WO2017022682A1 - 転がり軸受の異常検知装置 - Google Patents

転がり軸受の異常検知装置 Download PDF

Info

Publication number
WO2017022682A1
WO2017022682A1 PCT/JP2016/072387 JP2016072387W WO2017022682A1 WO 2017022682 A1 WO2017022682 A1 WO 2017022682A1 JP 2016072387 W JP2016072387 W JP 2016072387W WO 2017022682 A1 WO2017022682 A1 WO 2017022682A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
bearing
electrodes
detection device
rolling bearing
Prior art date
Application number
PCT/JP2016/072387
Other languages
English (en)
French (fr)
Inventor
伊藤 浩義
直太 山本
翔太 東穂
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015154883A external-priority patent/JP6581423B2/ja
Priority claimed from JP2015222177A external-priority patent/JP6616163B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112016003543.8T priority Critical patent/DE112016003543T5/de
Priority to US15/750,003 priority patent/US10359077B2/en
Priority to CN201680045865.7A priority patent/CN107923569B/zh
Publication of WO2017022682A1 publication Critical patent/WO2017022682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/82Arrangements for electrostatic or magnetic action against dust or other particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/005Fluid passages not relating to lubrication or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • F16N29/04Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems enabling a warning to be given; enabling moving parts to be stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2210/00Fluids
    • F16C2210/02Fluids defined by their properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/04Detecting debris, chips, swarfs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/14Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2260/00Fail safe
    • F16N2260/02Indicating
    • F16N2260/18Indicating necessity of changing oil

