WO2014178453A1 - 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법 - Google Patents

소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법 Download PDF

Info

Publication number
WO2014178453A1
WO2014178453A1 PCT/KR2013/003733 KR2013003733W WO2014178453A1 WO 2014178453 A1 WO2014178453 A1 WO 2014178453A1 KR 2013003733 W KR2013003733 W KR 2013003733W WO 2014178453 A1 WO2014178453 A1 WO 2014178453A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
alumina
alkali
source
sodium
Prior art date
Application number
PCT/KR2013/003733
Other languages
English (en)
French (fr)
Inventor
범진형
양기덕
김수석
임산수대
김대현
Original Assignee
(주)화인테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)화인테크 filed Critical (주)화인테크
Priority to PCT/KR2013/003733 priority Critical patent/WO2014178453A1/ko
Publication of WO2014178453A1 publication Critical patent/WO2014178453A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/113Fine ceramics based on beta-aluminium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Beta alumina for sodium secondary solid electrolyte and its manufacturing method
  • the present invention relates to beta alumina for sodium secondary solid electrolyte, and to a method of manufacturing the same, in detail to beta alumina for secondary electrolytic electrolyte, which has a compact structure and excellent strength and has improved sodium ion conductivity. .
  • ⁇ -alumina It is collectively called beta alumina, including the single phase of these "beta" -aluminas, and these mixtures.
  • ⁇ " -alumina has a higher ion conductivity to Na than ⁇ -alumina, and thus a mixture of ⁇ "-alumina or a mixture of ⁇ " -alumina and ⁇ -alumina is mainly used as a solid electrolyte. do.
  • Beta alumina used as a solid electrolyte in sodium secondary batteries, is particularly dense
  • the structure is required because the battery's durability and electrical characteristics are significantly reduced when the porosity increases.
  • Beta alumina is usually manufactured by using a solid reaction method in which raw materials are mixed and heat treated, as in Japanese Patent Application Laid-Open No. 2002-241174.
  • the sintering density is low.
  • the composition of the composition is difficult to control due to volatilization of sodium by high temperature heat treatment.
  • the purpose of the present invention is a sodium secondary battery having a compact structure and excellent strength
  • beta alumina for solid electrolyte and another object of the present invention is to suppress abnormal grain growth, so that the sintering behavior is not changed sensitively to the homogeneity of the raw material, the initial particle size distribution of the raw material and the purity of the raw material. It is to provide a method for producing beta alumina for sodium secondary solid electrolyte having an extremely compact structure.
  • Beta alumina according to the present invention is for sodium secondary solid electrolyte, alumina; Sodium oxide; alkali oxides which are oxides of at least one alkali element selected from the group of alkali metals and alkaline earth metals, except for stalk; and ytterbium oxide.
  • Beta alumina according to one embodiment of the present invention is a solid electrolyte containing 5 to 20% by weight of sodium oxide, 1 to 8% by weight of alkali oxide, 0.01 to 1% by weight of ytterbium oxide and 75 to 93% by weight. May contain alumina.
  • It may be an oxide, a magnesium oxide or a combination thereof.
  • the method for producing beta alumina according to the present invention is for a source of solid electrolyte, which is a source of alkali, an alkali source which is a source of at least one alkali element selected from the group of alkali metals and alkaline earth metals except for the source; ytterbium source; and Thermally treating the complex containing the aluminum source; in the presence of oxygen.
  • the source of sodium is sodium oxide (Na 2 0), carbonate (Na 2 CO 3 ), hydroxide (NaOH), chloride (NaCl), nitrate (NaN0 3 ), sulfate (Na 2 S0 4 ), acetate (CH 3 CO 2 Na) and phosphate (Na 3 P0 4 )
  • alkali source is an alkali element oxide, carbonate, It may be one or more selected from hydroxides, chlorides, nitrates, sulfates, acetates and phosphates
  • the ytterbium source being one or two of oxides, carbonates, ' hydroxides, chlorides, nitrates, sulfates, acetates and phosphates of ytterbium. It may be one selected above, and the aluminum source may be alumina.
  • a method of preparing beta alumina according to an embodiment of the present invention includes the steps of: al) mixing a sodium source, an alkali source, a ytterbium source, and alumina; and b) 1400 o C to 1600 o C in the presence of oxygen; Preferably, the heat treatment to 1450 ° C to 1550 ° C; may include.
  • a method for producing beta alumina according to an embodiment of the present invention includes a2) a beta alumina base material containing an alkali oxide, which is an oxide of at least one selected from the group of alumina, sodium oxide, and alkali, and alkali earth metals except for softening. And mixing the ytterbium source; and b) heat treating at 1400 ° C. to 1600 ° C., preferably 1450 ° C. to 1550 ° C., in the presence of oxygen.
  • the complex is
  • Sodium source alkali source, containing from 5 to 20% by weight of sodium oxide, from 1 to 8% of alkali oxide, from 0.01 to 1% of ytterbium oxide and from 75 to 93% by weight of alumina. It may contain ytterbium source and aluminum source.
  • beta alumina for secondary solid electrolytes is prevented from growing abnormal particles by ytterbium oxide, has uniform particle growth and rapid densification, and has the advantage of very compact structure and excellent strength.
  • the method for producing beta alumina for sodium secondary solid electrolyte according to the present invention is Ytterbium oxide prevents abnormal grain growth, so that the sintering behavior does not change sensitively to the homogeneity of the raw material, the initial particle size distribution of the raw material, and the purity of the raw material, and is achieved through simple mixing of low-cost raw materials and extremely short heat treatment of low temperature. It has the advantage of manufacturing beta alumina with a compact structure.
  • FIG. 2 shows the results of X-rays of the sintered bodies produced in the embodiment of the present invention.
  • FIG. 3 is a diagram showing the strength and relative density according to the heat treatment temperature of the sintered body produced in the embodiment of the present invention
  • FIG. 4 is a view showing the strength and specific resistance according to the ytterbium oxide content of the sintered body produced in the embodiment of the present invention.
  • beta alumina solid electrolytes require a compact pore-free sintered structure that is possible.Amorphous grain growth is most grains that do not grow, whereas some grains grow abnormally fast. As a growth aspect, it is also observed in normal beta alumina. . When abnormal particle growth occurs, a large amount of pores are trapped inside the particles that grow abnormally fast, and the remaining particles do not grow so much that large amounts of pores remain at grain boundaries or triple points, resulting in a dense structure. It is known that abnormal grain growth is affected by various factors such as composition, heat treatment temperature, atmosphere, pressure, additives and the presence of liquid phases, and it is the main cause of abnormal grain growth by material. It is known to be different.
  • ytterbium oxide prevents abnormal grain growth, leading to uniform grain growth, and particularly rapid densification. To discover and to complete the present invention.
  • Beta alumina is a solid electrolyte for a rechargeable secondary battery, comprising: alumina; Sodium oxide; alkali oxides which are oxides of at least one alkali element selected from the group of alkali metals and alkali earth metals except sodium; and ytterbium oxides.
  • Beta alumina electrolytes according to the present invention include alumina, fine oxides and alkalis.
  • the ytterbium oxide contained in the oxide can suppress abnormal grain growth, cause uniform grain growth and very fast densification, and have an extremely dense structure.
  • Oxide has the advantage of significantly lowering the heat treatment temperature for the production of beta alumina, and has the advantage of having a very compact structure by performing low temperature heat treatment for a very short time.
  • heat treatment is carried out for a long time of 1 to 5 hours at a high temperature of 1700 ° C.
  • beta alumina according to the present invention is made of ytterbium oxide. As a result, even a low temperature heat treatment of less than 1600 ° C. can be extremely compact, even for a very short time (eg 10 minutes).
  • alkali oxides which are oxides of at least one alkali element selected from the group of alkali metals and alkaline earth metals except for the scavenger, serve as a stabilizer for stabilizing the phase of the alumina.
  • beta alumina can have different phases of ⁇ -alumina and ⁇ "-alumina, which can stabilize the ⁇ " -alumina phase with better sodium ion conductivity by these stabilizers.
  • Alkali and alkaline earth metal groups may include lithium, potassium, rudder, cesium, beryllium, magnesium, chamomile, strontium, and barium
  • alkali elements include lithium, potassium, rubidium, cesium, beryllium, Magnesium, calcium, strontium and barium may be one or more selected elements. Make the phase of alumina more effective
  • the alkali element may be lithium, magnesium or lithium and magnesium
  • the alkali oxide may be lithium oxide, magnesium oxide or a combination thereof.
  • beta alumina according to an embodiment of the present invention is 5 to 20% by weight of sodium oxide, 1 to 8% by weight of alkali oxide, 0.01 to 1% by weight of Ytterbium oxide and from 75 to 93% by weight of alumina.
