WO2017026490A1 - 高周波回路用銅箔、銅張積層板、プリント配線基板 - Google Patents

高周波回路用銅箔、銅張積層板、プリント配線基板 Download PDF

Info

Publication number
WO2017026490A1
WO2017026490A1 PCT/JP2016/073476 JP2016073476W WO2017026490A1 WO 2017026490 A1 WO2017026490 A1 WO 2017026490A1 JP 2016073476 W JP2016073476 W JP 2016073476W WO 2017026490 A1 WO2017026490 A1 WO 2017026490A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
roughening
roughened
height
particles
Prior art date
Application number
PCT/JP2016/073476
Other languages
English (en)
French (fr)
Inventor
裕子 奥野
健作 篠崎
岳夫 宇野
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57983646&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017026490(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2016567962A priority Critical patent/JP6089160B1/ja
Priority to CN201680004736.3A priority patent/CN107113971B/zh
Priority to KR1020177017188A priority patent/KR101954556B1/ko
Publication of WO2017026490A1 publication Critical patent/WO2017026490A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Definitions

  • the present invention relates to a copper foil for a high-frequency circuit that has excellent adhesion to a resin base material and excellent high-frequency signal transmission characteristics.
  • Such a printed wiring board is manufactured from a copper clad laminate in which a circuit forming copper foil is disposed and integrated on the surface of an insulating resin base material.
  • a circuit pattern is formed by applying a mask pattern to the copper foil and etching the copper-clad laminate.
  • the copper foil and the resin base material are integrated by heating and pressurization, but the adhesiveness of a predetermined level or more is required.
  • a method of ensuring such adhesion a method of performing a predetermined roughening treatment on the copper foil is common.
  • the reduction of the conductor loss largely depends on the uneven shape on the surface of the copper foil, particularly the size and shape of the roughening formed on the adhesive surface with the printed board material. Therefore, in order to reduce the conductor loss, the roughened size of the surface (the surface to be bonded to the printed circuit board material) is reduced (Patent Document 1).
  • Patent Documents 2 to 6 When reducing the roughening size, it is considered to increase the adhesion with the resin base material and improve the other characteristics by paying attention to the height and shape of the roughened particles on the copper foil surface. I came. (Patent Documents 2 to 6)
  • Patent Documents 7 to 8 disclose copper foil focusing on the height and shape of roughened particles on the surface of the copper foil.
  • Japanese Patent No. 5178064 Japanese Patent Laid-Open No. 07-231152 Japanese Patent Application Laid-Open No. 08-222857 JP 2006-210689 A Republished 2010-110092 JP 2013-199082 A JP 2006-103189 A JP 2011-168887 A
  • the printed circuit board material is chemically bonded to the silane coupling agent formed on the copper foil surface. Therefore, if the roughened size is simply reduced, there is a problem that the adhesion with the substrate material is remarkably lowered.
  • Patent Documents 2 to 8 disclose that the adhesion to the resin base material and other characteristics are improved by giving the roughening height and shape of the roughening particles on the surface of the copper foil. Has been.
  • Patent Document 2 a large number of uniform and fine bumps are generated on the smooth surface of a copper foil. Specifically, reverse teardrop-shaped rough particles are formed with a roughening height of 0.6 to 1.0 ⁇ m. By doing so, the adhesiveness with the resin base material is excellent, and the etching property of the fine circuit is enhanced.
  • Patent Document 3 a fine and uniform bumping process is performed on the rough surface side of the electrolytic copper foil. Specifically, the roughening height is 0.05 to 0.3 ⁇ m and the needle-like or bump-like roughening is performed. By forming the particles, an etching factor that is excellent in adhesion to the resin substrate and is high is obtained.
  • a roughened particle layer composed of fine roughened particles is formed on the surface of a copper foil. Specifically, a spherical roughened particle having a diameter (roughened height) of 0.05 to 1.0 ⁇ m. By forming the particles, the adhesiveness with the resin substrate is excellent, the linearity of the circuit is high, and the transmission loss can be reduced.
  • a roughened particle layer composed of fine roughened particles is formed on the surface of a copper foil.
  • the diameter (roughened height) is 0.1 to 2.0 ⁇ m, and high
  • the adhesiveness with the resin substrate is excellent and the circuit erosion phenomenon is avoided.
  • a roughened particle layer composed of fine roughened particles is formed on the surface of a copper foil.
  • the diameter (roughened height) is 0.666 to 15 ⁇ m, and the height and width.
  • the amount and shape of the roughening treatment to be applied to the surface of the copper foil are set within an appropriate range, specifically, a convex portion with a roughening height of 0.4 to 1.8 ⁇ m and a sharp tip.
  • each of the copper foils in Patent Documents 2 to 8 described above is composed of only single-shaped roughened particles, so that both the adhesion to the resin substrate and other characteristics are improved.
  • adhesion there is a trade-off relationship with adhesion, and the most important high-frequency transmission characteristics in a high-frequency circuit have not been achieved at a high level.
  • thermosetting resin containing a low dielectric loss resin with low transmission loss as a component when used as a printed circuit board material used in a high frequency region, a resin having a high glass transition temperature has a temperature at which the resin fluidity increases. The temperature at which the resin is cured is close, and the resin may be cured before the resin is sufficiently filled in the gaps between the roughened particles of the copper foil. In such a resin, there is a problem that in a state where roughened particles having a low roughened height are arranged without gaps, the resin is difficult to be filled, and adhesion with the substrate material is lowered.
  • a method for ensuring the adhesion with the resin base material by increasing the height of the roughened particles does not necessarily sufficiently consider the high-frequency transmission characteristics.
  • coherence of transmission characteristics when using a copper-clad laminate is a major issue as well as ensuring adhesion to a resin substrate.
  • the present inventors not only specify the height of the roughened particles (surface roughness), but also partially increase the height of the roughened particles or control the shape of the roughened particles. It has been found that the adhesiveness with the resin base material and the high-frequency transmission characteristics can be compatible.
  • the height and shape of the roughened particles have a large effect on the filling properties of the resin base material, the resin breaking behavior during pulling, the transmission path of high-frequency signals, etc., and as a result, the main factors that fluctuate adhesion and high-frequency transmission characteristics. It was confirmed that. In this respect, it is important to accurately grasp the entire image of the roughened particles, and the present inventor has also intensively studied the observation method of the roughened particles.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a copper foil or the like that has excellent adhesion to a resin base material and excellent high-frequency transmission characteristics.
  • a first invention is a copper foil for transmitting a high-frequency electric signal, and is formed on at least one surface and made of a roughened particle layer, and the roughened particle layer.
  • a roughened particle having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less is 30 ⁇ m in a cross-section obtained by cutting the copper foil in the width direction.
  • the number of the roughened particles having a range of 1 to 10 in a range and a roughening height of 0.1 to 0.4 ⁇ m is 5 or more in a range of 30 ⁇ m Copper foil.
  • the roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less are 1 to 5 in a range of 30 ⁇ m, and the roughening height is It is more desirable that the number of the roughened particles of 0.1 ⁇ m or more and 0.4 ⁇ m or less is 7 or more in the range of 30 ⁇ m.
  • the root mean square slope Sdq of the contour curved surface on the surface of the copper foil is 45 or more and 95 or less.
  • the root mean square slope Sdq of the contour curved surface on the surface of the copper foil is 55 or more and 95 or less.
  • the number of roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less is 2 or more and 10 or less in a range of 30 ⁇ m, and the roughening height is 0.00. It is desirable that the cross-sectional shape of the roughened particles of 5 ⁇ m or more and 3 ⁇ m or less includes two or more shapes among a backdrop shape, a columnar shape, a needle shape, and a dendritic shape.
  • the roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less are 2 or more and 5 or less in a range of 30 ⁇ m, and the roughening height is It is desirable that the cross-sectional shape of the roughened particles of 0.5 ⁇ m or more and 3 ⁇ m or less includes two or more shapes among a backdrop shape, a column shape, a needle shape, and a dendritic shape.
  • the adhesion with the resin base material is improved. Further, high-roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less and low-roughening particles having a roughening height of 0.1 ⁇ m or more and 0.4 ⁇ m or less are mixed. Therefore, it is possible to partially form a portion having a high roughening height and a portion having a low roughening height.
  • the number of roughening particles having a high roughening height is 1 or more and 10 or less, and the number of roughening particles having a low roughening height is 5 or more. Even if the overall roughening height is reduced, the roughening particles having a high roughening height that are partially formed can increase the adhesion and lower the overall roughening height. Thus, good high frequency transmission characteristics can be ensured.
  • Such an effect is that, within the range of 30 ⁇ m, the number of roughening particles having a high roughening height is 1 or more and 5 or less, and the number of roughening particles having a low roughening height is 7 or more. Thus, a greater effect can be obtained.
  • the root mean square slope Sdq of the contour curved surface on the surface of the copper foil is 45 or more and 95 or less, the shape of the roughened particles becomes appropriate, the adhesion can be improved, and good high-frequency transmission characteristics are ensured. be able to.
  • the root mean square slope Sdq of the contour curved surface on the surface of the copper foil is 55 or more and 95 or less, a greater effect can be obtained.
  • the number of roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less is 2 or more and 10 or less in a range of 30 ⁇ m
  • the roughening height is By making the cross-sectional shape of the roughened particles of 0.5 ⁇ m or more and 3 ⁇ m or less to include two or more shapes of backdrop, columnar, needle, and dendritic, for example, excellent transmission characteristics, but adhesion
  • the presence of backdrop-like and dendritic shapes with excellent adhesion can improve adhesion and provide good high-frequency transmission characteristics. Can be secured.
  • the roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less are 2 or more and 5 or less in the range of 30 ⁇ m, the above effect is great.
  • copper or a copper alloy is particularly suitable as the roughened particle layer of the copper foil for high-frequency circuits.
  • the high-frequency copper foil according to the first invention is an epoxy, heat-resistant epoxy, bismaleimide / triazine resin, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyphenylene ether, polyphenylene oxide, cyanate.
  • a copper-clad laminate characterized in that it is affixed to one or both sides of a resin substrate made of any resin of ester resins or a mixed resin thereof.
  • a copper-clad laminate with low transmission loss can be obtained efficiently. Moreover, sufficient binding force of the copper foil for high frequency circuits and resin can be ensured by applying the copper foil of this invention also to such resin.
  • the third invention is a printed wiring board characterized by using the copper clad laminate according to the second invention.
  • the present invention it is possible to provide a copper foil or the like that is excellent in adhesion to a resin base material and excellent in high-frequency transmission characteristics.
  • FIG. The conceptual diagram which shows an acicular roughening particle
