WO2017028643A1 - 一种光热致形状记忆复合材料、物件及其制备方法 - Google Patents

一种光热致形状记忆复合材料、物件及其制备方法 Download PDF

Info

Publication number
WO2017028643A1
WO2017028643A1 PCT/CN2016/089633 CN2016089633W WO2017028643A1 WO 2017028643 A1 WO2017028643 A1 WO 2017028643A1 CN 2016089633 W CN2016089633 W CN 2016089633W WO 2017028643 A1 WO2017028643 A1 WO 2017028643A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
nano
photothermographic
photothermal
conversion material
Prior art date
Application number
PCT/CN2016/089633
Other languages
English (en)
French (fr)
Inventor
杜学敏
吴天准
夏凯
崔欢庆
王娟
唐天洪
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2017028643A1 publication Critical patent/WO2017028643A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides

Definitions

  • the invention relates to the field of polymer materials, in particular to a photothermal-induced shape memory composite material, an object and a preparation method thereof.
  • Shape memory polymers are a class of functional or smart polymers that, when they are twice machined into a temporary shape, can "memorize” the starting shape and restore the original under external stimuli. Shape, with its shape memory function, shape memory polymer can be widely used in structural joints, packaging materials, printed materials, medical and other fields.
  • shape memory polymers there are many external stimuli that trigger shape memory effects, such as illumination, energization, or treatment with chemicals.
  • azobenzene changes from a trans structure to a cis structure under ultraviolet light, causing the material to shrink, and the light is stopped and then converted into a trans structure.
  • Photoinduced shape memory effect can be excited by ultraviolet light in a wide temperature range without strong temperature dependence; for example, immersing polyvinyl alcohol crosslinked polyacrylic fiber in water, alternately adding acid and adding alkali, Shrinkage and elongation will occur.
  • strong acids and bases its application areas are greatly limited.
  • the present invention is directed to a photothermographic shape memory composite in which a photothermal conversion material stimulates a temperature sensitive material and/or a thermally induced shape by converting light into heat.
  • the memory polymer is used to achieve the shape memory function of the composite.
  • the shape memory effect of the composite material can be excited by using a specific wavelength of light (such as near-infrared light) in a wide temperature range, without strong temperature dependence, good practicability, wide applicability, and can be used in aviation, aerospace, It is used in medical and bioengineering applications and can be applied to a variety of substrates.
  • a first aspect of the invention provides a photothermographic shape memory composite comprising a temperature sensitive material and/or a thermally induced shape memory polymer and distributed in the temperature sensitive material and/or the thermally induced shape memory polymer
  • a photothermal conversion material capable of undergoing at least one light-induced shape transition from a temporary shape to a starting shape.
  • the photothermal conversion material accounts for 0.1%-25% of the sum of the mass of the temperature sensitive material and/or the thermally induced shape memory polymer and the photothermal conversion material. More preferably, the photothermal conversion material accounts for 0.1%-20% of the sum of the mass of the temperature sensitive material and/or the thermally induced shape memory polymer and the photothermal conversion material.
  • the photothermal conversion material has an absorption wavelength of 200-2000 nm.
  • the photothermal conversion material has an absorption wavelength of 230 to 1200 nm.
  • the photothermal conversion material comprises an inorganic photothermal conversion material and/or an organic photothermal conversion material
  • the inorganic photothermal conversion material comprises nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, At least one of carbon nanotubes, black phosphorus, and graphene, or surface-functionalized nanogold, nano Rice silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotube, black phosphorus and graphene, or nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotube, black phosphorus At least one of the composite materials of graphene;
  • the organic photothermal conversion material comprises polypyrrole, polyaniline, polyethylene dioxythiophene, polystyrene sulfonate, phthalocyanine green and porphyrin liposome At least one of them and their corresponding modified materials.
  • the surface functionalization or modification is performed according to the formation requirements of the photothermal-induced shape memory composite material, and the photothermal conversion material is correspondingly surface-modified to be mixed with the temperature-sensitive material to form a photothermal-induced shape memory composite material.
  • the surface functionalized nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotube, black phosphorus and graphene comprise surface modified carbon-carbon double bonds, amino groups, carboxyl groups, hydroxyl groups At least one of a ruthenium group, a nano gold, a nano silver, a nano copper, a nano platinum, a nano palladium, a nano ruthenium, a carbon nanotube, a black phosphorus, and a graphene.
  • the surface-functionalized nano gold may be a gold nanoparticle having a surface-based thiol group
  • the surface functionalized graphene may be a reductive graphene oxide functionalized with an elastin-like polypeptide derivative V 50 GB, but is not limited thereto.
  • the nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotube, black phosphorus, graphene composite material can be a composite material of nano palladium and carbon nanotubes, nano platinum, nanometer A composite material formed of gold and graphene, but is not limited thereto.
  • the corresponding modified materials of the polypyrrole, polyaniline, polyethylene dioxythiophene, polystyrene sulfonate, phthalocyanine green and porphyrin liposome include polypyrrole, polyaniline, polyethylene dioxythiophene, poly Derivatives or copolymers of styrene sulfonate, phthalocyanine green and porphyrin liposomes.
  • the temperature sensitive material comprises ethylene oxide, polyvinyl methyl ether, hydroxypropyl acrylate, At least at least one of methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, polyethylene glycol and derivatives thereof, poly-N-substituted acrylamide, polylactic acid, elastin-like polypeptides, and derivatives thereof One.
  • the elastin-like polypeptide consists essentially of a pentapeptide repeat, the repeat of the elastin-like polypeptide VPGXG (Val-Pro-Gly-Xaa-Gly).
  • the elastin-like polypeptide derivative comprises V 50 , V 50 CK1 or V 50 GB, wherein the main chain sequence of V 5 0, V 50 CK1 and V 50 GB is VPGVG, and the N terminal segments are all MSGVG, V 50 The C terminal segment is VPG, the V 50 GB C terminal segment is VPGHNWYHWWPH, and the C 50 terminal segment of V 50 CK1 is VPGKG.
  • the thermally induced shape memory polymer comprises a styrene-butadiene copolymer, a trans-polyisoprene, an ethylene-vinyl acetate copolymer, a polynorbornene, a polyurethane (PU), an epoxy resin.
  • EP ethylene-vinyl acetate copolymer
  • EVA ethylene-vinyl acetate copolymer
  • PI polyimide
  • cellulose cellulose
  • PCL polycaprolactone
  • PLA polylactic acid
  • PLA polyglycolic acid
  • PGA polylactic acid - At least one of a glycolic acid copolymer (PLGA) and a polyvinyl alcohol (PVA) polymer.
  • the above-mentioned thermally induced shape memory polymer may include at least one of a cinnamyl group, an azo group, a triphenylmethane group and a stilbene group.
  • the above group is photoactive, and the shape change stereotype can be firstly performed by ultraviolet light, and then Infrared illumination enables shape recovery.
  • the photothermally-induced shape memory composite When the photothermally-induced shape memory composite is under illumination of an absorption wavelength range of the photothermal conversion material, particularly an absorption peak range of the photothermal conversion material, the photothermally induced shape memory composite material The initial shape is converted to a temporary shape, and the photothermographic shape memory composite is restored from the temporary shape to the starting shape after the illumination is removed.
  • a second aspect of the present invention provides a photothermographic shape memory article comprising a polymer substrate and the photothermographic shape memory composite material disposed on a surface of the polymer substrate, the photothermographic shape memory article being capable of undergoing at least The shape conversion from the temporary shape to the starting shape caused by one light.
  • the polymer substrate includes not only a general polymer substrate but also a surface functionalized polymer substrate.
  • the polymer substrate is prepared from at least one of plastic, rubber and gel.
  • the polymer substrate is prepared from at least one of parylene, polydimethylsiloxane, polyimide, polyethylene terephthalate, polyethylene glycol, and chitosan. Made, but not limited to this.
  • the polymer substrate is a polymer substrate having a surface modified with at least one of a carbon-carbon double bond, an amino group, a carboxyl group, a hydroxyl group, and a thiol group, or a polymer substrate on which a metal layer is vapor-deposited.
  • the photothermally induced shape memory object starts from The shape is converted to a temporary shape, and the photothermographic shape memory object is restored from the temporary shape to the starting shape after the illumination is removed.
  • the invention combines a photothermal conversion material with a temperature sensitive material and/or a thermally induced shape memory polymer to prepare a photothermal shape memory composite material, and the photothermal conversion material stimulates the temperature sensitive material and/or heat by converting light into heat.
  • the shape memory polymer is shaped to achieve the shape memory function of the composite.
  • the shape memory effect of the composite can be achieved with a specific wavelength of light (such as near-infrared light) over a wide temperature range without strong temperature dependence. Therefore, the photothermographic shape memory composite material of the present invention has good practicability, can be applied to a variety of substrates, and can be remotely excited by means of an optical fiber or the like. Wide applicability and easy to use.
  • the composite material is available for smart apparel and foldable homes.
  • a third aspect of the invention provides a method of preparing the photothermographic shape memory composite, comprising Next steps:
  • the photothermal conversion material is mixed with a temperature sensitive material and/or a thermotropic shape memory polymer to form a mixed dispersion, and after the mixed dispersion is cured, the photothermal shape memory composite material is obtained.
  • the curing is performed by at least one of photocuring, heat curing, radiation curing, and chemical crosslinking.
