WO2017033311A1 - 劣化度推定装置及び劣化度推定方法 - Google Patents

劣化度推定装置及び劣化度推定方法 Download PDF

Info

Publication number
WO2017033311A1
WO2017033311A1 PCT/JP2015/074021 JP2015074021W WO2017033311A1 WO 2017033311 A1 WO2017033311 A1 WO 2017033311A1 JP 2015074021 W JP2015074021 W JP 2015074021W WO 2017033311 A1 WO2017033311 A1 WO 2017033311A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
battery
degree
internal resistance
storage
Prior art date
Application number
PCT/JP2015/074021
Other languages
English (en)
French (fr)
Inventor
博信 下澤
酒井 健一
賢司 保坂
友透 白土
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2017536134A priority Critical patent/JP6414336B2/ja
Priority to PCT/JP2015/074021 priority patent/WO2017033311A1/ja
Priority to EP15902280.5A priority patent/EP3343689B1/en
Priority to US15/754,607 priority patent/US11022653B2/en
Priority to CN201580082690.2A priority patent/CN107925135B/zh
Publication of WO2017033311A1 publication Critical patent/WO2017033311A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a deterioration degree estimation device and a deterioration degree estimation method for estimating a deterioration degree of a battery.
  • a method of determining the degree of deterioration of a lithium ion secondary battery a method of detecting the degree of battery deterioration from the internal resistance of the secondary battery is known.
  • the nature of the battery when the battery deteriorates, the internal resistance of the battery increases. Therefore, the deterioration degree of the battery can be detected from the internal resistance.
  • the current and voltage flowing through the battery are detected, and the internal resistance of the battery is calculated from a predetermined formula.
  • a table for specifying the degree of deterioration from the internal resistance is stored. Then, the degree of deterioration is calculated using the stored table (Patent Document 1).
  • the above-described deterioration degree determination method has a problem that the degree of deterioration estimation accuracy is low because the deterioration degree of the battery is determined using only the internal resistance of the battery.
  • the problem to be solved by the present invention is to provide a degradation degree estimation apparatus or degradation degree estimation method with high estimation accuracy.
  • the present invention manages the deterioration of either the battery cycle deterioration or the battery storage deterioration, estimates the battery deterioration degree as the estimated deterioration degree based on the increase rate of the internal resistance of the battery, and manages the cycle deterioration.
  • the cycle deterioration is larger, the estimated deterioration degree is reduced, and in the case of managing the storage deterioration, the above problem is solved by increasing the estimated deterioration degree as the storage deterioration is larger.
  • the value corresponding to how the battery is used is reflected in the calculation of the deterioration degree, so that the estimation accuracy of the deterioration degree is improved.
  • FIG. 1 is a block diagram of a degradation level estimation apparatus according to an embodiment of the present invention.
  • the deterioration degree estimation device is provided in a vehicle or the like having a battery. Note that the deterioration level estimation device is not limited to a vehicle, and may be provided in another device including a battery.
  • the deterioration level estimation device includes a battery 1, a load 2, a current sensor 3, a voltage sensor 4, and a battery controller 10.
  • the battery 1 includes a plurality of secondary batteries connected in series or in parallel.
  • the secondary battery is a lithium ion battery, a nickel metal hydride battery, or the like.
  • the battery 1 is connected to a charger (not shown).
  • the load 2 is connected to the battery 1 by wiring.
  • the load 2 is driven by the power of the battery 1.
  • the load 2 is a motor or the like.
  • the current sensor 3 and the voltage sensor 4 detect the state of the battery and are electrically connected to the battery 1.
  • the current sensor 3 detects the current of the battery 1.
  • the voltage sensor 4 detects the voltage of the battery 1. Detection values of the current sensor 3 and the voltage sensor 4 are output to the battery controller 10.
  • the battery controller 10 is a control device that manages the state of the battery 1.
  • FIG. 2 is a block diagram of the battery controller 10.
  • the battery controller 10 includes a CPU, a ROM, and the like.
  • the battery controller 10 has a control unit shown in FIG. 2 as a functional block for estimating the degree of deterioration of the battery 1.
  • the battery controller 10 includes an internal resistance management unit 20, a degradation management unit 30, and a degradation level estimation unit 40.
  • the internal resistance management unit 20 manages the internal resistance of the battery 1 based on the detection current of the current sensor 3 and the detection voltage of the voltage sensor 4.
  • the internal resistance management unit 20 includes an internal resistance detection unit 21 and a resistance increase rate calculation unit 22.
  • the internal resistance detection unit 21 detects (calculates) the internal resistance of the battery 1 based on the detection value of the current sensor 3 and the detection value of the voltage sensor 4.
  • the resistance increase rate calculation unit 22 calculates the increase rate of the internal resistance.
  • the degradation management unit 30 manages the cycle degradation of the battery 1.
  • the deterioration management unit 30 manages the cycle deterioration degree by calculating the current integrated value of the battery 1.
  • the deterioration management unit 30 includes an actual current integrated value calculation unit 31, a time management unit 32, a reference current integrated value calculation unit 33, and an integrated value ratio calculation unit 34.
  • the actual current integrated value calculation unit 31 calculates the current integrated value of the battery 1 by integrating the detected current of the current sensor 3.
  • the time management unit 32 manages the elapsed time from the start of use of the battery 1.
  • the reference current integrated value calculation unit 33 calculates a reference current integrated value based on the elapsed time managed by the time management unit 32.
  • the current integrated value calculated by the actual current integrated value calculation unit 31 is an actual integrated value of the discharge current.
  • the reference current integrated value calculated by the reference current integrated value calculating unit 33 is a current integrated value corresponding to the elapsed time, and is not an actual integrated value of the discharge current.
  • the integrated value ratio calculation unit 34 calculates the ratio of the current integrated value.
  • the ratio is the actual current integrated value with respect to the reference current integrated value.
  • the deterioration level estimation unit 40 calculates the deterioration level of the battery 1 based on the internal resistance of the battery 1. Further, the deterioration level estimation unit 40 corrects the deterioration level corresponding to the internal resistance according to the magnitude of the current integration value ratio calculated by the integration value ratio calculation unit 34. Thereby, the deterioration degree estimation unit 40 estimates the corrected deterioration degree as the final deterioration degree of the battery 1.
  • FIG. 3 is a graph showing a correspondence relationship between the resistance increase rate, the ratio of the integrated current value, and the capacity maintenance rate. Note that steps S1 to S7 in the block diagram of FIG. 2 show a control flow of the degradation degree estimation method.
  • the internal resistance detection unit 21 acquires the detection current and the detection voltage using the current sensor 3 and the voltage sensor 4, and plots the acquired detection current and the detection voltage on a graph with the current value and the voltage value as axes.
  • an IV characteristic that is an approximate straight line of the plotted current value and voltage value is calculated, and an internal resistance is calculated from the slope of the IV characteristic (step S1).
  • the method of calculating the internal resistance is not limited to the method of calculating from the slope of the IV characteristic, and other methods may be used. For example, calculation is performed by substituting the current value detected by the current sensor 3 and the voltage value detected by the voltage sensor 4 into a battery model expression stored in advance, including the current value, voltage value, and internal resistance as parameters. can do. Since these internal resistance calculation methods are well-known techniques, they will not be described in detail here.
  • the resistance increase rate calculation unit 22 includes an initial value of internal resistance (the internal resistance value corresponding to the internal resistance value when the battery 1 is new and stored in advance), and the internal resistance calculated by the internal resistance detection unit 21. By calculating the ratio, the resistance increase rate is calculated (step S2).
  • the resistance increase rate corresponds to the ratio of the calculated value of the internal resistance to the initial value of the internal resistance. That is, the resistance increase rate means an increase rate with respect to the initial value of the internal resistance.
  • the initial value of the internal resistance may be a value stored in advance in the resistance increase rate calculation unit 22. Alternatively, it may be a value calculated by the internal resistance detection unit 21 at the start of use of the battery 1.
  • the resistance increase rate calculation unit 22 outputs the calculated resistance increase rate to the deterioration degree estimation unit 40.
  • the actual current integrated value calculation unit 31 calculates the actual current integrated value of the battery 1 by integrating the detected current of the current sensor 3 (step S3).
  • the current integrated value is an integrated value of the discharge current of the battery 1. Further, the current integrated value is a current integrated value from the start of use of the battery 1 to the present.
