WO2017022046A1 - エンジンバルブの軸接部の探傷検査方法および装置 - Google Patents
エンジンバルブの軸接部の探傷検査方法および装置 Download PDFInfo
- Publication number
- WO2017022046A1 WO2017022046A1 PCT/JP2015/071911 JP2015071911W WO2017022046A1 WO 2017022046 A1 WO2017022046 A1 WO 2017022046A1 JP 2015071911 W JP2015071911 W JP 2015071911W WO 2017022046 A1 WO2017022046 A1 WO 2017022046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- flaw detection
- inspection
- eddy current
- ultrasonic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/904—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9013—Arrangements for scanning
- G01N27/902—Arrangements for scanning by moving the sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/223—Supports, positioning or alignment in fixed situation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/27—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/28—Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0234—Metals, e.g. steel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/267—Welds
Definitions
- the present invention relates to a flaw detection inspection method and apparatus for a shaft contact portion of an engine valve, and more particularly to a flaw detection inspection method and device for flaw detection inspection of an engine valve shaft contact portion using an ultrasonic flaw detection probe and an eddy current flaw detection probe.
- the engine valve for automobiles has an umbrella part integrally formed on one end of the shaft part.
- the umbrella part exposed to the combustion gas in the combustion chamber or exhaust passage is heat resistant.
- the shaft portion is not required to be as heat resistant as the umbrella portion.
- the umbrella side member made of metal with excellent heat resistance and the shaft end side member made of metal with slightly lower heat resistance but excellent mechanical strength are joined by friction welding (hereinafter referred to as shaft joining).
- shaft joining An integrated valve is known. Since both durability and cost reduction can be realized by selecting a metal material that matches the characteristics required for the umbrella side and the shaft side of the valve, it tends to be widely used in recent years.
- a sensor unit equipped with an eddy current flaw detection sensor and an ultrasonic flaw detection sensor is caused to travel along a welding seam.
- the eddy current flaw detection sensor detects a surface flaw on the seam
- the sensor unit travels at that position.
- a welding seam inspection device is disclosed that stops and performs a flaw inspection inside the seam (hereinafter referred to as an internal flaw inspection) using an ultrasonic flaw detection sensor.
- Patent Document 1 is effective for flaw detection inspection of a joint of a flat metal member, but the inspection target is relatively small, and the valve shaft portion including the axial contact portion that is the joint is an elongated circle. An engine valve that is columnar cannot be inspected efficiently, particularly an internal flaw detection inspection.
- a method for flaw-detecting the inside of the joint part by bringing the ultrasonic flaw detection sensor into contact with the end face of a metal bar-like member having a joint part in the longitudinal direction so that the ultrasonic flaw detection sensor faces the end face. It has been known. However, it is necessary to increase the transmission efficiency of ultrasonic waves between the flaw detection sensor and the rod-shaped member end surface by interposing a contact medium (for example, water or oil) between the ultrasonic flaw detection sensor and the rod-shaped member end surface, which is very troublesome. Automation of internal flaw detection is difficult.
- a contact medium for example, water or oil
- the metal rod-shaped member is held so that the end face faces the ultrasonic flaw detection sensor provided in the water, and the inside of the joint portion of the metal rod-shaped member is held.
- a method for flaw detection (called a water immersion flaw detection method) is known. Since water, which is a contact medium, is always present between the ultrasonic flaw detection sensor and the end surface of the rod-shaped member, the internal flaw detection inspection can be automated.
- a surface flaw detection apparatus equipped with an eddy current flaw detection sensor is used to perform a surface flaw inspection at the axial contact portion of the valve, and an internal flaw detection apparatus equipped with an ultrasonic flaw detection sensor.
- An internal flaw detection inspection device configured to hold the valve so that the end face of the valve shaft faces the ultrasonic flaw detection sensor placed in the filled water tank was subjected to an internal flaw detection inspection at the axial contact portion of the valve .
- JP-A-6-258295 (see paragraphs 0016 to 0023 and FIGS. 1 to 4)
- a valve that has been inspected by one flaw detection inspection apparatus is taken out from the apparatus, transported to the other flaw detection inspection apparatus, and then carried into the other apparatus.
- the cycle time in the flaw detection inspection process is long.
- the inventor considered the integration of two inspection devices. Specifically, the ultrasonic flaw detection laboratory and the eddy current flaw inspection room are arranged adjacent to each other in the apparatus housing, and the three inspection rooms are arranged in parallel in the left-right direction adjacent to each other by a distance corresponding to the distance between the two inspection rooms. If the valve support is moved integrally in the left-right direction and the up-down direction, a new valve outside the apparatus is placed in one inspection room, an inspected valve in one inspection room is in the other inspection room, and the other inspection room is in the other inspection room. We thought that inspected valves could be transferred to the outside of the device at the same time, making it possible to downsize the flaw detection facility and shorten the cycle time required for flaw detection.
- the inventor made a prototype of a flaw detection inspection apparatus and verified its effect, and as a result, it was confirmed that it was effective.
- the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to use an ultrasonic flaw detection probe and an eddy current flaw detection probe that can downsize equipment and reduce the cycle time of inspection. It is an object of the present invention to provide a flaw detection inspection method and apparatus for a shaft contact portion of an engine valve.
- a first aspect of the present invention is a method for flaw-inspecting the inside and surface of an axial contact portion of an engine valve using an ultrasonic flaw detection probe and an eddy current flaw detection probe,
- the valve In the ultrasonic inspection chamber in the apparatus housing, the valve is held so that the end face of the valve shaft portion faces the ultrasonic flaw detection probe facing upward in the water in the water tank, and the shaft is moved by the ultrasonic flaw detection probe.
- the valve In the eddy current examination chamber adjacent to the ultrasonic examination room in the apparatus housing, the valve is disposed so that the side surface including the axial contact portion of the lower valve shaft portion approaches and faces the eddy current flaw detection probe disposed sideways.
- a valve transfer mechanism that moves back and forth along the left and right directions adjacent to each other in the inspection chambers includes a valve at a predetermined loading position in the ultrasonic inspection chamber, and an internal flaw detection inspection valve in the ultrasonic inspection chamber in the eddy current inspection.
- the external flaw detection inspected valve of the eddy current inspection chamber is simultaneously transferred to a predetermined unloading position while maintaining a posture in which the valve shaft portion faces downward.
- a second aspect of the present invention is an apparatus for flaw-inspecting the inside and the surface of the axial contact portion of an engine valve using an ultrasonic flaw detection probe and an eddy current flaw detection probe
- an ultrasonic examination room equipped with an ultrasonic flaw detection probe and an eddy current examination room equipped with an eddy current flaw detection probe are provided adjacent in the left-right direction
- the ultrasonic examination room includes a water tank in which the ultrasonic flaw detection probe is arranged upward in water, and a first valve that holds a valve at a predetermined position where an end surface of a valve shaft portion directly faces the ultrasonic flaw detection probe in water.
- a holding mechanism is provided, On the other hand, in the eddy current inspection chamber, a side surface including a laterally arranged eddy current flaw probe and a shaft contact portion of a lower valve shaft portion holds the valve at a predetermined position close to and directly facing the eddy current flaw probe.
- the device housing includes Valves that respectively support the valves so that the valve shafts face downwards, which are arranged at three positions sequentially spaced by the distance between the first and second holding mechanisms along the adjacent left and right directions of the two examination rooms.
- the support tool moves integrally in the left-right direction and the up-down direction, and a valve at a predetermined loading position is moved to the first valve holding mechanism, and an internal flaw-inspected valve held by the first valve holding mechanism is moved.
- the front second valve holding mechanism is provided with a valve transfer mechanism for simultaneously transferring the surface inspection-inspected valve held by the second valve holding mechanism to a predetermined carry-out position,
- a control unit for controlling driving of the valve transfer mechanism, the first and second valve holding mechanisms, the ultrasonic flaw detection probe, the eddy current flaw detection probe, and the rotation mechanism is provided.
- each valve support moves integrally in the left and right direction and the up and down direction (advance and retreat operation and elevating operation)
- the valve at a predetermined loading position is placed in the ultrasonic examination room.
- the inspected valve in the ultrasonic inspection room is simultaneously transferred to the eddy current inspection room, and the inspected valve in the eddy current inspection room is simultaneously transferred to a predetermined unloading position.
- each valve support supports the valves held in the predetermined loading position, the first valve holding mechanism, and the second valve holding mechanism, respectively, and moves integrally in the forward direction and the up and down direction. Then, the valves supported by the respective valve supports are simultaneously transferred (delivered) to the first valve holding mechanism, the second valve holding mechanism, and the predetermined unloading position. After that, each valve support that has been emptied by transferring (delivering) the valve moves together in the backward and up / down directions and returns to its original position. In the inspection room, the flaw detection inspection using the ultrasonic flaw detection probe and the eddy current flaw detection probe for the axial contact portions of the valves transferred to the first valve holding mechanism and the second valve holding mechanism, respectively, has been completed.
- the valve at a predetermined loading position is transferred to the ultrasonic examination room by repeating the advancing / retreating / raising / lowering operation in which each valve support moves integrally in the left-right direction and the up-down direction, and the axial contact portion
- the surface flaw inspection is carried out, and then transferred to the eddy current inspection chamber and subjected to the internal flaw detection of the axial contact portion, and then transferred to a predetermined unloading position.
- a single inspection apparatus in which an ultrasonic inspection room equipped with an ultrasonic flaw detection probe and an eddy current inspection room equipped with an eddy current flaw detection probe are integrated in the apparatus housing can be dealt with.
- two operations which have been performed separately in the past, are the removal (transfer) of a valve that has been inspected in one inspection device to the outside (transfer) and the introduction (transfer) of the valve to the other inspection device,
- the operation can be performed by a series of operations such as the transfer of the valve from the ultrasonic examination room to the eddy current examination room, which leads to a reduction in the cycle time of the flaw detection inspection process.
- the surface flaw inspection process is performed in the eddy current inspection chamber.
- the posture of the valve transferred from the ultrasonic examination room to the eddy current examination room and from the eddy current examination room to the predetermined unloading position is a posture in which the valve shaft portion faces downward, so when transferring the valve, Water droplets adhering to the valve shaft drop downward from the shaft end side.
- the valve transfer mechanism includes a slide frame capable of moving back and forth in the left-right direction adjacent to the two examination chambers, and a vertical movement with respect to the slide frame.
- the valve support is assembled so as to be operable.
- Each valve support is configured so that it can be moved up and down with respect to a slide frame that can be moved back and forth in the left and right direction. Therefore, the structure and drive control of the valve transfer mechanism are complicated accordingly. There are significant advantages.
- valves to be inspected have valves with different specifications such as umbrella diameter and overall length, and the valve delivery positions in the valve transfer mechanism including the predetermined valve carry-in position and valve carry-out position are different in the vertical direction.
- each valve support can be moved up and down with respect to the slide frame, the vertical lift of each valve support can be adjusted according to the valve specifications and the height of the valve delivery position. By adjusting, it is possible to respond without changing the valve delivery position at all.
- the valve transfer mechanism includes a slide frame that can be moved back and forth in the left-right direction adjacent to the two examination chambers and can be moved up and down in the vertical direction, and the slide frame. And the valve support integrated with the valve.
- each valve support can be configured to be movable up and down in the vertical direction with respect to the slide frame. Instead, each valve support can move integrally in the left-right direction and the up-down direction. Therefore, the configuration of the valve transfer mechanism is simplified accordingly.
- control for driving the valve transfer mechanism is simplified because each valve support is not moved up and down with respect to the slide frame.
- the flaw detection inspection equipment since the flaw detection inspection of the inside and the surface of the axial contact portion of the valve can be performed by one flaw detection inspection apparatus, the flaw detection inspection equipment becomes compact and simple.
- the transfer of the valve from the predetermined loading position to the ultrasonic examination room, the transfer of the valve from the ultrasonic examination room to the eddy current examination room, and the transfer of the valve from the vortex examination room to the predetermined discharge position are performed simultaneously.
- the valve transfer operation to the outside of the ultrasonic inspection apparatus and the valve transfer operation to the eddy current inspection apparatus, which have been performed separately in the past, are performed separately. Since the transfer is performed in a series of operations, the cycle time of the flaw detection inspection inside and on the surface of the valve shaft can be greatly shortened.
- valve transport path since the valve with water droplets is not transported to the subsequent process through the valve transport path, the valve transport path is immersed in water, or processing in the subsequent process is not hindered by water droplets adhering to the valve. Further, it is not necessary to provide water drop removing means such as a dryer or a blower in the flaw detection inspection process.
- the third aspect of the present invention by adjusting the vertical movement of the valve support in accordance with the specification of the valve, various valve types having different specifications can be obtained without changing the structure on the device side. Since the flaw detection inspection becomes possible, a flaw detection inspection apparatus excellent in versatility is provided.
