WO2017033506A1 - コンベヤベルトのモニタリングシステム - Google Patents

コンベヤベルトのモニタリングシステム Download PDF

Info

Publication number
WO2017033506A1
WO2017033506A1 PCT/JP2016/064285 JP2016064285W WO2017033506A1 WO 2017033506 A1 WO2017033506 A1 WO 2017033506A1 JP 2016064285 W JP2016064285 W JP 2016064285W WO 2017033506 A1 WO2017033506 A1 WO 2017033506A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
elongation
detection mechanism
tension
monitoring system
Prior art date
Application number
PCT/JP2016/064285
Other languages
English (en)
French (fr)
Inventor
剛 侯
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to AU2016310715A priority Critical patent/AU2016310715B2/en
Priority to US15/742,494 priority patent/US10294038B2/en
Priority to CN201680039657.6A priority patent/CN107848717B/zh
Priority to CN202010371239.5A priority patent/CN111498397B/zh
Publication of WO2017033506A1 publication Critical patent/WO2017033506A1/ja
Priority to US16/215,412 priority patent/US10583994B2/en
Priority to AU2019204062A priority patent/AU2019204062B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/08Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration the load-carrying surface being formed by a concave or tubular belt, e.g. a belt forming a trough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/60Arrangements for supporting or guiding belts, e.g. by fluid jets
    • B65G15/64Arrangements for supporting or guiding belts, e.g. by fluid jets for automatically maintaining the position of the belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/44Belt or chain tensioning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/10Arrangements of rollers
    • B65G39/12Arrangements of rollers mounted on framework
    • B65G39/18Arrangements of rollers mounted on framework for guiding loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0275Damage on the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Definitions