  • the beta alumina according to one embodiment of the present invention may contain 0.01 to 1 wt% of ytterbium oxide.
  • the beta alumina according to one embodiment of the present invention may be 0.01 to 1 wt%.
  • the beta alumina is 0.01 to 1 increase ⁇ 3 ⁇ 4, and more preferably 0.01 to 0.5 % By weight, more preferably 0.1 to 0.5% by weight most preferably may contain 0.15 to 0.3% by weight of ytterbium oxide.
  • Beta [beta] -Alumina to effectively stabilize the phase of alumina
  • Alumina may contain from 1 to 8% by weight of alkali oxides. If the alkali oxide is less than 1% by weight, the phase of the alumina has a good ion conductivity.
  • the alkali oxide may be lithium oxide, magnesium oxide, or a combination thereof.
  • the solid electrolyte is 1-5% by weight. It may contain alkali oxides and, if the alkali oxide is a magnesium oxide, it may contain from 2 to 6% by weight of alkali oxides.
  • beta alumina contains ytterbium oxide, and may have a relative density of 98.6%, specifically 98.6% to 99.5%, and more specifically 99.2 ⁇ 3 ⁇ 4 to 99.5%.
  • Relative Density is LISO
  • Beta alumina according to one embodiment of the present invention has a strength of 200 MPa or more, specifically 200 MPa to 280 MPa, more specifically 230 MPa to 280 MPa, or more.
  • it can be between 245 MPa and 280 MPa.
  • Beta alumina according to an embodiment of the present invention may have a specific resistance between 2 ⁇ ? ⁇ and 3.5 ⁇ ?, specifically, 2 ⁇ ? 3 and 3 ⁇ ? ⁇ , more specifically, between 2 ⁇ and 2.8 ⁇ .
  • Beta alumina may be bulk or powdery.
  • the shape of the solid electrolyte may vary depending on the structure of the sodium secondary battery, and may have an appropriate shape to partition the cathode and anode space of the secondary battery.
  • beta alumina may be in the shape of a plate, and in the case of a tubular solid electrolyte, beta alumina may be in the shape of a valve that is open at one end and sealed at the other end.
  • these powders can be used as raw material powders in the manufacture of moldings having a shape adapted to the structure of the secondary battery by molding, and the manufactured moldings can be produced as sintered bodies by heat treatment.
  • Beta alumina may be a solid electrolyte for a sodium secondary battery.
  • Some secondary batteries may be prepared by sodium ions that move through a solid electrolyte from a cathode to an anode and / or from an anode to a cathode.
  • a conventional sodium secondary battery in which layer and / or discharge is performed may be included.
  • a sodium secondary battery may include a sodium-sulfur secondary battery in which the cathode active material contains sodium and the cathode active material contains sulfur.
  • the present invention includes a sodium secondary battery in which a solid electrolyte of beta alumina described above as a solid electrolyte is provided.
  • a sodium secondary battery according to an embodiment of the present invention is characterized in that the anode space and the cathode space are obtained.
  • Solid electrolyte sulfur located in the anode space; metal sodium located in the cathode space; and may include current collectors (anode current collector and cathode current collector), each of which forms an electrical path externally to sulfur and metal sweeps. can do.
  • the method for producing beta alumina according to the present invention is for the use of solid electrolyte. Sodium source; and a step of heat treating the common compound in the presence of an oxygen containing '; bovine deumeul supply source alkali source of the alkali elements selected one or more of the alkaline metal and alkaline earth metal groups except; ytterbium source; and an aluminum source.
  • the method for producing beta alumina uses a solid reaction method that mixes raw materials and heat-treats them in the presence of oxygen to produce beta alumina solid electrolytes of extremely compact structure at low temperatures and in a short time. have.
  • beta alumina is manufactured by the solid-phase synthesis method, it is difficult to control the sintering behavior, so that very large particles and very fine particles coexist, high porosity and sintered bodies are produced, and even fine particles are densified and grown despite the long-term heat treatment. There is a risk of sintering which does not occur.
  • beta alumina (beta alumina solid electrolyte) of extremely compact structure by solid phase reaction.
  • the present invention provides a source of raw material ytterbium for the production of beta alumina.
  • Beta of dense structure by using solid phase reaction method There is an advantage to manufacturing alumina solid electrolyte.
  • the ytterbium source inhibits abnormal grain growth during heat treatment and enables the production of solid electrolytes having a dense structure of uniformly sized grains. It is possible to produce a solid electrolyte having a dense structure even at annealing temperature, and it is possible to prepare a beta alumina solid electrolyte having a dense structure at an extremely fast time by significantly improving the densification even at low temperatures.
  • the source of sodium is sodium oxide (Na 2 0), carbonate (Na 2 CO 3 ), hydroxide (NaOH), chloride (NaCl), nitrate (NaN0 3 ), sulfate (Na 2 S0 4 ), acetate (CH 3 C0 2 Na) and phosphate (Na 3 P0 4 )
  • the alkali source is an alkali element oxide, carbonate, hydroxide
  • One, two or more may be selected from chlorides, nitrates, sulfates, acetates and phosphates
  • the ytterbium source may be selected from one or more of oxides, carbonates, hydroxides, chlorides, nitrates, sulfates, acetates and phosphates of ytterbium.
  • the source of aluminum may be alumina.
  • the method for producing beta alumina according to an embodiment of the present invention may include al) an oxide of sodium (Na 2 0), carbonate (Na 2 CO 3 ), hydroxide (NaOH), chloride (NaCl), nitrate (NaN0 3 ), sulfate (Na 2 S0 4 ),
  • the source of source of alkali, the source of alkali, the source of ytterbium and the source of aluminum can be independent of each other and have an average size of 0.1 to ⁇ .
  • the distribution of initial particle size of raw particles can significantly vary the particle sintering behavior, and efforts have been made to control the initial particle size distribution as narrowly as possible. .
  • the present invention provides a raw material for the production of beta alumina.
  • the source of each element sodium oxide particles, alkali oxide particles, ethers
  • Beta alumina solid electrolytes can be prepared in a very simple way by weighing them to the desired composition for the purpose, including the tungsten oxide particles and alumina particles).
  • Beta alumina matrix containing alkali oxides which are oxides of at least one alkali element selected from alumina, fine oxides and alkali metals and alkali earth metal groups; Beta alumina solid electrolyte can be prepared by heat treatment in the presence.
  • the method of manufacturing beta alumina according to the present invention contains a source of ytterbium, so that the sintering characteristics of the raw materials may not be changed sensitively to the homogeneity and particle size distribution of raw materials.
  • a mixture of beta alumina base material and ytterbium source can be used in the presence of oxygen.
  • the beta alumina base material may include commercially available beta alumina powder for producing solid electrolyte of a rechargeable secondary battery. Combined powders from one source and the above-mentioned alkali source are heat treated for 1 to 24 hours at temperatures between 1000 o C and 1500 ° C in an oxygen atmosphere, and then crushed through a conventional grinding process such as a ball mill.
  • the beta alumina base material may contain 5 to 20% by weight of fine oxide, 1 to 8% by weight of alkali oxide, and the remaining amount of alumina, and only a very small amount of ytterbium oxide is added to predict the sintering behavior.
  • the method of producing beta alumina according to the present invention contains a ytterbium source, which may not change the sintering characteristics sensitive to the homogeneity and particle size distribution of the raw materials. It is possible to have the advantage of producing beta alumina by simply mixing the materials or by mixing the beta alumina preformer boom source and heat treatment. Accordingly, in the manufacturing method according to an embodiment of the present invention, other elements are excluded. Of course, these sources can be dissolved in and mixed with the solvent. Of course, other sources, except aluminum and sodium sources, can be dissolved and mixed in the solvent.
  • the alkali metal and alkaline earth metal groups except for sodium are each alkali (alkali source) of at least one alkali element selected from lithium, potassium, rubbing, cesium, beryllium, magnesium, chame, strontium and barium. It may be one or more selected from oxides, carbonates, hydroxides, chlorides, nitrates, sulfates, acetates and phosphates of the element, and the ytterbium source is an oxide, carbonate, It may be one or more selected from hydroxides, chlorides, nitrates, sulfates, acetates and phosphates.
  • the source of source is one or more selected from oxides, carbonates, hydroxides, chlorides, nitrates, sulfates, acetates and phosphates
  • the aluminum source may be alumina particles, wherein the alumina particles or optionally sodium oxide particles may independently have an average size of () .1 to ⁇ .
  • the above-mentioned sources (alkali source, ytterbium source, sodium) Source and aluminum source) can be mixed, stirred and dried in an alkali source, a ytterbium source, and optionally a solvent that dissolves the source of heat, and then can be heat treated in the presence of oxygen.