  • the photothermal conversion material is mixed with a temperature sensitive material and/or a thermotropic shape memory polymer in a solvent to form the mixed dispersion
  • the solvent in the mixed dispersion includes water, ethanol, acetone, and At least one of methylformamide, dimethyl sulfoxide, dichloromethane, and chloroform.
  • the photothermal conversion material accounts for 0.1%-25% of the sum of the mass of the temperature sensitive material and/or the thermally induced shape memory polymer and the photothermal conversion material. More preferably, the photothermal conversion material accounts for 0.1%-20% of the sum of the mass of the temperature sensitive material and/or the thermally induced shape memory polymer and the photothermal conversion material.
  • the photothermal conversion material has an absorption wavelength of 200-2000 nm.
  • the photothermal conversion material has an absorption wavelength of 230 to 1200 nm.
  • the photothermal conversion material comprises an inorganic photothermal conversion material and/or an organic photothermal conversion material
  • the inorganic photothermal conversion material comprises nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, Carbon nanotubes, black phosphorus and graphene, or surface-functionalized nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotubes, black phosphorus and graphene, or nano gold, nano silver, At least one of nano copper, nano platinum, nano palladium, nano cerium, carbon nanotube, black phosphorus, graphene;
  • the organic photothermal conversion material comprises polypyrrole, polyaniline, polyethylene dioxythiophene, At least one of polystyrene sulfonate, phthalocyanine green, and porphyrin liposomes and their corresponding modifying materials.
  • the surface functionalized nano gold, nano silver, nano copper, nano platinum, nano palladium, Nano bismuth, carbon nanotube, black phosphorus and graphene include nano gold, nano silver, nano copper, nano platinum, nano palladium, nano surface modified with at least one of carbon-carbon double bond, amino group, carboxyl group, hydroxyl group and sulfhydryl group. Bismuth, carbon nanotubes, black phosphorus and graphene.
  • the inorganic photothermal conversion material can be obtained by a chemical reduction method, a seed crystal method, a template method, a photochemical synthesis method, a microwave heating method, a ligand exchange method or an etching method; the organic photothermal conversion material is chemically polymerized. The law is obtained.
  • the surface-functionalized nanogold may be a gold nanoparticle having a surface-based thiol group
  • the surface functionalized graphene may be a reduced-type graphene oxide functionalized with an elastin-like polypeptide derivative V 50 GB.
  • the nano gold, nano silver, nano copper, nano platinum, nano palladium, nano bismuth, carbon nanotube, black phosphorus, graphene composite material can be a composite material of nano palladium and carbon nanotubes, nano platinum, nanometer A composite material formed of gold and graphene, but is not limited thereto.
  • the corresponding modified materials of the polypyrrole, polyaniline, polyethylene dioxythiophene, polystyrene sulfonate, phthalocyanine green and porphyrin liposome include polypyrrole, polyaniline, polyethylene dioxythiophene, poly Derivatives or copolymers of styrene sulfonate, phthalocyanine green and porphyrin liposomes.
  • the temperature sensitive material comprises ethylene oxide, polyvinyl methyl ether, hydroxypropyl acrylate, methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, polyethylene glycol and At least one of a derivative thereof, a poly-N-substituted acrylamide, a polylactic acid, an elastin-like polypeptide, and a derivative thereof.
  • the thermally induced shape memory polymer comprises a styrene-butadiene copolymer, a trans-polyisoprene, an ethylene-vinyl acetate copolymer, a polynorbornene, a polyurethane (PU), an epoxy resin.
  • EP ethylene-vinyl acetate copolymer
  • EVA ethylene-vinyl acetate copolymer
  • PI polyimide
  • cellulose cellulose
  • PCL polycaprolactone
  • PLA polylactic acid
  • PLA polyglycolic acid
  • PGA polylactic acid - At least one of a glycolic acid copolymer (PLGA) and a polyvinyl alcohol (PVA) polymer.
  • Cinnamon may be included in the above thermally induced shape memory polymer At least one of a group, an azo, a triphenylmethane, and a stilbene group, wherein the group is photoactive, and the shape change can be firstly determined by ultraviolet light, and then the shape recovery is achieved by infrared illumination.
  • the elastin-like polypeptide consists essentially of a pentapeptide repeat, the repeat of the elastin-like polypeptide VPGXG (Val-Pro-Gly-Xaa-Gly).
  • the elastin-like polypeptide derivative comprises V 50 , V 50 CK1, or V 50 GB, wherein the main chain sequences of V 50 , V 50 CK1 and V 50 GB are both VPGVG, and the N terminal segments are all MSGVG, V 50 The C terminal segment is VPG, the V 50 GB C terminal segment is VPGHNWYHWWPH, and the C 50 terminal segment of V 50 CK1 is VPGKG.
  • the inorganic photothermal conversion material is at least one of nano gold, nano silver, nano copper, nano platinum, nano palladium, nano cerium, carbon nanotubes, and graphene
  • the inorganic The photothermal conversion material and the temperature sensitive material do not copolymerize, but the photothermographic shape memory composite is formed by curing of the temperature sensitive material itself; when the photothermal conversion material is an organic photothermal conversion material or surface function
  • the photothermal conversion material and the temperature sensitive material are chemically copolymerized to form the photothermographic shape memory composite
  • the curing method is photocuring, heat curing, At least one of radiation curing and chemical crosslinking specifically includes at least one of ultraviolet light polymerization, heat polymerization, irradiation polymerization, and chemical crosslinking.
  • a fourth aspect of the invention provides a method of preparing the photothermographic shape memory article, comprising the steps of:
  • step (2) is carried out by the following steps:
  • the photothermal conversion material is mixed with a temperature sensitive material and/or a thermotropic shape memory polymer in a solvent to form a mixed dispersion of the photothermographic shape memory composite.
  • the solvent includes at least one of water, ethanol, acetone, dimethylformamide, dimethyl sulfoxide, dichloromethane, and chloroform.
  • the curing comprises at least one of photocuring, heat curing, radiation curing, and chemical crosslinking.
  • the arranging is performed by coating or immersion pulling.
  • the polymer substrate includes not only a general polymer substrate but also a surface functionalized polymer substrate.
  • the polymer substrate comprises one of plastic, rubber and gel.
  • the polymer substrate comprises at least one of parylene, polydimethylsiloxane, polyimide, polyethylene terephthalate, polyethylene glycol, and chitosan. But it is not limited to this.
  • the polymer substrate includes a polymer substrate whose surface is modified with at least one of a carbon-carbon double bond, an amino group, a carboxyl group, a hydroxyl group, and a thiol group, or a polymer substrate on which a metal layer is vapor-deposited.
  • the polymer substrate is a surface functionalized polymer substrate (ie, a polymer substrate having at least one surface modified with a carbon-carbon double bond, an amino group, a carboxyl group, a hydroxyl group, and a thiol group, or
  • a polymer substrate having a metal layer is vapor-deposited
  • the photothermal conversion material is mixed with the temperature sensitive material and/or the thermally induced shape memory polymer to form a mixed dispersion and the surface functionalized polymer substrate is grafted to a high by chemical reaction.
  • the surface of the molecular substrate ie, a polymer substrate having at least one surface modified with a carbon-carbon double bond, an amino group, a carboxyl group, a hydroxyl group, and a thiol group
  • the invention prepares a photothermal conversion material combined with a temperature sensitive material and/or a thermally induced shape memory polymer.
  • Photothermal-induced shape memory composite material which is capable of stimulating a temperature sensitive material by converting light into heat to realize a shape memory function, and the preparation method of the composite material is diversified and diverse, and the composite material can also be used. Coating, doping, grafting onto a polymer substrate, realizing the shape change of the photothermal-induced shape memory composite coating to change the shape of the polymer substrate, and expanding the shape memory material in the fields of aerospace, aviation, medical and bioengineering Applications.
  • the photothermographic shape memory composite material, the object and the preparation method thereof provided by the invention have the following beneficial effects:
  • the invention combines a photothermal conversion material with a temperature sensitive material and/or a thermally induced shape memory polymer to prepare a photothermal shape memory composite material, and the photothermal conversion material stimulates the temperature sensitive material by converting light through heat into / or thermotropic shape memory polymer, to achieve the function of shape memory, high reliability, good security, remote control, and convenient control, expanding the application of shape memory materials;
  • the preparation process of the photothermal-induced shape memory composite material is diversified, and is applicable to various substrates, and the process is simple.
  • FIG. 1 is a diagram showing a shape change history of a photothermally-induced shape memory object according to Embodiment 1 of the present invention.
  • a method for preparing a photothermally-induced shape memory article comprising the steps of:
  • N-isopropylacrylamide (1.0g), acrylic acid (1.0mL), methylidene bisacrylamide (0.1g), ammonium persulfate (0.01g) as a prepolymer of temperature sensitive material, and add 1mL to it.
  • the 5 mM mercaptoethylamine functionalized gold nanorod prepared in the above step (b) is ultrasonically dispersed by adding 10 mL of water to obtain a mixed dispersion of the photothermal conversion material and the temperature sensitive material;
  • step (3) immersing the surface-aminated polyimide plastic in a solution of vinyltrichlorosilane (5.0 wt%) in diethyl ether to obtain a polyimide substrate having a vinyl surface; in the above step (2) The mixed dispersion was coated on the surface of the vinyl-functionalized polyimide, and reacted at 65 ° C for 24 hours through a nitrogen gas seal. The polymerized film was washed with ethanol and water, respectively, to obtain a photothermal-induced shape memory article.
