WO2015122523A1 - ステンレス箔およびその製造方法 - Google Patents

ステンレス箔およびその製造方法 Download PDF

Info

Publication number
WO2015122523A1
WO2015122523A1 PCT/JP2015/054178 JP2015054178W WO2015122523A1 WO 2015122523 A1 WO2015122523 A1 WO 2015122523A1 JP 2015054178 W JP2015054178 W JP 2015054178W WO 2015122523 A1 WO2015122523 A1 WO 2015122523A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
steel foil
rolling
less
plate thickness
Prior art date
Application number
PCT/JP2015/054178
Other languages
English (en)
French (fr)
Inventor
海野 裕人
寺嶋 晋一
徹 稲熊
能勢 幸一
直樹 藤本
直哉 佐脇
修司 長▲崎▼
Original Assignee
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to US15/119,194 priority Critical patent/US11198918B2/en
Priority to KR1020167012639A priority patent/KR101922313B1/ko
Priority to EP15748546.7A priority patent/EP3109334B1/en
Priority to CN201580003152.XA priority patent/CN105829567B/zh
Priority to JP2015535920A priority patent/JP6005293B2/ja
Publication of WO2015122523A1 publication Critical patent/WO2015122523A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a stainless steel plate (stainless steel foil) having a thickness of 60 ⁇ m or less.
  • the present invention relates to a stainless steel foil having workability and corrosion resistance even in stainless steel having a very thin plate thickness.
  • a stainless steel foil (stainless steel thin plate) having higher strength and rigidity than aluminum has attracted attention.
  • stainless steel has a higher specific gravity than aluminum, there is a need for a stainless steel foil having a very thin plate thickness. When used for a battery case, it cannot be applied to a battery case required from current electronic devices unless it is made of an ultrathin stainless steel foil having a thickness of 60 ⁇ m or less.
  • Patent Document 1 discloses a stainless steel foil having a thickness of 25 ⁇ m or less. When it becomes an ultra-thin stainless steel foil, a void accompanied by a crack occurs in the rolling direction from the etching end face. Patent Document 1 discloses an invention in which the number of inclusions of 5 ⁇ m or more is limited in order to solve this problem.
  • Patent Documents 2 to 4 are examples in which stainless steel foil is applied to a battery case.
  • Patent Document 2 presses stainless steel foil with a thickness of 20 to 100 ⁇ m
  • Patent Document 3 with stainless steel foil with a thickness of 100 ⁇ m
  • Patent Document 4 presses stainless steel foil with a thickness of 40 to 150 ⁇ m. Examples of materials are disclosed.
  • Patent Literature 1 solves the technical problem that occurs during such etching processing.
  • the press formability is required for press working (deep drawing).
  • a normal stainless steel foil having a thickness of 100 ⁇ m or more an annealing treatment of about 1000 ° C. is performed in the final step in order to improve workability, the internal dislocation density is lowered, and the elongation at break is ensured.
  • the thickness of the stainless steel foil is 60 ⁇ m or less, the plastic deformability is remarkably lowered and the press formability (drawing workability) is deteriorated.
  • Patent Document 2 describes an example in which a stainless steel foil having a thickness of 20 to 100 ⁇ m is pressed and applied to a battery case.
  • press workability plastic deformability
  • the resin film peels off at the corner of the battery case. Even if the resin is peeled locally, if it is used as a battery case as it occurs, the resin will further peel from the site while in contact with the electrolyte for a long time. Impairs function.
  • Patent Document 3 also describes an application example of a stainless foil having a thickness of 100 ⁇ m to a battery case.
  • a stainless steel foil having a thickness of 100 ⁇ m the above-described problem relating to press formability does not occur, and even if it occurs, no problem has been recognized in Patent Document 3, and no solution is proposed. .
  • Patent Document 4 describes an example in which a stainless steel foil having a thickness of 40 to 150 ⁇ m is applied to a battery exterior material.
  • the technique of Patent Document 4 suppresses generation of work-induced martensite during press working by nitriding the surface layer of the stainless steel foil.
  • the press workability is improved because the surface unevenness formed by the processing-induced martensite transformation is suppressed and the surface smoothness is maintained.
  • the thickness of the stainless foil is reduced. It has been found that the fact that the number of crystal grains is about 1 to 2 is a cause of lowering plastic deformability, that is, worsening press workability. This became apparent only when the thickness became 60 ⁇ m or less, and was not a problem with a stainless steel foil thicker than 60 ⁇ m.
  • annealing is performed at a relatively high temperature in order to ensure sufficient elongation at break and sheet thickness accuracy (annealing treatment), so the crystal grains are inevitably coarsened. This is because even in such a situation, since the foil thickness is large, a certain number or more of crystal grains exist in the thickness direction, and the deterioration of the plastic deformability was not affected.
  • the present invention ensures high sheet thickness accuracy even with an ultrathin stainless steel foil having a thickness of 60 ⁇ m or less, and simultaneously ensures plastic deformability and elongation at break, that is, good press workability (deep drawing workability). ).
  • the surface roughness affects the plate thickness accuracy in the case of an ultrathin stainless steel foil, it is a problem to suppress the surface roughness Rz to 1/10 of the plate thickness in order to ensure the plate thickness accuracy.
  • the elongation at break is 10% or more which is the level of the conventional stainless steel foil. It is an object to secure the same level of plastic deformability as that of a conventional stainless steel foil.
  • the thickness of the ultrathin stainless steel foil targeted by the present invention is 5 to 60 ⁇ m.
  • the plastic deformability is ensured by securing three or more crystal grains in the thickness direction. Furthermore, it is better to make crystal grains finer, and the lower limit of the number of crystal grains in the plate thickness direction should be determined according to the plate thickness.
  • Electrolytic solution resistance can be ensured by securing three or more crystal grains in the plate thickness direction and further by setting the nitrogen concentration of the surface layer to 1.0 mass% or less.
  • it is important to suppress the rough surface of the stainless steel foil surface at the corner after press working and to maintain the adhesion with the resin film.
  • the plate thickness is 5 to 60 ⁇ m, there are 3 or more crystal grains in the plate thickness direction, the recrystallization rate is 90% or more and 100% or less, and the nitrogen concentration in the surface layer is 1.0% by mass or less.
  • Stainless steel foil characterized by being.
  • the stainless steel foil according to (1) to (4), wherein the stainless steel foil is ferritic stainless steel.
  • a resin film is laminated on at least one surface of the stainless steel foil.
  • the rolling reduction ratio in rolling immediately before the final annealing is 30% or more in the case of austenitic stainless steel
  • the nitrogen content in the atmosphere gas of the final annealing is 0.1% by volume or less
  • the temperature of the final annealing is 950 ° C. to 1050 in the case of austenitic stainless steel.
  • a method for producing a stainless steel foil characterized in that the temperature is 850 ° C. to 950 ° C. in the case of ferritic stainless steel.
  • the ultra-thin stainless steel foil having a thickness of 60 ⁇ m or less ensures high sheet thickness accuracy and simultaneously ensures plastic deformability and elongation at break, that is, secures good press workability (deep drawing workability). be able to. Furthermore, it is possible to ensure good electrolytic solution resistance when processed into a battery case. Accordingly, the present invention can be applied to a battery case such as a lithium ion battery that is aimed at reducing the size and weight.
  • the present invention will be described in detail below. Unless otherwise specified, austenitic stainless steel will be described as an example.
  • the stainless steel foil according to the present invention has a thickness of 5 to 60 ⁇ m. This is because, when the thickness is 60 ⁇ m or less, problems due to crystal grains become obvious as described above. Since these problems become more noticeable as the plate thickness becomes thinner, and further contributes to the reduction of the thickness of battery cases and the like, the upper limit of the target plate thickness may be limited in the direction of thinning. That is, it may be preferably limited to 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less. Further, the lower limit of the plate thickness is not particularly limited, but a plate thickness of 5 ⁇ m may be set as the lower limit in consideration of the limit of the manufacturing technique. Even if the plate thickness is 5 ⁇ m, the effect of the present invention can be enjoyed.
  • the ultrathin stainless steel foil according to the present invention has three or more crystal grains in the plate thickness direction.
  • the number of crystal grains in the plate thickness direction is calculated by measuring the crystal grain size in accordance with JIS G 0551 in any cross section in the plate thickness direction, calculating the average crystal grain size, and dividing the plate thickness by the average crystal grain size. The quotient can be used as the number of crystal grains in the plate thickness direction.
  • a crystal grain is an equiaxed grain, it measures in the surface orthogonal to a plate
  • the grain size of the stainless steel foil at three locations in the center in the width direction (1/2 width from one end) and in the middle between both ends and the center (two positions of 1/4 width and 3/4 width from one end) can be evaluated by counting the number and averaging them.
  • the number of crystal grains obtained in this way should be three or more.
  • the von Mises condition In order for individual grains to plastically deform into an arbitrary shape, the von Mises condition must be satisfied and multiple slip systems must cause multiple slips.
  • the number of crystal grains in the plate thickness direction is small, there is a high probability that crystal grains having orientations that do not satisfy the von Mises condition with respect to the deformation direction (crystal grains having inferior deformability) are arranged in the thickness direction. Then, since the crystal grains cannot follow the deformation of the entire foil at the time of press working, it becomes a starting point of breakage.
  • Austenitic stainless steel has higher deformation resistance because it is easier to work harden than ferritic stainless steel. Further, the deformation resistance increases as the plate thickness increases. Therefore, from the viewpoint of ensuring plastic deformability, austenitic stainless steel has a larger number of crystal grains, and the thicker the plate thickness, the greater the number of crystal grains.
  • the number of crystal grains in the plate thickness direction is preferably 5 or more when the plate thickness is 15 ⁇ m or more, and more preferably 10 or more when the plate thickness is 40 ⁇ m or more.
  • the plate thickness is 15 ⁇ m or more
  • 5 or more are more preferable when the thickness is 40 ⁇ m or more.
  • the plastic deformability can be further improved.
  • an ultrathin stainless steel foil having a plate thickness of 15 ⁇ m or less the influence on the number of crystal grains in the plate thickness direction due to the steel type and plate thickness is negligible.
  • the upper limit of the number of crystal grains is not particularly limited. This is because the number of crystal grains in the thickness direction varies depending on the thickness of the ultrathin stainless steel foil. If the number of crystal grains is 3 or more, the size of crystal grains (crystal grain size according to JIS G 0051 (hereinafter referred to as “crystal grain size” unless otherwise specified)) is particularly limited. do not do. This is because the multiple slip described above is determined not by the size of crystal grains but by the number of crystal grains in the thickness direction.
  • the plastic deformability can be reduced by suppressing the coarsening of the recrystallized structure while reducing the dislocation density in the recrystallized grains. While ensuring, the elongation at break is also ensured.
  • measurement methods such as an etch pit method for dislocation density, quantitative measurement is difficult because it is affected by measurement conditions and the like.
  • the dislocation density can be directly measured, the variation is large because of the observation field of view. Therefore, the present inventors have found that it is possible to grasp whether proper heat treatment has been performed by measuring the recrystallization rate.
  • the recrystallization rate can be calculated by (area of recrystallized crystal) / (observation area).
  • the “area of the recrystallized crystal” can be obtained by observing an arbitrary cross section of the ultrathin stainless steel foil under an optical microscope.
  • the half width of the ⁇ (220) peak or ⁇ (211) peak is obtained by X-ray analysis. If the half width is 0.20 deg. Or less, the recrystallization rate is 90% or more, and if it is 0.15 deg. If the crystal ratio is 95% or more and 0.10 deg. Or less, the recrystallization ratio can be regarded as 100% and the recrystallization ratio can be obtained.
  • the ultrathin stainless steel foil according to the present invention only needs to have a recrystallization rate of 90% or more. If the recrystallization rate is 90% or more, an extra dislocation can be eliminated and a necessary number of crystal grains can be secured. Preferably, the recrystallization rate is 95% or more. This is because if the recrystallization rate is 95% or more, even if the plate thickness is thin, press workability (plastic deformability) is improved and surface roughness is also improved. The upper limit of the recrystallization rate may be 100%. If the prescribed number of crystal grains in the plate thickness direction is secured, there is no problem even if the whole is recrystallized.
  • the surface layer of the stainless steel foil is not nitrided, and the nitrogen concentration of the surface layer is preferably 1.0% by mass or less.
  • the surface layer is a thickness at which the oxygen concentration is half the peak value in the measurement by Auger electron spectroscopy, and the nitrogen concentration is an average concentration in the surface layer.
  • the surface layer of the stainless steel foil is nitrided, since the surface layer is hardened by nitriding when it is pressed, it becomes a starting point for cutting, and the press formability deteriorates. This is a prominent problem because the influence of the surface becomes relatively large when the plate thickness is as thin as 60 ⁇ m or less.
  • the nitrogen concentration of the surface layer is preferably 1.0% by mass or less.
  • the lower limit of the nitrogen concentration of the surface layer is equivalent to the nitrogen content evaluated for the entire stainless steel foil. That is, in the case of a steel type that does not contain nitrogen, such as general SUS304 and SUS430, the nitrogen content level as an inevitable impurity becomes the lower limit.
