WO2017030148A1 - ステンレス鋼箔 - Google Patents

ステンレス鋼箔 Download PDF

Info

Publication number
WO2017030148A1
WO2017030148A1 PCT/JP2016/074026 JP2016074026W WO2017030148A1 WO 2017030148 A1 WO2017030148 A1 WO 2017030148A1 JP 2016074026 W JP2016074026 W JP 2016074026W WO 2017030148 A1 WO2017030148 A1 WO 2017030148A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
steel foil
crystal grains
plate thickness
less
Prior art date
Application number
PCT/JP2016/074026
Other languages
English (en)
French (fr)
Inventor
海野 裕人
直哉 佐脇
直樹 藤本
将大 福田
宇野 智裕
徹 稲熊
Original Assignee
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to US15/750,947 priority Critical patent/US10786974B2/en
Priority to CN201680004063.1A priority patent/CN107002203A/zh
Priority to EP16837137.5A priority patent/EP3339461A4/en
Priority to JP2016574204A priority patent/JP6165369B1/ja
Priority to KR1020177018909A priority patent/KR101944651B1/ko
Publication of WO2017030148A1 publication Critical patent/WO2017030148A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a stainless steel foil.
  • the present invention relates to a stainless steel foil having good formability even though the plate thickness is extremely thin.
  • a foil made of stainless steel (stainless steel foil) having higher strength and rigidity than aluminum has attracted attention.
  • stainless steel has a higher specific gravity than aluminum, a stainless steel foil having an extremely thin plate thickness is required.
  • it cannot be applied to a battery case required from current electronic equipment unless it is made an ultrathin stainless steel foil having a thickness of 60 ⁇ m or less.
  • Patent Document 1 discloses a stainless steel foil having a thickness of 25 ⁇ m or less. When it becomes an ultra-thin stainless steel foil, a void accompanied by a crack occurs in the rolling direction from the etching end face. Patent Document 1 discloses an invention in which the number of inclusions of 5 ⁇ m or more is limited in order to solve this problem.
  • Patent Documents 2 to 4 are examples in which stainless steel foil is applied to a battery case.
  • Patent Document 2 presses a stainless steel foil having a thickness of 20 to 100 ⁇ m
  • Patent Document 3 presses a stainless steel foil having a thickness of 100 ⁇ m
  • Patent Document 4 presses a stainless steel foil having a thickness of 40 to 150 ⁇ m. Examples of battery exterior materials are disclosed.
  • ultra-thin stainless steel foil is not annealed after rolling, as it is for springs used in HDD (Hard Disk Drive) head suspensions.
  • punching or etching is performed after heat treatment for improving the proof stress.
  • the technique of Patent Literature 1 solves the technical problem that occurs during such etching processing.
  • the press formability is required to perform press working (deep drawing).
  • a normal stainless steel foil having a thickness of 100 ⁇ m or more an annealing treatment of about 1000 ° C. is performed in the final process in order to improve workability, the internal dislocation density is lowered, and the elongation at break is ensured.
  • the thickness of the stainless steel foil is 60 ⁇ m or less, the plastic deformability is significantly lowered, and the press formability (drawing workability) is deteriorated.
  • the reason for this is that when the conventional annealing treatment is applied to a stainless steel foil having a thickness of 60 ⁇ m or less, the coarsening of the crystal grains in the stainless steel foil accelerates. It has been found that this is because the average crystal grain size is too large, especially because the number of crystal grains is about 1 to 2 in the plate thickness direction.
  • the present inventors suppress the coarsening of the crystal grains, and even when the average crystal grain size of the crystal grains is reduced, It has been found that the crystal grains cannot be sufficiently deformed and breakage occurs.
  • Patent Document 2 describes an example in which a stainless steel foil having a thickness of 20 to 100 ⁇ m is pressed and applied to a battery case.
  • a stainless steel foil having a thickness of 20 to 100 ⁇ m is pressed and applied to a battery case.
  • press workability plastic deformability
  • the resin film peels off at the corner of the battery case. Even if the resin is peeled locally, if it is used as a battery case as it occurs, the resin will further peel from the site while in contact with the electrolyte for a long time. Impairs function.
  • Patent Document 3 also describes an application example of a stainless steel foil having a thickness of 100 ⁇ m to a battery case.
  • a stainless steel foil having a thickness of 100 ⁇ m the above-mentioned problems relating to press formability do not occur, and even if it occurs, the problem is not recognized in Patent Document 3, and therefore a solution is proposed. Absent.
  • Patent Document 4 describes an example in which a stainless steel foil having a thickness of 40 to 150 ⁇ m is applied to a battery exterior material.
  • the technique of Patent Document 4 suppresses generation of work-induced martensite during press working by nitriding the surface layer of a stainless steel foil.
  • the press workability is improved because the surface unevenness formed by the processing-induced martensite transformation is suppressed and the surface smoothness is maintained.
  • press formability can be improved by nitriding the surface layer while ensuring the above-mentioned number of crystal grains. This is because the thinner the plate thickness, the greater the influence of the hardening of the surface when nitriding, which induces cutting during press working.
  • the present invention secures high plate thickness accuracy even with an ultrathin stainless steel foil having a thickness of 60 ⁇ m or less, and simultaneously ensures plastic deformability and elongation at break, that is, good press workability (deep drawing process). To secure the property).
  • the surface roughness affects the plate thickness accuracy in the case of an ultrathin stainless steel foil, the surface roughness Rz should be suppressed to 1/10 of the plate thickness in order to ensure the plate thickness accuracy. Make it an issue.
  • the elongation at break is to ensure 10% or more, which is the conventional stainless steel foil level. It is an object to secure the same level of plastic deformability as that of a conventional stainless steel foil.
  • the lower limit of the plate thickness is not particularly limited, but the practical limit value of the thickness of the foil after rolling is about 5 ⁇ m, so the thickness of the stainless steel foil according to the present invention is 5-60 ⁇ m.
  • the plastic deformability is ensured by securing three or more crystal grains in the thickness direction. Furthermore, in addition to making the crystal grains finer (decreasing the average crystal grain size), the crystal grain size distribution of the crystal grains should be narrowed according to the plate thickness.
  • B In order to secure three or more crystal grains and narrow the crystal grain size distribution, it is only necessary to increase the dislocations that become nucleation sites by reducing the pressure during rolling, and then anneal. .
  • Electrolytic solution resistance can be ensured by securing three or more crystal grains in the plate thickness direction and further by setting the nitrogen concentration of the surface layer to 1.0 mass% or less.
  • it is important to suppress the rough surface of the stainless steel foil surface at the corner after press working and to maintain the adhesion with the resin film.
  • the ultra-thin stainless steel foil with a thickness of 60 ⁇ m or less ensures high sheet thickness accuracy and simultaneously ensures plastic deformability and breaking elongation, that is, secures good press workability (deep drawing workability). can do. Furthermore, it is possible to ensure good electrolytic solution resistance when processed into a battery case. Accordingly, the present invention can be applied to a battery case such as a lithium ion battery that is aimed at reducing the size and weight.
  • austenitic stainless steel will be described as an example.
  • the stainless steel foil according to the present invention is not particularly limited as long as it is made of stainless steel.
  • An austenite type such as SUS304 or a ferrite type such as SUS430 may be used.
  • the suitable temperature for annealing is lower by about 100 ° C. than that of austenite. In view of this point, it was confirmed that according to the method for manufacturing a stainless steel foil described later, predetermined characteristics can be obtained regardless of whether it is austenite or ferrite.
  • the stainless steel foil according to the present invention has a thickness of 5 to 60 ⁇ m. This is because, when the thickness is 60 ⁇ m or less, problems due to crystal grains become obvious as described above. Since these problems become more noticeable as the plate thickness becomes thinner, and further contributes to the reduction of the thickness of battery cases and the like, the upper limit of the target plate thickness may be limited in the direction of thinning. That is, it may be preferably limited to 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 25 ⁇ m or less. Further, the lower limit of the plate thickness is not particularly limited, but a plate thickness of 5 ⁇ m may be set as the lower limit in consideration of the limit of the manufacturing technique. Even if the plate thickness is 5 ⁇ m, the effect of the present invention can be enjoyed.
  • the number of crystal grains in the plate thickness direction is calculated by measuring the crystal grain size in accordance with JIS G 0551 in any cross section in the plate thickness direction, calculating the average crystal grain size, and dividing the plate thickness by the average crystal grain size. The quotient can be used as the number of crystal grains in the plate thickness direction.
  • a crystal grain is an equiaxed grain, it measures in the surface orthogonal to a plate
  • crystal grains at the center in the width direction of stainless steel foil position of 1/2 width from one end
  • the middle of both ends and the center two positions of 1/4 width and 3/4 width from one end
  • the number of crystal grains in the plate thickness direction of the stainless steel foil can be evaluated by counting the number of these and arithmetically averaging them.
  • the number of crystal grains obtained in this way should be three or more.
  • Austenitic stainless steel has higher deformation resistance because it is easier to work harden than ferritic stainless steel. Further, the deformation resistance increases as the plate thickness increases. Therefore, from the viewpoint of ensuring plastic deformability, in the case of austenitic stainless steel, it is preferable to increase the number of crystal grains and increase the number of crystal grains as the plate thickness increases.
  • the number of crystal grains in the plate thickness direction is preferably 5 or more when the plate thickness is 15 ⁇ m or more, and more preferably 10 or more when the plate thickness is 40 ⁇ m or more.
  • the plate thickness is 15 ⁇ m or more
  • 5 or more are more preferable when the thickness is 40 ⁇ m or more.
  • the plastic deformability can be further improved.
  • an ultrathin stainless steel foil having a plate thickness of 15 ⁇ m or less the influence of the steel type or plate thickness on the number of crystal grains in the plate thickness direction is negligible.
  • the upper limit of the number of crystal grains is not particularly limited. This is because the number of crystal grains in the thickness direction changes depending on the thickness of the ultrathin stainless steel foil. This is because the multiple slip described above is determined not by the size of crystal grains but by the number of crystal grains in the thickness direction.
  • the crystal grain size (crystal grain size in accordance with JIS G 0051 (hereinafter referred to as “average crystal grain size d” unless otherwise specified)) is 1 ⁇ m or more and 10 ⁇ m or less.