  • the photothermal shape memory object comprises a polymer substrate, a temperature sensitive material and a photothermal conversion material distributed in the temperature sensitive material, and the mixed dispersion formed by the photothermal conversion material and the temperature sensitive material is chemically A cross-linking manner is formed on the polymer substrate to obtain the photothermographic shape memory article.
  • the polymer substrate is a polyimide with a vinyl surface on the surface
  • the temperature sensitive material is poly(N-isopropylacrylamide/acrylic acid)
  • the photothermal conversion material is a mercaptoethylamine functionalized gold.
  • Nanorods, the maximum absorption wavelength of the gold nanorods is about 820 nm.
  • FIG. 1 is a view showing a shape change history of a photothermally-induced shape memory article according to Embodiment 1 of the present invention, wherein FIG. 1A is a photothermally-induced shape memory article obtained by the first embodiment, and obtained by the first embodiment under a light source having a wavelength of 808 nm.
  • the photothermally-induced shape memory article is illuminated for 10 s to obtain a curved photothermal shape memory object as shown in FIG. 1B, and then the light source is removed, and the photothermal shape memory object gradually recovers its original shape (C), thereby Achieve shape memory effects.
  • a method for preparing a photothermally-induced shape memory article comprising the steps of:
  • N-isopropylacrylamide (1.0 g), acrylic acid (0.5 mL), methylidene bisacrylamide (0.1 g) as a prepolymer of a temperature sensitive material, and 3 mL of 0.1 mol/L polyaniline nanofibers were added thereto. , ultrasonically dispersed in 8 mL of water to obtain a mixed dispersion of the photothermal conversion material and the temperature sensitive material;
  • a chromium layer and a gold layer having a thickness of 15 nm and a thickness of 50 nm were respectively evaporated by a thermal evaporator, wherein the evaporation rates were respectively
  • a plastic film obtained by vapor-depositing a metal layer is obtained; the mixed dispersion obtained in the step (2) is coated on the surface of the plastic film on which the metal layer is vapor-deposited, and is subjected to a nitrogen gas seal at 65 ° C for 24 hours, and the polymerized film is respectively made of ethanol. Water washing, obtaining photothermal shape memory objects.
  • the photothermographic shape memory article comprises a polymer substrate, a temperature sensitive material and a photothermal conversion material distributed in the temperature sensitive material, and the mixed dispersion formed by the photothermal conversion material and the temperature sensitive material is irradiated
  • the polymerization is solidified on the polymer substrate to obtain the photothermographic shape memory article.
  • the polymer substrate is a plastic film having a metal layer of chromium and gold on the surface
  • the temperature sensitive material is poly(N-isopropylacrylamide/acrylic acid)
  • the photothermal conversion material is polyaniline nanofiber.
  • the maximum absorption wavelength of the polyaniline nanofiber is about 808 nm
  • the photothermal conversion material accounts for 5% of the sum of the mass of the temperature sensitive material and the photothermal conversion material.
  • the photothermographic shape memory object obtained in the second embodiment is irradiated for 1 minute under a light source with a wavelength of 808 nm to obtain a photothermally induced shape memory article which is deformed, and then the light source is removed, and the photothermal shape memory object is gradually recovered. Its original shape, thus achieving a shape memory effect.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • V 50 GB solution and 450 ⁇ L of reduced graphene oxide solution (rGO) were mixed at a mass ratio of 6:1, and mixed at 4 ° C for 18 h.
  • 0.2 mL of the above-mentioned functionalized rGO was added to a mixed solution of the elastin-like polypeptide derivative V 50 CK1 at a concentration of 1 mL and 36 mg/mL (a solvent of a mixed solvent of 75% DMSO and 25% DMF), followed by a triethylamine and a four-arm-polyethylene glycol-NHS active ester as a crosslinking agent to obtain a mixed dispersion of a photothermal conversion material and a temperature sensitive material;
  • the above mixed dispersion liquid is added to a self-made square groove having a length of 2 cm, a width of 4 cm and a depth of 0.4 cm to be cross-linked and solidified to obtain a photothermal-induced shape memory composite material.
  • the photothermographic shape memory composite material comprises a temperature sensitive material and a photothermal conversion material distributed in the temperature sensitive material, and the mixed dispersion formed by the photothermal conversion material and the temperature sensitive material is cured by chemical crosslinking.
  • the photothermographic shape memory composite is obtained.
  • the temperature sensitive material is an elastin-like polypeptide derivative V 50 CK1
  • the photothermal conversion material is V 50 GB functionalized rGO
  • the maximum absorption wavelength of the V 50 GB functionalized rGO is about 808 nm.
  • the photothermal conversion material accounts for 8% of the sum of the mass of the temperature sensitive material and the photothermal conversion material.
  • the photothermographic shape memory composite obtained in Example 3 was irradiated for 25 s under a light source with a wavelength of 808 nm to obtain a photothermally induced shape memory composite material, and then the light source was removed, and the composite material gradually recovered. The shape thus achieves a shape memory effect.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • the carbon nanotubes are added to 0.2mL of the above polylactic acid solution, ultrasonically dispersed, and are provided as a mixed dispersion of the photothermal conversion material and the temperature sensitive material, wherein the carbon nanotubes occupy the sum of the masses of the polylactic acid and the carbon nanotubes. 20%;
  • the photothermal shape memory composite material comprises a temperature sensitive material and a photothermal conversion material distributed in the temperature sensitive material, and the mixed dispersion formed by the photothermal conversion material and the temperature sensitive material is cured by heat curing to obtain the Photothermally induced shape memory composite.
  • the temperature sensitive material is polylactic acid
  • the photothermal conversion material is carbon nanotubes
  • the maximum absorption wavelength of the carbon nanotubes is about 808 nm
  • the photothermal conversion material accounts for the temperature sensitive material and the 20% of the sum of the mass of the light-to-heat conversion material.
  • the photothermographic shape memory composite material prepared in Example 4 was irradiated for 10 s under a light source with a wavelength of 808 nm to obtain a photothermally induced shape memory composite material which was deformed, and then the light source was removed, and the composite material gradually recovered. The original shape, thus achieving the shape memory effect.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • the polyethylene glycol PEG2000 is dissolved in water to prepare a solution with a mass dispersion of 38%, and the polyvinyl alcohol is dissolved in water to prepare a solution having a concentration of 5%, and the two are mixed at a volume ratio of 70:30 at 80 ° C. Stirring for 12 h to obtain a temperature sensitive material solution;
  • phthalocyanine green 10 mg is added to 1 mL of the above temperature sensitive material solution, ultrasonically dispersed, and equipped as a mixed dispersion of photothermal conversion material and temperature sensitive material, wherein the photothermal conversion material is phthalocyanine green 0.1% of the sum of the mass of the sensitive material and the indocyanine green;
  • the above mixed dispersion liquid is added to a self-made square groove having a length of 2 cm, a width of 4 cm and a depth of 0.4 cm, and is heated and solidified at a temperature of 50 ° C to obtain a photothermal-induced shape memory composite material.
  • the shape memory composite material comprises a temperature sensitive material and a photothermal conversion material distributed in the temperature sensitive material, and the mixed dispersion formed by the photothermal conversion material and the temperature sensitive material is cured by heat curing to obtain the photothermal heat. Shape memory composites.
  • the temperature sensitive material is a mixture of polyethylene glycol and polyvinyl alcohol
  • the photothermal conversion material is phthalocyanine green
  • the maximum absorption wavelength of the phthalocyanine green is about 850 nm
  • the photothermal conversion The material accounts for 0.1% of the sum of the mass of the temperature sensitive material and the photothermal conversion material.
  • the photothermographic shape memory composite obtained in Example 5 was irradiated for 10 s under a light source with a wavelength of 808 nm to obtain a photothermally induced shape memory composite material which was deformed, and then the light source was removed, and the composite material gradually recovered its original shape. The shape thus achieves a shape memory effect.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • polylactic acid having a shape memory effect is mixed into hexamethylene diisocyanate to obtain a plastic, thereby realizing a shape memory effect of the plastic.
  • the photothermally-induced shape memory composite was fixed at a low temperature, and then the photothermal-induced shape memory composite obtained in Example 6 was irradiated for 25 s under a light source with a wavelength of 808 nm, and the mixed material gradually recovered its original shape. Shape to achieve shape memory effects.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • a polyethylene glycol diacrylate having a shape memory effect is added to the ethoxylated trimethylolpropane triacrylate to realize a shape memory function of the resin.
  • the photothermographic shape memory composite was fixed at a low temperature, and then the photothermally induced shape memory composite obtained in Example 7 was irradiated for 25 s under a light source with a wavelength of 808 nm, and the mixed material gradually recovered its original shape. Shape to achieve shape memory effects.
  • a method for preparing a photothermal shape memory composite material comprising the steps of:
  • the epoxy resin obtained in this example has a shape memory effect.