  • the nitrogen concentration in the surface layer of the stainless steel foil can be controlled to 1% by mass or less by controlling the nitrogen concentration in the annealing atmosphere to 0.1% by volume or less.
  • the surface roughness Rz of the ultrathin stainless steel foil according to the present invention can be finished to 1/10 or less of the plate thickness. If the surface roughness Rz is 1/10 or less of the plate thickness, stable press workability (plastic deformability) can be ensured.
  • the lower limit of the surface roughness Rz is not particularly limited. However, since it is not realistic to set the surface roughness Rz to 0 nm, the practically obtained minimum value of 100 nm may be set as the lower limit.
  • annealing at a relatively high temperature suitable for the dislocation density facilitates plastic deformation in the plate thickness direction due to the refinement of crystal grains, and avoids damage to the plate due to high elongation. As a result, it is estimated that high plate thickness accuracy can be secured.
  • the roll passing plate during the annealing process causes the occurrence of kinks and breaks, and makes it difficult to smooth the irregularities on the surface of the ultrathin stainless steel foil.
  • Elongation at break is 10% or more
  • Elongation at break is a comprehensive index of workability and is related to plastic deformability and dislocation density. Since the dislocation density is closely related to the annealing temperature, if the final annealing temperature is 950 ° C. or higher, the elongation at break can be 10% or higher. Furthermore, since the ultra-thin stainless steel foil according to the present invention has ensured plastic deformability, it was further confirmed that the elongation at break was good.
  • the elongation at break of the ultrathin stainless steel foil according to the present invention is 10% or more when the annealing temperature is 950 ° C., and 20% when the annealing temperature is 1050 ° C. It was confirmed that the above could be secured.
  • the larger the elongation at break, the better, and the upper limit is not particularly limited. Since the practical maximum value of breaking elongation is about 50%, it may be the upper limit.
  • the ultrathin stainless steel foil according to the present invention is not particularly limited as long as it is stainless steel.
  • An austenite type such as SUS304 or a ferrite type such as SUS430 may be used.
  • the suitable temperature for annealing is lower by about 100 ° C. than that of austenitic. In view of this point, it was confirmed that the method for producing an ultrathin stainless steel foil according to the present invention can obtain predetermined characteristics regardless of whether it is austenite or ferrite.
  • the ultrathin stainless steel foil according to the present invention may be laminated (laminated) with a resin film on the surface thereof in the same manner as a normal laminated stainless steel foil.
  • a resin film By laminating the resin film, the corrosion resistance in the electrolytic solution can be improved, and the applicability to a battery case such as a lithium ion battery can be further enhanced.
  • Lamination of the resin film may be performed on both surfaces of the stainless steel foil, or may be performed on either surface.
  • Patent Document 5 discloses a technique in which a chromate treatment layer having a thickness of 2 to 200 nm is provided on at least one surface of a stainless steel foil, and a polyolefin resin containing a polar functional group is laminated on the surface. . Further, the whitening of the resin after press working can be prevented by optimizing the resin design. Specifically, the resin after heat lamination may be made amorphous, and for this purpose, the cooling rate during heat lamination may be increased. For example, the cooling rate in the range of 120 ° C. to 80 ° C. may be 20 ° C./s or more.
  • the manufacturing process of the ultrathin stainless steel foil according to the present invention is substantially the same as the manufacturing process of a normal stainless steel foil. That is, foil rolling of a stainless steel strip, followed by surface cleaning, final annealing, and temper rolling (tension leveler) as necessary to obtain a product. It should be noted that the foil rolling process may be divided into a plurality of times (multi-stage rolling) according to the thickness of the stainless steel strip used for foil rolling, and intermediate annealing may be performed between the foil rolling processes. However, in order to obtain the ultrathin stainless steel foil according to the present invention, as described above, it is important to control the rolling reduction in the final foil rolling and the temperature in the final annealing.
  • foil rolling In foil rolling, dislocations that serve as nucleation sites for recrystallization can be introduced into stainless steel by rolling under high pressure. The higher the rolling reduction, the more dislocations introduced. The dislocation density is controlled in combination with the annealing performed thereafter. Therefore, when foil rolling is performed twice or more, the final foil rolling, that is, the foil rolling immediately before the final annealing may be performed under high pressure.
  • ferritic stainless steel work hardening is difficult compared to austenitic stainless steel, that is, it is difficult to increase the dislocation density, so it is necessary to reduce the strength more and the reduction ratio should be 50% or more. If possible, it is preferably 60% or more, more preferably 70% or more.
  • the degree of dislocation introduced by rolling varies depending on the steel type.
  • the rolling reduction in foil rolling before final annealing is preferably 50% or more. From the viewpoint of securing the dislocation density, it is preferably 60% or more, and more preferably 70% or more.
  • the rolling reduction in foil rolling before final annealing should be 30% or more.
  • the rolling reduction in foil rolling before final annealing is preferably 40% or more, and more preferably 45% or more.
  • Reduction ratio (sheet thickness before rolling ⁇ sheet thickness after rolling) / (sheet thickness before rolling)
  • the upper limit of the rolling reduction is not particularly limited. However, theoretically, the rolling reduction rate cannot be 100%, so the practical upper limit of the rolling reduction rate is about 95%.
  • the lower limit of the rolling reduction depends on the final thickness of the ultrathin stainless steel foil, but is preferably 40% or more, more preferably 45% or more if possible.
  • the rolling reduction in each foil rolling is preferably 30% or more.
  • the reduction rate of the final foil rolling may be set higher than the reduction rate of the other foil rolling.
  • the ultrathin stainless steel foil according to the present invention has an object of adjusting the dislocation density and ensuring the plastic deformability and the elongation at break at the same time.
  • the annealing temperature may be 950 ° C. or higher and 1050 ° C. or lower if it is an austenitic stainless steel.
  • the dislocation density does not decrease, so that the elongation at break cannot be ensured.
  • the lower limit of the annealing temperature tends to be slightly higher than 950 ° C. Therefore, it is preferably 960 ° C., more preferably 970 ° C. Good.
  • the upper limit of the annealing temperature is preferably slightly lower than 1050 ° C. and preferably 1040 ° C., more preferably 1030 ° C., from the viewpoint of suppressing crystal coarsening.
  • the annealing temperature may be 850 ° C. or higher and 950 ° C. or lower. At 850 ° C. or lower, the dislocation density does not decrease, so that the elongation at break cannot be ensured. On the other hand, if the temperature exceeds 950 ° C., the crystal becomes coarse, the number of crystal grains in the plate thickness direction decreases, and plastic deformability cannot be obtained.
  • the lower limit of the annealing temperature tends to be slightly higher than 850 ° C. Therefore, it is preferably 860 ° C., more preferably 870 ° C. Good.
  • the upper limit of the annealing temperature is preferably slightly lower than 950 ° C., preferably 940 ° C., more preferably 930 ° C., from the viewpoint of suppressing crystal coarsening.
  • the time for holding the stainless steel foil at the above-described annealing temperature is preferably 3 seconds or more and 30 seconds or less. If it is less than 3 seconds, the heat treatment becomes insufficient and recrystallization does not proceed sufficiently, and the recrystallization rate cannot be obtained. On the other hand, if it exceeds 30 seconds, the recrystallized grains become coarse and the number of crystal grains in the plate thickness direction decreases, so that sufficient plastic deformability cannot be obtained.
  • the annealing atmosphere is a rare gas atmosphere such as hydrogen or argon so that the surface of the stainless steel foil is not nitrided. Although it is desirable that the annealing atmosphere does not contain nitrogen at all, nitrogen mixed unavoidably from the atmosphere is acceptable to some extent. In order to set the nitrogen concentration of the surface layer to 1.0% by mass or less, the nitrogen concentration in the annealing atmosphere may be 0.1% by volume or less.
  • the conditions for the intermediate annealing are not particularly defined, but in the case of the austenite type as in the final annealing, it is 950 ° C. or higher and 1050 ° C. or lower. desirable. Since the crystal grain boundary is also a core of recrystallization and is preferably introduced before foil rolling, it is desirable to suppress the coarsening of the recrystallized grains by setting the temperature range as described above.
  • Example 1 As an example of the ultrathin stainless steel foil according to the present invention, commercially available SUS304 (austenitic stainless steel) and SUS430 (ferritic stainless steel) are rolled by a foil rolling machine under the rolling conditions described in Table 1. An ultrathin stainless steel foil having the thickness described in 1 was produced.
  • the cold rolling reduction ratio is the rolling reduction ratio in the foil rolling process immediately before the final annealing
  • the finishing annealing temperature is the temperature in the final annealing process performed after the completion of the rolling process
  • the holding time is the time for holding the stainless steel foil at the finishing annealing temperature.
  • the annealing atmosphere was 0.1 volume% -nitrogen 99.9 volume% hydrogen mixed gas or 25 volume% nitrogen-75 volume% hydrogen mixed gas.
  • the recrystallization rate is determined by taking the cross section in the rolling direction as the observation surface, mirror polishing, etching and observing, obtaining the area of the crystal grains recrystallized within the range of the total plate thickness x constant width, and (recrystallized crystal area) / (observation It was obtained by calculating (Area).
  • the surface nitrogen concentration was measured by Auger electron spectroscopy (AES). Measurement was made from the surface of the stainless steel foil to a depth of 30 nm, and the average nitrogen concentration up to a depth at which the oxygen concentration was half the peak value was taken as the nitrogen concentration of the surface layer.
  • AES Auger electron spectroscopy
  • the number of crystal grains in the plate thickness direction is determined by measuring the crystal grain size in accordance with JIS G 0551 after cutting the test piece in the plate thickness direction, polishing the cross section, etching and then observing with a microscope. The diameter was calculated and taken as the quotient when the plate thickness was divided by the average crystal grain size.
  • the elongation at break was evaluated by cutting out a JIS No. 13 B test piece from the manufactured stainless steel foil and performing a tensile test using a test method based on JIS Z 2241.
  • the maximum height Rz was evaluated according to JIS B 0601 with a commercially available stylus type surface roughness measuring instrument.
  • Comparative Examples 2 to 5 since the final annealing temperature was high and the crystal was coarsened, “cutting” occurred in press working (deep drawing). In particular, Comparative Examples 2 and 3 have a low rolling reduction, inadequate introduction of dislocations, insufficient nucleation sites for recrystallization, and the number of crystal grains in the plate thickness direction is considered to be the cause. In Comparative Examples 6 to 10, since the final annealing temperature was low and recrystallization did not proceed, the elongation at break was extremely small. In Comparative Examples 11 and 16, since the annealing atmosphere contained 0.1% by volume or more of nitrogen, the nitrogen concentration of the surface layer exceeded 1% by mass, and a sufficient molding depth could not be obtained.
  • Reference Examples 1 and 12 are examples of a stainless steel foil having a plate thickness of 100 ⁇ m.
  • Reference Example 1 has a relatively high annealing temperature, but the plate thickness is large and recrystallization did not proceed. However, since the plate thickness is large, the number of crystal grains in the cross section is 9, and the elongation at break and the forming depth are ensured to some extent.
  • Reference Example 11 is an example in which both the elongation at break and the molding depth were very good because the recrystallization rate was 100%.
  • Examples 20 to 29 and Comparative Examples 13 to 16 are examples based on SUS430. In comparison between SUS304 and SUS430, it was confirmed that there was no significant difference in the characteristics except for an appropriate annealing temperature range.
  • the sample made into the shape of a battery case was immersed in electrolyte solution, and it hold
  • LiPF 6 lithium hexafluorophosphate
  • a solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a ratio of 1: 1: 1 1, 1000 ppm of water was added.
  • An accelerated test was performed by using a material that had been deteriorated by addition. Then, the presence or absence of peeling on the polypropylene film side of the die R portion was visually evaluated. The evaluation results are “ ⁇ ” when no peeling is found, “ ⁇ ” when peeling is confirmed, and “-” when the electrolytic solution resistance is not evaluated, as shown in Table 1-1 and Table 1- It is shown in 2.
  • the manufacturing method of the ultra-thin stainless steel foil according to the present invention is not particularly limited to the process described above. It goes without saying that an ultrathin stainless steel foil that satisfies the requirements limited in the present invention falls within the scope of the present invention and exhibits the effects of the present invention.
  • the ultra-thin stainless steel foil according to the present invention can be applied to a battery case such as a lithium ion battery for a small electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 本発明は、厚さ60μm以下の極薄ステンレス箔であっても高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を確保することを課題とする。 本発明は、板厚方向に結晶粒が3個以上有し、再結晶率が90%以上100%以下であり、表層の窒素濃度が1.0質量%以下である極薄ステンレス箔にすることにより課題を解決した。そのためには、ステンレス鋼板を圧延し、その後最終アニールを施して板厚5~60μmにする極薄ステンレス箔の製造方法において、最終アニール直前の圧延での圧下率が30%以上であり、圧延後の最終アニール温度が、オーステナイト系ステンレス鋼の場合950℃~1050℃であり、フェライト系ステンレス鋼の場合850℃~950℃であり、最終アニールの雰囲気ガス中の窒素含有量が0.1体積%以下にすることにより極薄ステンレス箔を製造できる。