Definitions

  • This invention relates to an abnormality detection device for an oil lubricated rolling bearing.
  • Rolling bearings are built into the moving parts of transport equipment, industrial machinery, and other various equipment.
  • an operation mechanism portion that requires lubrication in addition to the oil-lubricated rolling bearing, and the operation mechanism portion and the rolling bearing have a structure that is lubricated with a common oil.
  • the meshing part of gears, the sliding contact part of members, etc. are mentioned, for example.
  • an oil pump or the like has a rolling bearing and an operating mechanism part inside the device.
  • the oil pump has a function of feeding the internal lubricating oil toward another operating mechanism portion outside the device including the rolling bearing and the operating mechanism portion.
  • Patent Document 1 when a foreign matter made of iron powder or the like is mixed into the lubricating oil flowing in the circulation path, the foreign matter is attracted to a magnet provided in the sensor, and the adsorbed foreign matter is accumulated.
  • An iron powder contamination detection method for lubricating oil that issues an alarm when a metal casing and a magnet are electrically connected to each other is disclosed (for example, see Patent Document 1).
  • the magnet included in the sensor faces the lubricating oil circulation path.
  • most of the foreign matters contained in the lubricating oil in the circulation path may pass by without being attracted to the magnet of the sensor.
  • the trapping of the foreign matter is limited to the minimum amount necessary for detecting the degree of the foreign matter mixed in the lubricating oil, and as a result, the remaining foreign matter is applied to the operating mechanism unit. There is also the problem that intrusion cannot be prevented.
  • an object of the present invention is to prevent foreign matter such as wear powder (iron powder or the like) generated from a rolling bearing from flowing out of the bearing space, particularly in the operating mechanism section in the middle of the lubricating oil circulation path. It is to prevent intrusion more reliably.
  • the present invention allows an inner ring and an outer ring, a rolling element disposed in a bearing space between the inner ring and the outer ring, and passage of lubricating oil from the bearing space.
  • a filter that prevents the passage of metal pieces, an electric circuit that extends from each of the pair of electrodes to a power source, and a change in electrical output of the electric circuit that accompanies the attachment of the metal piece between the pair of electrodes.
  • An abnormality detection device for a rolling bearing provided with an output detection device that detects the state of a metal piece contained in the lubricating oil by detecting it.
  • the filter has a through hole for lubricating oil circulation, and the pair of permanent magnets are arranged on both sides of the through hole.
  • the configuration in which the electrical output detected by the output detection device is a voltage-divided output of the voltage in the electrical circuit can be employed.
  • the pair of permanent magnets has an electrically conductive coating layer on the surface thereof, and the coating layer and a circuit board terminal constituting a part of the electric circuit are electrically connected. It is possible to adopt a configuration that is used.
  • the output detection device can employ a configuration for determining an abnormal state based on an electrical output and a predetermined threshold.
  • Data storage means for storing information determined by the output detection device to be in an abnormal state, and past change information stored in the data storage means for confirming a temporal change in the abnormal state
  • the structure provided with a means is employable.
  • An outer ring and an inner ring An outer ring and an inner ring; a rolling element disposed in a bearing space between the outer ring and the inner ring; and an operating mechanism unit that is located outside the bearing space and lubricates a movable part between members by lubricating oil;
  • a seal member attached to one of the outer ring or the member fixed to the outer ring, or the inner ring or a member fixed to the inner ring, and covering a lubricating oil passage that leads from the bearing space to the operating mechanism part;
  • a filter that captures foreign matter contained in the lubricating oil that is provided in the seal member and flows out from the bearing space to the operating mechanism, and adhesion of foreign matter made of metal between the pair of electrodes provided in the seal member.
  • a sensor device for electrical detection, the seal ring and the outer ring or a member fixed to the outer ring, or the seal ring and the inner ring or the inner ring And detent means for restricting the relative rotation to each other is provided between the member can be employed rolling bearing unit comprising a. That is, the pair of electrodes are provided on the seal member, and the pair of electrodes, the electric circuit, and the output detection device electrically detect adhesion of a foreign substance made of metal between the pair of electrodes. Configure the device.
  • the sensor device is provided in the filter, and the filter is provided along a circumferential direction on a wall portion covering a side opening of a bearing space of the rolling bearing.
  • a housing is fixed to the outer diameter side of the outer ring, and the rotation preventing means adopts a configuration in which a convex portion provided in the seal member enters into a lubricating oil circulation passage provided in the housing. can do.
  • the circulation passage opens to the end surface of the housing on the outer diameter side of the side opening of the bearing space of the rolling bearing, and the convex portion of the seal member extends from the opening of the circulation passage along the axial direction. It is possible to adopt a configuration that is a circulation passage blockage with a filter that has entered the passage.
  • the sensor device includes a pair of electrodes that are located on the bearing space side of the filter and are spaced apart from each other, and the wiring from the pair of electrodes to the power source has an orientation in which the detent means is located. It is possible to employ a configuration that includes a lead-out portion for the outside of the bearing.
  • the sensor device includes a pair of electrodes positioned on the bearing space side of the filter and spaced apart from each other, and wiring from the pair of electrodes to the power source is connected to the circulation passage blocking portion on the outside of the bearing. It is possible to employ a configuration including a drawer portion.
  • a pair of permanent magnets spaced apart from each other are provided on a filter that allows passage of lubricating oil from inside the bearing space of the rolling bearing to the outside of the bearing space and prevents passage of metal pieces. Detecting a change in electrical output of the electric circuit due to adhesion of a metal piece between the pair of permanent magnets, and an electric circuit extending from both electrodes to the power source with the pair of permanent magnets as electrodes. And an output detection device that detects the state of the metal pieces contained in the lubricating oil.For this reason, foreign matter such as iron powder and peeling pieces generated from the rolling bearings is placed on the operating mechanism in the middle of the lubricating oil circulation path. Intrusion can be prevented more reliably, and an abnormality of the rolling bearing can be detected by an electrical change, so that failure of each component can be prevented in advance.
  • the present invention also provides a seal member that covers a lubricating oil passage that leads from the bearing space to the operating mechanism portion outside the bearing, and foreign matter contained in the lubricating oil that is provided in the seal member and flows out from the bearing space to the operating mechanism portion.
  • the sensor device for electrically detecting the adhesion of metal foreign matter between the pair of electrodes provided on the seal member, and the seal ring and the bearing ring and bearing member for fixing the seal ring
  • a rolling bearing unit with a detent means that regulates relative rotation is adopted, so that the function of the sensor device is reliably protected, and foreign matter such as wear powder (iron powder, etc.) generated from the rolling bearing is an operating mechanism outside the bearing. It is possible to capture more reliably so as not to flow out to the part.
  • FIG. 1 shows a first embodiment of the present invention
  • (a) is a side view in which a filter is attached to a bearing unit having a plurality of rolling bearings
  • (b) is a longitudinal sectional view.
  • the main part of a filter is shown, (a) is a side view when sensor output is one system, and (b) is a side view when sensor output is three systems.
  • Main part enlarged view showing an example in which a magnetic material is arranged between electrodes made of permanent magnets, showing a case where the sensor output is three systems.
  • FIG. 2 shows a second embodiment of the present invention, in which (a) is a cross-sectional view taken along line AA of (b), and (b) is a vertical cross-sectional view. (A) and (b) are the principal part enlarged views of Fig.1 (a), respectively.
  • (A) (b) shows other embodiment
  • (c) (d) is a principal part expanded sectional view which shows other embodiment
  • (e) is a principal part expanded sectional view which shows still another embodiment.
  • This embodiment is an oil pump device 10 including an abnormality detection device for a rolling bearing.
  • the oil pump device 10 includes a bearing unit 20 having a plurality of rolling bearings inside the device, and an oil pump operating mechanism 30.
  • the bearing unit 20 includes three rolling bearings 21, 22, and 23 that are oil-lubricated in parallel inside the housing 11. By these rolling bearings 21, 22, and 23, a shaft member 32 that communicates with the operating mechanism portion 30 of the oil pump is supported so as to be rotatable about the axis with respect to the fixed housing 11.
  • the rolling elements 3 are incorporated between the raceway surfaces 1 a and 2 a of the outer raceway ring 1 and the inner raceway ring 2.
  • the rolling element 3 is held in the circumferential direction by a cage 4.
  • the outer race 1 is referred to as an outer race 1
  • the inner race 2 is referred to as an inner race 2.
  • the outer ring 1 is press-fitted into the inner diameter surface of the housing 11 and is fixed so as not to rotate relative to the housing 11.
  • the inner ring 2 is press-fitted into the outer periphery of the shaft member 32 and is fixed to the shaft member 32 so as not to rotate relative to the shaft member 32.
  • rolling bearings 21, 22, and 23 tapered roller bearings using tapered rollers are employed as the rolling elements 3, but rolling bearings other than tapered roller bearings may be employed.
  • the parallel number of the rolling bearings 21, 22, and 23 can be freely set according to the specifications of the apparatus.
  • the oil pump operating mechanism 30 includes a pump rotor (not shown) that feeds lubricating oil to the circulation path by rotating relative to each other in the pump casing.
  • the pump rotor is connected to the connection member 31 provided at the end of the shaft member 32, and is thus rotatable around the shaft of the shaft member 32.
  • the driving force to the rotor is input by a separate route from a driving source (not shown).
  • two rolling bearings 21, 22 near one side of the rolling mechanism 21, 22, 23 in parallel, that is, closer to the operating mechanism portion 30, have smaller diameter side end surfaces of the tapered rollers in the axial direction.
  • the rolling bearings 23, 22, 23 arranged in parallel to each other in the axial direction, that is, the rolling bearing 23 farthest from the operating mechanism portion 30 is arranged so that the end surface on the small diameter side of the tapered roller is on the operating mechanism portion 30 side. ing. That is, the rolling bearings 21 and 22 and the rolling bearing 23 are disposed so that the small diameter side end surfaces of the tapered rollers are back to back. For this reason, the raceway surface 2a of the inner ring 2 and the raceway surface 1a of the outer ring 1 are such that two on one side of the three rows of rolling bearings 21, 22, 23 are mutually opposite from one side in the axial direction toward the other side. The distance is reduced, and one of the other sides is provided so that the distance from each other increases from one side in the axial direction to the other side.
  • spacers 5, 6, and 7 are disposed between the rolling bearings 21, 22, and 23 adjacent in the axial direction.
  • a spacer 5 that abuts the end surfaces of the inner rings 2, 2 on both sides is provided on the inner diameter side.
  • a spacer 6 is disposed that contacts the end faces of the outer rings 1 and 1 on both sides.
  • a spacer that contacts the end surfaces of the inner rings 2, 2 on both sides is provided on the inner diameter side.
  • a spacer 7 is disposed on the radial side so as to contact the end surfaces of the outer rings 1 and 1 on both sides.
  • the inner diameter side spacer between the rolling bearings 22 and 23 is not shown, but along the circumferential direction of the rolling bearings 22 and 23, other than the opening on the outer diameter side of the lubricating oil circulation path 13 b.
  • a spacer is arranged in the portion.
  • Both ends of the rolling bearings 21, 22, and 23 that are arranged in parallel are on the one side in the axial direction by the end face of the flange-shaped connection member 31 provided at the end of the shaft member 32, and on the other side in the axial direction, The end face is fixed so as not to move in the axial direction with respect to the shaft member 32.
  • a preload is applied to each tapered roller bearing by fixing the connecting member 31 and the pressing member 8.
  • the shaft member 32 supported by the housing 11 by the rolling bearings 21, 22 and 23 is connected to the operating mechanism 30 of the oil pump. Further, the oil pump has a function of sending the internal lubricating oil toward the other operating mechanism portion G located outside. The delivered lubricating oil flows along the lubricating oil passage and lubricates the operating mechanism G of each part, and then returns to the oil pump.
  • the operating mechanism 30 and the bearing unit 20 in the pump are lubricated with a common lubricating oil.
  • the operating mechanism 30 on the oil pump side and the bearing space on the bearing unit 20 side communicate with each other through circulation passages 12 and 13 for the lubricating oil.
  • the lubricating oil is also sent out to the external operating mechanism G.
  • the circulation passage 13 includes an axial circulation path 13a provided along the axial direction so as to be concentric with the axis of the shaft member 32 from the oil pump side, and an end portion of the circulation path 13a.
  • a radial circulation path 13b that extends outward in the radial direction and opens on the outer peripheral surface of the shaft member 32 is provided. Since the radial circulation path 13b opens to the annular space C sandwiched between the rolling bearings 22 and 23, the circulation path 13 passes through the annular space C on one side in the axial direction (left side in the figure). Is connected to the bearing spaces of the rolling bearings 21 and 22, and the other axial side (the right side in the figure) is connected to the bearing space of the rolling bearing 23.
  • the lubricating oil that has passed through the bearing space of the rolling bearing 23 through the annular space C passes through the opening of the bearing space on the other end side in the axial direction of the rolling bearing 23 and the housing end provided on the other end side in the axial direction of the rolling bearing 23. Enter the subspace B. Thereafter, the oil returns to the operating mechanism 30 side of the oil pump through the lubricating oil circulation passage 12 formed in the housing 11.
  • the circulation passage 12 includes a radial circulation path 12b extending radially outward from the housing end space B, and an axial circulation path 12a provided along the axial direction of the shaft member 32 from the radial circulation path 12b.
  • the lubricating oil that has passed through the annular space C and the bearing space of the rolling bearings 22 and 21 returns to the operating mechanism portion 30 side of the oil pump through the opening of the bearing space on one end side in the axial direction of the rolling bearing 21. Go.
  • the operating mechanism 30 of the oil pump and the rolling bearings 21, 22, and 23 of the bearing unit 20 are lubricated by the common lubricating oil.
  • a seal ring 40 with a filter F is attached to the opening of the bearing space on one axial end side of the rolling bearing 21 and the opening of the bearing space on the other axial end side of the rolling bearing 23. Both seal rings 40 have a common structure as shown below.
  • the seal ring 40 is attached so as to cover the opening on each corresponding side of the bearing space of the rolling bearings 21 and 23. Since the opening is formed in an annular shape along the raceway surfaces 1a and 2a of the outer ring 1 and the inner ring 2, the seal ring 40 covering the opening is also formed in an annular shape.
  • the seal ring 40 is formed of a synthetic resin molded product.
  • the resin seal ring 40 is attached between the large collar of the inner ring 2 and the large-diameter side end of the inner diameter surface of the outer ring 1.
  • the outer ring 1 is stationary, the inner ring 2 is rotating, and the seal ring 40 is fixed to the outer ring 1 on the fixed side by fitting or the like.
  • the seal ring 40 is fitted to the inner ring 2 on the rotating side. It is also possible to fix by means such as a joint.
  • the seal ring 40 includes a locking portion 42 that is locked to the outer ring 1, a wall portion 41 that rises from the locking portion 42 toward the inner diameter side, and an inner ring that extends from the wall portion 41. 2 and an inner cylindrical portion 43 facing the outer diameter surface.
  • the locking portion 42 has a cylindrical shape, and the cylindrical locking portion 42 is press-fitted into the inner diameter surface of the outer ring 1.
  • a protrusion or the like provided on the outer diameter surface of the locking portion 42 may be fitted into a seal groove or the like provided on the large diameter side end portion of the inner diameter surface of the outer ring 1 and fixed to each other.
  • the inner cylindrical portion 43 closer to the inner diameter is slidably in contact with the outer surface of the large collar of the inner ring 2 or is opposed through a slight gap.
  • a large number of through holes 44 are provided in the wall 41 of the seal ring 40. These many through holes 44 prevent foreign substances from passing through the bearing spaces of the rolling bearings 21, 22, and 23, and allow the passage of lubricating oil.
  • the maximum value of the inner diameter of the through-hole 44 is set to an appropriate size so that the passage of foreign matter to the extent that it does not affect even if it enters the operating mechanism 30 side is allowed.
  • a pair of permanent magnets Ma and Mb (51a, 51b; 52a, 52b; 53a, 53b) arranged at intervals are provided.
  • the pair of permanent magnets Ma and Mb are used as electrodes, respectively, and an electric circuit 60 extending from both electrodes to the power source is provided, and a control means 70 for controlling the electric circuit 60 is provided.
  • Permanent magnets Ma and Mb and energizing wires connected thereto are installed on the substrate 50. Further, a part of the wiring of the electric circuit 60 is drawn from the substrate to the outside of the rolling bearings 21 and 23, and the drawn out part of the electric circuit 60 and the control means 70 include the housing 11 and its surrounding frame. It is attached to the stationary member.
  • Permanent magnets Ma and Mb serve both as the adsorption of foreign matter such as iron powder and iron pieces and the function of the electrode of the electric circuit 60 for detecting it. That is, the permanent magnets Ma and Mb have a magnetic force for adsorbing a metal, and at least the surface thereof has a coating layer (conductive layer) made of a material that conducts electricity. This coating layer and the wiring and terminals of the electric circuit 60 are electrically connected.
