로써,베타알루미나의전하운반자인알칼리이은은타이온들과 이온교환반웅에의한치환이가능하여다양한전기적특성과기능의세라믹 전해질로의전환이가능하다.따라서상기베타알루미나를이차전지의 전해질로서활용함으로써에너지밀도및충방전효율이높고자기방전이 없으며 15년이상의긴수명올가지고,불규칙한충방전에도성능의저하가없는 특징을나타내는전지를제조할수있다.
[55]
[56] 이하,본발명은하기실시예및비교예에의거하여더욱구체적으로설명한다. 그러나이들예는본발명을예시하기위한것일뿐,본발명이이에제한되는 것은아니다.
[57]
[58] [실시예 1]
[59] Na2O(D50=0.5//m,대정화금) 15g, Li2O(D50=0.5j¾m,시그마알드리치 ) 2g, Yb203 (D50=0.5^m,시그마알드리치 ) 0.2g및알루미나 (D50=0.5/im,스미토코화학, AES-11) 85g을에탄올 100g에흔합교반한후건조하여,원료분말을
제조하였다. [60] 1500oC로 1차열처리이후에다시베타알루미나고체전해질올아르곤가스에서 180MPa의압력으로 1350°C로 1시간동안열처리하여 HIP(Hot isostatic pressing) 성형하여베타알루미나고체전해질을제조하였다.
[61] 제조된베타알루미나고체전해질의입경은 0.1 ~ 4 범위의분포로
측정되었다.베타알루미나고체전해질의 SEM사진은도 1에나타내었다.상기 평균입경은 Microtrac S3500 (Tri Laser System)으로측정하였으며,제조된베타 알루미나고체전해질의물성을하기규격에의거하여측정한후표 1에 나타내었다.
[62] 저항즉정법: 4-prove법으로, "Electrical characterization of polycrystalline sodium β''-alumina: Revisited and resolved", Solid State Ionics 264 (2014) 22.35에의하여 측정하였다.
[63] 파괴강도즉정법: O-ring test(Diametral ring compression strength)에의하여
측정하였다.
[64]
Figure imgf000008_0001
[65] (P: Maximum road at breaking (kg)
[66] D: Outer diameter (mm)
[67] d: thickness (mm)
[68] L: length (mm))
[69]
[7이 [비교예 1]
[71] 실시예 1의 HIP공정을거치는대신에 250Mpa의압력으로 CIP(Cold Isostatic Pressing)후, 1650°C에서 1시간동안소결공정을실시하는것을제외하고는 실시예 1와동일한조건에서베타알루미나를제조하였다.제조된베타 알루미나소결체의물성을실시예 1과동일하게측정하였으며 SEM사진을도 2에나타내었다.그결과는 0.5ᅳ 7//m의입자입경분포를가진베타알루미나 입자가관찰되었다.
[72]
[73] [Table 1]
Figure imgf000008_0002
[74]
[75] 상기표 1의강도와비저항을측정하고,도 1의주사전자현미경을이용하여 미세구조를관찰한결과,실시예 1에서평균입경 4 의이하입자인 베타알루미나소결체가비교예 1에의해제조된소결체보다매우우수한강도 및낮은비저항을가짐을알수있다.
[76] 도 1은실시예 1에서제조된베타알루미나소결체의단면을관찰한
주사전자현미경사진이다.도 1에서알수있듯이, 1시간동안짧은열처리에 의해서도극히치밀한구조의베타알루미나소결체가제조됨을알수있으며, 비정상입자성장이억제된것을알수있다.본발명에따른베타알루미나가 매우높은밀도및우수한강도를가짐을알수있다.
[77] 도 2는비교예 1에의해제조된베타알루미나소결체의단면을관찰한
주사전자현미경사진으로,실시예에서제조된베타알루미나소결체에비해 기공이발생하고입자의크기가큰것을관찰한바,이에따라비저항이높고 파괴강도가낮음을확인할수있었다.
[78]
[79] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[80] 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균등하거나등가적변형0 있는모든것들은본발명사상의범주에속한다고할것이다.