  • the average crystal grain size d is preferably 2 ⁇ m or more and 6 ⁇ m or less.
  • the area ratio occupied by crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more is 20% or less
  • the area ratio occupied by crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more is 20%. It is as follows. As described above, when the plate thickness is 60 ⁇ m or less, the plastic deformability is lowered unless three or more crystal grains are secured in the plate thickness direction. At this time, even when the number of crystal grains in the plate thickness direction is 3 or more, crystal grains having a relatively large crystal grain size and crystal grains having a relatively small crystal grain size are arranged in the plate thickness direction.
  • the crystal grain size distribution is preferably narrow.
  • the ratio of crystal grains having a relatively large crystal grain size that is, crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more is within the above range, whereby the stainless steel according to the present invention is obtained.
  • the press formability of the steel foil can be further enhanced.
  • the above area ratio may be calculated as follows. First, on the surface of the stainless steel foil, the average crystal grain size of crystal grains existing within a predetermined measurement field is measured according to JIS G 0551. Next, the measured crystal grain size is divided into a crystal grain having a measured crystal grain size of t / 3 [ ⁇ m] or more and a crystal grain having a measured crystal grain size of less than t / 3 [ ⁇ m]. The ratio of crystal grains having a diameter of t / 3 [ ⁇ m] or more to the area of the measurement visual field may be calculated and used as the area ratio. Or you may calculate using an electron beam backscattering diffraction (EBSD: Electron
  • EBSD electron beam backscattering diffraction
  • the crystal orientation at each measurement point is determined, and a boundary (excluding twins) having an inclination angle of 15 degrees or more is defined as a crystal grain boundary, and a region surrounded by the crystal grain boundary is defined as a crystal grain. Then, the crystal grain size and area of each crystal grain may be calculated to obtain the area ratio of crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more.
  • the area ratio is preferably 10% or less.
  • the crystal grain size is calculated on the surface of the stainless steel foil, unlike the case of calculating the number of crystal grains in the plate thickness direction. This is because, when calculating the distribution of crystal grains having a predetermined crystal grain size, it is preferable that the number of crystal grains to be measured is larger, so a measurement field of view is ensured in an extremely thin foil cross section having a plate thickness of 60 ⁇ m or less. It is difficult to do.
  • crystal grains may come into contact with the surface of the foil and may be interrupted in the middle.
  • the crystal grain size in a discontinuous state is measured, the crystal grain size is calculated to be smaller than the actual crystal grain size, and the apparent crystal grain size becomes small.
  • the crystal grain size is measured on the surface, since there is no crystal grain break in the middle, the advantage that a crystal grain size distribution reflecting the actual crystal grain size can be obtained. There is.
  • the area ratio of crystal grains having a large crystal grain size is larger than the area ratio at the cross section in the plate thickness direction even with the same material. Therefore, if the area ratio on the surface is less than or equal to a predetermined value, it can be said that the area ratio in the plate thickness direction is surely smaller than that value. Therefore, in the present invention, the area ratio of crystal grains having a predetermined crystal grain size is When measuring, measure on the surface.
  • the plastic deformability can be reduced by suppressing the coarsening of the recrystallized structure while reducing the dislocation density in the recrystallized grains. While ensuring, the elongation at break is also ensured.
  • An example of a method for measuring the dislocation density is an etch pit method, but quantitative measurement is difficult because it is affected by measurement conditions.
  • the dislocation density can be directly measured by microscopic observation, the variation is large due to the observation visual field. Therefore, the present inventors have found that it is possible to grasp whether proper heat treatment has been performed by measuring the recrystallization rate, which is a characteristic value reflecting the dislocation density.
  • the recrystallization rate can be calculated by (area of recrystallized crystal) / (observation area).
  • the “area of the recrystallized crystal” can be obtained by observing an arbitrary cross section of the ultrathin stainless steel foil under an optical microscope. Or you may calculate by calculating
  • the stainless steel foil according to the present invention may have a recrystallization rate of 90% or more. If the recrystallization rate is 90% or more, the dislocation density is sufficiently low, and the number of crystal grains necessary in the plate thickness direction can be secured. Preferably, the recrystallization rate is 95% or more. This is because if the recrystallization rate is 95% or more, even if the plate thickness is thin, press workability (plastic deformability) is improved and surface roughness is also improved. If the number of crystal grains in the plate thickness direction satisfies the provisions of the present invention, the recrystallization rate may be 100%. That is, the entire stainless steel foil according to the present invention may be recrystallized.
  • the surface layer of the stainless steel foil is not nitrided.
  • the surface layer is not nitrided means that the nitrogen concentration of the surface layer is 1.0 mass% or less.
  • the surface layer is a thickness at which the oxygen concentration is half the peak value in the measurement by Auger electron spectroscopy, and the nitrogen concentration is an average concentration in the surface layer.
  • the surface layer of the stainless steel foil is nitrided, the surface layer is hardened by nitridation when it is pressed, so it becomes the starting point of cutting, so the press formability decreases. End up.
  • the stainless steel foil according to the present invention having a thin plate thickness of 60 ⁇ m or less has a relatively large surface influence.
  • the nitrogen concentration of the surface layer is preferably 1.0% by mass or less without concentrating nitrogen on the surface layer of the stainless steel foil.
  • the lower limit is equivalent to the nitrogen content evaluated for the entire stainless steel foil. That is, in the case of steel types that do not contain nitrogen, such as general SUS304 and SUS430, the content level of nitrogen as an inevitable impurity is the lower limit.
  • the nitrogen concentration in the surface layer of the stainless steel foil can be controlled to 1% by mass or less by setting the nitrogen concentration in the annealing atmosphere to 0.1% by volume or less.
  • the stainless steel foil surface roughness Rz according to the present invention can be finished to 1/10 or less of the plate thickness. If the surface roughness Rz is 1/10 or less of the plate thickness, stable press workability (plastic deformability) can be ensured.
  • the lower limit of the surface roughness Rz is not particularly limited. However, since it is not practical to set the surface roughness Rz to 0 nm, 100 nm, which is the minimum value that can be actually obtained, may be set as the lower limit.
  • annealing at a relatively high temperature according to the dislocation density facilitates plastic deformation in the plate thickness direction due to the refinement of crystal grains, and avoids damage to the plate due to high elongation. As a result, it is estimated that high plate thickness accuracy can be secured.
  • annealing occurs in a state where sufficient nucleation sites for recrystallization have not been obtained.
  • the number will be about two. For this reason, plastic deformation is difficult to occur in the plate thickness direction, so that the roll pass plate causes the occurrence of warp or breakage during annealing.
  • Elongation at break is 10% or more
  • Elongation at break is a comprehensive index of workability and is related to plastic deformability and dislocation density. Since the dislocation density is closely related to the annealing temperature, if the final annealing temperature is 950 ° C. or higher, the elongation at break can be 10% or higher. Furthermore, since the stainless steel foil which concerns on this invention has also secured the plastic deformability, it was confirmed that fracture elongation is further favorable.
  • the elongation at break of the stainless steel foil according to the present invention is 10% or more when the annealing temperature is 950 ° C., and 20% or more when the annealing temperature is 1050 ° C. It was confirmed that can be secured.
  • the larger the elongation at break, the better, and the upper limit is not particularly limited. Since the practical maximum value of breaking elongation is about 50%, it may be the upper limit.
  • the stainless steel foil according to the present invention may be made into a laminated stainless steel foil by laminating (laminating) a resin film on the surface thereof in the same manner as an ordinary laminated stainless steel foil.
  • laminating the resin film By laminating the resin film, the corrosion resistance in the electrolytic solution can be improved, and the applicability to a battery case such as a lithium ion battery can be further enhanced.
  • the lamination of the resin film may be performed on both surfaces of the stainless steel foil, or may be performed on either surface.
  • Patent Document 5 discloses a technique in which a chromate treatment layer having a thickness of 2 to 200 nm is provided on at least one surface of a stainless steel foil, and a polyolefin-based resin containing a functional group having polarity is laminated on the surface. Yes.
  • the resin after heat lamination may be made amorphous, and for this purpose, the cooling rate during heat lamination may be increased.
  • the cooling rate in the range of 120 ° C. to 80 ° C. may be 20 ° C./s or more.
  • the manufacturing process of the stainless steel foil according to the present invention is substantially the same as the manufacturing process of a normal stainless steel foil. That is, the stainless steel strip is foil-rolled, then the surface is cleaned, final annealing is performed, and temper rolling (tension leveler) is performed as necessary to produce a stainless steel foil. It should be noted that the foil rolling process may be divided into a plurality of times (multi-stage rolling) according to the thickness of the stainless steel strip used for foil rolling, and intermediate annealing may be performed between the foil rolling processes. However, in order to obtain the stainless steel foil according to the present invention, as described above, it is important to control the rolling reduction in final foil rolling and the temperature in final annealing.
  • foil rolling In foil rolling, dislocations that serve as nucleation sites for recrystallization can be introduced into stainless steel by rolling under high pressure. The higher the rolling reduction, the more dislocations introduced. The dislocation density is controlled together by the rolling reduction and the annealing treatment performed after rolling. Therefore, when foil rolling is performed twice or more, the final foil rolling, that is, the foil rolling immediately before the final annealing may be performed under high pressure.