  • the material of the permanent magnets Ma and Mb for example, Nd-based nickel plated (surface treatment) can be used. According to such permanent magnets Ma and Mb, it is possible to solder the wiring to the pattern provided on the substrate 50. Moreover, since nickel plating is excellent in electrical conductivity, the performance of detecting the adsorption of foreign matter is enhanced. As a material for the coating layer provided on the surfaces of the permanent magnets Ma and Mb, plating (surface treatment) of gold, silver, copper or the like may be more suitable. Moreover, you may employ
  • the permanent magnets Ma and Mb are fixed to the substrate 50 on both sides of the hole 54 provided in the substrate 50. . Since the hole 54 is positioned to match the position of the through hole 44 on the filter F side, the permanent magnets Ma and Mb are disposed on both sides of the through hole 44 for circulating the lubricating oil in the filter F. become.
  • the permanent magnets Ma and Mb are arranged on both sides of the hole 54 along the circumferential direction of the rolling bearing. However, depending on the case, the permanent magnets Ma and Mb are arranged along the radial direction of the rolling bearing. It is good also as a structure arrange
  • the substrate 50 is fixed to the bearing space side of the front and back surfaces of the wall portion 41 of the seal ring 40 from the viewpoint of adsorbing foreign matters more efficiently.
  • the magnetic materials 51c, 52c, and 53c are disposed between the pair of permanent magnets Ma and Mb with a gap therebetween. A fixed gap is provided between the permanent magnets Ma, Mb and the magnetic materials 51c, 52c, 53c.
  • a fixed resistor 59 is disposed on the electric circuit 60 of the substrate 50 in the wiring example of FIG.
  • One end of the fixed resistor 59 is connected to an input terminal (power source) 62 via a wiring 56 formed in a pattern on the substrate 50, and the other end is connected to a wiring 57 formed in a pattern on the substrate 50.
  • the opposite end of the wiring 57 is connected to one permanent magnet Mb. Since one permanent magnet Mb is arranged, the wiring 57 branches from one to three on the way, and each of the branches is connected to each permanent magnet Mb.
  • the other permanent magnet Ma is connected to a wiring 58 formed in a pattern on the substrate 50. Since the other permanent magnets Ma are arranged, the wiring 58 branches from one to three on the way, and each of the branched branches is connected to the other permanent magnet Ma. The opposite end of the wiring 58 is connected to the GND terminal 64 as a ground.
  • the wiring 57 branches between the branch portion of the three wirings to one permanent magnet Mb and the fixed resistor 59, and the branched wiring is connected to the output terminal 61.
  • the output terminal 61 constitutes a part of the voltage dividing circuit.
  • each fixed resistor 59a, 59b, and 59c is connected to an input terminal (power source) 62 via a wiring 56 formed in a pattern on the substrate 50, and the other end is formed in a pattern on the substrate 50, respectively.
  • Opposite ends of the three wires 57 arranged in parallel are connected to the respective permanent magnets Mb.
  • the other permanent magnet Ma is connected to a wiring 58 formed in a pattern on the substrate 50. Since the other permanent magnets Ma are arranged, the wiring 58 branches from one to three on the way, and each of the branched branches is connected to the other permanent magnet Ma. The opposite end of the wiring 58 is connected to the GND terminal 64 as a ground.
  • the three wirings 57 arranged in parallel are each branched between one permanent magnet Mb and the fixed resistors 59a, 59b, 59c, and the branched wirings are connected to the output terminals 61a, 61b, 61c.
  • the output terminals 61a, 61b, 61c constitute a part of an independent voltage dividing circuit.
  • Fig. 7 (a) shows an electric circuit diagram when the sensor output is one system
  • Fig. 7 (b) shows an electric circuit diagram when the sensor output is three systems.
  • the electric resistance of the fixed resistor 59 is R1
  • the electric resistances between the pair of permanent magnets 51a, 51b; 52a, 52b; 53a, 53b correspond to R2 to R4, respectively.
  • the electric resistances of the fixed resistors 59a to 59c correspond to R1 to R3
  • the electric resistances between the pair of permanent magnets 51a and 51b; 52a and 52b; 53a and 53b correspond to R4 to R6, respectively.
  • the control means 70 controls the electric circuit 60 through the cable 63 drawn from the input terminal (power source) 62, the GND terminal 64, the output terminal 61; 61a, 61b, 61c.
  • control means 70 includes an output detection device 71 that detects an output through the voltage dividing circuit of the electric circuit 60. That is, since a change in the electrical output of the electric circuit 60 is detected as a foreign object such as a metal piece adheres between the pair of permanent magnets Ma and Mb, the output detection device 71 detects the electrical output. By acquiring the change, the state of the metal piece contained in the lubricating oil is detected.
  • the electrical output detected by the output detection device is a voltage divided output in the electrical circuit.
  • the potential of the input terminal (power supply) 62 is set to E (V) and the potential of the GND terminal 64 is set to 0 (V)
  • the divided voltage output is obtained between the output terminals 61; 61a, 61b, and 61c positioned therebetween. Indicated by potential.
  • Lubricating oil flows inside the bearing space of the rolling bearing and passes through the through hole 44 of the filter F of the seal ring 40. If the lubricating oil contains foreign materials made of materials that adsorb to magnets such as iron powder and peeling pieces (iron pieces), the iron powder and peeling pieces (iron pieces) are attracted to the permanent magnets Ma and Mb and face each other. When the pair of electrodes are electrically short-circuited, the resistance value between the electrodes becomes small.
  • the electrical resistance value between the permanent magnets Ma and Mb changes depending on the adhesion state of iron powder or peeled pieces (iron pieces).
  • the resistance value is large because the cross-sectional area of the portion through which current can pass is small when the amount of adhesion is small, and the resistance value is small because the cross-sectional area of the portion through which current can pass is large when the amount of adhesion is large.
  • the electrical resistance value between the permanent magnets Ma and Mb decreases as the amount of adsorbed foreign matter increases. That is, the potentials of the output terminals 61; 61a, 61b, 61c are gradually reduced, and the output voltage acquired by the output detection device 71 is thereby reduced. Therefore, the amount of foreign matter adsorbed is estimated by comparing the potentials of the output terminals 61; 61a, 61b, 61c (divided pressure output) with the potential of the input terminal (power supply) 62 and the potential of the GND terminal 64. it can.
  • a threshold value is provided in advance in the output voltage, and when the electrical output from the output terminals 61; 61a, 61b, 61c becomes equal to or less than the threshold value, the output detection device 71 determines that the rolling bearing is in an abnormal state. You should set it like this.
  • control unit 70 confirms the temporal change of the abnormal state based on the data storage unit 72 that stores the information determined by the output detection device 71 as the abnormal state and the past determination information stored in the data storage unit 72.
  • the magnetic material 51c, 52c, 53c is more likely to cause a magnetic and electrical short circuit in the magnetic field between the permanent magnets Ma, Mb.
  • a slight gap necessary to prevent an electrical short circuit is set between the permanent magnets Ma, Mb and the magnetic materials 51c, 52c, 53c due to factors other than the adhesion of foreign matter.
  • a plurality of pairs of electrodes composed of a pair of permanent magnets Ma and Mb are arranged, and the plurality of sets of electrodes are arranged with different gaps between the electrodes.
  • the gap between the pair of permanent magnets Ma and Mb closer to the outer diameter than the gap between the pair of permanent magnets Ma and Mb closer to the inner diameter. Is set larger.
  • the pair of permanent magnets Ma, Mb and the magnetic material 51c closer to the outer diameter than the gap between the pair of permanent magnets Ma, Mb near the inner diameter and the magnetic materials 51c, 52c, 53c. , 52c, 53c are set large. For this reason, it is possible to appropriately generate an electrical short circuit in the pair of permanent magnets Ma and Mb corresponding to foreign substances of various sizes.
  • FIG. 5 is a graph showing the change in output voltage when the sensor output is one system
  • FIG. 6 is a graph showing the change in output voltage when the sensor output is three systems.
  • the control unit 70 issues an alarm.
  • the voltage Vout at the output of the voltage dividing circuit is as follows when the input voltage is VDD.
  • Vout [(R2 to R4) / ⁇ R1 + (R2 to R4) ⁇ ] ⁇ VDD
  • the input voltage VDD is a difference between the potential of the input terminal (power supply) 62 and the potential of the GND terminal 64.
  • the control means 70 transmits a warning.
  • Vout1 ⁇ (R4) / (R1 + R4) ⁇ ⁇ VDD
  • Vout2 ⁇ (R5) / (R2 + R5) ⁇ ⁇ VDD
  • Vout3 ⁇ (R6) / (R3 + R6) ⁇ ⁇ VDD
  • the input voltage VDD is a difference between the potential of the input terminal (power supply) 62 and the potential of the GND terminal 64.
  • the gap between the pair of permanent magnets Ma, Mb near the outer diameter is set larger than the gap between the pair of permanent magnets Ma, Mb near the inner diameter, or the magnetic materials 51c, 52c, 53c.
  • 53c is set large, 1.
  • Size of gap (inner diameter side) gap 1 ⁇ (intermediate) gap 2 ⁇ (outer diameter side) gap 3 2.
  • Resistance size (inner diameter side) R4 ⁇ (intermediate) R5 ⁇ (outer diameter side) R6 3.
  • a difference occurs in the timing of changes in the outputs 1 to 3.
  • the control means 70 can estimate how much the maximum diameter of the foreign matter contained in the lubricating oil and how much the foreign matter is mixed due to the difference in the timing. For example, when the output 1 is less than or equal to the threshold, the diameter of the mixed foreign matter is rank 1, and when the output 2 is less than or equal to the threshold, the diameter of the mixed foreign matter is larger than rank 1. When rank 2 and output 3 are equal to or less than the threshold value, it is possible to determine that the diameter of the mixed foreign matter is rank 3 larger than rank 2 or the like.
  • the data storage means 72 and the time-change confirmation means 73 can store the information of these determination data, and can use the information for the next determination and control of alarm transmission.
  • the filter F is provided in the seal ring 40 that covers the opening of the bearing space of the rolling bearings 21 and 23.
  • the place where the filter F is provided may be other than the seal ring 40.
  • a filter F that can capture foreign matter may be provided in the middle of the circulation passages 12 and 13, and the abnormality detection device having the above-described configurations may be attached to the filter F.
  • the rolling bearing abnormality detection device of the present invention can be applied to devices other than oil pumps.
  • the abnormality detection device for a rolling bearing according to the present invention needs to prevent foreign matter such as wear powder (iron powder, etc.) generated from the rolling bearing from entering an operating mechanism portion in the middle of a lubricating oil circulation path. It can be applied to a variety of devices.
  • This embodiment is an oil pump device 10 including a bearing unit 20 to which a seal member 40 is attached.
  • the oil pump device 10 includes a bearing unit 20 having a plurality of rolling bearings inside the device, and an oil pump operating mechanism 30.
  • the bearing unit 20 includes three rolling bearings 21, 22, and 23 that are oil-lubricated in parallel inside the housing 11. By these rolling bearings 21, 22, and 23, a shaft member 32 that communicates with the operating mechanism portion 30 of the oil pump is supported so as to be rotatable about the axis with respect to the fixed housing 11.
  • the rolling elements 3 are incorporated between the raceway surfaces 1 a and 2 a of the outer raceway ring 1 and the inner raceway ring 2.
  • the rolling element 3 is held in the circumferential direction by a cage 4.
  • the outer race 1 is referred to as an outer race 1
  • the inner race 2 is referred to as an inner race 2.
  • the outer ring 1 is press-fitted into the inner diameter surface of the housing 11 and is fixed so as not to rotate relative to the housing 11.
  • the inner ring 2 is press-fitted into the outer periphery of the shaft member 32 and is fixed to the shaft member 32 so as not to rotate relative to the shaft member 32.
  • rolling bearings 21, 22, and 23 tapered roller bearings using tapered rollers are employed as the rolling elements 3, but rolling bearings other than tapered roller bearings may be employed.
  • the parallel number of the rolling bearings 21, 22, and 23 can be freely set according to the specifications of the apparatus.
  • the oil pump device 10 of this embodiment is a plunger pump and includes a pump cylinder block (not shown in FIG. 8) that rotates in a pump casing F.
  • the pump cylinder block is connected to a connection member 31 provided at an end of the shaft member 32 via a piston provided in each of a plurality of cylinder chambers provided in the pump cylinder block and a connecting rod connected to the piston.
  • the operation mechanism unit 30 in which the members slide is configured.
  • each connecting rod is swingably connected to the corresponding piston via a spherical seat or the like, and the other end of the connecting rod swings similarly to the connecting member 31 via the spherical seat or the like. Connect freely. Thereby, the cylinder block for pumps and the shaft member 32 are in a state in which the rotation around the respective axes can be transmitted.
  • the connection point between the other end of each connecting rod and the connecting member 31 is set at a position different from each other with respect to the axial direction of the connecting rod, and constitutes a so-called swash plate type piston pump.
  • two rolling bearings 21, 22 near one side of the rolling mechanism 21, 22, 23 in parallel, that is, closer to the operating mechanism portion 30, have smaller diameter side end surfaces of the tapered rollers in the axial direction.
  • the rolling bearings 23, 22, 23 arranged in parallel to each other in the axial direction, that is, the rolling bearing 23 farthest from the operating mechanism portion 30 is arranged so that the end surface on the small diameter side of the tapered roller is on the operating mechanism portion 30 side. ing. That is, the rolling bearings 21 and 22 and the rolling bearing 23 are disposed so that the small diameter side end surfaces of the tapered rollers are back to back. For this reason, the raceway surface 2a of the inner raceway ring 2 and the raceway surface 1a of the outer raceway ring 1 are two on one side of the three rows of rolling bearings 21, 22, 23 from the one side in the axial direction to the other side. The other side is provided so that the mutual distance increases from one side in the axial direction to the other side.
  • spacers 5, 6, 7 are arranged between the rolling bearings 21, 22, 23 adjacent in the axial direction.
  • a spacer 5 that is in contact with the end faces of the inner rings 2, 2 on both sides is provided on the inner diameter side.
  • a spacer 6 is disposed that contacts the end faces of the outer rings 1 and 1 on both sides.
  • a spacer that contacts the end surfaces of the inner rings 2, 2 on both sides is provided on the inner diameter side.
  • a spacer 7 is disposed on the radial side so as to contact the end surfaces of the outer rings 1 and 1 on both sides.
  • the inner diameter side spacer between the rolling bearings 22 and 23 is not shown, but along the circumferential direction of the rolling bearings 22 and 23, other than the opening on the outer diameter side of the lubricating oil circulation path 13 b.
  • a spacer is arranged in the portion.
  • Both ends of the rolling bearings 21, 22, and 23 that are arranged in parallel are on the one side in the axial direction by the end face of the flange-shaped connection member 31 provided at the end of the shaft member 32, and on the other side in the axial direction, The end face is fixed so as not to move in the axial direction with respect to the shaft member 32.
  • a preload is applied to each tapered roller bearing by fixing the connecting member 31 and the pressing member 8.
  • the shaft member 32 supported by the housing 11 by the rolling bearings 21, 22 and 23 is connected to the operating mechanism 30 of the oil pump. Further, the oil pump has a function of sending the internal lubricating oil toward the other operating mechanism portion G located outside. The delivered lubricating oil flows along the lubricating oil passage and lubricates the operating mechanism G of each part, and then returns to the oil pump.
  • the operating mechanism 30 and the bearing unit 20 in the pump are lubricated with a common lubricating oil.
  • the operating mechanism 30 on the oil pump side and the bearing space on the bearing unit 20 side include the side opening D of the bearing space on one axial end side of the rolling bearing 21 on the one axial side, the circulation passage 12 for the lubricating oil, 13 to communicate.
  • the lubricating oil is also sent out to the operating mechanism G outside the pump.
  • the circulation passage 13 includes an axial circulation path 13a provided along the axial direction so as to be concentric with the axis of the shaft member 32 from the oil pump side, and an end portion of the circulation path 13a.
  • a radial circulation path 13b that extends outward in the radial direction and opens on the outer peripheral surface of the shaft member 32 is provided. Since the radial circulation path 13b opens to the annular space C sandwiched between the rolling bearings 22 and 23, the circulation passage 13 passes through the annular space C on one side in the axial direction (left side in the figure). Is connected to the bearing spaces of the rolling bearings 21 and 22, and the other axial side (the right side in the figure) is connected to the bearing space of the rolling bearing 23.
  • the lubricating oil that has passed through the bearing space of the rolling bearing 23 through the annular space C passes through the opening of the bearing space on the other end side in the axial direction of the rolling bearing 21 and the housing end provided on the other end side in the axial direction of the rolling bearing 23. Enter the subspace B. Thereafter, the oil returns to the operating mechanism 30 side of the oil pump by the lubricating oil circulation passage 12 formed in the portion of the housing 11 near the outer diameter.
  • the circulation passage 12 includes a radial circulation path 12b extending radially outward from the housing end space B, and an axial circulation path 12a provided along the axial direction of the shaft member 32 from the radial circulation path 12b.
  • the lubricating oil that has passed through the annular space C and the bearing space of the rolling bearings 22 and 21 passes through the side opening D of the bearing space on one end side in the axial direction of the rolling bearing 21 to the operating mechanism portion 30 side of the oil pump. And go back.
  • the operating mechanism 30 of the oil pump and the rolling bearings 21, 22, and 23 of the bearing unit 20 are lubricated by the common lubricating oil.
  • the seal member 40 (hereinafter referred to as the side opening D of the bearing space on one end side in the axial direction of the rolling bearing 21 and the opening 12c on one end side in the axial direction of the circulation passage 12, that is, the opening 12c of the axial direction circulation path 12a.
  • the annular seal member 40 since the annular seal member 40 is used, this is referred to as a seal ring 40).
  • the seal ring 40 is attached to the housing 11 and the outer ring 1 so as to cover the side opening D of the bearing space on one end side in the axial direction of the rolling bearing 21 and the opening 12c on one end side in the axial direction of the circulation passage 12. Since the side opening D of the bearing space on one end side in the axial direction of the rolling bearing 21 is formed in an annular shape along the raceway surfaces 1a and 2a of the outer ring 1 and the inner ring 2, the seal ring 40 covering the ring D also forms an annular shape. It has become a thing.
  • the seal ring 40 has a cylindrical portion 92 having a cylindrical axial end surface 91 that is in contact with the end surface 11 a of the housing 11, and an inner diameter side from the cylindrical axial end of the cylindrical portion 92. And a wall portion 93 that rises toward the wall.