  • the solvent can dissolve each element source and in dry A solvent that volatilizes easily by using a non-limiting example, nonpolar solvents, poly-based solvents, amine-based solvents , Force is one or two or more of solvents selected days pingye solvent alkoeul type solvent and a polar solvent.
  • the mixed mixture of sources may contain 5 to 20% by weight of sodium oxide, 1 to 8% by weight of alkali oxides, 0.01 to 1% by weight of ytterbium oxide and 75 to 93% by weight of alumina. May contain sodium, alkali, ytterbium, and aluminum sources, i.e., a mixture of elemental sources such that the alkali source corresponds to 5 to 20% by weight sodium oxide, based on sodium oxide.
  • the 75-93% increase
  • Sodium, alkali, ytterbium, and alumina sources may be included to correspond to alumina.
  • mixtures of elemental sources preferably have a ytterbium source of ⁇ to 0.5% by weight, based on the iterium oxide
  • the ytterbium source may preferably be included to correspond to 0.1 to 0.5 wt%, most preferably 0.15 to 0.3 wt% ytterbium oxide.
  • the element source is an oxide of each element, i.e. when the source of source, alkali source, ytterbium source and aluminum source are each oxide of the element, the mixture is 5 to 20% by weight sodium oxide. It may contain 1 to 8% by weight of alkali oxide, 0.01 to 1% by weight of ytterbium oxide and 75 to 93% by weight of alumina.
  • the complex when a beta alumina base material is used as a raw material, the complex may contain a source of ytterbium of 99.99 to 99% by weight and 0.01 to 1% by weight of beta alumina base material, preferably 0.01 to 0.5.
  • Oxide particles (including beta-alumina base materials) used as raw materials are oxide-specific. It can independently have an average size of 0.1 to ⁇ , and can be dried after being stirred in a dispersion medium, mixed and stirred.
  • a slurry having a uniform shape may be formed by forming a slurry or a dried mixture in which raw material oxides are mixed and mixed with a dispersion medium, and then forming such a molded product with oxygen.
  • the dried compound may be heat-treated into the powder form through pulverization before heat treatment.
  • the manufacturing method according to the present invention can stably control the sintering behavior through the ytterbium source (including ytterbium oxide), which is not sensitive to the purity of the feed of each element used as raw material.
  • abnormal grain growth can vary significantly due to atmospheric gases and unintended impurity plumes, and in general the prediction of its sintering behavior is extremely difficult and 4 to minimize the introduction of impurities. It is necessary to use high purity raw materials of nine (99.9%) to five nines (99.999).
  • the manufacturing method according to the present invention is unintentional as the abnormal grain growth is suppressed by the ytterbium source.
  • the effects of impurities can be avoided, allowing the use of low purity element sources as raw materials.
  • the purity of an element source used as a raw material can be between two (99%) to three nines (99.9).
  • the production cost of beta alumina can be significantly reduced. It has the advantage of easy supply and demand of raw materials.
  • the solid phase reaction is performed by mixing a mixture of sodium source, alkali source, ytterbium source and aluminum source in the presence of oxygen at 1400 ° C. to 1600 ° C. preferably it can be carried out by heat treatment at 1450 ° C to 1550 o C.
  • the heat treatment atmosphere may be any atmosphere that provides a sufficient oxidation atmosphere.
  • it may be an oxygen atmosphere or an air atmosphere.
  • the solid reaction source contains a source of aerbium, and thus, at a temperature of 1400 ° C to 1600 ° C, which is considerably lower than the normal solid reaction temperature.
  • This low heat treatment temperature prevents excessive increase in production costs due to high temperature heat treatment, which is especially commercially demanding.
  • there is a source of ytterbium in the high feed material As a result, the low temperature densification rate is significantly improved, resulting in extremely short periods of 5 minutes to 3 hours, more specifically 5 to 1 hour, and more specifically 5 to 30 minutes at low temperatures of 1400 ° C to 1600 ° C. Even after heat treatment for a time, beta alumina of extremely dense structure can be produced.
  • the relative density is 98.6%, specifically 98.6% to 99.5%, Specifically 99.2% to 99.5 ⁇ 3 ⁇ 4, the intensity is 200MPa or more, specifically 200MPa to 280MPa, more specifically 230MPa to 280 MPa, more specifically 245MPa to 280MPa, the specific resistance is 2 ⁇ to 3.5Qcm, specifically 2 ⁇ Beta alumina, which is " ⁇ to 3Qcm, more specifically 2? ⁇ ? To 2.8 ⁇ ? ⁇ , can be prepared.
  • the sintered compact was manufactured.
  • Example 1 magnesium oxide instead of lithium carbonate (purity 99%, average particle size
  • a beta alumina sintered body was prepared in the same manner as in Example 1, except that 10 minutes (Example 11) or 1600 ° C. 10 minutes (Example 12) were thermally treated.
  • Example 1 a beta alumina sintered body was manufactured in the same manner as in Example 1, except that ytterbium oxide O.lg was used, and a raw material powder containing 0.1 wt% of ytterbium oxide was used. ⁇
  • a beta alumina sintered body was prepared in the same manner as in Example 1, except that 0.5 g of ytterbium oxide was used in Example 1, except that a raw powder containing 0.5 wt% of ytterbium oxide was used.
  • a beta alumina sintered compact was prepared in the same manner as in Example 1 except that the containing raw powder was used.
  • An alumina base powder of less than 1 was prepared. Thereafter, an alumina base powder and ytterbium oxide were mixed to prepare a raw powder containing 0.2 wt% of ytternium oxide.
  • Example 2 the raw powder was molded and heat treated in the same manner as in Example 1 to prepare a beta alumina sintered body.
  • Example 1 is a cross-sectional view of the beta alumina sintered body prepared in Example 1
  • FIG. 2 is a diagram showing the results of X-ray diffraction analysis of the beta alumina sintered body prepared in Example 1, and as can be seen from FIG. 2, it has a ⁇ "-alumina structure, which is highly dependent on the noise level. It can be seen that only a very small amount of ⁇ -alumina is formed.
  • FIG. 3 shows the relative density and strength of the beta alumina sinters prepared in Examples 1 and 3 to 12, and the relative density is LISO.
  • beta alumina according to the present invention has very high density and excellent strength.
  • beta alumina according to the present invention is very It can be seen that it has good strength and low specific resistance.
  • Example 16 was similar to the beta alumina sintered body prepared in Example 1, and the physical properties It was confirmed that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본발명은 소듐 이차전지 고체전해질용 베타 알루미나에 관한 것으로, 상세하게,본 발명에 따른 베타 알루미나는 알루미나; 소듐 산화물; 소듐을 제외한 알칼리금속 및 알칼리 토금속 군에서 하나 이상 선택된 알칼리 원소의 산화물인 알칼리 산화물; 및 이터븀 산화물을 함유한다.

Description

명세서
발명의명칭:소듐이차전지고체전해질용베타알루미나및그 제조방법
기술분야
[1] 본발명은소듐이차전지고체전해질용베타알루미나및그제조방법에관한 것으로,상세하게,치밀한구조와우수한강도를가지며,소듐이온전도도가 향상되는소듬이차전지고체전해질용베타알루미나에관한것이다.
배경기술
[2] 베타알루미나는높은나트륨이온전도성을가지고있기때문에,소듐
이차전지의고체전해질로사용되고있다.
[3] 베타알루미나는 Ν 0·χΑ1203 (χ=5~11)의조성식으로표현되며, β-알루미나와 β"-알루미나의두개의상이한결정구조가존재한다.일반적으로는 β-알루미나, β"-알루미나각각의단일상및이들흔합물을포함하여,베타알루미나로 통칭하고있다. β-알루미나와 β"-알루미나중, β"-알루미나는 β-알루미나에 비하여 Na에대한이온전도도가높기때문에 β"-알루미나또는 β"-알루미나와 β-알루미나의흔합물을고체전해질로주로사용한다.
[4] 소듐이차전지의고체전해질로사용되는베타알루미나는특히,치밀한
구조가요구되는데,기공률이커지는경우전지의내구성과전기적특성이 현저하게감소하기때문이다.
[5] '베타알루미나는일본공개특허제 2002-241174호와같이,원료들을흔합한후 열처리하는고상반웅법을이용하여제조되는것이통상적이다.그러나,이러한 고상반웅법의경우,소결밀도가낮은문제점및고온열처리에의해소듐이 휘발되어조성이제어되기힘든문제점이 있다.
발명의상세한설명
기술적과제
[6] 본발명의목적은치밀한구조및우수한강도를갖는소듐이차전지
고체전해질용베타알루미나를제공하는것이며,본발명의다른목적은비정상 입자성장이억제되어원료의균질성,원료의초기 입도분포및원료의순도에 민감하게소결거동이변화하지않으며,저온에서단시간열처리함으로써극히 치밀한구조를갖는소듐이차전지고체전해질용베타알루미나의제조방법을 제공하는것이다.