- the control of the valve transfer mechanism is also simplified, and the cost of the flaw detection inspection apparatus is reduced.
- 1 is a longitudinal sectional view of an engine valve for a shaft-joined internal combustion engine that is an inspection object of a flaw detection inspection method according to the present invention.
- 1 is a front view of a flaw detection inspection apparatus that is a first embodiment of the present invention. It is a top view of the 1st, 2nd valve
- FIG. 4 is a longitudinal sectional view (a sectional view taken along line IV-IV shown in FIGS. 2 and 3) of an ultrasonic examination room which is a main part of the inspection apparatus.
- FIG. 1 shows an example of an engine valve for a shaft-joined internal combustion engine.
- Reference numeral 1 denotes a poppet valve in which an umbrella part 4 is integrally formed on one end side of a shaft part 2 that extends straight through an R-shaped fillet part 3 that gradually increases in outer diameter.
- a tapered valve seat 4a is provided on the outer periphery.
- Reference numeral 4 b is an umbrella table of the valve 1, and reference numeral 2 b is a shaft end surface of the valve 1.
- the poppet valve 1 includes a workpiece W1 on the umbrella portion 4 side which is a valve intermediate member made of a metal material having excellent heat resistance (for example, SUH35), and a metal material having excellent mechanical strength (for example, SUH11).
- the shaft end surfaces of the workpiece W2 on the shaft end side, which is the shaft end member configured as described above, are composed of a workpiece joined body joined and integrated by friction welding.
- a shaft contact portion (joint portion) 2a of the umbrella side workpiece (valve intermediate member) W1 and the shaft end side workpiece (shaft end member) W2 becomes obvious. However, it is difficult to distinguish with the naked eye.
- an ultrasonic inspection chamber 20 having an ultrasonic flaw detection probe 22 (see FIG. 4) and a vortex flow having a vortex flaw detection probe 32 (see FIG. 5).
- the examination room 30 is provided adjacent to the left-right direction (FIG. 2, 3 left-right direction).
- a water tank 21 containing water 21 a is disposed in the ultrasonic examination room 20, and an ultrasonic flaw detection probe 22 is disposed on the bottom in the water tank 21.
- the valve 1 is held above the water tank 21 so as to move up and down in the vertical direction so that the end surface 2b of the valve shaft portion 2 is in a predetermined position facing the ultrasonic flaw detection probe 22 in water.
- a first chuck 24 that is a valve holding mechanism is provided.
- the first chuck 24 has a pair of claws 24 a (see FIGS. 3 and 4) that are opened and closed in the left-right direction by an air cylinder (not shown), and is a servo motor interposed between the apparatus housing 12. 25 and the linear guide / ball screw drive unit 26 can be moved up and down with respect to the apparatus housing 12 as shown by arrows in FIG.
- the valve shaft portion 2 transferred from a predetermined valve loading position P1 (see FIG. 2) by a valve transfer mechanism 40 described later is directed downward.
- the valve 1 having the posture is held by the first chuck 24, and the end surface 2b of the valve shaft portion 2 is lowered to a predetermined position facing the ultrasonic flaw detection probe 22 in water.
- the internal flaw detection inspection 2a is performed.
- the inspection by the ultrasonic flaw detection probe 22 is instantaneously terminated, and the valve 1 after the inspection is raised to the original position by the first chuck 24 and transferred to the adjacent eddy current inspection chamber 30 by the valve transfer mechanism 40. .
- an eddy current flaw detection probe 32 is disposed in the eddy current inspection chamber 30 so as to face sideways, and transferred from the ultrasonic inspection chamber 20 by a valve transfer mechanism 40 above the probe 32.
- the second valve holding mechanism is a second valve holding mechanism that holds the valve 1 in a predetermined position where the side surface including the shaft contact portion 2a of the valve shaft portion 2 approaches the eddy current flaw detection probe 32 and faces the vortex flaw detection probe 32.
- the chuck 34 is provided. That is, the second chuck 34 has a pair of claws 34a (see FIGS. 3 and 5) that open and close in the left-right direction by an air cylinder (not shown), like the first chuck 24 of the ultrasonic examination chamber 20.
- the servo motor 35 and the linear guide / ball screw drive unit 36 interposed between the apparatus housing 12 and the apparatus housing 12 can be moved up and down with respect to the apparatus housing 12 as shown by arrows in FIG.
- the pair of claws 34a constituting the second chuck 34 are configured so as to form an umbrella receiving surface having a circular arc section that is continuous in the circumferential direction and supports the valve umbrella portion 4 in cooperation with each other when closed.
- the valve 1 is held in a form in which the valve umbrella portion 4 is supported on the second chuck 34 (the claw 34a) and moves up and down.
- a vertically long cylindrical body 31 is rotatably supported on the horizontal base plate 12 a fixed to the apparatus housing 12, and on the inner side of the upper end of the cylindrical body 31 whose diameter is increased.
- the flaw detection probe 32 is provided opposite to the rotation center axis L of the cylindrical body 31 so that the flaw detection probe 32 can rotate integrally with the cylindrical body 31.
- Reference numerals 31a and 31b are drive motors and belts, and reference numerals 31c1 and 31c2 are drive-side pulleys and driven-side pulleys.
- Reference numeral 31d is a cylindrical probe cover that covers the flaw detection probe 32 and is fixed to the horizontal base plate 12a.
- the driving motor 31a, the driving pulley 31c1, the belt 31b, the driven pulley 31c2, and the cylindrical body 31 are rotated to rotate the eddy current flaw detection probe 32 along the outer periphery of the valve shaft portion 2 (the axial contact portion 2a).
- a mechanism 33 is configured.
- a centering guide 37 for guiding the shaft portion 2 of the valve 1 held by the second chuck 34 to the cylindrical body 31 is provided in the vicinity immediately above the cover 31d.
- the centering guide 37 includes a pair of claws 37a that are opened and closed 180 degrees to the left and right by an air cylinder (not shown), and the butted portions of the pair of claws 37a cooperate with each other when they are closed to form a tapered guide hole.
- the shaft portion 2 of the valve 1 that is carried by the second chuck 34 and descends integrally with the second chuck 34 is reliably guided along the rotation center axis L of the cylindrical body 31.
- the centering guide 37 opens in conjunction with the lowering of the second chuck 34, the second chuck 34 is lowered to a predetermined position approaching the cover 31d without interfering with the centering guide 37. be able to. That is, since the insertion amount of the valve shaft portion 2 into the cylindrical body 31 provided with the eddy current flaw detection probe 32 can be increased, the shaft contact portion 2a of the valve 1 is close to the valve umbrella portion 4, that is, at a position close to the fillet portion 3. Eddy current flaw detection can be performed even for valves with certain specifications.
- the valve 1 having a posture in which the valve shaft portion 2 faces downward is transferred from the ultrasonic inspection chamber 20 by a valve transfer mechanism 40 described later.
- the vortex flaw detection probe 32 carried by the second chuck 34 and rotating integrally with the cylindrical body 31 is moved downward while maintaining the form in which the side surface including the axial contact portion 2a of the valve shaft portion 2 approaches and faces directly.
- the surface flaw inspection of the entire periphery of the axial contact portion 2a by the eddy current flaw detection probe 32 is performed.
- the inspection by the eddy current flaw detection probe 32 is finished instantaneously in the same manner as the inspection by the ultrasonic flaw detection probe 22, and the valve 1 after the inspection is raised to the original position by the second chuck 34 and predetermined by the valve transfer mechanism 40. Are transferred to the valve unloading position P2 (see FIG. 2).
- the first chuck 24 provided in the ultrasonic examination room 20 and the second chuck 34 provided in the eddy current examination room 30 are not shown.
- the valve 1 at a predetermined valve loading position P ⁇ b> 1 is disposed in the ultrasonic examination room 20 and disposed on the back side of the ultrasonic examination room 20 and the eddy current examination room 30 adjacent to the left and right.
- the valve transfer mechanism 40 that simultaneously transfers the inspected valve 1 in the sonic inspection chamber 20 to the eddy current inspection chamber 30 and the inspected valve 1 in the vortex inspection chamber 30 to the predetermined valve unloading position P2 will be described.
- the direction in which the valve 1 is transferred by the valve transfer mechanism 40 is from left to right as shown by arrows in FIG.
- the valve transfer mechanism 40 includes a slide frame 42 that moves back and forth in the left-right direction on the back side of the ultrasonic examination chamber 20 and the eddy current examination chamber 30.
- the slide frame 42 is formed in a rectangular shape when viewed from the front with a predetermined length in the left-right direction and the up-down direction.
- the slide frame 42 is interposed between the linear guide 43 and the servo motor / ball screw drive unit 44 extending in the left-right direction.
- the device housing 12 can be moved back and forth in the left-right direction.
- a suction pad jig 45 that is a valve support for supporting the valve 1 is provided so that the shaft portion 2 faces downward.
- the suction pad jig 45 has a suction pad 45a that sucks the valve umbrella surface 4b under a negative pressure, and a slide frame is formed by a linear guide 46 and a servo motor / ball screw drive unit 47 interposed between the suction pad jig 45 and the slide frame 42. 42 can be moved up and down in the vertical direction.
- a valve transfer mechanism 40 is configured to transfer (deliver) the valve 1 that has been subjected to the flaw detection inspection to the predetermined valve carry-out position P2 while maintaining the posture in which the valve shaft portion 2 faces downward.
- valve 1 that has been carried in by the valve carrying-in slider 18 is suspended and held at the valve carrying-in position P1 in a posture with the umbrella table 4a up (valve shaft portion 2 down).
- the valve shaft portion 2 is clamped in conjunction with the lowering operation of the suction pad jig 45 of the valve transfer mechanism 40, and the umbrella table 4a faces the suction pad 45a that descends from above.
- a chuck 19 for holding the valve 1 is provided. Then, at the same time as the lowered suction pad jig 45 sucks the umbrella part 4a, the chuck 19 releases the clamping of the valve shaft part 2.
- valve carrying-out slider 38 is provided at the valve carrying-out position P2, and the valve 1 transferred to the valve carrying-out position P2 by the valve transfer mechanism 40 slides along the slider 38 by its own weight.
- a control unit U for controlling the driving of the flaw detection probe 22, the second chuck 34 of the eddy current inspection chamber 30, the alignment guide 37, the eddy current flaw detection probe 32 and the rotation mechanism 33.
- control unit U compares the flaw detection data acquired via the ultrasonic flaw detection probe 22 and the eddy current flaw detection probe 32 with each of preset tolerance values (internal flaw and surface flaw tolerance values). In order to determine the suitability and guide the valve determined to be unsuitable (either test result is NG) to a waste valve dedicated slider (not shown), a slider 38 which is a valve transport path to be described later is used. The distribution mechanism 39 provided in the middle is driven.
- each suction pad jig 45 is held by the chuck 19 at the valve loading position P ⁇ b> 1, the first chuck 24 in the ultrasonic inspection chamber 20, and the second chuck 34 in the eddy current inspection chamber 30.
- the valves 1A, 1B, and 1C are supported (adsorbed and held), raised by a predetermined amount, moved forward by a predetermined amount together with the slide frame 42 (moved to the right in FIG. 2), and then lowered by a predetermined amount.
- the valves 1A, 1B, 1C supported by the tool 45 are simultaneously transferred (delivered) to the first chuck 24, the second chuck 34, and the valve unloading position P2.
- the first chuck 24 and the second chuck 34 respectively hold the valves 1A and 1B supported (adsorbed and held) by the suction pad jig 45, respectively. Simultaneously with the holding, the support (suction holding) of the valves 1A and 1B by the suction pad jig 45 is released. On the other hand, at the valve unloading position P ⁇ b> 2, the valve 1 ⁇ / b> C released from the support (suction holding) by the suction pad jig 45 slides along the slider 38 with its own weight.
- each suction pad jig 45 After the fixed amount has risen and retracted by a predetermined amount together with the slide frame 42, the predetermined amount is lowered to return to the original position.
- each suction pad jig 45 transfers (delivers) the valves 1 ⁇ / b> A, 1 ⁇ / b> B, and 1 ⁇ / b> C, it retracts and returns to the original position.
- the valves 1A and 1B transferred to the first chuck 24 and the second chuck 34 are respectively held by the first chuck 24 and the second chuck 34 and lowered by a predetermined amount, and the ultrasonic flaw detection probe 22 is moved down.
- the vortex flaw detection probe 32 is raised by a predetermined amount and returned to the original transfer position.
- valve 1C transferred to the valve carry-out position P2 is carried out via the slider 38.
- a new valve 1 to be inspected is a slider on which the valve is transported. 18 is carried in.
- the above-described series of forward / backward movements of the valve transfer mechanism 40 constituted by the slide frame 42 and the three suction pad jigs 45, that is, the suction pad jigs 45 are lifted, advanced, lowered, lifted.
- the valve 1 held at the valve carry-in position P1 is transferred to the ultrasonic inspection chamber 20, and the surface flaw inspection of the axial contact portion 2a of the valve is performed.