  • the time management unit 32 manages the elapsed time of the battery 1 while corresponding to the calculation timing of the current integrated value by the actual current integrated value calculating unit 31 (step S4).
  • the reference current integrated value calculation unit 33 calculates the current integrated value corresponding to the elapsed time as the reference current integrated value (step S5).
  • the reference current integrated value is a value in which the current integrated value at the elapsed time is set in advance.
  • the reference current integrated value is a value set in advance as an evaluation value obtained by evaluating the integrated value of the discharge current under a predetermined environment. The longer the elapsed time, the larger the reference current integrated value. For example, when 1C charging and 1C discharging are repeated a predetermined number of times in a predetermined period, the integrated value of the discharge time during the predetermined period becomes the reference current integrated value corresponding to the predetermined period.
  • the correspondence relationship between the elapsed time and the reference current integrated value is stored in advance in the reference current integrated value calculation unit 33 using a map or the like.
  • the integrated value ratio calculation unit 34 calculates the ratio of the current integrated value (step S6).
  • the ratio of the current integrated value is a ratio between the actual current integrated value at a predetermined elapsed time and the reference current integrated value corresponding to the predetermined elapsed time.
  • the ratio of the current integrated value is high, the actual current integrated value becomes large, so that the cycle deterioration becomes larger than the storage deterioration.
  • the ratio of the current integrated value is low, the actual current integrated value is smaller than the current integrated value (equivalent to the reference current integrated value) that has been evaluated in advance. Cycle degradation is reduced. That is, the ratio of the integrated current value represents the ratio of the influence of cycle deterioration over the elapsed time.
  • storage deterioration is deterioration that occurs over time regardless of charge / discharge of the battery
  • cycle deterioration means deterioration that occurs due to charge / discharge of the battery.
  • the degree of deterioration of the battery 1 is represented by storage deterioration and cycle deterioration. That is, the deterioration of the battery 1 includes storage deterioration and cycle deterioration.
  • the ratio that the storage deterioration affects the deterioration degree and the cycle deterioration affects the deterioration degree. The percentage to do depends on how the battery is used.
  • the internal resistance increase rate reaches the predetermined value, if the cycle deterioration affects the deterioration degree of the battery 1 rather than the storage deterioration, the deterioration rate of the battery 1 is large, and therefore the elapsed time from the start of use. Is also shortened.
  • the internal resistance increase rate reaches the predetermined value, when the storage deterioration affects the deterioration degree of the battery 1 rather than the cycle deterioration, the deterioration rate of the battery 1 is small. Elapsed time increases.
  • the degree of deterioration of the battery 1 is greater. That is, if the internal resistance increase rate is the same, the deterioration degree of the battery 1 decreases as the cycle deterioration increases, and the deterioration degree of the battery 1 increases as the storage deterioration increases.
  • the deterioration level estimation unit 40 estimates the deterioration level of the battery 1 using this characteristic.
  • the deterioration degree estimation unit 40 stores in advance a correspondence relationship between the resistance increase rate, the current integrated value ratio, and the capacity maintenance rate as a map. As shown in FIG. 3, in the correspondence relationship represented by the map, the capacity retention rate decreases as the resistance increase rate increases. Further, when the resistance increase rate is set to a constant value, the capacity maintenance rate decreases as the ratio of the current integrated value decreases. In other words, when the degree of deterioration of the battery is set to a constant value, it can be said that the capacity maintenance ratio decreases as the cycle deterioration ratio decreases, that is, the storage deterioration ratio increases.
  • the deterioration degree estimation unit 40 refers to the map, and estimates the capacity maintenance rate corresponding to the ratio of the integrated current value and the resistance increase rate as the current capacity maintenance rate of the battery 1 (step S7).
  • the deterioration degree estimation unit 40 estimates the current deterioration degree of the battery 1 so that the deterioration degree of the battery 1 decreases as the ratio of the current integrated value increases. Thereby, the deterioration degree estimation unit 40 corrects the resistance deterioration degree calculated based on the internal resistance of the battery 1 so that the resistance deterioration degree becomes smaller as the cycle deterioration is larger, and the corrected resistance deterioration degree is Estimated as current degradation.
  • the internal resistance of the battery 1 is calculated, the cycle deterioration of the battery 1 is managed, and the deterioration degree of the battery 1 is estimated based on the increasing rate of the internal resistance of the battery 1. And the estimated deterioration degree of the battery 1 is made small, so that cycle deterioration is large. Thereby, the estimation precision of the deterioration degree of the battery 1 can be improved.
  • cycle deterioration is managed by calculating the current integrated value of the battery 1. Thereby, it is possible to easily grasp how the battery 1 is used.
  • a map representing a correspondence relationship between the increase rate of the internal resistance, the current integrated value, and the deterioration degree is stored in advance, and the deterioration degree is estimated with reference to the map.
  • the deterioration degree estimation unit 40 calculates a deterioration degree corresponding to the increase rate of the internal resistance, corrects the calculated deterioration degree based on the current integrated value, and calculates the corrected deterioration degree as The degree of deterioration of the battery 1 may be estimated.
  • a map representing a correspondence relationship between the increase rate of the internal resistance and the deterioration level is stored in advance.
  • a correction coefficient for correcting the deterioration level is set in advance. The correction coefficient changes according to the current integrated value.
  • the maximum value of the correction coefficient is set to 1.0, and the correction coefficient decreases as the ratio of the current integrated value decreases.
  • the deterioration degree estimation unit 40 estimates the final deterioration degree by multiplying the deterioration degree calculated from the map by a correction coefficient. Thereby, when the internal resistance of the battery 1 reaches a certain internal resistance, the estimated deterioration degree becomes smaller as the cycle deterioration becomes larger.
  • the set value of the correction coefficient may be a value other than 1.0, and the calculation method for correcting the degree of deterioration may be another method.
  • the deterioration degree estimation unit 40 may correct the increase rate of the internal resistance based on the integrated current value.
  • a map representing a correspondence relationship between the increase rate of the internal resistance and the deterioration level is stored in advance.
  • a correction coefficient for correcting the internal resistance increase rate is set in advance. The correction coefficient changes according to the current integrated value. The maximum value of the correction coefficient is set to 1.0, and the correction coefficient increases as the ratio of the integrated current value decreases.
  • the deterioration degree estimation unit 40 calculates the corrected internal resistance increase rate by multiplying the increase rate of the internal resistance by a correction coefficient. The smaller the ratio of the integrated current value, the greater the corrected internal resistance increase rate. Then, the degradation level estimation unit 40 refers to the map and estimates the degradation level corresponding to the corrected internal resistance increase rate as the final degradation level.
  • the deterioration level estimation unit 40 may correct the deterioration level based on the temperature of the battery 1.
  • the degree of deterioration of the battery 1 depends on the temperature, and the progress of deterioration varies depending on the temperature of the battery 1.
  • the battery 1 has a characteristic that it easily deteriorates at a certain temperature and hardly deteriorates at other temperatures.
  • the deterioration degree estimation unit 40 stores a correction coefficient that represents the relationship between deterioration and temperature, and performs correction based on the temperature by multiplying the deterioration degree estimated as described above by the correction coefficient. Thereby, the estimation precision of a deterioration degree can be raised.
  • the deterioration degree correction method may be a calculation method using a map in addition to a method of multiplying by a correction coefficient.
  • the temperature of the battery 1 may be detected by a sensor provided in the battery 1.
  • the deterioration degree estimation unit 40 may correct the deterioration degree based on the state of charge (SOC: State of Charge) of the battery 1.
  • SOC State of Charge
  • the degree of deterioration of the battery 1 depends on the SOC, and the degree of progress of the deterioration varies depending on the SOC of the battery 1 (the SOC when the battery 1 is stored and the SOC when the battery 1 is used). .
  • the battery 1 has a characteristic that it is easily deteriorated with a certain SOC and hardly deteriorated with another SOC.
  • the deterioration level estimation unit 40 stores a correction coefficient representing the relationship between the SOC and the temperature, and performs correction based on the SOC by multiplying the deterioration level estimated as described above by the correction coefficient. Thereby, the estimation precision of a deterioration degree can be raised.