[7]
과제해결수단
[8] 본발명에따른베타알루미나는소듐이차전지고체전해질용이며,알루미나; 소듐산화물;소듬을제외한알칼리금속및알칼리토금속군에서하나이상 선택된알칼리원소의산화물인알칼리산화물;및이터븀산화물을함유한다. [9] 본발명의일실시예에따른베타알루미나는고체전해질은 5내지 20중량 %의 소듐산화물, 1내지 8중량 %의알칼리산화물, 0.01내지 1증량 %의 이터븀 산화물및 75내지 93중량 %의알루미나를함유할수있다.
[10] 본발명의일실시예에따른베타알루미나에 있어,알칼리산화물은리튬
산화물,마그네슴산화물또는이들의흔합물일수있다.
[11] 본발명에따른베타알루미나의제조방법은소듬이차전지고체전해질용이며, 소듬공급원;소듬을제외한알칼리금속및알칼리토금속군에서하나이상 선택된알칼리원소의공급원인알칼리공급원;이터븀공급원;및알루미늄 공급원;을함유하는흔합물을산소의존재하에열처리하는단계를포함한다.
[12] 본발명의일실시예에따른베타알루미나의제조방법에 있어,소듐공급원은 소듐의산화물 (Na20),탄산염 (Na2C03),수산화물 (NaOH),염화물 (NaCl), 질산염 (NaN03),황산염 (Na2S04),아세트산염 (CH3C02Na)및인산염 (Na3P04)에서 하나또는둘이상선택된것일수있고,알칼리공급원은알칼리원소의산화물, 탄산염,수산화물,염화물,질산염,황산염,아세트산염및인산염에서하나또는 둘이상선택된것일수있으며,이터븀공급원은이터븀의산화물,탄산염, ' 수산화물,염화물,질산염,황산염,아세트산염및인산염에서하나또는둘이상 선택된것일수있고,알루미늄공급원은알루미나일수있다.
[13] 본발명의일실시예에따른베타알루미나의제조방법은 al)소듐공급원, 알칼리공급원,이터븀공급원및알루미나를혼합하는단계;및 b)산소의존재 하 1400oC내지 1600oC,바람직하게 1450°C내지 1550°C로열처리하는단계;를 포함할수있다.
[14] 본발명의일실시예에따른베타알루미나의제조방법은 a2)알루미나,소듐 산화물및소듬을제외한알칼리금속및알칼리토금속군에서하나이상선택된 알칼리원소의산화물인알칼리산화물을함유하는베타알루미나모재;와 이터븀공급원을흔합하는단계;및 b)산소의존재하 1400oC내지 1600oC, 바람직하게 1450°C내지 1550°C로열처리하는단계;를포함할수있다.
[15] 본발명의일실시예에따른베타알루미나의제조방법에 있어,흔합물은
열처리에의해수득되는생성물이 5내지 20중량 %의소듐산화물, 1내지 8 중량 %의알칼리산화물, 0.01내지 1중량 %의이터븀산화물및 75내지 93 중량 %의알루미나를함유하도록소듐공급원,알칼리공급원,이터븀공급원및 알루미늄공급원을함유할수있다.
[16]
발명의효과
[17] 본발명에따른소듬이차전지고체전해질용베타알루미나는이터븀산화물에 의해비정상입자성장이방지되고균일한입자성장및빠른치밀화가야기되어 매우치밀한구조및우수한강도를갖는장점이있다.
[18] 본발명에따른소듐이차전지고체전해질용베타알루미나의제조방법은 이터븀산화물에의해,비정상입자성장이방지됨에따라,원료의균질성, 원료의초기 입도분포및원료의순도에민감하게소결거동이변화하지않아, 저가원료의단순혼합및저온의극히짧은열처리를통해치밀한구조를갖는 베타알루미나를제조할수있는장점이있다.
[19]
도면의간단한설명
[20] 도 1은본발명의실시예에서제조된소결체의단면을관찰한주사전자현미경 사진이며,
[21] 도 2는본발명의실시예에서제조된소결체의 X-선희절결과를도시한
도면이며,
[22] 도 3은본발명의실시예에서제조된소결체의열처리온도에따른강도및 상대밀도를도시한도면이며,
[23] 도 4는본발명의실시예에서제조된소결체의이터븀산화물함량에따른강도 및비저항을도시한도면이다.
[24]
발명의실시를위한형태
[25] 이하첨부한도면들을참조하여본발명의베타알루미나및이의제조방법을 상세히설명한다.이때,사용되는기술용어및과학용어에 있어서다른정의가 없다면,이발명이속하는기술분야에서통상의지식올가진자가통상적으로 이해하고있는의미를가지며,하기의설명및첨부도면에서본발명의요지를 불필요하게흐릴수있는공지기능및구성에대한설명은생략한다.
[26] 베타알루미나고체전해질이우수한소듐이온전도특성및기계적강도를 갖기위해서는가능한기공이없는치밀한소결구조가요구된다.비정상입자 성장은대부분의입자는성장하지않은반면몇몇입자들이비정상적으로 빠르게자라는입자성장양태로,통상의베타알루미나에서도관찰되고있다. . 비정상입자성장이발생하는경우,비정상적으로빠르게자라는입자들내부에 다량의기공이트랩되며,나머지입자들은거의성장을하지않음에따라다량의 기공들이입계나트리플포인트 (triple point)에잔류하여치밀구조의소결체의 제조가어려워진다.이러한비정상입자성장은조성,열처리온도,분위기,압력, 첨가제,액상의존재여부둥다양한인자에의해영향을받는것으로알려져 있으며 ,물질별로비정상입자성장에영향을미치는주인자가달라지는것으로 알려져 있다.
[27] 본출원인은소듐이차전지용베타알루미나에대한연구를지속한결과, 이터븀산화물에의해비정상입자성장이방지되어균일한입자성장 (grain growth)이야기되며,특히매우빠른치밀화 (densification)가이루어짐을 발견하여,본발명을완성하기에이르렀다.
[28] 본발명에따른베타알루미나는소듬이차전지용고체전해질이며,알루미나; 소듐산화물;소듐을제외한알칼리금속및알칼리토금속군에서하나이상 선택된알칼리원소의산화물인알칼리산화물;및이터븀산화물올함유한다.
[29] 본발명에따른베타알루미나전해질은알루미나,소듬산화물및알칼리
산화물과함께함유되는이터븀산화물에의해,비정상입자성장이억제되고, 균일한입자성장및매우빠른치밀화가야기되어극히치밀한구조를가질수 있다.
[30] 또한,알루미나,소듐산화물및알칼리산화물과함께함유되는이터븀
산화물에의해,베타알루미나제조를위한열처리온도를현저하게.낮출수 있는장점이 있으며,매우짧은시간동안저온열처리를수행하여도극히 치밀한구조를가질수있는장점이있다.상세하게,통상적인고상반웅법 (고상 합성법, solid state reaction)으로베타알루미나를제조하기위해서는 1700°C의 고온에서 1내지 5시간의장시간동안열처리가수행된다.그러나,상술한바와 같이,본발명에따른베타알루미나는이터븀산화물을함유함에따라, 1600°C 이하의저온열처리를매우짧은시간 (일예로, 10분)동안수행하여도,극히 치밀한구조를가질수있다.
[31] 본발명의일실시예에따른베타알루미나에 있어,소듬을제외한알칼리금속 및알칼리토금속군에서하나이상선택된알칼리원소의산화물인알칼리 산화물은알루미나의상 (phase)을안정화시키는안정화제의 역할을수행할수 있다.상세하게,베타알루미나는 β-알루미나와 β"-알루미나의서로다른두상을 가질수있는데,이러한안정화제에의해소듐이온전도성이보다우수한 β"-알루미나로상이안정화될수있다.
[32] 소듐을제외한알칼리금속및알칼리토금속군은리튬,칼륨,루비듬,세슘, 베릴륨,마그네슴,칼슴,스트론튬및바륨을포함할수있으며,알칼리원소는 리튬,칼륨,루비듐,세슘,베릴륨,마그네슘,칼슘,스트론튬및바륨에서하나 ■ 또는둘이상선택된원소일수있다.알루미나의상을보다효과적으로
β"_알루미나로안정화시키기위해,알칼리원소는리튬,마그네슘또는리튬과 마그네슘일수있으며,알칼리산화물은리튬산화물,마그네슘산화물또는 이들의흔합물일수있다.
[33] 본발명의 일실시예에따른소듐이차전지는본발명의일실시예에따른베타 알루미나는 5내지 20중량 %의소듐산화물, 1내지 8증량 %의알칼리산화물, 0.01내지 1증량 %의이터븀산화물및 75내지 93증량 %의알루미나를함유할 수있다.
