WO2016201940A1 - Procédé de préparation de matériau d'anode composite à base de carbone/graphite - Google Patents

Procédé de préparation de matériau d'anode composite à base de carbone/graphite Download PDF

Info

Publication number
WO2016201940A1
WO2016201940A1 PCT/CN2015/098495 CN2015098495W WO2016201940A1 WO 2016201940 A1 WO2016201940 A1 WO 2016201940A1 CN 2015098495 W CN2015098495 W CN 2015098495W WO 2016201940 A1 WO2016201940 A1 WO 2016201940A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
calcined
graphite
petroleum coke
kneading
Prior art date
Application number
PCT/CN2015/098495
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016201940A1 publication Critical patent/WO2016201940A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a carbon/graphite composite anode material, and belongs to the technical field of lithium ion batteries.
  • Lithium-ion batteries have rapidly occupied the civilian secondary battery market at an average annual rate of 15%, and have become the first choice for portable electronic devices. power supply.
  • the rapid development of lithium-ion batteries is mainly due to the contribution of electrode materials, especially the improvement of anode materials.
  • Lithium-ion battery anode materials are required to have the following characteristics: 1 as low as possible electrode potential; 2 ions have a higher diffusivity in the negative solid state structure; 3 height deintercalability; 4 good conductivity and thermodynamic stability; 5 good safety performance; 6 good compatibility with electrolyte solvent; 7 rich in resources, low in price, no pollution to the environment.
  • the negative electrode material is one of the four major raw materials (positive electrode, negative electrode, electrolyte, and separator) of the lithium ion battery.
  • the commercial lithium ion battery anode material is made of graphite carbon material, which has a low lithium insertion/deintercalation potential and is suitable. It has the advantages of reversible capacity, abundant resources and low price, and is an ideal anode material for lithium ion batteries.
  • Carbon materials have been widely used in lithium ion batteries because of their low cost, non-toxicity and superior electrochemical properties. Its interface state and fine structure have a great influence on electrode performance.
  • commercial lithium-ion battery carbon anode materials can be divided into graphite, hard carbon and soft carbon. Among them, graphite materials are still the mainstream of lithium-ion battery anode materials.
  • Graphite-based carbon materials which have the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, are ideal anode materials for lithium ion batteries. However, its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • a solid electrolyte membrane (SEI) is formed on the surface during the first charge and discharge process.
  • SEI solid electrolyte membrane
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
  • the second is that the electrolyte is easily embedded in the lithium ion intercalation process. During the process of eviction, the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
  • the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
  • the stability is degraded.
  • carbon materials still have shortcomings such as low charge and discharge capacity, large irreversible loss of primary circulation, co-insertion of solvent molecules, and high production cost. These are also key issues that need to be addressed in current lithium-ion battery research.
  • Carbon fiber is a new type of carbon material. According to raw materials, there are mainly PAN-based carbon fibers (more than 90% of the carbon fibers on the market), viscose-based carbon fibers, and pitch-based carbon fibers. In general, pitch-based carbon fibers have a lower electrical resistivity than PAN-based carbon fibers, and PAN-based carbon fibers have a lower electrical resistivity than viscose-based carbon fibers.
  • the electron rate decreases as the heat treatment temperature increases.
  • Chinese patent CN 102623704A by adding carbon fiber, using its high conductivity and strong adsorption to prepare lithium carbonate-carbon fiber composite anode material to solve the problem of material large rate charge and discharge performance and improve conductivity, to meet the needs of modern society for lithium ion battery Requirements.
  • Chinese patent CN 102290582A by adding nano-long carbon fiber VGCF, improves battery conductivity and reduces internal resistance.
  • a preparation method of a tin/graphene/carbon fiber composite lithium battery anode material disclosed in Chinese patent CN 104037393A a network structure composed of a mixture of graphene and carbon fiber, provides a large number of smooth transport channels for lithium ion in and out electrodes, so that it can be fully Contact with the anode material improves the utilization efficiency of the anode material. Improve the effective position of lithium storage in the negative electrode material and the transport speed of lithium during charge and discharge.