Description

ステンレス箔およびその製造方法
 本発明は、厚さ60μm以下のステンレス鋼板(ステンレス箔)に関するものである。特に、極めて薄い板厚のステンレス鋼においても加工性および耐食性を備えたステンレス箔に関するものである。
 電子機器の小型化、軽量化にともない、電子機器のポータブル化、モバイル化が進展し、多くの電子機器に搭載するリチウムイオン電池などの電池の小型化、軽量化が求められている。特に、スマートフォンなどの電子機器に要求される電池の小型化、軽量化は、時代の最先端レベルの仕様を要求されている。
 現在、スマートフォン向けリチウムイオン電池の電池ケースは、アルミニウム薄板の缶型や樹脂フィルムをラミネートしたアルミニウム箔が使用されている。特に、体積当たりの容量密度の向上を目的として、樹脂フィルムラミネートアルミ箔が多用されている。最近では、更なる小型軽量化を目的に、より薄い外装材が求められている。しかし、基材であるアルミニウム箔では、薄手化すると製造過程でピンホールが発生しやすくなり、水分バリヤ性が確保できない、また薄手化により突き刺し強度や剛性が低下し、外部からの衝撃や電池の内部膨張に対する強度を確保できないといった課題があった。そのためアルミニウム箔では、更なる小型化に対し限界が見えてきた。
 そこで、アルミニウムより強度や剛性が高いステンレス箔(ステンレス鋼の極薄厚の薄板)が注目されてきた。しかし、ステンレス鋼はアルミニウムに比べ比重が高いため、板厚の極めて薄いステンレス箔が求められている。電池ケース用に用いる場合、厚さ60μm以下の極薄ステンレス箔にしなければ、現在の電子機器から求められる電池ケースには適用できない。
 極薄のステンレス箔としては、特許文献1に厚さ25μm以下のステンレス箔が開示されている。極薄ステンレス箔になると、エッチング端面から圧延方向に割れを伴うボイドが発生する。特許文献1は、これを解消するため5μm以上の介在物の個数を制限した発明が開示されている。
 また、ステンレス箔を電池用ケースに適用した例として特許文献2~4がある。特許文献2には厚さ20~100μmのステンレス箔を、特許文献3には厚さ100μmのステンレス箔を、特許文献4には厚さ40~150μmのステンレス箔をそれぞれプレス加工して電池用外装材とした例が開示されている。
特開2000-273586号公報 特開2004-52100号公報 特開2013-41788号公報 特開2012-92361号公報 特開2007-168184号公報
 通常、極薄のステンレス箔は、HDD(Hard Disk Drive)用のヘッド・サスペンションに用いられるバネ用などのように、打ち抜き加工やエッチング加工されるものが多い。特許文献1の技術は、こうしたエッチング加工時に発生する技術課題を解決するものである。
 しかし、電池ケースの場合は、プレス加工(深絞り加工)をするため、そのプレス成形性が要求される。通常の厚さ100μm以上のステンレス箔では、加工性を改善するために最終工程で1000℃程度のアニール処理を行い、内部転位密度を低下させ、破断伸び性を確保している。しかしながら、ステンレス箔の厚さが60μm以下になると、塑性変形性が著しく低下し、プレス成形性(絞り加工性)が悪化する。本願発明者らが鋭意検討した結果、これは、従来のアニール処理を厚さが60μm以下のステンレス箔に施すと、ステンレス箔内の結晶粒の粗大化が加速することで、板厚方向で結晶粒の数が1~2個程度になってしまうためであることを見出した。
 特許文献2には、厚さ20~100μmのステンレス箔をプレス加工して電池ケースに適用した例が記載されている。しかし、当時の技術水準では、厚さ60μmを下回るような極薄ステンレス箔のプレス成形性についての課題認識がなく、問題点の把握ができていなかった。特に電池ケースに加工する際のプレス加工性(塑性変形能)や、電池ケースのコーナー部において樹脂皮膜が剥離するという問題があった。樹脂剥離が局所的なものであっても生じたまま電池ケースとして用いてしまうと、電解液と長時間接触する間に当該部位を起点に樹脂の剥離がさらに進行してしまい、電池ケースとしての機能に障害を生じる。
 特許文献3にも、厚さ100μmのステンレス箔の電池ケースへの適用例が記載されている。しかし、厚さ100μmのステンレス箔では、上記のようなプレス成形性に関する問題は生じないし、仮に生じているとしても、特許文献3では課題認識がされていないため、なんら解決手段が提案されていない。
 特許文献4には、厚さ40~150μmのステンレス箔を電池外装材に適用した例が記載されている。特許文献4の技術は、ステンレス箔の表層を窒化してプレス加工時の加工誘起マルテンサイトの生成を抑えている。これにより、ステンレス箔と樹脂の熱融着部の耐剥離性の確保とプレス加工後の樹脂の白化の抑制ができると説明している。さらに、加工誘起マルテンサイト変態によって形成される表面凹凸が抑制されて表面の平滑性が維持されるため、プレス加工性が良好になると説明している。しかし、ステンレス箔の表層を窒化すると、その部分が硬化するため、プレス加工時に切れ(割れ)が発生しやすいことが分かった。特に、ステンレス箔の板厚が60μm以下の極薄になると、表層窒化による硬化部分の影響が相対的に大きくなり無視できなくなる。すなわち、表層窒化した極薄ステンレス箔をプレス加工すると、表面に割れが発生し、十分なプレス成形性が得られておらず、依然として課題が残っている。
 実際、特許文献4では、ほとんどの実施例の板厚が100μmであるので、板厚60μm以下のステンレス箔に顕著になる前記問題認識がされていない。板厚40μmの実施例が1例あるにすぎず成形性が悪化しているものの許容範囲と説明している。さらに、それより薄い板厚の実施例はないことから、特許文献4に記載の技術は、60μm以下の極薄ステンレス箔には適用できない。
 本願発明者らが鋭意検討した結果、厚さ60μm以下のステンレス箔(以下、本明細書において特に断りのない限り「極薄ステンレス箔」という。)においては、前述したように、板厚方向で結晶粒が1~2個程度となってしまうことが、塑性変形能を低下させること、つまりプレス加工性を悪化させる原因となっていることを見出した。このことは、厚さ60μm以下になって初めて顕在化したものであり、60μmより厚いステンレス箔では問題になっていなかった。即ち、従来の厚みでは、破断伸びと板厚精度を充分な程度に確保するために、比較的高めの温度でアニール(焼鈍処理)していたので、必然的に結晶粒が粗大化する。そのような状況でも箔の厚みが大きいために厚み方向に一定数以上の結晶粒が存在することになり、塑性変形能の劣化に影響を及ぼさなかったためである。
 さらに、板厚が薄い場合でも、上述の結晶粒数を確保しつつ表層を窒化させないことでプレス成形性を向上できることを見出した。これは、板厚が薄いほど、窒化した際の表面の硬化の影響が大きくなり、プレス加工時の切れを誘発してしまうためである。
 一方、結晶粒の粗大化を抑制する目的で低めの温度でアニール処理すると、転位密度を下げることができず、破断伸びを確保することができない上、板厚精度も悪化する。
 また、特許文献4のように、結晶粒の微細化や表面凹凸の緩和のために表層窒化しても、板厚60μm以下になると、表層窒化に起因した前述した問題が顕在化してくる。
 そこで、本発明は、厚さ60μm以下の極薄ステンレス箔であっても高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を確保することを課題とする。具体的な指標として、極薄ステンレス箔になると表面粗さが板厚精度に影響することから、板厚精度を確保するために表面粗さRzを板厚の1/10に抑制することを課題にする。また、破断伸びは、従来のステンレス箔レベルである10%以上を確保することを課題とする。塑性変形能についても、従来のステンレス箔と同等レベルを確保することを課題とする。
 また、電池ケースにした際に、良好な耐電解液性(電解液に長時間接触させても樹脂皮膜が剥離しないこと)を確保することを課題とする。
 なお、厚さの下限は特に限定する必要はないが、現実的な圧延での厚さの限界は5μm程度であることから、本発明の対象とする極薄ステンレス箔の厚さを5~60μmとする。
 上記課題を解決するために、本発明者らは鋭意検討を行い、以下の知見を得た。
(ア)板厚方向の結晶粒の数を3個以上確保することにより、塑性変形能が確保されること。さらには、結晶粒は微細化した方がよく、板厚に応じて板厚方向の結晶粒数の下限を決定するとよいこと。
(イ)結晶粒の数を3個以上確保するためには、圧延時に強圧下して核生成サイトとなる転位を増やし、その後アニールを行えばよいこと。
(ウ)破断伸びを10%以上確保するためには、転位密度に応じた高温でアニールを行い、再結晶率を90%以上にすることにより達成することができること。さらに、表面硬化による切れ(割れ)を抑制するために、表層の窒化を極力抑制することが重要であること。
