CN115195241B - 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台 - Google Patents

一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台 Download PDF

Info

Publication number
CN115195241B
CN115195241B CN202210895401.2A CN202210895401A CN115195241B CN 115195241 B CN115195241 B CN 115195241B CN 202210895401 A CN202210895401 A CN 202210895401A CN 115195241 B CN115195241 B CN 115195241B
Authority
CN
China
Prior art keywords
shape memory
micro
conversion structure
liquid drop
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210895401.2A
Other languages
English (en)
Other versions
CN115195241A (zh
Inventor
梁文彦
王钰博
薛意青
孙永阳
隋欣
王寅峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202210895401.2A priority Critical patent/CN115195241B/zh
Publication of CN115195241A publication Critical patent/CN115195241A/zh
Application granted granted Critical
Publication of CN115195241B publication Critical patent/CN115195241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/162Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台,将电热薄膜层与浸润性可调控的形状记忆微结构表面层相结合,利用激光加工技术,一步制备出浸润性可调控的形状记忆微结构表面。在外荷载和电压作用下,该结构可以实现表面的浸润性的原位切换。此外,在该结构表面上可以形成液滴的流动通道,为液滴移动设定好了路线,控制液滴的移动方向,同时液滴可在反应池部分在低于转换温度下进行反应,待反应完成后通过通道流出。本发明可以构造引导液滴定向移动的通道和反应池,可广泛的应用于微液滴的生物化学反应。本发明采用激光刻蚀技术,一步得到形状记忆微结构表面,过程简单,方式灵活,快速方便。