- the valve unloading position P2 after being transferred to the eddy current inspection chamber 30 and subjected to the internal flaw detection inspection of the axial contact portion 2a of the valve, it is transferred to the valve unloading position P2 and unloaded.
- the flaw detection inspection equipment can be compact because the flaw detection inspection apparatus 10 can perform the flaw inspection of the inside and the surface of the shaft contact portion 2a of the valve 1. And be concise.
- the transfer of the valve 1 from the valve carry-in position P1 to the ultrasonic examination room 20, the transfer of the valve 1 from the ultrasonic examination room 20 to the eddy current examination room 30, and the eddy current examination room 30 Since the valve 1 is simultaneously transferred from the valve to the valve unloading position P2, the valve transfer operation to the outside of the first flaw detection inspection apparatus and the second flaw inspection inspection apparatus, which have been conventionally performed separately, in particular, are performed. Since the valve transfer operation is performed by a series of operations of transferring the valve from the ultrasonic examination chamber 20 to the eddy current examination chamber 30, the cycle time of the flaw detection inspection of the inside and the surface of the shaft contact portion 2a of the valve 1 is performed. Can be greatly shortened.
- the valve 1 to which water droplets are attached is not transported to a subsequent process via the slider 38 which is a valve transport path, so that the slider 38 is submerged or water droplets adhered to the valve. Therefore, processing in the subsequent process is not hindered, and it is not necessary to provide a water droplet removing means such as a dryer or a blower in the flaw detection inspection process.
- the valve 1 to be inspected includes valves having different specifications such as the umbrella diameter and the total length, and the valve transfer position in the valve transfer mechanism 40 including the predetermined valve carry-in position P1 and the valve carry-out position P2. May not match each other in the vertical direction, but each suction pad jig 45 can be moved up and down in the vertical direction with respect to the slide frame 42. Therefore, according to the specifications of the valve 1 and the height of the valve delivery position, By adjusting the vertical movement amount of the suction pad jig 45 and the like, it is possible to respond without changing the valve delivery position.
- the suction pad jig 45 that is a valve support is configured to be able to suspend and hold the valve 1 by sucking the umbrella surface 4b of the valve 1, so that the suction pad jig 45 is In order to deliver the valve 1 at a predetermined valve delivery position, it is only necessary to move the suction pad jig 45 up and down just above the valve delivery position. That is, when the suction pad jig 45 that moves up and down delivers the valve 1, the suction pad jig 45 moves the slider 18 at the valve loading position P1, the first chuck 24 in the ultrasonic inspection chamber 20, and the eddy current inspection chamber.
- the valve support in the valve transfer mechanism 40 is not the suction pad jig 45 but a chuck jig that grips the shaft portion 2 of the valve 1, for example. There is no need to devise any means for avoiding interference with the first chuck 24, the second chuck 34, and the slider 38.
- the flaw detection inspection apparatus 10A of the second embodiment is different from the flaw detection inspection apparatus 10 of the first embodiment described below in the following points.
- the valve support that constitutes the valve transfer mechanism 40 supports the valve 1 so that the valve shaft surface 2 faces downward while adsorbing the valve head 4a with negative pressure (adsorption).
- the suction pad jig 45 is configured to be capable of moving up and down in the vertical direction with respect to the slide frame 42 capable of moving back and forth in the left-right direction.
- the valve support constituting the valve transfer mechanism 40A is configured by a chuck jig 45A having a pair of claws 45b that open and close to sandwich the valve shaft portion 2, and the chuck
- the jigs 45A are respectively fixed to the lower ends of three arms 42a extending below the slide frame 42A that moves forward and backward in the left-right direction and moves up and down with respect to the apparatus housing 12, and are integrated with the slide frame 42A. ing.
- an apparatus housing 12A that is integrated with the apparatus housing 12 and extends to the left and right is disposed above the apparatus housing 12, and is separate from the slide frame 42A.
- Two slide frames 42B are moved between the device housing 12 (device housing 12A) in the left-right direction by a linear guide 43A extending in the left-right direction and a servo motor / ball screw drive unit 44A. It is configured to work.
- the slide frame 42A can be moved up and down with respect to the slide frame 42B by a linear guide 43B extending vertically and a servo motor / ball screw drive unit 44B interposed between the slide frame 42B and the second slide frame 42B.
- valve transfer mechanism 40A is configured to be capable of moving up and down in the vertical direction on the slide frame 42B, the slide housing 42B assembled to the slide housing 42A so as to be able to move back and forth in the left-right direction, and the device housing 12A.
- the slide frame 42A is assembled and three chuck jigs 45A fixed and integrated with the slide frame 42A.
- the slide frame 42A in which the chuck jig 45A is integrated is configured to be movable back and forth in the left-right direction and up and down in the vertical direction with respect to the apparatus housing 12.
- control unit U1 for controlling the driving of the valve transfer mechanism 40A is simplified because the chuck jigs 45A are not structured to move up and down with respect to the slide frame 42A.
- the first chuck 24 which is the first valve holding mechanism of the ultrasonic examination chamber 20 and the second chuck which is the second valve holding mechanism of the vortex examination chamber 30. 34 can be moved up and down with respect to the apparatus housing 12 by servo motors 25 and 35 and linear guide / ball screw drive units 26 and 36 interposed between the apparatus housing 12.
- the apparatus can be moved up and down with respect to the apparatus housing 12 by servo motors, linear guides and ball screw drive units 26A and 36A interposed between the apparatus housing 12 and the apparatus housing 12.
- the valve 1 is transferred between the valve transfer mechanism 40A (the chuck jig 45A thereof) and the first chuck 24A of the ultrasonic inspection chamber 20A and the second chuck 34A of the eddy current inspection chamber 30A.
- the gripping position of the valve 1 by the claws 24a and 34a of the first and second chucks 24A and 34A is closer to the umbrella part 4 than the gripping position of the valve 1 by the pawl 45b of the chuck jig 45A. Therefore, when the valve 1 is delivered, the claw 45b of the chuck jig 45A and the first and second chucks 24A are prevented so that the chuck jig 45A and the first and second chucks 24A and 34A do not interfere with each other.
- 34A is controlled to open and close the claws 24a, 34a.
- the first and second chucks 24A and 34A are linked with the lowering of the chuck jig 45A. Since the claws 24a and 34a are greatly opened, the claws 45b of the chuck jig 45A can be lowered below the claws 24a and 34a. Since the claws 24a, 34a grip the shaft portion 2 of the valve 1 and simultaneously the claws 45b of the chuck jig 45A release the grip of the shaft portion 2 of the valve 1, the first and second chucks 24A are opened. , 34A can be raised without interfering with 34A.
- the claw 45b opens widely in conjunction with the lowering of the chuck jig 45A.
- the claw 45b of the chuck jig 45A can be lowered below the claw 24a, 34a of the first and second chucks 24A, 34A.
- the claws 45b of the chuck jig 45A grip the shaft portion 2 of the valve 1, and the claws 24a and 34a of the first and second chucks 24A and 34A release the grip of the shaft portion 2 of the valve 1 respectively. Since it opens widely, the chuck jig 45A that has received the valve 1 can be raised without interfering with the first and second chucks 24A and 34A.
- valve 1 is carried into the valve carry-in position P1 by the slider 18, but in this second embodiment, the valve 1 is horizontally placed by the valve carry-in V-shaped guide 18A. It is carried into the valve carry-in position P1 in the posture.
- a chuck 19A that can move up and down in the vertical direction and can swing around the rotation fulcrum 19a is provided at the valve carry-in position P1. Then, the chuck 19A sandwiches the valve 1 (the shaft portion 2) on the V-shaped guide 18A and rises by a predetermined amount, swings around the rotation fulcrum 19a (swivels in the vertical direction), and the valve transfer mechanism 40A. The valve 1 is held in such a manner that the umbrella surface 4a faces upward so as to face the suction pad jig 45A.
- the eddy current inspection chambers 30 and 30A are transferred from the ultrasonic inspection chambers 20 and 20A by the valve transfer mechanism 40 and 40A.
- the valve 1 includes a shaft contact portion 2a of the lower valve shaft portion 2 with respect to the eddy current flaw detection probe 32 whose valve shaft portion 2 is carried by the second chucks 34 and 34A and rotates integrally with the cylindrical body 31. By descending while the side faces approach and face each other, the eddy current flaw detection probe 32 performs a surface flaw inspection around the entire axial contact portion 2a.
- the eddy current flaw detection probe 32 rotates with respect to the valve 1 held by the second chucks 34 and 34A.
- the valve 1 held by the second chuck 34B rotates integrally with the second chuck 34B with respect to the eddy current flaw detection probe 32B arranged horizontally.
- the second valve holding mechanism of the eddy current inspection chamber 30B is configured by a collet chuck 34B that holds the valve shaft portion 2 so that the umbrella surface 4a faces upward.
- an inner cylinder 57 that is long in the vertical direction is rotatably supported through a bearing 56 inside the outer cylinder 55 fixed to the base plate 12b, and the inner peripheral surface of the upper end portion of the inner cylinder 57 is formed in a tapered shape.
- a sleeve 57 a is formed at the upper end of the inner cylinder 57, and a collet 51 having a head 51 a having a tapered outer peripheral surface that matches the tapered surface of the sleeve 57 a is inserted into the inner cylinder 57.
- the collet 51 is formed with a through hole 51b through which the valve shaft portion 2 can be inserted, and the collet head 51a is formed with longitudinal slits (not shown) at three equally spaced locations in the circumferential direction.
- a cylindrical draw bar 52 that can be moved back and forth in the vertical direction by an air cylinder (not shown) is screwed.
- a collet chuck 34 ⁇ / b> B that grips the shaft portion 2 of the valve 1 is configured by the inner cylinder 57 in which the sleeve 57 a is formed and the collet 51 that moves forward and backward in the axial direction with respect to the inner cylinder 57.
- Reference numeral 53 denotes a positioning pin that extends into the draw bar 52 and the collet 51 and adjusts the amount of insertion of the valve shaft portion 2 into the collet chuck 34B.
- a servo motor M is disposed on the base plate 12b adjacent to the outer cylinder 55, and the rotation of the servo motor M is transmitted to the inner cylinder 57 via the driving pulley 58a, belt 58b, and driven pulley 58c.
- the valve 1 rotates integrally with the collet chuck 34 ⁇ / b> B and the inner cylinder 57. That is, the valve 1 is rotated around the rotation center axis L1 of the inner cylinder 57 by the inner cylinder 57, the servo motor M, the driving pulley 58a, the belt 58b, and the driven pulley 58c, which incorporates the collet chuck 34B and is rotatably supported.
- a turning mechanism 33A is configured.
- the eddy current flaw detection probe 32B is disposed at a predetermined position that is close to and faces the side surface including the shaft contact portion 2a of the valve shaft portion 2 held by the collet chuck 34B. Yes.
- the eddy current flaw detection probe 32B can be moved up and down along the valve shaft portion 2 by a servo motor / linear guide / ball screw drive unit 36B.
- the vortex flaw detection probe 32B is connected to the valve shaft portion 2 with respect to the valve 1 rotating integrally with the collet chuck 34B.