(エ)上記の塑性変形能と破断伸びを同時に確保すれば、表面粗さ(Rz(JIS B 0601:2001))は100nm~板厚の1/10以下という高い板厚精度も同時に確保できること。
(オ)板厚方向の結晶粒の数を3個以上確保し、さらに表層の窒素濃度を1.0質量%以下とすることにより、耐電解液性も確保できること。つまり、耐電解液性を向上するには、プレス加工後のコーナー部でのステンレス箔表面の肌荒れを抑制し、樹脂皮膜との密着性を保つことが重要であること。
 本発明は、これら知見に基づき成されたものであり、その要旨とするところは以下のとおりである。
 (1)板厚が5~60μmであって、板厚方向に結晶粒が3個以上有し、再結晶率が90%以上100%以下であり、表層の窒素濃度が1.0質量%以下であることを特徴とするステンレス箔。
 (2)前記板厚が5~40μmであることを特徴とする(1)に記載のステンレス箔。
 (3)表面粗さRzが100nm以上、かつ板厚の1/10以下であることを特徴とする(1)または(2)に記載のステンレス箔。
 (4)前記ステンレス箔の破断伸びが10%以上であることを特徴とする(1)~(3)に記載のステンレス箔。
 (5)前記ステンレス箔がフェライト系ステンレス鋼であることを特徴とする(1)~(4)に記載のステンレス箔。
 (6)前記ステンレス箔がオーステナイト系ステンレス鋼であることを特徴とする(1)~(4)に記載のステンレス箔。
 (7)前記ステンレス箔の少なくとも一方の表面に樹脂フィルムが積層されていることを特徴とする(1)~(6)のいずれか一つに記載のステンレス箔。
 (8)ステンレス鋼板を圧延し、その後アニールを施して板厚5~60μmにするステンレス箔の製造方法において、最終アニール直前の圧延での圧下率がオーステナイト系ステンレス鋼の場合30%以上であり、フェライト系ステンレス鋼の場合50%以上であって、最終アニールの雰囲気ガス中の窒素含有量が0.1体積%以下であり、当該最終アニールの温度が、オーステナイト系ステンレス鋼の場合950℃~1050℃であり、フェライト系ステンレス鋼の場合850℃~950℃であることを特徴とするステンレス箔の製造方法。
 本発明に係る厚さ60μm以下の極薄ステンレス箔は、高い板厚精度を確保し、塑性変形能と破断伸びを同時に確保すること、つまり良好なプレス加工性(深絞り加工性)を確保することができる。さらに、電池ケースに加工した際の良好な耐電解液性を確保することができる。これらにより、小型軽量化を指向するリチウムイオン電池などの電池ケースなどへ適用することができる。
 本発明について、以下に詳細に説明する。なお、特に断りのない限りオーステナイト系ステンレス鋼を例として説明する。
[板厚が5~60μm]
 本発明に係るステンレス箔は、板厚が5~60μmのものを対象とする。60μm以下であると、前述したように結晶粒起因の問題点が顕在化するからである。これらの問題点は板厚が薄くなればなるほど顕著になること、さらには電池ケースなどの薄厚化に貢献できることから、対象板厚の上限を薄厚化の方向へ限定してもよい。即ち、好ましくは50μm以下、さらに好ましくは40μm以下、より好ましくは30μm以下に限定してもよい。また、板厚の下限は特に限定しないが、製造技術の限界を考慮すると板厚5μmを下限としてもよい。板厚5μmであっても、本発明による効果は享受できる。
[板厚方向に結晶粒が3個以上]
 本発明に係る極薄ステンレス箔は、板厚方向に結晶粒が3個以上存在する。板厚方向の結晶粒数は、板厚方向の任意の断面において、結晶粒径をJIS G 0551に準拠して測定して平均結晶粒径を算出し、板厚を平均結晶粒径で割り算し、その商をもって板厚方向の結晶粒数とすることができる。なお、結晶粒が等軸粒である場合は、板厚方向に直交する面において測定し、平均結晶粒径を算出してもよい。
 もしくは、任意の断面内で板厚方向に任意の直線を3本以上引き、それらの直線が横断する結晶粒の個数を数え、それらを算術平均して求める。その際、結晶粒が表面に接している場合は、0.5個としてカウントする。また、直線が結晶粒界に沿った場合は、結晶粒界を構成する複数の結晶をそれぞれカウントすることもできる。但し、ステンレス箔の幅方向の両端部はアニールによる影響が出易いので、結晶粒数の測定には適さない。そのため、ステンレス箔の幅方向の両端部を除外して、板厚方向に任意の直線を引き、結晶粒数を測定することが望ましい。例えば、ステンレス箔の幅方向の中央(片端から1/2幅の位置)および両端と中央の中間(片端から1/4幅と3/4幅の2つの位置)の3か所で結晶粒の個数を数え、それらを算術平均することにより、当該ステンレス箔の板厚方向の結晶粒数を評価することができる。
 このようにして求めた結晶粒数が3個以上であればよい。
 個々の結晶粒が任意の形に塑性変形するには、von Misesの条件を満たし、複数のすべり系が多重すべりを起こす必要がある。しかし、板厚方向の結晶粒数が少ないと、変形方向に対してvon Misesの条件を満たさない方位の結晶粒(変形能に劣る結晶粒)が、厚さ方向に並ぶ確率が高くなる。そうすると、プレス加工時にそれらの結晶粒が箔全体の変形に追従できないため、破断の起点となってしまう。一方、板厚方向に結晶粒が3個以上存在すれば、仮に変形能に劣る結晶粒が存在しても、周囲の結晶粒が任意の形に変形して箔全体としての変形を維持できるため、結果として塑性変形能が向上する。
 さらに検討を重ねたところ、板厚方向の結晶粒数を鋼種や板厚に応じて決定すると、塑性変形能をより確保できることを見出した。オーステナイト系ステンレス鋼は、フェライト系ステンレス鋼に比べて加工硬化し易いため、変形抵抗が大きい。また、板厚が厚いほど変形抵抗が大きくなる。そのため、塑性変形能を確保する観点から、オーステナイト系ステンレス鋼の方が結晶粒数を多く、また板厚が厚くなるほど結晶粒数を多くするとよい。
 オーステナイト系ステンレス鋼の場合、板厚が15μm以上の場合は板厚方向の結晶粒数は5個以上が好ましく、特に板厚が40μm以上の場合は10個以上がより好ましい。一方、フェライト系ステンレス鋼の場合も、同様な理由で、板厚が15μm以上の場合は4個以上が好ましく、特に40μm以上の場合は5個以上がより好ましい。これにより塑性変形能を更に向上させることができる。
 板厚が15μm以下の極薄ステンレス箔の場合は、鋼種や板厚による板厚方向の結晶粒数への影響は無視できる程度になる。
 結晶粒数の上限は特に限定しない。極薄ステンレス箔の板厚により、板厚方向の結晶粒数は変化するからである。
 結晶粒数が3個以上であれば、結晶粒の大きさ(JIS G 0051に準拠する結晶粒径(以下、本明細書では特に断りのない限り「結晶粒径」という。))は特に限定しない。上述の多重すべりは、結晶粒の大きさではなく、厚み方向の結晶粒の数で決まるからである。
[再結晶率が90%以上100%以下]
 本発明に係る極薄ステンレス箔は、塑性変形能を確保するため結晶粒を微細化する必要があるが、それだけでは前述の課題を解決できない。更に破断伸び性を確保するために転位密度を適正なレベルに調整する必要がある。具体的には、圧延後の組織は加工を受けることにより、転位などの格子欠陥が蓄積しているため、結晶粒は微細であっても転位密度が高い。そのため、熱処理により再結晶させ、低転位密度にすると同時に、結晶粒の粗大化を抑制しなければならない。そのため、熱処理条件を材料に応じて適正に制御する必要がある。即ち、再結晶組織が転位密度を駆動力として形成されるために、再結晶粒内の転位密度を小さくすることを利用しつつ、再結晶組織の粗大化を抑制することで、塑性変形能を確保しつつ、破断伸び性も確保するものである。尚、転位密度には、エッチピット法などの測定方法があるが、測定条件等に影響されるため定量的な測定は難しい。直接転位密度を測定することもできるが、観察視野によるためバラツキが大きい。そこで、本発明者らは、再結晶率を測定することにより、適正な熱処理がなされたかどうかを把握できることを見出した。
 再結晶率は(再結晶した結晶の面積)/(観察面積)により算出できる。「再結晶した結晶の面積」は、光学顕微鏡下で極薄ステンレス箔の任意断面を観察することにより得ることができる。あるいは、X線解析によりγ(220)ピークまたはα(211)ピークの半価幅を求め、半価幅が0.20deg.以下であれば再結晶率90%以上、0.15deg.以下であれば再結晶率95%以上、0.10deg.以下であれば再結晶率100%とみなし再結晶率を得ることもできる。
 本発明に係る極薄ステンレス箔は、再結晶率が90%以上あればよい。再結晶率が90%以上あれば、余分な転位をなくすことができる上に、必要な結晶粒数を確保することができる。好ましくは、再結晶率は95%以上あるとよい。再結晶率が95%以上であれば、板厚が薄くても、プレス加工性(塑性変形能)を向上させ、かつ表面粗度も改善されるからである。再結晶率の上限は100%であってよい。板厚方向の結晶粒数が規定の数だけ確保されていれば、全体が再結晶していても問題はない。
[表層の窒素濃度]