  • FIG. 1 is a view showing a printed wiring board 1 according to the present invention.
  • the printed wiring board 1 is formed by bonding a copper foil 5 on a resin base material 3.
  • the copper foil 5 is patterned by masking and etching to form a circuit not shown.
  • the copper-clad laminate 2 is obtained by bonding and integrating the copper foil 5 and the resin base material 3 before etching.
  • a known method such as a hot press method, a continuous roll laminating method, a continuous belt pressing method, or the like can be used.
  • the copper foil 5 can be appropriately selected from an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil according to the use of the copper clad laminate 2 and the like. The details of the copper foil 5 will be described later.
  • the resin base 3 examples include epoxy, heat-resistant epoxy, bismaleimide / triazine resin, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyphenylene ether, polyphenylene oxide, and cyanate ester resins. It consists of these mixed resins. A sufficient chemical bonding force between the high-frequency circuit copper foil and the resin can be secured by applying the copper foil of the present invention to such a resin.
  • the copper foil 5 and the resin base material 3 can be obtained only by the chemical bonding force by the silane coupling agent treatment layer. Therefore, it is necessary to perform a process for forming appropriate roughened particles. This tendency becomes more prominent as the glass transition temperature becomes higher, and the effect of using the copper foil of the present invention is enhanced in a resin base material having a glass transition temperature exceeding 150 ° C. Furthermore, the effect of using the copper foil of the present invention is remarkably enhanced in a resin base material having a glass transition temperature exceeding 200 ° C.
  • the printed wiring board 1 is a high-frequency low transmission loss board. For example, it is used for transmission of high-frequency electrical signals of 5 GHz or higher. As shown in the figure, the printed wiring board 1 is not limited to one in which the resin base material 3 and the copper foil 5 are laminated one layer on each side, and may be a plurality of layers. For example, the copper foil 5 may be laminated on both surfaces of the resin base material 3, and similarly, the resin base material 3 may be laminated on both surfaces of the copper foil 5.
  • FIG. 2 is an enlarged cross-sectional view of the resin contact surface of the copper foil 5.
  • the copper foil 5 has a plurality of roughened particles 9 formed on a copper base foil 7.
  • a layer formed by the roughened particles 9 is referred to as a roughened particle layer 11.
  • the copper foil for high-frequency circuits of the present invention is obtained by burning plating on at least one surface of the original foil surface as a metal substrate (the surface roughness is not particularly limited, but Rz is preferably 5.0 ⁇ m or less).
  • Roughened particles 9 are provided to form a roughened particle layer 11.
  • the roughened particles 9 are preferably made of copper or a copper alloy.
  • a rust prevention layer composed of the chromate treatment layer 13 is formed as necessary.
  • a silane coupling agent treatment layer 15 is formed on the chromate treatment layer 13.
  • the silane coupling agent treatment layer 15 will be described as being formed on the roughened particle layer 11. That is, in the present invention, the formation of the silane coupling agent treated layer 15 on the roughened particle layer 11 means that another layer is formed between the roughened particle layer 11 and the silane coupling agent treated layer 15. Including those that are made.
  • a chromate treatment layer 13 is formed thereon, and a silane coupling agent treatment layer 15 is formed on the chromate treatment layer 13, or the roughened particle layer
  • a nickel layer is formed on 11
  • a zinc layer is formed
  • a chromate treatment layer 13 is formed thereon
  • a silane coupling agent treatment layer 15 is formed on the chromate treatment layer 13.
  • the silane coupling agent treatment layer 15 can be appropriately selected from epoxy, amino, methacrylic, vinyl, acrylic, mercapto and the like according to the resin of the resin base material 3.
  • epoxy, amino, and vinyl coupling agents that are particularly excellent in compatibility can be selected.
  • the overall height of the roughened particles 9 is not increased, but partially increased, thereby improving the adhesion and suppressing the height of the roughened particles 9 as a whole, It achieves both adhesion to the resin substrate and high frequency transmission characteristics. That is, it has been found that the adhesiveness can be secured without increasing the overall height by partially increasing the roughened particles 9.
  • the rough particles 9 partially have a height of 0.5 ⁇ m or more and 3 ⁇ m or less, the effect of improving the adhesion to the resin substrate is great.
  • the height of the roughened particles 9 is 0.1 ⁇ m or more and 0.4 ⁇ m or less, the effect of improving the adhesion to the resin substrate is reduced, but the adverse effect on the high-frequency transmission characteristics is small.
  • the roughening particle 9 having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less is 1 to 10 in a range of 30 ⁇ m
  • the number of roughening particles 9 having a roughening height of 0.1 ⁇ m or more and 0.4 ⁇ m or less is 5 or more in the range of 30 ⁇ m.
  • the width direction refers to a direction perpendicular to the longitudinal direction of the roll when the electrolytic copper foil or rolled copper foil formed as a copper base material is wound on the roll.
  • the reason for limiting to the width direction is that, when the roughening treatment is performed, the unevenness in roughening can be in the tensile direction, and therefore the measurement in the width direction can be stably performed.
  • the adhesion to the resin substrate can be improved. it can.
  • the number of roughening particles 9 having a high roughening height exceeds 10 in the range of 30 ⁇ m, the influence on the high-frequency transmission characteristics increases, which is not desirable. Therefore, in the present invention, the number of roughened particles 9 having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less is required to be 1 or more and 10 or less in the range of 30 ⁇ m, and more preferably 1 or more in the range of 30 ⁇ m. Or less.
  • the resin is completely flat compared to the case of flatness.
  • the effect of improving the adhesion with the substrate can be obtained.
  • the roughened particles 9 having a low roughened height are present.
  • the roughened particles 9 having a roughened height of 0.1 ⁇ m or more and 0.4 ⁇ m or less, 5 or more are required in the range of 30 ⁇ m, and more preferably 7 or more in the range of 30 ⁇ m.
  • grains 9 whose roughening height is 0.1 to 0.4 micrometer and whose roughening height is low even if the number increases, there is little influence on a high frequency transmission characteristic.
  • the lower the roughening height the smaller the transmission loss.
  • the roughness height is too low, the contribution to the adhesion becomes small, and therefore it is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the roughening height of the roughening particle 9 is made high as a whole by mixing the roughening particle 9 with a high roughening height and the roughening particle 9 with a low roughening height. Compared with the case where it does, while suppressing the bad influence to a high frequency transmission characteristic, sufficient adhesiveness with a resin substrate can be ensured.
  • the surface roughness of the roughened surface of the original foil can be dealt with by adjusting the roughness of the drum surface when the original foil is made.
  • the surface roughness of the roughened surface of the original foil can be increased by polishing the surface of the drum that forms the original foil with a rough buff.
  • the concentration of the leveler added to the plating solution at the time of foil making is lowered, or the etching time for chemically dissolving (etching) the surface of the copper foil after the foil making is lengthened. Can also respond.
  • the 10-point average roughness Rz of the roughened surface of the original foil is preferably 1.5 ⁇ m or less, more preferably 1.3 ⁇ m or less, and even more preferably 1.1 ⁇ m or less.
  • the roughened particles 9 having a high roughening height and the roughening having a low roughening height are obtained without greatly increasing the surface roughness of the original foil. It can be set as the form in which the chemical particle 9 was mixed.
  • the current density of the roughening plating after the previous roughening plating is increased when performing roughening plating multiple times. By doing so, the level difference of the roughening particle
  • the level difference of the roughened particles can be increased by appropriately selecting an additive element in the roughened plating solution in multiple times of roughening plating.
  • capsule plating which is smooth plating
  • capsule plating may be applied after burn plating for forming rough particles to prevent the rough particles from falling off.
  • the next burn plating can be performed continuously after the burn plating. By performing the burn plating continuously, the level difference of the roughened particles can be effectively expanded.
  • the inventors have found that not only the roughening height of the roughened particles 9 but also the shape (tilt) of the roughened particles 9 affects the transmission characteristics and adhesion. That is, by defining not only the distribution of the roughening height of the roughened particles 9 but also the form of the roughened particles 9, both transmission characteristics and adhesion can be achieved at a higher level.
  • the present inventor has found that the shape of the roughened particles and the clearance between the roughened particles are affected by the composition of the roughening plating solution and the temperature, and the root mean square slope Sdq of the contour curve on the surface of the copper foil. Found that it was affected by the shape of the roughened particles and the gap between the roughened particles.
  • the root mean square slope Sdq of the contour curved surface on the surface of the copper foil is preferably 45 or more and 95 or less, and more preferably, the root mean square slope Sdq is 55 or more and 95 or less.
  • the root mean square gradient represents the surface properties of the contour surface in all directions, and is obtained by averaging the roughness height of the roughened particles 9 with the square root. That is, a high value means that the inclination of the roughened particles 9 is high.
  • the root mean square slope Sdq is desirably 95 or less.
  • the root mean square slope Sdq is desirably 45 or more.
  • the root mean square slope Sdq is generally given by the following equation.
  • x and y in the formula are plane coordinates, and Z is a coordinate in the height direction.
  • Z (x, y) indicates the coordinates of a certain point, and the slope at the coordinate point is obtained by differentiating this.
  • the square root is obtained by adding the squares of the x-direction gradient and the y-direction gradient of all points (A).
  • the root mean square slope Sdq can be measured at a measurement magnification of 5 times or more using, for example, vertical scanning low coherence interferometry.
  • the measurement is preferably a non-contact type surface roughness measuring apparatus having a resolution of 1 ⁇ m or less (for example, 800 nm).
  • the condition of rough particles that achieve both high adhesion and transmission characteristics is defined by Sdq, a parameter obtained using an optical interference measurement device that is excellent in height resolution even in a non-contact type. It is possible to do.
  • the shape (gradient) of the roughened particles can be adjusted by, for example, an additive element contained in a plating solution used for roughening plating.
  • nickel contained in the burn plating solution in the rough plating has an effect on the rough shape, and becomes round when the nickel concentration is high, and becomes thin and sharp when the nickel concentration is low.
  • molybdenum contained in the discoloration plating solution affects the clearance of the roughened particles, and when the molybdenum concentration is low, the roughened particles are present sparsely.
  • the temperature of the burn plating solution also affects the clearance of the roughened particles, and when the liquid temperature is high, the roughened particles are sparsely distributed.
  • the root mean square gradient Sdq can be optimized by optimizing the composition of the burnt plating solution and the plating solution temperature as an example of the roughening plating conditions for forming the roughened particles.