- the surface detection inspection of the entire periphery of the axial contact portion 2a by the eddy current detection probe 32 is performed by, for example, ascending while maintaining a form close to and facing the side including the axial contact portion 2a.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
超音波検査室(20)の水槽(21)内上向きに配置した探傷プローブ(22)に、バルブ軸部端面(2b)が水中で正対するようバルブ(1)を保持し、軸接部(2a)の内部を探傷する検査工程と、検査室(20)に隣接する渦流検査室(30)の横向き配置した探傷プローブ(32)に、軸接部(2a)を含むバルブ軸部(2)側面が接近かつ正対するようバルブ(1)を保持し、該プローブ(22)とバルブ(1)を相対回動させつつ、軸接部(2a)表面を探傷する検査工程とを備え、搬入位置→超音波検査室→渦流検査室→搬出位置にバルブ(1)を同時に移載し、設備のコンパクト化と検査のサイクルタイムの短縮を図る。
Description
本発明は、エンジンバルブの軸接部の探傷検査方法および装置に係り、特に、エンジンバルブの軸接部を超音波探傷プローブと渦流探傷プローブとを用いて探傷検査する探傷検査方法および装置に関する。
自動車用エンジンバルブは、軸部の一端側に傘部が一体に形成されているが、特に排気バルブとして使用される場合は、燃焼室や排気通路の燃焼ガスにさらされる傘部は、耐熱性が要求されるのに対し、軸部は、傘部ほどの耐熱性が要求されない。
そこで、耐熱性に優れた金属で構成した傘部側部材と、耐熱性は多少劣るが機械的強度に優れた金属で構成した軸端側部材を、摩擦圧接により接合(以下、軸接合という)一体化したバルブが知られている。バルブの傘部側および軸部側それぞれに要求される特性に合致した金属材を選択することで、耐久性とコスト削減の双方を実現できることから、近年では広く使用される傾向にある。
下記特許文献1には、渦流探傷センサおよび超音波探傷センサを搭載したセンサユニットを溶接の継ぎ目に沿って走行させ、渦流探傷センサが継ぎ目の表面傷を検出すると、その位置でセンサユニットの走行を停止し、超音波探傷センサを用いて継ぎ目内部の探傷検査(以下、内部探傷検査という)を行うという、溶接の継ぎ目の検査装置が開示されている。
しかし、特許文献1に記載の検査装置では、平板状の金属部材の継ぎ目の探傷検査には有効であるが、検査対象が比較的小さく、継ぎ目である軸接部を含むバルブ軸部が細長い円柱状であるエンジンバルブについては、効率よく検査、特に内部探傷検査を行うことができない。
また、長手方向途中に接合部のある金属製棒状部材の端面に超音波探傷センサを正対するように接触させて、超音波を棒状部材の端面から入射させて、接合部の内部を探傷する方法が知られている。しかし、超音波探傷センサと棒状部材端面間に接触媒質(例えば、水や油)を介在させて、探傷センサと棒状部材端面間における超音波の伝達効率を上げる必要があり、非常に面倒で、内部探傷検査の自動化は困難である。
また、接触媒質である水を満たした水槽内において、水中に設けた超音波探傷センサに対しその端面が正対するように金属製棒状部材を保持して、金属製棒状部材の接合部の内部を探傷する方法(水浸探傷法と称されている)が知られている。超音波探傷センサと棒状部材端面間に常に接触媒質である水が介在しているので、内部探傷検査の自動化が可能である。
そこで、従来は、渦流探傷センサを備えた表面探傷検査装置によって、バルブの軸接部の表面探傷検査を行い、超音波探傷センサを備えた内部探傷検査装置、詳しくは、接触媒質である水を満たした水槽内に配置した超音波探傷センサに対し、バルブ軸部端面が正対するようにバルブを保持できるように構成した内部探傷検査装置によって、バルブの軸接部の内部探傷検査を行っていた。
しかし、従来のバルブの軸接部の探傷検査では、以下の問題があった。
第1には、それぞれ独立した表面探傷検査装置と内部探傷検査装置の2台の検査装置が必要で、それだけ設備が大型化し、コストもかさむ。
第2には、一方の探傷検査装置による検査が終了したバルブを装置から取り出して他方の探傷検査装置まで搬送した後、他方の装置内に搬入するため、たとえ両装置を近くに配置したとしても、探傷検査工程におけるサイクルタイムが長い。
そこで発明者は、2台の検査装置の一体化を考えた。詳しくは、装置ハウジング内に超音波探傷検査室と渦流探傷検査室を隣接して配置し、両検査室が隣接する左右方向に両検査室間の距離相当だけ順次隔てて並設した3個のバルブ支持具を左右方向および上下方向に一体に移動させれば、装置外の新たなバルブを一方の検査室に、一方の検査室の検査済みバルブを他方の検査室に、他方の検査室の検査済みバルブを装置外に、それぞれ同時に移載することができ、探傷検査設備のコンパクト化と探傷検査に要すサイクルタイムの短縮が可能、と考えた。
そして、発明者は、探傷検査装置を試作し、その効果を検証したところ、有効であることが確認されたことを受けて、この度の特許出願にいたったものである。
本発明は、前記した従来技術の問題点に鑑みてなされたもので、その目的は、設備をコンパクト化でき、しかも検査のサイクルタイムを短縮できる、超音波探傷プローブと渦流探傷プローブとを用いたエンジンバルブの軸接部の探傷検査方法および装置を提供することにある。
前記課題を解決するために、本発明の第1の態様は、超音波探傷プローブと渦流探傷プローブとを用いてエンジンバルブの軸接部の内部および表面を探傷検査する方法であって、
装置ハウジング内の超音波検査室において、水槽内の水中上向きに配置した超音波探傷プローブに対し、バルブ軸部の端面が水中で正対するようにバルブを保持し、前記超音波探傷プローブによって前記軸接部の内部を探傷する内部探傷検査工程と、
前記装置ハウジング内の、前記超音波検査室に隣接する渦流検査室において、横向きに配置した渦流探傷プローブに対し、下方のバルブ軸部の軸接部を含む側面が接近かつ正対するようにバルブを保持するとともに、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させつつ、前記渦流探傷プローブによって前記軸接部の表面を探傷する表面探傷検査工程とを備え、
前記両検査室の隣接する左右方向に沿って進退動作するバルブ移載機構が、所定の搬入位置のバルブを前記超音波検査室に、前記超音波検査室の内部探傷検査済みバルブを前記渦流検査室に、前記渦流検査室の外部探傷検査済みバルブを所定の搬出位置に、それぞれバルブ軸部が下を向く姿勢を保持して同時に移載することを特徴とする。
装置ハウジング内の超音波検査室において、水槽内の水中上向きに配置した超音波探傷プローブに対し、バルブ軸部の端面が水中で正対するようにバルブを保持し、前記超音波探傷プローブによって前記軸接部の内部を探傷する内部探傷検査工程と、
前記装置ハウジング内の、前記超音波検査室に隣接する渦流検査室において、横向きに配置した渦流探傷プローブに対し、下方のバルブ軸部の軸接部を含む側面が接近かつ正対するようにバルブを保持するとともに、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させつつ、前記渦流探傷プローブによって前記軸接部の表面を探傷する表面探傷検査工程とを備え、
前記両検査室の隣接する左右方向に沿って進退動作するバルブ移載機構が、所定の搬入位置のバルブを前記超音波検査室に、前記超音波検査室の内部探傷検査済みバルブを前記渦流検査室に、前記渦流検査室の外部探傷検査済みバルブを所定の搬出位置に、それぞれバルブ軸部が下を向く姿勢を保持して同時に移載することを特徴とする。
前記課題を解決するために、本発明の第2の態様は、超音波探傷プローブと渦流探傷プローブとを用いてエンジンバルブの軸接部の内部および表面を探傷検査する装置であって、
装置ハウジング内には、超音波探傷プローブを備えた超音波検査室と、渦流探傷プローブを備えた渦流検査室とが左右方向に隣接して設けられ、
前記超音波検査室には、前記超音波探傷プローブが水中上向きに配置された水槽と、バルブ軸部の端面が水中で前記超音波探傷プローブに正対する所定位置にバルブを保持する第1のバルブ保持機構が設けられ、
一方、前記渦流検査室には、横向きに配置した渦流探傷プローブと、下方のバルブ軸部の軸接部を含む側面が前記渦流探傷プローブに接近かつ正対する所定位置にバルブを保持する第2のバルブ保持機構と、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させる回動機構が設けられ、
前記装置ハウジングには、
前記両検査室の隣接する左右方向に沿って前記第1,第2の保持機構間の距離だけ順次隔てた3個所に配置された、バルブ軸部が下を向くようにバルブをそれぞれ支持するバルブ支持具が、左右方向および上下方向に一体に移動して、所定の搬入位置のバルブを前記第1のバルブ保持機構に、前記第1のバルブ保持機構に保持されている内部探傷検査済みバルブを前第2のバルブ保持機構に、前記第2のバルブ保持機構に保持されている表面探傷検査済みバルブを所定の搬出位置に、同時に移載するバルブ移載機構が設けられるとともに、
前記バルブ移載機構、前記第1,第2のバルブ保持機構、前記超音波探傷プローブ、前記渦流探傷プローブおよび前記回動機構の駆動を制御する制御ユニットが設けられたことを特徴とする。
装置ハウジング内には、超音波探傷プローブを備えた超音波検査室と、渦流探傷プローブを備えた渦流検査室とが左右方向に隣接して設けられ、
前記超音波検査室には、前記超音波探傷プローブが水中上向きに配置された水槽と、バルブ軸部の端面が水中で前記超音波探傷プローブに正対する所定位置にバルブを保持する第1のバルブ保持機構が設けられ、
一方、前記渦流検査室には、横向きに配置した渦流探傷プローブと、下方のバルブ軸部の軸接部を含む側面が前記渦流探傷プローブに接近かつ正対する所定位置にバルブを保持する第2のバルブ保持機構と、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させる回動機構が設けられ、
前記装置ハウジングには、
前記両検査室の隣接する左右方向に沿って前記第1,第2の保持機構間の距離だけ順次隔てた3個所に配置された、バルブ軸部が下を向くようにバルブをそれぞれ支持するバルブ支持具が、左右方向および上下方向に一体に移動して、所定の搬入位置のバルブを前記第1のバルブ保持機構に、前記第1のバルブ保持機構に保持されている内部探傷検査済みバルブを前第2のバルブ保持機構に、前記第2のバルブ保持機構に保持されている表面探傷検査済みバルブを所定の搬出位置に、同時に移載するバルブ移載機構が設けられるとともに、
前記バルブ移載機構、前記第1,第2のバルブ保持機構、前記超音波探傷プローブ、前記渦流探傷プローブおよび前記回動機構の駆動を制御する制御ユニットが設けられたことを特徴とする。
(第1,第2の態様の作用)
バルブ移載機構が駆動することで、即ち、各バルブ支持具が左右方向および上下方向に一体に移動(進退動作および昇降動作)することで、所定の搬入位置のバルブを超音波検査室に、超音波検査室の検査済みバルブを渦流検査室に、渦流検査室の検査済みバルブを所定の搬出位置に、それぞれ同時に移載する。
バルブ移載機構が駆動することで、即ち、各バルブ支持具が左右方向および上下方向に一体に移動(進退動作および昇降動作)することで、所定の搬入位置のバルブを超音波検査室に、超音波検査室の検査済みバルブを渦流検査室に、渦流検査室の検査済みバルブを所定の搬出位置に、それぞれ同時に移載する。
詳しくは、各バルブ支持具が、所定の搬入位置,第1のバルブ保持機構,第2のバルブ保持機構にそれぞれ保持されているバルブをそれぞれ支持して、前進方向および昇降方向に一体に移動して、各バルブ支持具が支持しているバルブを第1のバルブ保持機構,第2のバルブ保持機構,所定の搬出位置にそれぞれ同時に移載する(受け渡す)。その後、バルブを移載する(受け渡す)ことで空になった各バルブ支持具が、後退方向および昇降方向に一体に移動して元の位置まで戻るまでの間に、超音波検査室,渦流検査室では、第1のバルブ保持機構,第2のバルブ保持機構にそれぞれ移載されたバルブの軸接部に対する超音波探傷プローブ,渦流探傷プローブを用いた探傷検査がそれぞれ終了している。このため、各バルブ支持具が左右方向および上下方向に一体に移動する進退・昇降動作が3回繰り返されることで、所定の搬入位置のバルブが超音波検査室に移載されて、軸接部の表面探傷検査が行われ、次いで、渦流検査室に移載されて軸接部の内部探傷検査が行われた後、所定の搬出位置に移載される。
従来では、バルブの軸接部の探傷検査に、独立した2台の検査装置(渦流探傷検査装置と超音波探傷検査装置)を必要としたが、本発明の第1,第2の態様では、装置ハウジング内に、超音波探傷プローブを備えた超音波検査室と、渦流探傷プローブを備えた渦流検査室とを隣接一体化した、1台の検査装置で対応できる。
特に、従来別々に行っていた、一方の検査装置において検査の終了したバルブの装置外への取り出し(移載)と、他方の検査装置へのバルブの導入(移載)という2つの動作を、本発明の第1,第2の態様では、超音波検査室から渦流検査室へのバルブの移載という一連の動作で行うことができるので、探傷検査工程のサイクルタイムの短縮に繋がる。
また、バルブの軸接部の探傷検査の手順として、先に表面探傷検査工程を行い、後で内部探傷検査工程を行うと、内部探傷検査工程終了後のバルブに水滴が付着しているため、探傷検査工程から延びるバルブ搬送路が水浸しになるおそれがあり、乾燥機や送風機などの水滴除去手段を探傷検査工程に設ける必要がある。
然るに、本発明の第1,第2の態様では、超音波検査室においてバルブ軸部を水中に漬けた形態で行う内部探傷検査工程を先に行った後に、渦流検査室において表面探傷検査工程を行う。しかも超音波検査室から渦流検査室に、渦流検査室から所定の搬出位置にそれぞれ移載されるバルブの姿勢は、バルブ軸部が下を向く姿勢であるため、バルブを移載する際に、バルブ軸部に付着している水滴が軸端側から下方に落下する。この結果、渦流検査室に移載されたバルブの軸接部には、水滴がほとんど残らないし、仮に、軸接部を含むバルブ軸部に水滴が残っていたとしても、渦流探傷プローブを用いた表面探傷検査に全く影響しない。
また、渦流検査室における表面探傷検査が終了したバルブに仮に水滴が残っていたとしても、渦流検査室から所定の搬出位置にバルブを移載する際、さらには、バルブを後工程に搬送する際に、バルブの軸端側から水滴が確実に落下するので、水滴の付いたバルブが探傷検査の後工程に搬送されるおそれもない。