[34] 우수한소듐이온전도도를갖기위해서는가능한소량의첨가제로소결
거동을제어하는것이바람직하다.본발명의일실시예에따른베타알루미나는 0.01내지 1중량 %의이터븀산화물을함유할수있다.본발명의일실시예에 따른베타알루미나는이러한 0.01내지 1중량 %라는극미량의이터븀산화물을 함유함으로써,비정상입자성장이억제되고,균일한입자 (grain)크기를가지며, 밀도가극히높은치밀한구조를가질수있는데,미량의첨가제를통해소결 거동이제어될수있음에따라,소결거동을제어하는첨가제에의한소듐이온 전도도저하가방지될수있다.상세하게,베타알루미나가 0.01중량 %미만의 이터븀산화물을함유하는경우,이터븀산화물에의한비정상입자성장억제및 치밀화유도가미미할수있으며, 1중량 %를초과하는이터븀산화물을 함유하는경우이터븀산화물에의해소듐이온의전도도가감소할위험이있을 뿐만아니라,강도가저하되고비저항이증가할위험이 있다.즉,비정상입자 성장을효과적으로억제하며,소듬이온전도도및강도를향상시키고,비저항을 감소시키며,우수한밀도를갖기위해,베타알루미나는 0.01내지 1증량 <¾,보다 바람직하게 0.01내지 0.5중량 %,보다더바람직하게 0.1내지 0.5중량 가장 바람직하게 0.15내지 0.3증량 %의이터븀산화물을함유할수있다.
[35] β"-알루미나로알루미나의상을효과적으로안정화시키기위해,베타
알루미나는 1내지 8중량 %의알칼리산화물을함유할수있다.알칼리산화물이 1중량 %미만인경우,알루미나의상이소듬이온전도도가우수한
β"-알루미나로안정화되지않을위험이 있으며, 8중량 %를초과하는경우, β"-알루미나로의상안정화의증가는미미하나알칼리산화물에의해소듬 이온의전도도가감소할위험이 있다.
[36] 상술한바와같이,효과적인。상안정화측면에서알칼리산화물은리튬산화물, 마그네슘산화물또는이들의흔합물일수있다.구체적으로,알칼리산화물이 리튬산화물인경우,고체전해질은 1내지 5중량 %의알칼리산화물을함유할수 있으며,알칼리산화물이마그네슴산화물인경우, 2내지 6중량 %의알칼리 산화물을함유할수있다.
[37] 소듐산화물및알루미나의함량은 Ν 0·χΑ1203(χ=5~11인실수)의조성을가질 수있는함량이다. '
[38] 본발명의일실시예에따른베타알루미나는이터븀산화물을함유함에따라, 상대밀도가 98.6%,구체적으로 98.6%내지 99.5%,보다구체적으로 99.2<¾내지 99.5%일수있다.이때,상대밀도는 LISO
18754_2012(파인세라믹스-파인세라믹스소결체의밀도및겉보기기공율 시험방법)를기준으로측정된값일수있으며,수분과반웅하는베타알루미나의 특성상,진공법을사용하여물이외의용액으로유기 액체를이용하여측정된 값일수있다.
[39] 본발명의일실시예에따른베타알루미나는강도가 200MPa이상,구체적으로 200MPa내지 280MPa,보다구체적으로 230MPa내지 280 MPa,보다더
구체적으로 245MPa내지 280MPa일수있다.이때,강도는
L1591_2008(파인세라믹스-단일체세라믹스의상은꺾임강도시험방법)를 기준으로측정된값일수있다.
[40] 본발명의일실시예에따른베타알루미나는비저항이 2Ωαη내지 3.5Ω η, 구체적으로 2Ω η내지 3Ωαη,보다구체적으로 2Ω η내지 2.8Ω η일수있다.
[41] 본발명의일실시예에따른베타알루미나는벌크 (bulk)상또는분말상일수 있다.베타알루미나가벌크상인경우,고체전해질의형상은소듐이차전지의 구조에따라달라질수있으며,소듬이차전지의음극과양극공간을구획할수 있는적절한형상을가질수있다.구체적인일예로,평판형소듐이차전지인 경우,베타알루미나는평판 (plate)형상일수있으며,튜브형고체전해질인경우, 베타알루미나는일단이개방되고다른일단이밀폐된류브형상일수있다. 베타알루미나가분말상인경우,이러한분말은성형에의해소듬이차전지의 구조에적화된형상을갖는성형체제조시원료분말로사용될수있으며, 제조된성형체는열처리에의해소결체로제조될수있다.
[42] 본발명의일실시예에따른베타알루미나는소듐이차전지용고체전해질일 수있다.소듬이차전지는음극에서양극으로및 /또는양극에서음극으로 고체전해질을통해이동하는소듐이온에의해전지의층전및 /또는방전이 수행되는통상의소듐이차전지를포함할수있다.구체적인일예로,소듐 이차전지는음극활물질이소듐을함유하며,양극활물질이황을함유하는 소듐-황이차전지를포함할수있다.
[43] 본발명은고체전해질로상술한베타알루미나의고체전해질이구비되는소듐 이차전지를포함한다.구체적인일예로,본발명의 일실시예에따른소듐 이차전지는양극공간및음극공간이구확하는상술한베타알루미나
고체전해질;양극공간에위치하는황;음극공간에위치하는금속소듐;을 포함할수있으며,황및금속소듬각각에외부와의전기적경로를형성하는 집전체 (양극집전체및음극집전처ᅵ)를포함할수있다.
[44] 본발명에따른베타알루미나의제조방법은소듬이차전지고체전해질용이며. 소듐공급원;소듬을제외한알칼리금속및알칼리토금속군에서하나이상 선택된알칼리원소의공급원인알칼리공급원;이터븀공급원;및알루미늄 공급원;을함유하는흔합물을산소의존재하에열처리하는단계를 '포함한다.
[45] 즉,본발명의일실시예에따른베타알루미나의제조방법은원료를흔합하고 산소의존재하에열처리하는고상반웅법을이용하여저온에서단시간에극히 치밀한구조의베타알루미나고체전해질을제조할수있다.
[46] 고상반웅법은그방법이매우간단하고,재현성이우수하며 ,원료공급및
가격면에서유리하고,필요시다양한형상의거대벌크를제조할수있으며, 단시간에대량생산할수있음에따라,상업적으로매우유용한합성방법이다. 그러나,베타알루미나를고상합성법으로제조하는경우,소결거동의제어가 어려워,극히거대한입자와극히미세한입자가공존하며기공률이높은 · 소결체가제조되거나,미세한입자들이장시간의열처리에도불구하고치밀화 및성장이거의발생하지않는소결체가제조되는위험이 있어,상업적
용이함에도불구하고고상반웅법으로극히치밀한구조의베타알루미나 (베타 알루미나고체전해질)를제조하기어려운한계가있었다.
[47] 본발명은베타알루미나를제조하기위한원료가이터븀공급원을
함유함으로써,상업성이우수한고상반웅법을이용하여치밀한구조의베타 알루미나고체전해질을제조할수있는장점이있다.
[48] 상세하게,이터븀공급원은열처리시비정상입자성장을억제하며,균일한 크기를갖는입자 (grain)들로이루어진치밀한구조를갖는고체전해질의제조를 가능하게한다.또한이터븀공급원은낮은열처리온도에서도치밀한구조를 갖는고체전해질의제조를가능하게하며,저은에서도치밀화를현저하게 향상시켜극히빠른시간에치밀한구조를갖는베타알루미나고체전해질의 제조를가능하게한다.
[49] 본발명의일실시예에따른베타알루미나의제조방법에 있어,소듐공급원은 소듐의산화물 (Na20),탄산염 (Na2C03),수산화물 (NaOH),염화물 (NaCl), 질산염 (NaN03),황산염 (Na2S04),아세트산염 (CH3C02Na)및인산염 (Na3P04)에서 하나또는둘이상선택될수있으며,알칼리공급원은알칼리원소의산화물, 탄산염,수산화물,염화물,질산염,황산염,아세트산염및인산염에서하나또는 둘이상선택될수있고,이터븀공급원은이터븀의산화물,탄산염,수산화물, 염화물,질산염,황산염,아세트산염및인산염에서하나또는둘이상선택될수 있으며,알루미늄공급원은알루미나일수있다.즉,본발명의일실시예에따른 베타알루미나의제조방법은 al)소듐의산화물 (Na20),탄산염 (Na2C03), 수산화물 (NaOH),염화물 (NaCl),질산염 (NaN03),황산염 (Na2S04),
아세트산염 (C C02Na)및인산염 (Na3P04)에서하나또는둘이상선택되는소듐 공급원,알칼리원소의산화물,탄산염,수산화물,염화물,질산염,황산염, 아세트산염및인산염에서하나또는둘이상선택되는알칼리공급원,이터븀의 산화물,탄산염,수산화물,염화물,질산염 ,황산염,아세트산염및인산염에서 하나또는둘이상선택되는이터븀공급원및알루미나를흔합하는단계;를 포함할수있으며, al)단계의흔합물을산소의존재하에열처리하는단계를 포함할수있다.