  • the wall portion 93 is provided with a filter 46.
  • the filter 46 prevents foreign substances from passing through the bearing space of the rolling bearings 21 and 22 by the assembly of the filter holes 46a including through holes, and allows the passage of lubricating oil.
  • the inner diameter of the filter hole 46a is set to an appropriate size so as to allow passage of foreign matter to the extent that it does not affect even if it enters the operating mechanism 30 side.
  • a locking portion 49 extends from the other end of the cylindrical portion 92 in the cylinder axis direction toward the other end.
  • four locking portions 49 are provided along the circumferential direction in accordance with the number of the axial circulation paths 12a. However, the number of these portions can be freely increased or decreased.
  • the locking portion 49 extends between the inner diameter surface of the housing 11 and the outer diameter surface of the outer ring 1 and extends toward the rolling bearing 21, and the locking portion 49 engages with a bearing member such as a race ring or a spacer.
  • a bearing member such as a race ring or a spacer.
  • the locking portion 49 includes an axial member 49b extending from one axial end side to the other end side so as to be press-fitted into the outer diameter surface of the outer ring 1 through the circulation passage 12, and an axial direction. And a radial member 49a extending from the other end of the member 49b toward the inner diameter side.
  • the axial member 49b is constituted by a part of a cylindrical member and is in surface contact with the outer diameter surface of the outer ring 1.
  • the radial member 49a enters a recess provided in the bearing ring or spacer of the bearing, and the movement of the seal ring 40 in the axial direction is restricted.
  • the radial member 49a is configured to enter a recess formed by the other end side end surface 1b of the outer ring 1 of the rolling bearing 21 and a step portion provided on the one end side end surface 6a of the spacer.
  • the inner diameter side end of the wall portion 93 is in sliding contact with the outer surface of the large brim of the inner ring 2 or is opposed to the inner ring 2 with a slight gap so that a labyrinth seal structure is provided between the wall portion 93 and the inner ring 2. Is forming. In the labyrinth seal structure, the lubricating oil is allowed to pass, but foreign substances contained in the lubricating oil are blocked.
  • the opening 12c on one end side in the axial direction of the circulation passage 12 is located on the outer diameter side of the side opening D of the bearing space of the rolling bearing 21 having an annular shape in a side view.
  • the opening 12c faces a space outside the bearing.
  • four circulation paths 12a in the axial direction of the circulation passage 12 are provided, and four openings 12c are provided at intervals of 90 ° along the circumferential direction. The number may be increased or decreased as necessary.
  • the seal ring 40 includes a circulation passage blocking portion 48 including a filter 47 that covers the opening 12c and prevents passage of foreign matters only in a certain direction of the opening 12c of the circulation passage 12 (see FIG. 11).
  • circulation passage blocking portions 48 are provided. As in this embodiment, four axial circulation paths 12a of the circulation path 12 are provided, and the openings 12c are provided at two positions with an interval of 180 ° along the circumferential direction.
  • the blocking portions 48 are also provided at four locations at intervals of 90 ° along the circumferential direction.
  • the width (the width in the circumferential direction of the rolling bearing) is the width of the circulation passage 12 (also the width in the circumferential direction of the rolling bearing) so that the locking portion 49 enters the circulation passage 12 and is fixed without rattling. ). Therefore, the locking part 49 is arranged in the same direction as the circulation passage blocking part 48.
  • the locking portion 49 and the circulation passage blocking portion 48 are formed of a member integral with the cylindrical portion 42 and the wall portion 43, but the locking portion 49 and the circulation passage blocking portion 48 are replaced with the cylindrical portion 42 and the wall portion 43. It is good also as a structure which fixes them as a separate member.
  • the circulation passage blocking portion 48 includes a first protrusion 48a that is a protrusion that protrudes relatively high in the outer diameter direction along the axial direction, and a second protrusion 48b that is a protrusion having a relatively low protrusion height. With.
  • the outer surfaces of the first protrusion 48a and the second protrusion 48b are both cylindrical.
  • the second protrusion 48b which is a convex portion in the radial direction, enters the axial circulation path 12a of the circulation passage 12, and the outer surface of the cylindrical surface faces the inner surface of the cylindrical surface of the axial circulation path 12a. Contact.
  • the width of the second protrusion 48b (also the width in the circumferential direction of the rolling bearing) is the same as the width of the locking portion 49, which matches the width of the circulation passage 12.
  • the seal ring 40 is prevented from rotating with respect to the housing 11 and the outer ring 1. That is, the second projecting portion 48 b and the circulation passage 12 function as a detent means for the seal ring 40.
  • the locking portion 19 that is a convex portion in the axial direction provided on the seal ring 40 and the circulation passage 12 on the housing 11 side also function as a detent means for the seal ring 40.
  • the first protrusion 48 a protrudes higher in the outer diameter direction than the second protrusion 48 b and does not enter the circulation passage 12.
  • the end surface of the first protrusion 48 a on the second protrusion 48 b side contacts the end surface 11 a of the housing 11 around the opening 12 c of the circulation passage 12, whereby the seal ring 40 is positioned in the axial direction.
  • the filter 47 provided in the circulation passage blocking portion 48 is constituted by a set of filter holes 47a formed of through holes, prevents foreign substances from passing through the bearing space of the rolling bearing 23, and allows passage of lubricating oil. .
  • the inner diameter of the filter hole 47a is set to an appropriate size so as to allow passage of foreign matter to such an extent that it does not affect even if it enters the operating mechanism 30 side.
  • the inner diameter of the through hole 46a of the filter 46 can be the same.
  • the lubricating oil from the bearing space of the rolling bearings 21, 22, 23 passes through the two filters 46, 47 provided in the seal ring 40 and flows out of the bearing. For this reason, a large foreign matter that affects the operation of the operation mechanism unit 30 does not enter the operation mechanism unit 30 side.
  • the seal ring 40 is made of a synthetic resin molded product, and the filters 46 and 47 are integrated members in which filter holes (through holes) 46a and 47a are formed in the molded product.
  • the filter 46 of the wall portion 43 and the filter 47 of the circulation passage blockage portion 48 are each a separate member (such as a punching metal) from the member of the main body of the seal ring 40, and the separate member is attached to the main body of the seal ring 40. You may make it fix by various means, such as insertion, embedding, and adhesion
  • the filter 46 is composed of a group of filter holes 46a that penetrate the wall 43 of the seal ring 40 from the bearing space to the outside of the bearing.
  • the filter holes 46a are shown in FIGS. In the example shown, it is composed of a linear through-hole having a constant inner diameter over its entire length.
  • the seal ring 40 is provided with a sensor device 50 that detects foreign matter. Details of the sensor device 60 are shown in FIG.
  • the sensor device 80 is positioned closer to the bearing space than the filter 46 of the wall portion 43, and a pair of electrodes 83 and 84 disposed at a distance from each other, and wirings 81 and 82 extend from the pair of electrodes 83 and 84, respectively. Equipped with an electric circuit leading to the power supply. Further, a metal piece contained in the lubricating oil is detected at the tip of the wirings 81 and 82 by detecting a change in the electrical output of the electric circuit accompanying the adhesion of a foreign substance made of metal between the pair of electrodes 83 and 84.
  • An output detection device (not shown) for detecting the state of As a configuration of the electric circuit or the output detection device, a well-known configuration that can detect a change in the electrical output of the electric circuit can be adopted. For example, the configuration shown in the first embodiment can also be adopted.
  • the output detection device detects a change in the electrical output of the electric circuit, It can be detected that a foreign object made of a large metal piece that cannot pass through the filter 46 is included.
  • FIG. 9A shows a normal state
  • FIG. 9B shows a state in which foreign matter adheres so as to bridge between the tips of the pair of electrodes 83 and 84 and the pair of electrodes 83 and 84 are electrically connected.
  • the pair of electrodes 83 and 84 has a shape that gradually narrows from the root portion toward the tip on the protruding side (in the figure, a C shape).
  • the pair of electrodes 83 and 84 it is desirable to provide the pair of electrodes 83 and 84 at the entrance (opening on the bearing space side) of the filter hole 46a of the filter 46. If the pair of electrodes 83 and 84 are positioned on the bearing space side of the filter hole 46a, the foreign matter easily comes into contact with the pair of electrodes 83 and 84.
  • the number of the pair of electrodes 83 and 84 to be installed is arbitrary.
  • the electrodes 83 and 84 can be provided at regular intervals at regular intervals along the circumferential direction of the seal ring 40 or randomly at irregular intervals.
  • a plurality of seal rings 40 may be provided along the radial direction of the seal ring 40. If possible, it is also possible to adopt a configuration in which a pair of electrodes 83 and 84 are respectively disposed in all the filter holes 46a.
  • the sensor device 80 can be provided in the filter 47 of the circulation passage blockage 48. Since the configuration of the sensor device 80 provided in the filter 47 is the same as that of the sensor device 80 of the filter 46 described above, description thereof is omitted.
  • the wires 81 and 82 of the sensor device 80 pass from the pair of electrodes 83 and 84 through the wall portion 43 and the cylindrical portion 42 of the seal ring 40 to the side of the end surface 11a of the housing 11 fixed to the pump casing F. It is pulled out of the bearing unit.
  • the wires 81 and 82 are drawn out from the top (outermost diameter portion) of the circulation passage blocking portion 48 through the circulation passage closing portion 48 located on the outermost diameter side of the seal ring 40. ing.
  • This pull-out point may be freely set in various places on the seal ring 40, but it is desirable that the pull-out point is as close to the outer diameter as possible from the viewpoint of wiring protection. Therefore, it is effective to use the top portion of the circulation passage blocking portion 48 that is the outermost diameter portion as a lead-out portion of the wirings 81 and 82.
  • the middle section of the wires 81 and 82 is embedded and fixed in the member of the seal ring 40. That is, the wirings 81 and 82 are embedded in the member of the seal ring 40 and are not exposed from the root portion of the pair of electrodes 83 and 84 to the outside extraction point. However, when there is no fear of the strength or damage of the wirings 81 and 82, the wirings 81 and 82 may be arranged outside the member of the seal ring 40 along the outer surface thereof.
  • the seal ring 40 is prevented from rotating with respect to the housing 11. For this reason, troubles such as disconnection of the wirings 81 and 82 can be prevented.
  • the rotation of the seal ring 40 with respect to the housing 11 is such that the convex portions provided on the seal ring 40, that is, the circulation passage blocking portion 48 and the locking portion 49 are provided in the circulation passage 12 (with respect to the width direction).
  • the position of the rotation prevention is used as a drawing point of the wirings 81 and 82, it is difficult for an external force to act on the wirings 81 and 82.
  • This rotation prevention can also be performed by means other than the circulation passage blocking portion 48 and the locking portion 49 that enter the circulation passage 12.
  • it can also be performed by providing irregularities or the like that mesh with each other between the end surface of the cylindrical portion 42 of the seal ring 40 and the end surface 11 a of the housing 11.
  • it is performed by providing unevenness etc. which engage with each other between the axially protruding member such as the inner surface of the cylindrical portion 42 or the locking portion 49 of the seal ring 40 and the outer diameter surface of the outer ring 1 in contact therewith.
  • the concave part can be an opening of the circulation passage 12 for lubricating oil as described above.
  • the shape of the filter hole 46a may be such that the wall portion 43 of the seal ring 40 gradually narrows from the bearing space toward the outside of the bearing.
  • the shape of the filter hole 46a can be gradually narrowed stepwise from the bearing space toward the outside of the bearing.
  • the filter hole 46a has an inner diameter that gradually decreases in the order of a> b> c, as indicated by symbols a, b, and c in FIG. For this reason, foreign substances of various sizes can be captured at positions corresponding to the sizes of the foreign substances.
  • the foreign matter when the foreign matter has a size that cannot pass through the inner diameter a, that is, when the length of the maximum diameter portion of the foreign matter is a or more, the foreign matter can pass through the inner diameter a portion of the filter hole 46a. Instead, it is captured in the vicinity of the inlet of the filter hole 46a on the upstream side.
  • the foreign substance when the foreign substance has a size that can pass through the inner diameter a and cannot pass through the inner diameter b, that is, when the length of the maximum diameter portion of the foreign substance is less than a and greater than or equal to b, the foreign substance It cannot pass through the portion b and is captured in the vicinity of the inner diameter portion a of the upstream filter hole 46a.
  • the foreign matter has a size that can pass through the inner diameters a and b and cannot pass through the inner diameter c, that is, when the length of the maximum diameter portion of the foreign matter is less than b and greater than or equal to c, the foreign matter is filtered through the filter hole 46a. Of the filter hole 46a on the upstream side of the filter hole 46a.
  • a pair of electrodes 83 and 84 are provided on the inlet side (bearing space side) of the inner diameter a portion, the inlet side of the inner diameter b portion, and the inlet side of the inner diameter c portion, respectively, and the electric circuits corresponding to the electrodes 83 and 84 are respectively provided.
  • the size of the foreign matter is smaller than the inner diameter a> b> c. It is possible to grasp the size relationship.
  • the shape of the filter hole 46a can be gradually tapered from the bearing space toward the outside of the bearing.
  • the filter hole 46a is gradually reduced in a mortar shape so that the inner diameter becomes d> e, as indicated by reference numerals d and e in FIG.
  • foreign substances of various sizes can be captured at positions corresponding to the sizes of the foreign substances.
  • the filter hole 46a may be configured to include an orifice portion between the opening to the bearing space and the opening to the outside of the bearing.
  • Adopting a configuration provided with an introduction hole 46b extending to the inside, a reservoir 46c provided at the back of the introduction hole 46b, and a discharge hole 46d branching out of the bearing in front (upstream side) of the reservoir 46c can do.
  • the inlet portion of the introduction hole 46b is narrow, and the discharge hole 46d is narrower than the introduction hole 46b at the portion where the discharge hole 46d is branched, thereby forming an orifice portion.
  • the shape of the filter hole 47a can be made into the structure similar to the filter hole 46a of the filter 46 which consists of each above-mentioned form. That is, the shape of the filter hole 47a can be a shape in which the circulation passage blocking portion 48 of the seal ring 40 is gradually narrowed from the circulation passage 12 side toward the outside of the bearing, or a shape having an orifice portion.
  • the opening 12c on one end side in the axial direction of the circulation passage 12 is configured to face the space outside the bearing through the filter 47 of the circulation passage blocking portion 48.
  • the opening 12c is formed as a seal ring. It is also possible to adopt a configuration that faces the space within 40. That is, the lubricating oil from the opening 12 c on one end side in the axial direction of the circulation passage 12 passes through the filter 46 of the wall portion 43. In this case, it is not necessary to install the filter 47 in the circulation passage blocking portion 48.
  • the seal ring 40 is fixed to both the housing 11 and the outer ring 1.
  • the seal ring 40 may be attached only to the outer ring 1 without being fixed to the housing 11.
  • the outer ring 1 may be attached only to the housing 11 without being fixed.
  • the outer ring 1 is stationary, the inner ring 2 is rotating, and the seal ring 40 is fixed to the outer ring 1 that is a fixed side.
  • the seal ring 40 is fixed to the inner ring that is rotating. It is also possible to fix to 2 by fitting or the like. Alternatively, it can be fixed to another member fixed to the inner ring 2.
  • the wirings 51 and 52 are attached to the rotation side member as a structure for drawing out the wires 51 and 52 to the outside of the bearing.
  • the wirings 81 and 82 attached to the fixed housing 11 can be configured to be always energized using a contact such as a brush.
  • the seal ring 40 of the present invention can be applied to a rolling bearing in which the outer ring 1 is the rotating side and the inner ring 2 is the stationary side.
  • the seal ring 40 can be configured to be fixed to the inner ring 2 side which is the stationary side, or can be configured to be fixed to the outer ring 1 which is the rotation side.
  • the seal member is the annular seal ring 40.
  • a lubricating oil flow path is provided in the seal member, and the flow path is a bearing.
  • a centrifugal force applying flow path that applies centrifugal force to the lubricating oil that flows out of the bearing from outside the space, and includes a foreign matter capturing part that captures foreign matter separated from within the lubricating oil by centrifugal force.
  • a C-shaped seal member or the like may be used along the circumferential direction of the bearing space in a side view.
  • the above embodiment employs a plunger pump (piston pump) that feeds lubricating oil to the circulation path as the oil pump device 10 by inputting a driving force, and the seal member of the present invention is used in the rolling bearing unit 20 provided in the plunger pump.
  • the present invention is not limited to the above-described embodiment, and can also be applied to an oil pump device having another configuration.
  • the present invention can be applied to various devices including a rolling bearing unit and an operating mechanism portion that is lubricated by lubricating oil common to the rolling bearing unit.
  • a plunger pump motor that reciprocates a plurality of pistons by fluid pressure of lubricating oil (working oil) supplied from the outside, and rotates a shaft member around its axis by reciprocating movement of each piston to output a rotational driving force
  • working oil working oil
  • the seal member of the present invention can be applied to a rolling bearing unit provided in the device.
  • the seal member of the present invention is used for various devices provided with a rolling bearing unit, in particular, foreign matter such as wear powder (iron powder, etc.) generated from the rolling bearing, peeling pieces, etc. is lubricated outside the rolling bearing.
  • the present invention can be applied to various devices that need to prevent entry into an operating mechanism part in the middle of an oil circulation path.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