  • the Sdq can be increased by lowering the nickel concentration of the burn plating solution, and as another example, the molybdenum concentration of the burn plating solution can be decreased, or the temperature of the burn plating solution can be increased. You can also do it.
  • FIGS. 3A to 3E are conceptual diagrams showing classification of the shape of the roughened particles 9, and FIG. 3A shows the needle-like roughened particles 9.
  • an ion milling device is used to perform cross-sectional processing in the width direction, and the measurement magnification is 3,000 times or more with an HR-SEM (scanning electron microscope). It can be measured by an image taken at a magnification of.
  • the width of the base of the roughened particles 9 is a.
  • grains 9 is set to b.
  • c be the width at half the height (h / 4) from the half height (h / 2) to the top of the roughened particles 9.
  • a> b> c the width changes almost uniformly.
  • FIG. 3B is a diagram showing the columnar roughened particles 9.
  • a ⁇ b ⁇ c In the columnar roughened particles 9, a ⁇ b ⁇ c, and the widths are almost the same.
  • a difference from the acicular roughened particles 9 for example, a difference between a, b, and c is 20% or less.
  • FIG. 3C is a diagram showing the backdrop-like roughened particles 9.
  • FIG. 3D is a diagram showing spherical roughened particles 9.
  • the spherical roughened particles 9 have a substantially spherical shape as a whole, and the widest width d is formed between a height of 0 and h / 2.
  • FIG. 3E is a diagram showing dendritic roughening particles 9.
  • the dendritic roughening particles 9 have a plurality of branched shapes.
  • the cross-sectional shape of the roughened particles 9 having a roughened height of 0.5 ⁇ m or more and 3 ⁇ m or less includes two or more shapes of a backdrop shape, a columnar shape, a needle shape, and a dendritic shape.
  • the width of the base of the roughened particles 9 is narrow, the transmission characteristics will be less deteriorated, but will be easily broken from the root of the roughened particles, and the adhesion will be reduced.
  • the adhesiveness can be improved by including one or more shapes other than the acicular roughened particles 9.
  • two or more roughening particles 9 having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less are required in the range of 30 ⁇ m, more preferably 2 or more and 5 in the range of 30 ⁇ m. It is as follows.
  • the cross-sectional shape of the roughened particles 9 to include two or more shapes as described above, for example, when the burnt plating is performed a plurality of times, it is possible to use a burned plating solution having a different composition.
  • the current density can be changed.
  • roughing particles having different shapes can be formed by using different burn plating solutions.
  • the overall height of the roughened particles 9 is not increased, but the height of the roughened particles 9 is reduced as a whole by improving the adhesion by partially increasing the height.
  • the overall height of the roughened particles 9 is not increased, but the height of the roughened particles 9 is reduced as a whole by improving the adhesion by partially increasing the height.
  • both transmission characteristics and adhesion can be further achieved.
  • both transmission characteristics and adhesion can be achieved.
  • Examples 1 to 7 An untreated smooth copper foil having a thickness of 18 ⁇ m was prepared as a metal substrate, and the untreated copper foil was subjected to burnt plating for forming roughened particles.
  • the bath composition of the burnt plating was solution A shown in Table 1.
  • Table 2 shows the burn plating conditions and the evaluation results.
  • the burn A plating solution A is characterized in that the roughened particles tend to grow sparsely, and as the surface roughness of the roughened surface of the original foil becomes rougher, the roughening height of the roughened particles tends to vary in height.
  • capsule plating was performed with the following bath composition and plating conditions in order to obtain a strong and sound roughened particle shape in which roughened particles do not fall off by applying capsule plating to the rough surface of the burnt plating.
  • Sulfuric acid concentration 100 g / L
  • Copper concentration from copper sulfate 50 g-Cu / L
  • Bath temperature 55 ° C
  • Current density 15 A / dm 2 by DC rectification
  • a rust-proof chromate treatment layer was formed by treatment under the following chrome plating conditions.
  • the cross-sectional shape of the copper foil thus produced was subjected to cross-section processing using an ion milling device (IM4000 manufactured by Hitachi High-Tech), and an acceleration voltage of 3 kV (secondary electron image) was obtained using HR-SEM (SU8020 manufactured by Hitachi High-Tech). Is used to observe the cross section at a magnification of 50,000 times, and the number of particles having a roughening height of 0.5 ⁇ m to 3 ⁇ m and the number of particles having a roughening height of 0.1 ⁇ m to 0.4 ⁇ m at an arbitrary 30 ⁇ m in the width direction. I counted.
  • the roughened particles having a roughened height of 0.5 ⁇ m or more and 3 ⁇ m or less one kind of roughened shape was designated as “good”, and two kinds or more were designated as “excellent”. Furthermore, using a three-dimensional white light interference microscope (BRUKER Wyko ContourGT-K), the root mean square slope Sdq was measured (measurement conditions were 10 times measurement magnification, using a high-resolution CCD camera, and after applying a special filter) The value between 45 and 95 was “good”, the sample satisfying 55 and 95 was “excellent”, and the others were “bad”.
  • BRUKER Wyko ContourGT-K three-dimensional white light interference microscope
  • the obtained copper foil with roughened particles is applied to a commercially available high-frequency insulating substrate (Megtron 6 manufactured by Panasonic Corporation: glass transition temperature 185 ° C.), press temperature: 200 ° C., press pressure: 35 kgf / cm 2 , press Time: Laminated under pressing conditions of 160 minutes.
  • a pattern was formed on this laminate by UV exposure using a pattern film having a resist width of 300 ⁇ m and a circuit interval of 450 mm, and further etched to obtain a substrate for measuring transmission characteristics having a microstrip line structure.
  • the transmission characteristics were evaluated from the measured transmission loss by measuring the transmission loss with a network analyzer.
  • the produced microstrip line had a characteristic impedance of 50 ⁇ , and as an example, the thickness of the copper foil was 18 ⁇ m, the thickness of the resin was 0.2 mm, the width was 500 ⁇ m, and the length was 450 mm.
  • the adhesion strength was measured by using a Tensilon tester (manufactured by A & D Co., Ltd.), pressing the insulating substrate and the copper foil, etching the test piece into a 10 mm wide circuit pattern, and rotating the circuit pattern in the 90 ° direction. The peel strength when pulled at a speed of 50 mm / min was measured.
  • Example 8 For Example 1, capsule plating was performed after the first burn plating, and then capsule plating was performed after the second burn plating. A solution used in the second burn plating was set as Solution B, and the same evaluation was performed as in Example 1 except that the current density was changed. Bake-plating solution B is easy to grow rough, and has the characteristics that it is easy to grow rough particles without changing the difference in the height of the rough particles formed by the first burn-off plating. is there.
  • Example 8 (Examples 12 to 15) For Example 8, the capsule plating was not performed after the first burn plating, the capsule plating was performed after the second burn plating, and then the capsule plating was performed after the third burn plating and the current density was changed. Except for the above, it was produced in the same manner as in Example 8, and the same evaluation was performed.
  • Example 16 to 22 For Example 8 or Example 12, the solution used in the second and subsequent burn plating was set as Solution C or Solution D, except that the current density was changed. Evaluation was performed.
  • the solution C of burnt plating is easy to grow with rounded rough particles, and the solution D has a characteristic that the roughened particles tend to grow in a sharp shape.
  • Example 1 or Example 8 was prepared in the same manner as in Example 1 or Example 8 except that a roughening treatment with a commercially available etchant was performed on the surface of the base foil on the surface to be roughened, and the same evaluation was performed. Went.
  • a commercially available etching solution (CZ8101: manufactured by Meck Co., Ltd.) was used, and the etching was performed at a liquid temperature of 30 ° C., a spray pressure of 0.25 MPa, and an etching amount of 1 ⁇ m.
  • Examples 25 to 27 For Example 4 or Example 9 or Example 13, produced in the same manner as Example 4 or Example 9 or Example 13 except that nickel plating and zinc plating were performed after rough plating and then chromate treatment was performed. The same evaluation was performed. Nickel plating and zinc plating were performed under the following conditions as an example.
  • Nickel sulfate Nickel concentration: 5.0 g / L Ammonium persulfate: 40.0 g / L Boric acid: 28.5 g / L Current density: 1.5 A / dm 2 pH: 3.8 Temperature: 28.5 ° C Time: 1 second to 2 minutes
  • Zinc sulfate heptahydrate 1-30 g / L Sodium hydroxide: 10 to 300 g / L Current density: 0.1 to 10 A / dm 2 Temperature: 5-60 ° C Time: 1 second to 2 minutes
  • Example 1 was prepared in the same manner as in Example 1 except that the roughening treatment was not performed, and the same evaluation was performed.
  • Table 2 shows the results of evaluating the copper foils for high-frequency circuits according to the respective examples and comparative examples by the above evaluation methods.
  • the transmission characteristics are “excellent” when the transmission loss at 40 GHz is ⁇ 28 dB or more, “good” when the transmission loss is less than ⁇ 28 dB, ⁇ 31 dB or more, and “ ⁇ ” when less than ⁇ 31 dB or ⁇ 33 dB or more. average ”and less than ⁇ 33 dB is indicated as“ bad ”.
  • the peel strength is 0.6 kN / m or more
  • “excellent” when the peel strength is 0.5 kN / m or more and less than 0.6 kN / m
  • “good” indicates a case where the peel strength is less than 0.45 kN / m.
  • Roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less are 1 or more and 10 or less in the range of 30 ⁇ m, and roughening particles having a roughening height of 0.1 ⁇ m or more and 0.4 ⁇ m or less In the example of 5 or more in the range of 30 ⁇ m, it was possible to achieve both sufficient peel strength and good transmission characteristics.
  • the peel strength is And 40 GHz transmission loss are both “excellent”.
  • Example 21 since the solution C was used for the first burn plating, the roundness of the roughened particles became remarkable, Sdq was less than 45, and the peel strength was slightly reduced. Further, in Example 22, since the solution D was used for the first burn plating, the sharpness of the shape of the roughened particles became remarkable, Sdq was larger than 95, and the transmission loss was slightly increased.
  • Comparative Examples 1 to 6 even if one of the peel strength and the transmission characteristic was good, it was not possible to achieve both.
  • Comparative Example 1 since the current density of the burnt plating was small, the number of roughening particles having a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less was less than one, and the peel strength was insufficient.
  • Comparative Example 2 since the current density of the burnt plating is large, 10 or more roughening particles with a roughening height of 0.5 ⁇ m or more and 3 ⁇ m or less and a roughening particle with a roughening height of 0.1 ⁇ m or more and 0.4 ⁇ m or less. Is less than 5, and the transmission characteristics deteriorated.
  • Comparative Example 3 since the surface roughness of the roughened surface of the original foil is rough, the roughening height is 10 ⁇ m or more and the roughening height is 0.1 ⁇ m or more and 0.1 to 0.03 ⁇ m. The number of roughened particles of 4 ⁇ m or less was less than 5, and the transmission characteristics deteriorated.
  • Comparative Example 4 since the solution A was used for the second burn plating, the roughening height was 10 or more and the roughening height was 0.1 to 0.4 ⁇ m. The number of roughened particles was less than 5, and the transmission characteristics deteriorated. In Comparative Example 5, no roughening treatment was performed, and the peel strength was significantly insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