本発明の第3の態様は、前記第2の態様において、前記バルブ移載機構は、前記両検査室の隣接する左右方向に進退動作可能なスライドフレームと、前記スライドフレームに対し上下方向に昇降動作可能に組み付けられた前記バルブ支持具を備えたことを特徴とする。
(第3の態様の作用)
各バルブ支持具は、左右方向に進退動作可能なスライドフレームに対し上下方向にそれぞれ昇降動作可能に構成されているため、バルブ移載機構の構造および駆動制御もそれだけ複雑になるが、以下のような利点がある。
各バルブ支持具は、左右方向に進退動作可能なスライドフレームに対し上下方向にそれぞれ昇降動作可能に構成されているため、バルブ移載機構の構造および駆動制御もそれだけ複雑になるが、以下のような利点がある。
即ち、検査対象であるバルブには、傘径や全長などの仕様の異なるバルブが存在し、所定のバルブ搬入位置やバルブ搬出位置を含む、バルブ移載機構におけるバルブ受け渡し位置が上下方向にそれぞれ異なる場合があるが、スライドフレームに対し各バルブ支持具が上下方向にそれぞれ昇降動作可能であるため、バルブの仕様やバルブ受け渡し位置の高低に合わせて、各バルブ支持具の上下方向の昇降量等を調整することで、バルブ受け渡し位置を一切変更することなく、対応することができる。
本発明の第4の態様は、前記第2の態様において、前記バルブ移載機構は、前記両検査室の隣接する左右方向に進退動作および上下方向に昇降動作可なスライドフレームと、前記スライドフレームに一体化された前記バルブ支持具とを備えたことを特徴とする。
(第4の態様の作用)
スライドフレームが左右方向に進退動作および上下方向に昇降動作可能に構成されているので、第3の態様のように、各バルブ支持具をスライドフレームに対し上下方向に昇降動作可能に構成するまでもなく、各バルブ支持具は、左右方向および上下方向に一体に移動できる。したがって、バルブ移載機構の構成がそれだけ簡潔となる。
スライドフレームが左右方向に進退動作および上下方向に昇降動作可能に構成されているので、第3の態様のように、各バルブ支持具をスライドフレームに対し上下方向に昇降動作可能に構成するまでもなく、各バルブ支持具は、左右方向および上下方向に一体に移動できる。したがって、バルブ移載機構の構成がそれだけ簡潔となる。
また、各バルブ支持具をスライドフレームに対し上下方向に昇降動作させない分、バルブ移載機構を駆動する制御も簡潔となる。
本発明の第1,第2の態様によれば、1台の探傷検査装置によってバルブの軸接部の内部および表面の探傷検査を行うことができるので、探傷検査設備がコンパクトかつ簡潔となる。
また、所定の搬入位置から超音波検査室へのバルブの移載、超音波検査室から渦流検査室へのバルブの移載、および渦流検査室から所定の搬出位置へのバルブの移載を同時に行うので、特に、従来別々に行っていた、超音波検査装置外へのバルブの移載動作と渦流検査装置内へのバルブの移載動作を、超音波検査室から渦流検査室へのバルブの移載という一連の動作で行うので、バルブの軸接部の内部および表面の探傷検査のサイクルタイムを大幅に短縮できる。
また、水滴の付着したバルブがバルブ搬送路を介して後工程に搬送されることがないので、バルブ搬送路が水浸しになるとか、バルブに付着した水滴によって後工程における加工が妨げられることもなく、乾燥機や送風機などの水滴除去手段を探傷検査工程に設ける必要もない。
本発明の第3の態様によれば、バルブの仕様に合わせてバルブ支持具の上下方向の昇降量を調整することで、装置側の構造を一切変更することなく、仕様の異なる種々のバルブの探傷検査が可能となるので、汎用性に優れた探傷検査装置が提供される。
本発明の第4の態様によれば、バルブ移載機構の構造が簡潔な分、バルブ移載機構の制御も簡潔となって、探傷検査装置のコストが削減される。
次に、本発明の実施の形態を実施例に基づいて説明する。
図1は、軸接合された内燃機関用のエンジンバルブの一例を示す。符号1は、真っ直ぐに延びる軸部2の一端側に、外径が徐々に大きくなるR形状のフィレット部3を介して、傘部4が一体的に形成されたポペットバルブで、傘部4の外周には、テーパ形状のバルブシート4aが設けられている。符号4bは、バルブ1の傘表、符号2bは、バルブ1の軸端面である。
詳しくは、ポペットバルブ1は、耐熱性に優れた金属材(例えば、SUH35)で構成したバルブ中間部材である傘部4側のワークW1と、機械的強度に優れた金属材(例えば、SUH11)で構成した軸端部材である軸端側のワークW2の軸端面同士が、摩擦圧接により接合一体化されたワーク接合体で構成されている。そして、バルブ軸部2の長手方向の途中には、傘部側のワーク(バルブ中間部材)W1と軸端側のワーク(軸端部材)W2の軸接部(接合部)2aが顕在化しているが、肉眼では判別が難しい。
次に、本発明の第1の実施例であるバルブの軸接部の探傷検査装置を、図2~図5に基づいて説明する。
図2~5において、探傷検査装置10のハウジング12内には、超音波探傷プローブ22(図4参照)を備えた超音波検査室20と、渦流探傷プローブ32(図5参照)を備えた渦流検査室30が左右方向(図2,3左右方向)に隣接して設けられている。
超音波検査室20には、図4に示すように、水21aを入れた水槽21が配置され、水槽21内の底には、超音波探傷プローブ22が上向きに配置されている。また、水槽21の上方には、上下方向に昇降動作して、バルブ軸部2の端面2bが水中で超音波探傷プローブ22に正対する所定位置となるように、バルブ1を保持する第1のバルブ保持機構である第1のチャック24が設けられている。
第1のチャック24は、エアシリンダ(図示せず)によって左右方向に開閉動作する一対の爪24a(図3,4参照)を有し、装置ハウジング12との間に介装された、サーボモータ25とリニアガイド・ボールねじ駆動ユニット26によって、図4矢印に示すように、装置ハウジング12に対し上下方向に昇降動作できる。
このため、超音波検査室20では、図4に示すように、後述するバルブ移載機構40によって所定のバルブ搬入位置P1(図2参照)から移載された、バルブ軸部2を下に向けた姿勢のバルブ1が、第1のチャック24に挟持されて、バルブ軸部2の端面2bが水中の超音波探傷プローブ22に正対する所定位置まで下降し、超音波探傷プローブ22による軸接部2aの内部探傷検査が行われる。超音波探傷プローブ22による検査は瞬時に終了し、検査後のバルブ1は、第1のチャック24によって元の位置まで上昇し、バルブ移載機構40によって隣接する渦流検査室30に移載される。
一方、渦流検査室30には、図5に示すように、渦流探傷プローブ32が横向きに対向して配置され、プローブ32の上方には、バルブ移載機構40によって超音波検査室20から移載されたバルブ1を挟持して、バルブ軸部2の軸接部2aを含む側面が渦流探傷プローブ32に接近しかつ正対する所定位置にバルブ1を保持する第2のバルブ保持機構である第2のチャック34が設けられている。即ち、第2のチャック34は、超音波検査室20の第1のチャック24と同様、エアシリンダ(図示せず)によって左右方向に開閉動作する一対の爪34a(図3,5参照)を有し、装置ハウジング12との間に介装された、サーボモータ35とリニアガイド・ボールねじ駆動ユニット36によって、図5矢印に示すように、装置ハウジング12に対し上下方向に昇降動作できる。
なお、第2のチャック34を構成する一対の爪34aは、閉じた際に協働してバルブ傘部4を担持する、周方向に連続する断面円弧状の傘受面を形成するように構成されており、バルブ1は、第2のチャック34(の爪34a)にバルブ傘部4が担持された形態に保持されて、昇降動作する。
また、図5に示すように、装置ハウジング12に固定された水平ベースプレート12aには、上下方向縦長の円筒体31が回転可能に支承されるとともに、円筒体31の拡径する上端部内側には、円筒体31の回転中心軸Lを挟んで探傷プローブ32が対設され、探傷プローブ32が円筒体31と一体に回動できるように構成されている。符号31a,31bは、駆動モータ,ベルト、符号31c1,31c2は、駆動側プーリ,従動側プーリである。符号31dは、水平ベースプレート12aに固定された、探傷プローブ32を覆う円筒形状のプローブカバーである。
即ち、駆動モータ31a,駆動側プーリ31c1,ベルト31b,従動側プーリ31c2および円筒体31は、渦流探傷プローブ32をバルブ軸部2(の軸接部2a)の外周に沿って回動させる回動機構33を構成している。
また、カバー31dの真上近傍には、第2のチャック34に保持されたバルブ1の軸部2を円筒体31に案内する芯合せ用ガイド37が設けられている。芯合せ用ガイド37は、エアシリンダ(図示せず)によって左右に180度開閉動作する一対の爪37aを備え、一対の爪37aの突合せ部は、閉じた際に協働してテーパ状ガイド孔を形成し、第2のチャック34に担持されて第2のチャック34と一体に下降するバルブ1の軸部2を円筒体31の回転中心軸Lに沿って確実に案内する。
なお、芯合せ用ガイド37は、第2のチャック34の下降に連係して開くので、第2のチャック34を芯合せ用ガイド37と干渉させることなく、カバー31dに接近する所定位置まで下降させることができる。即ち、渦流探傷プローブ32を設けた円筒体31内へのバルブ軸部2の挿入量を大きくできるので、バルブ1における軸接部2aがバルブ傘部4寄り、即ちフィレット部3に接近した位置にある仕様のバルブに対しても、渦流探傷検査が可能となる。
このため、渦流検査室30では、図5に示すように、後述するバルブ移載機構40によって超音波検査室20から移載された、バルブ軸部2を下に向けた姿勢のバルブ1が、第2のチャック34に担持されて、円筒体31と一体に回転する渦流探傷プローブ32に対し、バルブ軸部2の軸接部2aを含む側面が接近しかつ正対する形態を保持しつつ下降することで、渦流探傷プローブ32による軸接部2aの全周囲の表面探傷検査が行われる。渦流探傷プローブ32による検査は、超音波探傷プローブ22による検査と同様、瞬時に終了し、検査後のバルブ1は、第2のチャック34によって元の位置まで上昇し、バルブ移載機構40によって所定のバルブ搬出位置P2(図2参照)に移載される。
なお、図2では、超音波検査室20に設けられた第1のチャック24、渦流検査室30に設けられた第2のチャック34の図示が省略されている。
次に、図2に基づいて、左右に隣接する超音波検査室20と渦流検査室30の背面側に配設されて、所定のバルブ搬入位置P1のバルブ1を超音波検査室20に、超音波検査室20の検査済みバルブ1を渦流検査室30に、渦流検査室30の検査済みバルブ1を所定のバルブ搬出位置P2に、それぞれ同時に移載するバルブ移載機構40について説明する。バルブ移載機構40によってバルブ1が移載される方向は、図2では、矢印に示すように、左から右である。
バルブ移載機構40は、超音波検査室20,渦流検査室30の背面側を左右方向に進退動作するスライドフレーム42を備えている。スライドフレーム42は、左右方向および上下方向所定長さの正面視矩形状に形成され、装置ハウジング12との間に介装された、左右に延びるリニアガイド43とサーボモータ・ボールねじ駆動ユニット44によって、装置ハウジング12に対し左右方向に進退動作できる。
そして、超音波検査室20,渦流検査室30に臨むスライドフレーム42の側面には、第1のチャック24,第2のチャック34間に対応する所定距離dづつ隔てた左右方向3箇所に、バルブ軸部2が下を向くようにバルブ1を支持するバルブ支持具である吸着パッド治具45がそれぞれ設けられている。
吸着パッド治具45は、バルブ傘表4bを負圧吸着する吸着パッド45aを有し、スライドフレーム42との間に介装されたリニアガイド46とサーボモータ・ボールねじ駆動ユニット47によって、スライドフレーム42に対し上下方向に昇降動作できる。
即ち、左右方向に進退動作するスライドフレーム42と、スライドフレーム42に対し上下方向に昇降動作する3個の吸着パッド治具45によって、所定のバルブ搬入位置P1に搬入されたバルブ1を超音波検査室20の第1のチャック24に、第1のチャック24に保持されている内部探傷検査済みバルブ1を渦流検査室30の第2のチャック34に、第2のチャック34に保持されている表面探傷検査済みバルブ1を所定のバルブ搬出位置P2に、それぞれバルブ軸部2が下を向く姿勢を保持して同時に移載する(受け渡す)バルブ移載機構40が構成されている。
なお、図2に示すように、バルブ搬入位置P1には、バルブ搬入用スライダー18によって搬入されてきたバルブ1が、傘表4aを上(バルブ軸部2を下)にした姿勢に懸吊保持されている。バルブ搬入位置P1の真下には、バルブ移載機構40の吸着パッド治具45の下降動作に連係してバルブ軸部2を挟持し、上方から下降する吸着パッド45aに対し傘表4aが正対するようにバルブ1を保持するチャック19が設けられている。そして、下降した吸着パッド治具45が傘部4aを吸着すると同時に、チャック19がバルブ軸部2の挟持を解除する。
一方、バルブ搬出位置P2には、バルブ搬出用スライダー38が設けられており、バルブ移載機構40によってバルブ搬出位置P2に移載されたバルブ1は、自重によってスライダー38に沿って滑動する。
また、装置ハウジング12の背面側には、バルブ搬入位置P1のチャック19、バルブ移載機構40(スライドフレーム42,吸着パッド治具45)、超音波検査室20の第1のチャック24および超音波探傷プローブ22、渦流検査室30の第2のチャック34,芯合せ用ガイド37,渦流探傷プローブ32および回動機構33のそれぞれの駆動を制御する制御ユニットU(図2参照)が設けられている。
また、制御ユニットUは、超音波探傷プローブ22および渦流探傷プローブ32を介してそれぞれ取得した探傷検査データを、あらかじめ設定されている許容値(内部の傷、表面傷の許容値)それぞれ比較することで、適否を判定するとともに、不適(いずれか一方の検査結果がNG)と判定されたバルブを廃棄バルブ専用スライダー(図示せず)に案内するために、後述するバルブ搬送路であるスライダー38の途中に設けられた分配機構39を駆動する。
次に、バルブ移載機構40がバルブ1を移載する動作について詳しく説明する。
図2に示すように、各吸着パッド治具45が、バルブ搬入位置P1のチャック19,超音波検査室20の第1のチャック24,渦流検査室30の第2のチャック34にそれぞれ保持されているバルブ1A,1B,1Cをそれぞれ支持(吸着保持)して所定量上昇し、スライドフレーム42とともに所定量前進(図2右方向に移動)した後、所定量下降することで、各吸着パッド治具45が支持(吸着保持)しているバルブ1A,1B,1Cを第1のチャック24,第2のチャック34,バルブ搬出位置P2にそれぞれ同時に移載する(受け渡す)。
詳しくは、超音波検査室20,渦流検査室30では、吸着パッド治具45がそれぞれ支持(吸着保持)しているバルブ1A,1Bを第1のチャック24,第2のチャック34がそれぞれ把持,担持すると同時に、吸着パッド治具45によるバルブ1A,1Bの支持(吸着保持)が解除される。一方、バルブ搬出位置P2において、吸着パッド治具45による支持(吸着保持)が解除されたバルブ1Cは、自重でスライダー38に沿って滑動する。