 前述したように、ステンレス箔の表面を窒化すると、板厚が薄くなったときにいろいろな問題点が顕在化する。したがって、ステンレス箔の表層は窒化していないことが望ましく、表層の窒素濃度を1.0質量%以下にするとよい。ここで、表層とはオージェ電子分光法による測定において、酸素濃度がピーク値の半分となる厚さのこととし、窒素濃度は、表層における平均の濃度とする。
 再度繰り返して説明するが、ステンレス箔の表層が窒化している場合、プレス加工した際に表層が窒化により硬くなっていることで切れの起点なってしまうため、プレス成形性が低下してしまう。これは、板厚が60μm以下と薄いことで、相対的に表面の影響が大きくなるために顕著となる課題である。窒素濃度を上述の範囲とすることで、表層の切れ(クラック)を生じずに変形できるため、厚さ方向の結晶粒数が3個以上であれば、良好なプレス成形性が得られる。そのため、ステンレス箔表層に窒素濃化しないほうがよく、表層の窒素濃度は1.0質量%以下にするとよい。表層の窒素濃度の下限は特に限定する必要はない。下限は、ステンレス箔全体で評価する窒素含有量と同等になる。即ち、一般的なSUS304やSUS430などの窒素を含まない鋼種の場合は不可避的不純物としての窒素含有量レベルが下限になる。
 ステンレス箔の表層の窒素濃度を1質量%以下にするには、アニール雰囲気中の窒素濃度を0.1体積%以下にすることで制御できる。
[表面粗さRzが100nm以上かつ板厚の1/10以下]
 上記板厚方向の結晶粒数および再結晶率を確保するために、強圧下率で圧延し、比較的高温で最終アニールを施す。それらのプロセスを経ることにより、表面粗さRzは、光沢のある通常品でも1000nm以下に、表面に光沢のないダル仕上げ品であっても6000nm以下となることが確認できた。尚、Rzとは、JIS B 0601: 2001で規定されているように、もっとも凹な部分ともっとも凸な部分との厚み方向の差で表現される。いうまでもなく、表面粗さの上限は低ければ低いほどよいが、実際のプロセス条件に依存する。本発明に係る極薄ステンレス箔表面粗さRzは、板厚の1/10以下に仕上げることができる。表面粗さRzが板厚の1/10以下であれば、安定したプレス加工性(塑性変形能)が確保できる。
 表面粗さRzの下限は特に限定されない。しかし、表面粗さRzを0nmにすることは現実的ではないことから、現実的に得られる最小値である100nmを下限としてもよい。
 一般に、極薄ステンレス箔をアニールする際に、ステンレス箔に塑性変形能がなければアニール中のロール通板により、よれの発生や破断が生じ、板の損傷につながる。また、ステンレス箔の破断伸びが大きくなければ表面の凹凸を平滑化することが難しくなる。したがって、圧延圧下率、最終アニール温度が、表面粗さに影響してくる。
 本発明では強圧下圧延した後に、転位密度に合った比較的高温でアニールすれば、結晶粒の微細化によって板厚方向に塑性変形しやすくなる上に、高伸び化によって板の損傷が回避でき、その結果、高い板厚精度が確保できると推定する。
 一方、強圧下圧延したとしても、その後に比較的低めの温度でアニールすると、結晶粒は微細化できても、転位密度を充分には低減できない。そのため、破断伸びが10%未満となってしまうので、表面の凹凸を平滑化しにくくなり、表面粗さRz6000nm以下を確保することはできない。
 また、強圧下圧延せずに比較的高温でアニールを施すと、再結晶の核生成サイトが充分には得られていない状況でアニールするため、結晶粒径が粗大化し、板厚方向で結晶粒の数が2個程度となってしまう。そのため、板厚方向で塑性変形がしにくくなってしまうので、アニール中にロール通板により、よれの発生や破断などが生じる。
 また、強圧下圧延せずに、さらに比較的低温でアニールすると、上述の理由と同様に板厚方向で塑性変形しにくくなる上に、破断伸びが10%未満となってしまう。そのため、アニール工程中のロール通板により、よれの発生や破断が生じる上に、極薄ステンレス箔表面の凹凸を平滑化することが難しくなる。
[破断伸びが10%以上]
 破断伸びは加工性の総合指標であって、塑性変形能と転位密度に関係する。転位密度はアニール温度に密接に関係するため、最終アニール温度が950℃以上であれば、破断伸びは10%以上を確保できる。さらに、本発明に係る極薄ステンレス箔は、塑性変形能も確保しているため、さらに破断伸び性は良好であることが確認された。
 破断伸びはアニール温度への依存性が強いため、本発明に係る極薄ステンレス箔の破断伸び率は、アニール温度が950℃の場合は10%以上を、アニール温度が1050℃のときは20%以上を確保できることを確認した。
 破断伸びは大きければ大きいほど好ましく、その上限は特に限定されない。現実的な破断伸びの最大値は50%程度であるので、それを上限としてもよい。
[ステンレス鋼の材質]
 本発明に係る極薄ステンレス箔は、ステンレス鋼であれば、その材質は特に問わない。SUS304などのオースナイト系であってもよいし、SUS430などのフェライト系、であってもよい。ただ、フェライト系ステンレス鋼の場合、オーステナイト系に比較してアニールの適性温度が約100℃低くなる。その点を考慮し、本発明に係る極薄ステンレス箔の製造方法によれば、オーステナイト系であってもフェライト系であっても所定の特性を得ることができることを確認した。
[ラミネート]
 本発明に係る極薄ステンレス箔は、通常のラミネートステンレス箔と同様に、その表面に樹脂フィルムを積層(ラミネート)し、ラミネート極薄ステンレス箔にしてもよい。樹脂フィルムを積層することにより、電解液中での耐食性を向上させることができ、リチウムイオン電池をはじめとする電池ケースへの適用性をいっそう高めることができる。
 樹脂フィルムの積層は、ステンレス箔の両表面に施してもよいし、どちらか一方の表面に施してもよい。
 ステンレス箔と樹脂の剥離強度については、ステンレス箔の表面に適切な厚さのクロメート処理層を設けることで、必要な性能が得られる。例えば、特許文献5にはステンレス箔の少なくとも一方の面に厚さ2~200nmのクロメート処理層を設け、その表面に極性を持つ官能基を含有するポリオレフィン系樹脂を積層する技術が開示されている。
 また、プレス加工後の樹脂の白化については、樹脂の設計を最適化することで防止できる。具体的には、熱ラミネート後の樹脂が非晶質となるようにすれば良く、そのためには熱ラミネート時の冷却速度を速くすればよい。例えば120℃~80℃の範囲の冷却速度を20℃/s以上とすればよい。
[製造方法]
 次に本発明に係る極薄ステンレス箔の製造方法について説明する。
 本発明に係る極薄ステンレス箔の製造工程は、通常のステンレス箔の製造工程と概ね同じである。即ち、ステンレス鋼帯を箔圧延し、その後表面洗浄をし、最終アニールを行い、必要に応じて調質圧延(テンションレベラー)を行い、製品となる。なお、箔圧延に供する素材のステンレス鋼帯の板厚に応じて、箔圧延工程を複数回に分け(多段圧延)、各箔圧延工程の間に中間アニールを行ってもよい。しかし、本発明に係る極薄ステンレス箔を得るためには、前述したように、最終箔圧延での圧下率および最終アニールでの温度を制御が重要である。
[圧下率]
 箔圧延において、強圧下圧延を行うことにより、ステンレス鋼中に再結晶の核生成サイトとなる転位を導入することができる。圧下率が高ければ高いほど、導入される転位は増加する。転位密度は、このあとに施すアニールと合せて制御される。したがって2回以上の箔圧延を行なう場合は最終の箔圧延、つまり最終アニール直前の箔圧延を強圧下で行うとよい。
 フェライト系ステンレス鋼の場合、オーステナイト系ステンレス鋼と比べて加工硬化しにくい、すなわち、転位密度を増加させにくいため、より強圧下する必要があり、圧下率は50%以上にするとよい。また、できれば60%以上とすることが望ましく、70%以上がより望ましい。
 圧延による導入される転位の程度は、鋼種によって異なる。例えば、フェライト系ステンレス鋼の場合は、オーステナイト系ステンレス鋼と比べて加工硬化しにくく、転位密度を増加させにくいため、より強圧下する必要がある。そのため、最終アニール前の箔圧延での圧下率は50%以上にするとよい。転位密度を確保する観点から、好ましくは60%以上にするとよく、さらに好ましくは70%以上にするとよい。
 一方、オーステナイト系ステンレス鋼の場合、フェライト系ステンレス鋼ほど圧下率を高くする必要はなく、最終アニール前の箔圧延での圧下率は30%以上にするとよい。転位密度を確保する観点から、好ましくは40%以上にするとよく、さらに好ましくは45%以上にするとよい。
 なお、圧下率は以下の式で定義される。
 圧下率=(圧延前板厚-圧延後板厚)/(圧延前板厚)
 箔圧延では、板厚を減じることはもちろんのこと、転位を導入することも目的となるため、特に圧下率の上限は限定しない。しかしながら、理論的に圧下率100%はあり得ないので、現実的な圧下率の上限は95%程度である。
 圧下率の下限は、極薄ステンレス箔の最終板厚にもよるが、できれば40%以上とすることが望ましく、45%以上がより望ましい。