内輪(2)及び外輪(1)との間の軸受空間内から前記軸受空間外への潤滑油の通過を許容し金属片の通過を阻止するフィルタ(F)と、フィルタ(F)に設けられ互いに間隔を置いて配置される対の永久磁石(51a,51b)と、対の永久磁石(51a,51b)をそれぞれ電極として両電極からそれぞれ配線が伸びて電源に至る電気回路(60)と、対の永久磁石(51a,51b)間への金属片の付着に伴う電気回路(60)の電気的出力の変化を検出することによって潤滑油に含まれる金属片の状態を検知する出力検出装置(71)とを備える転がり軸受の異常検知装置である。

Description

転がり軸受の異常検知装置
 この発明は、オイル潤滑される転がり軸受の異常検知装置に関するものである。
 輸送機器や産業機械、その他各種機器の可動部には、転がり軸受が組み込まれている。このような機器の中には、油潤滑される転がり軸受以外に潤滑が必要な作動機構部を有し、その作動機構部と転がり軸受とが、共通のオイルで潤滑される構造となっているものがある。作動機構部としては、例えば、ギヤ同士の噛み合い部分や部材同士の摺接部分等が挙げられる。
 例えば、オイルポンプ等は、機器の内部に転がり軸受と作動機構部とを有している。また、特に、オイルポンプは、その転がり軸受と作動機構部とを備えた機器の外部にある他の作動機構部に向かって、内部の潤滑油を送り出す機能を備えている。
 ところで、転がり軸受の軸受空間からは、摩耗粉(鉄粉等)等の異物が発生することがある。この異物が、潤滑油の循環経路の途中にある作動機構部に侵入すると、異物の噛み込みによって、機器の耐久性を低下させる場合がある。また、場合によっては、機器の動作不良・故障・破損に繋がることもある。
 そこで、例えば、下記特許文献1には、鉄粉等からなる異物が循環経路内に流通する潤滑油に混入した場合に、その異物をセンサが備える磁石に吸着させ、吸着した異物が堆積していくことにより金属製のケーシングと磁石とが電気的に導通した場合に、警報を発信する潤滑油の鉄粉汚濁検知方法が開示されている(例えば、特許文献1参照)。
特開平7-280180号公報
 上記のように、転がり軸受から発生する摩耗粉(鉄粉等)等の異物が、潤滑油の循環経路の途中にある作動機構部に侵入することは好ましくない。特に、オイルポンプ用の転がり軸受において、軸受から発生する大きな剥離片は、そのオイルポンプ自身の作動機構部や、そのオイルポンプによって送り出される潤滑油の循環経路内にある他の作動機構部の部品に対して、動作不良・故障・破損の原因となる。このため、転がり軸受内からの異物の流出防止や、その異物が発生した際の異物の検出が必要となる。
 上記特許文献1に記載の技術では、センサが備える磁石は、潤滑油の循環経路内に臨んでいる。しかし、この技術では、循環経路内の潤滑油に含まれる異物の多くは、センサの磁石に吸着することなく、その傍らを通過してしまう可能性がある。また、特許文献1に記載の技術では、異物の捕捉は、潤滑油内の異物の混入度合いを検知するのに必要な最小限度の量にとどまり、その結果、残りの異物の作動機構部への侵入を阻止できないという問題もある。
 そこで、この発明の課題は、転がり軸受から発生する摩耗粉(鉄粉等)等の異物が、軸受空間の外部へ流出することを、特に、潤滑油の循環経路の途中にある作動機構部に侵入することを、より確実に防止することである。
 上記の課題を解決するために、この発明は、内輪及び外輪と、前記内輪と前記外輪との間の軸受空間に配置される転動体と、前記軸受空間内からの潤滑油の通過を許容し金属片の通過を阻止するフィルタと、前記対の電極からそれぞれ配線が伸びて電源に至る電気回路と、前記対の電極間への金属片の付着に伴う前記電気回路の電気的出力の変化を検出することによって潤滑油に含まれる金属片の状態を検知する出力検出装置と、を備える転がり軸受の異常検知装置を採用した。
 ここで、前記フィルタに設けられ互いに間隔を置いて配置される対の永久磁石を備え、 前記電気回路は、前記対の永久磁石をそれぞれ電極とする構成を採用することができる。すなわち、前記対の永久磁石をそれぞれ電極として両電極からそれぞれ配線が伸びて電源に至る電気回路と、前記対の永久磁石間への金属片の付着に伴う前記電気回路の電気的出力の変化を検出することによって潤滑油に含まれる金属片の状態を検知する出力検出装置とを備える構成である。
 このとき、前記対の永久磁石の間に隙間を介して磁性材料が配置される構成を採用することができる。
 また、前記フィルタは潤滑油流通用の貫通穴を備え、前記対の永久磁石は、前記貫通穴を挟んで両側に配置される構成を採用することができる。
  これらの各構成において、前記出力検出装置が検知する電気的出力は、前記電気回路における電圧の分圧出力である構成を採用することができる。
  また、これらの各構成において、前記対の永久磁石からなる電極を複数組配置し、その複数組の電極は、互いに電極間の隙間を異ならせている構成を採用することができる。
  さらに、これらの各構成において、前記対の永久磁石は、その表面に電気導電性の被覆層を備え、前記被覆層と前記電気回路の一部を構成する回路基板の端子とが電気的に接続されている構成を採用することができる。
  前記出力検出装置は、電気的出力と所定の閾値に基づいて異常状態を判定する構成を採用することができる。
  前記出力検出装置が異常状態と判定した情報を記憶するデータ蓄積手段(データ蓄積用サーバ)と、前記データ蓄積手段が記憶する過去の判定の情報によって、異常状態の経時変化を確認する経時変化確認手段とを備える構成を採用することができる。
 また、外輪及び内輪と、前記外輪と前記内輪との間の軸受空間に配置される転動体と、前記軸受空間の外側に位置し潤滑油によって部材同士の可動部が潤滑される作動機構部と、前記外輪若しくは前記外輪に固定された部材、又は、前記内輪若しくは前記内輪に固定された部材の一方に取り付けられ、前記軸受空間内から前記作動機構部へ通じる潤滑油通路を覆うシール部材と、前記シール部材に設けられ前記軸受空間内から前記作動機構部へと流出する潤滑油に含まれる異物を捕捉するフィルタと、前記シール部材に設けられ対の電極間への金属からなる異物の付着を電気的に検出するセンサ装置と、前記シールリングと前記前記外輪若しくは前記外輪に固定された部材、又は、前記シールリングと前記内輪若しくは前記内輪に固定された部材との間に設けられ互いの相対回転を規制する回り止め手段と、を備える転がり軸受ユニットを採用することができる。すなわち、前記対の電極は前記シール部材に設けられ、前記対の電極、前記電気回路及び前記出力検出装置とで、前記対の電極間への金属からなる異物の付着を電気的に検出するセンサ装置を構成する。
 ここで、前記センサ装置を前記フィルタに備え、前記フィルタを前記転がり軸受の軸受空間の側方開口を覆う壁部に周方向に沿って備える構成を採用することができる。
 また、前記外輪の外径側にハウジングが固定され、前記回り止め手段は、前記シール部材が備える凸部が、前記ハウジングが備える潤滑油の循環通路内に入り込むことにより行われている構成を採用することができる。
 前記循環通路は、前記転がり軸受の軸受空間の側方開口よりも外径側において前記ハウジングの端面に開口し、前記シール部材の凸部は、前記循環通路の開口から軸方向に沿って前記循環通路内に入り込んでいるフィルタ付きの循環通路閉塞部である構成を採用することができる。
 さらに、前記センサ装置は、前記フィルタの軸受空間側に位置し互いに間隔を置いて配置される対の電極を備え、前記対の電極から前記電源に至る配線は、前記回り止め手段が位置する方位に軸受外への引き出し部を備える構成を採用することができる。
 特に、前記センサ装置は、前記フィルタの軸受空間側に位置し互いに間隔を置いて配置される対の電極を備え、前記対の電極から前記電源に至る配線は、前記循環通路閉塞部に軸受外への引き出し部を備える構成を採用することができる。
 この発明は、転がり軸受の軸受空間内から軸受空間外への潤滑油の通過を許容し金属片の通過を阻止するフィルタに、互いに間隔を置いて配置される対の永久磁石を設けて、その対の永久磁石をそれぞれ電極として両電極からそれぞれ配線が伸びて電源に至る電気回路と、前記対の永久磁石間への金属片の付着に伴う前記電気回路の電気的出力の変化を検出することによって潤滑油に含まれる金属片の状態を検知する出力検出装置とを備えたので、転がり軸受から発生する鉄粉や剥離片等の異物が、潤滑油の循環経路の途中にある作動機構部に侵入することをより確実に防止できるとともに、電気的な変化により転がり軸受の異常検知ができるので、各部品の故障を未然に防止することができる。
 また、この発明は、軸受空間内から軸受外の作動機構部へ通じる潤滑油通路を覆うシール部材と、シール部材に設けられ軸受空間内から作動機構部へと流出する潤滑油に含まれる異物を捕捉するフィルタと、シール部材に設けられ対の電極間への金属からなる異物の付着を電気的に検出するセンサ装置と、シールリングとそれを固定する軌道輪や軸受部材との間に互いの相対回転を規制する回り止め手段とを備える転がり軸受ユニットを採用したので、センサ装置の機能を確実に保護し、転がり軸受から発生する摩耗粉(鉄粉等)等の異物が軸受外の作動機構部へ流出しないようより確実に捕捉することができる。
この発明の第一の実施形態を示し、(a)は転がり軸受を複数備えた軸受ユニットにフィルタを取り付けた側面図、(b)は縦断面図 フィルタの要部を示し、(a)はセンサ出力が1系統である場合、(b)はセンサ出力が3系統である場合の側面図 センサ出力が3系統の場合を示し、永久磁石からなる電極間に磁性材料を配置した例を示す要部拡大図 (a)(b)はそれぞれ鉄粉の吸着状態のモデルを示す基板及び電極の概略断面図 センサ出力が1系統の場合の電気出力を示すグラフ図 センサ出力が3系統の場合の電気出力を示すグラフ図 (a)はセンサ出力が1系統の場合の電気回路図、(b)はセンサ出力が3系統の場合の電気回路図 この発明の第二の実施形態を示し、(a)は(b)のA-A断面図、(b)は縦断面図 (a)(b)は、それぞれ図1(a)の要部拡大図 (a)(b)は他の実施形態を示し、(c)(d)はさらに他の実施形態を示す要部拡大断面図、(e)はさらに他の実施形態を示す要部拡大断面図 シール部材の斜視図
 この発明の第一の実施形態を、図1~図7に基づいて説明する。この実施形態は、転がり軸受の異常検知装置を備えたオイルポンプ装置10である。
 オイルポンプ装置10は、機器の内部に転がり軸受を複数備えた軸受ユニット20と、オイルポンプの作動機構部30とを有している。
 軸受ユニット20は、ハウジング11の内部に、油潤滑される3つの転がり軸受21,22,23を並列して備えている。これらの転がり軸受21,22,23によって、オイルポンプの作動機構部30に通じる軸部材32を、固定のハウジング11に対して軸周り回転自在に支持されている。
 各転がり軸受21,22,23は、外側軌道輪1と内側軌道輪2の各軌道面1a,2aの間に、転動体3が組み込まれている。転動体3は、保持器4によって周方向に保持されている。以下、外側軌道輪1を外輪1と、内側軌道輪2を内輪2と称する。
 外輪1はハウジング11の内径面に圧入されて、そのハウジング11に対して相対回転不能に固定されている。内輪2は、軸部材32の外周に圧入されて、その軸部材32に対して相対回転不能に固定されている。
 この実施形態では、転がり軸受21,22,23として、転動体3として円すいころを用いた円すいころ軸受を採用しているが、円すいころ軸受以外の転がり軸受を採用してもよく、また、その転がり軸受21,22,23の並列数は、装置の仕様に応じて自由に設定できる。
 オイルポンプの作動機構部30は、ポンプケーシング内に互いに相対回転することにより潤滑油を循環経路へ送り出すポンプ用ロータ(図示せず)を備える。ポンプ用ロータは、軸部材32の端部に設けた接続部材31に接続され、これにより、軸部材32の軸周りに回転可能な状態である。ロータへの駆動力は、図示しない駆動源から別途のルートで入力される。
 図1に示すように、並列する転がり軸受21,22,23のうち軸方向一方側、すなわち、作動機構部30寄りの2つの転がり軸受21,22は、円すいころの小径側端面同士が軸方向に沿って同じ側、すなわち、作動機構部30の反対側になるように配置されている。
 また、並列する転がり軸受21,22,23のうち軸方向他方側、すなわち、作動機構部30から最も遠い転がり軸受23は、円すいころの小径側端面が作動機構部30側になるように配置されている。すなわち、転がり軸受21,22と転がり軸受23とは、円すいころの小径側端面同士が背面合わせになるように配置されている。このため、内輪2の軌道面2aと外輪1の軌道面1aとは、3列の転がり軸受21,22,23のうち一方側の二つは、軸方向一方側から他方側へ向かって互いの距離が狭まるように設けられ、他方側の一つは、軸方向一方側から他方側へ向かって互いの距離が拡がるように設けられている。
 図1に示すように、軸方向に隣り合う転がり軸受21,22,23同士の間には、間座5,6,7が配置されている。
 並列する転がり軸受21,22,23のうち軸方向一方側の2つの転がり軸受21,22の間には、内径側に、両側の内輪2,2の端面に当接する間座5が、外径側に、両側の外輪1,1の端面に当接する間座6が配置されている。
 また、並列する転がり軸受21,22,23のうち軸方向他方側の2つの転がり軸受22,23の間には、内径側に、両側の内輪2,2の端面に当接する間座が、外径側に、両側の外輪1,1の端面に当接する間座7が配置されている。図1では、転がり軸受22,23の間における内径側の間座は図示していないが、転がり軸受22,23の周方向に沿って、潤滑油の循環経路13bの外径側の開口部以外の部分に、間座が配置されている。
 並列する転がり軸受21,22,23の両端は、軸方向一方側では、軸部材32の端部に設けたフランジ状の接続部材31の端面によって、また、軸方向他方側では、押え部材8の端面によって、軸部材32に対して軸方向へ動かないように固定されている。これらの接続部材31と押え部材8との固定によって、各円すいころ軸受には予圧が付与されている。
 転がり軸受21,22,23によってハウジング11に支持された軸部材32は、オイルポンプの作動機構部30に接続されている。また、オイルポンプは、外部にある他の作動機構部Gに向かって、内部の潤滑油を送り出す機能を備えている。送り出した潤滑油は、潤滑油の通路に沿って流れて各部の作動機構部Gを潤滑した後、やがてオイルポンプに戻ってくる。
 また、このオイルポンプにおいては、ポンプ内の作動機構部30と軸受ユニット20とが、共通の潤滑用のオイルで潤滑されるようになっている。オイルポンプ側の作動機構部30と軸受ユニット20側の軸受空間とは、潤滑油の循環通路12,13で連通している。また、その潤滑油は、外部の作動機構部Gにも送り出される。
 この実施形態において、循環通路13は、オイルポンプ側から軸部材32の軸心と同心となるように軸心方向に沿って設けられた軸方向循環経路13aと、その循環経路13aの端部から半径方向外側へ伸びて、軸部材32の外周面に開口する径方向循環経路13bを備える。径方向循環経路13bは、転がり軸受22,23の間に挟まれた環状空間Cに開口しているので、この環状空間Cを介して、循環経路13は、軸方向一方側(図中左側)へは転がり軸受21,22の各軸受空間に連通し、軸方向他方側(図中右側)へは転がり軸受23の軸受空間に連通している。
 環状空間Cを経て、転がり軸受23の軸受空間を通過した潤滑油は、転がり軸受23の軸方向他端側の軸受空間の開口を通じて、転がり軸受23の軸方向他端側に設けられたハウジング端部空間Bに入り込む。その後、ハウジング11に形成された潤滑油の循環通路12によって、オイルポンプの作動機構部30側へと戻っていく。
 循環通路12は、ハウジング端部空間Bから半径方向外側へ伸びる径方向循環経路12bと、その径方向循環経路12bから軸部材32の軸心方向に沿って設けられた軸方向循環経路12aとを備える。
 また、環状空間Cを経て、転がり軸受22,21の軸受空間を通過した潤滑油は、転がり軸受21の軸方向一端側の軸受空間の開口を通じて、オイルポンプの作動機構部30側へと戻っていく。
 これにより、オイルポンプの作動機構部30と、軸受ユニット20の転がり軸受21,22,23が、共通の潤滑油によって潤滑される。
 ところで、転がり軸受21,22,23の軸受空間からは、摩耗粉(鉄粉等)等の異物が発生することがある。この異物が、オイルポンプの作動機構部30や、循環経路途中の他の作動機構部に侵入することは好ましくない。そこで、転がり軸受21の軸方向一端側の軸受空間の開口、及び、転がり軸受23の軸方向他端側の軸受空間の開口には、それぞれフィルタF付きのシールリング40が取付られている。どちらのシールリング40も、以下に示すように、共通の構造となっている。
 シールリング40は、転がり軸受21,23の軸受空間の各対応する側の開口を覆うように取付けられる。その開口は、外輪1と内輪2の軌道面1a,2aに沿って環状に形成されているので、それを覆うシールリング40も環状を成すものとなっている。
 また、この実施形態では、シールリング40は合成樹脂の成形品からなる。その樹脂製のシールリング40が、内輪2の大つばと外輪1の内径面の大径側端部との間に取付けられている。
 なお、外輪1は静止側、内輪2は回転側であり、シールリング40は固定側である外輪1に嵌合等により固定されるが、このシールリング40を、回転側である内輪2に嵌合等により固定することも可能である。
 シールリング40は、図1に示すように、外輪1に係止される係止部42と、その係止部42から内径側に向かって立ち上がる壁部41と、その壁部41から伸びて内輪2の外径面に対向する内側円筒部43とを備える。係止部42は円筒状であり、その円筒状の係止部42が、外輪1の内径面に圧入される。係止部42の外径面に設けた突起等が、外輪1の内径面の大径側端部に設けたシール溝等に嵌合して、互いに固定されるようにしてもよい。内径寄りの内側円筒部43は、内輪2の大つば外径面に摺接するか、または、わずかな隙間を介して対向する。
 シールリング40の壁部41には、多数の貫通穴44が設けられている。これらの多数の貫通穴44によって、転がり軸受21,22,23の軸受空間からの異物の通過を阻止し、潤滑油の通過は許容される。貫通穴44の内径の最大値は、作動機構部30側へ侵入しても影響がない程度の異物の通過は許容されるよう、適宜の寸法に設定される。
 シールリング40のフィルタFの内側には、互いに間隔を置いて配置される対の永久磁石Ma,Mb(51a,51b;52a,52b;53a,53b)が設けられている。また、その対の永久磁石Ma,Mbをそれぞれ電極として、両電極からそれぞれ配線が伸びて電源に至る電気回路60、及び、その電気回路60を制御する制御手段70が設けられている。
 永久磁石Ma,Mbや、それに接続される通電用の配線は、基板50に設置されている。また、電気回路60の配線の一部は、その基板から転がり軸受21,23の外部に引き出され、その引き出された一部の電気回路60と制御手段70は、ハウジング11やその周辺のフレーム等の不動の部材に取付られている。
 永久磁石Ma,Mbは、鉄粉や鉄片等の異物の吸着と、それを検知する電気回路60の電極の機能を兼ねる。すなわち、永久磁石Ma,Mbは、金属を吸着する磁力を備えるとともに、少なくともその表面は電気が導通する素材で構成された被覆層(導通層)を備えている。この被覆層と電気回路60の配線や端子とが電気的に接続されている。
 永久磁石Ma,Mbの素材としては、例えば、Nd系にニッケルメッキ(表面処理)を施したものを使用することができる。このような永久磁石Ma,Mbによれば、基板50に設けられたパターンに配線を半田付けすることが可能である。また、ニッケルメッキであれば電気導電性に優れるので、異物の吸着を検知する性能が高まる。永久磁石Ma,Mbの表面に設けられる被覆層の素材として、さらにふさわしくは、金,銀,銅などのメッキ(表面処理)でもよい。また、永久磁石Ma,Mbの素材全体が電気導電性を備えるものを採用してもよい。