  • the present invention relates to a conveyor belt monitoring system, and more particularly, to a conveyor belt monitoring system that can accurately detect a sign that a failure such as breakage of the conveyor belt occurs.
  • the conventionally proposed method monitors the conveyor belt elongation and detects an abnormality based on the grasped elongation data.
  • conveyor belts core layers
  • the elongation of the conveyor belt is the total amount of the elongation of the core layer and the shift amount of the endless portion (joint portion) of the core layer. Therefore, even if the conveyor belt has the same specifications, the combination of the two causes variation in the elongation of the conveyor belt, and it may not be possible to determine whether or not the conveyor belt is likely to break only by the elongation of the conveyor belt. Therefore, there is room for improvement in accurately detecting precursors such as breakage of the conveyor belt only by monitoring the elongation of the conveyor belt.
  • An object of the present invention is to provide a monitoring system for a conveyor belt that can accurately detect a sign that a failure such as breakage occurs in the conveyor belt.
  • the conveyor belt monitoring system of the present invention that achieves the above object includes an elongation detection mechanism that sequentially detects the elongation of the running conveyor belt, and a tension detection that sequentially detects the tension acting on the core layer constituting the conveyor belt.
  • the conveyor belt elongation data is obtained. As compared with the case of using only the belt, it is possible to accurately detect a sign of occurrence of a failure such as a break in the conveyor belt.
  • the elongation detection mechanism detects the elongation at a plurality of locations at predetermined intervals in the width direction of the conveyor belt. Thereby, abnormal elongation unevenly distributed in the width direction of the conveyor belt can be detected. Along with this, it is possible to detect a precursor such as a breakage of the conveyor belt with higher accuracy.
  • the elongation detection mechanism can also detect the elongation at a plurality of locations at predetermined intervals in the longitudinal direction of the conveyor belt. Thereby, abnormal elongation unevenly distributed in the longitudinal direction of the conveyor belt can be detected. Along with this, it is possible to detect a precursor such as a breakage of the conveyor belt with higher accuracy.
  • the extension of the conveyor belt for example, the extension of the endless part and the non-endless part of the core layer is detected. Thereby, it becomes easy to distinguish and grasp the shift amount of the endless portion and the elongation of the non-endless portion. Accordingly, it is advantageous to accurately detect a precursor such as a breakage of the conveyor belt.
  • the tension detection mechanism may sequentially detect the tension acting on the core layer based on the power consumption of the traveling conveyor belt. With this configuration, the tension can be detected relatively easily.
  • FIG. 1 is an explanatory view illustrating the conveyor belt monitoring system of the present invention in a side view.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an explanatory view illustrating the arrangement of the tip portion of the elongation detecting mechanism in the endless portion, with the inside of the conveyor belt viewed in plan.
  • FIG. 4 is an explanatory view illustrating the arrangement of the tip portion of the elongation detecting mechanism in the non-endless portion, with the inside of the conveyor belt viewed in plan.
  • FIG. 5 is a graph illustrating the change over time of the detected conveyor belt elongation and the tension acting on the core layer.
  • the conveyor belt monitoring system 1 of the present invention illustrated in FIG.
  • the conveyor belt 6 to be monitored includes a core body layer 7 made of canvas or steel cord, and an upper cover rubber 8 and a lower cover rubber 9 sandwiching the core body layer 7. Yes.
  • the core layer 7 is a member that bears tension for tensioning the conveyor belt 6.
  • the conveyor belt 6 is configured by adding necessary members as appropriate.
  • the conveyor belt 6 is stretched between a driving pulley 10a and a driven pulley 10b and is stretched with a predetermined tension. Between the drive pulley 10a and the driven pulley 10b, the conveyor belt 6 is supported by support rollers 11 arranged at appropriate intervals in the belt longitudinal direction.
  • the lower cover rubber 9 is supported by the support roller 11 on the carrier side of the conveyor belt 6, and the upper cover rubber 8 is supported by the support roller 11 on the return side.
  • Three support rollers 11 are arranged in the belt width direction on the carrier side of the conveyor belt 6, and the conveyor belt 6 is supported in a concave shape at a predetermined trough angle by these support rollers 11.
  • the drive pulley 10a is rotationally driven by a drive motor.
  • the take-up mechanism 12 moves the driven pulley 10b, changes the distance between the driving pulley 10a and the driven pulley 10b, and applies tension to the conveyor belt 6 (heart body layer 7).
  • the conveyor belt 6 has an appropriate length, and the longitudinal ends of the core layer 7 are joined to each other. Therefore, as illustrated in FIG. 3, the conveyor belt 6 includes a portion where the core layer 7 is joined in the longitudinal direction (endless portion 6A) and a non-endless portion 6B illustrated in FIG. 4 adjacent to each other. is doing.
  • the core layer 7 is formed by a plurality of steel cords 7a arranged in parallel in the belt width direction.
  • the steel cords 7a extending from the non-endless portions 6B facing each other in the belt longitudinal direction enter every other width direction between the opposite steel cords 7a.
  • the endless portion 6A has a known structure in which a canvas extending from the non-endless portion 6B opposed in the longitudinal direction of the belt is joined in a step shape.
  • the core body layer 7 is continuously continuous, but the endless part 6 ⁇ / b> A is a seam of the core body layer 7. Therefore, the endless part 6A and the non-endless part 6B differ in the elongation of the conveyor belt 6 (the core body layer 7) and the tension acting on the core body layer 7.
  • the system 1 includes an elongation detection mechanism 2 that detects the elongation of the conveyor belt 6, a tension detection mechanism 3 that detects tension acting on the core layer 7, and data obtained by the elongation detection mechanism 2 and the tension detection mechanism 3.
  • the control unit 4 is preliminarily input with data on the allowable range of elongation of the conveyor belt 6 and the allowable range of tension that the core layer 7 can bear.
  • a warning means 5 whose operation is controlled by the control unit 4 is provided. Examples of warning means 5 include warning lights and alarm devices.