[50] 구체적으로,소듬공급원,알칼리공급원,이터븀공급원및알루미늄공급원은 서로독립적으로, 0.1내지 ΙΟμηι의평균크기를가질수있다.
[51] 고상반웅법을이용한베타알루미나의제조시,입자의소결거동제어가
어려움에따라,극히균질한원료의흔합이필수적인.것으로간주되어왔다. 이에따라,다단계공정의복잡함및원료에의한원가상승에도불구하고 용매에특정원소공급원을용해시킨후,이를다른원료입자에코팅 (또는 흡착)시켜균질성을확보하거나,졸-겔반웅과같이화학적반웅을수행하여 베타알루미나를구성하는원소들이균질하게분포하는입자를제조한후,이를 열처리하는방법등열처리전균질성을확보하기위해다양한방법이시도되고 있다.
[52] 또한,고상반응법을이용한베타알루미나의제조시,원료입자들의초기입자 크기의분포에의해입자의소결거동이현저하게달라질수있어,초기입도 분포를가능한좁게제어하기위한노력이 있어왔다.
[53] 그러나,상술한바와같이,본발명은베타알루미나를제조하기위한원료가 이터븀공급원을함유함으로써,소결거동이원료의균질성및원료의초기입도 분포에민감하게변화되지않음에따라, 0.1내지 ΙΟμπι의평균크기를갖는각 원소의공급원 (소듐산화물입자,알칼리산화물입자,이터븀산화물입자및 알루미나입자를포함함)들을목적하는조성에맞게칭량한후단순흔합하는 극히간단한방법으로베타알루미나고체전해질을제조할수있는장점이있다.
[54] 또한,알루미나,소듬산화물및소듬을제외한알칼리금속및알칼리토금속 군에서하나이상선택된알칼리원소의산화물인알칼리산화물을함유하는 베타알루미나모재;와이터븀공급원;을함유하는흔합물을산소의존재하에 ' 열처리함으로써베타알루미나고체전해질을제조할수있다.
[55] 즉,본발명에따른베타알루미나의제조방법이이터븀공급원을함유하여, 원료물질들의균질성및입도분포에민감하게소결특성이변화하지않올수 있음에따라,베타알루미나모재를직접원료로사용할수있으며,베타 알루미나모재와이터븀공급원을혼합한흔합물을산소의존재하에
열처리함으로써,극히치밀한구조의베타알루미나를저온에서매우짧은 시간에쩨조할수있다.베타알루미나모재는소듬이차전지의고체전해질을 제조하기위해,상업적으로시판되는베타알루미나분말을포함할수있으며, 알루미나,상술한소듬공급원및상술한알칼리공급원을흔합한흔합분말이 산소분위기에서 1000oC내지 1500°C의온도로 1내지 24시간동안열처리된후, 볼밀과같은통상의분쇄공정을통해파쇄된분말을의미할수있다.이때,베타 알루미나모재는 5내지 20중량 %의소듬산화물, 1내지 8증량 %의알칼리 산화물및잔량의알루미나를포함할수있는데,극히미량의이터븀산화물이 첨가되는것만으로도소결거동이예측가능한특성을가지며,현저하게 안정화될수있다.이에따라,시판또는기합성된베타알루미나모재를직접 원료로사용하더라도조성적변화가미미하여설계된전기화학적특성을 유지할수있으며,소듐이온전도특성이저하되지않을수있다.
[56] 그러나,상술한바와같이 ,본발명에따른베타알루미나의제조방법이이터븀 공급원을함유하여,원료물질들의균질성및입도분포에민감하게소결특성이 변화하지않을수있음에따라,입자상의원료물질들을단순흔합하거나베타 알루미나모재와이터붐공급원을흔합한후열처리하여베타알루미나를 제조할수있는장점을가질수있는것이다.이에따라,본발명의일실시예에 따른제조방법에있어,알루미늄공급원을제외한다른원소의공급원이용매에 용해되어흔합될수있음은물론이며,알루미늄공급원및소듐공급원을제외한 다른원소의공급원이용매에용해되어흔합될수있음은물론이다.
[57] 구체적으로,소듐을제외한알칼리금속및알칼리토금속군은리튬,칼륨, 루비듬,세슘,베릴륨,마그네슴,칼슴,스트론튬및바륨에서하나이상선택되는 알칼리원소의공급원 (알칼리공급원)은각알칼리원소의산화물,탄산염, 수산화물,염화물,질산염,황산염,아세트산염및인산염에서하나또는둘이상 선택된것일수있으며,이터븀공급원은이터븀원소의산화물,탄산염, 수산화물,염화물,질산염,황산염 ,아세트산염및인산염에서하나또는둘이상 선택된것일수있다.소듬공급원은소듬의산화물,탄산염,수산화물,염화물, 질산염,황산염,아세트산염및인산염에서하나또는둘이상선택된것일수 있으며,알루미늄공급원은알루미나입자일수있다.이때,알루미나입자또는 선택적으로소듐산화물입자는서로독립적으로 ().1내지 ΙΟμπι의평균크기를 가질수있다.상술한공급원 (알칼리공급원,이터븀공급원,소듐공급원및 알루미늄공급원)은알칼리공급원,이터븀공급원및선택적으로소듬공급원을 용해하는용매에흔합및교반되고건조된후,산소의존재하에열처리될수 있다.용매는각원소공급원을용해할수있으며,건조에의해용이하게 휘발되는용매면무방하며,비한정적인일예로,무극성용매,폴리을계용매, 아민계용매,포스핀계용매,알코을계용매및극성용매중하나또는둘이상 선택되는용매일수있다.
[58] 본발명의일실시예에따른베타알루미나의제조방법에있어,원소
공급원들이혼합된흔합물은열처리에의해수득되는생성물이 5내지 20 중량 %의소듐산화물, 1내지 8중량 %의알칼리산화물, 0.01내지 1중량 %의 이터븀산화물및 75내지 93중량 %의알루미나를함유하도록소듐공급원, 알칼리공급원,이터븀공급원및알루미늄공급원을함유할수있다.즉,원소 공급원들이흔합된혼합물은소듐산화물을기준으로소듐공급원이 5내지 20 중량 %의소듐산화물에해당하도록,알칼리산화물을기준으로알칼리 공급원이 1내지 8중량 %의알칼리산화물에해당하도록,이터븀산화물을 기준으로이터붐공급원이 0.01내지 1중량。 /。의이터븀산화물에해당하도록, 알루미늄산화물을기준으로알루미늄공급원이 75내지 93증량 %의
알루미나에해당하도록소듐공급원,알칼리공급원,이터븀공급원및알루미나 공급원을함유할수있다.바람직하게,원소공급원들이흔합된혼합물은이터붐 산화물을기준으로이터븀공급원이바람직하게 θΐ내지 0.5증량 %,보다 바람직하게 0.1내지 0.5중량 %,가장바람직하게 0.15내지 0.3중량 %의이터븀 산화물에해당하도록이터븀공급원을함유할수있다.
[59] 구체적인일예로,원소공급원이각원소의산화물인경우,즉,소듬공급원, 알칼리공급원,이터븀공급원및알루미늄공급원이각각해당원소의산화물인 경우,혼합물은 5내지 20증량 %의소듐산화물, 1내지 8중량 %의알칼리 산화물, 0.01내지 1중량 %의이터븀산화물및 75내지 93중량 %의알루미나를 함유할수있다.
[60] 구체적인일예로,베타알루미나모재를원료로사용하는경우,흔합물은베타 알루미나모재 99.99중량 %내지 99중량 %와 0.01내지 1증량 %의이터븀 공급원을함유할수있다.바람직하게 0.01내지 0.5증량 %,보다바람직하게 0.1 내지 0.5중량 가장바람직하게 0.15내지 0.3증량 %의이터븀공급원및 잔량의모재를함유할수있다.
[61] 원료로사용되는각산화물입자 (베타알루미나모재를포함함)는산화물별 독립적으로 0.1내지 ΙΟμπι의평균크기를가질수있으며,분산매에투입되어 흔합교반된후,건조될수있다.
[62] 소듐이차전지에적합한형상을갖는베타알루미나를제조하고자하는경우, 원료산화물들이분산매에혼합교반된슬러리또는건조된혼합물을성형하여 일정한형상을갖는성형체를제조한후,이러한성형체를산소의존재하에 열처리할수있음은물론이며,제조하고자하는베타알루미나가분말상인 경우,건조된흔합물은열처리전,분쇄를통해분말상으로열처리될수있음은 물론이다.