  • the deterioration degree correction method may be a calculation method using a map in addition to a method of multiplying by a correction coefficient.
  • the SOC of the battery 1 may be obtained by calculation using the detection value of the current sensor 3 or the detection value of the voltage sensor 4.
  • FIG. 4 is a block diagram of the battery controller 10.
  • the battery controller 10 includes an internal resistance management unit 20, a deterioration degree estimation unit 40, and a storage deterioration management unit 50.
  • the configuration of the internal resistance management unit 20 is the same as the configuration of the internal resistance management unit 20 according to the first embodiment.
  • the storage deterioration management unit 50 manages the storage deterioration of the battery 1.
  • the storage deterioration management unit 50 manages the storage deterioration of the battery 1 by measuring the elapsed time of the battery 1 using a timer.
  • the storage deterioration is deterioration that progresses with time due to a chemical reaction between the battery electrode and the electrolyte.
  • the storage deterioration management unit 50 measures the elapsed time after the electrode touches the electrolyte, and obtains the current storage deterioration based on the elapsed time.
  • the storage deterioration managed by the storage deterioration management unit 50 is storage deterioration from when the electrode touches the electrolyte until the current time.
  • the storage deterioration management unit 50 measures the time from when the electrode touches the electrolyte to the current time as the elapsed time, and calculates the storage deterioration based on the elapsed time.
  • FIG. 5 shows the characteristics of storage deterioration.
  • FIG. 5 is a graph showing temporal characteristics of storage deterioration.
  • the horizontal axis represents the square root of time
  • the vertical axis represents the capacity retention rate and the degree of deterioration of storage.
  • the characteristics shown in FIG. 5 can be acquired by a general storage test for battery evaluation.
  • the storage deterioration management unit 50 stores a map representing the relationship between elapsed time and storage deterioration.
  • the storage deterioration management unit 50 refers to this map and calculates the deterioration degree corresponding to the elapsed time as the storage deterioration.
  • the deterioration level estimation unit 40 stores in advance a correspondence relationship between the resistance increase rate, the storage deterioration level, and the capacity maintenance rate as a map.
  • the capacity retention rate decreases as the resistance increase rate increases.
  • the resistance increase rate is set to a constant value
  • the capacity retention rate decreases as the storage deterioration degree increases.
  • the degradation level estimation unit 40 refers to the map and estimates the capacity maintenance rate corresponding to the storage degradation level and the resistance increase rate as the current capacity maintenance rate of the battery 1.
  • the deterioration degree estimation unit 40 estimates the current deterioration degree of the battery 1 so that the deterioration degree of the battery 1 increases as the storage deterioration degree increases.
  • the deterioration degree estimation unit 40 corrects the resistance deterioration degree calculated based on the internal resistance of the battery 1 so that the resistance deterioration degree becomes larger as the storage deterioration is larger. Estimated as current degradation.
  • the internal resistance of the battery 1 is calculated, the storage deterioration of the battery 1 is managed, and the deterioration degree of the battery 1 is estimated based on the increasing rate of the internal resistance of the battery 1. Then, as the storage deterioration is larger, the estimated deterioration degree of the battery 1 is increased. Thereby, the estimation precision of the deterioration degree of the battery 1 can be improved.
  • the storage deterioration management unit 50 measures time using a timer mounted on the vehicle, the time from when the electrode touches the electrolyte in the battery manufacturing process to when the vehicle timer starts timing is Cannot keep time. Therefore, the time from when the electrode touches the electrolyte to when the time measurement is started by the vehicle timer is managed as a certain time, and the certain time is added to the time measured by the timer. The time from when the electrode touches the electrolyte to when the time is started by the vehicle timer is minimal as compared to the life of the battery 1 and may be ignored for simplicity.
  • the storage deterioration management unit 50 may correct the storage deterioration based on the temperature of the battery 1.
  • the storage deterioration has temperature dependence as shown in FIG.
  • FIG. 6 is a graph showing the time characteristic of the deterioration coefficient.
  • the horizontal axis in FIG. 6 indicates the square root of time, and the vertical axis indicates the deterioration coefficient.
  • the deterioration coefficient is a coefficient multiplied by the capacity maintenance rate. The smaller the degradation coefficient, the smaller the capacity maintenance rate and the greater the degree of degradation. Further, if the time is the same length, the deterioration coefficient decreases as the temperature increases.
  • the storage deterioration management unit 50 stores in advance a correction coefficient that represents the relationship between storage deterioration and temperature. This correction coefficient corresponds to the deterioration coefficient.
  • the deterioration coefficient indicated by the characteristic in FIG. 6 is a coefficient that is multiplied by the capacity maintenance ratio, but the correction coefficient is set to a coefficient that can calculate the degree of deterioration while maintaining the relationship indicated by the characteristic in FIG. .
  • the storage deterioration management unit 50 stores the temperature information output from the temperature sensor of the battery 1 in the memory based on the time information of the timer and the frequency of the temperature so far in units of a certain period.
  • the storage deterioration management unit 50 corrects the storage deterioration degree using the temperature information stored in the memory. Specifically, for example, the storage deterioration management unit 50 obtains the time during which the battery 1 has been exposed to the temperature using the stored frequency occurrence frequency information. Next, the storage degradation management unit 50 calculates a storage degradation level for the obtained time, and multiplies the storage degradation level by a correction coefficient.
  • the storage deterioration management unit 50 performs the same calculation for each temperature section, and calculates the storage deterioration degree for each section.
  • the storage degradation management unit 50 calculates the final storage degradation level by integrating the storage degradation levels for each section. Accordingly, the storage deterioration management unit 50 corrects the storage deterioration based on the temperature of the battery 1. In the present embodiment, by applying temperature sensitivity to storage deterioration of the battery 1, the calculation accuracy of the storage deterioration degree can be increased.
  • the storage deterioration management unit 50 may correct the storage deterioration based on the SOC of the battery 1. As a characteristic of the battery 1, the storage deterioration has a dependency on the SOC as shown in FIG.
  • FIG. 7 is a graph showing the time characteristic of the deterioration coefficient.
  • the horizontal axis in FIG. 7 indicates the square root of time, and the vertical axis indicates the deterioration coefficient.
  • the deterioration coefficient is the same as the deterioration coefficient shown in FIG. The smaller the degradation coefficient, the smaller the capacity maintenance rate and the greater the degree of degradation. Further, if the time is the same length, the deterioration coefficient decreases as the SOC increases.
  • the storage deterioration management unit 50 stores in advance a correction coefficient representing the relationship between storage deterioration and SOC.
  • the storage deterioration management unit 50 stores the SOC in the memory in units of a predetermined period based on the SOC frequency so far based on the time information of the timer.
  • the storage deterioration management unit 50 corrects the storage deterioration level using the SOC information stored in the memory. Specifically, for example, the storage deterioration management unit 50 obtains the time that the battery 1 has maintained the SOC using the stored SOC frequency information. Next, the storage degradation management unit 50 calculates a storage degradation level for the obtained time, and multiplies the storage degradation level by a correction coefficient.
  • the storage deterioration management unit 50 performs the same calculation for each SOC section, and calculates the storage deterioration degree for each section. Then, the storage degradation management unit 50 calculates the final storage degradation level by integrating the storage degradation levels for each section. Thereby, the storage deterioration management unit 50 corrects the storage deterioration based on the SOC of the battery 1. In the present embodiment, by applying the SOC sensitivity to the storage deterioration of the battery 1, the calculation accuracy of the storage deterioration degree can be increased.
  • the storage deterioration management unit 50 may correct the storage deterioration degree based on the temperature and SOC of the battery 1 by combining the two modifications described above.
  • the above-described storage degradation management unit 50 corresponds to the degradation management unit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 本発明は、バッテリの使われ方に相当する値を劣化度の演算に反映させることにより、バッテリの劣化度を高い精度で推定できるようにしたものである。バッテリの内部抵抗を検出する内部抵抗検出部(21)と、バッテリの充放電によって発生する劣化(バッテリのサイクル劣化)又はバッテリの充放電に関わらず経時的に発生する劣化(バッテリの保存劣化)の少なくともいずれか一方の劣化を管理する劣化管理部(30)と、内部抵抗の増加率に基づきバッテリの劣化度を推定劣化度として推定する劣化度推定部(40)とを備え、劣化度推定部(40)は、劣化管理部がサイクル劣化を管理する場合には、サイクル劣化の影響が大きいほど推定劣化度を小さくし、劣化管理部が保存劣化を管理する場合には、保存劣化の影響が大きいほど推定劣化度を大きくする。