  • ferritic stainless steel work hardening is difficult compared to austenitic stainless steel, that is, it is difficult to increase the dislocation density, so it is necessary to reduce the strength more and the reduction ratio should be 50% or more. If possible, it is preferably 60% or more, more preferably 70% or more.
  • the degree of dislocation introduced by rolling varies depending on the steel type.
  • the rolling reduction in foil rolling before final annealing is preferably 50% or more. From the viewpoint of securing the dislocation density, it is preferably 60% or more, and more preferably 70% or more.
  • the rolling reduction in foil rolling before final annealing should be 30% or more.
  • the rolling reduction in foil rolling before final annealing is preferably 40% or more, and more preferably 45% or more.
  • Reduction ratio (sheet thickness before rolling ⁇ sheet thickness after rolling) / (sheet thickness before rolling)
  • the upper limit of the rolling reduction is not particularly limited. However, theoretically, the rolling reduction rate cannot be 100%, so the practical upper limit of the rolling reduction rate is about 95%.
  • the lower limit of the rolling reduction depends on the final thickness of the stainless steel foil, but is preferably 40% or more, more preferably 45% or more.
  • the material structure When performing foil rolling in a plurality of times, it is preferable to control the material structure even in intermediate foil rolling and subsequent intermediate annealing. In this case as well, it may be the same as the final foil rolling. That is, the rolling reduction in each foil rolling is preferably 30% or more. However, since the foil rolling immediately before the final annealing is most effective as described above, the reduction rate of the final foil rolling may be set higher than the reduction rate of the other foil rolling.
  • Annealing after foil rolling plays an important role in reducing dislocation density and promoting recrystallization.
  • the object is to simultaneously suppress plastic growth and secure plastic deformability and elongation at break while reducing dislocation density and recrystallization. .
  • the annealing temperature may be 950 ° C. or higher and 1050 ° C. or lower if it is an austenitic stainless steel. At 950 ° C. or lower, the dislocation density does not decrease, so that the elongation at break cannot be ensured. On the other hand, when the temperature exceeds 1050 ° C., the crystal becomes coarse, the number of crystal grains in the plate thickness direction is reduced, and the distribution of crystal grain size is widened, so that plastic deformability cannot be obtained.
  • the lower limit of the annealing temperature is preferably slightly higher than 950 ° C., preferably 960 ° C., more preferably 970 ° C.
  • the upper limit of the annealing temperature is preferably slightly lower than 1050 ° C. and preferably 1040 ° C., more preferably 1030 ° C., from the viewpoint of suppressing crystal coarsening.
  • the annealing temperature may be 850 ° C. or higher and 950 ° C. or lower. At 850 ° C. or lower, the dislocation density does not decrease, so that the elongation at break cannot be ensured. On the other hand, if the temperature exceeds 950 ° C., the crystal becomes coarse, the number of crystal grains in the plate thickness direction is reduced, and the distribution of crystal grain size is widened, so that plastic deformability cannot be obtained.
  • the lower limit of the annealing temperature is preferably slightly higher than 850 ° C., preferably 860 ° C., more preferably 870 ° C.
  • the upper limit of the annealing temperature is preferably slightly lower than 950 ° C., preferably 940 ° C., more preferably 930 ° C., from the viewpoint of suppressing crystal coarsening.
  • the time for holding the stainless steel foil at the above-described annealing temperature is preferably 3 seconds or more and 30 seconds or less. If it is less than 3 seconds, the heat treatment becomes insufficient and recrystallization does not proceed sufficiently, and the recrystallization rate specified in the present invention cannot be obtained. On the other hand, if it exceeds 30 seconds, the recrystallized grains become coarse, the number of crystal grains in the plate thickness direction is reduced, and the distribution of crystal grain sizes is widened, so that sufficient plastic deformability cannot be obtained.
  • the annealing atmosphere is a rare gas atmosphere such as hydrogen or argon so that the surface of the stainless steel foil is not nitrided. Although it is desirable that the annealing atmosphere does not contain nitrogen at all, nitrogen mixed unavoidably from the atmosphere is acceptable to some extent. In order to set the nitrogen concentration of the surface layer to 1.0% by mass or less, the nitrogen concentration in the annealing atmosphere may be 0.1% by volume or less.
  • intermediate annealing In the case of multiple foil rolling processes, the conditions for intermediate annealing are not particularly defined, but in the case of austenitic stainless steel, 950 ° C. or higher and 1050 ° C. or lower, and in the case of ferritic stainless steel, 850 ° C. or higher, as in the final annealing. 950 ° C. or lower is desirable. Since the crystal grain boundary is also a core of recrystallization and is preferably introduced before foil rolling, it is desirable to suppress the coarsening of the recrystallized grains by setting the temperature range as described above.
  • stainless steel foil according to the present invention examples are shown in Tables 1 and 2 as stainless steel strips having a component of SUS304 (austenitic stainless steel) and stainless steel strips having a component of SUS430 (ferritic stainless steel).
  • the ultrathin stainless steel foil which has the thickness of Table 1 and 2 was manufactured by rolling with a foil rolling machine on the rolling conditions of these.
  • the cold rolling reduction ratio is the rolling reduction ratio in the foil rolling process immediately before the final annealing
  • the finishing annealing temperature is the temperature in the final annealing process performed after the completion of the rolling process
  • the holding time is to hold the stainless steel foil at the finishing annealing temperature. Each time is shown.
  • the annealing atmosphere was 0.1 volume% -nitrogen 99.9 volume% hydrogen mixed gas or 25 volume% nitrogen-75 volume% hydrogen mixed gas.
  • the recrystallization rate is determined by taking the cross section in the rolling direction as the observation surface, mirror polishing, etching and observing, obtaining the area of the recrystallized crystal grains in the range of the total plate thickness x 500 ⁇ m width, It was obtained by calculating (Area).
  • the surface nitrogen concentration was measured by Auger electron spectroscopy (AES). Measurement was made from the stainless steel foil surface to a depth of 30 nm, and the average nitrogen concentration up to a depth at which the oxygen concentration was half the peak value was taken as the nitrogen concentration of the surface layer.
  • AES Auger electron spectroscopy
  • the number of crystal grains in the plate thickness direction is determined by measuring the crystal grain size in accordance with JIS G 0551 after cutting the test piece in the plate thickness direction, polishing the cross section, etching and then observing with a microscope. The diameter was calculated and taken as the quotient when the plate thickness was divided by the average crystal grain size.
  • the average crystal grain size was calculated by measuring the crystal grain size according to JIS G 0551 after observing with a microscope after etching after polishing the surface of the test piece. Further, the area ratio occupied by crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more is based on the calculated crystal grain size, and the crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more; Distinguishing from crystal grains having a crystal grain size of less than 3 [ ⁇ m], the ratio of crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more to the measurement field (100 ⁇ 100 ⁇ m) The area ratio was calculated.
  • the elongation at break was evaluated by cutting out a JIS No. 13 B test piece from the manufactured stainless steel foil and performing a tensile test by a test method based on JIS Z 2241.
  • the maximum height Rz was evaluated according to JIS B 0601 at a reference length of 0.25 mm using a commercially available stylus type surface roughness measuring instrument.
  • the molding depth is preferably 3.0 mm or more, and when the plate thickness is 30 ⁇ m or more, the molding depth is preferably 3.5 mm or more. It was.
  • the evaluation results are shown in Tables 1 and 2.
  • the examples of the austenitic stainless steel foil according to the present invention satisfy all the rules regarding crystal grains.
  • the molding depth when the plate thickness was less than 30 ⁇ m, the molding depth was 3.0 mm or more, and when the plate thickness was 30 ⁇ m or more, the molding depth was 3.5 mm or more.
  • Comparative Examples 1 to 3 resulted in inferior molding depth because the area ratio occupied by crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more exceeded 20%.
  • Comparative Examples 4 to 7 did not satisfy all the regulations regarding crystal grains because the rolling reduction was low, the finish annealing temperature was high, or both. As a result, the molding depth was inferior.
  • Comparative Examples 8 to 12 the recrystallization rate was low because the finish annealing temperature was low. As a result, the molding depth was inferior.
  • Comparative Example 13 the nitrogen concentration in the surface layer was high because the nitrogen concentration contained in the atmosphere during the finish annealing was high. As a result, the molding depth was inferior.
  • the reference example 14 relates to a conventional example having a large plate thickness.
  • the examples of the ferritic stainless steel foil according to the present invention satisfy all the rules regarding crystal grains. As a result, when the plate thickness was less than 30 ⁇ m, the molding depth was 3.0 mm or more, and when the plate thickness was 30 ⁇ m or more, the molding depth was 3.5 mm or more.
  • Comparative Examples 15 to 19 were inferior in molding depth because the area ratio occupied by crystal grains having a crystal grain size of t / 3 [ ⁇ m] or more exceeded 20%.
  • Comparative Example 20 the recrystallization rate was low because the finish annealing temperature was low. As a result, the molding depth was inferior. Since Comparative Examples 21 and 22 had a low rolling reduction or a high finish annealing temperature, they did not satisfy the rules regarding the number of crystal grains in the plate thickness direction and the average crystal grain size. As a result, the molding depth was inferior. In Comparative Example 23, since the nitrogen concentration contained in the atmosphere during the finish annealing was high, the nitrogen concentration in the surface layer was high. As a result, the molding depth was inferior.
  • the austenitic stainless steel foil had a difference of 0.5 mm or more with respect to the forming depth when the example and the comparative example were compared.
  • the ferritic stainless steel foil it was confirmed that there was a difference of 0.4 mm or more with respect to the molding depth when the example and the comparative example were compared.
  • This difference is very significant as shown below. That is, for example, when the stainless steel foil is applied to a battery case mounted on a small and light electronic device such as a smartphone, the thickness of the battery case is required to be about several mm. In such a situation, if the molding depth is increased by 0.4 mm or more, it corresponds to 10% or more of the thickness of the battery case, which greatly contributes to an increase in battery capacity. Therefore, the effect of the present invention is very large.
  • the stainless steel foil according to the present invention can be applied to battery cases such as lithium ion batteries for small electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