  • the elongation detection mechanism 2 includes a sensor unit 2 a disposed in the vicinity of the conveyor belt 6 and a chip unit 2 b installed on the conveyor belt 6.
  • the tip part 2b is embedded in the conveyor belt 6 by an endless part 6A and a non-endless part 6B, for example.
  • the sensor unit 2a is disposed to face a position where the chip unit 2b passes when the conveyor belt 6 travels.
  • the sensor unit 2 a is disposed in proximity to the surface of the upper cover rubber 8.
  • the tip portion 2b is installed in the endless portion 6A and the non-endless portion 6B at a plurality of locations with a spacing in the belt width direction and at a plurality of locations with a spacing in the belt longitudinal direction.
  • the sensor units 2a are installed at a plurality of locations with intervals in the belt width direction and at a plurality of locations with intervals in the belt longitudinal direction. Data detected by the sensor unit 2 a is input to the control unit 4.
  • the sensor unit 2a and the control unit 4 are connected by wire or wirelessly.
  • each chip part 2b on the conveyor belt 6 is input to the control unit 4 in advance. Further, the traveling speed of the conveyor belt 6 is sequentially input to the control unit 4.
  • the tension detection mechanism 3 includes a sensor unit 3a that detects power consumption of a drive motor that rotationally drives the drive pulley 10a, and a calculation unit 3b that calculates tension acting on the heart body layer 7 based on the detected power consumption. And. A relation between the power consumption of the drive motor calculated based on experimental data or the like and the tension acting on the heart layer 7 is input in advance to the calculation unit 3b. Therefore, when the power consumption of the drive motor is input to the calculation unit 3b, the tension acting on the core layer 7 at that time can be sequentially calculated. Data calculated by the calculation unit 3 b is input to the control unit 4. The calculation unit 3b and the control unit 4 are connected by wire or wirelessly.
  • each sensor unit 2a detects the chip unit 2b that passes therethrough.
  • the traveling speed of the conveyor belt 6 and the arrangement position of each chip portion 2b on the conveyor belt 6 are known. Therefore, based on the detection data of the sensor unit 2a, the extension of the conveyor belt 6 (heart body layer 7) at the time of passing through the detected sensor unit 2a can be sequentially detected in the section between the chip units 2b adjacent in the longitudinal direction. .
  • the power consumption required for the rotation of the drive pulley 10a is sequentially detected by the sensor unit 3a of the tension detection mechanism 3, and the tension acting on the core layer 7 is sequentially calculated by the calculation unit 3b.
  • the tension acting on the core layer 7 can be detected by other methods.
  • the tension is detected based on the axial force (the lateral force in FIG. 1) acting on the shaft that configures the take-up mechanism 12 and moves the driven pulley 10b in the longitudinal direction of the belt (the lateral direction in FIG. 1). You can also.
  • This tension can be detected by one method or by different methods.
  • the elongation detection mechanism 2 and the tension detection mechanism 3 can obtain the elongation data S1 of the conveyor belt 6 and the temporal data S2 of the tension acting on the core layer 7, as illustrated in FIG. it can. Based on these data S1 and S2, the control unit 4 detects whether or not there is a sign that the conveyor belt 6 may be broken. That is, the control unit 4 determines that there is no sign of failure when the data S1 and S2 are within the preset allowable ranges. On the other hand, if at least one of the data S1 and S2 is out of the preset allowable range, it is determined that there is a sign of malfunction. If it is determined that there is a sign of a failure, the warning means 5 is activated to inform the operator, manager, etc. that there is a risk of the failure.
  • the conveyor belt 6 breaks in a state where a large amount of the conveyed product C is placed on the conveyor belt 6, a great amount of man-hours are required for processing the dropped conveyed product C and repairing or replacing the conveyor belt 6.
  • the portion where a problem is likely to occur can be grasped in advance using the present invention, it is possible to carry out repairs, exchanges, etc. after taking measures such as reducing the conveyed product C on the conveyor belt 6. As a trader, it is possible to minimize the loss without incurring a large loss.
  • the elongation detection mechanism 2 detects the elongation at a plurality of locations at predetermined intervals in the width direction of the conveyor belt 6. Therefore, abnormal elongation unevenly distributed in the width direction of the conveyor belt 6 can be detected. Accordingly, it is possible to detect a precursor such as a breakage of the conveyor belt 6 with higher accuracy.
  • the chip portions 2b are preferably arranged over the entire width at a predetermined pitch in the width direction of the conveyor belt 6. For example, three or more chip portions 2 b are arranged at equal intervals in the width direction of the conveyor belt 6.
  • the conveyor belt 6 travels in a trough-like bent state, so that the stretch of the conveyor belt 6 and the tension acting on the core layer 7 are considerably different depending on the position in the belt width direction. Then, the breakage of the conveyor belt 6 (the core layer 7) occurs starting from the weakest part. Therefore, as in this embodiment, the chip portion 2b is arranged at the width direction center portion (flat portion in FIG. 2) and the width direction end portion (inclined portion in FIG. 2) of the conveyor belt 6 to detect elongation. Is extremely effective for accurately detecting a precursor such as a breakage of the conveyor belt 6.
  • the elongation detection mechanism 2 detects the elongation at a plurality of locations at predetermined intervals in the longitudinal direction of the conveyor belt 6. Therefore, abnormal elongation unevenly distributed in the longitudinal direction of the conveyor belt 6 can be detected. Along with this, it is possible to detect a precursor such as a breakage of the conveyor belt with higher accuracy. It is preferable to arrange
  • the elongation of the endless portion 6A and the non-endless portion 6B of the conveyor belt 6 is detected. Therefore, it becomes easy to distinguish and grasp the longitudinal shift amount of the steel cord 7a in the endless portion 6A and the elongation of the non-endless portion 6B.
  • the steel cord 7a is largely displaced in the longitudinal direction at the endless portion 6A, so-called endless portion. It can be determined that 6A may be lost. Accordingly, it is advantageous to accurately detect a precursor such as a breakage of the conveyor belt 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Belt Conveyors (AREA)