各吸着パッド治具45によるバルブ1A,1B,1Cの第1のチャック24,第2のチャック34,バルブ搬出位置P2への移載(受け渡し)が終了すると、各吸着パッド治具45は、所定量上昇し、スライドフレーム42とともに所定量後退した後、所定量下降することで、元の位置に戻る。
そして、各吸着パッド治具45がバルブ1A,1B,1Cをそれぞれ移載し(受け渡し)た後、後退して元の位置に戻るまでの間に、超音波検査室20,渦流検査室30では、第1のチャック24,第2のチャック34にそれぞれ移載されたバルブ1A,1Bは、第1のチャック24,第2のチャック34にそれぞれ保持されて所定量下降し、超音波探傷プローブ22,渦流探傷プローブ32による軸接部2aの探傷検査がそれぞれ行われた後、所定量上昇し、当初の移載位置に復帰する。また、この間に、バルブ搬出位置P2に移載されたバルブ1Cは、スライダー38を介して搬出され、一方、バルブ搬入位置P1には、検査対象である新たなバルブ1がバルブ搬送路であるスライダー18を介して搬入されている。
このため、スライドフレーム42と3個の吸着パッド治具45で構成されたバルブ移載機構40の前記した一連の進退動作、即ち、各吸着パッド治具45の、上昇→前進→下降→上昇→後退→下降という一連の動作が3回繰り返されることで、バルブ搬入位置P1に保持されているバルブ1が超音波検査室20に移載されて、バルブの軸接部2aの表面探傷検査が行われ、次いで、渦流検査室30に移載されて、バルブの軸接部2aの内部探傷検査が行われた後、バルブ搬出位置P2に移載されて搬出される。
以上の説明から明らかなように、本実施例によれば、1台の探傷検査装置10によってバルブ1の軸接部2aの内部および表面の探傷検査を行うことができるので、探傷検査設備がコンパクトかつ簡潔となる。
また、本実施例によれば、バルブ搬入位置P1から超音波検査室20へのバルブ1の移載、超音波検査室20から渦流検査室30へのバルブ1の移載、および渦流検査室30からバルブ搬出位置P2へのバルブ1の移載を同時に行うので、特に、従来別々に行っていた、第1の探傷検査装置外へのバルブの移載動作と、第2の探傷検査装置内へのバルブの移載動作とを、超音波検査室20から渦流検査室30へのバルブの移載という一連の動作で行うので、バルブ1の軸接部2aの内部および表面の探傷検査のサイクルタイムを大幅に短縮できる。
また、本実施例によれば、水滴の付着したバルブ1がバルブ搬送路であるスライダー38を介して後工程に搬送されることがないので、スライダー38が水浸しになるとか、バルブに付着した水滴によって後工程における加工が妨げられることもなく、乾燥機や送風機などの水滴除去手段を探傷検査工程に設ける必要もない。
特に、本実施例では、3個の吸着パッド治具45がスライドフレーム42に対し上下方向にそれぞれ昇降動作可能に構成されているため、バルブ移載機構20の構造および駆動制御がそれだけ複雑になるが、以下のような利点がある。
即ち、検査対象であるバルブ1には、傘径や全長などの仕様の異なるバルブが存在し、また、所定のバルブ搬入位置P1やバルブ搬出位置P2を含む、バルブ移載機構40におけるバルブ受け渡し位置が上下方向にそれぞれ一致しない場合もあるが、スライドフレーム42に対し各吸着パッド治具45が上下方向にそれぞれ昇降動作可能であるため、バルブ1の仕様やバルブ受け渡し位置の高低に合わせて、各吸着パッド治具45の上下方向の昇降量等を調整することで、バルブ受け渡し位置を一切変更することなく、対応することができる。
また、本実施例では、バルブ支持具である吸着パッド治具45がバルブ1の傘表4bを吸着することでバルブ1を懸吊保持できるように構成されているので、吸着パッド治具45が所定のバルブ受け渡し位置においてバルブ1の受け渡しを行うためには、バルブ受け渡し位置の真上において吸着パッド治具45が昇降動作するだけで足りる。即ち、昇降動作する吸着パッド治具45がバルブ1を受け渡しする際に、吸着パッド治具45は、バルブ搬入位置P1におけるスライダー18,超音波検査室20内の第1のチャック24,渦流検査室30内の第2のチャック34,バルブ搬出位置P2におけるスライダー38の上方所定位置までしか接近しないため、吸着パッド治具45とこれらが干渉するおそれは全くない。このため、本実施例では、バルブ移載機構40におけるバルブ支持具を吸着パッド治具45ではなく、例えば、バルブ1の軸部2を把持するチャック治具で構成する場合のように、スライダー18,第1のチャック24,第2のチャック34,スライダー38との干渉を避けるための何らかの工夫を講じる必要が全くない。
次に、本発明の第2の実施例であるバルブの軸接部の探傷検査装置10Aを、図6に基づいて説明する。
この第2の実施例の探傷検査装置10Aは、前記した第1の実施例の探傷検査装置10と、以下の点が相違している。
第1には、探傷検査装置10では、バルブ移載機構40を構成するバルブ支持具が、バルブ傘表4aを負圧吸着してバルブ軸部2が下を向くようにバルブ1を支持(吸着保持)する吸着パッド治具45で構成されるとともに、吸着パッド治具45は、左右方向に進退動作可能なスライドフレーム42に対し、上下方向に昇降動作可能に構成されている。
一方、探傷検査装置10Aでは、バルブ移載機構40Aを構成するバルブ支持具が、開閉動作してバルブ軸部2を挟持する一対の爪45bを有するチャック治具45Aで構成されるとともに、該チャック治具45Aは、装置ハウジング12に対し左右方向に進退動作および上下方向に昇降動作するスライドフレーム42Aの下方に延出する3本のアーム42a下端にそれぞれ固定されて、スライドフレーム42Aに一体化されている。
詳しくは、図6に示すように、装置ハウジング12の上方には、装置ハウジング12に一体化されて左右に延在する装置ハウジング12Aが配設されており、スライドフレーム42Aとは別体の第2のスライドフレーム42Bが、装置ハウジング12Aとの間に介装された、左右に延びるリニアガイド43Aとサーボモータ・ボールねじ駆動ユニット44Aによって、装置ハウジング12(装置ハウジング12A)に対し左右方向に進退動作するように構成されている。そして、スライドフレーム42Aは、第2のスライドフレーム42Bとの間に介装された上下に延びるリニアガイド43Bとサーボモータ・ボールねじ駆動ユニット44Bによって、スライドフレーム42Bに対し上下方向に昇降動作できる。
即ち、バルブ移載機構40Aは、装置ハウジング12に一体化された装置ハウジング12Aと、装置ハウジング12Aに左右方向進退動作可能に組み付けられたスライドフレーム42Bと、スライドフレーム42Bに上下方向昇降動作可能に組み付けられたスライドフレーム42Aと、スライドフレーム42Aに固定一体化された3個のチャック治具45Aで構成されている。
このように、チャック治具45Aを一体化したスライドフレーム42Aは、装置ハウジング12に対し左右方向に進退動作および上下方向に昇降動作可能に構成されている。
このため、各チャック治具45Aをスライドフレーム42Aに対しそれぞれ上下方向にスライド可能に構成する必要がないので、装置ハウジング12,12A全体の高さが大きくなるが、バルブ移載機構40Aの構成が第1の実施例のバルブ移載機構40よりも簡潔となる。
また、各チャック治具45Aがスライドフレーム42Aに対しそれぞれ上下方向に昇降する構造でない分、バルブ移載機構40Aの駆動を制御する制御ユニットU1の構成も簡潔となる。
第2には、前記第1の実施例では、超音波検査室20の第1のバルブ保持機構である第1のチャック24および渦流検査室30の第2のバルブ保持機構である第2のチャック34は、いずれも、装置ハウジング12との間に介装された、サーボモータ25,35とリニアガイド・ボールねじ駆動ユニット26,36によって、装置ハウジング12に対し上下方向に昇降動作できる。
一方、この第2の実施例では、超音波検査室20Aの第1のバルブ保持機構である第1のチャック24Aおよび渦流検査室30Aの第2のバルブ保持機構である第2のチャック34Aは、いずれも、装置ハウジング12との間に介装されたサーボモータ・リニアガイド・ボールねじ駆動ユニット26A,36Aによって、装置ハウジング12に対し上下方向に昇降動作できる。
第3には、バルブ移載機構40A(のチャック治具45A)と、超音波検査室20Aの第1のチャック24Aおよび渦流検査室30Aの第2のチャック34Aとの間でそれぞれバルブ1の受け渡しが行われるが、チャック治具45Aの爪45bによるバルブ1の把持位置よりも、第1,第2のチャック24A,34Aの爪24a,34aによるバルブ1の把持位置の方が傘部4寄りであるため、バルブ1の受け渡しの際に、チャック治具45Aと第1,第2のチャック24A,34Aがそれぞれ干渉しないように、チャック治具45Aの爪45bと、第1,第2のチャック24A,34Aの爪24a,34aの開閉が制御されている。
詳しくは、チャック治具45Aから第1,第2のチャック24A,34Aにそれぞれバルブ1を受け渡す際は、チャック治具45Aの下降に連係して、第1,第2のチャック24A,34Aの爪24a,34aが大きく開くので、爪24a,34aよりも下方にチャック治具45Aの爪45bが下降できる。そして、爪24a,34aがバルブ1の軸部2を把持すると同時に、チャック治具45Aの爪45bがバルブ1の軸部2の把持を解除して大きく開くので、第1,第2のチャック24A,34Aと干渉することなくチャック治具45Aが上昇できる。
一方、空のチャック治具45Aが第1のチャック24Aおよび第2のチャック34Aからバルブ1をそれぞれ受け取る際は、チャック治具45Aの下降に連係して爪45bが大きく開くので、バルブ1を把持している第1,第2のチャック24A,34Aの爪24a,34aよりも下方にチャック治具45Aの爪45bが下降できる。そして、チャック治具45Aの爪45bがバルブ1の軸部2を把持すると同時に、第1,第2のチャック24A,34Aの爪24a,34aがバルブ1の軸部2の把持を解除してそれぞれ大きく開くので、バルブ1を受け取ったチャック治具45Aは、第1,第2のチャック24A,34Aと干渉することなく上昇できる。
第4には、前記第1の実施例では、スライダー18によってバルブ1がバルブ搬入位置P1に搬入されるが、この第2の実施例では、バルブ搬入用V字ガイド18Aによってバルブ1が水平な姿勢でバルブ搬入位置P1に搬入される。
また、バルブ搬入位置P1には、上下方向昇降動作可能で、回動支点19a周りに揺動動作可能なチャック19Aが設けられている。そして、チャック19AがV字ガイド18A上のバルブ1(の軸部2)を挟持して所定量上昇し、回動支点19a周りに揺動(縦方向に旋回)して、バルブ移載機構40Aの吸着パッド治具45Aに正対するように、傘表4aを上に向けた形態にバルブ1を保持する。
その他の構造は、前記した第1の実施例の探傷検査装置10の構造と同一であるので、同一の符号を付すことで、その重複する説明は省略する。
次に、本発明の第3の実施例である探傷検査装置10Bの要部を図7に基づいて説明する。
前記した第1,第2の実施例ではいずれも、図5,6に示すように、渦流検査室30,30Aにおいて、バルブ移載機構40,40Aによって超音波検査室20,20Aから移載されたバルブ1は、バルブ軸部2が第2のチャック34,34Aに担持されて、円筒体31と一体に回転する渦流探傷プローブ32に対し、下方のバルブ軸部2の軸接部2aを含む側面が接近しかつ正対する形態を保持しつつ下降することで、渦流探傷プローブ32による軸接部2aの全周囲の表面探傷検査が行われる。
即ち、渦流検査室30,30Aでは、第2のチャック34,34Aに保持されたバルブ1に対し、それぞれ渦流探傷プローブ32が回動する構造であるが、この第3の実施例の渦流検査室30Bでは、横置き配置された渦流探傷プローブ32Bに対し、第2のチャック34Bに保持されているバルブ1が第2のチャック34Bと一体に回転する構造となっている。
詳しくは、この第3実施例では、渦流検査室30Bの第2のバルブ保持機構は、傘表4aが上を向くようにバルブ軸部2を把持するコレットチャック34Bで構成されている。
即ち、ベースプレート12bに固定された外筒55の内側には、軸受け56を介して上下方向に長い内筒57が回転可能に支承され、内筒57の上端部内周面がテーパ形状に形成されて、内筒57上端部にスリーブ57aが形成されるとともに、内筒57内には、スリーブ57aのテーパ面に整合するテーパ形状の外周面をもつ頭部51aを有するコレット51が挿通されている。コレット51には、バルブ軸部2が挿通できる貫通孔51bが形成され、コレット頭部51aには、周方向等分3箇所に縦スリット(図示せず)が形成され、コレット51の下端側51cには、エアシリンダ(図示せず)によって上下方向に進退動作可能な円筒形状のドローバー52が螺合している。
そして、ドローバー52の軸方向への進退動作により、コレット頭部51aの内径を拡縮させることで、コレット51の貫通孔51bに挿通されたバルブ軸部2の把持と解除を行う。即ち、スリーブ57aが形成された内筒57と、内筒57に対し軸方向に進退動作するコレット51とによって、バルブ1の軸部2を把持するコレットチャック34Bが構成されている。符号53は、ドローバー52およびコレット51内に延出して、バルブ軸部2のコレットチャック34Bへの挿入量を調整する位置決めピンである。
また、ベースプレート12bには、外筒55に隣接してサーボモータMが配置されており、サーボモータMの回転が駆動側プーリ58a,ベルト58b,従動側プーリ58cを介して内筒57に伝達されることで、バルブ1がコレットチャック34B,内筒57と一体に回転する。即ち、コレットチャック34Bを内蔵し回転可能に支承された内筒57,サーボモータM,駆動側プーリ58a,ベルト58bおよび従動側プーリ58cによって、バルブ1を内筒57の回転中心軸L1周りに回転させる回動機構33Aが構成されている。
また、コレットチャック34Bの上方には、渦流探傷プローブ32Bが、コレットチャック34Bに把持されたバルブ軸部2の軸接部2aを含む側面に接近しかつ正対する形態となる所定位置に配置されている。そして、渦流探傷プローブ32Bは、サーボモータ・リニアガイド・ボールねじ駆動ユニット36Bによって、バルブ軸部2に沿って上下方向に昇降動作できる。
そして、バルブ移載機構40の吸着パッド治具45によって、コレットチャック34Bにバルブ1が移載された後、コレットチャック34Bと一体に回転するバルブ1に対し、渦流探傷プローブ32Bがバルブ軸部2の軸接部2aを含む側面に接近しかつ正対する形態を保持しつつ例えば上昇することで、渦流探傷プローブ32による軸接部2aの全周囲の表面探傷検査が行われる。
その他は、前記した第1の実施例の探傷検査装置10と同一であるので、その重複する説明は省略する。
1 ポペットバルブ(エンジンバルブ)
2 バルブ軸部
2a 軸接部
2b バルブの軸端面
4 バルブ傘部
4a バルブの傘表
10,10A,10B 探傷検査装置
12,12A 装置ハウジング
18,38 バルブ搬送路であるスライダー
20,20A 超音波検査室
21 水槽
22 超音波探傷プローブ
24,24A 第1のバルブ保持機構である第1のチャック
24a バルブ軸部挟持用の爪
25 リニアガイド
26 サーボモータ・ボールねじ駆動ユニット
26A,36A,36B サーボモータ・リニアガイド・ボールねじ駆動ユニット
30,30A,30B 渦流検査室
32,32B 渦流探傷プローブ
33,33A 回動機構
34,34A 第2のバルブ保持機構である第2のチャック
34B 第2のバルブ保持機構であるコレットチャック
34a バルブ傘部担持用の爪
35,35A サーボモータ
36,36A リニアガイド・ボールねじ駆動ユニット
37 芯合せ用ガイド
40,40A バルブ移載機構
42,42A スライドフレーム
43 リニアガイド
44 サーボモータ・ボールねじ駆動ユニット
45 バルブ支持具である吸着パッド治具
45a 負圧吸着パッド
45A バルブ支持具であるチャック治具
45b チャック治具の爪
46,46A リニアガイド
47,47A サーボモータ・ボールねじ駆動ユニット
56 サーボモータ・ボールねじ駆動ユニット
P1 バルブ搬入位置
P2 バルブ搬出位置
18,38 バルブ搬送路であるスライダー
19,19A チャック
U,U1 制御ユニット
2 バルブ軸部
2a 軸接部
2b バルブの軸端面
4 バルブ傘部
4a バルブの傘表
10,10A,10B 探傷検査装置
12,12A 装置ハウジング
18,38 バルブ搬送路であるスライダー
20,20A 超音波検査室
21 水槽
22 超音波探傷プローブ
24,24A 第1のバルブ保持機構である第1のチャック
24a バルブ軸部挟持用の爪
25 リニアガイド
26 サーボモータ・ボールねじ駆動ユニット
26A,36A,36B サーボモータ・リニアガイド・ボールねじ駆動ユニット
30,30A,30B 渦流検査室
32,32B 渦流探傷プローブ
33,33A 回動機構
34,34A 第2のバルブ保持機構である第2のチャック
34B 第2のバルブ保持機構であるコレットチャック
34a バルブ傘部担持用の爪
35,35A サーボモータ
36,36A リニアガイド・ボールねじ駆動ユニット
37 芯合せ用ガイド
40,40A バルブ移載機構
42,42A スライドフレーム
43 リニアガイド
44 サーボモータ・ボールねじ駆動ユニット
45 バルブ支持具である吸着パッド治具
45a 負圧吸着パッド
45A バルブ支持具であるチャック治具
45b チャック治具の爪
46,46A リニアガイド
47,47A サーボモータ・ボールねじ駆動ユニット
56 サーボモータ・ボールねじ駆動ユニット
P1 バルブ搬入位置
P2 バルブ搬出位置
18,38 バルブ搬送路であるスライダー
19,19A チャック
U,U1 制御ユニット
Claims (4)
- 超音波探傷プローブと渦流探傷プローブとを用いてエンジンバルブの軸接部の内部および表面を探傷検査する方法であって、
装置ハウジング内の超音波検査室において、水槽内の水中上向きに配置した超音波探傷プローブに対し、バルブ軸部の端面が水中で正対するようにバルブを保持し、前記超音波探傷プローブによって前記軸接部の内部を探傷する内部探傷検査工程と、
前記装置ハウジング内の、前記超音波検査室に隣接する渦流検査室において、横向きに配置した渦流探傷プローブに対し、下方のバルブ軸部の軸接部を含む側面が接近かつ正対するようにバルブを保持するとともに、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させつつ、前記渦流探傷プローブによって前記軸接部の表面を探傷する表面探傷検査工程とを備え、
前記両検査室の隣接する左右方向に沿って進退動作するバルブ移載機構が、所定の搬入位置のバルブを前記超音波検査室に、前記超音波検査室の内部探傷検査済みバルブを前記渦流検査室に、前記渦流検査室の外部探傷検査済みバルブを所定の搬出位置に、それぞれバルブ軸部が下を向く姿勢を保持して同時に移載することを特徴とするエンジンバルブの軸接部の探傷検査方法。 - 超音波探傷プローブと渦流探傷プローブとを用いてエンジンバルブの軸接部の内部および表面を探傷検査する装置であって、
装置ハウジング内には、超音波探傷プローブを備えた超音波検査室と、渦流探傷プローブを備えた渦流検査室とが左右方向に隣接して設けられ、
前記超音波検査室には、前記超音波探傷プローブが水中上向きに配置された水槽と、バルブ軸部の端面が水中で前記超音波探傷プローブに正対する所定位置にバルブを保持する第1のバルブ保持機構が設けられ、
一方、前記渦流検査室には、横向きに配置した渦流探傷プローブと、下方のバルブ軸部の軸接部を含む側面が前記渦流探傷プローブに接近かつ正対する所定位置にバルブを保持する第2のバルブ保持機構と、前記渦流探傷プローブと前記バルブをバルブ軸部の外周に沿って相対回動させる回動機構が設けられ、
前記装置ハウジングには、
前記両検査室の隣接する左右方向に沿って前記第1,第2の保持機構間の距離だけ順次隔てた3個所に配置された、バルブ軸部が下を向くようにバルブをそれぞれ支持するバルブ支持具が、左右方向および上下方向に一体に移動して、所定の搬入位置のバルブを前記第1のバルブ保持機構に、前記第1のバルブ保持機構に保持されている内部探傷検査済みバルブを前第2のバルブ保持機構に、前記第2のバルブ保持機構に保持されている表面探傷検査済みバルブを所定の搬出位置に、同時に移載するバルブ移載機構が設けられるとともに、
前記バルブ移載機構、前記第1,第2のバルブ保持機構、前記超音波探傷プローブ、前記渦流探傷プローブおよび前記回動機構の駆動を制御する制御ユニットが設けられたことを特徴とすることを特徴とするエンジンバルブの軸接部の探傷検査装置。 - 前記バルブ移載機構は、前記両検査室の隣接する左右方向に進退動作可能なスライドフレームと、前記スライドフレームに対し上下方向に昇降動作可能に組み付けられた前記バルブ支持具とを備えたことを特徴とする請求項2に記載のエンジンバルブの軸接部の探傷検査装置。
- 前記バルブ移載機構は、前記両検査室の隣接する左右方向に進退動作および上下方向に昇降動作可なスライドフレームと、前記スライドフレームに一体化された前記バルブ支持具とを備えたことを特徴とする請求項2に記載のエンジンバルブの軸接部の探傷検査装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071911 WO2017022046A1 (ja) | 2015-08-03 | 2015-08-03 | エンジンバルブの軸接部の探傷検査方法および装置 |
CN201580062845.6A CN107835941A (zh) | 2015-08-03 | 2015-08-03 | 发动机阀的轴连接部的探伤检查方法及装置 |
JP2017512060A JP6517324B2 (ja) | 2015-08-03 | 2015-08-03 | エンジンバルブの軸接部の探傷検査方法および装置 |
TW105124416A TWI641822B (zh) | 2015-08-03 | 2016-08-02 | Method and device for detecting flaws of shaft joint of engine valve |
US15/887,986 US10473622B2 (en) | 2015-08-03 | 2018-02-03 | Method and apparatus for flaw inspection of friction-weld part of stem in engine valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071911 WO2017022046A1 (ja) | 2015-08-03 | 2015-08-03 | エンジンバルブの軸接部の探傷検査方法および装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/887,986 Continuation-In-Part US10473622B2 (en) | 2015-08-03 | 2018-02-03 | Method and apparatus for flaw inspection of friction-weld part of stem in engine valve |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022046A1 true WO2017022046A1 (ja) | 2017-02-09 |
Family
ID=57942632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071911 WO2017022046A1 (ja) | 2015-08-03 | 2015-08-03 | エンジンバルブの軸接部の探傷検査方法および装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10473622B2 (ja) |
JP (1) | JP6517324B2 (ja) |
CN (1) | CN107835941A (ja) |
TW (1) | TWI641822B (ja) |
WO (1) | WO2017022046A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112229913A (zh) * | 2020-10-18 | 2021-01-15 | 安徽恩大阀门机械有限公司 | 一种阀门生产用超声波探伤装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107655967B (zh) * | 2017-10-27 | 2023-11-10 | 无锡万耐特自动化设备股份公司 | 一种用于曲轴的电磁涡流探伤检测装置 |
CN115825352B (zh) * | 2022-12-09 | 2024-03-26 | 南京博克纳自动化系统有限公司 | 一种探伤检测设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0594761U (ja) * | 1992-05-25 | 1993-12-24 | フジオーゼックス株式会社 | 水浸式超音波探傷装置 |
JPH09195033A (ja) * | 1996-01-16 | 1997-07-29 | Mitsubishi Heavy Ind Ltd | エンジンバルブ及びその製造方法 |
JP2717191B2 (ja) * | 1989-07-20 | 1998-02-18 | フジオーゼックス株式会社 | エンジンバルブ検査装置 |
JP2002028714A (ja) * | 2000-07-10 | 2002-01-29 | Daido Steel Co Ltd | 伸線装置 |
JP2012007895A (ja) * | 2010-06-22 | 2012-01-12 | Yutaka:Kk | 軸状ワークの検査装置 |
WO2014118924A1 (ja) * | 2013-01-30 | 2014-08-07 | 日鍛バルブ株式会社 | ワークの検査設備 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2682802A (en) | 1946-08-23 | 1954-07-06 | Owens Illinois Glass Co | Gauging and detecting apparatus |
US2953233A (en) | 1955-06-15 | 1960-09-20 | Pittsburgh Plate Glass Co | Glass packaging and handling machine |
US3433346A (en) | 1967-05-29 | 1969-03-18 | Louie Millard Mccaskill | Apparatus for engaging and re-orienting conveyed articles |
US3520393A (en) | 1968-06-18 | 1970-07-14 | Western Electric Co | Apparatus for lifting and transferring articles between diverse conveying systems |
US3775909A (en) | 1972-01-24 | 1973-12-04 | Corning Glass Works | Successive lens polishing apparatus |
US3951272A (en) | 1974-07-12 | 1976-04-20 | Champion Spark Plug Company | Article transfer apparatus |
JPS52122714A (en) | 1976-04-08 | 1977-10-15 | Shigenori Yoshimitsu | Inclination detector and inclination correcting device for swash plate |
US4391372A (en) | 1976-11-04 | 1983-07-05 | Industrial Dynamics Company, Ltd. | Vacuum starwheel |
US4378493A (en) | 1980-11-03 | 1983-03-29 | Owens-Illinois, Inc. | Glass container sidewall defect detection system with a diffused and controlled light source |
US4388989A (en) | 1981-07-23 | 1983-06-21 | Hoppmann Corporation | Continuous rotary method of transporting articles |
GB8518305D0 (en) | 1985-07-19 | 1985-08-29 | Microspan Process Controls | Testing apparatus |
DD259089A3 (de) | 1985-11-29 | 1988-08-17 | Ve Wissenschaftlich Tech Betri | Haltevorrichtung zum feinkeramische erzeugnisse |
GB2190889B (en) | 1986-03-24 | 1990-01-10 | Norsk Hydro Fertilizers Limite | Sample presenter |
US4917556A (en) | 1986-04-28 | 1990-04-17 | Varian Associates, Inc. | Modular wafer transport and processing system |
US4912318A (en) | 1987-08-04 | 1990-03-27 | Kanebo Ltd. | Inspection equipment for small bottles |
JPH01291110A (ja) | 1988-05-18 | 1989-11-22 | Kanebo Ltd | 検査装置 |
US4982706A (en) * | 1989-09-01 | 1991-01-08 | Robert Bosch Gmbh | Valve control apparatus having a magnet valve for internal combustion engines |
JP3151994B2 (ja) | 1993-03-10 | 2001-04-03 | 石川島播磨重工業株式会社 | 溶接の継ぎ目の検査装置 |
JP3563108B2 (ja) | 1994-05-27 | 2004-09-08 | 株式会社アドバンテスト | Icテストハンドラのデバイス搬送機構 |
DE19514037C2 (de) | 1995-04-13 | 1997-09-04 | Leybold Ag | Transportvorrichtung |
US6112905A (en) | 1996-07-31 | 2000-09-05 | Aseco Corporation | Automatic semiconductor part handler |
JP3591677B2 (ja) | 1996-09-20 | 2004-11-24 | 株式会社アドバンテスト | Ic搬送用制御装置 |
JP3582987B2 (ja) | 1998-06-19 | 2004-10-27 | アサヒビール株式会社 | ビール樽口金の検査装置 |
US6581751B1 (en) | 2000-10-04 | 2003-06-24 | Owens-Brockway Glass Container Inc. | Method and apparatus for inspecting articles of glassware |
EP1286168B1 (en) | 2001-02-08 | 2006-11-29 | Seiko Epson Corporation | Member exchanger, method of controlling member exchanger, ic inspection method, ic handler, and ic inspector |
US6647770B2 (en) * | 2001-07-16 | 2003-11-18 | Caterpillar Inc | Apparatus and method for testing internal combustion engine valves |
US6557695B2 (en) | 2001-08-01 | 2003-05-06 | Owens-Brockway Glass Container Inc. | Apparatus and method for inspecting non-round containers |
US6820671B2 (en) | 2001-10-05 | 2004-11-23 | Paragon Trade Brands, Inc. | Apparatus and method for assembling absorbent garments |
JP2003139717A (ja) | 2001-10-30 | 2003-05-14 | Canon Inc | 欠陥検査方法及び装置 |
CN100365414C (zh) * | 2003-08-18 | 2008-01-30 | 林俊明 | 高速金属管、棒、线材在线探伤方法及其装置 |
JP4014580B2 (ja) * | 2004-04-02 | 2007-11-28 | 株式会社ケーヒン | 内燃エンジンの点火時期制御装置 |
EP1635045B1 (en) * | 2004-09-14 | 2006-12-27 | C.R.F. Società Consortile per Azioni | Internal combustion engine having valves with variable actuation each provided with a hydraulic tappet at the outside of the associated actuating unit |
JP2006177277A (ja) * | 2004-12-24 | 2006-07-06 | Denso Corp | 内燃機関用弁装置 |
EP1832880B1 (en) | 2006-03-10 | 2016-01-13 | Sysmex Corporation | Parts supply device, sample analyzing device, parts supply method |
DE102006028266A1 (de) | 2006-06-20 | 2007-12-27 | Khs Ag | Verfahren zum Behandeln von Behältern sowie Behälterbehandlungsmaschine |
CN104019276B (zh) * | 2007-07-31 | 2016-11-02 | 株式会社阿米泰克 | 流量控制阀以及流量控制阀用的滑阀位置检测装置 |
CN101959643B (zh) | 2008-03-05 | 2013-04-17 | 平田机工株式会社 | 工件移送装置 |
US8215473B2 (en) | 2008-05-21 | 2012-07-10 | Applied Materials, Inc. | Next generation screen printing system |
TWI394021B (zh) * | 2008-12-16 | 2013-04-21 | China Steel Corp | Servo valve detection system and its detection method |
JP4930948B2 (ja) | 2008-12-22 | 2012-05-16 | 株式会社ユタカ | 軸体搬送装置とそれを用いた軸体大径部の外径検査装置 |
US20100192892A1 (en) * | 2009-01-30 | 2010-08-05 | Reggie Dwayne Huff | Hybrid valve for internal combustion engines |
WO2014008075A1 (en) * | 2012-07-03 | 2014-01-09 | Eaton Corporation | Non-destructive test of detecting faulty welds on an engine poppet valve |
CN102854441B (zh) * | 2012-08-30 | 2014-12-10 | 青岛友结意电子有限公司 | 连接器自动流水线式检查一体设备 |
US8967368B2 (en) | 2012-10-12 | 2015-03-03 | Asm Technology Singapore Pte Ltd | Apparatus for processing electronic devices |
EP2840046B1 (de) | 2013-08-23 | 2017-02-01 | HINTERKOPF GmbH | Fördereinrichtung, Bearbeitungssystem und Verfahren zur Förderung und Bearbeitung eines Werkstücks |
US9506381B2 (en) * | 2014-01-31 | 2016-11-29 | GM Global Technology Operations LLC | System and method for measuring valve lift and for detecting a fault in a valve actuator based on the valve lift |
CN104777219B (zh) * | 2015-04-17 | 2017-11-28 | 南通理工学院 | 无损检测设备 |
-
2015
- 2015-08-03 JP JP2017512060A patent/JP6517324B2/ja active Active
- 2015-08-03 CN CN201580062845.6A patent/CN107835941A/zh active Pending
- 2015-08-03 WO PCT/JP2015/071911 patent/WO2017022046A1/ja active Application Filing
-
2016
- 2016-08-02 TW TW105124416A patent/TWI641822B/zh active
-
2018
- 2018-02-03 US US15/887,986 patent/US10473622B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2717191B2 (ja) * | 1989-07-20 | 1998-02-18 | フジオーゼックス株式会社 | エンジンバルブ検査装置 |
JPH0594761U (ja) * | 1992-05-25 | 1993-12-24 | フジオーゼックス株式会社 | 水浸式超音波探傷装置 |
JPH09195033A (ja) * | 1996-01-16 | 1997-07-29 | Mitsubishi Heavy Ind Ltd | エンジンバルブ及びその製造方法 |
JP2002028714A (ja) * | 2000-07-10 | 2002-01-29 | Daido Steel Co Ltd | 伸線装置 |
JP2012007895A (ja) * | 2010-06-22 | 2012-01-12 | Yutaka:Kk | 軸状ワークの検査装置 |
WO2014118924A1 (ja) * | 2013-01-30 | 2014-08-07 | 日鍛バルブ株式会社 | ワークの検査設備 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112229913A (zh) * | 2020-10-18 | 2021-01-15 | 安徽恩大阀门机械有限公司 | 一种阀门生产用超声波探伤装置 |
CN112229913B (zh) * | 2020-10-18 | 2022-08-05 | 安徽恩大阀门机械有限公司 | 一种阀门生产用超声波探伤装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI641822B (zh) | 2018-11-21 |
JPWO2017022046A1 (ja) | 2018-05-24 |
TW201712313A (en) | 2017-04-01 |
US20180156753A1 (en) | 2018-06-07 |
CN107835941A (zh) | 2018-03-23 |
JP6517324B2 (ja) | 2019-05-22 |
US10473622B2 (en) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4882023B2 (ja) | ワーク検査搬送装置 | |
TWI478788B (zh) | Workpiece inspection equipment | |
WO2017022046A1 (ja) | エンジンバルブの軸接部の探傷検査方法および装置 | |
KR101131041B1 (ko) | 쇽업소버의 로드어셈블리 자동조립장치 | |
CN113601217A (zh) | 一种汽车轮毂夹具、加工设备及生产线 | |
JP5563718B2 (ja) | ピストン供給装置及びピストン供給方法 | |
CN109530948B (zh) | 一种罐体焊接机器人 | |
CN110587289B (zh) | 一种爆破试验用管件加工设备 | |
CN206393082U (zh) | 一种后桥自动焊接设备 | |
CN110877249A (zh) | 一种磁吸自排列循环去毛刺机及去毛刺方法 | |
JP2012007895A (ja) | 軸状ワークの検査装置 | |
JP2006239764A (ja) | 車両用ドアインパクトビームの製造方法及びその製造装置。 | |
CN112247568A (zh) | 电磁阀组件安装设备 | |
JP4836478B2 (ja) | クロージング加工方法及びクロージング加工機 | |
CN212206439U (zh) | 扭力检测机 | |
US6752691B1 (en) | Device for smoothing gear wheels | |
CN210279873U (zh) | 活塞杆自动输送检测设备 | |
CN213960438U (zh) | 一种带高压测试的自动化选择性波峰焊机 | |
CN111038962B (zh) | 一种用于动车零部件加工的流水线机器人 | |
TWI274034B (en) | Multi-directional gripping apparatus | |
JP2006281237A (ja) | クロージング加工方法及びクロージング加工機 | |
JP2003276816A (ja) | ハンガコンベヤのワーク受け具 | |
CN220421616U (zh) | 一种铁芯熔接设备 | |
KR102551724B1 (ko) | 코니컬 튜브 포장 장치 | |
CN118357173B (zh) | 一种灯检机及其上下料方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017512060 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15900359 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15900359 Country of ref document: EP Kind code of ref document: A1 |