  • the photothermographic shape memory composite was fixed and fixed at a low temperature, and then the photothermographic shape memory composite obtained in Example 8 was irradiated for 25 s under a light source with a wavelength of 808 nm, and the mixed material gradually recovered its original shape. Shape to achieve shape memory effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

一种光热致形状记忆复合材料,包括温敏材料和/或热致型形状记忆聚合物以及分布在所述温敏材料和/或热致型形状记忆聚合物中的光热转换材料,所述光热致形状记忆复合材料能够经历至少一次光导致的从临时形状至起始形状的形状转换。光热转换材料通过将光转成热来刺激温敏材料和/或热致型形状记忆聚合物,以实现该复合材料的形状记忆功能。该复合材料形状记忆效应可在较宽的温度范围内利用紫外光激发实现,没有强的温度依赖性,可靠性高、安全性好,而且操控便利,实用性好,适用性广。

Description

一种光热致形状记忆复合材料、物件及其制备方法
本申请要求于2015年8月19日提交中国专利局,申请号为201510512184.4、发明名称为“一种光热致形状记忆复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高分子材料领域,具体涉及一种光热致形状记忆复合材料、物件及其制备方法。
背景技术
形状记忆聚合物是一类功能性或智能聚合物,当其由一次成型获得的初始形状被二次加工成临时形状后,它能“记忆”起始形状,并在外界刺激作用下恢复起始形状,利用其形状记忆功能,形状记忆聚合物可广泛应用于结构连接件、包装材料、印刷材料、医疗等领域。
形状记忆聚合物中,触发形状记忆效应的外界刺激手段有多种,如光照、通电或用化学物质处理。例如,偶氮苯在紫外光照射下,从反式结构变为顺式结构,使材料收缩,光照停止后又转变为反式结构。光致形状记忆效应可在较宽的温度范围内利用紫外光激发,没有强的温度依赖性;又如,将聚乙烯醇交联的聚丙烯酸纤维浸入水中,交替地加酸和加碱,就会出现收缩和伸长。但由于强酸和强碱的使用,大大限制了其应用领域。
然而,传统使形状记忆聚合物实现形状恢复的途径通常比较单一,其力学性能差,限制了其应用,而将光热转换结合其他材料制成形状记忆材料的报道 较少。
发明内容
鉴于此,本发明旨在提供一种光热致形状记忆复合材料,该光热致形状记忆复合材料中的光热转换材料通过将光转成热来刺激温敏材料和/或热致型形状记忆聚合物,以实现该复合材料的形状记忆功能。该复合材料的形状记忆效应可在较宽的温度范围内利用特定波长的光(如近红外光)激发实现,没有强的温度依赖性,实用性好,适用性广,可在航空、航天、医学及生物工程领域应用,且可适用于多种基底。
本发明第一方面提供了一种光热致形状记忆复合材料,包括温敏材料和/或热致型形状记忆聚合物和分布在所述温敏材料和/或热致型形状记忆聚合物中的光热转换材料,所述光热致形状记忆复合材料能够经历至少一次光导致的从临时形状至起始形状的形状转换。
优选地,所述光热转换材料占所述温敏材料和/或热致型形状记忆聚合物与所述光热转换材料质量之和的0.1%-25%。更优选地,所述光热转换材料占所述温敏材料和/或热致型形状记忆聚合物与所述光热转换材料质量之和的0.1%-20%。
优选地,所述光热转换材料的吸收波长在200-2000nm。
进一步优选地,所述光热转换材料的吸收波长在230-1200nm。
优选地,所述光热转换材料包括无机光热转换材料和/或有机光热转换材料,所述无机光热转换材料包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或表面功能化的纳米金、纳 米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯,或纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料中的至少一种;所述有机光热转换材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体中的至少一种及它们相应的改性材料。
所述表面功能化或改性是根据光热致形状记忆复合材料的形成需要,对光热转换材料进行相应地表面修饰,以便于与温敏材料混合以形成光热致形状记忆复合材料。
优选地,所述表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯包括表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯。
具体地,表面功能化的纳米金可以是表面带巯基的金纳米颗粒,表面功能化的石墨烯可以是类弹性蛋白多肽衍生物V50GB功能化的还原氧化石墨烯,但不限于此。
所述纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料,可以为纳米钯与碳纳米管形成的复合材料,纳米铂、纳米金与石墨烯形成的复合材料,但不限于此。
所述聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体相应的改性材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体的衍生物或共聚物。
优选地,所述温敏材料包括环氧乙烷、聚乙烯基甲醚、羟丙基丙烯酸酯、 甲基纤维素、羟丙基甲基纤维素、羟丙基纤维素、聚乙二醇及其衍生物、聚-N取代丙烯酰胺、聚乳酸、类弹性蛋白多肽及它们的衍生物中的至少一种。
如本发明所述的,所述类弹性蛋白多肽主要是由五肽重复序列构成,所述类弹性蛋白多肽的重复序列VPGXG(Val-Pro-Gly-Xaa-Gly)。
所述类弹性蛋白多肽衍生物包括V50、V50CK1或V50GB,其中V50、V50CK1和V50GB的主链序列均为VPGVG,N终端链段均为MSGVG,V50的C终端链段为VPG,V50GB的C终端链段为VPGHNWYHWWPH,V50CK1的C终端链段为VPGKG。
优选地,所述热致型形状记忆聚合物包括苯乙烯-丁二烯共聚物、反式聚异戊二烯、乙烯-醋酸乙烯共聚物、聚降冰片烯、聚氨酯(PU)、环氧树脂(EP)、乙烯-醋酸乙烯酯共聚物(EVA)、聚酰亚胺(PI)、纤维素、聚己内酯(PCL)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚乙烯醇(PVA)聚合物中的至少一种。上述热致型形状记忆聚合物中可包括肉桂基、偶氮、三苯甲烷、二苯乙烯基团中的至少一种,上述基团具有光活性,可以先通过紫外光照实现形状改变定型,然后红外光照实现形状恢复。
当所述光热致形状记忆复合材料位于所述光热转换材料的吸收波长范围(特别是所述光热转换材料的吸收峰值范围)的光照下时,所述光热致形状记忆复合材料从起始形状转换至临时形状,移除光照后,所述光热致形状记忆复合材料从临时形状恢复至起始形状。
本发明第二方面提供了光热致形状记忆物件,包括高分子基底以及设置于所述高分子基底表面的所述的光热致形状记忆复合材料,所述光热致形状记忆物件能够经历至少一次光导致的从临时形状至起始形状的形状转换。
应当理解的是,所述高分子基底不仅包括一般的高分子基底,还包括表面功能化的高分子基底。优选地,所述高分子基底由塑料、橡胶和凝胶中的至少一种制备而成。
优选地,所述高分子基底由聚对二甲苯、聚二甲基硅氧烷、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚乙二醇和壳聚糖中的至少一种制备而成,但不限于此。
优选地,所述高分子基底为表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的高分子基底,或蒸镀有金属层的高分子基底。
当所述光热致形状记忆物体位于所述光热转换材料的吸收波长范围(特别是所述光热转换材料的吸收峰值范围)的光照下时,所述光热致形状记忆物体从起始形状转换至临时形状,移除光照后,所述光热致形状记忆物体从临时形状恢复至起始形状。
本发明将光热转换材料结合温敏材料和/或热致型形状记忆聚合物制备成光热致形状记忆复合材料,光热转换材料通过将光转成热来刺激温敏材料和/或热致型形状记忆聚合物,以实现该复合材料的形状记忆的功能。该复合材料的形状记忆效应可在较宽的温度范围内利用特定波长的光(如近红外光)激发实现,没有强的温度依赖性。因此,使得本发明所述光热致形状记忆复合材料的实用性好,可适用多种基底,并可利用光纤等手段非体表部位实现远程激发。适用性广,使用便捷。这些特点可避免其在医学临床应用时高温加热带来的不适,还将该形状记忆材料结合植入式器件、注射型药物等,从而可以实现在体内调节形状以完善相应功能,甚至也为将来该复合材料用于智能服饰、可折叠家居方面提供了可能。
本发明第三方面提供了制备所述光热致形状记忆复合材料的方法,包括以 下步骤:
将光热转换材料与温敏材料和/或热致型形状记忆聚合物混合形成混合分散液,所述混合分散液经固化后,即得所述光热致形状记忆复合材料。
优选地,所述固化的方式为光固化、热固化、辐照固化、化学交联中的至少一种。
优选地,所述光热转换材料与温敏材料和/或热致型形状记忆聚合物在溶剂中混合形成所述混合分散液,所述混合分散液中的溶剂包括水、乙醇、丙酮、二甲基甲酰胺、二甲基亚砜、二氯甲烷和氯仿中的至少一种。
优选地,所述光热转换材料占所述温敏材料和/或热致型形状记忆聚合物与所述光热转换材料质量之和的0.1%-25%。更优选地,所述光热转换材料占所述温敏材料和/或热致型形状记忆聚合物与所述光热转换材料质量之和的0.1%-20%。
优选地,所述光热转换材料的吸收波长在200-2000nm。
进一步优选地,所述光热转换材料的吸收波长在230-1200nm。
优选地,所述光热转换材料包括无机光热转换材料和/或有机光热转换材料,所述无机光热转换材料包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯,或表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯,或纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料中的至少一种;所述有机光热转换材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体中的至少一种及它们相应的改性材料。
优选地,所述表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、 纳米锗、碳纳米管、黑磷和石墨烯包括表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯。
优选地,所述无机光热转换材料可以通过化学还原法、晶种法、模板法、光化学合成法、微波加热法、配基交换法或蚀刻法制得;所述有机光热转换材料通过化学聚合法得到。
具体地,表面功能化的纳米金可以是表面带巯基的金纳米颗粒,表面功能化的石墨烯可以是类弹性蛋白多肽衍生物V50GB功能化的还原氧化石墨烯。