Description

劣化度推定装置及び劣化度推定方法
 本発明は、バッテリの劣化度を推定する劣化度推定装置及び劣化度推定方法に関するものである。
 リチウムイオン二次電池の劣化度を判定する方法として、二次電池の内部抵抗から電池の劣化度を検出する方法が知られている。電池の性質として、電池が劣化すると電池の内部抵抗が増加するため、電池の劣化度は内部抵抗から検出できる。まず、電池に流れる電流と電圧が検出され、所定の式から電池の内部抵抗が演算される。内部抵抗から劣化度を特定するためのテーブルが記憶されている。そして、記憶されたテーブルを用いて、劣化度が演算される(特許文献1)。
特開2008-228492号公報
 しかしながら、上記の劣化度判定方法では、電池の内部抵抗だけを用いて電池の劣化度を判定しているため、劣化度の推定精度が低いという問題があった。
 本発明が解決しようとする課題は、推定精度の高い劣化度推定装置又は劣化度推定方法を提供することである。
 本発明は、バッテリのサイクル劣化又はバッテリの保存劣化のいずれか一方の劣化を管理し、バッテリの内部抵抗の増加率に基づきバッテリの劣化度を推定劣化度として推定し、サイクル劣化を管理する場合には、サイクル劣化が大きいほど推定劣化度を小さくし、保存劣化を管理する場合には、保存劣化が大きいほど推定劣化度を大きくすることによって上記課題を解決する。
 本発明によれば、バッテリの内部抵抗が増加した場合に、バッテリの使われ方に相当する値を劣化度の演算に反映させているので、劣化度の推定精度が高まるという効果を奏する。
本発明の実施形態に係る劣化度推定装置のブロック図である。 図1のバッテリコントローラのブロック図である。 抵抗増加率、電流積算値の比率及び容量維持率の特性を示すグラフである。 本発明の他の実施形態に係る劣化度推定装置における、バッテリコントローラのブロック図である。 容量維持率及び劣化度の時間特性を示すグラフである。 バッテリ温度と劣化係数との関係を示した時間特性のグラフである。 SOCと劣化係数との関係を示した時間特性のグラフである。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、本発明の実施形態に係る劣化度推定装置のブロック図である。劣化度推定装置は、バッテリを有する車両等に設けられている。なお、劣化度推定装置は、車両に限らず、バッテリを備えた他の装置に設けられてもよい。
 劣化度推定装置は、バッテリ1と、負荷2と、電流センサ3と、電圧センサ4と、バッテリコントローラ10とを備えている。バッテリ1は、直列又は並列に接続された複数の二次電池により構成されている。二次電池は、リチウムイオン電池、ニッケル水素電池等である。バッテリ1は、図示しない充電器に接続されている。
 負荷2は、バッテリ1と配線により接続されている。負荷2は、バッテリ1の電力により駆動される。負荷2は、モータ等である。電流センサ3及び電圧センサ4は、バッテリの状態を検出し、バッテリ1に電気的に接続されている。電流センサ3は、バッテリ1の電流を検出する。電圧センサ4は、バッテリ1の電圧を検出する。電流センサ3及び電圧センサ4の検出値は、バッテリコントローラ10に出力される。バッテリコントローラ10は、バッテリ1の状態を管理する制御装置である。
 次に、図2を用いて、バッテリコントローラ10の構成を説明する。図2は、バッテリコントローラ10のブロック図である。バッテリコントローラ10は、CPU、ROM等により構成されている。バッテリコントローラ10は、バッテリ1の劣化度を推定するための機能ブロックとして、図2に示す制御ユニットを有している。バッテリコントローラ10は、内部抵抗管理部20と、劣化管理部30と、劣化度推定部40とを有している。
 内部抵抗管理部20は、電流センサ3の検出電流及び電圧センサ4の検出電圧に基づき、バッテリ1の内部抵抗を管理する。内部抵抗管理部20は、内部抵抗検出部21と、抵抗増加率算出部22とを有している。
 内部抵抗検出部21は、電流センサ3の検出値及び電圧センサ4の検出値に基づき、バッテリ1の内部抵抗を検出(算出)する。抵抗増加率算出部22は、内部抵抗の増加率を算出する。
 劣化管理部30は、バッテリ1のサイクル劣化を管理する。本実施形態において、劣化管理部30は、バッテリ1の電流積算値を算出することで、サイクル劣化度を管理している。劣化管理部30は、実電流積算値算出部31と、時間管理部32と、基準電流積算値算出部33と、積算値比率算出部34とを有している。
 実電流積算値算出部31は、電流センサ3の検出電流を積算することで、バッテリ1の電流積算値を算出する。時間管理部32は、バッテリ1の使用開始時からの経過時間を管理している。基準電流積算値算出部33は、時間管理部32により管理されている経過時間に基づき、基準電流積算値を算出する。実電流積算値算出部31により算出される電流積算値は、実際の放電電流の積算値である。一方、基準電流積算値算出部33により算出される基準電流積算値は、経過時間と対応させた電流積算値であって、実際の放電電流の積算値ではない。
 積算値比率算出部34は、電流積算値の比率を演算する。比率は、基準電流積算値に対する実際の電流積算値である。
 劣化度推定部40は、バッテリ1の内部抵抗に基づきバッテリ1の劣化度を算出する。また、劣化度推定部40は、積算値比率算出部34により算出される電流積算の値比率の大きさに応じて、内部抵抗に対応する劣化度を補正する。これにより、劣化度推定部40は、補正後の劣化度を、バッテリ1の最終的な劣化度して推定している。
 次に、図2及び図3を参照しつつ、バッテリ1の劣化度の推定方法を説明する。図3は、抵抗増加率、電流積算値の比率及び容量維持率の対応関係を示すグラフである。なお、図2のブロック図のステップS1~S7は、劣化度推定方法の制御フローを示している。
 内部抵抗検出部21は、電流センサ3と電圧センサ4を用いて、検出電流と検出電圧を取得し、取得した検出電流と検出電圧を電流値と電圧値のそれぞれを軸としたグラフ上にプロットすると共に、プロットした電流値及び電圧値の近似直線であるIV特性を算出し、IV特性の傾きから内部抵抗を算出する(ステップS1)。なお、内部抵抗の算出方法は、IV特性の傾きから演算する方法に限らず、他の方法でもよい。例えば、電流値、電圧値、内部抵抗をパラメータに含む、予め記憶されている電池モデル式に電流センサ3で検出された電流値と電圧センサ4で検出された電圧値とを代入する事によって算出することができる。これらの内部抵抗の算出方法に関しては周知の技術であるのでここでは詳述しない。
 抵抗増加率算出部22は、内部抵抗の初期値(バッテリ1が新品時の内部抵抗値に相当し、予め記憶されている内部抵抗値)と、内部抵抗検出部21により算出された内部抵抗との比を算出することで、抵抗増加率を算出する(ステップS2)。抵抗増加率は、内部抵抗の初期値に対する内部抵抗の算出値の比に相当する。すなわち抵抗増加率とは、内部抵抗の初期値に対する増加割合を意味する。内部抵抗の初期値は、抵抗増加率算出部22に予め記憶した値でもよい。または、バッテリ1の使用開始時に、内部抵抗検出部21により算出した値としてもよい。抵抗増加率算出部22は、算出した抵抗増加率を劣化度推定部40に出力する。
 実電流積算値算出部31は、電流センサ3の検出電流を積算することで、バッテリ1の実際の電流積算値を算出する(ステップS3)。電流積算値は、バッテリ1の放電電流の積算値である。また、電流積算値は、バッテリ1の使用開始時から現在までの電流積算値である。時間管理部32は、実電流積算値算出部31による電流積算値の算出タイミングと対応しつつ、バッテリ1の経過時間を管理している(ステップS4)。