Abstract

コンベヤベルトに破断等の不具合が生じる前兆を精度よく検出することができるコンベヤベルトのモニタリングシステムを提供する。 走行中のコンベヤベルト6の伸びを伸び検知機構2により逐次検知するとともに、このコンベヤベルト6を構成する心体層7に作用する張力を張力検知機構3により逐次検知して、これら得られたデータに基づいて制御部4により、コンベヤベルト6の異常の有無を監視して、コンベヤベルト6に異常が発生しているか否かを把握する。

Description

コンベヤベルトのモニタリングシステム
 本発明は、コンベヤベルトのモニタリングシステムに関し、さらに詳しくはコンベヤベルトに破断等の不具合が生じる前兆を精度よく検出することができるコンベヤベルトのモニタリングシステムに関するものである。
 鉄鉱石や石灰石等の鉱物資源をはじめとして様々な物がコンベヤベルトによって搬送される。これらの搬送物はホッパや別のコンベヤベルトからコンベヤベルトの上カバーゴムの表面に投入される。そして例えば、投入された搬送物によって上カバーゴムが破壊されて、コンベヤベルトの張力を負担する心体層が損傷すると、張力を十分に負担することができなくなる。心体層が破断するとコンベヤベルトを稼動することが不可能になって、搬送作業の中断が余儀なくされる。破断したコンベヤベルトを修理や交換して復旧には多大な時間と費用が必要となる。そのため、このようなコンベヤベルトの不具合を早期に検知する方法が種々提案されている(例えば、特許文献1参照)。
 しかしながら、従来提案されている方法はコンベヤベルトの伸びをモニタリングして、把握した伸びのデータに基づいて異常を検知する仕組みになっている。しかしながら、伸びが大きくても破断し難いコンベヤベルト(心体層)もある。また、コンベヤベルトの伸びは、心体層の伸びと心体層のエンドレス部(繋ぎ部)のずれ量との合計量となる。したがって、同仕様のコンベヤベルトであっても両者の組み合わせによってコンベヤベルトの伸びにはばらつきが生じ、コンベヤベルトの伸びだけではコンベヤベルトが破断しそうか否かを判断できないことがある。それ故、コンベヤベルトの伸びをモニタリングするだけでは、コンベヤベルトの破断等の前兆を精度よく検出するには改善の余地があった。
日本国特開2010-52927号公報 日本国特開2006-44853号公報
 本発明の目的は、コンベヤベルトに破断等の不具合が生じる前兆を精度よく検出することができるコンベヤベルトのモニタリングシステムを提供することにある。
 上記目的を達成する本発明のコンベヤベルトのモニタリングシステムは、走行中のコンベヤベルトの伸びを逐次検知する伸び検知機構と、このコンベヤベルトを構成する心体層に作用する張力を逐次検知する張力検知機構と、これら伸び検知機構および張力検知機構により得られたデータが入力される制御部とを備え、前記入力されたデータに基づいて前記制御部により前記コンベヤベルトの異常の有無を監視することを特徴とする。
 本発明によれば、走行中のコンベヤベルトの伸びだけでなく、心体層に作用する張力も逐次検知するので、これら得られた伸びと張力のデータを用いることにより、コンベヤベルトの伸びのデータだけを用いる場合に比して、コンベヤベルトに破断等の不具合が生じる前兆を精度よく検出することが可能になる。
 ここで例えば、前記伸び検知機構により、コンベヤベルトの幅方向に所定の間隔をあけた複数箇所での伸びを検知する。これにより、コンベヤベルトの幅方向に偏在する異常な伸びを検知することができる。これに伴って、一段と精度よくコンベヤベルトの破断等の前兆を検出できる。
 前記伸び検知機構により、コンベヤベルトの長手方向に所定の間隔をあけた複数箇所での伸びを検知することもできる。これにより、コンベヤベルトの長手方向に偏在する異常な伸びを検知することができる。これに伴って、一段と精度よくコンベヤベルトの破断等の前兆を検出できる。
 前記コンベヤベルトの伸びとして、例えば、心体層のエンドレス部および非エンドレス部の伸びを検知する。これにより、エンドレス部のずれ量と非エンドレス部の伸びを区別して把握し易くなる。これに伴って、精度よくコンベヤベルトの破断等の前兆を検出するには有利になる。
 前記張力検知機構が、走行する前記コンベヤベルトの消費電力に基づいて前記心体層に作用する張力を逐次検知する構成にすることもできる。この構成により、比較的簡便に張力を検知することが可能になる。
図1は本発明のコンベヤベルトのモニタリングシステムを側面視で例示する説明図である。 図2は図1のA-A断面図である。 図3は伸び検知機構のチップ部のエンドレス部における配置を、コンベヤベルトの内部を平面視にして例示する説明図である。 図4は伸び検知機構のチップ部の非エンドレス部における配置を、コンベヤベルトの内部を平面視にして例示する説明図である。 図5は検知したコンベヤベルトの伸びおよび心体層に作用する張力の経時変化を例示するグラフ図である。
 以下、本発明のコンベヤベルトのモニタリングシステムを図に示した実施形態に基づいて説明する。
 図1に例示する本発明のコンベヤベルトのモニタリングシステム1(以下、システム1という)は、実際のコンベヤベルトラインのコンベヤベルト6に適用される。監視対象となるコンベヤベルト6は図2に例示するように、帆布またはスチールコードで構成される心体層7と、心体層7を挟む上カバーゴム8と下カバーゴム9とにより構成されている。心体層7は、コンベヤベルト6を張設するためのテンションを負担する部材である。コンベヤベルト6はその他、適宜、必要な部材を付加して構成される。
 コンベヤベルト6は、駆動プーリ10aと従動プーリ10bとの間に架け渡されていて所定のテンションで張設されている。駆動プーリ10aと従動プーリ10bとの間ではコンベヤベルト6は、ベルト長手方向に適宜の間隔で配置された支持ローラ11によって支持される。
 コンベヤベルト6のキャリア側では下カバーゴム9が支持ローラ11により支持され、リターン側では上カバーゴム8が支持ローラ11により支持されている。コンベヤベルト6のキャリア側ではベルト幅方向に3つの支持ローラ11が配置されていて、これらの支持ローラ11によってコンベヤベルト6は所定のトラフ角度で凹状に支持されている。
 駆動プーリ10aは駆動モータにより回転駆動される。テークアップ機構12は従動プーリ10bを移動させて、駆動プーリ10aと従動プーリ10bとの間隔を変化させてコンベヤベルト6(心体層7)に張力を作用させる。
 コンベヤベルト6は適宜の長さで、心体層7の長手方向端部どうしを心体層7を継ぎ合わせている。したがって、コンベヤベルト6には図3に例示するように、長手方向に心体層7を継ぎ合せている部分(エンドレス部6A)と、図4に例示する非エンドレス部6Bとが隣り合って存在している。このコンベヤベルト6では、心体層7がベルト幅方向に並列された複数のスチールコード7aにより形成されている。エンドレス部6Aでは、ベルト長手方向に対向する非エンドレス部6Bから延びるスチールコード7aが互いに幅方向に1本おきに相手側のスチールコード7aの間に入り込んでいる。
 心体層7が帆布により形成されている場合、エンドレス部6Aでは、ベルト長手方向に対向する非エンドレス部6Bから延びる帆布がステップ状に接合される等の公知の構造にされる。非エンドレス部6Bでは心体層7が継ぎ目無く連続しているが、エンドレス部6Aは心体層7の継ぎ目になっている。それ故、エンドレス部6Aと非エンドレス部6Bとでは、コンベヤベルト6(心体層7)の伸びや心体層7に作用する張力には相違が生じる。
 このシステム1は、コンベヤベルト6の伸びを検知する伸び検知機構2と、心体層7に作用する張力を検知する張力検知機構3と、伸び検知機構2および張力検知機構3により得られたデータが逐次入力される制御部4とを備えている。制御部4には、コンベヤベルト6の伸びの許容範囲、心体層7が負担できる張力の許容範囲のデータが予め入力されている。さらにこの実施形態では、制御部4によって作動が制御される警告手段5が設けられている。警告手段5としては、警告灯や警報装置等を例示できる。