Description

一种原位浸润性转换结构、其制备方法及其制备的液滴动态 操控平台
技术领域
本发明属于液滴转移领域,具体涉及一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台。
背景技术
具有可逆浸润性转换的智能结构在液滴转移、微流控、生物化学工程等领域有着广阔的应用前景。表面的浸润性是由表面的化学性质和物理结构共同决定的,选择通过改变表面化学成分来调整润湿性,许多缺陷仍然难以避免。例如亲水性化合物会吸收液滴中存在的物质,导致表面与实验液滴相互污染,此外还缺乏便捷性,安全性,经济性等一系列问题。相比之下,通过对微结构阵列的动态调节实现在表面浸润性的调控显示了巨大的优势。形状记忆聚合物作为一种刺激响应材料,具有可逆的形状调节能力,为表面润湿性和黏附性的调节提供了巨大的可能性。在超疏水表面的制备上,大多采用模板法获取表面微结构,操作复杂且缺乏灵活性。在形状记忆聚合物的驱动方式上,以往工作中采用的加热策略大多是基于分体式加热板加热、水浴加热、电控温室加热等。样品需要直接与加热设备接触。在样品转移过程中存在操作不便、操作危险等缺点,严重限制了其在实际中的应用潜力。如何实现原位润湿性转化是制约智能超疏水表面的核心问题。
发明内容
本发明的目的在于提供一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台。
本发明的目的通过如下技术方案来实现:
一种原位浸润性转换结构,包括形状记忆微结构表面通过耐热高温粘结剂覆盖到电热薄膜的基体上;所述形状记忆薄膜的基体为环氧树脂形状记忆聚合物,填充材料为碳纳米管、石墨烯;所述形状记忆微结构表面的微结构为飞秒激光对形状记忆表面进行刻蚀形成微柱阵列;所述电热薄膜的基体为聚二甲基硅氧烷,填充材料为碳纳米管、石墨烯。
进一步地,所述形状记忆微结构表面厚度为0.5mm~3mm;所述微柱阵列为方形,经超声清洗干燥后,进行氟化处理,方形微柱的边长为20μm~200μm,高度为40μm~400μm;形状记忆微结构表面的基体材料为环氧树脂58%~84%,固化剂15%~30%,填充材料为碳纳米管0.5%~6.0%,石墨烯0.5%~6.0%,形状记忆固定率为75%~100%,形状记忆回复率为75%~100%。
进一步地,所述电热薄膜材料组成的质量百分比含量及升温特征为:电热薄膜的基体材料聚二甲基硅氧烷73%~89%,固化剂10%~15%,填充材料碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%;电热薄膜在电压3V-12V下,薄膜温度升温50℃-200℃。
一种原位浸润性转换结构的制备方法,具体步骤如下:
步骤1:制备形状记忆表面(1):形状记忆基体材料为环氧树脂58%~84%,固化剂15%~30%,填充材料为碳纳米管0.5%~6.0%,石墨烯0.5%~6.0%,形状记忆固定率为75%~100%,形状记忆回复率为75%~100%;
步骤2:制备形状记忆表面(1)的微结构:采用飞秒激光对形状记忆表面进行刻蚀形成微柱阵列,经超声清洗干燥后,进行氟化处理;所述的形状记忆微结构表面(1)厚度为0.5mm~3mm,微柱阵列为方形,其微柱边长为20μm~200μm,微柱高度为40μm~400μm;
步骤3:制备电热薄膜(3)基体:聚二甲基硅氧烷73%~89%,固化剂10%~15%,填充材料为碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%,电热薄膜在电压3V-12V下,薄膜温度升温50℃-200℃;
步骤4:制备新型原位浸润性转换结构:将制备好的形状记忆微结构表面(1)通过耐热高温粘结剂(2)覆盖到电热薄膜(3)基体上。
一种原位浸润性转换结构制备的液滴动态操控平台,液滴动态操控平台为通过形状记忆微结构表面微柱阵列的形状记忆性能,构造引导液滴定向移动的通道和反应池。
进一步地,所述通道的宽度为40μm~400μm、深度为20μm~200μm;反应池深度为20μm~200μm、宽度为8mm~30mm。
进一步地,所述反应池的温度范围为23℃~85℃。
本发明的有益效果在于:
本发明将电热薄膜层与浸润性可调控的形状记忆微结构表面层相结合,利用激光加工技术,一步制备出浸润性可调控的形状记忆微结构表面。在外荷载和电压作用下,该结构可以实现表面的浸润性的原位切换。此外,在该结构表面上可以形成液滴的流动通道,为液滴移动设定好了路线,控制液滴的移动方向,同时液滴可在反应池部分在低于转换温度下进行反应,待反应完成后通过通道流出。
本发明采用激光刻蚀技术,一步得到形状记忆微结构表面,过程简单,方式灵活,快速方便。
本发明通过控制表面微结构状态实现表面浸润性的原位切换,实现液滴在表面黏附力的调谐。
本发明的液滴动态操控平台,可以构造引导液滴定向移动的通道和反应池。该平台可广泛的应用于微液滴的生物化学反应。
附图说明
图1是本发明液滴动态操控平台示意图;
图2是本发明原位浸润性转换结构示意图;其中过程(a)为施加电压和外荷载,(b)为冷却固定,(c)为重新施加电压,(d)冷却回复至初始状态;
图3是本发明结构组成换示意图;
图4是本发明初始状态和变形状态的电镜图,比例尺为50μm;
图5是本发明初始状态和变形状态的液滴接触角;
图6是本发明在4V、8V、12V电压下的时间温度曲线。
具体实施方式
下面结合附图对本发明做进一步描述。
具体实施方式一:本实施方式记载的是一种新型原位浸润性转换结构的制备方法,所述方法包括以下步骤:
步骤1:制备浸润性可调控的形状记忆表面(1):形状记忆基体材料为环氧树脂58%~84%,固化剂15%~30%,填充材料为碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%,形状记忆固定率为75%~100%,形状记忆回复率为75%~100%;
步骤2:制备浸润性可调控的形状记忆表面(1)的微结构:采用飞秒激光对形状记忆表面进行刻蚀形成微柱阵列,经超声清洗干燥后,进行氟化处理;所述的形状记忆微结构1表面厚度为0.5mm~3mm,微柱阵列为方形,其边长为20μm~200μm,高度为40μm~400μm;