  • the high electrical conductivity of graphene and carbon fiber can quickly achieve carrier migration, improve output power and effectively reduce the internal resistance of the battery itself.
  • the technical problem to be solved by the present invention is to provide a method for preparing a carbon/graphite composite anode material, which has high-pressure properties, high conductivity and high-rate performance, and long cycle performance.
  • the technical solution adopted by the present invention is:
  • the preparation method of the carbon/graphite composite anode material adopt the following particle size and weight percentage ingredients: carbon black 1.5-2.5%, ⁇ 1mm natural graphite 5-8%, ⁇ 0.075mm calcined petroleum coke powder 25-30%, 1 ⁇ 4mm calcined petroleum coke 15-20%, 4 ⁇ l0mm electric calcined anthracite 10-15%, 10-16mm electric calcined anthracite 5 ⁇ 10%, 10-16mm calcined asphalt coke 5 ⁇ 15%, coal asphalt 18-20%;
  • the chopped carbon fiber is 1 to 3% of the total amount of the above raw materials.
  • the calcined petroleum coke powder and the calcined petroleum coke are calcined at about 1300 °C.
  • the electro-calcined anthracite is calcined by a temperature of about 1100-2000 ° C or higher.
  • the calcined pitch coke is calcined at about 1300 °C.
  • Carbon black is conductive carbon black, acetylene black, semi-reinforcing carbon black and related carbon black, performance indicators and raw
  • the ordinary carbon brush carbon black raw materials are similar.
  • Natural graphite which can be flake graphite or low-ash earthy graphite, has similar performance indexes to natural graphite materials used in the production of ordinary electromechanical carbon graphite products.
  • the coal tar can be medium temperature coal tar pitch or modified coal tar pitch.
  • a preparation method of a carbon/graphite composite anode material the preparation steps thereof include:
  • the carbon/graphite composite material is pulverized and spheroidized to obtain a spherical or elliptical carbon/graphite negative electrode powder having a particle diameter D50 of 8 to 25 ⁇ m.
  • the kneading is carried out by first adding carbon black, natural graphite, calcined petroleum coke powder, calcined petroleum coke, electric calcined anthracite and calcined pitch coke to a kneading machine, and then adding short after 5-6 minutes.
  • Cut carbon fiber for dry mixing dry mixing time is 35-40 minutes, dry mixing temperature is 120-150 ° C; when the dry mixing temperature reaches the set time and temperature, add 175 ° C -185 ° C coal pitch for wet mixing, The wet mixing time is 30-50 minutes, the kneading temperature is 160-165 ° C, the kneaded paste is cooled, and when the paste temperature is lowered to 125-145 ° C, it is added into the mold to form a composite plastomer.
  • the carbon fiber is a PAN-based chopped carbon fiber or a pitch-based chopped carbon fiber.
  • the chopped carbon fibers may have a length of 10 to 200 mm and an average diameter of 5 to 30 ⁇ m.
  • an organic solvent such as alcohol or acetone is used for dispersion treatment.
  • a lithium-ion battery is a rechargeable battery that relies on lithium ions to move between the positive and negative electrodes to work.
  • Li + is intercalated and deintercalated between the two electrodes: when charging the battery, Li + is deintercalated from the positive electrode, and the negative electrode is in a lithium-rich state through the electrolyte embedded in the negative electrode;
  • the graphite negative electrode material due to good layered structure for embedding a lithium - prolapse interlayer insertion compound of formula LiC x, and has excellent charge and discharge platform, thus being widely used.
  • the SEI film is formed through the interface reaction between the graphite and the electrolyte during the first charge process, resulting in loss of irreversible capacity. Therefore, the theoretical capacity of the graphite negative electrode material is 372 mAh/g. However, in actual use, its capacity is generally 330-360 mAh/g, which is lower than the theoretical capacity.
  • the irreversible capacity loss caused by SEI film production is directly related to the specific surface area of the graphite anode material. The specific surface area of graphite is large, the range of contact between electrolyte and graphite is large, and the generated SEI is too much, resulting in irreversible capacity loss. .
  • the currently widely used graphite coating modification is to coat a modified layer for the specific surface area of graphite to reduce the specific surface area of the material, thereby improving the first discharge efficiency of graphite, increasing its capacity and circulation. Stability performance.
  • the prepared carbon/graphite composite material not only avoids the low crystallinity of the low crystallinity carbon material, the large irreversible capacity loss, and secondly avoids the graphite material in the organic solvent. In the case of co-intercalation, the cycle performance is degraded.
  • the composite material prepared by the invention has the first capacity, high first charge and discharge efficiency, electrolyte solvent resistance, Isotropic and other characteristics. At the same time, the invention has simple production process, excellent product performance and large-scale production.
  • the ingredients are: ⁇ 1mm microcrystalline graphite 5%, ⁇ 0.075mm calcined petroleum coke 28%, 1-4mm calcined petroleum coke 15%, 4 ⁇ l0mm electric calcined anthracite 10%, 10-16mm electric calcined anthracite 5%, 10-16mm Calcined pitch coke 15%, acetylene black 2%, coal pitch 20%.
  • 1% T300PAN chopped carbon fiber (diameter 12 ⁇ m, length 10 mm) with a weight of 1%;
  • (1) compounding and kneading first adding carbon black, natural graphite, calcined petroleum coke powder, calcined petroleum coke, electric calcined anthracite and calcined pitch coke to the kneading machine, the dry mixing time is 35 minutes, and the dry mixing temperature is 120 ° C; When the dry mixing temperature reaches the set time and temperature, the coal tar pitch at 175 ° C is added for wet mixing, the wet mixing time is 30 minutes, and the kneading temperature is 160 ° C to form a composite plastomer;
  • the carbon/graphite composite material was pulverized and spheroidized to obtain a spherical or elliptical carbon/graphite negative electrode powder having a particle diameter D50 of 12.53 ⁇ m.
  • the ingredients are: ⁇ 1mm microcrystalline graphite 5%, ⁇ 0.075mm calcined petroleum coke 28%, 1-4mm calcined petroleum coke 15%, 4 ⁇ l0mm electric calcined anthracite 10%, 10-16mm electric calcined anthracite 5%, 10-16mm Calcined pitch coke 15%, acetylene black 2%, coal pitch 20%. Plus 1% T300PAN chopped carbon fiber (diameter 12 ⁇ m, length 10mm);
  • the carbon/graphite composite material was pulverized and spheroidized to obtain a spherical or elliptical carbon/graphite negative electrode powder having a particle diameter D50 of 11.63 ⁇ m.
  • Example 2 The formulation of Example 2 was unchanged, and 2% T300PAN chopped carbon fiber (diameter 12 ⁇ m, length 10 mm) was added, and the process was as in Example 1.
  • Example 2 The formulation of Example 2 was unchanged, and 3% T300PAN chopped carbon fiber (diameter 12 ⁇ m, length 10 mm) was added, and the process was as in Example 2.
  • Example 2 The ingredients of Example 2 were used unchanged, and 3% pitch-based chopped carbon fibers (20 ⁇ m in diameter and 10 mm in length) were respectively added, and the process was as in Example 2.
  • the carbon/graphite composite material was pulverized and spheroidized to obtain a spherical or elliptical carbon/graphite negative electrode powder having a particle diameter D50 of 13.94 ⁇ m.
  • Example 1 First discharge capacity (mAh/g) First charge and discharge efficiency (%) Example 1 350.6 94.5 Example 2 348.9 94.7 Example 3 352.1 95.1 Example 4 349.2 95.3 Example 5 352.3 94.9 Example 6 354.5 95.5
  • the production of the 4244130 soft-packed finished battery was used for the detection of the rate charge and discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un matériau d'anode composite à base de carbone/graphite. Les matières premières adoptent des ingrédients avec des tailles des grains et un pourcentage en poids comme suit : de 1,5 % à 2,5 % de noir de carbone, de 5 % à 8 % de graphite naturel doté d'une taille des grains inférieure ou égale à 1 mm, de 25 % à 30 % de poudre de coke de pétrole calciné dotée d'une taille des grains inférieure ou égale à 0,075 mm, de 15 % à 20 % de coke de pétrole calciné doté d'une taille des grains de 1 à 4 mm, de 10 % à 15 % d'anthracite calciné électriquement doté d'une taille des grains de 4 à 10 mm, de 5 % à 10 % d'anthracite calciné électriquement doté d'une taille des grains de 10 à 16 mm, de 5 % à 15 % de coke de brai calciné doté d'une taille des grains de 10 à 16 mm, de 18 % à 20 % de brai de houille, et des fibres de carbone courtes, représentant de 1 % à 3 % du poids total des matières premières susmentionnées. Un matériau composite à base de carbone/graphite est préparé au moyen des étapes suivantes : chargement, mélange, pétrissage, torréfaction, graphitisation, broyage et bouletage. Conjointement aux avantages respectifs des matériaux de carbone et des matériaux de graphite en tant que matériaux d'anode, le matériau composite préparé selon la présente invention présente les caractéristiques de première capacité élevée, de grande efficacité de première charge et décharge, de résistance au solvant d'électrolyte, d'isotropie, et analogues.
PCT/CN2015/098495 2015-06-17 2015-12-23 Procédé de préparation de matériau d'anode composite à base de carbone/graphite WO2016201940A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510333742.0 2015-06-17
CN201510333742.0A CN105047931A (zh) 2015-06-17 2015-06-17 一种炭/石墨复合负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2016201940A1 true WO2016201940A1 (fr) 2016-12-22

Family

ID=54454307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098495 WO2016201940A1 (fr) 2015-06-17 2015-12-23 Procédé de préparation de matériau d'anode composite à base de carbone/graphite

Country Status (2)

Country Link
CN (1) CN105047931A (fr)
WO (1) WO2016201940A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061197A (zh) * 2018-01-19 2019-07-26 湖南晋烨高科股份有限公司 一种煤基电池负极材料及其制备方法和应用
CN113871590A (zh) * 2021-09-16 2021-12-31 广东凯金新能源科技股份有限公司 一种分层多孔石墨负极材料及其制备方法
CN114835493A (zh) * 2022-04-08 2022-08-02 眉山士达新材料有限公司 一种负极材料石墨化箱式炉用石墨箱板制造方法
CN114853474A (zh) * 2022-04-28 2022-08-05 湖南大学 一种发动机主轴支点密封用高强炭石墨材料及其制备方法
CN115259870A (zh) * 2022-07-29 2022-11-01 宝丰县洁石碳素材料有限公司 一种单晶热场用石墨的制备工艺
CN115745610A (zh) * 2022-11-01 2023-03-07 山东益大新材料股份有限公司 一种高强度碳烯石墨及其制备方法
CN116041064A (zh) * 2023-01-09 2023-05-02 济南万瑞炭素有限责任公司 一种骨料预处理预焙阳极及其制备方法
CN116143114A (zh) * 2023-02-21 2023-05-23 贵州师范大学 铝电解废阴极炭块中石墨回收及用其制备预焙阳极的方法
CN116283333A (zh) * 2023-05-18 2023-06-23 西南交通大学 一种磺化石墨烯增强碳基复合材料及其制备方法和应用
CN116282014A (zh) * 2023-03-13 2023-06-23 中国矿业大学 一种煤基多孔炭材料的制备方法及其应用
CN116462509A (zh) * 2023-05-04 2023-07-21 湖北东南佳特碳新材料有限公司 一种光伏用等静压石墨及其制备方法和应用
CN117071005A (zh) * 2023-08-07 2023-11-17 成都西马通节能技术有限公司 一种炭素均质均等数据量化的配方控制方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047931A (zh) * 2015-06-17 2015-11-11 田东 一种炭/石墨复合负极材料的制备方法
CN107244924B (zh) * 2017-03-23 2019-08-20 武汉科技大学 一种高导热高微孔电煅煤基炭砖及其制备方法
CN107721425A (zh) * 2017-10-24 2018-02-23 大同新成新材料股份有限公司 一种负极材料的制备方法
CN108039477A (zh) * 2017-12-20 2018-05-15 徐会丽 一种稳定的复合负极材料及其制备方法和应用
CN109293362A (zh) * 2018-10-11 2019-02-01 中喜(宁夏)新材料有限公司 石墨烯电极材料生产工艺
CN114349512B (zh) * 2021-12-23 2022-12-09 广西强强碳素股份有限公司 铝电解用低炭渣预焙阳极制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318820A (zh) * 2008-01-25 2008-12-10 宁波杉杉新材料科技有限公司 复合石墨炭负极材料及其制备方法
CN101651200A (zh) * 2009-08-26 2010-02-17 天津大学 锂离子电池负极材料及其制备方法
CN102800852A (zh) * 2012-08-28 2012-11-28 湖南德天新能源科技有限公司 动力锂离子电池负极材料制备方法
CN105047931A (zh) * 2015-06-17 2015-11-11 田东 一种炭/石墨复合负极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125647A (zh) * 2006-08-18 2008-02-20 逢甲大学 含碳复合颗粒及其应用与制造
CN102723469A (zh) * 2011-03-31 2012-10-10 荣炭科技股份有限公司 作为锂离子电池负极材料的石墨复合碳材及其制备方法
CN102646819A (zh) * 2012-05-03 2012-08-22 天津大学 锂离子电池用炭包覆天然鳞片石墨复合材料的制备方法
CN104649263B (zh) * 2015-03-06 2016-08-24 山西亮宇炭素有限公司 炭石墨复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318820A (zh) * 2008-01-25 2008-12-10 宁波杉杉新材料科技有限公司 复合石墨炭负极材料及其制备方法
CN101651200A (zh) * 2009-08-26 2010-02-17 天津大学 锂离子电池负极材料及其制备方法
CN102800852A (zh) * 2012-08-28 2012-11-28 湖南德天新能源科技有限公司 动力锂离子电池负极材料制备方法
CN105047931A (zh) * 2015-06-17 2015-11-11 田东 一种炭/石墨复合负极材料的制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061197A (zh) * 2018-01-19 2019-07-26 湖南晋烨高科股份有限公司 一种煤基电池负极材料及其制备方法和应用
CN113871590A (zh) * 2021-09-16 2021-12-31 广东凯金新能源科技股份有限公司 一种分层多孔石墨负极材料及其制备方法
CN114835493A (zh) * 2022-04-08 2022-08-02 眉山士达新材料有限公司 一种负极材料石墨化箱式炉用石墨箱板制造方法
CN114835493B (zh) * 2022-04-08 2023-05-16 眉山士达新材料有限公司 一种负极材料石墨化箱式炉用石墨箱板制造方法
CN114853474A (zh) * 2022-04-28 2022-08-05 湖南大学 一种发动机主轴支点密封用高强炭石墨材料及其制备方法
CN115259870A (zh) * 2022-07-29 2022-11-01 宝丰县洁石碳素材料有限公司 一种单晶热场用石墨的制备工艺
CN115745610A (zh) * 2022-11-01 2023-03-07 山东益大新材料股份有限公司 一种高强度碳烯石墨及其制备方法
CN115745610B (zh) * 2022-11-01 2023-11-17 山东益大新材料股份有限公司 一种高强度碳烯石墨及其制备方法
CN116041064B (zh) * 2023-01-09 2023-08-29 济南万瑞炭素有限责任公司 一种骨料预处理预焙阳极及其制备方法
CN116041064A (zh) * 2023-01-09 2023-05-02 济南万瑞炭素有限责任公司 一种骨料预处理预焙阳极及其制备方法
CN116143114A (zh) * 2023-02-21 2023-05-23 贵州师范大学 铝电解废阴极炭块中石墨回收及用其制备预焙阳极的方法
CN116282014A (zh) * 2023-03-13 2023-06-23 中国矿业大学 一种煤基多孔炭材料的制备方法及其应用
CN116462509A (zh) * 2023-05-04 2023-07-21 湖北东南佳特碳新材料有限公司 一种光伏用等静压石墨及其制备方法和应用
CN116462509B (zh) * 2023-05-04 2023-11-07 湖北东南佳特碳新材料有限公司 一种光伏用等静压石墨及其制备方法和应用
CN116283333B (zh) * 2023-05-18 2023-08-04 西南交通大学 一种磺化石墨烯增强碳基复合材料及其制备方法和应用
CN116283333A (zh) * 2023-05-18 2023-06-23 西南交通大学 一种磺化石墨烯增强碳基复合材料及其制备方法和应用
CN117071005A (zh) * 2023-08-07 2023-11-17 成都西马通节能技术有限公司 一种炭素均质均等数据量化的配方控制方法及系统
CN117071005B (zh) * 2023-08-07 2024-03-12 成都西马通节能技术有限公司 一种炭素均质均等数据量化的配方控制方法及系统

Also Published As

Publication number Publication date
CN105047931A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2016201940A1 (fr) Procédé de préparation de matériau d'anode composite à base de carbone/graphite
WO2016169149A1 (fr) Procédé de recyclage de poudre fine de graphite pour agir en tant que matériau d'électrode négative de batterie au lithium-ion
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
CN113213470A (zh) 人造石墨二次颗粒、包覆剂、其制备方法和应用
CN105552324A (zh) 一种磷酸铁锂包覆镍钴锰酸锂复合材料的制备方法
CN112670461B (zh) 一种天然石墨炭包覆负极材料及其制备方法、锂离子电池
CN114447305B (zh) 一种多元碳基快充负极复合材料及其制备方法
WO2016202168A1 (fr) Suspension d'électrode positive de batterie au lithium-ion et procédé de fabrication associé
CN113206249B (zh) 一种具有良好电化学性能的锂电池硅氧复合负极材料及其制备方法
WO2017032166A1 (fr) Procédé de préparation de suspension épaisse d'électrode négative de pile au lithium dopée avec de la poudre d'étain
CN105742695B (zh) 一种锂离子电池及其制备方法
CN113659125B (zh) 一种硅碳复合材料及其制备方法
WO2016169150A1 (fr) Procédé pour poudre de graphite fine devant être dopée et utilisée en tant que matériau d'électrode négative
CN114094070B (zh) 一种铌酸钛包覆硬碳复合材料及其制备方法
CN115714170B (zh) 一种高能量密度快充负极材料的制备方法
WO2017024897A1 (fr) Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée
CN105826561A (zh) 一种高倍率锂离子电池负极材料的制备方法
CN104882590A (zh) 一种炭/石墨/硅复合负极材料的制备方法
CN104600246A (zh) 一种基于石墨烯的锂离子电池电极及其制备方法
CN102255071A (zh) 改性石墨材料、制备方法及应用
CN110970599B (zh) 一种石墨烯基复合负极材料、其制备方法及锂离子电池
CN110350197A (zh) 导电剂、锂离子电池正极片及其制备方法、锂离子电池
CN115275166A (zh) 一种长寿命石墨复合材料及其制备方法
CN107959007B (zh) 一种包覆石墨烯-硅锂离子电池负极材料的制备方法
TW201320450A (zh) 改質人造石墨作為鋰電池負極材料之製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15895505

Country of ref document: EP

Kind code of ref document: A1