 伸び検知機構2は、コンベヤベルト6に近接して配置されるセンサ部2aとコンベヤベルト6に設置されるチップ部2bとを備えている。チップ部2bは、例えば、エンドレス部6Aおよび非エンドレス部6Bでコンベヤベルト6に埋設される。センサ部2aは、コンベヤベルト6が走行する際にチップ部2bが通過する位置に対向して配置される。この実施形態では、コンベヤベルト6のリターン側で、上カバーゴム8の表面に近接してセンサ部2aが配置されている。
 また、この実施形態では、チップ部2bがエンドレス部6Aおよび非エンドレス部6Bに、ベルト幅方向に間隔をあけて複数箇所、ベルト長手方向に間隔をあけて複数箇所に設置されている。センサ部2aは、ベルト幅方向に間隔をあけて複数箇所、ベルト長手方向に間隔をあけて複数箇所に設置されている。センサ部2aによる検知データは制御部4に入力される。センサ部2aと制御部4とは、有線または無線で接続される。
 尚、それぞれのチップ部2bのコンベヤベルト6における配置位置は、制御部4に予め入力されている。また、制御部4には、コンベヤベルト6の走行速度が逐次入力される。
 張力検知機構3は、駆動プーリ10aを回転駆動する駆動モータの消費電力を検知するセンサ部3aと、この検知した消費電力に基づいて心体層7に作用している張力を演算する演算部3bとを備えている。演算部3bには、実験データ等に基づいて算出された駆動モータの消費電力と心体層7に作用する張力との関係が予め入力されている。したがって、演算部3bに駆動モータの消費電力が入力されると、その時に心体層7に作用している張力が逐次算出可能になっている。演算部3bによる算出データは制御部4に入力される。演算部3bと制御部4とは、有線または無線で接続される。
 次に、このシステム1を用いてコンベヤベルト6の異常の有無を監視する方法を説明する。
 実際のコンベヤベルトラインでは、コンベヤベルト6を走行させつつ、例えば、ホッパ等を通じて搬送物を上カバーゴム8の表面に投入する。このコンベヤベルト6の走行中にそれぞれのセンサ部2aは、通過するチップ部2bを検知する。コンベヤベルト6の走行速度およびそれぞれのチップ部2bのコンベヤベルト6における配置位置は既知である。したがって、センサ部2aの検知データに基づいて、長手方向に隣り合うチップ部2bどうしの区間について、検知したセンサ部2aを通過した時点におけるコンベヤベルト6(心体層7)の伸びを逐次検知できる。
 また、張力検知機構3のセンサ部3aにより、駆動プーリ10aの回転に要する消費電力を逐次検知して演算部3bにより心体層7に作用している張力を逐次算出する。このようにコンベヤベルト6の走行に要する消費電力に基づいて心体層7に作用する張力を逐次検知する構成によれば、比較的簡便に張力を検知することが可能になる。
 心体層7に作用する張力は他の方法でも検知することができる。例えば、テークアップ機構12を構成して従動プーリ10bをベルト長手方向(図1では左右方向)に移動させるシャフトに作用する軸力(図1の左右方向の力)に基づいて張力を検知することもできる。この張力は、1つの方法によって、または、異なる複数の方法によって検知することができる。
 上述のようにして、伸び検知機構2および張力検知機構3により、図5に例示するようにコンベヤベルト6の伸びの経時データS1および心体層7に作用する張力の経時データS2を得ることができる。これらデータS1、S2に基づいてコンベヤベルト6に破断等の不具合が生じる前兆が有るか否かを制御部4により検出する。即ち、制御部4では、データS1、S2がそれぞれ予め設定している許容範囲にある場合は、不具合の前兆がないと判断する。一方、データS1、S2の少なくもと一方が予め設定している許容範囲から外れている場合は、不具合の前兆があると判断する。不具合の前兆があると判断した場合は、警告手段5を作動させて作業者や管理者等に対して、不具合が発生する危険性があることを伝える。
 それぞれのデータS1、S2を許容範囲と比較するとともに、または、許容範囲と比較することなく、いずれか一方のデータS1、S2に、短時間に大きな変化が発生した場合に、不具合の前兆があると判断する構成にすることもできる。
 このように本発明では、走行中のコンベヤベルト6の伸びだけでなく、心体層7に作用する張力も逐次検知することによって、得られた伸びのデータS1と張力のデータS2を利用する。それ故、伸びのデータS1だけを用いる従来技術に比して、コンベヤベルト6に破断等の不具合が生じる前兆を精度よく検出するには有利になる。その際に、他の部分に比して伸びが大きい部分も判明するので、不具合が発生しそうな部分も把握することができる。これにより、迅速に不具合の点検、修理等を行うことができる。
 コンベヤベルト6の上に多量の搬送物Cが載っている状態でコンベヤベルト6が破断すると、落下した搬送物Cの処理やコンベヤベルト6の修理、交換に多大な工数を要する。しかし、本発明を用いて不具合が発生しそうな部分を事前に把握できれば、コンベヤベルト6の上の搬送物Cを減少させる等の処置を講じてから修理、交換等を行うことができるので、当業者としては多大な損失を被ることなく、損失を最小限に抑えることが可能になる。
 この実施形態では、伸び検知機構2により、コンベヤベルト6の幅方向に所定の間隔をあけた複数箇所での伸びを検知している。そのため、コンベヤベルト6の幅方向に偏在する異常な伸びを検知することができる。これに伴って、一段と精度よくコンベヤベルト6の破断等の前兆を検出できる。チップ部2bは、コンベヤベルト6の幅方向に所定のピッチで全幅に渡って配置することが好ましい。例えば、コンベヤベルト6の幅方向に等間隔で3個以上のチップ部2bを配置する。
 コンベヤベルト6は図2に例示したように、トラフ状に屈曲した状態で走行するので、ベルト幅方向位置によって、コンベヤベルト6の伸びや心体層7に作用する張力は相当に異なる。そして、コンベヤベルト6(心体層7)の破断等は、最も弱い部分が起点になって発生する。それ故、この実施形態のように、コンベヤベルト6の幅方向中央部(図2の平坦部)と幅方向端部(図2の傾斜部)にチップ部2bを配置して伸びを検知することは、コンベヤベルト6の破断等の前兆を精度よく検出するには極めて有効である。
 また、この実施形態では、伸び検知機構2により、コンベヤベルト6の長手方向に所定の間隔をあけた複数箇所での伸びを検知している。そのため、コンベヤベルト6の長手方向に偏在する異常な伸びを検知することができる。これに伴って、一段と精度よくコンベヤベルトの破断等の前兆を検出できる。チップ部2bは、コンベヤベルト6の長手方向に所定のピッチで全長に渡って配置して、全長に渡って均等な長さ区間毎に伸びを検知することが好ましい。
 この実施形態では、コンベヤベルト6(心体層7)のエンドレス部6Aおよび非エンドレス部6Bの伸びを検知している。そのため、エンドレス部6Aにおけるスチールコード7aの長手方向のずれ量と非エンドレス部6Bの伸びを区別して把握し易くなる。例えば、非エンドレス部6Bの伸びが増大していないにも拘らず、エンドレス部6Aの伸びが大きく増大している場合は、エンドレス部6Aでスチールコード7aが長手方向に大きくずれて、いわゆるエンドレス部6Aの抜けが発生する可能性があると判断できる。これに伴って、精度よくコンベヤベルト6の破断等の前兆を検出するには有利になる。
1 モニタリングシステム
2 伸び検知機構
2a センサ部
2b チップ部
3 張力検知機構
3a センサ部
3b 演算部
4 制御部
5 警告手段
6 コンベヤベルト
6A エンドレス部
6B 非エンドレス部
7 心体層
7a スチールコード
8 上カバーゴム
9 下カバーゴム
10a、10b プーリ
11 支持ローラ
12 テークアップ機構