 図2(a)の配線例、図2(b)の配線例に示すように、永久磁石Ma,Mbは、基板50に設けられた孔54を挟んで両側において、その基板50に固定される。孔54は、フィルタF側の貫通穴44の位置に合致する位置となっているので、永久磁石Ma,Mbは、フィルタFの潤滑油流通用の貫通穴44を挟んで両側に配置されることになる。ここでは、永久磁石Ma,Mbは転がり軸受の周方向に沿って孔54を挟んで両側に配置されているが、場合によっては、永久磁石Ma,Mbを転がり軸受の半径方向に沿って、孔54を挟んで両側に配置する構成としてもよい。
 また、基板50は、異物をより効率よく吸着させる観点から、シールリング40の壁部41の表裏面のうち、軸受空間側に固定されることが望ましい。
 なお、図3に示すように、永久磁石Ma,Mbの間に、金属や磁石等の磁性材料51c,52c,53cを設けてもよい。磁性材料51c,52c,53cは、対の永久磁石Ma,Mbの間に、それぞれに対して隙間を介して配置される。永久磁石Ma,Mbと磁性材料51c,52c,53cの間には、一定の隙間が設けられる。この磁性材料51c,52c,53cを設けることにより、図4に示すように、異物の吸着性能を高めることができる。
 電気回路60の配線は、図2(a)の配線例では、基板50の電気回路60上に、固定抵抗器59を配置している。固定抵抗器59の一端は、基板50上のパターンで形成された配線56を介して入力端子(電源)62に接続され、他端は、基板50上のパターンで形成された配線57に接続されている。また、その配線57の反対側の端部は、一方の永久磁石Mbに接続されている。一方の永久磁石Mbは3つ配置されているので、配線57は途中で1本から3本に分岐して、その分岐したそれぞれが各永久磁石Mbに接続されている。
 他方の永久磁石Maには、基板50上のパターンで形成された配線58に接続されている。他方の永久磁石Maは3つ配置されているので、配線58は途中で1本から3本に分岐して、その分岐したそれぞれが他方の永久磁石Maに接続されている。配線58の反対側の端部は、アースとしてGND端子64に接続されている。
 また、配線57は、一方の永久磁石Mbへの3本の配線の分岐部と固定抵抗器59の間で分岐し、その分岐した配線が出力端子61に接続されている。この出力端子61は、分圧回路の一部を構成している。これにより、図2(a)の配線例では、1系統のセンサ出力を得ることができる。
 図2(b)の配線例では、基板50の電気回路60上に、3つの固定抵抗器59a,59b,59cを配置している。各固定抵抗器59a,59b,59cの一端は、それぞれ基板50上のパターンで形成された配線56を介して入力端子(電源)62に接続され、他端は、それぞれ基板50上のパターンで形成された配線57に接続されている。並列する3本の配線57の反対側の端部は、それぞれ各永久磁石Mbに接続されている。
 他方の永久磁石Maには、基板50上のパターンで形成された配線58に接続されている。他方の永久磁石Maは3つ配置されているので、配線58は途中で1本から3本に分岐して、その分岐したそれぞれが他方の永久磁石Maに接続されている。配線58の反対側の端部は、アースとしてGND端子64に接続されている。
 また、並列する3本の配線57は、それぞれ一方の永久磁石Mbと固定抵抗器59a,59b,59cの間で分岐し、その分岐した配線が出力端子61a,61b,61cに接続されている。この出力端子61a,61b,61cは、それぞれ独立した分圧回路の一部を構成している。これにより、図2(b)の配線例では、3系統のセンサ出力を得ることができる。
 図7(a)に、センサ出力が1系統の場合の電気回路図を、図7(b)にセンサ出力が3系統の場合の電気回路図を示す。図7(a)において、固定抵抗器59の電気抵抗がR1、対の永久磁石51a,51b;52a,52b;53a,53b間の電気抵抗が、それぞれR2~R4に相当する。図7(b)において、固定抵抗器59a~59cの電気抵抗がR1~R3、対の永久磁石51a,51b;52a,52b;53a,53b間の電気抵抗が、それぞれR4~R6に相当する。
 また、制御手段70は、入力端子(電源)62、GND端子64、出力端子61;61a,61b,61cから引き出されたケーブル63を通じて、この電気回路60を制御する。
 また、制御手段70は、電気回路60の分圧回路を通じた出力を検出する出力検出装置71を備える。すなわち、対の永久磁石Ma,Mb間に、金属片等の異物が付着することに伴って、電気回路60の電気的出力の変化を検出するので、出力検出装置71は、その電気的出力の変化を取得することによって、潤滑油に含まれる金属片の状態を検知する。
 前記出力検出装置が検知する電気的出力は、前記電気回路における電圧の分圧出力である。分圧出力は、例えば、入力端子(電源)62の電位をE(V)、GND端子64の電位を0(V)とした場合における、その間に位置する出力端子61;61a,61b,61cの電位で示される。
 潤滑油が、転がり軸受の軸受空間内部を流れて、シールリング40のフィルタFの貫通穴44を通過する。潤滑油内に鉄粉や剥離片(鉄片)等の磁石に吸着する素材からなる異物が含まれた場合、その鉄粉や剥離片(鉄片)等が、永久磁石Ma,Mbに吸着して対向する対の電極間が電気的に短絡することによって、その電極間の抵抗値が小さくなる。
 なお、鉄粉や剥離片(鉄片)等の付着状態によって、永久磁石Ma,Mb間の電気抵抗値は変化する。一般的な傾向としては、付着量が少ないと電流が通過し得る部分の断面積が小さいので抵抗値が大きく、付着量が多いと電流が通過し得る部分の断面積が大きいので抵抗値が小さくなる。
 例えば、図4(a)から図4(b)に示すように、異物の吸着量が増えるにつれて、永久磁石Ma,Mb間の電気抵抗値は小さくなる。すなわち、出力端子61;61a,61b,61cの電位は徐々に小さくなり、これにより出力検出装置71が取得する出力電圧は小さくなる。このため、入力端子(電源)62の電位と、GND端子64の電位に対して、出力端子61;61a,61b,61cの電位(分圧出力)を比較することによって、異物の吸着量を推定できる。ある異物の吸着量に対して、どの程度の出力電圧(出力端子61;61a,61b,61cの電位=分圧出力)になるかは、予め実験等で算出しておくことができる。これらの情報は、後述のデータ蓄積手段72が記憶することができる。
 このため、出力電圧に予め閾値を設けておき、出力端子61;61a,61b,61cからの電気的出力が閾値以下になった場合に、出力検出装置71は、転がり軸受を異常状態と判断するように設定しておけばよい。
 また、制御手段70は、出力検出装置71が異常状態と判定した情報を記憶するデータ蓄積手段72と、データ蓄積手段72が記憶する過去の判定の情報によって、異常状態の経時変化を確認する経時変化確認手段73とを備えている。このため、どの程度の異物の吸着量に対して、どの程度の出力電圧(出力端子61;61a,61b,61cの電位=分圧出力)になるかを、また、異常状態に移行するまでの残りの稼働可能時間等を、軸受ユニット20毎に把握しやすい。
  なお、図2(a)(b)に示す配線例のように、永久磁石Ma,Mb間に磁性材料51c,52c,53cを配置しない場合、実験の結果、異物は永久磁石Ma,Mbの表面に集中して付着する傾向がある。これに対し、図3に示す配線例のように、磁性材料51c,52c,53cを配置した場合、異物は永久磁石Ma,Mbと磁性材料51c,52c,53cの両方に跨った状態に付着しやすい、という傾向があることがわかった。
  この結果より、永久磁石Ma,Mb間の磁界の中に磁性材料51c,52c,53cがある方が、磁気的及び電気的な短絡を発生しやすいと判断できる。実際には、永久磁石Ma,Mbと磁性材料51c,52c,53cの間には、異物の付着以外の要因によって電気的短絡を防止するのに必要充分な僅かな隙間を設定している。
 また、この実施形態では、特に、対の永久磁石Ma,Mbからなる電極を複数組配置し、その複数組の電極は、互いに電極間の隙間を異ならせて配置している。具体的には、図2(a)(b)のそれぞれの配線例において、内径寄りの対の永久磁石Ma,Mb間の隙間よりも、外径寄りの対の永久磁石Ma,Mb間の隙間を大きく設定している。また、図3の配線例において、内径寄りの対の永久磁石Ma,Mbと磁性材料51c,52c,53cとの間の隙間よりも、外径寄りの対の永久磁石Ma,Mbと磁性材料51c,52c,53cとの間の隙間を大きく設定している。このため、様々な大きさの異物に対応して、対の永久磁石Ma,Mbに電気的短絡を適切に発生させることができる。
 図5は、センサ出力が1系統の場合の出力電圧の変化を示すグラフ図、図6は、センサ出力が3系統の場合の出力電圧の変化を示すグラフ図である。
 図5のように、センサ出力が1系統の場合、時間の経過とともに異物の付着量が増加し、その増加に応じて、出力電圧は減少していく。出力電圧が閾値以下となった場合、転がり軸受を異常状態と判定し、制御手段70は警報を発信する。
 ここで、分圧回路の出力で電圧Voutは、入力電圧をVDDとした場合に、
Vout=[(R2~R4)/{R1+(R2~R4)}]×VDD
ただし、入力電圧VDDは、入力端子(電源)62の電位と、GND端子64の電位との差である。
 図6のように、センサ出力が3系統の場合、時間の経過とともに異物の付着量が増加し、その増加に応じて、各分圧回路において出力電圧は減少していく。いずれかの分圧回路の出力電圧が閾値以下となった場合、又は、複数の分圧回路の出力電圧が閾値以下となった場合に、若しくは、全部の分圧回路の出力電圧が閾値以下となった場合に、転がり軸受を異常状態と判定し、制御手段70は警報を発信する。
 ここで、分圧回路の出力で電圧Voutは、入力電圧をVDDとした場合に、
Vout1={(R4)/(R1+R4)}×VDD
Vout2={(R5)/(R2+R5)}×VDD
Vout3={(R6)/(R3+R6)}×VDD
ただし、入力電圧VDDは、入力端子(電源)62の電位と、GND端子64の電位との差である。
 ここで、内径寄りの対の永久磁石Ma,Mb間の隙間よりも、外径寄りの対の永久磁石Ma,Mb間の隙間を大きく設定しているので、あるいは、磁性材料51c,52c,53cを配置する場合には、内径寄りの対の永久磁石Ma,Mbと磁性材料51c,52c,53cとの間の隙間よりも、外径寄りの対の永久磁石Ma,Mbと磁性材料51c,52c,53cとの間の隙間を大きく設定しているので、
  1.隙間の大きさ:(内径側)隙間1<(中間)隙間2<(外径側)隙間3
  2.抵抗の大きさ:(内径側)R4<(中間)R5<(外径側)R6
  3.短絡のはやさ:(内径側)出力1>(中間)出力2>(外径側)出力3
となって、その出力1~3の変化の時期に差異が生じる。
 この時期の差異により、潤滑油に含まれる異物の最大径がどの程度であるか、異物の混入度合いがどの程度進んでいるかを、制御手段70は推定することができる。例えば、出力1が閾値以下となった場合には、混入している異物の径はランク1、出力2が閾値以下となった場合には、混入している異物の径はランク1よりも大きいランク2、さらに、出力3が閾値以下となった場合には、混入している異物の径はランク2よりも大きいランク3である等の判定が可能である。
 データ蓄積手段72や経時変化確認手段73は、これらの判定データの情報を記憶することにより、それらの情報を、次なる判定、警報発信の制御に活用することができる。
 上記の実施形態では、フィルタFを、転がり軸受21,23の軸受空間の開口を覆うシールリング40に設けたが、フィルタFを設ける場所は、シールリング40以外でもよい。例えば、循環通路12,13の途中に異物を捕捉可能なフィルタFを設けて、そのフィルタFに、上記の各構成からなる異常検知装置を取り付けてもよい。
 また、この発明の転がり軸受の異常検知装置は、オイルポンプ以外の装置にも適用できる。特に、この発明の転がり軸受の異常検知装置は、転がり軸受から発生する摩耗粉(鉄粉等)等の異物が、潤滑油の循環経路の途中にある作動機構部に侵入することを防ぐ必要がある種々の装置に適用できる。
 この発明の第二の実施形態を、図8~図11に基づいて説明する。この実施形態は、シール部材40を取り付けた軸受ユニット20を備えたオイルポンプ装置10である。
 オイルポンプ装置10は、機器の内部に転がり軸受を複数備えた軸受ユニット20と、オイルポンプの作動機構部30とを有している。
 軸受ユニット20は、ハウジング11の内部に、油潤滑される3つの転がり軸受21,22,23を並列して備えている。これらの転がり軸受21,22,23によって、オイルポンプの作動機構部30に通じる軸部材32を、固定のハウジング11に対して軸周り回転自在に支持している。
 各転がり軸受21,22,23は、外側軌道輪1と内側軌道輪2の各軌道面1a,2aの間に、転動体3が組み込まれている。転動体3は、保持器4によって周方向に保持されている。以下、外側軌道輪1を外輪1と、内側軌道輪2を内輪2と称する。
 外輪1はハウジング11の内径面に圧入されて、そのハウジング11に対して相対回転不能に固定されている。内輪2は、軸部材32の外周に圧入されて、その軸部材32に対して相対回転不能に固定されている。
 この実施形態では、転がり軸受21,22,23として、転動体3として円すいころを用いた円すいころ軸受を採用しているが、円すいころ軸受以外の転がり軸受を採用してもよく、また、その転がり軸受21,22,23の並列数は、装置の仕様に応じて自由に設定できる。
 この実施形態のオイルポンプ装置10はプランジャポンプであり、ポンプケーシングF内で回転するポンプ用シリンダブロック(図8に図示せず)を備える。ポンプ用シリンダブロックは、そのポンプ用シリンダブロック内に設けられた複数のシリンダ室内にそれぞれ備えるピストン、そのピストンに接続されるコンロッドを介して、軸部材32の端部に設けた接続部材31に接続され、部材同士が摺動する作動機構部30を構成している。
 ここで、各コンロッドの一端は、対応するピストンに対して球面座等を介して揺動自在に接続され、また、コンロッドの他端は接続部材31に対して同じく球面座等を介して揺動自在に接続される。これにより、ポンプ用シリンダブロックと軸部材32とは、互いの軸周りの回転が伝達可能な状態である。各コンロッドの他端と接続部材31との接続点は、コンロッドの軸方向に対して互いに異なる位置に設定され、いわゆる斜板式ピストンポンプを構成している。
 軸部材32及びポンプ用シリンダブロックに対して、図示しない駆動源から別途のルートで駆動力が入力されと、軸部材32及びポンプ用シリンダブロックの回転により、コンロッドが軸方向へ進退し、ポンプ用シリンダブロック内をピストンが往復動することでポンプ機能を発揮する。これにより、潤滑油を循環経路へ送り出すことができる。
 図8に示すように、並列する転がり軸受21,22,23のうち軸方向一方側、すなわち、作動機構部30寄りの2つの転がり軸受21,22は、円すいころの小径側端面同士が軸方向に沿って同じ側、すなわち、作動機構部30の反対側になるように配置されている。
 また、並列する転がり軸受21,22,23のうち軸方向他方側、すなわち、作動機構部30から最も遠い転がり軸受23は、円すいころの小径側端面が作動機構部30側になるように配置されている。すなわち、転がり軸受21,22と転がり軸受23とは、円すいころの小径側端面同士が背面合わせになるように配置されている。このため、内側軌道輪2の軌道面2aと外側軌道輪1の軌道面1aとは、3列の転がり軸受21,22,23のうち一方側の二つは、軸方向一方側から他方側へ向かって互いの距離が狭まるように設けられ、他方側の一つは、軸方向一方側から他方側へ向かって互いの距離が拡がるように設けられている。
 図8に示すように、軸方向に隣り合う転がり軸受21,22,23同士の間には、間座5,6,7が配置されている。
 並列する転がり軸受21,22,23のうち軸方向一方側の2つの転がり軸受21,22の間には、内径側に、両側の内輪2,2の端面に当接する間座5が、外径側に、両側の外輪1,1の端面に当接する間座6が配置されている。
 また、並列する転がり軸受21,22,23のうち軸方向他方側の2つの転がり軸受22,23の間には、内径側に、両側の内輪2,2の端面に当接する間座が、外径側に、両側の外輪1,1の端面に当接する間座7が配置されている。図1では、転がり軸受22,23の間における内径側の間座は図示していないが、転がり軸受22,23の周方向に沿って、潤滑油の循環経路13bの外径側の開口部以外の部分に、間座が配置されている。
 並列する転がり軸受21,22,23の両端は、軸方向一方側では、軸部材32の端部に設けたフランジ状の接続部材31の端面によって、また、軸方向他方側では、押え部材8の端面によって、軸部材32に対して軸方向へ動かないように固定されている。これらの接続部材31と押え部材8との固定によって、各円すいころ軸受には予圧が付与されている。
 転がり軸受21,22,23によってハウジング11に支持された軸部材32は、オイルポンプの作動機構部30に接続されている。また、オイルポンプは、外部にある他の作動機構部Gに向かって、内部の潤滑油を送り出す機能を備えている。送り出した潤滑油は、潤滑油の通路に沿って流れて各部の作動機構部Gを潤滑した後、やがてオイルポンプに戻ってくる。
 また、このオイルポンプにおいては、ポンプ内の作動機構部30と軸受ユニット20とが、共通の潤滑用のオイルで潤滑されるようになっている。オイルポンプ側の作動機構部30と軸受ユニット20側の軸受空間とは、軸方向一方側の転がり軸受21の軸方向一端側の軸受空間の側方開口D、及び、潤滑油の循環通路12,13を通じて連通している。また、その潤滑油は、ポンプ外の作動機構部Gにも送り出される。
 この実施形態において、循環通路13は、オイルポンプ側から軸部材32の軸心と同心となるように軸心方向に沿って設けられた軸方向循環経路13aと、その循環経路13aの端部から半径方向外側へ伸びて、軸部材32の外周面に開口する径方向循環経路13bを備える。径方向循環経路13bは、転がり軸受22,23の間に挟まれた環状空間Cに開口しているので、この環状空間Cを介して、循環通路13は、軸方向一方側(図中左側)へは転がり軸受21,22の各軸受空間に連通し、軸方向他方側(図中右側)へは転がり軸受23の軸受空間に連通している。
 環状空間Cを経て、転がり軸受23の軸受空間を通過した潤滑油は、転がり軸受21の軸方向他端側の軸受空間の開口を通じて、転がり軸受23の軸方向他端側に設けられたハウジング端部空間Bに入り込む。その後、ハウジング11内の外径寄りの部分に形成された潤滑油の循環通路12によって、オイルポンプの作動機構部30側へと戻っていく。
 循環通路12は、ハウジング端部空間Bから半径方向外側へ伸びる径方向循環経路12bと、その径方向循環経路12bから軸部材32の軸心方向に沿って設けられた軸方向循環経路12aとを備える。
 また、環状空間Cを経て、転がり軸受22,21の軸受空間を通過した潤滑油は、転がり軸受21の軸方向一端側の軸受空間の側方開口Dを通じて、オイルポンプの作動機構部30側へと戻っていく。
 これにより、オイルポンプの作動機構部30と、軸受ユニット20の転がり軸受21,22,23が、共通の潤滑油によって潤滑される。
 ところで、転がり軸受21,22,23の軸受空間からは、摩耗粉(鉄粉等)等の異物が発生することがある。この異物が、オイルポンプの作動機構部30や、循環経路途中の他の作動機構部Gに侵入することは好ましくない。そこで、転がり軸受21の軸方向一端側の軸受空間の側方開口D、及び、循環通路12の軸方向一端側の開口12c、すなわち、軸方向循環経路12aの開口12cにシール部材40(以下、実施形態では、円環状のシール部材40を用いているので、これをシールリング40と称する)が取付られている。