所述纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料,可以为纳米钯与碳纳米管形成的复合材料,纳米铂、纳米金与石墨烯形成的复合材料,但不限于此。
所述聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体相应的改性材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体的衍生物或共聚物。
优选地,所述温敏材料包括环氧乙烷、聚乙烯基甲醚、羟丙基丙烯酸酯、甲基纤维素、羟丙基甲基纤维素、羟丙基纤维素、聚乙二醇及其衍生物、聚-N取代丙烯酰胺、聚乳酸、类弹性蛋白多肽及它们的衍生物中的至少一种。
优选地,所述热致型形状记忆聚合物包括苯乙烯-丁二烯共聚物、反式聚异戊二烯、乙烯-醋酸乙烯共聚物、聚降冰片烯、聚氨酯(PU)、环氧树脂(EP)、乙烯-醋酸乙烯酯共聚物(EVA)、聚酰亚胺(PI)、纤维素、聚己内酯(PCL)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚乙烯醇(PVA)聚合物中的至少一种。上述热致型形状记忆聚合物中可包括肉桂 基、偶氮、三苯甲烷、二苯乙烯基团中的至少一种,上述基团具有光活性,可以先通过紫外光照实现形状改变定型,然后红外光照实现形状恢复。
如本发明所述的,所述类弹性蛋白多肽主要是由五肽重复序列构成,所述类弹性蛋白多肽的重复序列VPGXG(Val-Pro-Gly-Xaa-Gly)。
所述类弹性蛋白多肽衍生物包括V50、V50CK1、或V50GB,其中V50、V50CK1和V50GB的主链序列均为VPGVG,N终端链段均为MSGVG,V50的C终端链段为VPG,V50GB的C终端链段为VPGHNWYHWWPH,V50CK1的C终端链段为VPGKG。
如本发明所述的,当所述无机光热转换材料为纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管和石墨烯中的至少一种时,所述无机光热转换材料与温敏材料之间不发生共聚,而是通过温敏材料自身的固化形成所述光热致形状记忆复合材料;当所述光热转换材料为有机光热转换材料或表面功能化的的无机光热转换材料时,所述光热转换材料与温敏材料之间发生化学共聚而固化形成所述光热致形状记忆复合材料,所述固化的方式为光固化、热固化、辐照固化、化学交联中的至少一种,具体包括紫外光聚合、加热聚合、辐照聚合、化学交联中的至少一种。
本发明第四方面提供了制备所述的光热致形状记忆物件的方法,包括以下步骤:
(1)提供高分子基底;
(2)在所述高分子基底上设置所述光热致形状记忆复合材料。
优选地,所述步骤(2)通过以下步骤实施:
(21)将光热转换材料与温敏材料和/或热致型形状记忆聚合物混合形成 所述光热致形状记忆复合材料的混合分散液;
(22)将所述混合分散液布设在所述高分子基底上,固化所述混合分散液。
优选地,所述步骤(21)中,所述光热转换材料与温敏材料和/或热致型形状记忆聚合物在溶剂中混合形成所述光热致形状记忆复合材料的混合分散液,所述溶剂包括水、乙醇、丙酮、二甲基甲酰胺、二甲基亚砜、二氯甲烷和氯仿中的至少一种。
优选地,所述步骤(22)中,固化的方式包括光固化、热固化、辐照固化、化学交联中的至少一种。
优选地,所述步骤(22)中,布设通过涂覆或浸渍提拉法完成。
应当理解的是,所述高分子基底不仅包括一般的高分子基底,还包括表面功能化的高分子基底。
优选地,所述高分子基底包括塑料、橡胶和凝胶中的一种。
优选地,所述高分子基底包括聚对二甲苯、聚二甲基硅氧烷、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚乙二醇和壳聚糖中的至少一种,但不限于此。
优选地,所述高分子基底包括表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的高分子基底,或蒸镀有金属层的高分子基底。
如本发明所述的,当所述高分子基底为表面功能化的高分子基底(即表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的高分子基底,或是蒸镀有金属层的高分子基底)时,光热转换材料与温敏材料和/或热致型形状记忆聚合物混合形成混合分散液与表面功能化的高分子基底通过化学反应接枝到高分子基底表面。
本发明将光热转换材料结合温敏材料和/或热致型形状记忆聚合物制备成 光热致形状记忆复合材料,光热转换材料通过将光转成热来刺激温敏材料,以实现形状记忆的功能,该复合材料的备方法多样化且多样化,同时还可将该复合材料涂覆、掺杂、接枝到高分子基底上,实现光热致形状记忆复合材料涂层的形状改变带动高分子基底的形状改变,拓展形状记忆材料在航天、航空、医疗及生物工程等领域的应用。
本发明提供的一种光热致形状记忆复合材料、物件及其制备方法,具备如下有益效果:
1、本发明将光热转换材料结合温敏材料和/或热致型形状记忆聚合物制备成光热致形状记忆复合材料,光热转换材料通过将通过光转成热来刺激温敏材料和/或热致型形状记忆聚合物,以实现形状记忆的功能,可靠性高、安全性好,可进行远程调控,而且操控便利,拓展了形状记忆材料的应用领域;
2、该光热致形状记忆复合材料的制备工艺多元化,适用多种基底,工艺简单。
附图说明
图1为本发明实施例一的光热致形状记忆物件的形状改变历程图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
下面分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施 例不限定于以下的具体实施例。在不背离本发明的实质的条件下,可以适当的进行变更实施。
实施例一
一种光热致形状记忆物件的制备方法,包括以下步骤:
(1)表面功能化的金纳米棒制备:
a.分别向9mL(118mM)的十六烷基三甲基溴化铵中加入0.2mL的氯金酸溶液(13mM)后,向其中加入90μL的硝酸银溶液(25mM),然后向其中加入120μL的邻苯二酚和5微升的硼氢化钠溶液于室温下反应8小时,得到5mM的金纳米棒溶液。
b.金纳米棒的氨基化:
取上述步骤(a)中5mM的金纳米棒溶液2mL,加入4mL、100mM的巯基乙胺,室温下搅拌,后离心纯化,分散到2mL水中,得到浓度为5mM的巯基乙胺功能化的金纳米棒,即光热转换材料;
(2)金纳米棒与温敏材料的互混
取N-异丙基丙烯酰胺(1.0g)、丙烯酸(1.0mL)、甲叉双丙烯酰胺(0.1g),过硫酸铵(0.01g)作为温敏材料的预聚体,往其中加入中1mL上述步骤(b)制得的5mM巯基乙胺功能化的金纳米棒,并加入10mL水进行超声分散,得到光热转换材料与温敏材料的混合分散液;
(3)将表面氨基化的聚酰亚胺塑料浸泡在乙烯基三氯硅烷(5.0wt%)的乙醚溶液中,得到表面带有乙烯基的聚酰亚胺基底;将上述步骤(2)中所述混合分散液涂覆在乙烯基功能化的聚酰亚胺表面,通氮气密封于65℃下反应24h,聚合后的薄膜分别用乙醇、水清洗,得到光热致形状记忆物件。
所述光热致形状记忆物件,包括一高分子基底、温敏材料和分布在温敏材料中的光热转换材料,所述光热转换材料和所述温敏材料形成的混合分散液经化学交联的方式固化形成在所述高分子基底上,得到所述光热致形状记忆物件。在本实施例中,高分子基底为表面带有乙烯基的聚酰亚胺,温敏材料为聚(N-异丙基丙烯酰胺/丙烯酸),光热转换材料为巯基乙胺功能化的金纳米棒,所述金纳米棒的最大吸收波长在820nm左右。
图1为本发明实施例一中光热致形状记忆物件的形状改变历程图,其中,图1A为制备得到的光热致形状记忆物件,在波长为808nm的光源下,对实施例一得到的光热致形状记忆物件进行光照10s,得到如图1B所示的弯曲的光热致形状记忆物件,然后撤掉光源,所述光热致形状记忆物件逐渐恢复其原本的形状(C),从而实现形状记忆效应。
实施例二
一种光热致形状记忆物件的制备方法,包括以下步骤:
(1)聚苯胺纳米纤维的制备:
将4mmol的苯胺溶解到4mL的二氯甲烷中,向其中加入1mol/L的氯化铁溶液4mL,界面聚合10min即获得聚苯胺纳米纤维,并用去离子水纯化产物,即得光热转换材料;
(2)聚苯胺纳米纤维与温敏材料的互混:
取N-异丙基丙烯酰胺(1.0g)、丙烯酸(0.5mL)、甲叉双丙烯酰胺(0.1g)作为温敏材料的预聚体,往其中加入3mL、0.1mol/L聚苯胺纳米纤维,加入8mL水中超声分散,得到光热转换材料与温敏材料的混合分散液;
(3)在聚对苯二甲酸乙二醇酯的塑料薄膜表面利用热蒸发仪分别蒸镀上厚度为15nm和厚度为50nm的铬层和金层,其中蒸镀速率分别为
Figure PCTCN2016089633-appb-000001
Figure PCTCN2016089633-appb-000002
得到蒸镀有金属层的塑料薄膜;将步骤(2)得到的混合分散液涂覆在蒸镀有金属层的塑料薄膜表面,通氮气密封于65℃下反应24h,聚合后的薄膜分别用乙醇、水清洗,得到光热致形状记忆物件。
所述光热致形状记忆物件包括一高分子基底、温敏材料和分布在温敏材料中的光热转换材料,所述光热转换材料和所述温敏材料形成的混合分散液经辐照聚合的方式固化形成在所述高分子基底上,得到所述光热致形状记忆物件。在本实施例中,高分子基底为表面蒸镀有金属层为铬、金的塑料薄膜,温敏材料为聚(N-异丙基丙烯酰胺/丙烯酸),光热转换材料为聚苯胺纳米纤维,所述聚苯胺纳米纤维的最大吸收波长在808nm左右,所述光热转换材料占所述温敏材料与所述光热转换材料质量之和的5%。
在波长为808nm的光源下,对实施例二得到的光热致形状记忆物件进行光照1min,得到发生形变的光热致形状记忆物件,然后撤掉光源,所述光热致形状记忆物件逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例三
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
(1)表面功能化的还原氧化石墨烯(rGO)的制备:
将4mmol的苯胺溶解到4mL的二氯甲烷中,向其中加入1mol/L的氯化铁溶液4mL,界面聚合10min即获得聚苯胺纳米纤维,并用去离子水纯化产物,即光热转换材料;
将150μL、浓度为2mg/mL的所述类弹性蛋白多肽衍生物V50GB溶液与450μL的还原氧化石墨烯溶液(rGO)按照质量比6:1进行混合,并于4℃下混合18h后得到V50GB功能化的rGO,用去离子水纯化,即功能化的光热转换材料;
(2)功能化rGO与温敏材料的互混共聚:
取0.2mL上述功能化的rGO加入到浓度为1mL、36mg/mL的所述类弹性蛋白多肽衍生物V50CK1的混合溶液中(溶剂为75%DMSO、25%DMF的混合溶剂),之后加有三乙胺和四臂-聚乙二醇-NHS活性酯作为交联剂,得到光热转换材料与温敏材料的混合分散液;
(3)将上述混合分散液加入到自制的长2cm,宽4cm,深0.4cm的方形凹槽内交联固化,得到光热致形状记忆复合材料,
所述光热致形状记忆复合材料包括温敏材料和分布在温敏材料中的光热转换材料,所述光热转换材料和所述温敏材料形成的混合分散液经化学交联的方式固化得到所述光热致形状记忆复合材料。在本实施例中,温敏材料为类弹性蛋白多肽衍生物V50CK1,光热转换材料为V50GB功能化的rGO,所述V50GB功能化的rGO的最大吸收波长在808nm左右,所述光热转换材料占所述温敏材料与所述光热转换材料质量之和的8%。