 基準電流積算値算出部33は、経過時間と対応する電流積算値を、基準電流積算値として算出している(ステップS5)。基準電流積算値は、経過時間における電流積算値を予め設定した値である。基準電流積算値は、所定の環境下で、放電電流の積算値を評価した評価値として、予め設定される値である。経過時間が長いほど、基準電流積算値は大きくなる。例えば、所定の期間において、1C充電及び1C放電を所定回数繰り返した場合に、所定期間中の放電時間の積算値が、当該所定期間に対応する基準電流積算値となる。経過時間と基準電流積算値との対応関係は、マップ等により、予め基準電流積算値算出部33に記憶されている。
 積算値比率算出部34は電流積算値の比率を算出する(ステップS6)。電流積算値の比率は、所定の経過時間における実際の電流積算値と、当該所定の経過時間に対応する基準電流積算値との比である。電流積算値の比率が高い場合には、実際の電流積算値が大きくなるため、保存劣化と比較して、サイクル劣化は大きくなる。一方、電流積算値の比率が低い場合には、予め評価していた電流積算値(基準電流積算値に相当)に対して、実際の電流積算値が小さくなるため、保存劣化と比較して、サイクル劣化は小さくなる。すなわち、電流積算値の比率が、経過時間におけるサイクル劣化の影響の割合を表している。なおここで、一般的に、保存劣化とはバッテリの充放電に関わらず経時的に発生する劣化であり、サイクル劣化とはバッテリの充放電によって発生する劣化を意味する。
 ところで、バッテリ1の特性として、バッテリ1の劣化が進むにつれて、内部抵抗が増加する。そのため、内部抵抗の増加率から、バッテリ1の劣化度を算出することが可能である。バッテリ1の劣化度は保存劣化とサイクル劣化で表される。すなわち、バッテリ1の劣化には保存劣化とサイクル劣化とが含まれている。劣化度への影響でみたときに、バッテリ1の劣化度が同じ値(内部抵抗の増加率が同じ)であっても、保存劣化が劣化度に影響する割合と、サイクル劣化が劣化度に影響する割合は、バッテリの使い方によって異なる。
 ここで、バッテリ1の使用開始時から所定期間が経過し、内部抵抗増加率が所定値に達したとする。内部抵抗増加率が当該所定値に達した時に、保存劣化よりもサイクル劣化の方がバッテリ1の劣化度に影響した場合には、バッテリ1の劣化速度が大きいため、使用開始時からの経過時間も短くなる。一方、内部抵抗増加率が当該所定値に達した時に、サイクル劣化よりも保存劣化の方がバッテリ1の劣化度に影響した場合には、バッテリ1の劣化速度は小さいため、使用開始時からの経過時間は長くなる。そして、長い時間をかけて、内部抵抗増加率が当該所定値に達した場合の方が、バッテリ1の劣化度は大きい。すなわち、同一の内部抵抗増加率であれば、サイクル劣化が大きいほどバッテリ1の劣化度は小さくなり、保存劣化が大きいほどバッテリ1の劣化度は大きくなる。劣化度推定部40は、この特性を用いてバッテリ1の劣化度を推定している。
 劣化度推定部40は、抵抗増加率、電流積算値の比率及び容量維持率の対応関係をマップとして予め記憶している。図3に示すように、マップで表される対応関係は、抵抗増加率が大きいほど容量維持率は小さくなる。また、抵抗増加率を一定値にした場合に、電流積算値の比率が小さいほど、容量維持率は小さくなる。これは言い換えれば、バッテリの劣化度を一定値とおいた場合に、サイクル劣化の比率が小さいほど、すなわち保存劣化の比率が大きいほど容量維持率が小さくなると言える。更には、バッテリの劣化度を一定値とおいた場合に、サイクル劣化の比率が大きいほど、すなわち保存劣化の比率が小さいほど容量維持率が大きくなるとも言える。容量維持率は、バッテリ1の劣化度と逆数の関係にあり、容量維持率が高いほど劣化度は小さくなる。劣化度推定部40は、マップを参照し、電流積算値の比率及び抵抗増加率に対応する容量維持率をバッテリ1の現在の容量維持率として推定する(ステップS7)。抵抗増加率が同一値である場合に、電流積算値の比率が大きいほどバッテリ1の劣化度が小さくなるように、劣化度推定部40は、バッテリ1の現在の劣化度を推定する。これにより、劣化度推定部40は、バッテリ1の内部抵抗に基づき算出した抵抗劣化度に対して、サイクル劣化が大きいほど抵抗劣化度が小さくなるように補正し、補正後の抵抗劣化度を、現在の劣化として推定する。
 上記のように、本実施形態は、バッテリ1の内部抵抗を演算し、バッテリ1のサイクル劣化を管理し、バッテリ1の内部抵抗の増加率に基づきバッテリ1の劣化度を推定する。そして、サイクル劣化が大きいほど、バッテリ1の推定劣化度を小さくする。これにより、バッテリ1の劣化度の推定精度を高めることができる。
 また本実施形態では、バッテリ1の電流積算値を算出することで、サイクル劣化を管理している。これにより、バッテリ1の使われ方を容易に把握することができる。
 また本実施形態では、内部抵抗の増加率、電流積算値、及び劣化度の対応関係を表すマップを予め記憶し、当該マップを参照して劣化度を推定している。これにより、バッテリの使われ方に応じた劣化度の推移を、電池特性に応じて把握できるため、バッテリ1の劣化度の推定精度を高めることができる。
 なお本実施形態の変形例として、劣化度推定部40は、内部抵抗の増加率に対応する劣化度を算出し、算出した劣化度を電流積算値に基づき補正し、補正された劣化度を、バッテリ1の劣化度として推定してもよい。劣化度推定部40には、内部抵抗の増加率と劣化度との対応関係を表すマップが予め記憶されている。劣化度推定部40には、劣化度を補正するための補正係数が予め設定されている。補正係数は電流積算値に応じて変化する。補正係数の最大値は1.0に設定されており、電流積算値の比率が小さいほど、補正係数が小さくなる。そして、劣化度推定部40は、マップから算出された劣化度に対して補正係数を乗ずることで、最終的な劣化度を推定する。これにより、バッテリ1の内部抵抗がある内部抵抗に達した場合に、サイクル劣化が大きいほど、推定される劣化度が小さくなる。なお、補正係数の設定値は1.0以外の値でもよく、劣化度を補正するための演算方法は、他の方法であってもよい。
 また本実施形態の変形例として、劣化度推定部40は、電流積算値に基づき内部抵抗の増加率を補正してもよい。劣化度推定部40には、内部抵抗の増加率と劣化度との対応関係を表すマップが予め記憶されている。また劣化度推定部40には、内部抵抗増加率を補正するための補正係数が予め設定されている。補正係数は電流積算値に応じて変化する。補正係数の最大値は1.0に設定されており、電流積算値の比率が小さいほど、補正係数が大きくなる。劣化度推定部40は、内部抵抗の増加率に対して補正係数を乗ずることで、補正後の内部抵抗増加率を算出する。電流積算値の比率が小さいほど、補正後の内部抵抗増加率は大きくなる。そして、劣化度推定部40は、マップを参照して、補正後の内部抵抗増加率に対応する劣化度を、最終的な劣化度として推定する。
 また、本実施形態の変形例として、劣化度推定部40は、バッテリ1の温度に基づき劣化度を補正してもよい。バッテリ1の劣化度は温度に対して依存性をもっており、バッテリ1の温度に応じて、劣化の進行具合も異なってくる。バッテリ1は、ある温度では劣化し易く、他の温度では劣化し難いという特性を持っている。劣化度推定部40は、劣化と温度との関係を表す補正係数を記憶しており、上記のように推定された劣化度に対して補正係数を乗ずることで、温度に基づいて補正を行う。これにより、劣化度の推定精度を高めることができる。なお、劣化度の補正方法は、補正係数を乗ずる方法以外に、マップを用いた演算方法等でもよい。バッテリ1の温度は、バッテリ1に設けたセンサにより検出されればよい。
 また、本実施形態の変形例として、劣化度推定部40は、バッテリ1の充電状態(SOC:State of Charge)に基づき劣化度を補正してもよい。バッテリ1の劣化度はSOCに対して依存性をもっており、バッテリ1のSOC(バッテリ1を保存した時のSOC、バッテリ1を使用した時のSOC)に応じて、劣化の進行具合も異なってくる。バッテリ1は、あるSOCでは劣化し易く、他のSOCでは劣化し難いという特性を持っている。劣化度推定部40は、SOCと温度との関係を表す補正係数を記憶しており、上記のように推定された劣化度に対して補正係数を乗ずることで、SOCに基づいて補正を行う。これにより、劣化度の推定精度を高めることができる。なお、劣化度の補正方法は、補正係数を乗ずる方法以外に、マップを用いた演算方法等でもよい。バッテリ1のSOCは、電流センサ3の検出値又は電圧センサ4の検出値を用いて、演算により求めればよい。