厚さ60μm以下の極薄ステンレス鋼箔であっても高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を提供する。 本発明は、板厚が5μm以上60μm以下であるステンレス鋼箔であって、ステンレス鋼箔の再結晶率が90%以上100%以下であり、ステンレス鋼箔の表層の窒素濃度が1.0質量%以下であり、ステンレス鋼箔の板厚方向に結晶粒を3個以上有し、結晶粒の平均結晶粒径dが1μm以上10μm以下であり、板厚をt[μm]とした場合に、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%以下であることを特徴とするステンレス鋼箔である。

Description

ステンレス鋼箔
 本発明は、ステンレス鋼箔に関する。特に、板厚が極めて薄いにもかかわらず、良好な成形性を備えたステンレス鋼箔に関する。
 電子機器の小型化、軽量化にともない、電子機器のポータブル化、モバイル化が進展し、多くの電子機器に搭載するリチウムイオン電池などの電池の小型化、軽量化が求められている。特に、スマートフォンなどの電子機器に要求される電池の小型化、軽量化は、時代の最先端レベルの仕様を要求されている。
 現在、スマートフォン向けリチウムイオン電池の電池ケースは、アルミニウム薄板の缶型や樹脂フィルムをラミネートしたアルミニウム箔が使用されている。特に、体積当たりの容量密度の向上を目的として、樹脂フィルムラミネートアルミ箔が多用されている。最近では、更なる小型軽量化を目的に、より薄い外装材が求められている。しかしながら、基材であるアルミニウム箔では、薄手化すると製造過程でピンホールが発生しやすくなり、水分バリヤ性が確保できない。また薄手化により突き刺し強度や剛性が低下し、外部からの衝撃や電池の内部膨張に対する強度を確保できないといった課題があった。そのためアルミニウム箔では、更なる小型化に対し限界が見えてきた。
 そこで、アルミニウムより強度および剛性が高いステンレス鋼からなる箔(ステンレス鋼箔)が注目されてきた。しかしながら、ステンレス鋼はアルミニウムに比べ比重が高いため、板厚の極めて薄いステンレス鋼箔が求められている。電池ケース用に用いる場合、厚さ60μm以下の極薄ステンレス鋼箔にしなければ、現在の電子機器から求められる電池ケースには適用できない。
 極薄のステンレス鋼箔としては、特許文献1に厚さ25μm以下のステンレス鋼箔が開示されている。極薄ステンレス鋼箔になると、エッチング端面から圧延方向に割れを伴うボイドが発生する。特許文献1は、これを解消するため5μm以上の介在物の個数を制限した発明が開示されている。
 また、ステンレス鋼箔を電池用ケースに適用した例として特許文献2~4がある。特許文献2には厚さ20~100μmのステンレス鋼箔を、特許文献3には厚さ100μmのステンレス鋼箔を、特許文献4には厚さ40~150μmのステンレス鋼箔をそれぞれプレス加工して電池用外装材とした例が開示されている。
特開2000-273586号公報 特開2004-52100号公報 特開2013-41788号公報 特開2012-92361号公報 特開2007-168184号公報
 通常、極薄のステンレス鋼箔は、HDD(Hard Disk Drive)用のヘッド・サスペンションに用いられるバネ用などのように、圧延後に焼鈍されることなく、圧延まま、もしくはテンションアニーリングのような引張強度や耐力を向上させる熱処理を施した後、打ち抜き加工あるいはエッチング加工されるものが多い。特許文献1の技術は、こうしたエッチング加工時に発生する技術課題を解決するものである。
 しかしながら、電池ケースの場合は、プレス加工(深絞り加工)をするため、そのプレス成形性が要求される。厚さ100μm以上の通常のステンレス鋼箔では、加工性を改善するために最終工程で1000℃程度のアニール処理を行い、内部転位密度を低下させ、破断伸び性を確保している。しかしながら、ステンレス鋼箔の厚さが60μm以下になると、塑性変形性が著しく低下し、プレス成形性(絞り加工性)が悪化する。本発明者らが鋭意検討した結果、この理由は、従来のアニール処理を厚さが60μm以下のステンレス鋼箔に施すと、ステンレス鋼箔内の結晶粒の粗大化が加速することで、結晶粒の平均結晶粒径が大きくなりすぎたためであり、特に板厚方向で結晶粒の数が1~2個程度になってしまうためであることを見出した。
 さらに、本発明者らは、結晶粒の粗大化を抑制し、結晶粒の平均結晶粒径を小さくした場合であっても、板厚に対して結晶粒径の大きな結晶粒が存在すると、当該結晶粒が十分に変形できず破断等が発生してしまうことを見出した。
 特許文献2には、厚さ20~100μmのステンレス鋼箔をプレス加工して電池ケースに適用した例が記載されている。しかしながら、当時の技術水準では、厚さ60μmを下回るような極薄ステンレス鋼箔のプレス成形性についての課題認識がなく、問題点の把握ができていなかった。特に電池ケースに加工する際のプレス加工性(塑性変形能)や、電池ケースのコーナー部において樹脂皮膜が剥離するという問題があった。樹脂剥離が局所的なものであっても生じたまま電池ケースとして用いてしまうと、電解液と長時間接触する間に当該部位を起点に樹脂の剥離がさらに進行してしまい、電池ケースとしての機能に障害を生じる。
 特許文献3にも、厚さ100μmのステンレス鋼箔の電池ケースへの適用例が記載されている。しかしながら、厚さ100μmのステンレス鋼箔では、上記のようなプレス成形性に関する問題は生じないし、仮に生じているとしても、特許文献3では課題認識がされていないため、なんら解決手段が提案されていない。
 特許文献4には、厚さ40~150μmのステンレス鋼箔を電池外装材に適用した例が記載されている。特許文献4の技術は、ステンレス鋼箔の表層を窒化してプレス加工時の加工誘起マルテンサイトの生成を抑えている。これにより、ステンレス鋼箔と樹脂の熱融着部の耐剥離性の確保とプレス加工後の樹脂の白化の抑制ができると説明している。さらに、加工誘起マルテンサイト変態によって形成される表面凹凸が抑制されて表面の平滑性が維持されるため、プレス加工性が良好になると説明している。しかしながら、ステンレス鋼箔の表層を窒化すると、その部分が硬化するため、プレス加工時に切れ(割れ)が発生しやすいことが分かった。特に、ステンレス鋼箔の板厚が60μm以下の極薄になると、表層窒化による硬化部分の影響が相対的に大きくなり無視できなくなる。すなわち、表層窒化した極薄ステンレス鋼箔をプレス加工すると、表面に割れが発生し、十分なプレス成形性が得られておらず、依然として課題が残っている。
 なお、特許文献4では、ほとんどの実施例の板厚が100μmであるので、板厚60μm以下のステンレス鋼箔に顕著になる前記問題認識がされていない。板厚40μmの実施例は成形性が悪化しているものの許容範囲と説明している。さらに、それより薄い板厚の実施例はないことから、特許文献4に記載の技術は、60μm以下の極薄ステンレス鋼箔には適用できない。
 本発明者らが鋭意検討した結果、厚さ60μm以下のステンレス鋼箔においては、前述したように、板厚方向で結晶粒が1~2個程度となってしまうことが、塑性変形能を低下させること、つまりプレス加工性を悪化させる原因となっていることを見出した。このことは、厚さ60μm以下になって初めて顕在化したものであり、60μmより厚いステンレス鋼箔では問題になっていなかった。即ち、従来の厚みでは、破断伸びと板厚精度を充分な程度に確保するために、比較的高めの温度でアニール(焼鈍処理)していたので、必然的に結晶粒が粗大化する。そのような状況でも箔の厚みが大きいために厚み方向に一定数以上の結晶粒が存在することになり、塑性変形能の劣化に影響を及ぼさなかったためである。
 さらに、単に結晶粒の平均結晶粒径を小さくしただけでは、プレス成形性の向上は十分ではなく、板厚に応じて結晶粒の結晶粒径分布を狭くする、すなわち、板厚に応じて結晶粒径が大きい結晶粒の存在割合を減らす必要があることを見出した。これは、板厚に対して結晶粒径の大きな結晶粒が存在していると、塑性変形に不利な方位において十分に変形できず破断等の起点となってしまうからである。
 また、板厚が薄い場合でも、上述の結晶粒数を確保しつつ表層を窒化させないことでプレス成形性を向上できることを見出した。これは、板厚が薄いほど、窒化した際の表面の硬化の影響が大きくなり、プレス加工時の切れを誘発してしまうためである。
 一方、結晶粒の粗大化を抑制する目的で低めの温度でアニール処理すると、転位密度を下げることができず、破断伸びを確保することができない上、板厚精度も悪化する。
 また、特許文献4のように、結晶粒の微細化や表面凹凸の緩和のために表層窒化しても、板厚60μm以下になると、表層窒化に起因した前述した問題が顕在化してくる。
 そこで、本発明は、厚さ60μm以下の極薄ステンレス鋼箔であっても高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を確保することを課題とする。具体的な指標として、極薄ステンレス鋼箔になると表面粗さが板厚精度に影響することから、板厚精度を確保するために表面粗さRzを板厚の1/10に抑制することを課題にする。また、破断伸びは、従来のステンレス鋼箔レベルである10%以上を確保することを課題とする。塑性変形能についても、従来のステンレス鋼箔と同等レベルを確保することを課題とする。
 また、電池ケースにした際に、良好な耐電解液性(電解液に長時間接触させても樹脂皮膜が剥離しないこと)を確保することを課題とする。
 なお、板厚の下限は特に限定する必要はないが、圧延を施した後の箔の板厚の現実的な限界値は5μm程度であることから、本発明に係るステンレス鋼箔の厚さを5~60μmとする。
 上記課題を解決するために、本発明者らは鋭意検討を行い、以下の知見を得た。
(ア)板厚方向の結晶粒の数を3個以上確保することにより、塑性変形能が確保されること。さらに、結晶粒は微細化する(平均結晶粒径を小さくする)ことに加えて、板厚に応じて結晶粒の結晶粒径分布を狭くすること。
(イ)結晶粒の数を3個以上確保し、結晶粒の結晶粒径分布を狭くするためには、圧延時に強圧下して核生成サイトとなる転位を増やし、その後アニールを行えばよいこと。
(ウ)破断伸びを10%以上確保するためには、転位密度に応じた高温でアニールを行い、再結晶率を90%以上にすることにより達成することができること。さらに、表面硬化による切れ(割れ)を抑制するために、表層の窒化を極力抑制することが重要であること。