在波长为808nm的光源下,对实施例三得到的光热致形状记忆复合材料进行光照25s,得到发生形变的光热致形状记忆复合材料,然后撤掉光源,所述复合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例四
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
(1)聚乳酸溶液的配备:
将分子量为50 000的聚乳酸溶解在二氯甲烷中,配成质量分数为2%的聚乳酸溶液,即得温敏材料的溶液;
(2)碳纳米管与聚乳酸溶液的物理互混:
取碳纳米管加入到0.2mL的上述聚乳酸溶液中,超声分散,配备成光热转换材料与温敏材料的混合分散液,其中,碳纳米管占聚乳酸与碳纳米管的质量之和的20%;
(3)将上述混合分散液加入到自制的长2cm,宽4cm,深0.4cm的方形凹槽内加热固化,其中,加热固化的温度为40℃,得到光热致形状记忆复合材料,所述光热致形状记忆复合材料包括温敏材料和分布在温敏材料中的光热转换材料,所述光热转换材料和所述温敏材料形成的混合分散液经加热固化的方式固化得到所述光热致形状记忆复合材料。在本实施例中,温敏材料为聚乳酸,光热转换材料为碳纳米管,所述碳纳米管的最大吸收波长在808nm左右,所述光热转换材料占所述温敏材料与所述光热转换材料质量之和的20%。
在波长为808nm的光源下,对实施例四制得的光热致形状记忆复合材料进行光照10s,得到发生形变的光热致形状记忆复合材料,然后撤掉光源,所述复合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例五
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
(1)温敏材料溶液的制备:
将聚乙二醇PEG2000溶于水中,配成质量分散为38%的溶液,将聚乙烯醇溶于水中配成浓度为5%的溶液,两者按照体积比70:30进行混合后于80℃下搅拌12h,得到温敏材料溶液;
(2)吲哚菁绿与聚乳酸溶液的混合:
取质量为10mg的吲哚菁绿加入到1mL的上述温敏材料溶液中,超声分散,配备成光热转换材料与温敏材料的混合分散液,其中,光热转换材料吲哚菁绿占温敏材料与吲哚菁绿的质量之和的0.1%;
(3)将上述混合分散液加入到自制的长2cm,宽4cm,深0.4cm的方形凹槽内加热固化,加热固化的温度为50℃,得到光热致形状记忆复合材料,所述光热致形状记忆复合材料包括温敏材料和分布在温敏材料中的光热转换材料,所述光热转换材料和所述温敏材料形成的混合分散液经加热固化的方式固化得到所述光热致形状记忆复合材料。在本实施例中,温敏材料为聚乙二醇与聚乙烯醇的混合物,光热转换材料为吲哚菁绿,所述吲哚菁绿的最大吸收波长在850nm左右,所述光热转换材料占所述温敏材料与所述光热转换材料质量之和的0.1%。
在波长为808nm的光源下,对实施例五得到的光热致形状记忆复合材料进行光照10s,得到发生形变的光热致形状记忆复合材料,然后撤掉光源,所述复合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例六:
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
称取分子量为750的聚乳酸基二元醇5g加入到30mL的氯仿中,磁力搅 拌至溶液呈现透明状,加入一定量的六亚甲基二异氰酸酯(NCO/OH摩尔比为1.05:1),还原氧化石墨烯0.8g,搅拌30min后将溶液缓慢倒入聚四氟乙烯模具内,室温下静置48h,然后在80℃中加热48h以进一步固化交联,即制得所述光热致形状记忆复合材料。
在本实施例中,将具有形状记忆效应的聚乳酸混入到六亚甲基二异氰酸酯聚合后得到塑料中,实现塑料的形状记忆效应。
将光热致形状记忆复合材料进行低温下固定赋型,然后在波长为808nm的光源下,对实施例六得到的光热致形状记忆复合材料进行光照25s,所述混合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例七:
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
取分子量为1176kDa的乙氧基化三羟甲基丙烷三丙烯酸酯10mL,分子量为742kDa的聚乙二醇二丙烯酸酯60mL,碳纳米管(质量分数为18wt%),紫外光引发剂Darocur1173(质量分数为1wt%),将上述物质于磁力搅拌均匀后加入聚四氟乙烯的模具中于紫外下固化交联30s,即制得所述光热致形状记忆复合材料。
在本实施例中,将具有形状记忆效应的聚乙二醇二丙烯酸酯加入到乙氧基化三羟甲基丙烷三丙烯酸酯中,即实现树脂的形状记忆功能。
将光热致形状记忆复合材料进行低温下固定赋型,然后在波长为808nm的光源下,对实施例七得到的光热致形状记忆复合材料进行光照25s,所述混合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
实施例八
一种光热致形状记忆复合材料的制备方法,包括以下步骤:
称取50g双酚A型环氧树脂E-51置于烧杯中磁力搅拌预热至120℃,称取7g对,对-二氨基-二苯-甲烷,缓慢加入预热好的环氧树脂中慢慢溶解,然后再加入15g黑磷搅拌分散均匀,将上述混合物加入聚四氟乙烯的模具中,置于80℃的真空干燥箱中2h后,再升温至150℃保持2h,即制得所述光热致形状记忆复合材料。
本实施例中制备获得的环氧树脂即具有形状记忆效应。
将光热致形状记忆复合材料进行低温下固定赋型,然后在波长为808nm的光源下,对实施例八得到的光热致形状记忆复合材料进行光照25s,所述混合材料逐渐恢复其原本的形状,从而实现形状记忆效应。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种光热致形状记忆复合材料,其特征在于,包括温敏材料和/或热致型形状记忆聚合物以及分布在所述温敏材料和/或热致型形状记忆聚合物中的光热转换材料,所述光热致形状记忆复合材料能够经历至少一次光导致的从临时形状至起始形状的形状转换。
  2. 如权利要求1所述的光热致形状记忆复合材料,其特征在于,所述光热转换材料占所述温敏材料和/或热致型形状记忆聚合物与所述光热转换材料质量之和的0.1%-25%。
  3. 如权利要求1所述的光热致形状记忆复合材料,其特征在于,所述光热转换材料的吸收波长在200-2000nm。
  4. 如权利要求3所述的光热致形状记忆复合材料,其特征在于,所述光热转换材料的吸收波长在230-1200nm。
  5. 如权利要求1~4中任一项所述的光热致形状记忆复合材料,其特征在于,所述光热转换材料包括无机光热转换材料和/或有机光热转换材料,所述无机光热转换材料包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或 纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料中的至少一种;所述有机光热转换材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体中的至少一种及它们相应的改性材料。
  6. 如权利要求5所述的光热致形状记忆复合材料,其特征在于,所述表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯包括表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯。
  7. 如权利要求1~6中任一项所述的光热致形状记忆复合材料,其特征在于,所述温敏材料包括环氧乙烷、聚乙烯基甲醚、羟丙基丙烯酸酯、甲基纤维素、羟丙基甲基纤维素、羟丙基纤维素、聚乙二醇及其衍生物、聚-N取代丙烯酰胺、聚乳酸、类弹性蛋白多肽及它们的衍生物中的至少一种。
  8. 如权利要求7所述的光热致形状记忆复合材料,其特征在于,所述类弹性蛋白多肽衍生物包括V50、V50CK1和V50GB中的至少一种。
  9. 如权利要求1~8中任一项所述的光热致形状记忆复合材料,其特征在于,所述热致型形状记忆聚合物包括苯乙烯-丁二烯共聚物、反式聚异戊二烯、乙烯-醋酸乙烯共聚物、聚降冰片烯、聚氨酯、环氧树脂、乙烯-醋酸乙烯酯共 聚物、聚酰亚胺、纤维素、聚己内酯、聚乳酸、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇聚合物中的至少一种。
  10. 光热致形状记忆物件,其特征在于,包括高分子基底以及设置于所述高分子基底表面的权利要求1-9中任一项所述的光热致形状记忆复合材料,所述光热致形状记忆物件能够经历至少一次光导致的从临时形状至起始形状的形状转换。
  11. 如权利要求10所述的光热致形状记忆物件,其特征在于,所述高分子基底由塑料、橡胶和凝胶中的至少一种制备而成。
  12. 如权利要求10所述的光热致形状记忆物件,其特征在于,所述高分子基底由聚对二甲苯、聚二甲基硅氧烷、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚乙二醇和壳聚糖中的至少一种制备而成。
  13. 如权利要求10所述的光热致形状记忆物件,其特征在于,所述高分子基底为表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的高分子基底,或蒸镀有金属层的高分子基底。
  14. 一种制备权利要求1~9中任一项所述的光热致形状记忆复合材料的方法,其特征在于,包括:将光热转换材料与温敏材料和/或热致型形状记忆聚合物混合形成混合分散液,所述混合分散液经固化后,即得所述光热致形状记 忆复合材料。
  15. 如权利要求14所述的光热致形状记忆复合材料的制备方法,其特征在于,所述固化的方式包括光固化、热固化、辐照固化、化学交联中的至少一种。
  16. 如权利要求14所述的光热致形状记忆复合材料的制备方法,其特征在于,所述光热转换材料与温敏材料和/或热致型形状记忆聚合物在溶剂中混合形成所述混合分散液,所述溶剂包括水、乙醇、丙酮、二甲基甲酰胺、二甲基亚砜、二氯甲烷和氯仿中的至少一种。
  17. 一种制备权利要求11~13中任一项所述的光热致形状记忆物件的方法,其特征在于,包括以下步骤:
    (1)提供高分子基底;
    (2)在所述高分子基底上设置有所述光热致形状记忆复合材料。
  18. 如权利要求17所述的制备光热致形状记忆物件的方法,其特征在于,所述步骤(2)通过以下步骤实施:
    (21)将光热转换材料与温敏材料和/或热致型形状记忆聚合物混合形成所述光热致形状记忆复合材料的混合分散液;
    (22)将所述混合分散液布设在所述高分子基底上,固化所述混合分散液。
  19. 如权利要求18所述的制备光热致形状记忆物件的方法,其特征在于, 所述步骤(21)中,所述光热转换材料与温敏材料和/或热致型形状记忆聚合物在溶剂中混合形成所述光热致形状记忆复合材料的混合分散液,所述溶剂包括水、乙醇、丙酮、二甲基甲酰胺、二甲基亚砜、二氯甲烷和氯仿中的至少一种。
  20. 如权利要求18所述的制备光热致形状记忆物件的方法,其特征在于,所述步骤(22)中,固化的方式包括光固化、热固化、辐照固化、化学交联中的至少一种。
  21. 如权利要求18所述的制备光热致形状记忆物件的方法,其特征在于,所述步骤(22)中,布设通过涂覆或浸渍提拉法完成。