Claims (5)

  1.  走行中のコンベヤベルトの伸びを逐次検知する伸び検知機構と、このコンベヤベルトを構成する心体層に作用する張力を逐次検知する張力検知機構と、これら伸び検知機構および張力検知機構により得られたデータが入力される制御部とを備え、前記入力されたデータに基づいて前記制御部により前記コンベヤベルトの異常の有無を監視することを特徴とするコンベヤベルトのモニタリングシステム。
  2.  前記伸び検知機構により、コンベヤベルトの幅方向に所定の間隔をあけた複数箇所での伸びを検知する請求項1に記載のコンベヤベルトのモニタリングシステム。
  3.  前記伸び検知機構により、コンベヤベルトの長手方向に所定の間隔をあけた複数箇所での伸びを検知する請求項1または2に記載のコンベヤベルトのモニタリングシステム。
  4.  前記コンベヤベルトの伸びとして、心体層のエンドレス部および非エンドレス部の伸びを検知する請求項1~3のいずれかに記載のコンベヤベルトのモニタリングシステム。
  5.  前記張力検知機構が、走行する前記コンベヤベルトの消費電力に基づいて前記心体層に作用する張力を逐次検知する請求項1~4のいずれかに記載のコンベヤベルトのモニタリングシステム。
PCT/JP2016/064285 2015-08-24 2016-05-13 コンベヤベルトのモニタリングシステム WO2017033506A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016310715A AU2016310715B2 (en) 2015-08-24 2016-05-13 Conveyor belt monitoring system
US15/742,494 US10294038B2 (en) 2015-08-24 2016-05-13 Conveyor belt monitoring system
CN201680039657.6A CN107848717B (zh) 2015-08-24 2016-05-13 传送带监控系统
CN202010371239.5A CN111498397B (zh) 2015-08-24 2016-05-13 传送带监控系统
US16/215,412 US10583994B2 (en) 2015-08-24 2018-12-10 Conveyor belt monitoring system
AU2019204062A AU2019204062B2 (en) 2015-08-24 2019-06-11 Conveyor belt monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015164730A JP6790339B2 (ja) 2015-08-24 2015-08-24 コンベヤベルトのモニタリングシステム
JP2015-164730 2015-08-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/742,494 A-371-Of-International US10294038B2 (en) 2015-08-24 2016-05-13 Conveyor belt monitoring system
US16/215,412 Continuation US10583994B2 (en) 2015-08-24 2018-12-10 Conveyor belt monitoring system