Claims

청구범위
[청구항 1] a)알루미나, b)소듐산화물, c)이터븀산화물및 d)리튬산화물과 마그네슘산화물과티타늄산화물에서선택되는하나이상의금속 산화물을포함하는혼합물을제조하는단계 ;및
상기혼합물을질소또는아르곤분위기에서 1200°C내지 1400°C 은도로열간등방가압 (HIP)하는단계;
를포함하는베타알루미나고체전해질의제조방법.
[청구항 2] 제 1항에있어서,
상기혼합물을제조하는단계에서 5내지 20중량 %의소듐 산화물 , 0.01내지 1중량 %의이터븀산화물 , 0.1내지 8중량 %의 금속산화물및 75내지 93중량 %의알투미나를포함하는 베타알루미나고체전해질의제조방법.
[청구항 3] 제 1항에있어서,
열간등방가압하는단계이전에 1400oC내지 1700°C로열처리하는 단계를더포함하는베타알루미나고체전해질의제조방법.
[청구항 4] a)알루미나, b)소듐산화물, c)이터븀산화물및 d)리튬산화물과 마그네슘산화물과티타늄산화물에서선택되는하나이상의금속 산화물을흔합하고열간등방가압하여제조되는베타알루미나 고체전해질.
[청구항 5] 제 4항에있어서,
베타알루미나고체전해질은평균입경이 0.1 ~ ½m이하, 파괴강도가 250 ~ 400MPa,및비저항이 2 ~ 4Ω · cm인
베타알루미나고체전해질.
[청구항 6] 제 4항의베타알루미나고체전해질을이용하는소듐이차전지.
PCT/KR2015/009045 2015-08-27 2015-08-28 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법 WO2017034058A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0120861 2015-08-27
KR20150120861 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017034058A1 true WO2017034058A1 (ko) 2017-03-02

Family

ID=58100475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009045 WO2017034058A1 (ko) 2015-08-27 2015-08-28 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017034058A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117056A (en) * 1977-02-07 1978-09-26 Chloride Silent Power Limited Production of beta-alumina ceramic articles
JPH10101408A (ja) * 1996-10-03 1998-04-21 Ngk Spark Plug Co Ltd ベータ・アルミナセラミックス及びその製造方法
KR20020038210A (ko) * 2000-11-17 2002-05-23 손재익 알칼리 금속 열전발전용 베타투프라임-알루미나 분말 및고체전해질 제조방법
JP2005259556A (ja) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd 固体電解質及びその製造方法
WO2014178453A1 (ko) * 2013-04-30 2014-11-06 (주)화인테크 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117056A (en) * 1977-02-07 1978-09-26 Chloride Silent Power Limited Production of beta-alumina ceramic articles
JPH10101408A (ja) * 1996-10-03 1998-04-21 Ngk Spark Plug Co Ltd ベータ・アルミナセラミックス及びその製造方法
KR20020038210A (ko) * 2000-11-17 2002-05-23 손재익 알칼리 금속 열전발전용 베타투프라임-알루미나 분말 및고체전해질 제조방법
JP2005259556A (ja) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd 固体電解質及びその製造方法
WO2014178453A1 (ko) * 2013-04-30 2014-11-06 (주)화인테크 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법

Similar Documents

Publication Publication Date Title
Liu et al. Development of the cold sintering process and its application in solid-state lithium batteries
US11424480B2 (en) Lithium-ion-conducting composite material and process for producing
US20200220170A1 (en) Porous silicon compositions and devices and methods thereof
CN109980182B (zh) 电极的制造方法、电极以及电极-电解质层接合体
Lim et al. Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes
JP4940080B2 (ja) リチウムイオン伝導性固体電解質およびその製造方法
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
JP6832073B2 (ja) 全固体電池用正極活物質材料の製造方法
EP3778488A1 (en) Ceramic powder, sintered body and battery
Wang et al. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering
JP2013256435A (ja) ガーネット型リチウムイオン伝導性酸化物の製造方法
KR20110097725A (ko) 무기 산화물 분말 및 무기 산화물-함유 슬러리, 및 이 슬러리를 사용한 리튬 이온 이차 배터리 및 이를 제조하는 방법
Lu et al. Enhanced sintering of β ″-Al2O3/YSZ with the sintering aids of TiO2 and MnO2
KR20140040268A (ko) 리튬이온 전도성 물질, 리튬이온 전도성 물질을 이용한 리튬이온 전도성 고체 전해질, 리튬이온 전지의 전극 보호층 및 리튬이온 전도성 물질의 제조방법
JP6955862B2 (ja) 全固体電池の製造方法および全固体電池
TWI749224B (zh) 鈦酸鋰燒結體板
JP2004503054A5 (ko)
Luo et al. High Li+-conductive perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 electrolyte prepared by hot-pressing for all-solid-state Li-ion batteries
JP6434125B2 (ja) 遷移金属多硫化物を含有する成形体、電池用電極、及びその製造方法
JP2012126618A (ja) 導電性マイエナイト化合物の製造方法
JP3706054B2 (ja) ベータアルミナ固体電解質の製造方法
WO2017034058A1 (ko) 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법
JP6376380B2 (ja) ニッケル酸リチウムスパッタリングターゲットの製造方法
CN106687414A (zh) 制造用于能量存储设备和能量应用的增强型β&#34;‑氧化铝固体电解质的方法
JP6052279B2 (ja) ベータアルミナ質焼結体とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902330

Country of ref document: EP

Kind code of ref document: A1