粗化粒子9の高さが0.5μm以上3μm以下のものが部分的に存在すれば、樹脂基板との密着性の向上の効果が大きい。一方、粗化粒子9の高さが0.1μm以上0.4μm以下のものは、樹脂基板との密着性の向上の効果は小さくなるが、高周波伝送特性への悪影響が小さい。このため、本発明では、銅箔5を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の粗化粒子9が、30μmの範囲に1個以上10個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の粗化粒子9が、30μmの範囲に5個以上である。

Description

高周波回路用銅箔、銅張積層板、プリント配線基板
 本発明は、樹脂基材との密着性に優れ、高周波信号の伝送特性にも優れる高周波回路用銅箔等に関するものである。
 近年、電子部品の小型化や高性能化に伴い、小型かつ高密度のプリント配線基板が使用されている。このようなプリント配線基板は、絶縁性の樹脂基材の表面に、回路形成用の銅箔が配置されて一体化された銅張積層板から製造される。銅張積層板に対して、銅箔にマスクパターンを施してエッチングすることで回路パターンが形成される。
 銅箔と樹脂基材とは、加熱・加圧によって一体化されるが、所定以上の密着性が必要である。このような密着性を確保する方法として、銅箔に所定の粗面化処理を行う方法が一般的である。
 一方、導体損の低減は銅箔表面の凹凸形状、特にプリント基板材料との接着面に形成される粗化の大きさや形状に大きく依存する。したがって、導体損を低減させるために、表面(プリント基板材料との接着面)の粗化サイズを小さくすることが行われている(特許文献1)。
 粗化サイズを小さくするのに際しては、銅箔表面の粗化粒子の高さ及び形状に注目することにより、樹脂基材との密着性を高め、その他の特性についても良好とすることが検討されてきた。(特許文献2~6)
 また、出願人においても、銅箔表面の粗化粒子の高さ及び形状に注目した銅箔について検討を行ってきた。(特許文献7~8)
特許第5178064号公報 特開平07-231152号公報 特開平08-222857号公報 特開2006-210689号公報 再公表2010-110092号公報 特開2013-199082号公報 特開2006-103189号公報 特開2011-168887号公報
 特許文献1のように、粗化サイズを小さくすると、プリント基板材料と銅箔との密着性が下がる恐れがある。これに対し、密着性の低下を防ぐために、表面にシランカップリング剤に代表される接着層を形成することが行われている。
 しかし、特に高周波領域で使用されるプリント基板材料(たとえばパナソニック株式会社製のメグトロン6に代表されるポリフェニレンエーテル系樹脂など)では、プリント基板材料と銅箔表面に形成するシランカップリング剤と化学結合を作りにくいため、単純に粗化サイズを小さくしてしまうと基板材料との密着性が著しく下がってしまうという問題がある。
 これに対して、銅箔表面の粗化粒子の粗化高さや形状に特徴を持たせることにより、樹脂基材との密着性やその他の特性を良好とすることが特許文献2~8に開示されている。
 特許文献2においては、銅箔の平滑面に均一で微細なこぶを多数生成させること、具体的には粗化高さが0.6~1.0μmで逆涙滴形の粗化粒子を形成することにより、樹脂基材との密着性に優れかつ微細回路のエッチング性を高めている。
 特許文献3においては、電解銅箔の粗面側に微細で均一なコブ付け処理を行うこと、具体的には粗化高さが0.05~0.3μmで針状またはコブ状の粗化粒子を形成することにより、樹脂基材との密着性に優れかつ高いエッチングファクターが得られている。
 特許文献4においては、銅箔の表面に微細な粗化粒子からなる粗化粒子層を形成すること、具体的には直径(粗化高さ)が0.05~1.0μmで球状の粗化粒子を形成することにより、樹脂基材との密着性に優れかつ回路の直線性が高く、伝送損失の低減を可能としている。
 特許文献5においては、銅箔の表面に微細な粗化粒子からなる粗化粒子層を形成すること、具体的には直径(粗化高さ)が0.1~2.0μmであり、高さと幅の比が1.5以上である針状の粗化粒子を形成することにより、樹脂基材との密着性に優れかつ回路浸食現象を回避している。
 特許文献6においては、銅箔の表面に微細な粗化粒子からなる粗化粒子層を形成すること、具体的には直径(粗化高さ)が0.666~15μmであり、高さと幅の比が15以上である針状や棒状の粗化粒子を形成することにより、樹脂基材との密着性に優れかつ回路浸食現象を回避している。
 特許文献7においては、銅箔の表面に粗化粒子を付着させて粗化すること、具体的には粗化高さが0.3~3.0μmであり、観察断面25μmの範囲に10~100個が略均等に分布していることにより、樹脂基材との密着性に優れかつファインパターン化が作成でき、高周波特性が良好となっている。
 特許文献8においては、銅箔の表面に施す粗化処理の量と形状を適切な範囲とすること、具体的には粗化高さが0.4~1.8μmで先端が尖った凸部形状の粗化粒子を形成することにより、樹脂基材との密着性に優れかつファインパターンの回路形成性が良好で、伝送損失の低減が可能としている。
 しかしながら、上記の特許文献2~8における銅箔は、いずれも単一形状の粗化粒子のみにて構成されており、樹脂基材との密着性とその他の特性をともに良好となるようにしてはいるものの、密着性とはトレードオフの関係にあり、高周波回路において最も重要な高周波伝送特性を高いレベルで両立させるには至っていない。
 出願人にて検討を行った特許文献7~8における銅箔においても、今後の高周波基板に要求される伝送損失レベルに対しては必ずしも十分とはいえない点があり、より一層の伝送損失の低減が必要となっている。
 さらに、高周波領域で使用されるプリント基板材料として、伝送損失の少ない低誘電樹脂を成分に含む熱硬化型の樹脂を用いる場合に、ガラス転移温度の高い樹脂では樹脂の流動性が高くなる温度と樹脂の硬化する温度が近接しており、銅箔の粗化粒子のすき間に樹脂が十分に充填される前に樹脂が硬化してしまうことがある。このような樹脂では、粗化高さの低い粗化粒子がすき間なく並んでいる状態においては樹脂が充填されにくくなり、基板材料との密着性が低下してしまうという問題がある。
 これに対して、粗化高さの低い粗化粒子と粗化高さの高い粗化粒子が混在する場合は、粗化粒子の間にすき間が形成され、そのすき間に樹脂が充填されやすくなることにより、このような樹脂においても充填性が良好となり、基板材料との密着性が向上することを見出した。
 また、例えば粗化粒子の高さを高くして樹脂基材との密着性を確保する方法は、高周波伝送特性について、必ずしも十分に考慮されていない。高周波信号伝送用銅箔においては、樹脂基材への密着性確保とともに、銅張積層板とした際の伝送特性の両立が大きな課題である。
 これに対し、本発明者らは、単に粗化粒子の高さ(表面粗さ)を規定するのみではなく、粗化粒子の高さを部分的に高くしたり、粗化粒子の形状を制御したりすることで、樹脂基材との密着性と、高周波伝送特性を両立することができることを見出した。
 特に、粗化粒子の高さや形状は、樹脂基材の充填性や引っ張り時の樹脂破壊挙動、高周波信号の伝送経路などへの影響が大きく、結果として密着性や高周波伝送特性を変動させる大きな要因であることが確認できた。この点において、粗化粒子の全体像を精度良く把握することが重要であり、本発明者は粗化粒子の観察方法についても鋭意研究を行った。
 本発明は、このような問題に鑑みてなされたもので、樹脂基材との密着性に優れ、高周波伝送特性にも優れた銅箔等を提供することを目的とする。
 前述した目的を達するために第1の発明は、高周波電気信号の伝送用の銅箔であって、少なくとも一方の面に形成され、粗化粒子からなる粗化粒子層と、前記粗化粒子層の上に形成されるシランカップリング剤処理層と、を具備し、前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に1個以上10個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の前記粗化粒子が、30μmの範囲に5個以上であることを特徴とする高周波回路用銅箔である。
 前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に1個以上5個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の前記粗化粒子が、30μmの範囲に7個以上であることがより望ましい。
 前記銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが45以上95以下であることが望ましい。
 前記銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが55以上95以下であることがさらに望ましい。
 前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に2個以上10個以下であり、粗化高さが0.5μm以上3μm以下の前記粗化粒子の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むことが望ましい。
 さらに、前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に2個以上5個以下であり、粗化高さが0.5μm以上3μm以下の前記粗化粒子の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むことが望ましい。
 第1の発明によれば、シランカップリング剤処理層を有するため、樹脂基材との密着性が向上する。さらに、粗化高さが0.5μm以上3μm以下である高さの高い粗化粒子と、粗化高さが0.1μm以上0.4μm以下である高さの低い粗化粒子とが混在するため、部分的に粗化高さの高い部位と低い部位を形成することができる。