步骤3:制备电热薄膜(3)基体:聚二甲基硅氧烷73%~89%,固化剂10%~15%,填充材料为碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%,电热薄膜在电压3V-12V下,薄膜温度升温50℃-200℃;
步骤4:制备新型原位浸润性转换结构:将制备好的浸润性可调控的形状记忆微结构表面(1)通过耐热高温粘结剂(2)覆盖到电热薄膜(3)基体上(图3)。
具体实施方式二:具体实施方式一所述的一种新型原位浸润性转换结构的调控方法,微柱阵列初始状态下保持较低的液滴粘附力。对下层电热薄膜(3)施加电压,在上层形状记忆微结构表面(1)达到转换温度的情况下施加一定的荷载,保持荷载至冷却至室温后,移除荷载,微结构阵列进入变形状态保持较高的液滴粘附力。对下层电热薄膜(3)重新施加电压,待上层形状记忆微结构表面(1)达到转换温度,变形的微柱阵列重新恢复至初始状态。
调控方法具体为:对制备的原位浸润性转换结构的下层电热薄膜(3)施加电压,在上层形状记忆微结构表面(1)达到转换温度的情况下施加一定的荷载,保持荷载至冷却至室温后,移除荷载,微结构阵列进入变形状态。对下层电热薄膜(3)重新施加电压,待上层形状记忆微结构表面(1)达到转换温度,变形的微柱阵列重新恢复至初始状态(图3)。初始状态下,表面微结构处于直立状态,此时表现为高接触角,低黏附力(图4)。变形状态下,表面微结构呈现倾倒状态,此时表现为低接触角高黏附力(图5)。
具体实施方式三:本实施方式记载的是液滴动态操控平台的使用方法,利用表面微结构的阵列的形状记忆性能,构造引导液滴定向移动的通道和反应池。所获得通道的宽度为40μm~200μm、深度为20μm~200μm;反应池宽度为8mm~30mm、深度为20μm~200μm。液滴反应池可在低于转换温度时根据实验需求对液滴进行加热,温度范围为23℃~85℃(图1)。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种原位浸润性转换结构,其特征在于:包括形状记忆微结构表面(1)通过耐热高温粘结剂(2)覆盖到电热薄膜(3)的基体上;所述形状记忆微结构表面(1)的微结构为飞秒激光对形状记忆微结构表面(1)进行刻蚀形成微柱阵列;所述形状记忆微结构表面(1)的基体为环氧树脂形状记忆聚合物,填充材料为碳纳米管、石墨烯;所述电热薄膜(3)的基体为聚二甲基硅氧烷,填充材料为碳纳米管、石墨烯;
所述原位浸润性转换结构的制备方法,具体步骤如下:
步骤1:制备形状记忆微结构表面(1):形状记忆基体材料为环氧树脂聚合物58%~84%,固化剂15%~30%,填充材料为碳纳米管0.5%~6.0%,石墨烯0.5%~6.0%,形状记忆固定率为75%~100%,形状记忆回复率为75%~100%;
步骤2:制备形状记忆微结构表面(1)的微结构:采用飞秒激光对形状记忆表面进行刻蚀形成微柱阵列,经超声清洗干燥后,进行氟化处理;所述的形状记忆微结构表面(1)厚度为0.5mm~3mm,微柱阵列为方形,其微柱边长为20μm~200μm,微柱高度为40μm~400μm;
步骤3:制备电热薄膜(3)基体:聚二甲基硅氧烷73%~89%,固化剂10%~15%,填充材料为碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%,电热薄膜(3)在电压3V-12V下,薄膜温度升温50℃-200℃;
步骤4:制备原位浸润性转换结构:将制备好的形状记忆微结构表面(1)通过耐热高温粘结剂(2)覆盖到电热薄膜(3)基体上。
2.根据权利要求1所述的一种原位浸润性转换结构,其特征在于:所述形状记忆微结构表面(1)厚度为0.5mm~3mm;所述微柱阵列为方形,经超声清洗干燥后,进行氟化处理,方形微柱的边长为20μm~200μm,高度为40μm~400μm;形状记忆微结构表面(1)的基体材料为环氧树脂58%~84%,固化剂15%~30%,填充材料为碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%,形状记忆固定率为75%~100%,形状记忆回复率为75%~100%。
3.根据权利要求1所述的一种原位浸润性转换结构,其特征在于:所述电热薄膜(3)材料组成的质量百分比含量及升温特征为:电热薄膜(3)的基体材料聚二甲基硅氧烷73%~89%,固化剂10%~15%,填充材料碳纳米管0.5%~6.0%、石墨烯0.5%~6.0%;电热薄膜(3)在电压3V-12V下,薄膜温度升温50℃-200℃。
4.根据权利要求1所述的一种原位浸润性转换结构制备的液滴动态操控平台,其特征在于:液滴动态操控平台为通过形状记忆微结构表面(1)微柱阵列的形状记忆性能,构造引导液滴定向移动的通道和反应池。
5.根据权利要求4所述的一种原位浸润性转换结构制备的液滴动态操控平台,其特征在于:所述通道的宽度为40μm~400μm、深度为20μm~200μm;反应池深度为20μm~200μm、宽度为8mm~30mm。
6.根据权利要求5所述的一种原位浸润性转换结构制备的液滴动态操控平台,其特征在于:所述反应池的温度范围为23℃~85℃。
CN202210895401.2A 2022-07-27 2022-07-27 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台 Active CN115195241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210895401.2A CN115195241B (zh) 2022-07-27 2022-07-27 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210895401.2A CN115195241B (zh) 2022-07-27 2022-07-27 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台