PCT/CN2016/089633 2015-08-19 2016-07-11 一种光热致形状记忆复合材料、物件及其制备方法 WO2017028643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510512184.4 2015-08-19
CN201510512184.4A CN105153864A (zh) 2015-08-19 2015-08-19 一种光热致形状记忆复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017028643A1 true WO2017028643A1 (zh) 2017-02-23

Family

ID=54794930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089633 WO2017028643A1 (zh) 2015-08-19 2016-07-11 一种光热致形状记忆复合材料、物件及其制备方法

Country Status (2)

Country Link
CN (1) CN105153864A (zh)
WO (1) WO2017028643A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171520A (zh) * 2020-02-24 2020-05-19 中国石油大学(华东) 改性碳纳米管增强形状记忆环氧树脂复合材料及其制备方法
CN111834526A (zh) * 2020-07-08 2020-10-27 华东理工大学 一种基于聚苯胺修饰黑磷纳米片的多功能电子器件及其制备方法和应用
CN111978493A (zh) * 2020-09-09 2020-11-24 大连民族大学 吸收波长随温度振荡的光热转换材料及其制备方法和应用
CN112250809A (zh) * 2020-10-29 2021-01-22 中国科学院宁波材料技术与工程研究所 一种磁、光、热多重刺激响应的形状记忆水凝胶、其制备方法和形状记忆方式
CN112625316A (zh) * 2020-11-24 2021-04-09 中国人民大学 一种油凝胶及其制备方法与应用
CN112852130A (zh) * 2021-02-01 2021-05-28 南京林业大学 兼具荧光和光热转换功能的聚乳酸复合材料及其制备方法
CN113151929A (zh) * 2021-04-21 2021-07-23 上海工程技术大学 碳化锆/聚氨酯-聚吡咯皮芯纤维及其制备方法和应用
CN113181437A (zh) * 2021-03-16 2021-07-30 浙江大学 一种可定制化聚合物血管支架及其制备方法
CN113402763A (zh) * 2021-07-05 2021-09-17 吉林大学 一种自修复亲水多孔光热膜及其制备方法和应用
CN113417145A (zh) * 2021-05-17 2021-09-21 东华大学 一种双向形状记忆聚酰亚胺纤维布及其制备方法
CN114474919A (zh) * 2022-03-25 2022-05-13 桂林理工大学 一种形状记忆材料及其制备方法和应用
CN114618014A (zh) * 2020-12-11 2022-06-14 深圳先进技术研究院 骨修复支架及其制备方法
CN114767949A (zh) * 2022-05-30 2022-07-22 吉林大学 一种具有形状记忆功能的超疏水抗杀一体化功能表面及其制备方法
CN114855460A (zh) * 2022-05-10 2022-08-05 江南大学 一种电热刺激形状记忆fpc电磁屏蔽膜的制备方法
CN115154671A (zh) * 2022-07-15 2022-10-11 重庆大学 一种聚乳酸和形状记忆聚氨酯材料的复合物
CN115195241A (zh) * 2022-07-27 2022-10-18 哈尔滨工程大学 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台
CN115381796A (zh) * 2022-08-24 2022-11-25 哈尔滨工业大学 一种载药形状记忆材料、制备方法及其应用
CN115998944A (zh) * 2022-12-29 2023-04-25 武汉市第三医院 一种纳米银功能化抗菌材料及其制备方法和应用
CN116143969A (zh) * 2022-12-25 2023-05-23 西北工业大学 一种快速高效编程形状记忆材料及制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105535971B (zh) * 2015-12-22 2019-01-15 苏州大学 一种具有生物相容性的黑磷纳米颗粒及其制备方法和应用
CN105816881B (zh) * 2015-12-29 2019-02-19 温州生物材料与工程研究所 基于近红外光热剂和温敏性聚合物的组合体系、药物载体和制备方法
CN105542304B (zh) * 2016-01-21 2018-06-01 东莞市联洲知识产权运营管理有限公司 一种蓄热pp树脂基复合鞋材及其制备方法
WO2018034621A1 (en) * 2016-08-19 2018-02-22 Nanyang Technological University Composite film, device including, and method of forming the same
CN106601338B (zh) * 2016-11-18 2018-11-23 深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法
CN106633721A (zh) * 2016-11-18 2017-05-10 中国科学院深圳先进技术研究院 一种具有形状记忆效应的自修复材料、物件及其制备方法
CN106751604B (zh) * 2016-11-18 2018-12-21 深圳先进技术研究院 一种形状记忆光子晶体材料及其制备方法
WO2018213997A1 (zh) * 2017-05-22 2018-11-29 深圳先进技术研究院 一种可变形的刺激响应材料及其制备方法和刺激响应柔性微电极阵列
CN107973621A (zh) * 2017-11-03 2018-05-01 东南大学 一种基于石墨烯/纳米金涂层的反应岛及其制备方法和应用
CN107802041A (zh) * 2017-11-28 2018-03-16 广东汇星新材料科技股份有限公司 一种可长期去除体味的内衣
CN108341908B (zh) * 2018-03-12 2019-07-23 江南大学 一种红光响应的形状记忆高分子材料及其制备方法
CN110155969B (zh) * 2018-05-18 2021-04-02 北京纳米能源与系统研究所 一种钝化的黑磷材料及其制备方法和应用
CN109337570A (zh) * 2018-09-28 2019-02-15 合众(佛山)化工有限公司 一种基于黑磷烯的新型光固化导电涂料
CN109464664B (zh) * 2018-11-13 2021-07-20 南昌大学 一种用于缓解干眼症状的智能眼贴的制备方法
CN110004513B (zh) * 2019-04-12 2021-05-07 太原理工大学 一种智能变形丙纶纤维及其制备方法
CN110437444A (zh) * 2019-07-19 2019-11-12 太原理工大学 一种形貌可控的聚吡咯水凝胶及其制备方法和在超级电容器中的应用
CN114479656B (zh) * 2020-11-11 2024-05-03 杭州三花研究院有限公司 换热器及其制备方法
CN113144191B (zh) * 2021-03-09 2022-04-08 清华大学 金硫化银蛋白复合水凝胶及其制备方法与应用
CN114699524B (zh) * 2022-03-22 2023-01-31 北京理工大学 一种跨尺度多功能智能疗修性系统及其制备方法
CN114960238A (zh) * 2022-05-07 2022-08-30 江南大学 一种基于全波段光蓄热热致变色织物的制备方法及应用
CN116854976A (zh) * 2023-05-25 2023-10-10 深圳技术大学 一种光热控制液滴浸润速度的智能表面结构、制备方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709542B2 (en) * 2007-03-23 2010-05-04 Agency For Science, Technology And Research Proton-exchange composite containing nanoparticles having outer oligomeric ionomer, and methods of forming
WO2010083041A1 (en) * 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
CN102585425A (zh) * 2011-12-21 2012-07-18 青岛大学 一种温敏可控的石墨烯-高分子复合材料的制备方法
CN103242656A (zh) * 2013-05-09 2013-08-14 北京大学 一种多组分超分子水凝胶及其制备方法
CN103272540A (zh) * 2013-05-09 2013-09-04 北京大学 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用
CN103756020A (zh) * 2013-12-16 2014-04-30 武汉纺织大学 一种具有光敏性的纳米复合超分子水凝胶的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104292475B (zh) * 2014-09-30 2016-08-24 华东师范大学 一种温敏光敏双响应聚肽基主客体复合智能水凝胶及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709542B2 (en) * 2007-03-23 2010-05-04 Agency For Science, Technology And Research Proton-exchange composite containing nanoparticles having outer oligomeric ionomer, and methods of forming
WO2010083041A1 (en) * 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
CN102585425A (zh) * 2011-12-21 2012-07-18 青岛大学 一种温敏可控的石墨烯-高分子复合材料的制备方法
CN103242656A (zh) * 2013-05-09 2013-08-14 北京大学 一种多组分超分子水凝胶及其制备方法
CN103272540A (zh) * 2013-05-09 2013-09-04 北京大学 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用
CN103756020A (zh) * 2013-12-16 2014-04-30 武汉纺织大学 一种具有光敏性的纳米复合超分子水凝胶的制备方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171520B (zh) * 2020-02-24 2023-04-25 中国石油大学(华东) 改性碳纳米管增强形状记忆环氧树脂复合材料及其制备方法
CN111171520A (zh) * 2020-02-24 2020-05-19 中国石油大学(华东) 改性碳纳米管增强形状记忆环氧树脂复合材料及其制备方法
CN111834526A (zh) * 2020-07-08 2020-10-27 华东理工大学 一种基于聚苯胺修饰黑磷纳米片的多功能电子器件及其制备方法和应用
CN111978493A (zh) * 2020-09-09 2020-11-24 大连民族大学 吸收波长随温度振荡的光热转换材料及其制备方法和应用
CN111978493B (zh) * 2020-09-09 2022-09-16 大连民族大学 吸收波长随温度振荡的光热转换材料及其制备方法和应用
CN112250809A (zh) * 2020-10-29 2021-01-22 中国科学院宁波材料技术与工程研究所 一种磁、光、热多重刺激响应的形状记忆水凝胶、其制备方法和形状记忆方式
CN112250809B (zh) * 2020-10-29 2023-03-24 中国科学院宁波材料技术与工程研究所 一种磁、光、热多重刺激响应的形状记忆水凝胶、其制备方法和形状记忆方式
CN112625316A (zh) * 2020-11-24 2021-04-09 中国人民大学 一种油凝胶及其制备方法与应用
CN114618014A (zh) * 2020-12-11 2022-06-14 深圳先进技术研究院 骨修复支架及其制备方法
CN112852130A (zh) * 2021-02-01 2021-05-28 南京林业大学 兼具荧光和光热转换功能的聚乳酸复合材料及其制备方法
CN112852130B (zh) * 2021-02-01 2022-06-28 南京林业大学 兼具荧光和光热转换功能的聚乳酸复合材料及其制备方法
CN113181437A (zh) * 2021-03-16 2021-07-30 浙江大学 一种可定制化聚合物血管支架及其制备方法
CN113151929A (zh) * 2021-04-21 2021-07-23 上海工程技术大学 碳化锆/聚氨酯-聚吡咯皮芯纤维及其制备方法和应用
CN113417145B (zh) * 2021-05-17 2022-03-15 东华大学 一种双向形状记忆聚酰亚胺纤维布及其制备方法
CN113417145A (zh) * 2021-05-17 2021-09-21 东华大学 一种双向形状记忆聚酰亚胺纤维布及其制备方法
CN113402763A (zh) * 2021-07-05 2021-09-17 吉林大学 一种自修复亲水多孔光热膜及其制备方法和应用
CN114474919A (zh) * 2022-03-25 2022-05-13 桂林理工大学 一种形状记忆材料及其制备方法和应用
CN114474919B (zh) * 2022-03-25 2023-08-11 桂林理工大学 一种形状记忆材料及其制备方法和应用
CN114855460A (zh) * 2022-05-10 2022-08-05 江南大学 一种电热刺激形状记忆fpc电磁屏蔽膜的制备方法
CN114767949B (zh) * 2022-05-30 2022-12-30 吉林大学 一种具有形状记忆功能的超疏水抗杀一体化功能表面及其制备方法
CN114767949A (zh) * 2022-05-30 2022-07-22 吉林大学 一种具有形状记忆功能的超疏水抗杀一体化功能表面及其制备方法
CN115154671A (zh) * 2022-07-15 2022-10-11 重庆大学 一种聚乳酸和形状记忆聚氨酯材料的复合物
CN115154671B (zh) * 2022-07-15 2023-06-16 重庆大学 一种聚乳酸和形状记忆聚氨酯材料的复合物
CN115195241A (zh) * 2022-07-27 2022-10-18 哈尔滨工程大学 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台
CN115195241B (zh) * 2022-07-27 2023-12-12 哈尔滨工程大学 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台
CN115381796A (zh) * 2022-08-24 2022-11-25 哈尔滨工业大学 一种载药形状记忆材料、制备方法及其应用
CN116143969A (zh) * 2022-12-25 2023-05-23 西北工业大学 一种快速高效编程形状记忆材料及制备方法
CN116143969B (zh) * 2022-12-25 2024-01-26 西北工业大学 一种快速高效编程形状记忆材料及制备方法
CN115998944A (zh) * 2022-12-29 2023-04-25 武汉市第三医院 一种纳米银功能化抗菌材料及其制备方法和应用
CN115998944B (zh) * 2022-12-29 2024-05-07 武汉市第三医院 一种纳米银功能化抗菌材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105153864A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017028643A1 (zh) 一种光热致形状记忆复合材料、物件及其制备方法
Liu et al. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review
Wan et al. Direct ink writing based 4D printing of materials and their applications
Yu et al. Light-driven core-shell fiber actuator based on carbon nanotubes/liquid crystal elastomer for artificial muscle and phototropic locomotion
Zhang et al. Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics
Wang et al. Metal ion-promoted fabrication of melanin-like poly (L-DOPA) nanoparticles for photothermal actuation
Yang et al. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display
Ebner et al. One Decade of Microwave‐Assisted Polymerizations: Quo vadis?
Hu et al. Polymer gel nanoparticle networks
CN106633721A (zh) 一种具有形状记忆效应的自修复材料、物件及其制备方法
Huang et al. Ti3C2Tx MXene as a novel functional photo blocker for stereolithographic 3D printing of multifunctional gels via Continuous Liquid Interface Production
Yang et al. Polydopamine Particle‐Filled Shape‐Memory Polyurethane Composites with Fast Near‐Infrared Light Responsibility
Li et al. Carbon dot/poly (methylacrylic acid) nanocomposite hydrogels with high toughness and strong fluorescence
Winter et al. Ferrocene‐Containing inverse opals by melt‐shear organization of core/shell particles
Fang et al. Preparation and assembly of five photoresponsive polymers to achieve complex light-induced shape deformations
CN110194834B (zh) 一种可视化光致形状记忆聚合物及其制备方法
Wu et al. Reusable gold nanorod/liquid crystalline elastomer (GNR/LCE) composite films with UV-triggered dynamic crosslinks capable of micropatterning and NIR actuation
Peng et al. Recent advances in dynamic covalent bond-based shape memory polymers
Zhang et al. Selective in situ dynamic motion stay and recover under single NIR light in soft actuator by triggered Shape-Memory and phase transition of hydrogel
CN107365401A (zh) 一种近红外响应主链型液晶弹性体及其制备方法
Xing et al. Photo/thermal response of polypyrrole-modified calcium alginate/gelatin microspheres based on helix-coil structural transition and the controlled release of agrochemicals
Yin et al. Robust self-healing magnetically induced colloidal photonic crystal hydrogels
CN111019327B (zh) 一种具有力致变色和自修复双功能的高分子复合材料及其制备方法
CN102660097B (zh) 一种增强聚乙烯醇复合物的制备方法
US20060122284A1 (en) Well dispersed polymer nanocomposites via interfacial polymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16836507

Country of ref document: EP

Kind code of ref document: A1