 具体的には、30μmの範囲において、粗化高さの高い粗化粒子が、1個以上10個以下であり、かつ、粗化高さの低い粗化粒子が、5個以上とすることで、全体的な粗化高さを低くしても、部分的に形成される粗化高さの高い粗化粒子によって、密着性を高めることができるとともに、全体的な粗化高さを低くすることで、良好な高周波伝送特性を確保することができる。
 このような効果は、30μmの範囲において、粗化高さの高い粗化粒子が、1個以上5個以下であり、かつ、粗化高さの低い粗化粒子が、7個以上とすることで、より大きな効果を得ることができる。
 また、銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが45以上95以下であれば、粗化粒子の形状が適切となり、密着性を高めることができるとともに、良好な高周波伝送特性を確保することができる。
 特に、銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが55以上95以下であれば、より大きな効果を得ることができる。
 また、銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の粗化粒子が、30μmの範囲に2個以上10個以下であり、かつ、粗化高さが0.5μm以上3μm以下の粗化粒子の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むようにすることで、例えば、伝送特性に優れるが密着性が悪くなる恐れのある針状の粗化粒子形状のみではなく、密着性に優れる逆滴状や樹枝状の形状が混在することで、密着性を高めることができるとともに、良好な高周波伝送特性を確保することができる。なお、さらに、粗化高さが0.5μm以上3μm以下の粗化粒子が、30μmの範囲に2個以上5個以下であれば、上記の効果が大きい。
 また、高周波回路用の銅箔の粗化粒子層としては、銅又は銅合金が特に好適である。
 粗化粒子層とシランカップリング剤処理層との間にクロメート処理層を設けることで、防錆効果を得ることができる。
 第2の発明は、第1の発明にかかる高周波用銅箔が、エポキシ、耐熱エポキシ、ビスマレイミド・トリアジンレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフェニレンオキサイド、シアネートエステル系樹脂のいずれかの樹脂またはこれらの混合樹脂からなる樹脂基材の片面または両面に貼り付けられていることを特徴とする銅張積層板である。
 第2の発明によれば、低伝送損失な銅張積層板を効率よく得ることができる。また、このような樹脂に対しても、本発明の銅箔を適用することで、高周波回路用銅箔と樹脂との十分な結合力を確保することができる。
 第3の発明は、第2の発明にかかる銅張積層板を用いたことを特徴とするプリント配線基板である。
 第3の発明によれば、伝送損失の低いプリント配線基板を得ることができる。
 本発明によれば、樹脂基材との密着性に優れ、高周波伝送特性にも優れた銅箔等を提供することができる。
プリント配線基板1(銅張積層板2)を示す図。 銅箔5の断面拡大図。 針状の粗化粒子を示す概念図。 柱状の粗化粒子を示す概念図。 逆滴状の粗化粒子を示す概念図。 球状の粗化粒子を示す概念図。 樹枝状の粗化粒子を示す概念図。
(プリント配線基板1)
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は本発明にかかるプリント配線基板1を示す図である。プリント配線基板1は、樹脂基材3上に、銅箔5が貼り合わされて形成される。銅箔5は、マスキングおよびエッチングによってパターニングされ、図示を省略した回路を形成する。なお、エッチング前の銅箔5と樹脂基材3とが貼り合わさって一体化されたものを銅張積層板2とする。樹脂基材3と銅箔5を貼り合わせて、銅張積層板2を形成する方法としては、公知の方法、例えば熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができる。
 銅箔5は、電解銅箔、電解銅合金箔、圧延銅箔、圧延銅合金箔のうちから、銅張積層板2の用途等に応じて適宜選択することができる。なお、銅箔5の詳細は後述する。
 樹脂基材3としては、例えば、エポキシ、耐熱エポキシ、ビスマレイミド・トリアジンレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフェニレンオキサイド、シアネートエステル系樹脂のいずれかの樹脂またはこれらの混合樹脂からなる。このような樹脂に対しても、本発明の銅箔を適用することで高周波回路銅箔と樹脂との十分な化学結合力を確保することができる。
 これらの樹脂基材3の中でガラス転移温度が高いもの、例えばガラス転移温度が100℃を超えるものにおいては、シランカップリング剤処理層による化学結合力のみでは銅箔5と樹脂基材3との密着力が不足する場合があるため、適正な粗化粒子を形成するための処理をすることが必要となる。この傾向はガラス転移温度が高くなるにつれて顕著となり、ガラス転移温度が150℃を超える樹脂基材においては、本発明の銅箔を使用することの効果が高まる。更に、ガラス転移温度が200℃を超える樹脂基材においては本発明の銅箔を使用することの効果が著しく高くなる。
 プリント配線基板1は、高周波用低伝送損失基板である。例えば、5GHz以上の高周波電気信号の伝送用に用いられる。なお、プリント配線基板1は、図示したように、樹脂基材3と銅箔5とが片面に1層ずつ積層されたものには限られず、それぞれ複数層であってもよい。例えば、樹脂基材3の両面に銅箔5が積層されてもよく、同様に、銅箔5の両面に樹脂基材3が積層されてもよい。
(銅箔)
 次に、銅箔5について詳細に説明する。図2は、銅箔5の樹脂密着面における断面拡大図である。銅箔5は、銅の元箔7上に複数の粗化粒子9が形成される。粗化粒子9により形成される層を粗化粒子層11とする。本発明の高周波回路用銅箔は、金属基材としての元箔表面の少なくとも一方の面(表面粗さは特に限定されないが、Rzが5.0μm以下であることが好ましい)に、ヤケめっきにより粗化粒子9が設けられて粗化粒子層11が形成される。なお、粗化粒子9は、銅または銅合金からなることが好ましい。
 また、粗化粒子9(粗化粒子層11)上には、クロメート処理層13からなる防錆層が必要に応じて形成される。更に、クロメート処理層13の上にシランカップリング剤処理層15が形成される。なお、本発明において、クロメート処理層13上にシランカップリング剤処理層15が形成される場合でも、シランカップリング剤処理層15は、粗化粒子層11上に形成されるとして説明する。すなわち、本発明において、粗化粒子層11上にシランカップリング剤処理層15が形成されるとは、粗化粒子層11とシランカップリング剤処理層15との間に、他の層が形成されるものも含む。例えば、粗化粒子層11上に亜鉛層を形成した後にその上にクロメート処理層13を形成し、クロメート処理層13上にシランカップリング剤処理層15が形成される場合や、粗化粒子層11上にニッケル層を形成した後に亜鉛層を形成して、その上にクロメート処理層13を形成し、クロメート処理層13上にシランカップリング剤処理層15が形成される場合などを含む。
 シランカップリング剤処理層15は、樹脂基材3の樹脂に応じてエポキシ系、アミノ系、メタクリル系、ビニル系、アクリル系、メルカプト系等から適宜選択することができる。前述した、高周波対応用のプリント配線基板1に用いられる樹脂基材3用の樹脂には、特に相性の優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することができる。
 ここで、通常、粗化粒子9の高さが高くなると、樹脂基板との密着性が向上する反面、高周波伝送特性が悪化する。このため、高周波伝送特性を考慮すると、粗化粒子9の高さを高くするだけでは、樹脂基板との密着性と高周波伝送特性を両立することは困難である。
 本発明では、粗化粒子9の全体の高さを高くするのではなく、部分的に高くすることで、密着性を向上させるとともに、粗化粒子9の高さを全体として低く抑えることで、樹脂基板との密着性と高周波伝送特性を両立するものである。すなわち、部分的に粗化粒子9を高くすることで、全体の高さを高くすることなく、密着性を確保することができることを見出したものである。
 より具体的には、粗化粒子9の高さが0.5μm以上3μm以下のものが部分的に存在すれば、樹脂基板との密着性の向上の効果が大きい。一方、粗化粒子9の高さが0.1μm以上0.4μm以下のものは、樹脂基板との密着性の向上の効果は小さくなるが、高周波伝送特性への悪影響が小さい。このため、本発明では、銅箔5を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の粗化粒子9が、30μmの範囲に1個以上10個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の粗化粒子9が、30μmの範囲に5個以上である。
 ここで、幅方向とは、銅の基材として製箔された電解銅箔ないし圧延銅箔をロールに巻き取ったときのロールの長手方向に対し、垂直な方向を指す。このように、幅方向に限定した理由は、粗化処理を施す際、粗化ムラは引張方向にできるため、幅方向に測定した方が、安定して測定が可能であるためである。
 このように、粗化高さが0.5μm以上3μm以下の、粗化高さの高い粗化粒子9が、30μmの範囲に1個以上あれば、樹脂基板との密着性を向上することができる。一方、粗化高さの高い粗化粒子9が、30μmの範囲に10個を超えると、高周波伝送特性への影響が大きくなり、望ましくない。したがって、本発明では、粗化高さが0.5μm以上3μm以下の粗化粒子9は、30μmの範囲に1個以上10個以下必要であり、より望ましくは、30μmの範囲に1個以上5個以下である。
 粗化高さは高い方が密着性は良好となるが、必要以上に高くしても密着性は飽和し、伝送損失も増加するため、3μm以下であることが好ましく、2μm以下であることがさらに好ましい。