Publications (2)

Publication Number Publication Date
CN115195241A CN115195241A (zh) 2022-10-18
CN115195241B true CN115195241B (zh) 2023-12-12

Family

ID=83584669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210895401.2A Active CN115195241B (zh) 2022-07-27 2022-07-27 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台

Country Status (1)

Country Link
CN (1) CN115195241B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5836066A (en) * 1996-07-22 1998-11-17 Innovative Dynamics, Inc. Process for the production of two-way shape memory alloys
CN101724356A (zh) * 2008-10-21 2010-06-09 通用汽车环球科技运作公司 自洁干式粘合剂
WO2017028643A1 (zh) * 2015-08-19 2017-02-23 中国科学院深圳先进技术研究院 一种光热致形状记忆复合材料、物件及其制备方法
CN107540866A (zh) * 2017-09-07 2018-01-05 哈尔滨工业大学 一种利用pdpaema修饰形状记忆聚合物进行表面浸润性调控的方法
CN107840941A (zh) * 2017-12-14 2018-03-27 哈尔滨工业大学 一种亲水性形状记忆环氧树脂及其微阵列的制备方法及微阵列亲水性调控的方法
CN112793288A (zh) * 2021-01-14 2021-05-14 江南大学 一种具有双向可逆润湿的形状记忆微图案的制备方法
CN112900183A (zh) * 2021-01-18 2021-06-04 哈尔滨学院 一种具有形状记忆功能的石墨烯基自融雪路面铺装结构
CN113665045A (zh) * 2021-08-19 2021-11-19 西南科技大学 用于智能操纵液滴的跨物种生物激发原位可逆三重可切换润湿性表面结构及应用
CN114369336A (zh) * 2021-12-27 2022-04-19 哈尔滨工程大学 一种新型减阻、疏水/除冰一体化薄膜
CN114538366A (zh) * 2022-02-22 2022-05-27 广州大学 一种基于磁力作用的可逆转换微结构及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951319B2 (en) * 2006-07-28 2011-05-31 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
JP2012517910A (ja) * 2009-02-17 2012-08-09 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 可撓性を有するマイクロ構造の超疎水性材料
WO2013060831A2 (de) * 2011-10-28 2013-05-02 BAM Bundesanstalt für Materialforschung und -prüfung Verfahren und farbstoffmischungen zur kennzeichnung von formgedächtnispolymeren und artikel aus formgedächtnispolymer mit schaltbarer lesbarkeit
DE102014119183A1 (de) * 2014-12-19 2016-06-23 Karlsruher Institut für Technologie Verfahren zur Trennung von Flüssigkeiten und dessen Verwendung
US10493456B2 (en) * 2017-01-25 2019-12-03 The Board Of Trustees Of The University Of Illinois Structured surface comprising a shape memory polymer for manipulating liquid droplets