[63] 본발명에따른제조방법은이터븀공급원 (이터븀산화물을포함함)을통해 소결거동을안정적으로조절할수있음에따라,원료로사용되는각원소의 공급물의순도에민감하지않은장점이 있다.상세하게,비정상입자성장은 분위기가스,의도치않는불순물둥에의해서도그성장양상이현저하게달라질 수있음에따라,일반적으로그소결거동의예측이극히어렵고,불순물의 도입을최소화하기위해 4나인 (99.9%)내지 5나인 (99.999)의고순도원료를 사용할필요가있다.그러나,상술한바와같이,본발명에따른제조방법은 이터븀공급원에의해비정상입자성장이억제됨에따라,의도치않는불순물에 의한영향이방지될수있어,저순도의원소공급원을원료로사용할수있다. 구체적으로,원료로사용되는원소공급원의순도는 2나인 (99%)내지 3 나인 (99.9)의순도를가질수있다.이러한저순도의원료가사용가능함에따라 베타알루미나의생산비용을현저하게절감할수있으며,원료의수급이용이한 장점이 있다.
[64] 본발명의일실시예에따른베타알루미나의제조방법에있어,고상반웅은 소듐공급원,알칼리공급원,이터븀공급원및알루미늄공급원의흔합물을 산소의존재하 1400oC내지 1600°C,바람직하게 1450°C내지 1550oC로 열처리함으로써수행될수있다.
[65] 열처리분위기는충분한산화분위기를제공하는분위기이면무방하며,
구체적인일예로,산소분위기또는공기분위기일수있다.
[66] 상술한바와같이,본발명에따라,고상반웅하는원료에이터븀공급원이 함유되어 있음에따라,통상의고상반웅온도보다현저하게낮은은도인 1400°C 내지 1600°C의온도에서고상반웅이이루어질수있다.이러한낮은열처리 온도는고온열처리에따른생산비용의과도한증가를방지할수있어, 상업적으로특히요구되는사항이다.또한,본발명에따라,고상반웅하는 원료에이터븀공급원이함유되어 있음에따라,저온치밀화속도가현저하게 향상되어, 1400°C내지 1600°C의저온에서 5분내지 3시간,보다특징적으로 5분 내지 1시간,보다더특징적으로 5분내지 30분동안의극히짧은시간동안 열처리하여도극히치밀한구조의베타알루미나가제조될수있다.
[67] 본발명의일실시예에따른소듐이차전지고체전해질용베타알루미나의 제조방법에의해,상대밀도가 98.6%,구체적으로 98.6%내지 99.5%,보다 구체적으로 99.2% 내지 99.5<¾이고,강도가 200MPa 이상,구체적으로 200MPa 내지 280MPa, 보다 구체적으로 230MPa 내지 280 MPa, 보다 더 구체적으로 245MPa 내지 280MPa이 며,비 저 항이 2Ωαη 내지 3.5Qcm, 구체적으로 2Ω«η 내지 3Qcm, 보다 구체적으로 2Ωαη 내지 2.8Ωαη인 베타 알루미 나가 제조될 수 있다.
[68]
[69] 이하,실시 예에 근거하여 , 본 발명에 따른 베타 알루미나의 제조방법을
상술하나,제시되 는 실시 예는 본 발명 의 보다 전반적 인 이해를 돕기 위 해서 제공된 것일 뿐,본 발명은 실시 예에 한정 되는 것은 아니며 , 본 발명 이 속하는 분야에서 통상의 지 식을 가진 자라면 이 러 한 기 재로부터 다양한 수정 및 변형 이 가능하다.
[70]
[71] (실시 예 1)
[72] 탄산 나트륨 (순도 99%,평균 입자크기 Ιμηι) 13.73g, 탄산 리륨 (순도 99%, 평 균 입자크기 ΙμΐΏ) 1.89g, 이터븀 산화물 (순도 99.9%>,평균 입자크기 Ιμηι) 0.2g 및 알루미나 (순도 99%, 평균 입자크기 Ιμηι) 84.38g을 에탄올 lOOg에 흔합 교반한 후 건조하여,이 터붐 산화물을 0.2 중량 % 함유하는 원료 분말을 제조하였다.
[73] 제조된 원료분말 50g을 원기등형 몰드에 투입 하고 1700kgf/cm2의 압력으로 CIP(cold isostatic pressure) 성 형하여 성 형 체를 제조하였다.
[74] 제조된 성 형 체를 공기중 1520°C로 10분동안 열처 리하여 베타 알루미나
소결체를 제조하였다.
[75]
[76] (실시 예 2)
[77] · 실시 예 1에서 탄산 리튬 대신 마그네슘 산화물 (순도 99%, 평균 입자크기
Ιμιη)을 동량 사용한 것을 제외 하고,실시 예 1과 동일하게 수행하여 베타 알루미나 소결체를 제조하였다.
[78]
[79] (실시 예 3~1¾
[80] 실시 예 1에서 열처 리 온도를 1400°C 10분 (실시 예 3), 1420°C 10분 (실시 예 4), 1440°C 10분 (실시 예 5), 1460°C 10분 (실시 예 6), 1480°C 10분 (실시 예 7), 1500°C 10분 (실시 예 8), 1540°C 10분 (실시 예 9), 1560°C 10분 (실시 예 10), 1580°C
10분 (실시 예 11) 또는 1600oC 10분 (실시 예 12) 열처 리 한 것을 제외하고, 실시 예 1과 동일하게 수행하여 베타 알루미나 소결체를 제조하였다.
[81]
[82] (실시 예 13)
[83] 실시 예 1에서 이 터븀 산화물 O.lg을 사용하여 , 이 터븀 산화물을 0.1 증량 % 함유하는 원료 분말을 사용한 것을 제외 하고, 실시 예 1과 동일하게 수행하여 베타 알루미 나 소결체를 제조하였다. ■
[84] [85] (실시예 14)
[86] 실시예 1에서이터븀산화물 0.5g을사용하여,이터븀산화물올 0.5중량 % 함유하는원료분말을사용한것을제외하고,실시예 1과동일하게수행하여 베타알루미나소결체를제조하였다.
[87]
[88] (실시예 15)
[89] 실시예 1에서이터븀산화물 lg을사용하여 ,이터븀산화물을 1증량 %
함유하는원료분말을사용한것을제외하고,실시예 1과 ^일하게수행하여 베타알루미나소결체를제조하였다.
[90]
[91] (실시예 16)
[92] 탄산나트륨 13.73g,탄산리튬 1.89g및알루미나 84.38g을에탄올 100g에흔합 교반한후건조하고,건조된분말을 1000oC에서 5시간동안열처리하여알루미나 모재를제조하였다.제조된알루미나모재를분쇄하여평균입자크기가
1 이내인알루미나모재분말을제조하였다.이후,알루미나모재분말과 이터븀산화물을혼합하여 0.2중량 %로이터늄산화물을함유하는원료분말을 제조하였다.
[93] 이후,실시예 1과동일하게원료분말을성형하고열처리하여베타알루미나 소결체를제조하였다.
[94] ,
[95] 도 1은실시예 1에서제조된베타알루미나소결체의단면을관찰한
주사전자현미경사진이다.도 1에서알수있듯이, 1520oC에서 10분동안극히 짧은열처리에의해서도극히치밀한구조의베타알루미나소결체가제조됨을 알수있으며,비정상입자성장이억제된것을알수있다.
[96] 도 2는실시예 1에서제조된베타알루미나소결체의 X-선회절분석결과를 도시한도면으로,도 2에서알수있듯이 , β"-알루미나구조를가짐을알수 있으며,노이즈레벨에상웅하는극미량의 β-알루미나만이형성된것을알수 있다.
[97] 도 3은실시예 1및실시예 3내지 12에서제조된베타알루미나소결체의상대 밀도및강도를측정도시한것으로,상대밀도는 LISO
18754_2012(파인세라믹스-파인세라믹스소결체의밀도및 ¾보기기공율 시험방법)를기준으로물대신등유를이용하여측정된것이며,강도는
L1591_2008(파인세라믹스-단일체세라믹스의상온꺾임강도시험방법)를 기준으로측정된값이다.도 3과같이,본발명에따른베타알루미나가매우 높은밀도및우수한강도를가짐을알수있다.
[98] 도 4는실시예 1,실시예 13내지실시예 15에서제조된베타알루미나소결체의 이터븀산화물함량 (0.1wt%, 0.2 wt%, 0.5wt%및 lwt%)°11따른강도및비저항을 측정도시한도면으로,도 4와같이,본발명에따른베타알루미나가매우 우수한강도및낮은비저항을가짐을알수있다.