 また、粗化高さが0.1μm以上0.4μm以下の、粗化高さの低い粗化粒子9が、30μmの範囲に5個以上あれば、完全に平坦な場合と比較して、樹脂基板との密着性の向上の効果を得ることができる。しかしながら、前述した様に、粗化高さの高い粗化粒子が存在していても、粗化高さの低い粗化粒子9の存在がなければ十分な密着性は得ることができない。したがって、本発明では、前述した、粗化高さが0.5μm以上3μm以下の高さの粗化粒子に加え、粗化高さが0.1μm以上0.4μm以下の粗化粒子9が、30μmの範囲に5個以上必要であり、より望ましくは、30μmの範囲に7個以上である。なお、粗化高さが0.1μm以上0.4μm以下である粗化高さの低い粗化粒子9は、その数が増えても、高周波伝送特性への影響は少ない。
 粗化高さは低い方が伝送損失は小さくなるが、低くなりすぎると密着性への寄与が小さくなるため、0.1μm以上であることが好ましく、0.2μm以上であることがさらに好ましい。
 このように、本発明では、粗化高さの高い粗化粒子9と、粗化高さの低い粗化粒子9とを混在させることで、全体として粗化粒子9の粗化高さを高くする場合と比較して、高周波伝送特性への悪影響を抑制するとともに、樹脂基板との十分な密着性を確保することができる。
 粗化粒子を形成する前の元箔の粗化処理面の表面粗さが粗い場合には、粗化めっき時の電流に分布が生じる。凸部には電流が集中しやすくなり粗化粒子は高く成長し、凹部には電流が流れにくくなり粗化粒子は低く成長する。このことにより、粗化高さの高い粗化粒子9と粗化高さの低い粗化粒子9とが混在した形態となる。
 元箔の粗化処理面の表面粗さについては、一例としては元箔を製箔する際のドラム表面の粗さを調整することで対応ができる。また、他に一例としては製箔時のめっき液に添加するブライトナーとレベラーの濃度や比率を調整することや、製箔後の銅箔の表面を化学的に溶解(エッチング)することでも対応できる。元箔の粗化処理面の表面粗さを粗くするには、一例としては元箔を製箔するドラム表面を粗めのバフにより研磨することで対応できる。また、他に一例としては、製箔時のめっき液に添加するレベラーの濃度を低くすることや、製箔後の銅箔の表面を化学的に溶解(エッチング)する際のエッチング時間を長くすることでも対応できる。
 なお、元箔の粗化処理面の表面粗さについては、粗い方が粗化粒子の粗化高さに高低差をつけやすくなるが、粗くなり過ぎると粗化粒子の粗化高さが全体的に高くなってしまい、伝送特性への悪影響を及ぼすことがある。元箔の粗化処理面の10点平均粗さRzは、1.5μm以下が好ましく、1.3μm以下がより好ましく、1.1μm以下が更に好ましい。
 別の方法としては、粗化処理方法を適正な条件とすることにより、元箔の表面粗さを大きく粗くすることなく、粗化高さの高い粗化粒子9と粗化高さの低い粗化粒子9とが混在した形態とすることができる。
 粗化高さの異なる粗化粒子が混在した形態とするには、一例としては、複数回の粗化めっきを行う際に、前の粗化めっきよりも後の粗化めっきの電流密度を大きくすることにより、前の粗化めっきにより形成された粗化粒子の高低差を更に拡大することができる。また、他に一例としては複数回の粗化めっきにおいて、粗化めっき液中の添加元素を適宜選択することにより、粗化粒子の高低差を拡大することも可能である。
 複数回の粗化めっきを連続して行う場合においては、粗化粒子を形成するためのヤケめっきの後に粗化粒子の脱落を防止するために平滑めっきであるカプセルめっきを施すことがある。本発明においては、このような粗化めっきに続けてカプセルめっきを施す方法以外にも、ヤケめっきの後に連続して次のヤケめっきを行うこともできる。連続してヤケめっきを行うことにより、粗化粒子の高低差を効果的に拡大することができる。
 また、発明者らは、伝送特性と密着性に対しては、粗化粒子9の粗化高さだけではなく、粗化粒子9の形状(傾斜)が影響を及ぼすことを見出した。すなわち、粗化粒子9の粗化高さの分布のみではなく、粗化粒子9の形態を規定することで、伝送特性と密着性とをさらに高いレベルで両立することができる。
 さらに、本発明者は、粗化粒子の形状や粗化粒子間のすき間の空き具合は粗化めっきの液の組成や温度の影響を受け、銅箔の表面における輪郭曲線の二乗平均平方根勾配Sdqは粗化粒子の形状や粗化粒子間のすき間の空き具合の影響を受けることを見出した。
 より具体的には、銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが45以上95以下であることが望ましく、より望ましくは、二乗平均平方根勾配Sdqが55以上95以下である。二乗平均平方根勾配は、すべての方向に対する輪郭表面の表面性状を表すものであり、粗化粒子9の粗化高さを平方根にしてその値を平均したものである。すなわち、この数値が高いとは、粗化粒子9の傾斜が高いという意味となる。
 二乗平均平方根勾配Sdqを上述の範囲に規定し、粗化粒子9の形状(傾斜)を適正にすることで、伝送特性と密着性とを効率良く両立させることができる。なお、二乗平均平方根勾配Sdqの値が高すぎると、針状粗化粒子が多くなり密着性が低下する。このため、二乗平均平方根勾配Sdqは、95以下が望ましい。一方、二乗平均平方根勾配Sdqの値が低すぎと、平べったい粗化粒子が多くなり、密着性が低下するとともに、高周波帯域において表皮効果によって粗化粒子の表面に沿って流れる電流が増加するために伝送特性が低下する。このため、二乗平均平方根勾配Sdqは、45以上が望ましい。なお、二乗平均平方根勾配Sdqは、一般的に次式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 なお、式中のx、yは、平面座標であり、Zは高さ方向の座標である。Z(x,y)は、ある点の座標を示し、これを微分することで、その座標点における傾きとなる。上式では、全ての点(A個)のx方向の傾きとy方向の傾きの2乗を足して平方根としたものである。二乗平均平方根勾配Sdqは、例えば垂直走査型低コヒーレンス干渉法を用いて、測定倍率5倍またはそれ以上の倍率で測定することが出来る。測定は、非接触式の表面粗さ測定装置であって、解像度が1μmまたはそれ以下(例えば800nm)のものを用いることが好ましい。このように、二乗平均平方根勾配Sdqを規定することで、粗化粒子9の高さだけではなく、粗化粒子9の形状を数値で規定することができる。この結果、高周波領域での導体損を上げることなく、プリント基板材料との密着性を確保することができる。
 従来発明における接触式表面粗さ計やレーザー反射式表面粗さ計を用いての粗化粒子の測定では、個々の粗化粒子をきちんと識別してその高さや形状の特徴を把握するためには分解能が不十分であり、粗化粒子の高さや形状が異なる場合にも測定数値に差が見られないこともあった。本発明においては、非接触式でも高さ方向の分解能に優れる光干渉式の測定装置を用いて得られるパラメータのSdqによって、密着性と伝送特性を高いレベルで両立する粗化粒子の状態を規定することを可能にしている。
 粗化粒子の形状(傾斜)については、例えば粗化めっきに用いるめっき液中に含まれる添加元素により調整することができる。一例としては、粗化めっきにおけるヤケめっき液に含まれるニッケルは粗化形状に影響を及ぼし、ニッケル濃度が高くなると丸味を帯び、ニッケル濃度が低くなると細く尖った形状となる。また、他にはヤケめっき液に含まれるモリブデンは粗化粒子のすき間の空き具合に影響を及ぼし、モリブデン濃度が低いと粗化粒子がまばらに存在する状態となる。また、他にはヤケめっき液の液温も粗化粒子のすき間の空き具合に影響を及ぼし、液温が高いと粗化粒子がまばらに分布した状態となる。
 上述したように、粗化粒子を形成する際の粗化めっき条件として、一例としてヤケめっき液の組成やめっき液温度を適正化することにより、二乗平均平方根勾配Sdqを適正化することができる。Sdqを高くするには、一例としてはヤケめっき液のニッケル濃度を低くすることで対応でき、また他の一例としてはヤケめっき液のモリブデン濃度を低くすることや、ヤケめっき液の液温を高くすることでも対応できる。
 次に、より具体的に粗化粒子9の形状について説明する。図3A~図3Eは、粗化粒子9の形状の分類を示す概念図であり、図3Aは、針状の粗化粒子9を示す。なお、粗化粒子9の形状及び個数の測定については、例えばイオンミリング装置を用いて幅方向に断面加工を施し、HR-SEM(走査型電子顕微鏡)で、測定倍率3,000倍またはそれ以上の倍率で撮影した画像により測定することができる。
 ここで、粗化粒子9の基部の幅をaとする。また、粗化粒子9の高さhの半分の高さ(h/2)における幅をbとする。また、粗化粒子9の半分の高さ(h/2)から頂点までの高さの半分(h/4)における幅をcとする。図3Aに示すような、針状の粗化粒子9では、a>b>cであり、ほぼ均等に幅が変化する。
 図3Bは、柱状の粗化粒子9を示す図である。柱状の粗化粒子9では、a≒b≒cであり、ほぼ幅が同一である。針状の粗化粒子9との違いとしては、例えば、aとbとcとの差が、20%以下であることが挙げられる。
 図3Cは、逆滴状の粗化粒子9を示す図である。逆滴状の粗化粒子9では、b>aかつb>cであり、bが最も幅が広い。
 図3Dは、球状の粗化粒子9を示す図である。球状の粗化粒子9では、全体として略球形の形状であり、最も広い幅dが、高さ0からh/2の間に形成される。
 図3Eは、樹枝状の粗化粒子9を示す図である。樹枝状の粗化粒子9は、複数に枝分かれした形状である。
 本発明では、粗化高さが0.5μm以上3μm以下の粗化粒子9の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むことが望ましい。例えば、粗化粒子9の基部の幅が細いと、伝送特性の低下は小さくなるが、粗化粒子の根元から折れやすくなるため、密着性が低下する。このため、この場合には、針状の粗化粒子9以外の形状が1種以上含まれることで、密着性を向上させることができる。この場合には、粗化高さが0.5μm以上3μm以下の粗化粒子9は、30μmの範囲に2個以上10個以下必要であり、より望ましくは、30μmの範囲に2個以上5個以下である。
 粗化粒子9の断面形状が上記の2つ以上の形状を含むためには、一例としてはヤケめっきを複数回行う場合に組成が異なるヤケめっき液を使用することで対応できる。また、他に一例としてはヤケめっきを複数回行う場合に電流密度を変えることでも対応できる。特に、ヤケめっきの後に連続して次のヤケめっきを行う場合に、それぞれ異なる組成のヤケめっき液を使用すると異なる形状の粗化粒子を形成することができる。
 本実施形態によれば、粗化粒子9の全体の高さを高くするのではなく、部分的に高くすることで、密着性を向上させるとともに、粗化粒子9の高さを全体として低く抑えることで、樹脂基板との密着性と高周波伝送特性を両立することができる。
 また、粗化粒子9の高さだけでなく、形状(傾斜)を規定することで、伝送特性と密着性とをさらに両立することができる。
 また、さらに、複数の形状の粗化粒子9を混在させることで、伝送特性と密着性とをさらに両立することができる。
 (実施例1~7)
 金属基材として厚さ18μmの未処理平滑銅箔を用意し、この未処理銅箔に粗化粒子を形成するヤケめっきを施した。ヤケめっきの浴組成は表1の溶液Aとした。また、ヤケめっき条件及び評価結果を表2に示す。
 ヤケめっきの溶液Aは粗化粒子がまばらに成長しやすく、元箔の粗化処理面の表面粗さが粗いほど粗化粒子の粗化高さに高低差が生じやすい特徴がある。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ついでヤケめっき粗化面にカプセルめっきを施すことで、粗化粒子が粉落ちすることのない強固で健全な粗化粒子形状とするために、下記の浴組成とめっき条件でカプセルめっきを施した。
 硫酸濃度:100g/L
 硫酸銅からの銅濃度:50g-Cu/L
 浴温:55℃
 電流密度:直流整流で15A/dm
 上記のヤケめっき、及びカプセルめっきを施した後に一例として下記のクロムめっき条件で処理することにより防錆のクロメート処理層を形成した。
<クロムめっき条件>
  無水クロム酸(CrO) : 2.5g/L
  pH:           2.5
  電流密度:         0.5A/dm
  温度:           15~45℃
  時間:           1秒~2分
 このようにして作製した銅箔の断面形状をイオンミリング装置(日立ハイテク社製IM4000)を用いて断面加工を施し、HR-SEM(日立ハイテク社製SU8020)で加速電圧3kV(2次電子像)を用いて、5万倍の断面観察を行い、幅方向に任意の30μmにおいて粗化高さ0.5μm以上3μm以下の粒子数及び粗化高さ0.1μm以上0.4μm以下の粒子数をカウントした。また粗化高さが0.5μm以上3μm以下の粗化粒子に対し、その粗化形状が1種類のものを「good」、2種類以上のものを「excellent」とした。さらに、3次元白色光干渉型顕微鏡(BRUKER Wyko ContourGT-K)を用いて、二乗平均平方根勾配Sdqを測定(測定条件は測定倍率10倍、ハイレゾCCDカメラを使用し、測定後に特別なフィルタをかけずに数値化した)し、45以上95以下を「good」、更に55以上95以下を満たすものを「excellent」、それ以外を「bad」とした。
 得られた粗化粒子つきの銅箔を、市販の高周波対応絶縁基板(パナソニック株式会社製メグトロン6:ガラス転移温度185℃)に、一例としてプレス温度:200℃、プレス圧力:35kgf/cm、プレス時間:160分のプレス条件で積層した。
 この積層板に、レジスト幅300μm、回路間隔450mmのパターンフィルムを用いてUV露光によってパターンを形成し、さらにエッチングを施し、マイクロストリップライン構造の伝送特性測定用基板を得た。伝送特性は、ネットワークアナライザにより伝送損失を測定し、この測定した伝送損失の数値から評価した。作製したマイクロストリップラインは、特性インピーダンスを50Ωとし、一例として銅箔の厚さ:18μm、樹脂の厚さ:0.2mm、幅:500μm、長さ:450mmとした。
 密着強度は、テンシロンテスター(株式会社エー・アンド・デイ製)を使用して、絶縁基板と銅箔とをプレス後に、試験片を10mm幅の回路パターンにエッチング加工し、回路パターンを90度方向に50mm/分の速度で引っ張った際の引き剥がし強さを測定した。
 (実施例8~11)
 実施例1に対し、1回目のヤケめっき後にカプセルめっきを行い、次いで2回目のヤケめっき後にカプセルめっきを行った。2回目のヤケめっきで用いる溶液を溶液Bとし、電流密度を変更した以外は、実施例1と同様に作製し、同様の評価を行った。
 ヤケめっきの溶液Bは粗化が均一に成長しやすく、1回目のヤケめっきにより形成された粗化粒子の粗化高さの高低差をあまり変化させずに粗化粒子を成長させやすい特徴がある。
 (実施例12~15)
 実施例8に対し、1回目のヤケめっき後にカプセルめっきを施さずに、そのまま2回目のヤケめっき後にカプセルめっきを施し、次いで3回目のヤケめっき後にカプセルめっきを行ったことと電流密度を変更した以外は、実施例8と同様に作製し、同様の評価を行った。
 (実施例16~22)
 実施例8または実施例12に対し、2回目以降のヤケめっきで用いる溶液を溶液Cまたは溶液Dとして、電流密度を変更した以外は、実施例8または実施例12と同様に作製し、同様の評価を行った。
 ヤケめっきの溶液Cは粗化粒子が丸味を帯びて成長しやすく、また溶液Dは粗化粒子が尖った形状に成長しやすい特徴がある。
 (実施例23、24)
 実施例1または実施例8に対し、元箔の粗化処理面側に市販のエッチング液による粗面化処理を施した以外は、実施例1または実施例8と同様に作製し、同様の評価を行った。
 エッチング処理条件としては、一例として市販のエッチング液(CZ8101:メック株式会社製)を用いて、液温30℃、スプレー圧0.25MPa、エッチング量1μmで実施した。
 (実施例25~27)
 実施例4または実施例9もしくは実施例13に対し、粗化めっき後にニッケルめっきおよび亜鉛めっきを施した後にクロメート処理を施した以外は、実施例4または実施例9または実施例13と同様に作製し、同様の評価を行った。
 ニッケルめっきおよび亜鉛めっきについては、一例として下記条件にて行った。
<Niめっき条件>
  硫酸ニッケル: ニッケル濃度として 5.0g/L
  過硫酸アンモニウム:        40.0g/L
  ほう酸:              28.5g/L
  電流密度:             1.5A/dm
  pH:               3.8
  温度:               28.5℃
  時間:               1秒~2分
<Znめっき条件>
  硫酸亜鉛7水和物: 1~30g/L
  水酸化ナトリウム: 10~300g/L
  電流密度:     0.1~10A/dm
  温度:       5~60℃
  時間:       1秒~2分
 (比較例1~3)
 実施例1~7に対し、ヤケめっきの電流密度または元箔の粗化処理面の表面粗さを変更した以外は、実施例1~7と同様に作製し、同様の評価を行った。
 (比較例4)
 実施例8~11に対し、2回目のヤケめっきで用いる溶液を溶液Aとした以外は、実施例8~11と同様に作製し、同様の評価を行った。
 (比較例5)
 実施例1に対し、粗化処理を施さなかった以外は、実施例1と同様に作製し、同様の評価を行った。
 以上の評価方法により各実施例及び比較例に係わる高周波回路用銅箔について評価した結果を表2に示す。
 なお、表2では、伝送特性は、40GHzにおける伝送損失が-28dB以上の場合を「excellent」、-28dB未満、-31dB以上の場合を「good」、-31dB未満、-33dB以上の場合を「average」、そして-33dB未満の場合を「bad」と示している。また、引き剥がし強さが0.6kN/m以上の場合を「excellent」、引き剥がし強さが0.5kN/m以上0.6kN/m未満の場合を「good」、引き剥がし強さが0.45kN/m以上0.5kN/m未満の場合を「average」、そして引き剥がし強さが0.45kN/m未満の場合を「bad」で示している。
 粗化高さが0.5μm以上3μm以下の粗化粒子が、30μmの範囲に1個以上10個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の粗化粒子が、30μmの範囲に5個以上である、実施例では、十分な引き剥がし強度と、良好な伝送特性を両立することができた。特に、粗化高さが0.5μm以上3μm以下の粗化粒子に対し、その粗化形状が2種類以上であり、二乗平均平方根勾配Sdqが55以上95以下を満たす実施例では、引き剥がし強度と40GHzでの伝送損失がともに「excellent」となった。なお、実施例21では1回目のヤケめっきに溶液Cを用いたため粗化粒子の形状の丸味が顕著となってSdqが45未満となり、引き剥がし強さがやや低下した。また、実施例22では1回目のヤケめっきに溶液Dを用いたため粗化粒子の形状の尖りが顕著となってSdqが95より大きくなり、伝送損失がやや増加した。
 これに対し、比較例1~6では、引き剥がし強度と伝送特性の一方は良好であっても、両立することはできなかった。
 比較例1ではヤケめっきの電流密度が小さいため粗化高さが0.5μm以上3μm以下の粗化粒子の数が1個未満であり、引き剥がし強さが不足した。比較例2では、ヤケめっきの電流密度が大きいため粗化高さが0.5μm以上3μm以下の粗化粒子が10個以上かつ粗化高さが0.1μm以上0.4μm以下の粗化粒子が5個未満であり、伝送特性が低下した。また、比較例3では元箔の粗化処理面の表面粗さが粗いため粗化高さが0.5μm以上3μm以下の粗化粒子が10以上かつ粗化高さが0.1μm以上0.4μm以下の粗化粒子が5個未満であり、伝送特性が低下した。比較例4では2回目のヤケめっきにも溶液Aを用いたため粗化高さが0.5μm以上3μm以下の粗化粒子が10個以上かつ粗化高さが0.1μm以上0.4μm以下の粗化粒子が5個未満であり、伝送特性が低下した。比較例5では粗化処理を施しておらず、引き剥がし強さが大幅に不足した。
1………プリント配線基板
2………銅張積層板
3………樹脂基材
5………銅箔
7………元箔
9………粗化粒子
11………粗化粒子層
13………クロメート処理層
15………シランカップリング剤処理層
 