 複数回に分けて箔圧延をする場合、中間での箔圧延とそれに続く中間アニールでも材料の造り込みを行うとよい。この場合も考え方は最終箔圧延と同じである。即ち、各箔圧延での圧下率を30%以上にするとよい。但し、前述したように最終アニール直前の箔圧延が一番効いてくるため、最終箔圧延の圧下率を、他の箔圧延の圧下率より高く設定するとよい。
[アニール温度]
 箔圧延後のアニール(最終アニール)は、転位密度を減少させ、再結晶させるための重要な役割を担う。本発明に係る極薄ステンレス箔に関しては、前述したように、転位密度を調整し塑性変形能と破断伸び性を同時に確保することを目的としている。
 本発明に係る極薄ステンレス箔の場合、オーステナイト系ステンレス鋼であれば、アニール温度を950℃以上、1050℃以下にするとよい。950℃以下では、転位密度が減少しないため、破断伸び性を確保することができない。一方、1050℃を超えると結晶が粗大化し、板厚方向の結晶粒数が減少し、塑性変形能を得ることができない。破断伸び性を確保し、プレス加工性(塑性変形能)もよくするには、アニール温度の下限は950℃より若干高い方がよくなる傾向にあるので、望ましくは960℃、さらに望ましくは970℃にするとよい。
 アニール温度の上限も、結晶の粗大化を抑制する観点から、1050℃よりは若干低く、1040℃とすることが望ましく、さらに望ましくは1030℃にするとよい。
 同様に、フェライト系ステンレス鋼であれば、アニール温度を850℃以上、950℃以下にするとよい。850℃以下では、転位密度が減少しないため、破断伸び性を確保することができない。一方、950℃を超えると結晶が粗大化し、板厚方向の結晶粒数が減少し、塑性変形能を得ることができない。破断伸び性を確保し、プレス加工性(塑性変形能)もよくするには、アニール温度の下限は850℃より若干高い方がよくなる傾向にあるので、望ましくは860℃、さらに望ましくは870℃にするとよい。
 アニール温度の上限も、結晶の粗大化を抑制する観点から、950℃よりは若干低く、940℃とすることが望ましく、さらに望ましくは930℃にするとよい。
[アニール保定時間]
 ステンレス箔を上述のアニール温度で保定する時間は、3秒以上30秒以下にするとよい。3秒未満では、熱処理が不十分となり再結晶が十分に進まず、再結晶率を得られない。一方、30秒を超えると再結晶粒が粗大化し、板厚方向の結晶粒数が減少するため、十分な塑性変形能を得ることができない。
[アニール雰囲気]
 アニール雰囲気は、ステンレス箔の表面が窒化しないように、水素またはアルゴンなどの希ガス雰囲気にする。なお、アニール雰囲気中に窒素は全く含まれないことが望ましいが、大気中から不可避で混入する窒素はある程度許容できる。表面層の窒素濃度を1.0質量%以下にするためには、アニール雰囲気中の窒素濃度が0.1体積%以下であればよい。
[中間アニール]
 複数回の箔圧延工程とする場合、中間アニールの条件については特に定めないが、最終アニールと同様にオーステナイト系の場合は950℃以上1050℃以下、フェライト系の場合は850℃以上950℃以下が望ましい。結晶粒界も再結晶の核となり、箔圧延前に多く導入されていることが望ましいので、上述の温度範囲とすることで再結晶粒の粗大化を抑制することが望ましい。
[実施例]
 本発明に係る極薄ステンレス箔の実施例として、市販のSUS304(オーステナイト系ステンレス鋼)並びにSUS430(フェライト系ステンレス鋼)を表1記載の圧延条件のもとで箔圧延機によって圧延することで表1に記載の厚みを有する極薄ステンレス箔を製造した。
 ここで、冷間圧延圧下率は最終アニール直前の箔圧延工程における圧下率を、仕上アニール温度は圧延工程完了後に施す最終アニール工程における温度を、保定時間は仕上アニール温度でステンレス箔を保定する時間をそれぞれ示す。
 アニール雰囲気は、0.1体積%―窒素99.9体積%水素混合ガスもしくは25体積%窒素-75体積%水素混合ガスとした。
 再結晶率は、圧延方向断面を観察面とし鏡面研磨、エッチングして観察し全板厚×一定幅の範囲で再結晶した結晶粒の面積を求め、 (再結晶した結晶の面積)/(観察面積)を計算することで得た。
 表層の窒素濃度は、オージェ電子分光法(AES)により測定した。ステンレス箔表面から30nmの深さまでを測定し、酸素濃度がピーク値の半分の濃度となる深さまでの平均の窒素濃度を、表層の窒素濃度とした。
 板厚方向の結晶粒数は、試験片を板厚方向に切り出し、断面研磨した後にエッチングを施してから顕微鏡で観察した後、結晶粒径をJIS G 0551に準拠して測定して平均結晶粒径を算出し、板厚を平均結晶粒径で割り算した際の商とした。
 破断伸びは、製造したステンレス箔からJIS13号B試験片を切り出し、JIS Z 2241に準拠した試験法で引張試験を行うことで評価した。板厚精度については、市販の触針式表面粗さ測定器によってJIS B 0601に準じて最大高さRzを評価した。
 また、仕上アニール(最終アニール)後のステンレス箔を用いて、その片面に10nmのクロメート処理層を設けた上にポリプロピレンフィルムをラミネートし、もう一方の面にはポリエステルフィルムまたはナイロンフィルムをラミネートした約100mm角のサンプルを作製した。これらのサンプルの中央に縦40mm×横30mmのポンチでクリアランス0.3mmの条件でプレス成形を行い、シワやクラックが発生しない最大の深さを評価した。評価結果を表1に示す。
 表1に示すとおり、本発明に係る極薄ステンレス箔の実施例は、ことごとく成形深さが4mm以上確保された。また、破断伸びも10%以上を確保できた。
 さらに、表面粗さRzも、本発明の実施例は、高々0.8μm(800nm)であり、非常に高い板厚精度を確保できることが分かった。
 一方で比較例2~5は最終アニール温度が高く結晶粗大化を招いたため、プレス加工(深絞り加工)において「切れ」が発生した。特に比較例2,3は圧下率も低く、転位の導入が不十分であり、再結晶の核生成サイトが不足したことも重なり、板厚方向の結晶粒数が少なかったことが原因と考える。
 比較例6~10は、最終アニール温度が低く、再結晶化が進まなかったため、破断伸びが極端に小さくなった。
 比較例11、16は、アニール雰囲気に窒素が0.1体積%以上含まれていたため、表層の窒素濃度が1質量%を超えてしまい、十分な成形深さが得られなかった。
 参考例1、12は、板厚100μmのステンレス箔の例である。参考例1は、比較的高いアニール温度であるが、板厚が厚く再結晶化が進まなかったものである。しかしながら、板厚が厚いため断面の結晶粒数が9個あり、破断伸びも成形深さもある程度確保されたものである。参考例11は、再結晶化率が100%であることから、破断伸びも成形深さも非常に良好であった例である。このように、従来のステンレス箔のように板厚が厚い場合は、破断伸び性が良好となり、塑性変形能が確保されるため、本発明の課題は顕在化しないことがわかる。
 なお、実施例20~29および比較例13~16はSUS430による例である。SUS304とSUS430との対比において、適正なアニール温度範囲を除けば、その特性において特に大きな差異はないことが確認された。
 また、耐電解液性について、表1-1及び表1-2のうち一部のステンレス箔について実施した。まず、ステンレス箔の片側の面に厚さ20nmのクロメート処理層を設けた上にポリプロピレンフィルムをラミネートし、さらにステンレス箔のもう一方の面にポリエチレンテレフタラートフィルムをラミネートした100mm角のサンプルを作製した。その中央に、縦40mm×横30mmのポンチでクリアランス0.3mmの条件で、ポリプロピレンフィルム面がポンチ側となる向きで、表1-1又は表1-2に記載の成形深さへプレス加工した。このようにして電池ケースの形状としたサンプルを電解液に浸漬し、85℃で168時間保持した。なお、電解液は、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを1:1:1で混合した溶媒で六フッ化リン酸リチウム(LiPF)を1mol/Lの濃度に希釈した後に、1000ppmの水を添加して劣化させたものを用いることで加速試験した。その後、ダイR部のポリプロピレンフィルム側の剥離の有無を目視で評価した。評価結果は、剥離が見つからなかった場合は「○」、剥離が確認された場合は「×」、耐電解液性の評価を行っていないものは「-」として表1-1及び表1-2に示す。
 なお、本発明に係る極薄ステンレス箔の製造方法は、特に前記したプロセスに限定されるものではない。本発明において限定した要件を満足した極薄ステンレス箔であれば、本発明の範囲に入り、本発明の効果を奏することは言うまでもない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明に係る極薄ステンレス箔は、小型電子機器用のリチウムイオン電池などの電池ケースなどに適用することができる。