(エ)上記の塑性変形能と破断伸びを同時に確保すれば、表面粗さ(Rz(JIS B 0601:2001))は100nm~板厚の1/10以下という高い板厚精度も同時に確保できること。
(オ)板厚方向の結晶粒の数を3個以上確保し、さらに表層の窒素濃度を1.0質量%以下とすることにより、耐電解液性も確保できること。つまり、耐電解液性を向上するには、プレス加工後のコーナー部でのステンレス鋼箔表面の肌荒れを抑制し、樹脂皮膜との密着性を保つことが重要であること。
 本発明は、これら知見に基づき成されたものであり、その要旨とするところは以下のとおりである。
 (1)板厚が5μm以上60μm以下であるステンレス鋼箔であって、
 前記ステンレス鋼箔の再結晶率が90%以上100%以下であり、
 前記ステンレス鋼箔の表層の窒素濃度が1.0質量%以下であり、
 前記ステンレス鋼箔の板厚方向に結晶粒を3個以上有し、
 前記結晶粒の平均結晶粒径dが1μm以上10μm以下であり、
 前記板厚をt[μm]とした場合に、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%以下であることを特徴とするステンレス鋼箔である。
 (2)前記板厚が5μm以上25μm以下であることを特徴とする(1)に記載のステンレス鋼箔である。
 (3)表面粗さRzが100nm以上、且つ板厚の1/10以下であることを特徴とする(1)または(2)に記載のステンレス鋼箔である。
 (4)破断伸びが10%以上であることを特徴とする(1)から(3)のいずれかに記載のステンレス鋼箔である。
 (5)前記ステンレス鋼箔がフェライト系ステンレス鋼箔であることを特徴とする(1)から(4)のいずれかに記載のステンレス鋼箔である。
 (6)前記ステンレス鋼箔がオーステナイト系ステンレス鋼箔であることを特徴とする(1)から(4)のいずれかに記載のステンレス鋼箔である。
 (7)前記ステンレス鋼箔の少なくとも一方の表面に樹脂フィルムが積層されていることを特徴とする(1)から(6)のいずれかに記載のステンレス鋼箔である。
 本発明に係る厚さ60μm以下の極薄ステンレス鋼箔は、高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を確保することができる。さらに、電池ケースに加工した際の良好な耐電解液性を確保することができる。これらにより、小型軽量化を指向するリチウムイオン電池などの電池ケースなどへ適用することができる。
 本発明について、以下に詳細に説明する。なお、特に断りのない限りオーステナイト系ステンレス鋼を例として説明する。
 (1.ステンレス鋼箔)
 [ステンレス鋼の材質]
 本発明に係るステンレス鋼箔は、ステンレス鋼から構成されていれば、特に制限されない。SUS304などのオースナイト系であってもよいし、SUS430などのフェライト系であってもよい。ただし、フェライト系ステンレス鋼の場合、オーステナイト系に比較してアニールの適性温度が約100℃低くなる。その点を考慮し、後述するステンレス鋼箔の製造方法によれば、オーステナイト系であってもフェライト系であっても所定の特性を得ることができることを確認した。
 [板厚が5~60μm]
 本発明に係るステンレス鋼箔は、板厚が5~60μmのものを対象とする。60μm以下であると、前述したように結晶粒起因の問題点が顕在化するからである。これらの問題点は板厚が薄くなればなるほど顕著になること、さらには電池ケースなどの薄厚化に貢献できることから、対象板厚の上限を薄厚化の方向へ限定してもよい。すなわち、好ましくは50μm以下、さらに好ましくは40μm以下、より好ましくは25μm以下に限定してもよい。また、板厚の下限は特に限定しないが、製造技術の限界を考慮すると板厚5μmを下限としてもよい。板厚5μmであっても、本発明による効果は享受できる。
 [板厚方向に結晶粒が3個以上]
 本発明に係るステンレス鋼箔において、板厚方向に結晶粒が3個以上存在する。板厚方向の結晶粒数は、板厚方向の任意の断面において、結晶粒径をJIS G 0551に準拠して測定して平均結晶粒径を算出し、板厚を平均結晶粒径で割り算し、その商をもって板厚方向の結晶粒数とすることができる。なお、結晶粒が等軸粒である場合は、板厚方向に直交する面において測定し、平均結晶粒径を算出してもよい。
 もしくは、任意の断面内で板厚方向に任意の直線を3本以上引き、それらの直線が横断する結晶粒の個数を数え、それらを算術平均して求める。その際、結晶粒が表面に接している場合は、0.5個としてカウントする。また、直線が結晶粒界に沿った場合は、結晶粒界を構成する複数の結晶をそれぞれカウントすることもできる。但し、ステンレス鋼箔の幅方向の両端部はアニールによる影響が出易いので、結晶粒数の測定には適さない。そのため、ステンレス鋼箔の幅方向の両端部を除外して、板厚方向に任意の直線を引き、結晶粒数を測定することが望ましい。例えば、ステンレス鋼箔の幅方向の中央(片端から1/2幅の位置)および両端と中央の中間(片端から1/4幅と3/4幅の2つの位置)の3か所で結晶粒の個数を数え、それらを算術平均することにより、当該ステンレス鋼箔の板厚方向の結晶粒数を評価することができる。このようにして求めた結晶粒数が3個以上であればよい。
 個々の結晶粒が任意の形に塑性変形するには、von Misesの条件を満たし、複数のすべり系が多重すべりを起こす必要がある。しかしながら、板厚方向の結晶粒数が少ないと、変形方向に対してvon Misesの条件を満たさない方位の結晶粒(変形能に劣る結晶粒)が、厚さ方向に並ぶ確率が高くなる。そうすると、プレス加工時にそれらの結晶粒が箔全体の変形に追従できないため、破断の起点となってしまう。一方、板厚方向に結晶粒が3個以上存在すれば、仮に変形能に劣る結晶粒が存在しても、周囲の結晶粒が任意の形に変形して箔全体としての変形を維持できるため、結果として塑性変形能が向上する。
 さらに、板厚方向の結晶粒数を鋼種あるいは板厚に応じて決定すると、塑性変形能をより確保できるので好ましい。オーステナイト系ステンレス鋼は、フェライト系ステンレス鋼に比べて加工硬化し易いため、変形抵抗が大きい。また、板厚が厚いほど変形抵抗が大きくなる。そのため、塑性変形能を確保する観点から、オーステナイト系ステンレス鋼の場合には結晶粒数を多く、また板厚が厚くなるほど結晶粒数を多くするとよい。
 オーステナイト系ステンレス鋼の場合、板厚が15μm以上の場合は板厚方向の結晶粒数は5個以上が好ましく、特に板厚が40μm以上の場合は10個以上がより好ましい。一方、フェライト系ステンレス鋼の場合も、同様な理由で、板厚が15μm以上の場合は4個以上が好ましく、特に40μm以上の場合は5個以上がより好ましい。これにより塑性変形能を更に向上させることができる。なお、板厚が15μm以下の極薄ステンレス鋼箔の場合は、鋼種あるいは板厚による板厚方向の結晶粒数への影響は無視できる程度になる。
 結晶粒数の上限は特に限定しない。極薄ステンレス鋼箔の板厚により、板厚方向の結晶粒数は変化するからである。上述の多重すべりは、結晶粒の大きさではなく、厚み方向の結晶粒の数で決まるからである。
 [平均結晶粒径が1μm以上10μm以下]
 本発明では、結晶粒の大きさ(JIS G 0051に準拠する結晶粒径(以下、本明細書では特に断りのない限り「平均結晶粒径d」という。))を1μm以上10μm以下とする。平均結晶粒径dは2μm以上6μm以下であることが好ましい。
 平均結晶粒径を上記の範囲内とすることにより、結晶粒の粗大化が抑制され、かつ板厚方向に結晶粒が3個以上存在しやすくなる。
 [t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%以下]
 本発明では、上記の平均結晶粒径に関する規定に加えて、板厚をt[μm]とした場合に、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率を20%以下としている。上述したように、板厚が60μm以下になると、板厚方向の結晶粒数を3個以上確保しなければ、塑性変形能が低下してしまう。このとき、板厚方向の結晶粒数を3個以上確保した場合であっても、結晶粒径が比較的大きな結晶粒と結晶粒径が比較的小さい結晶粒とが板厚方向に並んでいる場合と、結晶粒径が同程度の結晶粒が板厚方向に並んでいる場合と、では、塑性変形能に差が生じる。たとえば、結晶粒径が大きい結晶粒が、変形に不利な方位に存在していると、当該結晶粒が十分に変形できないので、当該結晶粒を起点として破断等が生じてしまう。
 したがって、板厚に対して、結晶粒径が大きい結晶粒の存在割合を小さくすることが好ましい。換言すれば、結晶粒径の分布が狭いことが好ましい。このような結晶粒径の分布の広狭については、板厚方向の結晶粒数および平均結晶粒径では評価することができない。そこで、本発明において、結晶粒径が比較的大きい結晶粒、すなわち、t/3[μm]以上の結晶粒径を有する結晶粒の割合を上記の範囲内とすることにより、本発明に係るステンレス鋼箔のプレス成形性をさらに高めることができる。
 上記の面積率は以下のようにして算出すればよい。まず、ステンレス鋼箔の表面において、所定の測定視野内に存在する結晶粒の平均結晶粒径をJIS G 0551に準拠して測定する。次に、測定された結晶粒径がt/3[μm]以上の結晶粒と、測定された結晶粒径がt/3[μm]未満の結晶粒と、に分けて、測定された結晶粒径がt/3[μm]以上の結晶粒が、測定視野の面積に占める割合を算出して、これを面積率とすればよい。または、電子線後方散乱回折(EBSD:Electron Back Scatter Diffraction)法を用いて算出しても良い。まず、各測定点における結晶方位を決定し、傾角15度以上の境界(双晶を除く)を結晶粒界、結晶粒界に囲まれた領域を結晶粒とする。そして、各結晶粒の結晶粒径と面積を算出し、結晶粒径がt/3[μm]以上の結晶粒の面積率を求めても良い。
 上記の面積率は、10%以下であることが好ましい。
 なお、本発明では、上記の面積率を算出する際には、板厚方向の結晶粒数を算出する場合とは異なり、ステンレス鋼箔の表面において結晶粒径を算出する。これは、所定の結晶粒径を有する結晶粒の分布を算出する場合、測定する結晶粒の数が多い方が好ましいため、板厚が60μm以下のような極めて薄い箔の断面において測定視野を確保することは困難となるからである。
 さらに、板厚方向では、結晶粒が箔の表面に接して途中で途切れているものが観察されることがある。この場合、途切れた状態での結晶粒径が測定されるため、実際の結晶粒径よりも小さく算出されてしまい、見かけの結晶粒径が小さくなってしまう。これに対して、表面において結晶粒径を測定する場合には、結晶粒が途中で途切れているものはないため、実際の結晶粒径が反映された結晶粒径分布を得ることができるという利点がある。