《第2実施形態》
 図4を用いて、本発明の他の実施形態に係る劣化度推定装置を説明する。本実施形態では、上述した第1実施形態に対して、バッテリ1の保存劣化を管理し、保存劣化の大きさに応じて、バッテリ1の劣化度を推定する点が異なる。これ以外の構成は上述した第1実施形態と同じであり、その記載を援用する。図4は、バッテリコントローラ10のブロック図である。
 バッテリコントローラ10は、内部抵抗管理部20と、劣化度推定部40と、保存劣化管理部50とを有している。内部抵抗管理部20の構成は、第1実施形態に係る内部抵抗管理部20の構成と同様である。
 保存劣化管理部50は、バッテリ1の保存劣化を管理する。本実施形態において、保存劣化管理部50は、タイマーを用いてバッテリ1の経過時間を計測することで、バッテリ1の保存劣化を管理している。保存劣化は、バッテリの電極と電解質との化学反応によって経時的に進行する劣化である。保存劣化管理部50は、電極が電解質に触れてからの経過時間を計測し、当該経過時間に基づいて現在の保存劣化を求める。
 保存劣化管理部50で管理される保存劣化は、電極が電解質に触れてから現在時刻までの保存劣化としている。保存劣化管理部50、電極が電解質に触れてから現在時刻までの時間を経過時間として計測し、当該経過時間に基づき保存劣化を算出する。
 図5に保存劣化の特性を示す。図5は、保存劣化の時間特性を示すグラフである。図5に横軸は時間の平方根を示し、縦軸は容量維持率及び保存劣化の劣化度を示す。なお、図5に示す特性は、電池評価の一般的な保存試験によって取得できる。
 図5に示すように、保存劣化は、時間の平方根に比例して進行している。保存劣化管理部50には、経過時間と保存劣化との関係を表すマップが記憶されている。保存劣化管理部50は、このマップを参照して、経過時間に対応する劣化度を、保存劣化として算出する。
 劣化度推定部40は、抵抗増加率、保存劣化度及び容量維持率の対応関係をマップとして予め記憶している。マップで表される対応関係は、抵抗増加率が大きいほど容量維持率は小さくなる。また、抵抗増加率を一定値にした場合に、保存劣化度が大きいほど、容量維持率は小さくなる。劣化度推定部40は、マップを参照し、保存劣化度及び抵抗増加率に対応する容量維持率をバッテリ1の現在の容量維持率として推定する。抵抗増加率が同一値である場合に、保存劣化度が大きいほどバッテリ1の劣化度が大きくなるように、劣化度推定部40は、バッテリ1の現在の劣化度を推定する。これにより、劣化度推定部40は、バッテリ1の内部抵抗に基づき算出した抵抗劣化度に対して、保存劣化が大きいほど抵抗劣化度が大きくなるように補正し、補正後の抵抗劣化度を、現在の劣化として推定する。
 上記のように、本実施形態は、バッテリ1の内部抵抗を演算し、バッテリ1の保存劣化を管理し、バッテリ1の内部抵抗の増加率に基づきバッテリ1の劣化度を推定する。そして、保存劣化が大きいほど、バッテリ1の推定劣化度を大きくする。これにより、バッテリ1の劣化度の推定精度を高めることができる。
 なお、保存劣化管理部50は、車両に搭載されたタイマーを用いて時間を計測しているため、電池製造過程において電極が電解質に触れた時点から車両タイマーで計時を開始するまでの時間は、計時できない。そこで、電極が電解質に触れた時点から車両タイマーで計時を開始するまでの時間を、一定時間に管理して、その一定時間を、タイマーの計時時間に加算すればよい。なお、電極が電解質に触れた時点から車両タイマーで計時を開始するまでの時間は、バッテリ1の寿命に比すれば極小であるので、簡易的には無視してもよい。
 なお、本実施形態の変形例として、保存劣化管理部50は、バッテリ1の温度に基づいて保存劣化を補正してもよい。バッテリ1の特性として、保存劣化は、図6に示すように温度依存性をもっている。
 図6は、劣化係数の時間特性を示すグラフである。図6の横軸は時間の平方根を示し、縦軸は劣化係数を示す。劣化係数は容量維持率に乗算される係数である。劣化係数が小さいほど、容量維持率が小さく、劣化度は大きくなる。また、時間が同じ長さであれば、温度が高いほど、劣化係数は小さくなる。保存劣化管理部50は、保存劣化と温度との関係を表す補正係数を予め記憶している。この補正係数は、劣化係数と対応している。ただし、図6の特性で示す劣化係数は容量維持率に乗算ずる係数であるが、補正係数は、図6の特性で示される関係を維持しつつ、劣化度を算出できる係数に設定されている。
 保存劣化管理部50は、バッテリ1の温度センサが出力する温度情報を、タイマーの時間情報に基づき、これまでの温度の頻度を一定期間単位でメモリに記憶する。保存劣化管理部50は、メモリに記憶されている温度情報を用いて、保存劣化度を補正する。具体的には、たとえば、保存劣化管理部50は、記憶されている温度の発生頻度情報を用いて、バッテリ1がその温度に晒された時間を求める。次に、保存劣化管理部50は、求めた時間に対して保存劣化度を算出し、当該保存劣化度に補正係数を乗ずる。保存劣化管理部50は、温度区間毎に同様の演算を行い、区間毎の保存劣化度を算出する。そして、保存劣化管理部50は、区間毎の保存劣化度を積算することで、最終的な保存劣化度を算出する。これにより、保存劣化管理部50は、バッテリ1の温度に基づいて保存劣化を補正する。本実施形態では、バッテリ1の保存劣化に温度感度を適用することで、保存劣化度の演算精度を高めることができる。
 なお、本実施形態の変形例として、保存劣化管理部50は、バッテリ1のSOCに基づいて保存劣化を補正してもよい。バッテリ1の特性として、保存劣化は、図7に示すようにSOCに対する依存性をもっている。
 図7は、劣化係数の時間特性を示すグラフである。図7の横軸は時間の平方根を示し、縦軸は劣化係数を示す。劣化係数は、図6で示した劣化係数と同様である。劣化係数が小さいほど、容量維持率が小さく、劣化度は大きくなる。また、時間が同じ長さであれば、SOCが高いほど、劣化係数は小さくなる。
 保存劣化管理部50は、保存劣化とSOCとの関係を表す補正係数を予め記憶している。保存劣化管理部50は、SOCを、タイマーの時間情報に基づき、これまでのSOCの頻度を一定期間単位でメモリに記憶する。保存劣化管理部50は、メモリに記憶されているSOC情報を用いて、保存劣化度を補正する。具体的には、たとえば、保存劣化管理部50は、記憶されているSOCの頻度情報を用いて、バッテリ1がそのSOCを維持した時間を求める。次に、保存劣化管理部50は、求めた時間に対して保存劣化度を算出し、当該保存劣化度に補正係数を乗ずる。保存劣化管理部50は、SOC区間毎に同様の演算を行い、区間毎の保存劣化度を算出する。そして、保存劣化管理部50は、区間毎の保存劣化度を積算することで、最終的な保存劣化度を算出する。これにより、保存劣化管理部50は、バッテリ1のSOCに基づいて保存劣化を補正する。本実施形態では、バッテリ1の保存劣化にSOC感度を適用することで、保存劣化度の演算精度を高めることができる。
 なお、保存劣化管理部50は、上述した2つの変形例を組み合わせて、バッテリ1の温度及びSOCに基づき、保存劣化度を補正してもよい。
 上記の保存劣化管理部50が本発明の劣化管理部に相当する。
1…バッテリ
2…負荷
3…電流センサ
4…電圧センサ
10…バッテリコントローラ
20…内部抵抗管理部
21…内部抵抗検出部
22…抵抗増加率算出部
30…劣化管理部
31…実電流積算値算出部
32…時間管理部
33…基準電流積算値算出部
34…積算値比率算出部
40…劣化度推定部
50…保存劣化管理部

Claims (8)

  1.  バッテリの内部抵抗を検出する内部抵抗検出部と、
     前記バッテリのサイクル劣化又は前記バッテリの保存劣化の少なくともいずれか一方の劣化を管理する劣化管理部と、
     前記内部抵抗の増加率に基づき前記バッテリの劣化度を推定劣化度として推定する劣化度推定部とを備え、
    前記劣化度推定部は、
     前記劣化管理部が前記サイクル劣化を管理する場合には、前記サイクル劣化が大きいほど、前記推定劣化度を小さくし、
     前記劣化管理部が前記保存劣化を管理する場合には、前記保存劣化が大きいほど、前記推定劣化度を大きくする
    劣化度推定装置。
  2. 前記劣化管理部は、前記バッテリの電流積算値を算出することで、前記サイクル劣化を管理する
    請求項1記載の劣化度推定装置。
  3. 前記劣化度推定部は、
     前記内部抵抗の増加率、前記電流積算値、及び、前記推定劣化度の対応関係を表すマップを記憶し、前記マップを参照して前記推定劣化度を推定する
    請求項2記載の劣化度推定装置。
  4. 前記劣化度推定部は、前記電流積算値に基づき前記内部抵抗の増加率を補正する
    請求項2又は3記載の劣化度推定装置。
  5. 前記劣化度推定部は、
     前記内部抵抗の増加率に対応する前記バッテリの劣化度を基準劣化度として演算し、前記電流積算値に基づき前記基準劣化度を補正し、補正された前記基準劣化度を前記推定劣化度として推定する
    請求項2又は3記載の劣化度推定装置。
  6. 前記劣化度推定部は、前記バッテリの温度に基づき前記推定劣化度を補正する
    請求項1~5のいずれか一項に記載の劣化度推定装置。
  7. 前記劣化度推定部は、前記バッテリの充電状態に基づき前記推定劣化度を補正する
    請求項1~5のいずれか一項に記載の劣化度推定装置。
  8.  バッテリの内部抵抗を検出し、
     前記バッテリのサイクル劣化又は前記バッテリの保存劣化のいずれか一方の劣化を管理し、
     前記内部抵抗の増加率に基づき前記バッテリの劣化度を推定劣化度として推定し、
     前記サイクル劣化を管理する場合には、前記サイクル劣化が大きいほど、前記推定劣化度を小さくし、
     前記保存劣化を管理する場合には、前記保存劣化が大きいほど、前記推定劣化度を大きくする
    劣化度推定方法。
PCT/JP2015/074021 2015-08-26 2015-08-26 劣化度推定装置及び劣化度推定方法 WO2017033311A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017536134A JP6414336B2 (ja) 2015-08-26 2015-08-26 劣化度推定装置及び劣化度推定方法
PCT/JP2015/074021 WO2017033311A1 (ja) 2015-08-26 2015-08-26 劣化度推定装置及び劣化度推定方法
EP15902280.5A EP3343689B1 (en) 2015-08-26 2015-08-26 Deterioration degree estimation device and deterioration degree estimation method
US15/754,607 US11022653B2 (en) 2015-08-26 2015-08-26 Deterioration degree estimation device and deterioration degree estimation method
CN201580082690.2A CN107925135B (zh) 2015-08-26 2015-08-26 劣化程度估计装置和劣化程度估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074021 WO2017033311A1 (ja) 2015-08-26 2015-08-26 劣化度推定装置及び劣化度推定方法

Publications (1)

Publication Number Publication Date
WO2017033311A1 true WO2017033311A1 (ja) 2017-03-02

Family

ID=58100220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074021 WO2017033311A1 (ja) 2015-08-26 2015-08-26 劣化度推定装置及び劣化度推定方法

Country Status (5)