 シールリング40は、転がり軸受21の軸方向一端側の軸受空間の側方開口D、及び、循環通路12の軸方向一端側の開口12cを覆うように、ハウジング11及び外輪1に取付けられる。転がり軸受21の軸方向一端側の軸受空間の側方開口Dは、外輪1と内輪2の軌道面1a,2aに沿って環状に形成されているので、それを覆うシールリング40も環状を成すものとなっている。
 シールリング40は、図9に示すように、その筒軸方向端面91が、ハウジング11の端面11aに当接する円筒状部材からなる円筒部92と、円筒部92の筒軸方向一端部から内径側に向かって立ち上がる壁部93とを備える。
 壁部93には、フィルタ46が設けられている。フィルタ46は、貫通穴からなるフィルタ孔46aの集合によって、転がり軸受21,22の軸受空間からの異物の通過を阻止し、潤滑油の通過は許容されるものである。このとき、フィルタ孔46aの内径は、作動機構部30側へ侵入しても影響がない程度の異物の通過は許容されるよう、適宜の寸法に設定される。
 また、円筒部92の筒軸方向他端部から、さらに他端側へ向かって係止部49が伸びている。この実施形態では、係止部49を、軸方向循環経路12aの数に合わせて、周方向に沿って4箇所設けているが、この箇所数は自由に増減できる。
 係止部49は、ハウジング11の内径面と外輪1の外径面との間を通って転がり軸受21側へ伸びて、その係止部49が軌道輪や間座等の軸受部材に係合することにより、シールリング40はハウジング11及び外輪1に固定される。
 この実施形態では、係止部49は、循環通路12内を通って外輪1の外径面に圧入されるよう、軸方向一端側から他端側へ向かって伸びる軸方向部材49bと、軸方向部材49bの他端から、内径側へ向かって伸びる径方向部材49aとを備える。
 軸方向部材49bは円筒状部材の一部で構成され、外輪1の外径面に面接触する。径方向部材49aは、軸受の軌道輪や間座に設けた凹部に入り込んで、シールリング40の軸方向への移動が規制される。この実施形態では、径方向部材49aが、転がり軸受21の外輪1の他端側端面1bと、間座の一端側端面6aに設けた段部とで形成された凹部内に入り込む構成としている。
 また、壁部93の内径側端部は、内輪2の大つば外径面に摺接するか、または、わずかな隙間を介して対向して、壁部93と内輪2との間にラビリンスシール構造を形成している。ラビリンスシール構造では、潤滑油は通過が許容されるが、潤滑油に含まれる異物の通過は阻止される。
 また、循環通路12の軸方向一端側の開口12cは、側面視円環状を成す転がり軸受21の軸受空間の側方開口Dよりも外径側に位置する。この開口12cは、軸受外の空間に臨んでいる。この実施形態では、循環通路12の軸方向循環経路12aは4本設けられており、周方向に沿って90°の間隔をおいて4箇所に開口12cを有しているが、この開口12cの数は、必要に応じて増減してもよい。
 シールリング40は、循環通路12の開口12cのある方位にのみ、その開口12cを覆い、且つ、異物の通過を阻止するフィルタ47を備えた循環通路閉塞部48を備える(図11参照)。
 循環通路閉塞部48は、循環通路12の開口12aと同数設けられる。この実施形態のように、循環通路12の軸方向循環経路12aが4本設けられており、周方向に沿って180°の間隔をおいて2箇所に開口12cを有しているので、循環通路閉塞部48も、周方向に沿って90°の間隔をおいて4箇所に設けられることとなる。
 係止部49は、循環通路12内に入り込んでがたつきなく固定されるよう、その幅(転がり軸受の周方向への幅)は循環通路12の幅(同じく転がり軸受の周方向への幅)と合致している。したがって、係止部49は、循環通路閉塞部48と同じ方位に配置される。なお、係止部49及び循環通路閉塞部48は、円筒部42や壁部43と一体の部材で構成されるが、係止部49や循環通路閉塞部48を、円筒部42や壁部43とは別体の部材として、それらを固定する構成としてもよい。
 循環通路閉塞部48は、軸方向に沿って相対的に外径方向へ高く突出する凸部である第一突出部48aと、相対的に突出高さが低い凸部である第二突出部48bとを備える。第一突出部48a及び第二突出部48bの外面はいずれも円筒面状である。
 径方向への凸部である第二突出部48bは、循環通路12の軸方向循環経路12a内に入り込んで、その円筒面状の外面が、軸方向循環経路12aの円筒面状の内面に面接触する。第二突出部48bの幅(同じく転がり軸受の周方向への幅)は係止部49の幅と同じであり、これは、循環通路12の幅と合致している。これにより、シールリング40は、ハウジング11及び外輪1に対して回り止めされる。すなわち、第二突出部48bと循環通路12とは、シールリング40の回り止め手段として機能している。また、この実施形態では、シールリング40に設けた軸方向への凸部である係止部19と、ハウジング11側の循環通路12も、シールリング40の回り止め手段として機能している。
 第一突出部48aは、第二突出部48bよりも外径方向に高く突出しており、循環通路12内には入り込まない。第一突出部48aの第二突出部48b側の端面が、循環通路12の開口12c周囲におけるハウジング11の端面11aに当接することにより、シールリング40が軸方向に位置決めされる。
 循環通路閉塞部48に備えるフィルタ47は、貫通穴からなるフィルタ孔47aの集合によって構成され、転がり軸受23の軸受空間からの異物の通過を阻止し、潤滑油の通過は許容されるものである。このとき、フィルタ孔47aの内径は、作動機構部30側へ侵入しても影響がない程度の異物の通過は許容されるよう、適宜の寸法に設定される。具体的には、フィルタ46の貫通穴46aの内径と同じとできる。
 このように、転がり軸受21,22,23の軸受空間からの潤滑油は、シールリング40に設けた内外2箇所のフィルタ46,47を通過して、軸受外へ流出する。このため、作動機構部30の動作に影響が出るような大きな異物は、作動機構部30側へは侵入しないようになっている。
 この実施形態では、シールリング40は合成樹脂の成形品からなるものとし、フィルタ46,47は、その成型品にフィルタ孔(貫通孔)46a,47aを形成した一体の部材となっている。シールリング40の素材としては、金属、ゴム等の他の素材を用いてもよい。また、壁部43のフィルタ46、循環通路閉塞部48のフィルタ47を、それぞれ、シールリング40の本体の部材とは別部材(パンチングメタル等)として、その別部材をシールリング40の本体に、嵌め込み、埋め込み、接着等の種々の手段で固定するようにしてもよい。
 上記のように、フィルタ46は、シールリング40の壁部43を軸受空間内から軸受外へと貫通するフィルタ孔46aの集合で構成されており、そのフィルタ孔46aは、図1及び図2に示す例では、その全長に亘って一定の内径を有する直線状の貫通孔で構成されている。
 また、シールリング40には、異物を検出するセンサ装置50が備えられている。センサ装置60の詳細を、図9に示す。
 センサ装置80は、壁部43のフィルタ46よりも軸受空間側に位置し、互いに間隔を置いて配置される対の電極83,84と、対の電極83,84からそれぞれ配線81,82が伸びて電源に至る電気回路を備える。また、その配線81,82の先には、対の電極83,84間への金属からなる異物の付着に伴う電気回路の電気的出力の変化を検出することによって、潤滑油に含まれる金属片の状態を検知する出力検出装置(図示せず)等を備える。電気回路や出力検出装置の構成としては、電気回路の電気的出力の変化を検出できる周知の構成を採用できるが、例えば、前述の第一の実施形態に示すものを採用することもできる。
 対の電極83,84間に、フィルタ46を通過できない大きさの金属からなる異物が付着することに伴って、出力検出装置は、電気回路の電気的出力の変化を検出し、潤滑油に、フィルタ46を通過できないような大きな金属片からなる異物が含まれていることを検知することができる。
 ここで、対の電極83,84は、その先端がシールリング40の内面(軸受空間側の面)に露出している。特に、この実施形態では、対の電極83,84は、その先端がシールリング40の内面から突出しており、対の電極83,84の先端間を架け渡すように異物が付着しやすくなっている。図9(a)は正常な状態、図9(b)は対の電極83,84の先端間を架け渡すように異物が付着して対の電極83,84間が導通している状態を示している。図9の例では、特に、対の電極83,84は、互いに根本部から突出側の先端に向かって徐々に狭まる形状(図ではハの字状)となっている。
 対の電極83,84は、フィルタ46のフィルタ孔46aの入口(軸受空間側の開口)に設けることが望ましい。フィルタ孔46aの軸受空間側に対の電極83,84が位置すれば、異物が対の電極83,84に接触しやすい。設置される対の電極83,84の数は自由であり、例えば、シールリング40の周方向に沿って所定の間隔で等間隔に、又は、不規則な間隔でランダムに設けることができる。また、シールリング40の径方向に沿って複数設けてもよい。可能であれば、すべてのフィルタ孔46aにそれぞれ対の電極83,84を配置する構成とすることもできる。
 また、循環通路閉塞部48のフィルタ47にも、センサ装置80を設けることができる。フィルタ47に設けられるセンサ装置80の構成は、前述のフィルタ46のセンサ装置80と同様であるので、説明を省略する。
 センサ装置80の配線81,82は、対の電極83,84からシールリング40の壁部43内、円筒部42内を通って、ポンプケーシングFに固定されたハウジング11の端面11aの側方を通って軸受ユニット外へ引き出されている。この実施形態では、配線81,82は、シールリング40の最も外径側に位置する循環通路閉塞部48内を通って、循環通路閉塞部48の頂部(最外径部)から外部へ引き出されている。この引き出し地点はシールリング40の各所に自由に設定してよいが、配線保護の観点から、できる限り外径寄りの地点であることが望ましい。このため、最外径部である循環通路閉塞部48の頂部を配線81,82の引き出し部とすることが有効である。
 また、この実施形態では、配線81,82の途中区間は、シールリング40の部材に埋め込まれて固定されている。すなわち、対の電極83,84よりの根本部から、外部への引き出し地点まで、配線81,82は、シールリング40の部材に埋め込まれて露出していない構成としている。ただし、配線81,82の強度や損傷の危惧がない場合は、配線81,82を、シールリング40の部材の外部に、その外面に沿わせて配置してもよい。
 ここで、シールリング40は、ハウジング11に対して回り止めされている。このため、配線81,82の断線等のトラブルを防止することができる。
 この実施形態では、シールリング40のハウジング11に対する回り止めは、シールリング40に設けた凸部、すなわち、循環通路閉塞部48及び係止部49が、循環通路12内に(前記幅方向に対して)ぴったりと入り込んでいることにより行われている。さらに、この実施形態は、その回り止めの箇所を配線81,82の引き出し地点としているので、配線81,82に外力が作用しにくくなっている。
 この回り止めは、循環通路12内に入り込む循環通路閉塞部48及び係止部49以外によって行うこともできる。例えば、シールリング40の円筒部42の端面と、ハウジング11の端面11aとの間に、互いに噛み合う凹凸等を設けることにより行うこともできる。また、シールリング40の円筒部42の内面若しくは係止部49等の軸方向への突出部材と、それに接触する外輪1の外径面との間に、互いに噛み合う凹凸等を設けることにより行うこともできる。シールリング40に凸部を、ハウジング11側に凹部を設ける場合は、その凹部は、上記のように、潤滑油用の循環通路12の開口とすることができる。
 ここで、このフィルタ孔46aの形状を、シールリング40の壁部43を軸受空間内から軸受外へ向かって徐々に狭まる形状とすることもできる。
 例えば、図10(a)(b)に示すように、フィルタ孔46aの形状を、軸受空間内から軸受外へ向かって徐々に階段状に狭まる形状とすることができる。この例では、フィルタ孔46aは、図10(b)中の符号a,b,cに示すように、その内径がa>b>cの順に徐々に小さくなっている。このため、種々の大きさの異物を、その異物の大きさに対応した位置で捕捉することができる。
 例えば、異物が、内径aを通過できない大きさである場合、すなわち、異物の最大径部分の長さがa以上である場合は、異物は、フィルタ孔46aの内径a部分を通過することができず、その上流側のフィルタ孔46aの入口付近で捕捉される。
 また、異物が、内径aを通過でき且つ内径bを通過できない大きさである場合、すなわち、異物の最大径部分の長さがa未満b以上である場合は、異物は、フィルタ孔46aの内径b部分を通過することができず、その上流側のフィルタ孔46aの内径a部分付近で捕捉される。
 さらに、異物が、内径a,bを通過でき且つ内径cを通過できない大きさである場合、すなわち、異物の最大径部分の長さがb未満c以上である場合は、異物は、フィルタ孔46aの内径c部分を通過することができず、その上流側のフィルタ孔46aの内径b部分付近で捕捉される。
 このように、フィルタ孔46aを通過する異物が、その大きさに合わせてフィルタ孔46a内の異なる位置で捕捉されるので、センサ装置80の対の電極83,84を設ける位置によって、どのような大きさの異物がフィルタ46で捕捉されたのかを電気的に把握することができる。例えば、内径a部分の入口側(軸受空間側)、内径b部分の入口側、内径c部分の入口側にそれぞれ対の電極83,84を設け、各電極83,84に対応する電気回路にそれぞれ電気が流れたこと、あるいは、その流れた電流の大きさ、電圧等の電気的出力の変化を検出する出力検出装置を設けることで、異物の大きさが、内径a>b>cに対してどのような大小関係にあるのかを把握することができる。
 また、例えば、図10(c)(d)に示すように、フィルタ孔46aの形状を、軸受空間内から軸受外へ向かって徐々にテーパー状に狭まる形状とすることができる。この例では、フィルタ孔46aは、図10(d)中の符号d,eに示すように、その内径がd>eとなるように、すり鉢状に徐々に小さくなっている。このため、上記の階段状のフィルタ孔46aの場合と同様、種々の大きさの異物を、その異物の大きさに対応した位置で捕捉することができる。センサ装置80の対の電極83,84の設置、及び、その対の電極83,84をフィルタ孔46aの長さ方向に沿って複数設けることができる点についても同様である。
 さらに、フィルタ孔46aは、軸受空間への開口から軸受外への開口との間にオリフィス部を備える構成とすることもできる。例えば、図10(e)に示すように、シールリング40が回転した際における、そのシールリング40に対する潤滑油の相対移動方向fに対して反対方向(すなわちシールリング40の回転方向と同方向)へ伸びる導入孔46bと、その導入孔46bの奥部に設けられる溜まり部46cと、その溜まり部46cの手前(上流側)で軸受外へ向かって分岐する排出孔46dとを備えた構成を採用することができる。導入孔46bの入口部は狭く、また、排出孔46dは、その排出孔46dが分岐する部分における導入孔46bよりも狭くなっているので、オリフィス部を構成している。
 相対移動方向fに沿って流れる潤滑油に含まれる異物は、入口が狭い導入孔46bのオリフィスの効果によって図中の矢印gの方向へ誘導され、その後、潤滑油よりも密度の大きい異物は、矢印iのように流れの慣性力で奥部の溜まり部46cへ、潤滑油は矢印hのように排出孔46dを通って軸受外へ流出する。溜まり部46cに入った異物は、センサ装置80の対の電極83,84によって検知される。
 なお、循環通路閉塞部48に備えるフィルタ47についても、そのフィルタ孔47aの形状を、上記した各形態からなるフィルタ46のフィルタ孔46aと同様の構成とできる。すなわち、フィルタ孔47aの形状を、シールリング40の循環通路閉塞部48を循環通路12側から軸受外へ向かって徐々に狭まる形状としたり、あるいは、オリフィス部を備えた形状とすることもできる。
 また、以上の実施形態では、循環通路12の軸方向一端側の開口12cは、循環通路閉塞部48のフィルタ47を介して軸受外の空間に臨む構成としたが、この開口12cを、シールリング40内の空間に臨むようにした構成を採用することもできる。すなわち、循環通路12の軸方向一端側の開口12cからの潤滑油が、壁部43のフィルタ46を通過する構成である。この場合、循環通路閉塞部48のフィルタ47の設置は不要である。
 また、この実施形態では、シールリング40はハウジング11と外輪1の両方に固定された形態となっているが、これを、ハウジング11には固定せず外輪1のみに取り付けた構成としてもよい。逆に、外輪1には固定せずハウジング11のみに取り付けた構成としてもよい。
 さらに、これらの実施形態では、外輪1は静止側、内輪2は回転側であり、シールリング40は固定側である外輪1側に固定されるが、このシールリング40を、回転側である内輪2に嵌合等により固定することも可能である。あるいは、内輪2に固定された他の部材に固定することも可能である。
 仮に、シールリング40を回転側に取り付ける場合、シールリング40にセンサ装置50を取り付ける際には、配線51,52を軸受外に引き出す構造として、回転側の部材に取り付けた配線81,82と、固定のハウジング11側に取り付けた配線81,82とを、ブラシ等の接触子を用いて常時通電できる構造とすることができる。
 また、外輪1を回転側、内輪2を静止側とした転がり軸受にもこの発明のシールリング40を適用できる。この場合、シールリング40は、静止側である内輪2側に固定した構成とすることもできるし、回転側である外輪1に固定した構成とすることもできる。
 また、この実施形態ではシール部材を円環状のシールリング40としたが、円環状以外のシール部材であっても、そのシール部材内に潤滑油の流路が設けられ、その流路が、軸受空間内から軸受外へと流出する潤滑油に遠心力を付与する遠心力付与流路を構成し、且つ、遠心力により潤滑油内から分離された異物を捕捉する異物捕捉部を備える限りにおいて、円環状のシール部材には限定されない。例えば、側面視における軸受空間の円周方向に沿って、C字状を成すシール部材等であってもよい。
 上記の実施形態は、オイルポンプ装置10として、駆動力の入力により潤滑油を循環経路へ送り出すプランジャポンプ(ピストンポンプ)を採用し、そのプランジャポンプが備える転がり軸受ユニット20においてこの発明のシール部材を適用したが、この発明は、上記の実施形態には限定されず、他の構成からなるオイルポンプ装置にも適用できる。また、ポンプ装置以外にも、転がり軸受ユニットと、その転がり軸受ユニットと共通の潤滑油によって潤滑される作動機構部を備える種々の装置に、この発明を適用できる。
 例えば、外部から供給される潤滑油(作動油)の流体圧により複数のピストンを往復動させ、その各ピストンの往復動により軸部材を軸回り回転させて回転駆動力を出力するプランジャポンプモータ(ピストンポンプモータ)等の油圧駆動装置において、その装置が備える転がり軸受ユニットに、この発明のシール部材を適用することができる。
 また、その他にも、この発明のシール部材は、転がり軸受ユニットを備えた各種の装置、特に、転がり軸受から発生する摩耗粉(鉄粉等)、剥離片等の異物が、転がり軸受外における潤滑油の循環経路の途中にある作動機構部に侵入することを防ぐ必要がある種々の装置に適用できる。
1 外輪(外側軌道輪)
2 内輪(内側軌道輪)
3 転動体
4 保持器
5,6,7 間座
8 押え部材
10 オイルポンプ装置
11 ハウジング
12,13 循環通路
20 軸受ユニット
21,22,23 転がり軸受
30 作動機構部
31 接続部材
32 軸部材
40 シールリング
44,46,47 フィルタ
48 循環通路閉塞部
49 係止部
50 基板
51a,51b 永久磁石
60 電気回路
70 制御手段
71 出力検出装置
72 データ蓄積手段
73 経時変化確認手段
80 センサ装置
81,82 配線
83,84 電極