[99] 또한,주사전자현미경을이용하여미세구조를관찰하고,강도와상대밀도를 측정한결과,실시예 16에서제조된베타알루미나소결체가실시예 1에서 제조된베타알루미나소결체와유사한조직및물성을가짐을확인하였다.
[100] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[101] 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균등하거나등가적변형 o 있는모든것들은본발명사상의범주에속한다고할것이다.

Claims

청구범위
알루미나;소듬산화물;소듐을제외한알칼리금속및알칼리 토금속군에서하나이상선택된알칼리원소의산화물인알칼리 산화물;및이터븀산화물을함유하는소듐이차전지
고체전해질용베타알루미나.
제 1항에 있어서,
상기고체전해질은 5내지 20중량 %의소듐산화물, 1내지 8 중량 %의알칼리산화물, 0.01내지 1중량 %의이터븀산화물및 75 내지 93중량 %의알루미나를함유하는소듬이차전지
고체전해질용베타알루미나.
제 1항에있어서,
상기알칼리산화물은리튬산화물,마그네슘산화물또는이들의 흔합물인소듬이차전지고체전해질용베타알루미나.
소듬공급원;소듐을제외한알칼리금속및알칼리토금속군에서 하나이상선택된알칼리원소의공급원인알칼리공급원;이터븀 공급원;및알루미늄공급원;을함유하는흔합물을산소의 존재하에열처리하는단계를포함하는소듐이차전지
고체전해질용베타알루미나의제조방법.
Figure imgf000016_0001
제 4항에있어서,
상기소듐공급원은소듐의산화물 (Na20),탄산염 (Na2C03), 수산화물 (NaOH),염화물 (NaCl),질산염 (NaN03),황산염 (Na2S04), 아세트산염 (CH3C02Na)및인산염 (Na3P04)에서하나또는둘이상 선택된것이고,알칼리공급원은알칼리원소의산화물,탄산염, 수산화물,염화물,질산염,황산염,아세트산염및인산염에서하나 또는둘이상선택된것이며,이터븀공급원은이터븀의산화물, 탄산염,수산화물,염화물,질산염,황산염,아세트산염및 .
인산염에서하나또는둘이상선택된것이고,알루미늄공급원은 알루미나인소듐이차전지고체전해질용베타알루미나의 제조방법.
제 4항에 있어서,
상기제조방법은
al)소듐공급원,알칼리공급원,이터븀공급원및알루미나를 흔합하는단계;및
b)산소의존재하 1400°C내지 1600°C로열처리하는단계;
를포함하는소듐이차전지고체전해질용베타알루미나의 제조방법.
Figure imgf000016_0002
제 4항에있어서, 상기제조방법은
a2)알루미나,소듐산화물및소듐을제외한알칼리금속및알칼리 토금속군에서하나이상선택된알칼리원소의산화물인알칼리 산화물을함유하는베타알루미나모재;와이터븀공급원을 흔합하는단계;및
b)산소의존재하 1400°C내지 1600°C로열처리하는단계;
를포함하는소듐이차전지고체전해질용베타알루미나의 제조방법.
Figure imgf000017_0001
제 4항에있어서,
상기흔합물은열처리에의해수득되는생성물이 5내지 20 중량 %의소듐산화물, 1내지 8중량 %의알칼리산화물, 0.01내지 1중량 %의이터븀산화물및 75내지 93중량 %의알루미나를 함유하도록소듐공급원,알칼리공급원,이터븀공급원및 알루미늄공급원을함유하는소듐이차전지고체전해질용베타 알루미나의제조방법.
PCT/KR2013/003733 2013-04-30 2013-04-30 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법 WO2014178453A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/003733 WO2014178453A1 (ko) 2013-04-30 2013-04-30 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/003733 WO2014178453A1 (ko) 2013-04-30 2013-04-30 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2014178453A1 true WO2014178453A1 (ko) 2014-11-06

Family

ID=51843574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003733 WO2014178453A1 (ko) 2013-04-30 2013-04-30 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2014178453A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034058A1 (ko) * 2015-08-27 2017-03-02 (주)화인테크 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법
CN114614082A (zh) * 2022-03-24 2022-06-10 西北核技术研究所 具有高离子电导率的钠β氧化铝固体电解质的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834664A (ja) * 1994-07-27 1996-02-06 Ngk Insulators Ltd ベータアルミナ固体電解質の製造方法
JP2856344B2 (ja) * 1994-03-29 1999-02-10 日本碍子株式会社 ベータアルミナ固体電解質及びその製造方法
KR20120062279A (ko) * 2010-12-06 2012-06-14 삼성에스디아이 주식회사 베타 알루미나 고체 전해질 및 그 제조방법
KR20130026336A (ko) * 2011-09-05 2013-03-13 (주) 대홍기업 베타 알루미나 분말 및 베타 알루미나 소결체의 제조방법
KR20130041542A (ko) * 2011-10-17 2013-04-25 건국대학교 산학협력단 슬립캐스팅 공정을 통하여 제작된 다공성 알루미나 프리폼으로부터 알칼리 용융염 함침에 의한 베타 알루미나 고체전해질 및 그 합성 방법 및 그 조성물로 이루어진 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856344B2 (ja) * 1994-03-29 1999-02-10 日本碍子株式会社 ベータアルミナ固体電解質及びその製造方法
JPH0834664A (ja) * 1994-07-27 1996-02-06 Ngk Insulators Ltd ベータアルミナ固体電解質の製造方法
KR20120062279A (ko) * 2010-12-06 2012-06-14 삼성에스디아이 주식회사 베타 알루미나 고체 전해질 및 그 제조방법
KR20130026336A (ko) * 2011-09-05 2013-03-13 (주) 대홍기업 베타 알루미나 분말 및 베타 알루미나 소결체의 제조방법
KR20130041542A (ko) * 2011-10-17 2013-04-25 건국대학교 산학협력단 슬립캐스팅 공정을 통하여 제작된 다공성 알루미나 프리폼으로부터 알칼리 용융염 함침에 의한 베타 알루미나 고체전해질 및 그 합성 방법 및 그 조성물로 이루어진 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034058A1 (ko) * 2015-08-27 2017-03-02 (주)화인테크 열간등방가압법에 의한 베타알루미나 고체 전해질 및 이의 제조방법
CN114614082A (zh) * 2022-03-24 2022-06-10 西北核技术研究所 具有高离子电导率的钠β氧化铝固体电解质的制备方法
CN114614082B (zh) * 2022-03-24 2024-03-12 西北核技术研究所 具有高离子电导率的钠β氧化铝固体电解质的制备方法

Similar Documents

Publication Publication Date Title
Li et al. Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors
CN106848389B (zh) 复合固体电解质
CN109417194B (zh) 锂二次电池用硫化物系固体电解质
CN109980182B (zh) 电极的制造方法、电极以及电极-电解质层接合体
Xiang et al. Effect of the lithium ion concentration on the lithium ion conductivity of Ga-doped LLZO
JP6832073B2 (ja) 全固体電池用正極活物質材料の製造方法
JP2012515260A (ja) ZnAlターゲットの作製方法およびそれにより作製されたZnAlターゲット
JP2010132467A (ja) 酸化物の製造方法
Nasir et al. Li‐La‐Zr‐O Garnets with High Li‐Ion Conductivity and Air‐Stability by Microstructure‐Engineering
Lu et al. Improved Li6. 5La3Zr1. 5Nb0. 5O12 electrolyte and effects of atmosphere exposure on conductivities
KR102403956B1 (ko) 황화물 고체 전해질의 제조 방법
Li et al. Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance
Singh et al. Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells
WO2014178453A1 (ko) 소듐 이차전지 고체전해질용 베타 알루미나 및 그 제조방법
JP2011079707A (ja) セラミックス材料及びその製造方法
Singh et al. Dense composite electrolytes of Gd3+-doped cerium phosphates for low-temperature proton-conducting ceramic-electrolyte fuel cells
EP3919583A1 (en) Powder material for sintering and solid latent heat storage member using same
TWI786267B (zh) 配向性磷灰石型氧化物離子傳導體及其製造方法
Singh et al. Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7
Hitesh et al. Effect of sintering and annealing on electrochemical and mechanical characteristics of Na3Zr2Si2PO12 solid electrolyte
Goel et al. Reducibility of La2Mo2O9 based ceramics versus porosity
CN107793144A (zh) 导电性钙铝石型化合物块体的制备方法
Heywood et al. Tailoring solid‐state synthesis routes for high confidence production of phase pure, low impedance Al‐LLZO
Kazakevičius et al. La-doped LiTi2 (PO4) 3 ceramics
Wang et al. New Understanding and Improvement in Sintering Behavior of Cerium‐Rich Perovskite‐Type Protonic Electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883591

Country of ref document: EP

Kind code of ref document: A1