Publications (1)

Publication Number Publication Date
WO2017033506A1 true WO2017033506A1 (ja) 2017-03-02

Family

ID=58099824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064285 WO2017033506A1 (ja) 2015-08-24 2016-05-13 コンベヤベルトのモニタリングシステム

Country Status (5)

Country Link
US (2) US10294038B2 (ja)
JP (1) JP6790339B2 (ja)
CN (2) CN107848717B (ja)
AU (2) AU2016310715B2 (ja)
WO (1) WO2017033506A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189960A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
WO2018189958A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
WO2018189959A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
WO2018189955A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
CN109305531A (zh) * 2018-11-29 2019-02-05 山西潞安环保能源开发股份有限公司五阳煤矿 一种基于x射线输送带异物在线检测装置
CN110506283A (zh) * 2017-04-14 2019-11-26 横滨橡胶株式会社 传送带的管理系统
US20230416009A1 (en) * 2022-06-22 2023-12-28 Pablo Gonzalez Predictive maintenance system, methods, and apparatus for use with conveyor belts

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819242B2 (ja) * 2016-11-24 2021-01-27 横浜ゴム株式会社 コンベヤベルトでのループコイルの埋設深さの設定方法およびコンベヤベルトの製造方法
JP6939271B2 (ja) 2017-08-31 2021-09-22 横浜ゴム株式会社 コンベヤベルトのモニタリングシステム
JP7170568B2 (ja) * 2019-03-19 2022-11-14 株式会社東芝 紙葉類処理装置および紙葉類処理方法
JP7317352B2 (ja) * 2019-06-12 2023-07-31 太陽金網株式会社 メッシュベルト検査装置およびメッシュベルト検査方法
DE102020216501A1 (de) * 2020-12-22 2022-06-23 Contitech Transportbandsysteme Gmbh Verfahren zum Betrieb einer Förderbandanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143576A (ja) * 1974-10-14 1976-04-14 Bando Chemical Ind Konbeyaberutosochi
JP2001240231A (ja) * 2000-03-02 2001-09-04 Amada Co Ltd 回転走行部材の張力監視方法およびその装置
JP2005106761A (ja) * 2003-10-02 2005-04-21 Bridgestone Corp コンベアベルトの伸び測定方法および伸び測定装置。

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU180827B (en) * 1979-08-10 1983-04-29 Koezponti Banyaszati Fejleszte Method for measuring the resistance to wear of endless driving devices during operation
US4621727A (en) * 1985-08-13 1986-11-11 The Goodyear Tire & Rubber Company Conveyor belt damage sensor
CA2313396C (en) * 1998-02-13 2004-10-26 Phoenix Aktiengesellschaft Device for continuously monitoring the junction of a conveyor belt
JP2006156423A (ja) * 2003-07-09 2006-06-15 Bridgestone Corp ゴム磁石シートおよびゴム磁石シートの製造方法
WO2005005292A1 (ja) 2003-07-09 2005-01-20 Bridgestone Corporation コンベアベルトの伸び測定方法および伸び測定装置、コンベアベルトの摩耗度合測定方法およびコンベアベルト摩耗度合測定装置、コンベアベルトの温度測定方法およびコンベアベルト温度測定装置、ならびに、ゴム磁石シートおよびゴム磁石シートの製造方法
JP2006044853A (ja) 2004-08-03 2006-02-16 Bridgestone Corp コンベアベルトの伸び測定方法およびコンベアベルト伸び測定装置
JP4932222B2 (ja) * 2005-04-13 2012-05-16 株式会社ブリヂストン コンベヤベルトの摩耗検出装置
GB0515176D0 (en) * 2005-07-23 2005-08-31 Renold Plc Transmission chain monitoring system
US7894934B2 (en) * 2006-12-05 2011-02-22 Veyance Technologies, Inc. Remote conveyor belt monitoring system and method
PL2117976T3 (pl) * 2007-01-26 2014-09-30 Advanced Imaging Tech Proprietary Ltd Monitorowanie pasów przenośnikowych
DE102007043686A1 (de) * 2007-09-13 2009-03-19 Barry Charles Brown Förderbandüberwachung
JP2010052927A (ja) 2008-08-29 2010-03-11 Bridgestone Corp コンベヤベルトのモニタリングシステム
DE102010036331A1 (de) * 2010-07-12 2012-01-12 Phoenix Conveyor Belt Systems Gmbh Einrichtung zur Überwachung der Verbindung eines Fördergurtes mittels energiereicher Strahlen, insbesondere Röntgenstrahlen
CN201932678U (zh) * 2010-11-10 2011-08-17 韩刚 钢丝绳芯输送带接头动态曲线的测定装置
CN104053616B (zh) * 2012-01-23 2016-05-25 Abb技术有限公司 用于监测传送带的状况的系统和方法
EP2815993B1 (en) * 2013-06-18 2018-08-22 ABB Schweiz AG Splice monitoring system for conveyor belts in mining industry
RS55880B1 (sr) * 2013-11-25 2017-08-31 Veyance Technologies Inc Postupak za nadzor spojki na pokretnoj traci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143576A (ja) * 1974-10-14 1976-04-14 Bando Chemical Ind Konbeyaberutosochi
JP2001240231A (ja) * 2000-03-02 2001-09-04 Amada Co Ltd 回転走行部材の張力監視方法およびその装置
JP2005106761A (ja) * 2003-10-02 2005-04-21 Bridgestone Corp コンベアベルトの伸び測定方法および伸び測定装置。