Country Link
US (1) US11022653B2 (ja)
EP (1) EP3343689B1 (ja)
JP (1) JP6414336B2 (ja)
CN (1) CN107925135B (ja)
WO (1) WO2017033311A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029062A (ja) * 2017-07-25 2019-02-21 トヨタ自動車株式会社 電池システム
JP2019113410A (ja) * 2017-12-22 2019-07-11 三菱自動車工業株式会社 二次電池の劣化状態推定装置
JP2020060453A (ja) * 2018-10-10 2020-04-16 本田技研工業株式会社 導出装置、導出方法、及びプログラム
JP2020063920A (ja) * 2018-10-15 2020-04-23 富士通株式会社 劣化予測プログラム、劣化予測方法、および劣化予測装置
JPWO2019026142A1 (ja) * 2017-07-31 2020-07-27 日産自動車株式会社 劣化状態演算方法及び劣化状態演算装置
JP2020169871A (ja) * 2019-04-02 2020-10-15 東洋システム株式会社 バッテリー残存価値表示装置
JP2020170622A (ja) * 2019-04-02 2020-10-15 東洋システム株式会社 バッテリー残存価値決定システム
WO2020218184A1 (ja) * 2019-04-26 2020-10-29 株式会社Gsユアサ 推定装置、推定方法
WO2021014830A1 (ja) * 2019-07-24 2021-01-28 株式会社日立産機システム 経過時間表示システム、電動機械、及びその経過時間算出方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948546B2 (en) * 2017-10-02 2021-03-16 Semiconductor Components Industries, Llc Methods and apparatus for battery management
KR102521577B1 (ko) * 2019-03-18 2023-04-12 주식회사 엘지에너지솔루션 배터리 상태 추정 장치
KR102520673B1 (ko) * 2019-03-18 2023-04-10 주식회사 엘지에너지솔루션 배터리 상태 추정 장치
KR20230019315A (ko) * 2021-07-29 2023-02-08 현대자동차주식회사 차량의 배터리 열화도 예측 방법 및 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185122A (ja) * 2011-03-08 2012-09-27 Mitsubishi Heavy Ind Ltd 電池セル制御装置及び電池セル
JP2015026478A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 制御装置及び制御方法
JP2015081823A (ja) * 2013-10-22 2015-04-27 三菱重工業株式会社 劣化量算出装置、劣化量算出方法及びプログラム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807965B2 (ja) * 2001-09-19 2006-08-09 インターナショナル・ビジネス・マシーンズ・コーポレーション インテリジェント電池、電気機器、コンピュータ装置及び電池の劣化度を求める方法
JP4736317B2 (ja) 2003-11-14 2011-07-27 ソニー株式会社 バッテリーパック及びバッテリー残量算出方法
JP4311168B2 (ja) * 2003-11-14 2009-08-12 ソニー株式会社 バッテリーパック及びバッテリー残量算出方法
DE102004007904B4 (de) * 2004-02-18 2008-07-03 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
JP2008228492A (ja) 2007-03-14 2008-09-25 Sanyo Electric Co Ltd リチウムイオン二次電池の充電方法
US7714736B2 (en) * 2007-10-30 2010-05-11 Gm Global Technology Operations, Inc. Adaptive filter algorithm for estimating battery state-of-age
JP2009193919A (ja) 2008-02-18 2009-08-27 Panasonic Corp 残寿命推定回路、及び残寿命推定方法
US8283891B2 (en) * 2008-03-21 2012-10-09 Rochester Institute Of Technology Power source health assessment methods and systems thereof
CN102859377B (zh) * 2010-04-26 2014-11-05 丰田自动车株式会社 蓄电元件的劣化推定装置和劣化推定方法
US8452556B2 (en) * 2010-09-22 2013-05-28 GM Global Technology Operations LLC Method and apparatus for estimating SOC of a battery
WO2013018143A1 (ja) * 2011-08-03 2013-02-07 トヨタ自動車株式会社 二次電池の劣化状態推定装置および劣化状態推定方法
US9263909B2 (en) * 2011-09-28 2016-02-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for nonaqueous secondary battery
CN103842837A (zh) * 2011-10-13 2014-06-04 丰田自动车株式会社 二次电池的控制装置和控制方法
WO2013121466A1 (ja) * 2012-02-17 2013-08-22 トヨタ自動車株式会社 電池システムおよび劣化判別方法
JP5897701B2 (ja) * 2012-03-21 2016-03-30 三洋電機株式会社 電池状態推定装置
JP6155781B2 (ja) * 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
US9018913B2 (en) * 2012-05-18 2015-04-28 Caterpillar Inc. System for determining battery impedance
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
WO2014046232A1 (ja) * 2012-09-21 2014-03-27 日産自動車株式会社 充電状態演算装置及び充電状態演算方法
JP5840116B2 (ja) 2012-11-22 2016-01-06 古河電気工業株式会社 二次電池の状態推定装置及び方法
JPWO2014083856A1 (ja) * 2012-11-30 2017-01-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
JP5708668B2 (ja) * 2013-01-18 2015-04-30 トヨタ自動車株式会社 蓄電システム
JP5803965B2 (ja) * 2013-03-25 2015-11-04 トヨタ自動車株式会社 車両
WO2014178108A1 (ja) * 2013-04-30 2014-11-06 三菱電機株式会社 蓄電池状態検知装置および蓄電池状態検知方法
FR3009093B1 (fr) * 2013-07-29 2017-01-13 Renault Sa Estimation de l'etat de vieillissement d'une batterie electrique
JP5862631B2 (ja) * 2013-10-08 2016-02-16 トヨタ自動車株式会社 蓄電システム
JP2015155859A (ja) * 2014-02-21 2015-08-27 ソニー株式会社 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
JP6154352B2 (ja) * 2014-04-21 2017-06-28 トヨタ自動車株式会社 電池システム
JP6164168B2 (ja) * 2014-06-26 2017-07-19 トヨタ自動車株式会社 車両用制御装置
JP6245094B2 (ja) * 2014-06-30 2017-12-13 日立化成株式会社 電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185122A (ja) * 2011-03-08 2012-09-27 Mitsubishi Heavy Ind Ltd 電池セル制御装置及び電池セル
JP2015026478A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 制御装置及び制御方法
JP2015081823A (ja) * 2013-10-22 2015-04-27 三菱重工業株式会社 劣化量算出装置、劣化量算出方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343689A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029062A (ja) * 2017-07-25 2019-02-21 トヨタ自動車株式会社 電池システム
JPWO2019026142A1 (ja) * 2017-07-31 2020-07-27 日産自動車株式会社 劣化状態演算方法及び劣化状態演算装置
EP3663780A4 (en) * 2017-07-31 2020-09-02 Nissan Motor Co., Ltd. EXPIRY STATE CALCULATION METHOD AND EXPIRY STATE CALCULATION DEVICE
JP2019113410A (ja) * 2017-12-22 2019-07-11 三菱自動車工業株式会社 二次電池の劣化状態推定装置
JP2020060453A (ja) * 2018-10-10 2020-04-16 本田技研工業株式会社 導出装置、導出方法、及びプログラム
CN111016735A (zh) * 2018-10-10 2020-04-17 本田技研工业株式会社 导出装置、导出方法及存储介质
JP2020063920A (ja) * 2018-10-15 2020-04-23 富士通株式会社 劣化予測プログラム、劣化予測方法、および劣化予測装置
JP7119882B2 (ja) 2018-10-15 2022-08-17 富士通株式会社 劣化予測プログラム、劣化予測方法、および劣化予測装置
JP2020170622A (ja) * 2019-04-02 2020-10-15 東洋システム株式会社 バッテリー残存価値決定システム
JP2020169871A (ja) * 2019-04-02 2020-10-15 東洋システム株式会社 バッテリー残存価値表示装置
WO2020218184A1 (ja) * 2019-04-26 2020-10-29 株式会社Gsユアサ 推定装置、推定方法
JP2020180935A (ja) * 2019-04-26 2020-11-05 株式会社Gsユアサ 推定装置、推定方法
JP7363086B2 (ja) 2019-04-26 2023-10-18 株式会社Gsユアサ 推定装置、推定方法
WO2021014830A1 (ja) * 2019-07-24 2021-01-28 株式会社日立産機システム 経過時間表示システム、電動機械、及びその経過時間算出方法
JP2021022017A (ja) * 2019-07-24 2021-02-18 株式会社日立産機システム 経過時間表示システム、電動機械、及びその経過時間算出方法
JP7312636B2 (ja) 2019-07-24 2023-07-21 株式会社日立産機システム 経過時間表示システム、電動機械、及びその経過時間算出方法

Also Published As

Publication number Publication date
EP3343689A1 (en) 2018-07-04
JP6414336B2 (ja) 2018-11-07
EP3343689A4 (en) 2018-11-21
CN107925135B (zh) 2021-09-07
US11022653B2 (en) 2021-06-01
JPWO2017033311A1 (ja) 2018-07-05
EP3343689B1 (en) 2024-02-14
CN107925135A (zh) 2018-04-17
US20180246174A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6414336B2 (ja) 劣化度推定装置及び劣化度推定方法
KR102080632B1 (ko) 배터리관리시스템 및 그 운용방법
JP5382208B2 (ja) 蓄電素子の劣化推定装置および劣化推定方法
JP6256609B2 (ja) バッテリー劣化度推定装置およびバッテリー劣化度推定方法
KR100970841B1 (ko) 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
KR100911317B1 (ko) 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
JP6430054B1 (ja) 蓄電池の容量把握方法および容量監視装置
CN105247378B (zh) 二次电池的状态检测方法和状态检测装置
JP6066163B2 (ja) 開路電圧推定装置、状態推定装置及び開路電圧推定方法
JP6565446B2 (ja) 電池劣化判定装置,電池劣化判定方法及び車両
US9400313B2 (en) Method and device for determining the actual capacity of a battery
JP6440377B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
RU2690724C1 (ru) Устройство оценки коэффициента емкости или способ оценки коэффициента емкости
JP2009002691A (ja) 蓄電池の残存容量検知方法及び残存容量検知装置
JP2017167034A (ja) 劣化判定装置及び劣化判定方法
JP5911407B2 (ja) バッテリの健全度算出装置および健全度算出方法
JP2004271342A (ja) 充放電制御システム
JP5886225B2 (ja) 電池制御装置及び電池制御方法
JP2014109535A (ja) 内部抵抗推定装置、充電装置、放電装置、内部抵抗推定方法
JP5904916B2 (ja) バッテリの健全度算出装置および健全度算出方法
JP2016223964A5 (ja)
JP2016065844A (ja) 電池システム用制御装置および電池システムの制御方法
KR100911315B1 (ko) 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법
KR102255914B1 (ko) 저온 환경에서의 예측 정확도 향상을 위한 리튬이차전지 잔량 예측방법 및 예측장치
JP2008302899A (ja) 劣化判定方法及び劣化判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536134

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015902280

Country of ref document: EP