 したがって、結晶粒径が大となる結晶粒の面積率については、同じ材料でも表面における面積率のほうが板厚方向の断面における面積率よりも大きい値が測定される。したがって、表面における面積率を所定の値以下とすれば、板厚方向における面積率はその値よりも確実に小さいといえるため、本発明では、所定の結晶粒径を有する結晶粒の面積率を測定する際、表面において測定を行う。
 [再結晶率が90%以上100%以下]
 本発明に係るステンレス鋼箔は、塑性変形能を確保するため結晶粒を微細化する必要があるが、それだけでは前述の課題を解決できない。さらに破断伸び性を確保するために転位密度を適正なレベルに調整する必要がある。具体的には、圧延後の組織は加工を受けることにより、転位などの格子欠陥が蓄積しているため、結晶粒は微細であっても転位密度が高く、硬化している。そのため、熱処理条件を材料に応じて適正に制御して、組織を再結晶させ、低転位密度にする必要がある。すなわち、再結晶組織が転位密度を駆動力として形成されるために、再結晶粒内の転位密度を小さくすることを利用しつつ、再結晶組織の粗大化を抑制することで、塑性変形能を確保しつつ、破断伸び性も確保するものである。
 なお、転位密度を測定する方法としては、エッチピット法等が例示されるが、測定条件等に影響されるため定量的な測定は難しい。顕微鏡観察により転位密度を直接測定することもできるが、観察視野によるためバラツキが大きい。そこで、本発明者らは、転位密度を反映した特性値である再結晶率を測定することにより、適正な熱処理がなされたかどうかを把握できることを見出した。
 再結晶率は(再結晶した結晶の面積)/(観察面積)により算出できる。「再結晶した結晶の面積」は、光学顕微鏡下で極薄ステンレス鋼箔の任意断面を観察することにより得ることができる。あるいは、X線回折により得られる(220)面(オーステナイト系)または(211)面(フェライト系)の回折ピークの半価幅を求めて算出してもよい。半価幅が0.20deg.以下であれば再結晶率90%以上、0.15deg.以下であれば再結晶率95%以上、0.10deg.以下であれば再結晶率100%とみなすことができる。
 本発明に係るステンレス鋼箔は、再結晶率が90%以上あればよい。再結晶率が90%以上あれば、転位密度が十分に低くなり、板厚方向に必要な結晶粒数も確保することができる。好ましくは、再結晶率は95%以上である。再結晶率が95%以上であれば、板厚が薄くても、プレス加工性(塑性変形能)を向上させ、かつ表面粗度も改善されるからである。板厚方向の結晶粒数が本発明の規定を満足していれば、再結晶率は100%であってよい。すなわち、本発明に係るステンレス鋼箔全体が再結晶していてもよい。
 [表層の窒素濃度]
 上述したように、ステンレス鋼箔の表面を窒化した場合、特に板厚が薄くなると、窒化による表層の硬化に起因する種々の問題点が顕在化する。したがって、ステンレス鋼箔の表層は窒化していないことが望ましい。「表層が窒化していない」とは、表層の窒素濃度が1.0質量%以下であることを意味する。ここで、表層とはオージェ電子分光法による測定において、酸素濃度がピーク値の半分となる厚さのこととし、窒素濃度は、表層における平均の濃度とする。
 再度繰り返して説明するが、ステンレス鋼箔の表層が窒化している場合、プレス加工した際に表層が窒化により硬くなっていることで切れの起点となってしまうため、プレス成形性が低下してしまう。これは、板厚が60μm以下と薄い本発明に係るステンレス鋼箔では、相対的に表面の影響が大きくなるために顕著となる課題である。窒素濃度を上述の範囲とすることで、表層の切れ(クラック)が生じずに変形できるため、厚さ方向の結晶粒数が3個以上であれば、良好なプレス成形性が得られる。そのため、ステンレス鋼箔表層に窒素を濃化させずに、表層の窒素濃度を1.0質量%以下にするとよい。表層の窒素濃度の下限は特に限定する必要はない。下限は、ステンレス鋼箔全体で評価する窒素含有量と同等になる。すなわち、一般的なSUS304、SUS430等の窒素を含まない鋼種の場合、不可避的不純物としての窒素の含有量レベルが下限になる。
 ステンレス鋼箔の表層の窒素濃度を1質量%以下にするには、アニール雰囲気中の窒素濃度を0.1体積%以下にすることで制御できる。
 [表面粗さRzが100nm以上かつ板厚の1/10以下]
 上記板厚方向の結晶粒数および再結晶率を確保するために、強圧下率で圧延し、比較的高温で最終アニールを施す。それらのプロセスを経ることにより、表面粗さRzは、光沢のある通常品でも1000nm以下に、表面に光沢のないダル仕上げ品であっても6000nm以下となることが確認できた。なお、Rzとは、JIS B 0601: 2001で規定されているように、基準長さにおいて、最も凹な部分と最も凸な部分との厚み方向の差で表現される。いうまでもなく、表面粗さの上限は低ければ低いほどよいが、実際のプロセス条件に依存する。本発明に係るステンレス鋼箔表面粗さRzは、板厚の1/10以下に仕上げることができる。表面粗さRzが板厚の1/10以下であれば、安定したプレス加工性(塑性変形能)が確保できる。
 表面粗さRzの下限は特に限定されない。しかしながら、表面粗さRzを0nmにすることは現実的ではないことから、現実的に得られる最小値である100nmを下限としてもよい。
 一般に、極薄ステンレス鋼箔をアニールする際に、ステンレス鋼箔に塑性変形能がなければアニール中のロール通板により、よれの発生や破断が生じ、板の損傷につながる。また、ステンレス鋼箔の破断伸びが大きくなければ表面の凹凸を平滑化することが難しくなる。したがって、圧延圧下率、最終アニール温度が、表面粗さに影響してくる。
 本発明では強圧下圧延した後に、転位密度に応じて比較的高温でアニールすれば、結晶粒の微細化によって板厚方向に塑性変形しやすくなる上に、高伸び化によって板の損傷が回避でき、その結果、高い板厚精度が確保できると推定する。
 一方、強圧下圧延したとしても、その後に比較的低めの温度でアニールすると、結晶粒は微細化できても、転位密度を十分に低減できない。そのため、破断伸びが10%未満となってしまうので、表面の凹凸を平滑化しにくくなり、表面粗さRz6000nm以下を確保することはできない。
 また、強圧下圧延せずに比較的高温でアニールを施すと、再結晶の核生成サイトが充分には得られていない状況でアニールするため、結晶粒が粗大化し、板厚方向で結晶粒の数が2個程度となってしまう。そのため、板厚方向で塑性変形がしにくくなってしまうので、アニール中にロール通板により、よれの発生や破断などが生じる。
 また、強圧下圧延せずに、さらに比較的低温でアニールすると、上述の理由と同様に板厚方向で塑性変形しにくくなる上に、破断伸びが10%未満となってしまう。そのため、アニール工程中のロール通板により、よれの発生や破断が生じる上に、極薄ステンレス鋼箔表面の凹凸を平滑化することが難しくなる。
 [破断伸びが10%以上]
 破断伸びは加工性の総合指標であって、塑性変形能と転位密度に関係する。転位密度はアニール温度に密接に関係するため、最終アニール温度が950℃以上であれば、破断伸びは10%以上を確保できる。さらに、本発明に係るステンレス鋼箔は、塑性変形能も確保しているため、さらに破断伸び性は良好であることが確認された。
 破断伸びはアニール温度への依存性が強いため、本発明に係るステンレス鋼箔の破断伸び率は、アニール温度が950℃の場合は10%以上を、アニール温度が1050℃のときは20%以上を確保できることを確認した。
 破断伸びは大きければ大きいほど好ましく、その上限は特に限定されない。現実的な破断伸びの最大値は50%程度であるので、それを上限としてもよい。
 [ラミネート]
 本発明に係るステンレス鋼箔は、通常のラミネートステンレス鋼箔と同様に、その表面に樹脂フィルムを積層(ラミネート)し、ラミネートステンレス鋼箔にしてもよい。樹脂フィルムを積層することにより、電解液中での耐食性を向上させることができ、リチウムイオン電池をはじめとする電池ケースへの適用性をいっそう高めることができる。
 樹脂フィルムの積層は、ステンレス鋼箔の両表面に施してもよいし、どちらか一方の表面に施してもよい。
 ステンレス鋼箔と樹脂の剥離強度については、ステンレス鋼箔の表面に適切な厚さのクロメート処理層を設けることで、必要な性能が得られる。例えば、特許文献5にはステンレス鋼箔の少なくとも一方の面に厚さ2~200nmのクロメート処理層を設け、その表面に極性を持つ官能基を含有するポリオレフィン系樹脂を積層する技術が開示されている。
 また、プレス加工後の樹脂の白化については、樹脂の設計を最適化することで防止できる。具体的には、熱ラミネート後の樹脂が非晶質となるようにすれば良く、そのためには熱ラミネート時の冷却速度を速くすればよい。例えば120℃~80℃の範囲の冷却速度を20℃/s以上とすればよい。
 (2.ステンレス鋼箔の製造方法)
 次に本発明に係るステンレス鋼箔の製造方法について説明する。
 本発明に係るステンレス鋼箔の製造工程は、通常のステンレス鋼箔の製造工程と概ね同じである。すなわち、ステンレス鋼帯を箔圧延し、その後表面洗浄をし、最終アニールを行い、必要に応じて調質圧延(テンションレベラー)を行い、ステンレス鋼箔を製造する。なお、箔圧延に供する素材のステンレス鋼帯の板厚に応じて、箔圧延工程を複数回に分け(多段圧延)、各箔圧延工程の間に中間アニールを行ってもよい。しかしながら、本発明に係るステンレス鋼箔を得るためには、前述したように、最終箔圧延での圧下率および最終アニールでの温度を制御することが重要である。
 [圧下率]
 箔圧延において、強圧下圧延を行うことにより、ステンレス鋼中に再結晶の核生成サイトとなる転位を導入することができる。圧下率が高ければ高いほど、導入される転位は増加する。転位密度は、圧下率および圧延後に施すアニール処理によって、合せて制御される。したがって2回以上の箔圧延を行なう場合は最終の箔圧延、つまり最終アニール直前の箔圧延を強圧下で行うとよい。
 フェライト系ステンレス鋼の場合、オーステナイト系ステンレス鋼と比べて加工硬化しにくい、すなわち、転位密度を増加させにくいため、より強圧下する必要があり、圧下率は50%以上にするとよい。また、できれば60%以上とすることが望ましく、70%以上がより望ましい。