Claims (8)

  1.  板厚が5μm以上60μm以下であって、板厚方向に結晶粒を3個以上有し、再結晶率が90%以上100%以下であり、表層の窒素濃度が1.0質量%以下であることを特徴とするステンレス箔。
  2.  前記板厚が5μm以上40μm以下であることを特徴とする請求項1に記載のステンレス箔。
  3.  表面粗さRzが100nm以上、且つ板厚の1/10以下であることを特徴とする請求項1または2に記載のステンレス箔。
  4.  破断伸びが10%以上であることを特徴とする請求項1~3に記載のステンレス箔。
  5.  前記ステンレス箔がフェライト系ステンレス鋼であることを特徴とする請求項1~4のいずれか1項に記載のステンレス箔。
  6.  前記ステンレス箔がオーステナイト系ステンレス鋼であることを特徴とする請求項1~4のいずれか1項に記載のステンレス箔。
  7.  前記ステンレス箔の少なくとも一方の表面に樹脂フィルムが積層されていることを特徴とする請求項1~6のいずれか1項に記載の極薄ステンレス箔。
  8.  ステンレス鋼板を圧延し、その後最終アニールを施して板厚を5μm以上60μm以下にするステンレス箔の製造方法において、最終アニール直前の圧延での圧下率がオーステナイト系ステンレス鋼の場合30%以上であり、フェライト系ステンレス鋼の場合50%以上であって、最終アニールの雰囲気ガス中の窒素含有量が0.1体積%以下であり、当該最終アニールの温度が、オーステナイト系ステンレス鋼の場合950℃~1050℃であり、フェライト系ステンレス鋼の場合850℃~950℃であることを特徴とするステンレス箔の製造方法。
PCT/JP2015/054178 2014-02-17 2015-02-16 ステンレス箔およびその製造方法 WO2015122523A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/119,194 US11198918B2 (en) 2014-02-17 2015-02-16 Stainless steel foil and method of production of same
KR1020167012639A KR101922313B1 (ko) 2014-02-17 2015-02-16 스테인리스 박 및 그 제조 방법
EP15748546.7A EP3109334B1 (en) 2014-02-17 2015-02-16 Stainless steel foil and method for manufacturing same
CN201580003152.XA CN105829567B (zh) 2014-02-17 2015-02-16 不锈钢箔及其制造方法
JP2015535920A JP6005293B2 (ja) 2014-02-17 2015-02-16 ステンレス箔およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014027849 2014-02-17
JP2014-027849 2014-02-17