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5836066A (en) * 1996-07-22 1998-11-17 Innovative Dynamics, Inc. Process for the production of two-way shape memory alloys
CN101724356A (zh) * 2008-10-21 2010-06-09 通用汽车环球科技运作公司 自洁干式粘合剂
WO2017028643A1 (zh) * 2015-08-19 2017-02-23 中国科学院深圳先进技术研究院 一种光热致形状记忆复合材料、物件及其制备方法
CN107540866A (zh) * 2017-09-07 2018-01-05 哈尔滨工业大学 一种利用pdpaema修饰形状记忆聚合物进行表面浸润性调控的方法
CN107840941A (zh) * 2017-12-14 2018-03-27 哈尔滨工业大学 一种亲水性形状记忆环氧树脂及其微阵列的制备方法及微阵列亲水性调控的方法
CN112793288A (zh) * 2021-01-14 2021-05-14 江南大学 一种具有双向可逆润湿的形状记忆微图案的制备方法
CN112900183A (zh) * 2021-01-18 2021-06-04 哈尔滨学院 一种具有形状记忆功能的石墨烯基自融雪路面铺装结构
CN113665045A (zh) * 2021-08-19 2021-11-19 西南科技大学 用于智能操纵液滴的跨物种生物激发原位可逆三重可切换润湿性表面结构及应用
CN114369336A (zh) * 2021-12-27 2022-04-19 哈尔滨工程大学 一种新型减阻、疏水/除冰一体化薄膜
CN114538366A (zh) * 2022-02-22 2022-05-27 广州大学 一种基于磁力作用的可逆转换微结构及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
In-situ switchable superhydrophobic shape memory microstructure patterns with reversible wettability and adhesion;ZHang HY;《Applied Surface Science》;第525卷;第1-10页 *
Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites;Jianming Guo;《Composites: Part A-APPLIED SCIENCE AND AMNUFACTURING》;第76卷;第162-171页 *
亲水性形状记忆环氧树脂制备及表面浸润性调控;钱艺豪;张东杰;成中军;康红军;刘宇艳;;高等学校化学学报(08);第217-222页 *
具有微纳结构形状记忆聚合物材料的研究进展;吕通;孙波;赵宏杰;成中军;张恩爽;刘宇艳;;化学与粘合(04);第64-68、80页 *

Also Published As

Publication number Publication date
CN115195241A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Li et al. Review of two types of surface modification on pool boiling enhancement: Passive and active
KR100758699B1 (ko) 고종횡비 나노구조물 형성방법 및 이를 이용한 미세패턴형성방법
Ge et al. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications
DE102006007800B3 (de) Strukturierungsverfahren und Bauteil mit einer strukturierten Oberfläche
Udofia et al. Microextrusion based 3D printing–a review
Luo et al. Slippery shape memory polymer arrays with switchable isotropy/anisotropy and its application as a reprogrammable platform for controllable droplet motion
CN110237787B (zh) 一种蜂窝状碳纳米管多孔微球及其制备方法和用途
Wang et al. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation
Bae et al. Micro‐/nanofluidics for liquid‐mediated patterning of hybrid‐scale material structures
CN104998702A (zh) 一种基于液体模塑法的pdms微流控芯片制备方法
CN216322007U (zh) 一种基于pdms表面的液体自驱动装置
Sarwate et al. Controllable strain recovery of shape memory polystyrene to achieve superhydrophobicity with tunable adhesion
Li et al. Directional transportation on microplate-arrayed surfaces driven via a magnetic field
Wang et al. Multifunctional electro-thermal superhydrophobic shape memory film with in situ reversible wettability and anti-icing/deicing properties
CN115195241B (zh) 一种原位浸润性转换结构、其制备方法及其制备的液滴动态操控平台
CN113578406A (zh) 液滴转移用微柱表面、微柱表面制备方法及液滴转移方法
Rao et al. NIR-driven fast construction of patterned-wettability on slippery lubricant infused surface for droplet manipulation
JP2010535285A (ja) 疎水性内部表面を有する3次元形状構造物の製造方法
CN109664493B (zh) 一种可图形化调控功能薄膜润湿性的高效等离子体方法
CN109278228B (zh) 电场响应弹性体微结构表面液体输运器件及其制备方法
KR101583605B1 (ko) 마이크로-나노 패턴이 형성된 폴리머 미세 유체 채널 및 그 제조방법
CN113908897A (zh) 一种磁激励实现液滴操控的微流控装置及其操控方法
US11440240B2 (en) Methods and system for mass production, volume manufacturing of re-entrant structures
CN107840941B (zh) 一种亲水性形状记忆环氧树脂及其微阵列的制备方法及微阵列亲水性调控的方法
CN108636465B (zh) 图案化流体阵列及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant