WO2017008606A1 - Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain - Google Patents

Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain Download PDF

Info

Publication number
WO2017008606A1
WO2017008606A1 PCT/CN2016/085618 CN2016085618W WO2017008606A1 WO 2017008606 A1 WO2017008606 A1 WO 2017008606A1 CN 2016085618 W CN2016085618 W CN 2016085618W WO 2017008606 A1 WO2017008606 A1 WO 2017008606A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
graphite
based composite
powder
material according
Prior art date
Application number
PCT/CN2016/085618
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017008606A1 publication Critical patent/WO2017008606A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of anode materials for lithium ion batteries, and in particular to a method for preparing a graphite tin-based composite anode material for lithium ion batteries.
  • Lithium-ion batteries have rapidly occupied the civilian secondary battery market at an average annual rate of 15%, and have become the first choice for portable electronic devices. power supply.
  • the rapid development of lithium-ion batteries is mainly due to the contribution of electrode materials, especially the improvement of anode materials.
  • Lithium-ion battery anode materials are required to have the following characteristics: 1 as low as possible electrode potential; 2 ions have a higher diffusivity in the negative solid state structure; 3 height deintercalability; 4 good conductivity and thermodynamic stability; 5 good safety performance; 6 good compatibility with electrolyte solvent; 7 rich in resources, low in price, no pollution to the environment.
  • the negative electrode material is one of the four major raw materials (positive electrode, negative electrode, electrolyte, and separator) of the lithium ion battery.
  • the commercial lithium ion battery anode material is made of graphite carbon material, which has a low lithium insertion/deintercalation potential and is suitable. It has the advantages of reversible capacity, abundant resources and low price, and is an ideal anode material for lithium ion batteries.
  • Carbon materials have been widely used in lithium ion batteries because of their low cost, non-toxicity and superior electrochemical properties. Its interface state and fine structure have a great influence on electrode performance.
  • commercial lithium-ion battery carbon anode materials can be divided into graphite, hard carbon and soft carbon. Among them, graphite materials are still the mainstream of lithium-ion battery anode materials.
  • Graphite-based carbon materials which have the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, are ideal anode materials for lithium ion batteries. However, its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • a solid electrolyte membrane (SEI) is formed on the surface during the first charge and discharge process.
  • SEI solid electrolyte membrane
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
  • the second is that the electrolyte is easily embedded in the lithium ion intercalation process. During the process of eviction, the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
  • the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
  • the stability is degraded.
  • carbon materials still have shortcomings such as low charge and discharge capacity, large irreversible loss of primary circulation, co-insertion of solvent molecules, and high production cost. These are also key issues that need to be addressed in current lithium-ion battery research.
  • Carbon fiber is a new type of carbon material. According to raw materials, there are mainly PAN-based carbon fibers (more than 90% of the carbon fibers on the market), viscose-based carbon fibers, and pitch-based carbon fibers. In general, pitch-based carbon fibers have a lower electrical resistivity than PAN-based carbon fibers, and PAN-based carbon fibers have a lower electrical resistivity than viscose-based carbon fibers.
  • the electron rate decreases as the heat treatment temperature increases.
  • Chinese patent CN 102623704A by adding carbon fiber, using its high conductivity and strong adsorption to prepare lithium carbonate-carbon fiber composite anode material to solve the problem of material large rate charge and discharge performance and improve conductivity, to meet the needs of modern society for lithium ion battery Requirements.
  • Chinese patent CN 102290582A by adding nano-long carbon fiber VGCF, improves battery conductivity and reduces internal resistance.
  • a preparation method of a tin/graphene/carbon fiber composite lithium battery anode material disclosed in Chinese patent CN 104037393A a network structure composed of a mixture of graphene and carbon fiber, provides a large number of smooth transport channels for lithium ion in and out electrodes, so that it can be fully Contact with the anode material improves the utilization efficiency of the anode material. Improve the effective position of lithium storage in the negative electrode material and the transport speed of lithium during charge and discharge.
  • the high electrical conductivity of graphene and carbon fiber can quickly achieve carrier migration, improve output power and effectively reduce the internal resistance of the battery itself.
  • Metal tin has the advantages of high lithium storage capacity (994 mAh/g) and low lithium ion deintercalation platform voltage, and is a non-carbon negative electrode material with great development potential. In recent years, extensive research has been carried out on such materials and some progress has been made. However, in the process of reversible lithium storage, the volume expansion of metallic tin is remarkable, resulting in poor cycle performance and rapid decay of capacity, so it is difficult to meet the requirements of large-scale production. For this reason, by introducing a non-metallic element such as carbon, the metal tin is stabilized by alloying or compounding, and the volume expansion of tin is slowed down. Carbon can prevent direct contact between tin particles, inhibit the agglomeration and growth of tin particles, and act as a buffer layer.
  • the heat resistance of the tin-carbon composite material can be improved by introducing a substance having a high melting point.
  • nickel is a metal with good electrical conductivity
  • melting point is 1453 ° C
  • Renzong Hu et al. prepared a core-shell and multi-scale Sn-C-Ni anode material by electron beam evaporation, which exhibited excellent capacity retention and high rate performance.
  • He Chunnian et al. prepared a two-dimensional porous graphitized carbon-coated nickel-tin alloy material by pyrolysis, which has high specific capacity and excellent cycle performance for lithium ion battery anodes (application number 201310715142.1).
  • one of the objects of the present invention is to provide a method for preparing a graphite tin-based composite anode material, which first coats nano tin with a resinous carbon precursor, and the carbon precursor is subjected to high temperature carbonization. After forming a porous structure, the volume expansion effect of tin can be effectively alleviated, and the sub-micron powder is obtained by pulverizing the carbonized material, and then mixed with graphite and asphalt carbon precursor, and then cooled and sieved by high temperature treatment. The graphite tin-based composite negative electrode material of the present invention is obtained.
  • a preparation method of a graphite tin-based composite anode material the specific preparation steps are as follows:
  • the material A is pulverized to obtain a submicron powder B having a particle diameter D50 of 0.1 to 1 ⁇ m;
  • the powder B is solid-phase mixed with graphite and asphalt-based carbon precursor, and then carbonized at a high temperature under the protection of an inert gas, and cooled and sieved.
  • the resin-based carbon precursor in the step (1) means one of a furfural resin, an epoxy resin, a phenol resin, a polyethylene glycol, a polyvinyl chloride, a polyvinyl butyral, a polyacrylonitrile, and a polyacrylic acid. Or a combination of at least two.
  • the ratio of the resin-based carbon precursor to the nano-tin in the step (1) is 1: (0.05 to 0.15).
  • the temperature of the high-temperature carbonization in the step (1) is 650 to 850 ° C
  • the heating rate is 1 to 5 ° C / min
  • the holding time is 0.5 to 3 h.
  • step (2) pulverization refers to one or a combination of two or more of ball milling, mechanical pulverization, or air pulverization.
  • step (3) the weight ratio of powder B to graphite is (0.1 to 0.5): 1, and the pitch-based carbon precursor accounts for 10 to 30% of the total weight of powder B and graphite.
  • the graphite in the step (3) has an average particle diameter of 5 to 30 ⁇ m and a tap density of ⁇ 0.7 g/cm 3 .
  • the asphaltic carbon precursor in the step (3) refers to coal tar pitch, petroleum asphalt, modified asphalt, One or a combination of at least two of mesophase pitch and condensed polycyclic polynuclear aromatic hydrocarbon obtained by upgrading of pitch.
  • the powder particle diameter D50 of the pitch-based carbon precursor in the step (3) is ⁇ 3 ⁇ m.
  • the temperature of the high temperature carbonization in the step (3) is 850 to 1000 ° C
  • the heating rate is 5 to 20 ° C / min
  • the holding time is 0.5 to 4 h.
  • the porous structure carbon formed by carbonization of the resin-based carbon precursor serves as a carrier for fixing the nano-tin, and utilizes the characteristics of many small organic molecules in the resin. At high temperatures, small molecules overflow from the surface to form micropores, and the nano-tin is uniformly embedded in the micropores.
  • the method can improve the dispersibility of the nano tin particles in the tin-based composite anode material, alleviate the volume expansion and contraction of the material during lithium removal/intercalation, enhance the structural stability of the material, and ensure the material has a high electrical conductivity. Improve the electrochemical properties of materials and their cycle stability.
  • the asphalt coating modification treatment solves the disadvantage of excessive surface area of the resin material, avoiding large irreversible capacity loss, and finally obtaining a material with low specific surface area and good processing performance. And high-kick capacity and long-cycle cycling.
  • the method of the invention is simple in operation, easy to control, low in production cost, and suitable for industrial production.
  • the powder was raised to 850 °C at a heating rate of 10 °C/min under inert gas protection, kept for 3 hours, and cooled to room temperature. Thereafter, the graphite tin-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • the powder is raised to 1000 ° C at a heating rate of 10 ° C / min under the protection of inert gas, kept for 0.5 h, and cooled to room temperature. Thereafter, the graphite tin-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • the powder was raised to 900 ° C at a heating rate of 15 ° C / min under inert gas protection, and kept for 1.5 h. After cooling to room temperature, the graphite tin-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • °C heat preservation for 0.5h
  • the powder obtained by carbonization is pulverized by jet milling to a D50 of 0.1 to 1 ⁇ m, and then the powder and graphite are 0.25:1 by weight, while adding 20% of the total weight of the powder and graphite.
  • the powder was raised to 850 ° C at a heating rate of 5 ° C / min under an inert gas atmosphere, kept for 2.5 h, and cooled to room temperature. Thereafter, the graphite tin-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • Example 2 According to the preparation procedure in Example 1, the difference was that the anode material finally obtained without adding tin powder.
  • NMP N-methylpyrrolidone
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested.
  • the test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau composite d'électrode négative à base de graphite-étain; dans le procédé, un précurseur de carbone résineux est d'abord utilisé pour revêtir du nano-étain; le précurseur résineux est carbonisé pour former du carbone à structure poreuse, celui-ci étant utilisé comme support sur lequel fixer le nano-étain, atténuant efficacement la dilatation volumique de l'étain; une composition avec du graphite est effectuée, puis une modification de revêtement de bitume est effectuée, ce qui permet de résoudre l'inconvénient de la surface spécifique excessivement grande du matériau résineux, et d'empêcher une perte de capacité importante et irréversible. Le matériau d'électrode négative présente une faible surface spécifique, une bonne aptitude au traitement, une grande capacité spécifique massique et un long cycle. Le procédé est simple à mettre en œuvre, facile à commander, d'une fabrication à faibles coûts, tout en étant approprié pour une production industrielle.
PCT/CN2016/085618 2015-07-10 2016-06-13 Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain WO2017008606A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510404737.4A CN105047891A (zh) 2015-07-10 2015-07-10 一种石墨锡基复合负极材料的制备方法
CN201510404737.4 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017008606A1 true WO2017008606A1 (fr) 2017-01-19

Family

ID=54454269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085618 WO2017008606A1 (fr) 2015-07-10 2016-06-13 Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain

Country Status (2)

Country Link
CN (1) CN105047891A (fr)
WO (1) WO2017008606A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603726A (zh) * 2019-01-25 2019-04-12 威海南海碳材料科技研究院有限公司 一种负极材料一体化制备工艺及生产设备
CN110518228A (zh) * 2019-09-17 2019-11-29 安徽大学 一种包埋无机纳米粒子的三维石墨烯碳纳米复合材料及其应用
WO2020112458A1 (fr) * 2018-11-26 2020-06-04 Global Graphene Group, Inc. Particules de matériau actif d'anode protégées par du graphite pour batteries au lithium
CN113880068A (zh) * 2021-09-29 2022-01-04 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN114520314A (zh) * 2020-11-19 2022-05-20 湖南中科星城石墨有限公司 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池
CN115159502A (zh) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 一种碳质材料、其制备方法和钠离子电池
CN115692612A (zh) * 2022-11-03 2023-02-03 福州大学 一种锡碳负极材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047891A (zh) * 2015-07-10 2015-11-11 田东 一种石墨锡基复合负极材料的制备方法
US10170749B2 (en) * 2016-06-07 2019-01-01 Nanotek Instruments, Inc. Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode
CN108807873B (zh) * 2018-04-25 2021-06-25 深圳市翔丰华科技股份有限公司 一种制备铜锑掺杂的锡碳锂离子负极材料的方法
CN109004193B (zh) * 2018-07-18 2020-07-28 大同新成新材料股份有限公司 一种锂离子电池负极碳化装置及其碳化方法
US11189822B2 (en) * 2019-01-02 2021-11-30 Global Graphene Group, Inc. Graphite protected anode active material particles for rechargeable lithium batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176337A1 (en) * 2009-01-13 2010-07-15 Aruna Zhamu Process for producing nano graphene reinforced composite particles for lithium battery electrodes
CN103022454A (zh) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 一种锡碳复合负极材料的制备方法
CN103618073A (zh) * 2012-12-14 2014-03-05 深圳市斯诺实业发展有限公司永丰县分公司 一种硅碳复合负极材料的制备方法
CN103956496A (zh) * 2014-04-29 2014-07-30 长沙格翎电池材料有限公司 一种锂离子电池负极活性材料及制备方法
CN104037393A (zh) * 2013-03-06 2014-09-10 佛山市顺德宇红纳米科技有限公司 一种锡/石墨烯/碳纤维复合锂电池负极材料制备方法
CN105047891A (zh) * 2015-07-10 2015-11-11 田东 一种石墨锡基复合负极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176337A1 (en) * 2009-01-13 2010-07-15 Aruna Zhamu Process for producing nano graphene reinforced composite particles for lithium battery electrodes
CN103022454A (zh) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 一种锡碳复合负极材料的制备方法
CN103618073A (zh) * 2012-12-14 2014-03-05 深圳市斯诺实业发展有限公司永丰县分公司 一种硅碳复合负极材料的制备方法
CN104037393A (zh) * 2013-03-06 2014-09-10 佛山市顺德宇红纳米科技有限公司 一种锡/石墨烯/碳纤维复合锂电池负极材料制备方法
CN103956496A (zh) * 2014-04-29 2014-07-30 长沙格翎电池材料有限公司 一种锂离子电池负极活性材料及制备方法
CN105047891A (zh) * 2015-07-10 2015-11-11 田东 一种石墨锡基复合负极材料的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112458A1 (fr) * 2018-11-26 2020-06-04 Global Graphene Group, Inc. Particules de matériau actif d'anode protégées par du graphite pour batteries au lithium
US11289697B2 (en) 2018-11-26 2022-03-29 Global Graphene Group, Inc. Graphite protected anode active material particles for lithium batteries
CN109603726A (zh) * 2019-01-25 2019-04-12 威海南海碳材料科技研究院有限公司 一种负极材料一体化制备工艺及生产设备
CN110518228A (zh) * 2019-09-17 2019-11-29 安徽大学 一种包埋无机纳米粒子的三维石墨烯碳纳米复合材料及其应用
CN114520314A (zh) * 2020-11-19 2022-05-20 湖南中科星城石墨有限公司 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池
CN114520314B (zh) * 2020-11-19 2024-02-27 湖南中科星城石墨有限公司 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池
CN113880068A (zh) * 2021-09-29 2022-01-04 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN115159502A (zh) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 一种碳质材料、其制备方法和钠离子电池
CN115692612A (zh) * 2022-11-03 2023-02-03 福州大学 一种锡碳负极材料及其制备方法

Also Published As

Publication number Publication date
CN105047891A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2017008606A1 (fr) Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain
WO2017008494A1 (fr) Procédé de fabrication de matériau d'électrode négative composite à base de silicium en graphite
WO2022121136A1 (fr) Matériau d'électrode négative en graphite artificiel pour batterie au lithium-ion à haute performance et son procédé de préparation
WO2017206544A1 (fr) Procédé de préparation de matériau d'anode au graphite artificiel pour batterie au lithium-ion
WO2016169149A1 (fr) Procédé de recyclage de poudre fine de graphite pour agir en tant que matériau d'électrode négative de batterie au lithium-ion
US10847789B2 (en) Negative electrode material for secondary battery, method for preparing the same, and battery containing the same
WO2016201940A1 (fr) Procédé de préparation de matériau d'anode composite à base de carbone/graphite
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
WO2017206299A1 (fr) Procédé de préparation de matériau de cathode au graphite modifié destiné à des batteries lithium-ion
WO2017024897A1 (fr) Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée
WO2017024891A1 (fr) Procédé de préparation pour un matériau d'électrode négative de batterie de puissance au lithium-ion
WO2017008624A1 (fr) Procédé de fabrication de matériau d'électrode négative composite à base de silicium au titanate de lithium
CN109616640B (zh) 一种改性微晶石墨及其制备和在锂离子电池中的应用
CN111620332A (zh) 一种负极材料及其制备方法、负极片和锂离子电池
WO2017024775A1 (fr) Procédé de préparation de matière d'électrode négative de titanate de lithium modifiée
CN114852991A (zh) 一种硬碳和软碳共修饰的人造石墨负极材料及其制备方法
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
CN104485457B (zh) 一种新型锂离子电池负极材料的制备方法
JP3716830B2 (ja) リチウムイオン二次電池用負極材の製造方法
CN112397693B (zh) 一种高倍率快速充电的负极材料及其制备方法、负极片、电池
CN114538431A (zh) 一种用于锂电池的快充石墨负极材料及其制备方法
CN109768245B (zh) 一种锂离子电池用高功率密度负极材料及制备方法
WO2017008610A1 (fr) Procédé de fabrication de matériau d'électrode négative composite à base d'étain au titanate de lithium
CN109935793A (zh) 一种锂离子电池高容量高倍率复合石墨烯负极材料的制备方法
CN110600738B (zh) 一种制备低温锂离子电池硬碳负极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16823753

Country of ref document: EP

Kind code of ref document: A1