Publications (1)

Publication Number Publication Date
WO2015122523A1 true WO2015122523A1 (ja) 2015-08-20

Family

ID=53800260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054178 WO2015122523A1 (ja) 2014-02-17 2015-02-16 ステンレス箔およびその製造方法

Country Status (7)

Country Link
US (1) US11198918B2 (ja)
EP (1) EP3109334B1 (ja)
JP (1) JP6005293B2 (ja)
KR (1) KR101922313B1 (ja)
CN (1) CN105829567B (ja)
TW (1) TWI568576B (ja)
WO (1) WO2015122523A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030125A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 フェライト系ステンレス鋼箔
WO2017030148A1 (ja) * 2015-08-19 2017-02-23 新日鉄住金マテリアルズ株式会社 ステンレス鋼箔
WO2017030149A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 オーステナイト系ステンレス鋼箔
JP2017066466A (ja) * 2015-09-29 2017-04-06 新日鉄住金マテリアルズ株式会社 ステンレス鋼箔帯の焼鈍方法
WO2017179492A1 (ja) * 2016-04-13 2017-10-19 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
JP2018008497A (ja) * 2016-07-15 2018-01-18 藤森工業株式会社 樹脂被覆金属積層体、電池外装体及び電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102482188B1 (ko) 2018-02-14 2022-12-28 주식회사 엘지에너지솔루션 소착을 감소시킨 스테인리스 스틸 원통형 전지케이스
JP7170296B2 (ja) * 2019-09-26 2022-11-14 パナソニックIpマネジメント株式会社 非水溶液コイン形電池
CN112474799A (zh) * 2020-10-22 2021-03-12 无锡宝顺不锈钢有限公司 一种极薄不锈钢带的冷轧生产方法
CN113042527A (zh) * 2021-03-23 2021-06-29 山西太钢不锈钢精密带钢有限公司 高强度高塑性极薄精密不锈钢箔材及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052100A (ja) * 2002-05-27 2004-02-19 Nippon Steel Corp 電池用外装材
JP2005320587A (ja) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd フォトエッチング加工用ステンレス鋼板およびその製造方法
JP2007168184A (ja) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd 樹脂被覆ステンレス鋼箔,容器及び2次電池
CN101381842A (zh) * 2007-09-07 2009-03-11 宝山钢铁股份有限公司 一种高铬铁素体不锈钢及其制造方法
JP2012092361A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法
JP2012092360A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544488B2 (ja) 1999-03-23 2004-07-21 新日本製鐵株式会社 ステンレス極薄箔
US6815003B2 (en) * 2000-12-01 2004-11-09 Sanyo Electric Co., Ltd. Method for fabricating electrode for lithium secondary battery
JP3943482B2 (ja) * 2002-10-31 2007-07-11 日鉱金属株式会社 接着強度に優れた面状発熱体用ステンレス鋼箔及びその製造方法
TW200942623A (en) * 2008-04-15 2009-10-16 Walsin Lihwa Corp High torque type ferrite stainless steel
JPWO2009139495A1 (ja) * 2008-05-16 2011-09-22 新日鉄マテリアルズ株式会社 フレキシブルディスプレイ用ステンレス箔
JP5204574B2 (ja) * 2008-07-25 2013-06-05 日新製鋼株式会社 バイポーラ型リチウムイオン二次電池
ES2836144T3 (es) * 2011-02-17 2021-06-24 Nippon Steel & Sumikin Sst Hoja de acero inoxidable ferrítico de alta pureza con excelente resistencia a la oxidación y excelente resistencia mecánica a alta temperatura, y método para producirla
JP2013041788A (ja) 2011-08-19 2013-02-28 Nisshin Steel Co Ltd リチウムイオン二次電池
JP5846555B2 (ja) * 2011-11-30 2016-01-20 国立研究開発法人物質・材料研究機構 ニッケルフリー高窒素ステンレス製材料の圧延・抽伸加工方法、ニッケルフリー高窒素ステンレス製シームレス細管及びその製造方法
CA2860746C (en) * 2012-01-30 2017-12-19 Jfe Steel Corporation Ferritic stainless steel foil
WO2017030148A1 (ja) * 2015-08-19 2017-02-23 新日鉄住金マテリアルズ株式会社 ステンレス鋼箔

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052100A (ja) * 2002-05-27 2004-02-19 Nippon Steel Corp 電池用外装材
JP2005320587A (ja) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd フォトエッチング加工用ステンレス鋼板およびその製造方法
JP2007168184A (ja) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd 樹脂被覆ステンレス鋼箔,容器及び2次電池
CN101381842A (zh) * 2007-09-07 2009-03-11 宝山钢铁股份有限公司 一种高铬铁素体不锈钢及其制造方法
JP2012092361A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用オーステナイト系ステンレス鋼箔および製造法
JP2012092360A (ja) * 2010-10-22 2012-05-17 Nisshin Steel Co Ltd リチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔および製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109334A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323294B2 (en) 2015-08-17 2019-06-18 Nippon Steel & Sumikin Materials Co., Ltd. Austenitic stainless steel foil
WO2017030149A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 オーステナイト系ステンレス鋼箔
WO2017030125A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 フェライト系ステンレス鋼箔
US10844457B2 (en) 2015-08-17 2020-11-24 Nippon Steel Chemical & Material Co., Ltd. Ferritic stainless steel foil
WO2017030148A1 (ja) * 2015-08-19 2017-02-23 新日鉄住金マテリアルズ株式会社 ステンレス鋼箔
US10786974B2 (en) 2015-08-19 2020-09-29 Nippon Steel Chemical & Material Co., Ltd. Stainless steel foil
JP2017066466A (ja) * 2015-09-29 2017-04-06 新日鉄住金マテリアルズ株式会社 ステンレス鋼箔帯の焼鈍方法
CN108701782A (zh) * 2016-04-13 2018-10-23 东洋钢钣株式会社 电池容器用金属板及该电池容器用金属板的制造方法
KR20180134327A (ko) * 2016-04-13 2018-12-18 도요 고한 가부시키가이샤 전지 용기용 금속판 및 이 전지 용기용 금속판의 제조방법
JP2017191703A (ja) * 2016-04-13 2017-10-19 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
WO2017179492A1 (ja) * 2016-04-13 2017-10-19 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
CN108701782B (zh) * 2016-04-13 2021-07-16 东洋钢钣株式会社 电池容器用金属板及该电池容器用金属板的制造方法
KR102323071B1 (ko) 2016-04-13 2021-11-05 도요 고한 가부시키가이샤 전지 용기용 금속판 및 이 전지 용기용 금속판의 제조방법
JP2018008497A (ja) * 2016-07-15 2018-01-18 藤森工業株式会社 樹脂被覆金属積層体、電池外装体及び電池
US10903524B2 (en) 2016-07-15 2021-01-26 Fujimori Kogyo Co., Ltd. Resin coated metal laminate, battery package, and battery

Also Published As

Publication number Publication date
CN105829567A (zh) 2016-08-03
TWI568576B (zh) 2017-02-01
JPWO2015122523A1 (ja) 2017-03-30
US20170009312A1 (en) 2017-01-12
US11198918B2 (en) 2021-12-14
JP6005293B2 (ja) 2016-10-12
KR20160071444A (ko) 2016-06-21
KR101922313B1 (ko) 2018-11-26
TW201536539A (zh) 2015-10-01
EP3109334B1 (en) 2018-12-05
EP3109334A1 (en) 2016-12-28
EP3109334A4 (en) 2017-11-15
CN105829567B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6005293B2 (ja) ステンレス箔およびその製造方法
JP6165369B1 (ja) ステンレス鋼箔
JP6161840B1 (ja) オーステナイト系ステンレス鋼箔
US10418601B2 (en) Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container
JP6125129B1 (ja) フェライト系ステンレス鋼箔
EP2634282A1 (en) Steel sheet for can, and process for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015535920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020167012639

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2015748546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119194

Country of ref document: US

Ref document number: 2015748546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE