WO2017024775A1 - Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée - Google Patents

Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée Download PDF

Info

Publication number
WO2017024775A1
WO2017024775A1 PCT/CN2016/071958 CN2016071958W WO2017024775A1 WO 2017024775 A1 WO2017024775 A1 WO 2017024775A1 CN 2016071958 W CN2016071958 W CN 2016071958W WO 2017024775 A1 WO2017024775 A1 WO 2017024775A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
lithium titanate
asphalt
negative electrode
heating
Prior art date
Application number
PCT/CN2016/071958
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017024775A1 publication Critical patent/WO2017024775A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, in particular to a method for preparing a modified lithium titanate anode material for a lithium ion battery anode.
  • the outer layer of the modified lithium titanate anode material prepared by the method is formed by asphalt and resin. Composite coating.
  • Power battery refers to the battery used in electric vehicles, including lithium ion batteries, lead acid batteries, fuel cells, etc. Among them, lithium ion batteries have higher specific energy, higher specific power, less self-discharge, long service life and good safety. Other advantages have become the focus of current development in various countries.
  • the graphite material as the anode material of the lithium ion battery has the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, and is an ideal anode material for lithium ion batteries. However, it also has the disadvantages of low initial discharge efficiency, poor cycle performance, and high selectivity to the electrolyte, which limits the application of graphite materials.
  • Li 4 Ti 5 O 12 is a new type of negative electrode material for lithium ion secondary batteries. Compared with other commercial materials, Li 4 Ti 5 O 12 has the advantages of good cycle performance, no reaction with electrolyte, high safety performance, and stable charge and discharge platform. It is one of the most excellent anode materials for lithium-ion batteries that has received much attention in recent years. Compared with carbon negative electrode materials, lithium titanate has many advantages.
  • the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • the pitch pyrolysis carbon has a smaller specific surface area than the resin pyrolytic carbon coated graphite, and affinity with graphite. If the structure is firmer, the asphalt coating will be deformed by melting during the heating process. If the amount is too much, the coated graphite particles will be bonded to each other. If the amount is too small, the coating will be uneven, and the heating process will be easy to expand. , affecting the electrical properties of graphite.
  • Chinese patent CN101162775A uses a liquid phase method to simultaneously dissolve asphalt and resin, then adds graphite to mix, then distills off the solvent, and finally heat treatment, coating a mixture of asphalt and one or more resins on the surface of graphite to improve The cycle efficiency and cycle stability of graphite as well as rate characteristics and compressibility.
  • This method also has some shortcomings in practical applications.
  • the liquid phase method requires the use of organic solvents, which is easy to cause pollution, and the requirements for the dissolved asphalt are also high (the quinoline insoluble content is not more than 12%), and the evaporation is recovered. Solvents require complex equipment and are prone to over-investment, which makes it difficult to actually use them in industrial production.
  • the object of the present invention is to provide a method for preparing a modified lithium titanate negative electrode material.
  • the outer layer of the modified lithium titanate negative electrode material prepared by the method is a composite coating layer formed by asphalt and resin, and the inner layer is titanium.
  • a preparation method of a modified lithium titanate anode material the specific steps are as follows:
  • lithium titanate according to the total weight of resin and asphalt: lithium titanate in a ratio of 1:4 to 20, and add it to a mixing device with stirring and heating function, and the stirring speed is 60-180 rpm. , the heating temperature is 40 ° C ⁇ 140 ° C, the temperature is slightly lower than the temperature of the resin softening point;
  • step 4 Pass the uniformly mixed liquid in step 2 through an atomizing device, and add it to the mixing device equipped with lithium titanate powder in step 3. After mixing for 2 to 5 hours, stop heating and follow 5 to 20 ° C / min. The rate is lowered to a normal temperature state, at which time the resin has been cured;
  • step 4 The powder obtained in step 4 is heated to 800-1000 ° C at a rate of 1 to 10 ° C / min under the protection of an inert gas, and then kept for 0.5 to 5 hours, naturally cooled, and sieved after cooling.
  • the modified lithium titanate negative electrode material prepared by the invention is heated to 800-1000 ° C at a rate of 1 to 10 ° C / min under the protection of an inert gas, and then kept for 0.5 to 5 hours, naturally cooled, and sieved after cooling.
  • the asphalt described in the step 1 includes one or more mixtures of coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and condensed polycyclic polynuclear aromatic hydrocarbon obtained by upgrading the pitch.
  • the softening point is above 100 °C.
  • the resin described in the step 1 is a thermoplastic resin, and one or a mixture of one or more of a furan resin, a urea resin, a pyrimidine resin, a phenol resin, an epoxy resin, and a polyoxymethylene acrylate resin.
  • the stirring time described in the step 1 is 80 to 130 minutes, and the final temperature of the heating is 30 to 40 ° C higher than the highest softening point of the pitch and the resin in the component.
  • the curing agent described in the step 2 is hexamethylenetetramine, diethylaminopropylamine, trimethylhexamethylenediamine, dihexyltriamine, and a thermosetting resin having a curing action.
  • a thermosetting resin having a curing action.
  • the atomization in the step 4 is one of the atomization devices that operate by the principles of ultrasonic atomization, centrifugal atomization, and high pressure atomization.
  • the inert gas is a mixture of one or both of nitrogen, argon and helium.
  • the liquid phase atomization method has the advantages of complete coating, simple process, low manufacturing cost, short manufacturing cycle, and the like;
  • the invention adopts the composite of the resin-based hard carbon precursor and the asphalt-based soft carbon precursor as the coating material, and has obvious superiority, the asphalt carbon and the resin carbon are pinned together, the complementation is insufficient, and the titanic acid is improved.
  • Coal tar pitch (softening point 120 ° C) and phenolic resin (softening point 110 ° C) were added together in a ratio of 1:3 (35 Kg and 105 Kg) to a 200 L kneading kettle, and the heating was started to be heated to 150 ° C in asphalt and resin.
  • the mesophase pitch (softening point 250 ° C) was ultra-finely pulverized by a jet mill to obtain an ultrafine powder of asphalt coating material having an average particle diameter D50 of 2.1 ⁇ m; and the ultrafine powder of asphalt coating material and titanic acid were further used.
  • Lithium is mixed in a ratio of 1:9, and the uniformly mixed powder is heated to 1000 ° C at a rate of 5 ° C / min, kept for 1 hour, then cooled to room temperature, and sieved to obtain asphalt-coated modified lithium titanate.
  • Anode material Anode material.
  • the phenol resin (softening point of 110 ° C) was ultra-finely pulverized by a deep-cooling pulverizer to obtain an ultrafine powder of a resin-coated material having an average particle diameter D50 of 2.1 ⁇ m. Further, the ultrafine powder of the resin coating material and the lithium titanate were mixed at a ratio of 1:9, and the uniformly mixed powder was heated to 1100 ° C at a rate of 5 ° C / min, kept for 1 hour, and then cooled to room temperature. The resin-coated lithium titanate negative electrode material was obtained by sieving.
  • a half-cell test method is used for measurement.
  • the charge and discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.2C.
  • the battery performance can be tested.
  • the test results are shown in Table 1.
  • Table 1 compares the performance of negative electrode materials in different examples and comparative examples.
  • the 18650 type cylindrical finished battery was used for the detection of rate charge and discharge.
  • Table 2 is a comparison of the rate performance of the anode materials in different examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention porte sur un procédé de préparation pour une matière d'électrode négative de titanate de lithium modifiée, comprenant les étapes suivantes : un précurseur de matière de gainage est soumis à un traitement composite, est ensuite ajouté avec une certaine quantité d'un agent de durcissement de résine, et subit ensuite une atomisation, ce qui permet de disperser une matière de gainage en gouttelettes très fines, améliorant la fluidité et l'aptitude à la dispersion de la matière de revêtement composite, et ensuite gainant complètement de titanate de lithium ; également, lorsqu'elle est durcie, une résine fournit un cadre qui soutient un effet et empêche le phénomène d'une couche de gainage endommagée en raison de la fusion d'asphalte dans le procédé de carbonisation et provoquant l'agglomération lorsque la matière est carbonisée et nécessitant ainsi que cette dernière subisse un traitement de broyage. L'emploi du procédé de la présente invention assure la régularité dans le mélange de divers précurseurs de matière de revêtement, élimine le besoin d'un quelconque solvant, et est respectueuse de l'environnement ; en outre, le procédé est simple, peu onéreux et aisé pour une production industrialisée.
PCT/CN2016/071958 2015-08-07 2016-01-25 Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée WO2017024775A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510481074.6A CN105006556A (zh) 2015-08-07 2015-08-07 一种改性钛酸锂负极材料的制备方法
CN201510481074.6 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024775A1 true WO2017024775A1 (fr) 2017-02-16

Family

ID=54379148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071958 WO2017024775A1 (fr) 2015-08-07 2016-01-25 Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée

Country Status (2)

Country Link
CN (1) CN105006556A (fr)
WO (1) WO2017024775A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270251A (zh) * 2019-08-05 2019-09-24 安徽科达新材料有限公司 一种氧化亚硅复合负极材料的液相包覆装置
CN111785935A (zh) * 2019-04-03 2020-10-16 江苏载驰科技股份有限公司 一种锂离子电池负极复合材料的制备方法
CN113772668A (zh) * 2021-08-30 2021-12-10 湛江市聚鑫新能源有限公司 一种倍率性能高的石墨负极材料及其制备方法和在锂离子电池中的用途
CN115558306A (zh) * 2021-07-02 2023-01-03 湖南中科星城石墨有限公司 一种各向同性沥青材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006556A (zh) * 2015-08-07 2015-10-28 田东 一种改性钛酸锂负极材料的制备方法
CN114854169A (zh) * 2022-06-06 2022-08-05 广州碳加科技有限公司 一种新型锂电池负极包覆沥青的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337631A (zh) * 2013-07-04 2013-10-02 哈尔滨工程大学 提高钛酸锂高倍率放电性能并抑制产气的碳氮共包覆方法
CN103626170A (zh) * 2012-12-14 2014-03-12 深圳市斯诺实业发展有限公司永丰县分公司 一种改性石墨负极材料的制备方法
CN104253267A (zh) * 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
CN105006556A (zh) * 2015-08-07 2015-10-28 田东 一种改性钛酸锂负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162775B (zh) * 2006-10-10 2010-05-12 中国电子科技集团公司第十八研究所 一种高性能锂离子电池负极材料的制备方法
CN103296257B (zh) * 2013-06-05 2015-06-24 深圳市斯诺实业发展有限公司 一种改性锂离子电池钛酸锂负极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626170A (zh) * 2012-12-14 2014-03-12 深圳市斯诺实业发展有限公司永丰县分公司 一种改性石墨负极材料的制备方法
CN104253267A (zh) * 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
CN103337631A (zh) * 2013-07-04 2013-10-02 哈尔滨工程大学 提高钛酸锂高倍率放电性能并抑制产气的碳氮共包覆方法
CN105006556A (zh) * 2015-08-07 2015-10-28 田东 一种改性钛酸锂负极材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785935A (zh) * 2019-04-03 2020-10-16 江苏载驰科技股份有限公司 一种锂离子电池负极复合材料的制备方法
CN110270251A (zh) * 2019-08-05 2019-09-24 安徽科达新材料有限公司 一种氧化亚硅复合负极材料的液相包覆装置
CN115558306A (zh) * 2021-07-02 2023-01-03 湖南中科星城石墨有限公司 一种各向同性沥青材料及其制备方法和应用
CN115558306B (zh) * 2021-07-02 2023-10-17 湖南中科星城石墨有限公司 一种各向同性沥青材料及其制备方法和应用
CN113772668A (zh) * 2021-08-30 2021-12-10 湛江市聚鑫新能源有限公司 一种倍率性能高的石墨负极材料及其制备方法和在锂离子电池中的用途
CN113772668B (zh) * 2021-08-30 2024-01-23 湛江市聚鑫新能源有限公司 一种倍率性能高的石墨负极材料及其制备方法和在锂离子电池中的用途

Also Published As

Publication number Publication date
CN105006556A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2017206544A1 (fr) Procédé de préparation de matériau d'anode au graphite artificiel pour batterie au lithium-ion
WO2016169149A1 (fr) Procédé de recyclage de poudre fine de graphite pour agir en tant que matériau d'électrode négative de batterie au lithium-ion
WO2017008494A1 (fr) Procédé de fabrication de matériau d'électrode négative composite à base de silicium en graphite
WO2017024775A1 (fr) Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée
WO2017121069A1 (fr) Préparation de matériau d'électrode négative en carbone dur pour batterie d'alimentation au lithium-ion et son procédé de modification
WO2017024891A1 (fr) Procédé de préparation pour un matériau d'électrode négative de batterie de puissance au lithium-ion
WO2016201940A1 (fr) Procédé de préparation de matériau d'anode composite à base de carbone/graphite
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
CN103626170A (zh) 一种改性石墨负极材料的制备方法
CN103296257B (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
CN109616638B (zh) 一种球形核壳结构混合石墨@硬碳复合材料及其制备方法和应用
CN103311514B (zh) 一种改性锂离子电池石墨负极材料的制备方法
CN107946568B (zh) 一种高性能氧化亚硅/硬碳/石墨复合材料及其制备方法与应用
WO2017024903A1 (fr) Procédé de préparation de matériau d'électrode négative composite d'étain-carbone
WO2017008606A1 (fr) Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain
CN105655559A (zh) 一种锂离子电池及其制备方法
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
WO2017206299A1 (fr) Procédé de préparation de matériau de cathode au graphite modifié destiné à des batteries lithium-ion
CN102351163B (zh) 一种锂离子电池纳米炭微球负极材料及其制备方法
WO2017024897A1 (fr) Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée
WO2016169150A1 (fr) Procédé pour poudre de graphite fine devant être dopée et utilisée en tant que matériau d'électrode négative
CN104766954A (zh) 人造石墨细粉循环利用作为负极材料的方法
CN105826561A (zh) 一种高倍率锂离子电池负极材料的制备方法
CN104766955A (zh) 天然石墨细粉循环利用作为负极材料的方法
WO2017008624A1 (fr) Procédé de fabrication de matériau d'électrode négative composite à base de silicium au titanate de lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16834403

Country of ref document: EP

Kind code of ref document: A1