Claims (10)

  1.  高周波電気信号の伝送用の銅箔であって、
     少なくとも一方の面に形成され、粗化粒子からなる粗化粒子層と、
     前記粗化粒子層の上に形成されるシランカップリング剤処理層と、
     を具備し、
     前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に1個以上10個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の前記粗化粒子が、30μmの範囲に5個以上であることを特徴とする高周波回路用銅箔。
  2.  前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に1個以上5個以下であり、かつ、粗化高さが0.1μm以上0.4μm以下の前記粗化粒子が、30μmの範囲に7個以上であることを特徴とする請求項1記載の高周波回路用銅箔。
  3.  前記銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが45以上95以下であることを特徴とする請求項1記載の高周波回路用銅箔。
  4.  前記銅箔の表面における輪郭曲面の二乗平均平方根勾配Sdqが55以上95以下であることを特徴とする請求項3記載の高周波回路用銅箔。
  5.  前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に2個以上10個以下であり、
     粗化高さが0.5μm以上3μm以下の前記粗化粒子の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むことを特徴とする請求項1記載の高周波回路用銅箔。
  6.  前記銅箔を幅方向に切断した断面において、粗化高さが0.5μm以上3μm以下の前記粗化粒子が、30μmの範囲に2個以上5個以下であり、
     粗化高さが0.5μm以上3μm以下の前記粗化粒子の断面形状が、逆滴状、柱状、針状、樹枝状のうち2つ以上の形状を含むことを特徴とする請求項1記載の高周波回路用銅箔。
  7.  前記粗化粒子が、銅又は銅合金からなることを特徴とする請求項1記載の高周波回路用銅箔。
  8.  前記粗化粒子層と前記シランカップリング剤処理層との間にクロメート処理層を具備することを特徴とする請求項1記載の高周波回路用銅箔。
  9.  請求項1記載の高周波回路用銅箔が、エポキシ、耐熱エポキシ、ビスマレイミド・トリアジンレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフェニレンオキサイド、シアネートエステル系樹脂のいずれかの樹脂またはこれらの混合樹脂からなる樹脂基材の片面または両面に貼り付けられていることを特徴とする銅張積層板。
  10.  請求項9記載の銅張積層板を有することを特徴とするプリント配線基板。
PCT/JP2016/073476 2015-08-12 2016-08-09 高周波回路用銅箔、銅張積層板、プリント配線基板 WO2017026490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016567962A JP6089160B1 (ja) 2015-08-12 2016-08-09 高周波回路用銅箔、銅張積層板、プリント配線基板
CN201680004736.3A CN107113971B (zh) 2015-08-12 2016-08-09 高频电路用铜箔、覆铜层压板、印刷布线基板
KR1020177017188A KR101954556B1 (ko) 2015-08-12 2016-08-09 고주파 회로용 동박, 동박 적층판, 프린트 배선 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-159424 2015-08-12
JP2015159424 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017026490A1 true WO2017026490A1 (ja) 2017-02-16

Family

ID=57983646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073476 WO2017026490A1 (ja) 2015-08-12 2016-08-09 高周波回路用銅箔、銅張積層板、プリント配線基板

Country Status (5)

Country Link
JP (1) JP6089160B1 (ja)
KR (1) KR101954556B1 (ja)
CN (1) CN107113971B (ja)
TW (1) TWI598474B (ja)
WO (1) WO2017026490A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181726A1 (ja) * 2017-03-30 2018-10-04 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
TWI715458B (zh) * 2020-03-04 2021-01-01 金像電子股份有限公司 硬式電路板的製造方法
EP3657918A4 (en) * 2017-07-19 2021-04-21 Omron Corporation PROCESS FOR MANUFACTURING A RESIN STRUCTURE AND RESIN STRUCTURE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6550196B2 (ja) * 2017-07-24 2019-07-24 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
TWI646227B (zh) * 2017-12-08 2019-01-01 南亞塑膠工業股份有限公司 應用於信號傳輸的銅箔以及線路板組件的製造方法
KR102479331B1 (ko) * 2018-04-25 2022-12-19 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 동 클래드 적층판 및, 프린트 배선판
US10619262B1 (en) * 2019-06-27 2020-04-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil
CN114514798B (zh) * 2020-06-11 2023-04-11 三井金属矿业株式会社 两面覆铜层叠板
KR20220022060A (ko) 2020-08-16 2022-02-24 이프렌드 주식회사 블루투스 5.0기반 센서와 제어장치를 포함하는 클라우드 공유작물관리 시스템
CN113099605B (zh) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 金属箔、带载体金属箔、覆铜层叠板及印刷线路板
CN114603946B (zh) * 2022-05-12 2022-09-06 广州方邦电子股份有限公司 金属箔、覆铜层叠板、线路板、半导体、负极材料和电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248323A (ja) * 2004-02-06 2005-09-15 Furukawa Circuit Foil Kk 表面処理銅箔
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006210689A (ja) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd 高周波プリント配線板用銅箔及びその製造方法
JP2011219790A (ja) * 2010-04-06 2011-11-04 Fukuda Metal Foil & Powder Co Ltd 銅張積層板用処理銅箔及び該処理銅箔を絶縁性樹脂基材に接着してなる銅張積層板並びに該銅張積層板を用いたプリント配線板。
JP5204908B1 (ja) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板用キャリア付銅箔及びプリント配線板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178064A (ja) 1974-12-28 1976-07-07 Stanley Electric Co Ltd Chiogurikoorusanhaisuishorihoho
JP3476264B2 (ja) 1993-12-24 2003-12-10 三井金属鉱業株式会社 プリント回路内層用銅箔およびその製造方法
JPH08222857A (ja) 1995-02-16 1996-08-30 Mitsui Mining & Smelting Co Ltd 銅箔および該銅箔を内層回路用に用いた高密度多層プリント回路基板
JP2010110092A (ja) 2008-10-29 2010-05-13 Tokai Rika Co Ltd 駆動装置
JP5242710B2 (ja) 2010-01-22 2013-07-24 古河電気工業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
JP5885054B2 (ja) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 銅張積層板用処理銅箔及び該処理銅箔を絶縁性樹脂基材に接着してなる銅張積層板並びに該銅張積層板を用いたプリント配線板。
JP4999126B2 (ja) * 2010-06-15 2012-08-15 古河電気工業株式会社 回路部品
KR101871029B1 (ko) * 2010-09-27 2018-06-25 제이엑스금속주식회사 프린트 배선판용 구리박, 그 제조 방법, 프린트 배선판용 수지 기판 및 프린트 배선판
JP2014224313A (ja) * 2013-04-26 2014-12-04 Jx日鉱日石金属株式会社 高周波回路用銅箔、高周波回路用銅張積層板、高周波回路用プリント配線板、高周波回路用キャリア付銅箔、電子機器、及びプリント配線板の製造方法
WO2016174998A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 粗化処理銅箔及びプリント配線板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248323A (ja) * 2004-02-06 2005-09-15 Furukawa Circuit Foil Kk 表面処理銅箔
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006210689A (ja) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd 高周波プリント配線板用銅箔及びその製造方法
JP2011219790A (ja) * 2010-04-06 2011-11-04 Fukuda Metal Foil & Powder Co Ltd 銅張積層板用処理銅箔及び該処理銅箔を絶縁性樹脂基材に接着してなる銅張積層板並びに該銅張積層板を用いたプリント配線板。
JP5204908B1 (ja) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板用キャリア付銅箔及びプリント配線板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181726A1 (ja) * 2017-03-30 2018-10-04 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
JPWO2018181726A1 (ja) * 2017-03-30 2019-06-27 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
KR20190133701A (ko) * 2017-03-30 2019-12-03 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 그리고 이를 이용한 동 클래드 적층판 및 프린트 배선판
US10701811B2 (en) 2017-03-30 2020-06-30 Furukawa Electric Co., Ltd. Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
KR102335444B1 (ko) * 2017-03-30 2021-12-03 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 그리고 이를 이용한 동 클래드 적층판 및 프린트 배선판
TWI782969B (zh) * 2017-03-30 2022-11-11 日商古河電氣工業股份有限公司 表面處理銅箔、以及使用其之覆銅積層板及印刷電路板
EP3657918A4 (en) * 2017-07-19 2021-04-21 Omron Corporation PROCESS FOR MANUFACTURING A RESIN STRUCTURE AND RESIN STRUCTURE
US11044815B2 (en) 2017-07-19 2021-06-22 Omron Corporation Method for manufacturing resin structure, and resin structure
TWI715458B (zh) * 2020-03-04 2021-01-01 金像電子股份有限公司 硬式電路板的製造方法

Also Published As

Publication number Publication date
TWI598474B (zh) 2017-09-11
CN107113971B (zh) 2019-04-26
KR101954556B1 (ko) 2019-03-05
TW201718951A (zh) 2017-06-01
JPWO2017026490A1 (ja) 2017-08-10
JP6089160B1 (ja) 2017-03-01
CN107113971A (zh) 2017-08-29
KR20170097054A (ko) 2017-08-25

Similar Documents

Publication Publication Date Title
JP6089160B1 (ja) 高周波回路用銅箔、銅張積層板、プリント配線基板
JP6462961B2 (ja) 表面処理銅箔および銅張積層板
JP5972486B1 (ja) 銅箔、銅張積層板、および基板
JP7317924B2 (ja) ミクロ粗面化電着銅箔及び銅張積層板
WO2011090175A1 (ja) 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
JP6543001B2 (ja) 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
US20080280159A1 (en) Copper Foil and Method of Manufacturing the Same
JP6261037B2 (ja) 高周波回路用銅箔、銅張積層板及びプリント配線板
JP2016149438A (ja) 処理銅箔及び該処理銅箔を用いた銅張積層板並びにプリント配線板
JP2004244656A (ja) 高周波用途対応可能銅箔とその製造方法
JP4955104B2 (ja) 電子回路の形成方法
JP2008066416A (ja) 電子部品実装用フィルムキャリアテープ及びその製造方法
JP5855244B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器及びプリント配線板を製造する方法
JP5738964B2 (ja) 電子回路及びその形成方法並びに電子回路形成用銅張積層板
JP2023103401A (ja) プリント配線板及びその製造方法
KR102118455B1 (ko) 표면 처리 동박 및 이를 이용하여 제조되는 동 클래드 적층판 또는 프린트 배선판
CN112004964B (zh) 表面处理铜箔、覆铜板以及印刷电路板
JP2006278882A (ja) 銅箔、および内層基板用銅箔
TW201404252A (zh) 印刷電路板用銅箔及其製造方法與利用該銅箔之印刷電路板
WO2011121803A1 (ja) 耐加熱変色及びエッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177017188

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835187

Country of ref document: EP

Kind code of ref document: A1