Claims (15)

  1.  内輪(2)及び外輪(1)と、
     前記内輪(2)と前記外輪(1)との間の軸受空間に配置される転動体(3)と、
     前記軸受空間内からの潤滑油の通過を許容し金属片の通過を阻止するフィルタ(F,46,47)と、
     前記対の電極からそれぞれ配線が伸びて電源に至る電気回路(60)と、
     前記対の電極間への金属片の付着に伴う前記電気回路の電気的出力の変化を検出することによって潤滑油に含まれる金属片の状態を検知する出力検出装置(71)と、
    を備える転がり軸受の異常検知装置。
  2.  前記フィルタ(F,46,47)に設けられ互いに間隔を置いて配置される対の永久磁石(51a,51b)を備え、
     前記電気回路(60)は、前記対の永久磁石(51a,51b)をそれぞれ電極とする請求項1に記載の転がり軸受の異常検知装置。
  3.  前記対の永久磁石(51a,51b)の間に隙間を介して磁性材料が配置される請求項2に記載の転がり軸受の異常検知装置。
  4.  前記フィルタ(F,46,47)は潤滑油流通用の貫通穴(44,46a,47a)を備え、前記対の永久磁石(51a,51b)は、前記貫通穴(44,46a,47a)を挟んで両側に配置される請求項2又は3に記載の転がり軸受の異常検知装置。
  5.   前記出力検出装置(71)が検知する電気的出力は、前記電気回路(60)における電圧の分圧出力である請求項2から4のいずれか一つに記載の転がり軸受の異常検知装置。
  6.   前記対の永久磁石(51a,51b)からなる電極を複数組配置し、その複数組の電極は、互いに電極間の隙間を異ならせている請求項2から5のいずれか一つに記載の転がり軸受の異常検知装置。
  7.   前記対の永久磁石(51a,51b)は、その表面に電気導電性の被覆層を備え、前記被覆層と前記電気回路の一部を構成する回路基板の端子とが電気的に接続されている請求項2から6のいずれか一つに記載の転がり軸受の異常検知装置。
  8.   前記出力検出装置(71)は、電気的出力と所定の閾値に基づいて異常状態を判定する請求項2から7のいずれか一つに記載の転がり軸受の異常検知装置。
  9.  前記出力検出装置(71)が異常状態と判定した情報を記憶するデータ蓄積手段(72)と、前記データ蓄積手段(72)が記憶する過去の判定の情報によって、異常状態の経時変化を確認する経時変化確認手段(73)とを備える請求項2から8のいずれか一つに記載の転がり軸受の異常検知装置。
  10.  前記軸受空間の外側に位置し潤滑油によって部材同士の可動部が潤滑される作動機構部(G,30)と、
     前記外輪(1)若しくは前記外輪(1)に固定された部材、又は、前記内輪(2)若しくは前記内輪(2)に固定された部材の一方に取り付けられ、前記軸受空間内から前記作動機構部(G,30)へ通じる潤滑油通路を覆うシール部材(40)と、
     前記シール部材(40)に設けられ前記軸受空間内から前記作動機構部(G,30)へと流出する潤滑油に含まれる異物を捕捉する前記フィルタ(F,46,47)と、
    を備え、
     前記対の電極は前記シール部材(40)に設けられ、
     前記対の電極、前記電気回路(60)及び前記出力検出装置(71)とで前記対の電極間への金属からなる異物の付着を電気的に検出するセンサ装置(80)を構成し、
     前記シール部材(40)と前記外輪(1)若しくは前記外輪(1)に固定された部材、又は、前記シール部材(40)と前記内輪(2)若しくは前記内輪(2)に固定された部材との間に設けられ互いの相対回転を規制する回り止め手段
    を備える請求項1に記載の転がり軸受ユニット。
  11.  前記センサ装置(80)を前記フィルタ(F,46,47)に備え、
     前記フィルタ(F,46,47)を前記転がり軸受の軸受空間の側方開口を覆う壁部に周方向に沿って備える
    請求項10に記載の転がり軸受ユニット。
  12.  前記外輪(1)の外径側にハウジング(11)が固定され、
     前記回り止め手段は、前記シール部材(40)が備える凸部が、前記ハウジング(11)が備える潤滑油の循環通路内に入り込むことにより行われている
    請求項10に記載の転がり軸受ユニット。
  13.  前記循環通路は、前記転がり軸受の軸受空間の側方開口よりも外径側において前記ハウジング(11)の端面に開口し、
     前記シール部材(40)の凸部は、前記循環通路の開口から軸方向に沿って前記循環通路内に入り込んでいるフィルタ付きの循環通路閉塞部(48)である
    請求項12に記載の転がり軸受ユニット。
  14.  前記センサ装置(80)は、
     前記フィルタ(F,46,47)の軸受空間側に位置し互いに間隔を置いて配置される対の電極を備え、
     前記対の電極から前記電源に至る配線は、前記回り止め手段が位置する方位に軸受外への引き出し部を備える
    請求項10乃至13のいずれか一つに記載の転がり軸受ユニット。
  15.  前記センサ装置(80)は、
     前記フィルタ(F,46,47)の軸受空間側に位置し互いに間隔を置いて配置される対の電極を備え
     前記対の電極から前記電源に至る配線は、前記循環通路閉塞部(48)に軸受外への引き出し部を備える
    請求項10乃至13のいずれか一つに記載の転がり軸受ユニット。
PCT/JP2016/072387 2015-08-05 2016-07-29 転がり軸受の異常検知装置 WO2017022682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016003543.8T DE112016003543T5 (de) 2015-08-05 2016-07-29 Abnormalitätsdetektor für Wälzlager
US15/750,003 US10359077B2 (en) 2015-08-05 2016-07-29 Rolling bearing with abnormality detector
CN201680045865.7A CN107923569B (zh) 2015-08-05 2016-07-29 滚动轴承的异常检测装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015154883A JP6581423B2 (ja) 2015-08-05 2015-08-05 転がり軸受の異常検知装置
JP2015-154883 2015-08-05
JP2015222177A JP6616163B2 (ja) 2015-11-12 2015-11-12 転がり軸受
JP2015-222177 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017022682A1 true WO2017022682A1 (ja) 2017-02-09

Family

ID=57943059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072387 WO2017022682A1 (ja) 2015-08-05 2016-07-29 転がり軸受の異常検知装置

Country Status (4)

Country Link
US (1) US10359077B2 (ja)
CN (1) CN107923569B (ja)
DE (1) DE112016003543T5 (ja)
WO (1) WO2017022682A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110479A1 (ja) * 2016-12-13 2018-06-21 Ntn株式会社 転がり軸受の異常検知装置
JP2019173710A (ja) * 2018-03-29 2019-10-10 本田技研工業株式会社 ポンプ軸支持構造
CN111670311A (zh) * 2018-02-13 2020-09-15 Ntn株式会社 轴承装置和主轴装置
US11226005B2 (en) * 2017-12-18 2022-01-18 Schaeffler Technologies AG & Co. KG Bearing arrangements, and module carrier for them

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10705039B2 (en) * 2017-03-27 2020-07-07 Nabtesco Corporation Sensor for detecting magnetic powders in a lubricant
CN113728225A (zh) * 2019-04-26 2021-11-30 纳博特斯克有限公司 传感器
CN111855755A (zh) * 2019-04-26 2020-10-30 纳博特斯克有限公司 传感器
JP2021076386A (ja) 2019-11-05 2021-05-20 ナブテスコ株式会社 センサ
JP7366731B2 (ja) * 2019-12-17 2023-10-23 ナブテスコ株式会社 センサ
US20230258531A1 (en) * 2022-02-14 2023-08-17 Bell Textron Inc. Method and system for gearbox failure detection using radioactive components
US20230296562A1 (en) * 2022-03-18 2023-09-21 Dana Italia S.R.L. Metal debris sensor for oil with temperature compensation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316519A (ja) * 1988-03-24 1989-12-21 Skf Gmbh 軸受におけるシールおよび電気パルス発生のための装置
JPH0540698U (ja) * 1991-10-31 1993-06-01 帝人製機株式会社 機械摩耗検知器
JPH0611376A (ja) * 1992-06-26 1994-01-21 Komatsu Ltd 油圧回路の金属粉量検出装置
JP2002310967A (ja) * 2001-04-06 2002-10-23 Komatsu Ltd 導電体検出装置
JP2004293776A (ja) * 2002-12-03 2004-10-21 Nsk Ltd センサ付軸受
JP2014231856A (ja) * 2013-05-28 2014-12-11 Ntn株式会社 転がり軸受

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1077106A (fr) * 1953-03-21 1954-11-04 Boyer Metallurg Perfectionnements apportés aux dispositifs du genre des roulements, notamment pour rouleaux de transporteurs
US3294298A (en) * 1964-12-07 1966-12-27 Richard E Danielson Hammer holder
US3283855A (en) * 1965-06-24 1966-11-08 Kaplan Ruth String-wound spring motor
JPH0540698A (ja) 1991-08-02 1993-02-19 Nec Ibaraki Ltd 主記憶ページ管理方式
US5696331A (en) 1992-06-26 1997-12-09 Kabushiki Kaisha Komatsu Seisakusho Apparatus for detecting metal powder amount in hydraulic circuit
JPH07280180A (ja) 1994-04-09 1995-10-27 Sanyo Special Steel Co Ltd 潤滑油の鉄粉汚濁の検知方法及びその検知センサー
JP4067627B2 (ja) 1998-02-20 2008-03-26 日本精工株式会社 オイルエア潤滑装置
US6546785B1 (en) * 1998-04-02 2003-04-15 Rockwell Automation Technologies, Inc. System and method for dynamic lubrication adjustment for a lubrication analysis system
WO2002033255A1 (fr) * 2000-10-16 2002-04-25 Seiko Epson Corporation Mecanisme a ressort moteur et equipement pourvu d"un tel mecanisme
JP3841054B2 (ja) * 2002-08-08 2006-11-01 株式会社デンソー フィルタおよびそれを用いた燃料噴射装置
AU2012232118B2 (en) * 2011-03-22 2015-11-26 Ntn Corporation Roller bearing, and travel device provided with roller bearing
JP6075977B2 (ja) * 2012-06-19 2017-02-08 Ntn株式会社 転がり軸受
US9829041B2 (en) 2013-05-28 2017-11-28 Ntn Corporation Rolling bearing
WO2015152329A1 (ja) * 2014-04-04 2015-10-08 Ntn株式会社 フィルタ付き転がり軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316519A (ja) * 1988-03-24 1989-12-21 Skf Gmbh 軸受におけるシールおよび電気パルス発生のための装置
JPH0540698U (ja) * 1991-10-31 1993-06-01 帝人製機株式会社 機械摩耗検知器
JPH0611376A (ja) * 1992-06-26 1994-01-21 Komatsu Ltd 油圧回路の金属粉量検出装置
JP2002310967A (ja) * 2001-04-06 2002-10-23 Komatsu Ltd 導電体検出装置
JP2004293776A (ja) * 2002-12-03 2004-10-21 Nsk Ltd センサ付軸受
JP2014231856A (ja) * 2013-05-28 2014-12-11 Ntn株式会社 転がり軸受

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110479A1 (ja) * 2016-12-13 2018-06-21 Ntn株式会社 転がり軸受の異常検知装置
US11300159B2 (en) 2016-12-13 2022-04-12 Ntn Corporation Abnormality detection device for rolling bearing
US11226005B2 (en) * 2017-12-18 2022-01-18 Schaeffler Technologies AG & Co. KG Bearing arrangements, and module carrier for them
CN111670311A (zh) * 2018-02-13 2020-09-15 Ntn株式会社 轴承装置和主轴装置
JP2019173710A (ja) * 2018-03-29 2019-10-10 本田技研工業株式会社 ポンプ軸支持構造

Also Published As

Publication number Publication date
US10359077B2 (en) 2019-07-23
CN107923569A (zh) 2018-04-17
CN107923569B (zh) 2020-10-27
DE112016003543T5 (de) 2018-04-12
US20180223907A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017022682A1 (ja) 転がり軸受の異常検知装置
JP6581423B2 (ja) 転がり軸受の異常検知装置
WO2018110479A1 (ja) 転がり軸受の異常検知装置
US20180175695A1 (en) Explosion-proof current diverting device
US10590791B2 (en) Shaft seal assembly with contaminant detection system
JP2017190813A (ja) 転がり軸受ユニット
CN108884875B (zh) 滚动轴承单元
JP6685109B2 (ja) 転がり軸受
JP2016029303A (ja) 転がり軸受
WO2017082391A1 (ja) 転がり軸受ユニット
JP6616163B2 (ja) 転がり軸受
JP2017180727A (ja) 転がり軸受ユニット
US10458476B2 (en) Rolling element bearing
JP2018168994A (ja) 転がり軸受ユニット
JP2018146040A (ja) 転がり軸受
CN111480015B (zh) 轴承装置和用于该轴承装置的模块承载件
JP6635861B2 (ja) 転がり軸受ユニット
JP2017057968A (ja) 転がり軸受
JP2019173727A (ja) 斜軸式液圧回転機
JP2017190811A (ja) 転がり軸受ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003543

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832961

Country of ref document: EP

Kind code of ref document: A1