 圧延により導入される転位の程度は、鋼種によって異なる。例えば、フェライト系ステンレス鋼の場合は、オーステナイト系ステンレス鋼と比べて加工硬化しにくく、転位密度を増加させにくいため、より強圧下する必要がある。そのため、最終アニール前の箔圧延での圧下率は50%以上にするとよい。転位密度を確保する観点から、好ましくは60%以上にするとよく、さらに好ましくは70%以上にするとよい。
 一方、オーステナイト系ステンレス鋼の場合、フェライト系ステンレス鋼ほど圧下率を高くする必要はなく、最終アニール前の箔圧延での圧下率は30%以上にするとよい。転位密度を確保する観点から、好ましくは40%以上にするとよく、さらに好ましくは45%以上にするとよい。
 なお、圧下率は以下の式で定義される。
 圧下率=(圧延前板厚-圧延後板厚)/(圧延前板厚)
 箔圧延では、板厚を減じることはもちろんのこと、転位を導入することも目的となるため、特に圧下率の上限は限定しない。しかしながら、理論的に圧下率100%はあり得ないので、現実的な圧下率の上限は95%程度である。
 圧下率の下限は、ステンレス鋼箔の最終板厚にもよるが、できれば40%以上とすることが望ましく、45%以上がより望ましい。
 複数回に分けて箔圧延をする場合、中間での箔圧延とそれに続く中間アニールでも材料の構造を制御することが好ましい。この場合も最終箔圧延と同様にすればよい。すなわち、各箔圧延での圧下率を30%以上にするとよい。但し、前述したように最終アニール直前の箔圧延が一番効いてくるため、最終箔圧延の圧下率を、他の箔圧延の圧下率より高く設定するとよい。
 [アニール温度]
 箔圧延後のアニール(最終アニール)は、転位密度を減少させ、再結晶を進行させるための重要な役割を担う。本発明に係るステンレス鋼箔に関しては、前述したように、転位密度を減少させ再結晶を進行させつつ、粒成長を抑制して、塑性変形能と破断伸び性を同時に確保することを目的としている。
 本発明に係るステンレス鋼箔の場合、オーステナイト系ステンレス鋼であれば、アニール温度を950℃以上、1050℃以下にするとよい。950℃以下では、転位密度が減少しないため、破断伸び性を確保することができない。一方、1050℃を超えると結晶が粗大化し、板厚方向の結晶粒数が減少および結晶粒径の分布が広くなり、塑性変形能を得ることができない。破断伸び性を確保し、プレス加工性(塑性変形能)もよくするには、アニール温度の下限は950℃より若干高いことが好ましく、望ましくは960℃、さらに望ましくは970℃にするとよい。
 アニール温度の上限も、結晶の粗大化を抑制する観点から、1050℃よりは若干低く、1040℃とすることが望ましく、さらに望ましくは1030℃にするとよい。
 同様に、フェライト系ステンレス鋼であれば、アニール温度を850℃以上、950℃以下にするとよい。850℃以下では、転位密度が減少しないため、破断伸び性を確保することができない。一方、950℃を超えると結晶が粗大化し、板厚方向の結晶粒数が減少および結晶粒径の分布が広くなり、塑性変形能を得ることができない。破断伸び性を確保し、プレス加工性(塑性変形能)もよくするには、アニール温度の下限は850℃より若干高いことが好ましく、望ましくは860℃、さらに望ましくは870℃にするとよい。
 アニール温度の上限も、結晶の粗大化を抑制する観点から、950℃よりは若干低く、940℃とすることが望ましく、さらに望ましくは930℃にするとよい。
 [アニール保定時間]
 ステンレス鋼箔を上述のアニール温度で保定する時間は、3秒以上30秒以下にするとよい。3秒未満では、熱処理が不十分となり再結晶が十分に進まず、本発明で規定する再結晶率を得られない。一方、30秒を超えると再結晶粒が粗大化し、板厚方向の結晶粒数が減少および結晶粒径の分布が広くなるため、十分な塑性変形能を得ることができない。
 [アニール雰囲気]
 アニール雰囲気は、ステンレス鋼箔の表面が窒化しないように、水素またはアルゴンなどの希ガス雰囲気にする。なお、アニール雰囲気中に窒素は全く含まれないことが望ましいが、大気中から不可避で混入する窒素はある程度許容できる。表面層の窒素濃度を1.0質量%以下にするためには、アニール雰囲気中の窒素濃度が0.1体積%以下であればよい。
 [中間アニール]
 複数回の箔圧延工程とする場合、中間アニールの条件については特に定めないが、最終アニールと同様にオーステナイト系ステンレス鋼の場合は950℃以上1050℃以下、フェライト系ステンレス鋼の場合は850℃以上950℃以下が望ましい。結晶粒界も再結晶の核となり、箔圧延前に多く導入されていることが望ましいので、上述の温度範囲とすることで再結晶粒の粗大化を抑制することが望ましい。
 本発明に係るステンレス鋼箔の実施例として、SUS304(オーステナイト系ステンレス鋼)の成分を有するステンレス鋼帯、並びにSUS430(フェライト系ステンレス鋼)の成分を有するステンレス鋼帯を、表1および2に記載の圧延条件のもとで箔圧延機によって圧延することで表1および2に記載の厚みを有する極薄ステンレス鋼箔を製造した。
 ここで、冷間圧延圧下率は最終アニール直前の箔圧延工程における圧下率を、仕上アニール温度は圧延工程完了後に施す最終アニール工程における温度を、保定時間は仕上アニール温度でステンレス鋼箔を保定する時間をそれぞれ示す。
 アニール雰囲気は、0.1体積%-窒素99.9体積%水素混合ガスもしくは25体積%窒素-75体積%水素混合ガスとした。
 再結晶率は、圧延方向断面を観察面とし鏡面研磨、エッチングして観察し全板厚×500μm幅の範囲で再結晶した結晶粒の面積を求め、 (再結晶した結晶の面積)/(観察面積)を計算することで得た。
 表層の窒素濃度は、オージェ電子分光法(AES)により測定した。ステンレス鋼箔表面から30nmの深さまでを測定し、酸素濃度がピーク値の半分の濃度となる深さまでの平均の窒素濃度を、表層の窒素濃度とした。
 板厚方向の結晶粒数は、試験片を板厚方向に切り出し、断面研磨した後にエッチングを施してから顕微鏡で観察した後、結晶粒径をJIS G 0551に準拠して測定して平均結晶粒径を算出し、板厚を平均結晶粒径で割り算した際の商とした。
 平均結晶粒径は、試験片の表面を研磨した後にエッチングを施してから顕微鏡で観察した後、結晶粒径をJIS G 0551に準拠して測定して算出した。また、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率は、算出した結晶粒径に基づき、t/3[μm]以上の結晶粒径を有する結晶粒と、t/3[μm]未満の結晶粒径を有する結晶粒と、を区別して、測定視野(100×100μm)に対して、t/3[μm]以上の結晶粒径を有する結晶粒が占める割合を、面積率として算出した。
 破断伸びは、製造したステンレス鋼箔からJIS13号B試験片を切り出し、JIS Z 2241に準拠した試験法で引張試験を行うことで評価した。板厚精度については、市販の触針式表面粗さ測定器によって基準長さ0.25mmにおいて、JIS B 0601に準じて最大高さRzを評価した。
 また、仕上アニール(最終アニール)後のステンレス鋼箔を用いて、その片面に10nmのクロメート処理層を設けた上にポリプロピレンフィルムをラミネートし、もう一方の面にはポリエステルフィルムまたはナイロンフィルムをラミネートした約100mm角のサンプルを作製した。これらのサンプルの中央に縦40mm×横30mm、R1.5mmのポンチ、R1.5mmのダイのポンチでクリアランス0.3mmの条件でプレス成形を行い、シワやクラックが発生しない最大の深さを評価した。板厚が大きいほど最大成形深さは大きくなるため、板厚30μm未満の場合は成形深さが3.0mm以上を良好とし、板厚30μm以上の場合は成形深さが3.5mm以上を良好とした。評価結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、本発明に係るオーステナイト系ステンレス鋼箔の実施例は、結晶粒に関する規定を全て満足している。その結果、板厚が30μm未満の場合には成形深さが3.0mm以上であり、板厚が30μm以上の場合には成形深さは3.5mm以上であった。
 これに対し、比較例1~3は、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%を超えているため、成形深さに劣る結果となった。
 また、比較例4~7は、圧下率が低いまたは仕上アニール温度が高い、あるいはその両方であるため、結晶粒に関する規定を全て満足しなかった。その結果、成形深さに劣る結果となった。
 また、比較例8~12は、仕上アニール温度が低いため、再結晶率が低くなった。その結果、成形深さに劣る結果となった。比較例13は、仕上アニール時の雰囲気に含まれる窒素濃度が高いため、表層の窒素濃度が高くなった。その結果、成形深さに劣る結果となった。
 なお、参考例14は、板厚が大きな従来例に係るものである。
 表2に示すとおり、本発明に係るフェライト系ステンレス鋼箔の実施例は、結晶粒に関する規定を全て満足している。その結果、板厚が30μm未満の場合には成形深さが3.0mm以上であり、板厚が30μm以上の場合には成形深さは3.5mm以上であった。
 これに対し、比較例15~19は、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%を超えているため、成形深さに劣る結果となった。
 また、比較例20は、仕上アニール温度が低いため、再結晶率が低くなった。その結果、成形深さに劣る結果となった。比較例21および22は、圧下率が低いまたは仕上アニール温度が高いため、板厚方向の結晶粒数および平均結晶粒径に関する規定を満足しなかった。その結果、成形深さに劣る結果となった。比較例23は、仕上アニール時の雰囲気に含まれる窒素濃度が高いため、表層の窒素濃度が高くなった。その結果、成形深さに劣る結果となった。
 以上の結果より、オーステナイト系ステンレス鋼箔では、実施例と比較例とを比較すると、成形深さに関して0.5mm以上の差があることが確認できた。また、フェライト系ステンレス鋼箔では、実施例と比較例とを比較すると、成形深さに関して0.4mm以上の差があることが確認できた。この差は以下に示すように非常に有意な差である。すなわち、ステンレス鋼箔が、たとえば、スマートフォン等の小型かつ軽量な電子機器に搭載される電池ケースに適用される場合、電池ケースの厚みは数mm程度が要求される。このような状況において、成形深さが0.4mm以上大きくなると、電池ケースの厚みの10%以上に相当し、電池容量の増大に大きく寄与する。したがって、本発明の効果は非常に大きい。
 本発明に係るステンレス鋼箔は、小型電子機器用のリチウムイオン電池などの電池ケースなどに適用することができる。