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536848A (zh) * 2017-04-14 2019-12-03 横滨橡胶株式会社 传送带的管理系统
WO2018189959A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
CN110494376A (zh) * 2017-04-14 2019-11-22 横滨橡胶株式会社 传送带的管理系统
CN110506017A (zh) * 2017-04-14 2019-11-26 横滨橡胶株式会社 传送带的管理系统
JP2018177481A (ja) * 2017-04-14 2018-11-15 横浜ゴム株式会社 コンベヤベルトの管理システム
JP2018177480A (ja) * 2017-04-14 2018-11-15 横浜ゴム株式会社 コンベヤベルトの管理システム
JP2018177478A (ja) * 2017-04-14 2018-11-15 横浜ゴム株式会社 コンベヤベルトの管理システム
JP2018177479A (ja) * 2017-04-14 2018-11-15 横浜ゴム株式会社 コンベヤベルトの管理システム
US11132651B2 (en) 2017-04-14 2021-09-28 The Yokohama Rubber Co., Ltd. Conveyor belt management system
WO2018189958A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
WO2018189955A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
CN110506283A (zh) * 2017-04-14 2019-11-26 横滨橡胶株式会社 传送带的管理系统
WO2018189960A1 (ja) * 2017-04-14 2018-10-18 横浜ゴム株式会社 コンベヤベルトの管理システム
CN110546089A (zh) * 2017-04-14 2019-12-06 横滨橡胶株式会社 传送带的管理系统
US10793371B2 (en) 2017-04-14 2020-10-06 The Yokohama Rubber Co., Ltd. Conveyor belt management system
US10865051B2 (en) 2017-04-14 2020-12-15 The Yokohama Rubber Co., Ltd. Conveyor belt management system
CN109305531A (zh) * 2018-11-29 2019-02-05 山西潞安环保能源开发股份有限公司五阳煤矿 一种基于x射线输送带异物在线检测装置
US20230416009A1 (en) * 2022-06-22 2023-12-28 Pablo Gonzalez Predictive maintenance system, methods, and apparatus for use with conveyor belts

Also Published As

Publication number Publication date
AU2016310715A1 (en) 2018-01-04
US20200017309A1 (en) 2020-01-16
JP2017043425A (ja) 2017-03-02
AU2016310715B2 (en) 2019-06-20
US20180201449A1 (en) 2018-07-19
CN107848717B (zh) 2020-06-05
AU2019204062B2 (en) 2021-04-15
JP6790339B2 (ja) 2020-11-25
AU2019204062A1 (en) 2019-07-04
CN111498397A (zh) 2020-08-07
CN107848717A (zh) 2018-03-27
US10294038B2 (en) 2019-05-21
US10583994B2 (en) 2020-03-10
CN111498397B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2017033506A1 (ja) コンベヤベルトのモニタリングシステム
US6851546B2 (en) Chain wear monitoring method and apparatus
US20090120768A1 (en) Device for monitoring a conveyor
EP1931583B1 (en) Conveyor belt monitoring
WO2016075981A1 (ja) コンベヤベルトの摩耗モニタリングシステム
CN110099860B (zh) 传送带的监控系统
WO2016174941A1 (ja) コンベヤベルトの摩耗モニタリングシステム
CN102640986A (zh) 用于对烟草加工工业的传输和/或存储装置用的输送链进行监测的装置和方法
US9359147B2 (en) Pipe belt orientation monitoring
CN105366523A (zh) 乘客输送机的链条单方伸长检测装置
JP6707201B2 (ja) 乗客コンベアの異常検出装置
JP2016216138A (ja) 乗客コンベアの異常検出装置および乗客コンベアの異常検出方法
EP3656721B1 (en) Monitoring device for a conveyor
CN109678040B (zh) 人员输送器和确定用于驱动人员输送器的扶手元件的功率的方法
JP6445381B2 (ja) コンベヤベルト及びコンベヤベルト装置
CN105283395A (zh) 用于采矿业中的传送带的接头监视系统
JP5929507B2 (ja) 動力伝達チェーンの検査方法および検査装置
RU2437819C1 (ru) Вертикальный ленточный конвейер
Djekić et al. Mathematical modeling of the beginning of delamination at rubber conveyor belts
JP2019064785A (ja) コンベヤベルトの接合部分の監視方法およびコンベヤベルト装置
JP2003026385A (ja) 乗客コンベヤーの駆動装置
JP2004137040A (ja) 乗客コンベアの安全装置
SE455414B (sv) Drivanordning for bandtransportor
JP2005343599A (ja) 搬送設備及びその異常回避方法
JP2010095345A (ja) パイプコンベア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016310715

Country of ref document: AU

Date of ref document: 20160513

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15742494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838853

Country of ref document: EP

Kind code of ref document: A1