Claims (7)

  1.  板厚が5μm以上60μm以下であるステンレス鋼箔であって、
     前記ステンレス鋼箔の再結晶率が90%以上100%以下であり、
     前記ステンレス鋼箔の表層の窒素濃度が1.0質量%以下であり、
     前記ステンレス鋼箔の板厚方向に結晶粒を3個以上有し、
     前記結晶粒の平均結晶粒径dが1μm以上10μm以下であり、
     前記板厚をt[μm]とした場合に、t/3[μm]以上の結晶粒径を有する結晶粒が占める面積率が20%以下であることを特徴とするステンレス鋼箔。
  2.  前記板厚が5μm以上25μm以下であることを特徴とする請求項1に記載のステンレス鋼箔。
  3.  表面粗さRzが100nm以上、且つ板厚の1/10以下であることを特徴とする請求項1または2に記載のステンレス鋼箔。
  4.  破断伸びが10%以上であることを特徴とする請求項1から3のいずれか1項に記載のステンレス鋼箔。
  5.  前記ステンレス鋼箔がフェライト系ステンレス鋼箔であることを特徴とする請求項1~4のいずれか1項に記載のステンレス鋼箔。
  6.  前記ステンレス鋼箔がオーステナイト系ステンレス鋼箔であることを特徴とする請求項1から4のいずれか1項に記載のステンレス鋼箔。
  7.  前記ステンレス鋼箔の少なくとも一方の表面に樹脂フィルムが積層されていることを特徴とする請求項1から6のいずれか1項に記載のステンレス鋼箔。
PCT/JP2016/074026 2015-08-19 2016-08-17 ステンレス鋼箔 WO2017030148A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/750,947 US10786974B2 (en) 2015-08-19 2016-08-17 Stainless steel foil
CN201680004063.1A CN107002203A (zh) 2015-08-19 2016-08-17 不锈钢箔
EP16837137.5A EP3339461A4 (en) 2015-08-19 2016-08-17 STAINLESS STEEL SHEET
JP2016574204A JP6165369B1 (ja) 2015-08-19 2016-08-17 ステンレス鋼箔
KR1020177018909A KR101944651B1 (ko) 2015-08-19 2016-08-17 스테인리스 강박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161984 2015-08-19
JP2015-161984 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030148A1 true WO2017030148A1 (ja) 2017-02-23

Family

ID=58052176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074026 WO2017030148A1 (ja) 2015-08-19 2016-08-17 ステンレス鋼箔

Country Status (7)

Country Link
US (1) US10786974B2 (ja)
EP (1) EP3339461A4 (ja)
JP (1) JP6165369B1 (ja)
KR (1) KR101944651B1 (ja)
CN (1) CN107002203A (ja)
TW (1) TWI628295B (ja)
WO (1) WO2017030148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210918A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 可撓性ステンレス箔および可撓性発光デバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122523A1 (ja) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 ステンレス箔およびその製造方法
JP6669321B2 (ja) * 2018-02-14 2020-03-18 日本製鉄株式会社 電池容器用表面処理鋼板及び電池容器用表面処理鋼板の製造方法
US20220238920A1 (en) * 2019-05-31 2022-07-28 Nippon Shokubai Co., Ltd. Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
CN113106327B (zh) * 2020-01-13 2022-06-24 宝山钢铁股份有限公司 一种高耐蚀带钢及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052100A (ja) * 2002-05-27 2004-02-19 Nippon Steel Corp 電池用外装材
JP2007168184A (ja) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd 樹脂被覆ステンレス鋼箔,容器及び2次電池
CN101381842A (zh) * 2007-09-07 2009-03-11 宝山钢铁股份有限公司 一种高铬铁素体不锈钢及其制造方法
JP2012092360A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法
JP2012092361A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法
JP2015074798A (ja) * 2013-10-08 2015-04-20 日新製鋼株式会社 リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼および該ステンレス鋼を用いたリチウムイオン二次電池電解液保管容器
WO2015122523A1 (ja) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 ステンレス箔およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544488B2 (ja) 1999-03-23 2004-07-21 新日本製鐵株式会社 ステンレス極薄箔
US7259747B2 (en) * 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
JP3730181B2 (ja) 2002-02-15 2005-12-21 日本冶金工業株式会社 箔状ステンレス鋼
JP5334485B2 (ja) * 2008-07-25 2013-11-06 日新製鋼株式会社 リチウムイオン二次電池用集電体および負極材料
JP2011102423A (ja) * 2009-11-11 2011-05-26 Nisshin Steel Co Ltd ラミネート型リチウムイオン二次電池ケース用フェライト系ステンレス鋼箔
CN102839328A (zh) * 2011-06-24 2012-12-26 宝山钢铁股份有限公司 高深冲性低各向异性的铁素体不锈钢板及其制造方法
JP2013041788A (ja) 2011-08-19 2013-02-28 Nisshin Steel Co Ltd リチウムイオン二次電池
KR20160009688A (ko) 2013-07-30 2016-01-26 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스박
US10323294B2 (en) * 2015-08-17 2019-06-18 Nippon Steel & Sumikin Materials Co., Ltd. Austenitic stainless steel foil
JP6125129B1 (ja) * 2015-08-17 2017-05-10 新日鉄住金マテリアルズ株式会社 フェライト系ステンレス鋼箔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052100A (ja) * 2002-05-27 2004-02-19 Nippon Steel Corp 電池用外装材
JP2007168184A (ja) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd 樹脂被覆ステンレス鋼箔,容器及び2次電池
CN101381842A (zh) * 2007-09-07 2009-03-11 宝山钢铁股份有限公司 一种高铬铁素体不锈钢及其制造方法
JP2012092360A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法
JP2012092361A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法
JP2015074798A (ja) * 2013-10-08 2015-04-20 日新製鋼株式会社 リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼および該ステンレス鋼を用いたリチウムイオン二次電池電解液保管容器
WO2015122523A1 (ja) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 ステンレス箔およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3339461A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210918A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 可撓性ステンレス箔および可撓性発光デバイス

Also Published As

Publication number Publication date
US10786974B2 (en) 2020-09-29
EP3339461A4 (en) 2019-01-16
JP6165369B1 (ja) 2017-07-19
EP3339461A1 (en) 2018-06-27
JPWO2017030148A1 (ja) 2017-08-17
CN107002203A (zh) 2017-08-01
US20180229476A1 (en) 2018-08-16
KR20170095291A (ko) 2017-08-22
KR101944651B1 (ko) 2019-01-31
TW201725273A (zh) 2017-07-16
TWI628295B (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
JP6005293B2 (ja) ステンレス箔およびその製造方法
JP6165369B1 (ja) ステンレス鋼箔
JP6161840B1 (ja) オーステナイト系ステンレス鋼箔
US10174393B2 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
JP6125129B1 (ja) フェライト系ステンレス鋼箔
EP2634282A1 (en) Steel sheet for can, and process for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016574204

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177018909

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE