WO2017018753A1 - 가요성 기판의 제조방법 - Google Patents

가요성 기판의 제조방법 Download PDF

Info

Publication number
WO2017018753A1
WO2017018753A1 PCT/KR2016/008074 KR2016008074W WO2017018753A1 WO 2017018753 A1 WO2017018753 A1 WO 2017018753A1 KR 2016008074 W KR2016008074 W KR 2016008074W WO 2017018753 A1 WO2017018753 A1 WO 2017018753A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
substrate layer
carrier substrate
layer
flexible
Prior art date
Application number
PCT/KR2016/008074
Other languages
English (en)
French (fr)
Inventor
정혜원
손용구
김경준
신보라
임창윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160093295A external-priority patent/KR20170012123A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16830786.6A priority Critical patent/EP3327731B1/en
Priority to JP2017530032A priority patent/JP6429137B2/ja
Priority to US15/527,261 priority patent/US10517171B2/en
Priority to CN201680003320.XA priority patent/CN107073915B/zh
Publication of WO2017018753A1 publication Critical patent/WO2017018753A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures

Definitions

  • the present invention relates to a method for manufacturing a flexible substrate, and more particularly, to a method for more efficiently manufacturing a flexible substrate using a carrier substrate that is easy to peel off the flexible substrate.
  • the existing process for manufacturing the flexible substrate is complicated by the application of a solution for manufacturing a flexible substrate containing a solvent on a metal belt or drum, and then produced in the form of a temporary film, followed by separation and drying and curing. There is a problem of low.
  • a flexible substrate manufacturing technology including a transparent electrode having a transparent and low resistance is essential.
  • the specific resistance has a limit on the material, and in the case of copper, which is widely used, the material has a low enough resistivity, and a material such as silver has a problem that the price is expensive, making it difficult to apply.
  • option (2) there are physical limitations due to problems related to circuit design. As a result, the height of the wiring must be increased. In this case, as the height of the wiring increases, problems such as distorting the shape of the wiring, electrical shorts, shorts between wirings, and wiring damage may occur.
  • a technique for inserting metal wiring into the substrate includes a method of etching a desired pattern through deposition and etching, and copper, which is difficult to dry-etch for pattern formation. And a damascene method in which a CMP method is applied to a thin film of Cu, and the wiring is embedded in an insulating film groove.
  • An object of the present invention is to provide a method in which a flexible substrate can be easily peeled from a carrier substrate and thus a flexible substrate can be produced more easily.
  • Another object of the present invention is to provide a manufacturing method that can more easily produce a flexible substrate on which a metal pattern is formed without deposition and etching processes.
  • Another object of the present invention is to provide a flexible substrate that can be manufactured and distributed in roll form.
  • the present invention to solve the above technical problem
  • the method may further include forming a metal pattern on the carrier substrate before forming the flexible substrate layer to manufacture the flexible substrate on which the metal pattern is formed.
  • the method may further include forming a hard coating layer on the carrier substrate before forming the flexible substrate layer, thereby manufacturing a flexible substrate having a hard coating layer formed thereon.
  • the method may further include forming a hard coating layer on the flexible substrate layer after forming the flexible substrate layer, thereby manufacturing a flexible substrate on which the hard coating layer is formed.
  • the method may further include forming a metal pattern after forming a hard coat layer on the flexible substrate layer, thereby manufacturing a flexible substrate having a hard coat layer formed thereon.
  • the method may further include forming a hard coat layer on the flexible substrate layer on which the metal pattern is formed, thereby manufacturing the flexible substrate on which the hard coat layer is formed.
  • the flexible substrate layer may be prepared by casting a composition comprising an excess of an acid dianhydride on the carrier substrate compared to the diamine, followed by heating and curing.
  • At least a portion of the flexible substrate layer may be in direct contact with the carrier substrate including the polyimide resin.
  • the metal pattern may be embedded in the flexible substrate layer.
  • the carrier substrate layer separated from the flexible substrate layer may further include the step of being collected in the form of a roll.
  • the physical stimulus may be a tension applied in the process of winding and collecting the carrier substrate and the flexible substrate layer.
  • the flexible substrate layer may have an adhesive force of 1 N / cm or more to the flexible substrate layer before the physical stimulus is applied.
  • the flexible substrate layer may have a peel strength of 0.3 N / cm or less.
  • the adhesive force (A1) of the carrier substrate layer to the flexible substrate layer before the physical stimulus that does not cause chemical changes to the carrier substrate and the flexible substrate layer, and the flexible after the physical stimulus is applied The ratio A2 / A1 of the adhesion force A2 of the carrier substrate layer to the substrate layer may be 0.001 to 0.5.
  • the polyimide-based resin contained in the carrier substrate is a polyamic acid prepared by reacting the aromatic tetracarboxylic dianhydride of Formula 1 with an aromatic diamine compound having a linear structure at a temperature of 200 °C or more It may be prepared by curing.
  • A is an aromatic tetravalent organic group of the following Chemical Formula 2a or 2b,
  • R 11 to R 14 are each independently an alkyl group having 1 to 4 carbon atoms or a haloalkyl group having 1 to 4 carbon atoms,
  • a is an integer of 0-3
  • b is an integer of 0-2
  • c and e are each independently an integer of 0-3
  • d is an integer of 0-4, and f is an integer of 0-3.
  • the dianhydride may be reacted in excess of the diamine compound to prepare a polyimide resin included in a carrier substrate.
  • the aromatic diamine compound may be an aromatic diamine compound of Formula 4a or 4b.
  • R 21 to R 23 are each independently an alkyl group having 1 to 10 carbon atoms or a haloalkyl group having 1 to 10 carbon atoms,
  • R 24 and R 25 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a haloalkyl group having 1 to 10 carbon atoms
  • q is an integer of 1 or 2
  • l, m and n are each independently an integer from 0 to 4, and
  • p is an integer of 0 or 1.
  • the carrier substrate separated from the flexible substrate layer may be collected and reused.
  • the present invention to solve another technical problem
  • Carrier substrate supply means for unwinding and supplying a carrier substrate
  • Polymer coating means for forming a resin layer for forming a flexible substrate by applying a curable polymer on the carrier substrate;
  • Flexible substrate layer collecting means for winding up and collecting the flexible substrate layer laminated on the carrier substrate
  • a flexible substrate manufacturing apparatus comprising a carrier substrate collecting means for winding and collecting a carrier substrate from which the flexible substrate layer is separated.
  • the manufacturing apparatus may further include patterning means for forming a metal pattern on the carrier substrate.
  • a flexible substrate manufactured by the above-described manufacturing method and an electronic device including the same.
  • the flexible substrate manufactured by the method according to the present invention has a difference in mechanical strength in the longitudinal direction (MD) and the width direction (TD) within 10 MPa, and a difference in thermal expansion coefficient in the longitudinal direction and the width direction within 5 ppm / ° C. Can be.
  • the electronic device may be manufactured by a roll-to-roll process using the flexible substrate in the form of a roll.
  • the electronic device may be selected from the group consisting of a solar cell, an organic light emitting diode lighting, a semiconductor device, and a display device, the display device may be a flexible organic electroluminescent device.
  • the method of manufacturing a flexible substrate according to the present invention enables the continuous production using a roll-to-roll process and at the same time flexible from the carrier substrate with a relatively small physical stimulus even without a conventional laser or light irradiation process or dissolution process. Since the substrate layer can be easily separated, a flexible substrate used for a flexible display element or the like can be more easily manufactured and the process can be simplified. In addition, the manufacturing cost and time can be reduced, and the deterioration of reliability or failure of the device due to laser or light irradiation can be suppressed.
  • the flexible substrate manufactured by the method according to the present invention is obtained after being manufactured while being supported on the carrier substrate, there is no difference in the force applied along the longitudinal and width directions of the substrate to the flexible substrate, resulting in There is an advantage that the difference in mechanical, thermal, and optical properties of the flexible substrate in the longitudinal and width directions is small and uniform.
  • the flexible substrate on which the metal wiring is formed can be obtained in the form of a roll, the efficiency of the subsequent device manufacturing process can be improved, and thus the electronic device can be manufactured more efficiently.
  • FIG. 1 illustrates a method of manufacturing a flexible substrate according to an embodiment.
  • FIG. 2 illustrates a method of manufacturing a flexible substrate on which a metal pattern is formed, according to another embodiment.
  • Example 3 is a photograph and SEM image showing a flexible substrate formed with a metal pattern prepared according to Example 2 of the present invention.
  • the term "physical stimulus” in the present specification includes a mechanical stimulus that does not cause a chemical change, such as peeling, cutting, friction, tension or compression, unless otherwise specified, and regardless of means or method It means that the laminated cross section of the laminated body in which the sexual substrate was laminated can be exposed. In some cases, a stimulus having an intensity of more than 0 to 0.1 N or less per unit area may be applied. In other words, the application of the physical stimulus means that the laminated cross section of the laminate is exposed regardless of the means. Preferably at least two laminated cross-sections forming the ends of the flexible substrate are exposed at predetermined intervals.
  • the 'adhesive force' refers to the adhesion of the carrier substrate to the flexible substrate before the application of the physical stimulus
  • the 'peel strength' refers to the adhesion of the carrier substrate to the flexible substrate after the application of the physical stimulus
  • the method may further include forming a metal pattern on the carrier substrate before forming the flexible substrate layer, thereby manufacturing a flexible substrate on which the metal pattern is formed.
  • the flexible substrate layer is made of a polyimide-based resin, can be prepared by casting a composition containing an excess of the acid dianhydride on the carrier substrate compared to the diamine, and then heated and cured.
  • the molar ratio of acid dianhydride: diamine may be in the range of 1: 0.95 to 0.999, preferably 1: 0.98 to 0.995. In this case, there is an effect that can improve the transmittance of the resulting flexible substrate.
  • At least a portion of the flexible substrate layer on which the metal pattern is formed on the carrier substrate including the polyimide resin may be in direct contact. That is, a flexible substrate layer having a metal pattern may be directly formed on the carrier substrate without a debonding layer formed between the carrier substrate and the flexible substrate layer to facilitate peeling of the carrier substrate and the flexible substrate layer.
  • the metal pattern formed on the flexible substrate layer may be embedded in the flexible substrate layer, which is advantageous in improving the stability and performance of the device by showing the effect of not damaging the structural change of the flexible substrate. .
  • the roll-to-roll process is a continuous process, in which a thin material such as a film or copper foil is wound on a rotating roller to apply a specific material or to remove a predetermined portion, thereby preparing a material having a new function and then obtaining it in roll form.
  • a method it can be advantageous for mass production and has the advantage of lowering manufacturing costs.
  • the flexible substrate manufactured by the process according to the present invention may be manufactured in a roll form, which may be used in a subsequent electronic device process, and particularly useful when the electronic device manufacturing process uses a roll-to-roll process. .
  • the carrier substrate that can be used in the process according to the invention can be a flexible substrate comprising a polyimide-based polymer that can be used in a roll-to-roll process. Further, before or after the roll-to-roll process, the carrier substrate may be forming a roll wound in the form of a roll, and may be flattened during the process, and at the same time, heat treatment such as tension and curing process applied during the roll-to-roll process. It may have a structure excellent in heat resistance and chemical resistance that can withstand. In particular, the carrier substrate according to the present invention may have a peeling property that can be easily separated from the flexible substrate after the flexible substrate is manufactured.
  • the present invention also provides a flexible substrate produced by the above method.
  • the flexible substrate manufactured by the method according to the present invention has a difference in mechanical strength in the longitudinal direction and the width direction within 10 MPa in a form supported by the carrier substrate, and a thermal expansion coefficient difference in the longitudinal direction and the width direction is 5 ppm / It may be within °C.
  • the present invention provides an electronic device comprising the flexible substrate.
  • the step of separating the flexible substrate and the carrier substrate may be performed simultaneously with the collection of the flexible substrate.
  • the physical stimulus separating the flexible substrate and the carrier substrate may be a tension generated during the winding of the collecting means.
  • the present invention can peel off the flexible substrate layer formed on the carrier substrate only by physical stimulus, so that the sacrificial layer is formed between the carrier substrate and the substrate layer for the separation of the substrate in the existing process and the sacrifice
  • the carrier substrate and the flexible substrate can be separated without the laser or the light irradiation process or the dissolution process which proceeds to remove the layer, so that the flexible substrate can be manufactured more easily.
  • the present invention in the production of a flexible substrate, by using a carrier substrate containing a polyimide resin having a predetermined characteristic, in the continuous manufacturing process of the flexible substrate using the roll-to-roll method, laser or light irradiation step
  • the flexible substrate can be easily manufactured by easily removing the flexible substrate from the carrier layer by omitting a complicated sacrificial layer removing process and simply applying a physical stimulus, and winding and collecting the flexible substrate to form a roll.
  • Flexible substrates can be prepared.
  • the flexible substrate has the advantage that the mechanical, optical, and thermal properties of the longitudinal and width directions are uniform, and because it is in the form of a roll, it can be conveniently used in the manufacturing process of the electronic device, for example, manufactured by a roll-to-roll process It can be used in the manufacturing process of the electronic device.
  • FIG. 1 illustrates a method of manufacturing a flexible substrate according to an embodiment of the present invention, but the present invention is not limited thereto.
  • the carrier substrate 1 is supplied from a carrier substrate supply means 2 having the carrier substrate 1 rolled in a roll shape, and the supplied carrier substrate 1 is transported so that a polymer is formed on the carrier substrate 1.
  • the flexible substrate layer 11 may be formed on the carrier substrate by coating and curing the curable polymer 5 by coating means (not shown).
  • the flexible substrate layer 11 is wound by the collecting means 10 and collected in a roll form, thereby obtaining a flexible substrate roll.
  • FIG. 2 illustrates a method of manufacturing a flexible substrate having a metal pattern according to an embodiment of the present invention, but the present invention is not limited thereto.
  • the carrier substrate 1 is supplied from a carrier substrate supply means 2 having a carrier substrate rolled up in roll form, and the patterned means (not shown) on the carrier substrate 1 while the supplied carrier substrate 1 is transferred.
  • the flexible substrate layer 13 having the metal pattern is formed by coating and curing the curable polymer 5 on the metal pattern by a polymer coating means (not shown). It can be formed on a substrate.
  • the flexible substrate layer 11 having the metal pattern formed thereon is wound by the collecting means 10 and collected in a roll form, thereby obtaining a flexible substrate roll having the metal pattern formed thereon.
  • the carrier substrate 1 separated from the flexible substrate layers 11 and 13 may also be collected by a carrier substrate roll by being wound by the carrier substrate collecting means 20, or may be connected to the carrier substrate supply means 2 and supplied again. Thereby being reused in the manufacture of flexible substrates.
  • the action and effect of the carrier substrate having the easy peeling characteristics may be expressed due to the characteristics of the following polyimide resin.
  • the polyimide resin included in the carrier substrate 1 is controlled to have an imidization ratio in an appropriate range, and exhibits a certain level or more of adhesive strength during the process of manufacturing the flexible substrate layers 11 and 13, but the flexible After the manufacturing process of the substrate is completed, it can be easily separated while the adhesive force to the flexible substrate is reduced by a simple physical stimulus such as a laser or light irradiation, or a tension applied by the winding means without the melting process.
  • the carrier substrate has a ratio (A2 / A1) of adhesion strength A1 to the flexible substrate layer before the physical stimulus is applied and adhesion force A2 to the flexible substrate after the physical stimulus is applied, 0.001 to 0.5, Preferably from 0.001 to 0.1, a simple physical stimulus such as tension applied by the winding means without laser or light irradiation can be easily separated from the flexible substrate.
  • the carrier substrate exhibits an adhesion of at least about 1 N / cm, or at least about 2 N / cm, or about 3 to 5 N / cm to the flexible substrate layer before the physical stimulus is applied. It may then exhibit a peel strength of about 0.3 N / cm or less, for example about 0.2 N / cm or less, or about 0.1 N / cm or less, or about 0.001 to 0.05 N / cm.
  • the peel strength of the carrier substrate may be measured under the conditions of Table 1 below.
  • Peel strength measurement condition Film width (mm) 10 Film length (mm) 100 Speed (mm / min) 50 Measuring instrument Texture Analyser (TA.XT plus, manufactured by Stable micro systems) Peeling angle 90 °
  • the peel strength is obtained by preparing a laminate sample in which a flexible substrate is sequentially formed on a carrier substrate, cutting the laminate sample into a rectangular shape having a width of 10 mm as a physical stimulus, and then cutting the end of the flexible substrate. It can calculate by measuring under the measuring apparatus and conditions mentioned above the force which takes when a part is caught and peeled off at 90 degrees from a flexible substrate layer.
  • the adhesive force is to prepare a laminate sample in which a flexible substrate is sequentially formed on a carrier substrate having a rectangular size of 100mm in width, in which the end of the flexible substrate is pasted with a tape of 10mm in width It can be calculated by measuring the force taken when grabbing and detaching at a 90 ° angle from the carrier substrate, wherein the force measuring device and condition can be the same as the measuring device and condition of peel strength shown in Table 1 above.
  • the adhesion and peel strength of such a carrier substrate can be achieved by the imidization ratio of the polyimide resin contained in the carrier substrate, and the imidation ratio is a kind and content of a monomer for forming a polyimide resin, and imidization conditions. (Heat treatment temperature and time, etc.) and the like.
  • the above-described adhesion and peel strength conditions of the carrier substrate can be satisfied, and even if the laser or light irradiation is omitted, the flexible substrate layers 11 and 13 are applied to the carrier substrate 1 by only physical stimulation.
  • the polyimide resin may have an imidation ratio of about 60% to 99%, or about 70% to 98%, or about 75 to 96%. have.
  • the imidation ratio of the polyimide-based resin is about 1350-1400 cm - of the IR spectrum after applying a composition containing a precursor of polyimide, for example, a polyamic acid-based resin, and performing imidization at a temperature of about 500 ° C. or higher.
  • the integral intensity of the CN band represented by 1 is 100%, it may be displayed as measured as the relative integral intensity ratio of the CN band after the imidization is performed at the imidization temperature of about 200 ° C. or more.
  • the imidation range of the polyimide-based resin as described above may be achieved by controlling the curing temperature conditions during the curing process for the polyamic acid-based resin.
  • a composition containing a polyamic acid resin which is a precursor of polyimide resin, is applied onto the carrier substrate, and at a temperature of about 200 ° C. or higher, or 250 ° C. to 500 ° C.
  • a carrier substrate When cured to form a carrier substrate, about 0.3 N / including polyimide resin having an imidation ratio of about 60% to 99%, or about 70% to 98%, or about 75 to 96% as described above
  • a carrier substrate having a peel strength of cm or less can be formed.
  • the polyimide resin produced by controlling the curing temperature as described above has a glass transition temperature (T g ) of about 200 ° C. or higher, or about 300 ° C. or higher, or about 350 to 500 ° C., and 400 ° C. or higher. Or, it may have a decomposition temperature (T d ) of 400 to 600 °C.
  • T g glass transition temperature
  • T d decomposition temperature
  • the carrier substrate has a thermal expansion of about 30 ppm / ° C. or less, or about 25 ppm / ° C. or less, or about 20 ppm / ° C. or less, or about 1 to 17 ppm / ° C. under conditions of 100 to 200 ° C. It may have a coefficient of thermal expansion (CTE) and 1% pyrolysis temperature (Td1%) of 450 ° C or more, or 470 ° C or more.
  • CTE coefficient of thermal expansion
  • Td1% pyrolysis temperature
  • the carrier substrate 1 that satisfies the above structural and physical requirements is cleanly peeled off from the flexible substrates 11 and 13, so that the transparency and the optical characteristics of the substrate for the element including the flexible substrate are reduced. Does not affect
  • the carrier substrate 1 cleanly separated from the flexible substrates 11 and 13 may be wound up by the carrier substrate collecting means 20 to form a carrier substrate roll and resupplyed to a supply part of the manufacturing apparatus, or
  • the collection means 20 can be directly connected to the carrier substrate supply means 2 so that the collected carrier substrate can be reused to produce the flexible substrate.
  • the polyamic acid-based resin as the above-described polyimide-based resin or a precursor thereof may be formed by polymerization and imidization using arbitrary tetracarboxylic dianhydride compounds and diamine compounds as monomers.
  • tetracarboxylic dianhydride compound examples include pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (3, 3'4,4'-biphenyl tetracarboxylic acid dianhydride (BPDA), meso-butane-1,2,3,4-tetracarboxylic dianhydride (meso-butane-1,2,3,4-tetracarboxylic dianhydride), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (3,3', 4,4'-benzophenone tetracarboxylic dianhydride, BTDA), 2,3,3 ', 4'-diphenylethertetra Carboxylic dianhydrides (2,3,3 ', 4'-diphenylether tetracarboxylic dianhydride, ODPA), 3,3
  • each said monomer as a specific example of a diamine compound, p-phenylenediamine (PDA), m-phenylenediamine (m-PDA), 2,4,6-trimethyl-1,3-phenyl Lendiamine, 2,3,5,6-tetramethyl-1,4-phenylenediamine, 4,4'-diaminodiphenylether, 3,4'-diaminodiphenylether, 3,3 ' -Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl Methane, 4,4'-methylene-bis (2-methylaniline), 4,4'-methylene-bis (2,6-dimethylaniline), 4,4'-methylene-bis (2,6-diethylaniline ), 4,4'-m
  • the acid dianhydride is aromatic in order to more suitably meet the physical properties required for the carrier substrate such as the low CTE range and peel strength described above. It is important not to have a linker structure between the rings.
  • aromatic tetracarboxylic dianhydride of the following formula (1) may be preferable.
  • A is an aromatic tetravalent organic group derived from an acid dianhydride, specifically, may be an aromatic tetravalent organic group represented by the following Formula 2a or 2b.
  • R 11 to R 14 are each independently an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.) or a haloalkyl group having 1 to 4 carbon atoms (eg, fluoromethyl group, bromomethyl group, chloro Methyl group, trifluoromethyl group, etc.), and
  • a may be an integer of 0 to 3
  • b is an integer of 0 to 2
  • c and e are each independently an integer of 0 to 3
  • d is an integer of 0 to 4
  • f may be an integer of 0 to 3
  • c, d and e are integers of zero.
  • the tetracarboxylic dianhydride is pyromellitic dianhydride (PMDA) of Chemical Formula 3a, or has a linear structure as in Chemical Formula 3b, and two aromatic rings are directly connected without a linker structure. It may be more preferred that it is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA):
  • PMDA pyromellitic dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • the packing density of the carrier substrate (1) the higher the packing density of the carrier substrate (1), the less the intermolecular space and the lower the binding force due to mutual penetration. As a result, the adhesive strength to the flexible substrate layer 11 formed on the carrier substrate 1 and the peeling strength of the flexible substrate from the laminate become low.
  • the packing density can be represented by CTE. The higher the packing density, the lower the CTE value, and the lower the CTE, the higher the packing density. Therefore, in order to more suitably meet the physical property requirements of the carrier substrate described above, it is preferable to use an aromatic diamine compound having a linear structure, specifically, an aromatic diamine compound of the following formula 4a or 4b among the above-described diamine compounds. desirable:
  • R 21 to R 23 are each independently an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.) or a haloalkyl group having 1 to 10 carbon atoms (eg, fluoromethyl group, bromomethyl group, Chloromethyl group, trifluoromethyl group, etc.),
  • l, m and n are each independently an integer of 0 to 4, preferably 0, and
  • p is an integer of 0 or 1, Preferably it is 0.
  • Examples of such a preferred aromatic diamine-based compound include p-phenylenediamine (PDA), benzidine (BZD), m-tolidine, or 2,2'-bis (trifluoromethyl) -benzidine (2,2 ' -bis (trifluoromethyl) benzidine, TFMB) and the like.
  • PDA p-phenylenediamine
  • BZD benzidine
  • m-tolidine or 2,2'-bis (trifluoromethyl) -benzidine (2,2 ' -bis (trifluoromethyl) benzidine, TFMB) and the like.
  • Each of these monomers is polymerized in a polar organic solvent to prepare a polyamic acid resin, and in the presence or absence of an imidization catalyst such as an amine catalyst, the polyamic acid resin is imidized under the above-described curing temperature conditions.
  • an imidization catalyst such as an amine catalyst
  • a polyimide resin and a carrier substrate including the same may be manufactured.
  • the molar ratio of tetracarboxylic acid: diamine can be 1: 0.95-0.995, Preferably it is the range of 1: 0.98-0.95.
  • the thickness and size of the carrier substrate 1 may be appropriately selected according to the type of device to be applied, but considering the transparency of the substrate, the carrier substrate 1 has a thickness of 0.01 to 50mm, or 0.02 to It may be desirable to have a thickness of 20 mm.
  • the thickness range as described above can have excellent mechanical strength can exhibit excellent support properties for the flexible substrate.
  • the adhesive force with the carrier substrate may increase, but when too thin, the peelability may be reduced due to the increase of the adhesive force with the flexible substrate. Therefore, in order to show high adhesive force with a carrier substrate and high peelability with a flexible substrate, it is preferable to have said thickness range.
  • the carrier substrate layer can be produced by any method capable of producing a self supporting film such as a tenter method and a cast method.
  • the carrier substrate layer may be manufactured by casting on a support and then drying at 100 to 150 ° C. and curing at 150 to 400 ° C. to cure while gradually raising the temperature of the curing process. It is preferable.
  • a metal fine pattern may be formed on the carrier substrate before the resin for forming the flexible substrate is coated on the carrier substrate, thereby forming the flexible substrate on which the metal pattern is formed.
  • the flexible substrate on which the metal pattern is formed may be formed in a form in which the metal pattern is embedded by forming a metal pattern on the flexible substrate layer and coating and curing a polymer.
  • the metal pattern is embedded in the substrate, the sheet resistance with the transparent electrode can be reduced, and the efficiency of the device can be improved, and even if the shape of the flexible substrate is deformed, Since disconnection can be prevented, it may be a very useful form for the application of a flexible device.
  • the metal pattern is a metal such as silver (Ag), copper (Cu), aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), titanium (Ti), molybdenum (Mo), or an alloy thereof.
  • the pattern formation method of the metal pattern inkjet printing, gravure printing, gravure offset, aerosol printing, electroplating, vacuum deposition, thermal deposition, sputtering, electron beam deposition, etc. on the carrier substrate layer or flexible substrate layer It may be formed by a method such as coating or deposition.
  • the metal patterns may be arranged at intervals of 0.05 to 50 mm.
  • the metal patterns are densely arranged at intervals of less than 0.05 mm, there is a problem of an increase in process cost.
  • the metal patterns are arranged at intervals of more than 50 mm, a role as an auxiliary electrode is insignificant. There is a problem that the sheet resistance cannot be lowered effectively.
  • the width of the metal pattern is preferably 0.5 to 1000 ⁇ m. In the case where the width of the metal pattern is less than 0.5 ⁇ m, if a complicated process for forming a fine pattern is required, the resistance of the metal pattern increases, and when the width of the metal pattern exceeds 1000 ⁇ m, There is a problem that the transmittance is lowered.
  • the metal pattern may be used as an auxiliary electrode in an electronic device, and in a solar cell, an organic light emitting diode illumination, a semiconductor device, and a display device, a transparent part having an exposed portion of the metal pattern 3 on a substrate is provided. Direct contact with the electrode can lower their sheet resistance.
  • the contact between the metal pattern 3 and the transparent electrode is not limited thereto, and even when the entire metal pattern is embedded in the flexible substrate, the auxiliary electrode is connected to the metal pattern through an auxiliary means for connecting the transparent electrode and the metal pattern. It can be used as.
  • the formed flexible substrate layers 11 and 13 according to the present invention may be wound by the flexible substrate collecting means 10 as shown in FIGS. 1 and 2 to form a flexible substrate in the form of a roll.
  • the present invention may be used to manufacture a device including a sexual substrate, and more specifically, may be used in a method of manufacturing an electronic device using a roll-to-roll continuous manufacturing process.
  • the carrier substrate itself exhibits an appropriate adhesive force to the flexible substrate and the like, while being able to properly fix and support the flexible substrate during the device manufacturing process, while separating the flexible substrate.
  • a process such as laser or light irradiation
  • the manufacturing process of the device having the flexible substrate can be greatly simplified, and the manufacturing cost thereof can also be significantly lowered.
  • a device substrate and a method for manufacturing the same including the flexible substrate manufactured by the manufacturing method.
  • the flexible substrate Since the flexible substrate is subjected to a process supported by a carrier substrate, the flexible substrate is hardly changed in tension, and thus the mechanical, thermal, and optical properties of the longitudinal and width directions are uniform.
  • the difference in mechanical strength is within 10 MPa, or within 5 MPa, or within 3 MPa
  • the difference in thermal expansion coefficient in the longitudinal and width directions is within 5 ppm / ° C, or within 3 ppm / ° C, or 1 ppm / ° C. Can be within.
  • the device can be any solar cell (eg, flexible solar cell) with a flexible substrate, organic light emitting diode (OLED) illumination (eg, flexible OLED lighting), any semiconductor with a flexible substrate.
  • OLED organic light emitting diode
  • Device or a flexible display device such as an organic electroluminescent device, an electrophoretic device, or an LCD device having a flexible substrate, and among them, an organic electroluminescent device may be preferable.
  • the device may perform a step of forming a device structure on the flexible substrate (ie, device manufacturing process step), wherein the device structure includes a gate electrode.
  • a step of forming a device structure on the flexible substrate ie, device manufacturing process step
  • the device structure includes a gate electrode.
  • the type of device to be formed on a flexible substrate such as a semiconductor device structure, a display device structure including a thin film transistor array, a diode device structure having a P / N junction, an OLED structure including an organic light emitting layer, or a solar cell structure It can be a conventional device structure.
  • the transparent electrode is located on the back surface exposed the metal pattern of the flexible substrate in the substrate, including an indium tin oxide (ITO); A light emitting part disposed on a rear surface of the transparent electrode and including an organic compound; And located on the back of the light emitting portion, it may include a metal electrode containing a metal, such as aluminum.
  • ITO indium tin oxide
  • the method may further include forming a hard coating layer on the carrier substrate before or after forming the flexible substrate layer, thereby manufacturing a flexible substrate on which the hard coating layer is formed.
  • a flexible substrate on which a hard coat layer is formed may be manufactured.
  • the hard coating layer may be applied without limitation as long as it is generally used in the related art, and thus a detailed description thereof will be omitted.
  • the manufacturing process of the device including the flexible substrate may be a roll-to-roll process
  • the roll-shaped flexible substrate is suitable for use in the roll-to-roll process, it can be flattened during the process,
  • the metal pattern formed on the flexible substrate can withstand the forces acting in the roll-to-roll process by improving mechanical properties such as impact resistance.
  • the device manufacturing process can be simplified, the manufacturing cost can be greatly reduced, and the reliability of the device due to laser or light irradiation can be reduced or Defects can also be suppressed, and the flexible substrate on which the metal pattern is formed can reduce the sheet resistance of the transparent electrode as the metal pattern is embedded in the substrate, thereby improving the efficiency of the device, and the flexible substrate. Even if the shape of the metal pattern can be prevented from being damaged or broken, it can be useful for the application of the flexible (flexible) device according to the present invention.
  • a drying process at a temperature of 120 ° C. and 150 ° C.
  • the curing process (30 minutes) was performed continuously at the temperature of -230 ° C-300 ° C-400 ° C to prepare a film containing a polyimide resin (carrier substrate) having a thickness of 50 microns in a roll form.
  • a composition for forming a flexible substrate including 12 wt% of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of TFMB and 88 wt% of DMAc as a solvent was prepared.
  • the roll-shaped carrier substrate was uncoiled and transported at a rate of 0.5 m / min, and the composition for forming a flexible substrate was applied (cast) to a thickness of 15 ⁇ m after drying, thereby forming a polymer layer of the resulting flexible substrate.
  • a drying step at a temperature of 100 ° C. and a curing step of 300 minutes at 300 ° C. were continuously performed to form a polymer layer (flexible substrate layer) containing a polyimide resin.
  • the carrier substrate is cut to an indefinite depth (after applying a physical stimulus exposing the cross section of the flexible substrate layer without causing chemical change of the carrier substrate layer) and pressure sensitive adhesive tape (Pressure sensitive) adhesive tape, adhesion strength 43 ⁇ 6 g / mm), and then the carrier substrate and the flexible substrate were separated and wound by attaching the end of the tape to the take-up roll and winding with 5N tension.
  • a carrier substrate containing BPDA-PDA polyimide resin and a flexible substrate layer containing BPDA-TFMB polyimide resin were obtained in roll form.
  • the longitudinal (MD) and width (TD) mechanical properties of the flexible substrate layer thus prepared were evaluated as follows.
  • the mechanical properties (modulus, peak stress, elongation) of the film were measured using Instron's UTM. Specifically, the film was cut to 5mmx60mm or more, and the gap between the grips was set to 40mm to check the tensile strength while pulling the spring at a speed of 20mm / min.
  • the coefficient of thermal expansion (CTE) and dimensional change of the film were measured using Q400 of TA.
  • a 15 micron thick film was prepared in a size of 5 mm x 20 mm, and then a sample was loaded using an accessory. The length of the film actually measured was made the same at 16 mm.
  • the film pulling force was set to 0.02N, and the measurement start temperature was heated to 300 ° C at a rate of 5 ° C / min at 30 ° C, and then cooled to 80 ° C at -5 ° C / min, and then again at 5 ° C / min. It heated to 400 degreeC by speed
  • Example 2 In the same manner as in Example 1, but as shown in Figure 2, before applying the composition for forming a flexible substrate on the carrier substrate, aluminum was deposited to a thickness of 200nm on the carrier substrate and the fine pattern was patterned. Specifically, a silicon-based pattern having a micropattern formed by coating a resist ink on a silicon blanket in front and then contacting the cliché with a micro pattern engraved on the blanket to form a pattern on the silicon-based blanket and then removing some coating film. The blanket was prepared. The resist ink fine pattern formed on the silicon blanket was transferred to aluminum deposited on the carrier substrate, and then dried in an oven at 115 ° C. for 3 minutes to remove the solvent remaining in the resist pattern.
  • the resist-patterned aluminum substrate was etched by spray using the etching solution at a temperature of 45 ° C. After cleaning and drying the etchant with deionized water, the remaining resist ink was removed using a stripper to produce aluminum wiring on the carrier substrate.
  • the thickness was 15 ⁇ m. (Casting), and a polyimide-based resin was continuously subjected to a drying step at a temperature of 100 ° C. and a curing step of 30 minutes at 300 ° C. with respect to the resulting coating film for forming a polymer layer of a flexible substrate.
  • the containing polymer layer (flexible substrate layer) was formed.
  • a carrier substrate and a flexible substrate having metal wirings embedded therein were obtained in rolls.
  • FIG. 3 shows a manufacturing process of a flexible substrate layer on which aluminum wiring is formed and a photograph (right side) thereof, and an SEM image (left side) of an aluminum wiring, a flexible substrate layer, and a carrier substrate layer. As can be seen from FIG. 3, it can be seen that the aluminum wiring is completely transferred to the flexible substrate layer and does not remain on the carrier substrate.
  • the flexible substrate manufactured by the method according to the present invention has an advantage that the difference in mechanical, thermal, and optical properties in the longitudinal direction and the width direction is small and uniform.
  • the method according to the present invention can obtain a flexible substrate having a metal wiring in the form of a roll, it is possible to increase the efficiency of the subsequent device manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 가요성 기판의 제조방법에 관한 것으로, 레이저 조사 또는 광 조사 공정 등을 진행하지 않더라도 상기 캐리어 기판으로부터 가요성 기판을 용이하게 분리가 가능하여, 레이저 또는 광 조사 등에 의한 소자의 신뢰성 저하 또는 불량 발생 또한 억제할 수 있을 뿐만 아니라, 롤투롤(roll to roll)공정에 의한 가요성 기판의 연속생산이 보다 용이해질 수 있다.

Description

가요성 기판의 제조방법
본 출원은 2015.07.24.일자 한국 특허 출원 제10-2015-0104964호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가요성 기판의 제조방법 관한 것으로서, 보다 상세하게는 가요성 기판의 박리가 용이한 캐리어 기판을 사용하여 보다 효율적으로 가요성 기판을 제조하는 방법에 관한 것이다.
최근 플렉서블(Flexible)한 특성을 갖는 전기 전자 장치, 예를 들면, 플렉서블 디스플레이, 태양전지, 면조명, e-페이퍼, 플렉서블 이차전지 및 터치패널과 같은 플렉서블 전자기기(Flexible electronics)가 미래 유망 기술 분야로 각광받고 있는 실정이다.
플렉서블 전자기기 기술은 값싸고 굽히기 쉬우면서도 투명한 특성을 갖는 전자소자 및 시스템을 만들기 위해 발전해 왔다.
플렉서블 기판을 제조하기 위한 기존 공정은 메탈벨트나 드럼 상에 솔벤트 함유한 플렉서블 기판 제조용 용액을 도포하며 가필름 상태로 제조한 다음 이를 분리하여 건조 및 경화를 실시하여야 하기 때문에 공정이 복잡하고, 생산성이 낮다는 문제점이 있다.
또한, 플렉서블한 특성을 갖는 전기 전자 장치를 구현하기 위해서는 투명하면서 낮은 저항을 갖는 투명 전극을 포함하는 유연 기판 제조 기술이 필수적으로 요구된다.
금속배선의 저항을 낮추기 위한 방안으로는 (1) 비저항(ρ) 값을 낮추거나, (2) 배선 길이를 짧게 하거나, (3) 배선 높이(두께)를 두껍게 하는 방안이 있다. 그러나, 방안 (1) 의 경우, 비저항은 물질에 대한 한계가 존재하고 현재 많이 사용되는 구리의 경우 충분히 비저항이 낮은 물질이며 은과 같은 물질은 가격이 비싼 문제가 있어 적용하기 어려운 한계가 있다. 방안(2)의 경우, 회로설계와 관련된 문제로 물리적인 한계가 존재한다. 결국, 배선의 높이를 높여야 하는데 이 경우 배선의 높이가 커질수록 배선의 모양 흐트러짐, 전기적 단락, 배선간 쇼트, 배선 손상 등의 문제가 발생할 수 있다.
따라서, 금속 배선을 기판 내부로 삽입하는 기술이 요구되며, 금속 배선을 기판 내부로 삽입하는 종래 기술로는 증착과 식각을 통해 원하는 패턴으로 식각하는 방법과, 패턴형성을 위한 드라이 에칭이 곤란한 구리(Cu) 박막 등에 CMP법을 응용하여 절연막 홈 내에 배선을 박아 넣는 다마신(Damascene) 공법 등이 있다.
하지만 이러한 종래 방법은 증착, 식각을 반복함에 따라 재료 소모가 많고 공정 단계가 복잡하며, 플라스틱 기판에 형성된 금속층을 열처리할 때 플라스틱 기판이 열에 의해 손상될 수 있는 문제점이 있다.
상기의 문제점을 해결하기 위하여 경질의 기판 상에 금속 배선을 먼저 형성하고 그 위에 경화성 고분자를 코팅 경화한 다음, 상기 경질의 기판을 기계적으로 뜯어내는 방식이 제안되었다. 그러나, 이러한 종래 기술의 경우 금속 배선이 함입된 폴리머 기판으로부터 상기 경질의 기판을 강제적으로 박리시키는 과정에서 금속 배선 내지 폴리머 기판의 손상을 야기하여 제품 불량으로 이어질 수 있고, 또한 상기 경질의 기판이 폴리머 기판으로부터 완전하게 제거되지 못하고 일부 잔류하여 이물로 작용하는 문제점이 있다.
이에 캐리어 기판 상에 물 또는 유기용매에 가용성이거나 광분해되는 희생층을 형성한 후 금속배선이 함입된 유연기판층을 형성하고, 희생층을 제거하여 유연기판을 캐리어 기판으로부터 분리 회수하는 방법이 제안되었다. 그러나 이 방법은 상기 희생층을 물 또는 유기용매로 용해시키거나 광분해시켜 희생층을 제거하는 공정에서 배출되는 폐수, 폐유기용제 등 처리로 인해 비용이 증가하는 문제점이 있다.
본 발명의 과제는, 캐리어 기판으로부터 가요성 기판의 박리가 용이하여 가요성 기판을 보다 용이하게 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 다른 과제는 증착 및 식각공정 없이 금속패턴이 형성된 가요성 기판을 보다 용이하게 제조할 수 있는 제조방법을 제공하는 것이다.
본 발명의 또 다른 과제는, 롤 형태로 제조 및 유통될 수 있는 가요성 기판을 제공하는 것이다.
본 발명은 전술한 기술적 과제를 해결하기 위해,
폴리이미드계 수지를 포함하는 캐리어 기판을 공급하는 단계;
상기 캐리어 기판상에 경화성 고분자를 포함하는 가요성 기판층을 형성하는 단계;
상기 가요성 기판층을 캐리어 기판층과 화학적 변화를 야기하지 않는 물리적 자극을 가하여 분리시키는 단계; 및
상기 캐리어 기판층과 분리된 가요성 기판층을 권취하여 롤 형태로 수거하는 단계를 포함하며, 상기 단계들이 롤투롤(roll to roll) 공정에 의해 수행되는 것인 가요성 기판의 제조방법을 제공한다.
일 실시예에 따르면, 상기 가요성 기판층 형성전에 상기 캐리어 기판상에 금속패턴을 형성하는 단계를 더 포함하여 금속패턴이 형성된 가요성 기판을 제조할 수 있다.
일 실시예에 따르면, 상기 가요성 기판층 형성 전에 상기 캐리어 기판 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
일 실시예에 따르면, 상기 가요성 기판층 형성 후 가요성 기판층 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
일 실시예에 따르면, 상기 가요성 기판층 상에 하드코팅층을 형성한 후 금속패턴을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
일 실시예에 따르면, 상기 금속패턴이 형성된 가요성 기판층 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
일 실시예에 따르면, 상기 가요성 기판층은 다이아민에 비해 과량의 산이무수물을 포함하는 조성물을 상기 캐리어 기판 상에 캐스팅한 후 가열 및 경화하여 제조할 수 있다.
일 실시예에 따르면, 상기 폴리이미드계 수지를 포함하는 캐리어 기판상에 상기 가요성 기판층의 적어도 일부가 직접적으로 접촉되어 있을 수 있다.
또한, 상기 금속패턴이 상기 가요성 기판층에 매립되어 있는 형태일 수 있다.
또한, 상기 가요성 기판층과 분리된 상기 캐리어 기판층이 권취되어 롤 형태로 수거되는 단계를 더 포함할 수 있다.
또한, 상기 물리적 자극은 상기 캐리어 기판 및 가요성 기판층을 권취하여 수거하는 공정에서 가해지는 장력일 수 있다.
일 실시예에 따르면, 상기 가요성 기판층이 상기 물리적 자극이 가해지기 전 상기 가요성 기판층에 대해 1 N/cm 이상의 접착력을 갖는 것일 수 있다.
일 실시예에 따르면, 상기 물리적 자극이 가해진 후 상기 가요성 기판층에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 갖는 것일 수 있다.
일 실시예에 따르면, 상기 캐리어 기판과 가요성 기판층에 화학적 변화를 야기하지 않는 물리적 자극이 가해지기 전 가요성 기판층에 대한 캐리어 기판층의 접착력(A1)과, 상기 물리적 자극이 가해진 후 가요성 기판층에 대한 캐리어 기판층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 일 수 있다.
일 실시예에 따르면, 상기 캐리어 기판에 포함된 폴리이미드계 수지는 하기 화학식 1의 방향족 테트라카르복실산 이무수물과 직선형 구조를 갖는 방향족 다이아민 화합물을 반응시켜 제조한 폴리아믹산을 200℃ 이상의 온도에서 경화시켜 제조된 것일 수 있다.
[화학식 1]
Figure PCTKR2016008074-appb-I000001
(상기 화학식 1에서, A는 하기 화학식 2a 또는 2b의 방향족 4가 유기기이며,
[화학식 2a]
Figure PCTKR2016008074-appb-I000002
[화학식 2b]
Figure PCTKR2016008074-appb-I000003
상기 화학식 2a 및 2b에서,
R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기 또는 탄소수 1 내지 4의 할로알킬기이고,
a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수이다.
일 실시예에 따르면, 상기 이무수물을 상기 다이아민 화합물에 비해 과량으로 반응시켜 캐리어 기판에 포함된 폴리이미드계 수지를 제조할 수 있다.
일 실시예에 따르면, 상기 방향족 다이아민 화합물은 하기 화학식 4a 또는 4b의 방향족 다이아민 화합물일 수 있다.
[화학식 4a]
Figure PCTKR2016008074-appb-I000004
[화학식 4b]
Figure PCTKR2016008074-appb-I000005
상기 식에서,
R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 할로알킬기이고,
X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기, 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 할로알킬기로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 그리고
p은 0 또는 1의 정수이다.
일 실시예에 따르면, 상기 가요성 기판층으로부터 분리된 캐리어 기판을 수거하여 재사용할 수 있다.
본 발명은 다른 기술적 과제를 해결하기 위하여,
캐리어 기판을 권출하며 공급하는 캐리어 기판 공급수단;
상기 캐리어 기판을 이송하는 이송수단;
상기 캐리어 기판상에 경화성 고분자를 도포하여 가요성 기판 형성용 수지층을 형성하는 고분자 코팅수단;
상기 가요성 기판 형성용 수지층을 경화시키기 위한 수단;
상기 캐리어 기판상에 적층된 상기 가요성 기판층을 권취하여 수거하는 가요성 기판층 수거수단; 및
상기 가요성 기판층이 분리된 캐리어 기판을 권취하여 수거하는 캐리어 기판 수거수단을 구비하는 가요성 기판 제조 장치를 제공한다.
또한, 상기 제조장치는 상기 캐리어 기판상에 금속패턴을 형성하는 패터닝 수단을 더 구비하는 것일 수 있다.
본 발명에 따른 다른 과제를 해결하기 위해 전술한 제조방법에 의해 제조된 가요성 기판 및 이를 포함하는 전자소자를 제공한다.
본 발명에 따른 방법으로 제조된 가요성 기판은 길이방향(MD) 및 폭방향(TD)의 기계적 강도(tensile strength) 차이가 10MPa 이내이고, 길이방향 및 폭방향의 열팽창계수 차이가 5ppm/℃ 이내일 수 있다.
일 실시예에 따르면, 상기 전자소자는 롤 형태의 상기 가요성 기판을 이용하여, 롤투롤 공정으로 제조될 수 있다.
일 실시예에 따르면, 상기 전자소자가 태양전지, 유기발광다이오드 조명, 반도체 소자, 및 디스플레이 소자로 이루어진 군에서 선택되는 것일 수 있으며, 상기 디스플레이 소자는 플렉서블 유기전계발광소자일 수 있다.
기타 본 발명의 다양한 측면에 따른 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 가요성 기판의 제조방법은 롤투롤 공정을 이용하여 연속적인 생산이 가능함과 동시에 기존의 레이저 또는 광 조사 공정, 또는 용해 공정 등을 진행하지 않더라도 비교적 작은 물리적 자극만으로도 캐리어 기판으로부터 가요성 기판층을 용이하게 분리할 수 있어, 플렉서블 디스플레이 소자 등에 사용되는 가요성 기판을 보다 쉽게 제조할 수 있고 공정을 단순화할 수 있다. 또한, 제조 단가 및 시간을 감소 시킬 수 있으며, 레이저 또는 광 조사 등에 의한 소자의 신뢰성 저하 또는 불량 발생을 억제할 수 있다.
본 발명에 따른 방법으로 제조된 가요성 기판은 캐리어 기판에 지지된 채로 제조된 후 분리되어 얻어지기 때문에 가요성 기판에 기판의 길이방향 및 폭방향을 따라 가해지는 힘에 차이가 없어, 결과적으로 얻어지는 가요성 기판의 길이방향 및 폭방향에 따른 기계적, 열적, 광학적 물성의 차이가 적고 균일하다는 장점이 있다.
또한, 금속 배선이 형성된 가요성 기판을 롤 형태로 얻을 수 있으므로, 후속 소자 제조공정의 효율성을 높일 수 있으므로 전자소자를 보다 효율적으로 제조할 수 있다.
도 1은 일 실시예에 따른 가요성 기판의 제조방법을 나타낸 것이다.
도 2는 다른 실시예에 따른 금속 패턴이 형성된 가요성 기판의 제조방법을 나타낸 것이다.
도 3은 본 발명의 실시예 2에 따라 제조된 금속 패턴이 형성된 가요성 기판을 보여주는 사진 및 SEM 이미지이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 명세서에서 층, 막, 필름, 기판 등의 부분이 다른 부분 '위에' 또는 '상에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 필름, 기판 등의 부분이 다른 부분 '아래에' 있다고 할 때, 이는 다른 부분 '바로 아래에' 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
또, 본 명세서에서 '물리적 자극'이라 함은 다른 특별한 언급이 없는 한, 박리, 절단, 마찰, 인장 또는 압축 등과 같이, 화학적 변화를 야기하지 않는 기계적 자극을 포함하며, 그 수단이나 방식에 관계없이 가요성 기판이 적층된 적층체의 적층 단면을 노출시킬 수 있는 것을 의미한다. 경우에 따라, 단위면적당 0 초과 내지 0.1N 이하의 강도를 갖는 자극이 가해질 수 있다. 즉 물리적 자극이 인가되었다는 것은 그 수단에 구애받지 않고 적층체의 적층 단면이 노출되었다는 것을 의미한다. 바람직하게는 가요성 기판의 단부를 형성하는 둘 이상의 적층 단면이 소정 간격을 두고 노출되도록 한다.
또, 본 명세서에서 '접착력'은 물리적 자극의 인가 전 가요성 기판에 대한 캐리어 기판의 접착력을 의미하고, '박리 강도'는 물리적 자극의 인가 후 가요성 기판에 대한 캐리어 기판의 접착력을 의미한다.
본 발명은,
폴리이미드계 수지를 포함하는 캐리어 기판을 공급하는 단계;
상기 캐리어 기판상에 가요성 기판층을 형성하는 단계;
상기 가요성 기판층을 캐리어 기판층과 화학적 변화를 야기하지 않는 물리적 자극을 가하여 분리시키는 단계; 및
상기 캐리어 기판층과 분리된 가요성 기판층을 권취하여 롤 형태로 수거하는 단계를 포함하며, 상기 단계들이 롤투롤(roll to roll) 방식으로 수행되는 금속패턴이 형성된 가요성 기판의 제조방법을 제공한다.
일 실시예에 따르면, 상기 가요성 기판층 형성전에 상기 캐리어 기판상에 금속패턴을 형성하는 단계를 더 포함함으로써, 금속패턴이 형성된 가요성 기판을 제조할 수 있다.
또한 상기 가요성 기판층은 폴리이미드계 수지로 이루어지며, 다이아민에 비해 과량의 산이무수물을 포함하는 조성물을 상기 캐리어 기판 상에 캐스팅한 후 가열 및 경화하여 제조할 수 있다. 예를 들어 산이무수물:다이아민의 몰비를 1:0.95~0.999, 바람직하게는 1:0.98~0.995의 범위로 할 수 있다. 이렇게 하는 경우 결과적으로 제조되는 가요성 기판의 투과도를 향상시킬 수 있는 효과가 있다.
일 실시예에 따르면, 상기 폴리이미드계 수지를 포함하는 캐리어 기판 상에 금속패턴이 형성된 가요성 기판층의 적어도 일부가 직접적으로 접촉하고 있는 것일 수 있다. 즉 캐리어 기판과 가요성 기판층의 박리를 용이하게 하기 위해 상기 캐리어 기판과 가요성 기판층 사이에 형성되는 디본딩층 없이 금속패턴이 형성된 가요성 기판층이 직접적으로 상기 캐리어 기판상에 형성될 수 있다.
또한, 상기 가요성 기판층에 형성된 금속패턴은 상기 가요성 기판층에 매립되어 있는 형태일 수 있으며, 이는 가요성 기판의 구조변화에도 손상을 입지 않는 효과를 나타내어 소자의 안정성 및 성능향상에 유리하다.
상기한 롤투롤(roll to roll) 공정은 연속 공정으로 필름이나 동박과 같은 얇은 소재를 회전 롤러에 감으면서 특정 물질을 도포하거나 소정 부분을 제거함으로써 새로운 기능을 갖는 소재를 제조한 후 롤형태로 얻는 방법으로서, 대량 생산에 유리할 수 있으며, 제조 비용을 낮출 수 있다는 장점을 갖는다.
본 발명에 따른 공정으로 제조되는 가요성 기판은 롤 형태로 제조될 수 있으며, 이는 이후의 전자소자 공정시에 사용될 수 있고, 특히 전자소자 제조공정이 롤투롤 공정을 이용하는 경우에 유용하게 사용될 수 있다.
본 발명에 따른 공정에 사용될 수 있는 캐리어 기판은 롤투롤 공정에 사용될 수 있는 폴리이미드계 고분자를 포함하는 유연성 기판일 수 있다. 또한, 롤투롤 공정의 전 또는 후에는 상기 캐리어 기판이 롤 형태로 감겨 있는 롤을 형성하고 있는 것일 수 있으며, 공정 동안에는 평평하게 펴질 수 있음과 동시에 롤투롤 공정시 가해지는 장력 및 경화공정 등의 열처리에 견딜 수 있는 내열성 및 내화학성이 우수한 구조를 가지는 것일 수 있다. 특히, 본 발명에 따른 캐리어 기판은 가요성 기판이 제조된 후 가요성 기판으로부터 용이하게 분리될 수 있는 박리 특성을 갖는 것일 수 있다.
또한, 본 발명은 상기 방법으로 제조된 가요성 기판을 제공한다. 본 발명에 따른 방법으로 제조된 가요성 기판은 캐리어 기판에 지지된 형태로 길이방향 및 폭방향의 기계적 강도(tensile strength) 차이가 10MPa 이내이고, 길이방향 및 폭방향의 열팽창계수 차이가 5 ppm/℃ 이내일 수 있다.
또한, 본 발명은 상기 가요성 기판을 포함하는 전자소자를 제공한다.
본 발명의 바람직한 실시예에 따르면, 상기 가요성 기판과 상기 캐리어 기판을 분리하는 단계는 상기 가요성 기판의 수거와 동시에 진행되는 것일 수 있다. 또한, 상기 가요성 기판과 상기 캐리어 기판을 분리하는 물리적인 자극은 수거수단의 권취과정에서 발생하는 장력일 수 있다.
이하, 발명의 구현예에 따른 가요성 기판 및 그 제조방법, 상기 가요성 기판을 이용하여 제조된 소자용 기판 및 그 제조방법, 그리고 상기 기판을 포함하는 소자 및 그 제조방법에 대하여 보다 상세하게 설명한다.
구체적으로, 본 발명은 상기 캐리어 기판 상에 형성된 가요성 기판층을 물리적 자극만으로 박리시킬 수 있으며, 따라서 기존의 공정에서 기판의 박리를 위해 캐리어기판과 기판층 사이에 희생층 형성하는 공정 및 상기 희생층을 제거하기 위해 진행되는 레이저 또는 광 조사 공정이나 용해공정 없이도 캐리어 기판과 가요성 기판을 분리할 수 있어, 가요성 기판을 보다 용이하게 제조할 수 있다.
본 발명은 가요성 기판의 제조에 있어, 소정의 특성을 갖는 폴리이미드계 수지를 포함하는 캐리어 기판을 사용함으로써, 롤투롤 방식을 이용하는 가요성 기판의 연속적 제조공정에 있어서, 레이저 또는 광 조사 공정 등의 복잡한 희생층 제거공정을 생략하고 단순히 물리적 자극만을 가하여 상기 가요성 기판을 상기 캐리어층으로부터 쉽게 분리함으로써 가요성 기판을 용이하게 제조할 수 있으며, 상기 가요성 기판을 권취하여 수거함으로써, 롤 형태의 가요성 기판을 제조할 수 있다. 상기 가요성 기판은 길이방향 및 폭방향의 기계적, 광학적, 열적 특성이 균일하다는 장점이 있으며, 롤 형태이기 때문에 전자 소자의 제조공정에 편리하게 사용될 수 있으며, 예를 들면 롤 투 롤 공정으로 제조되는 전자소자의 제조공정에 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 가요성 기판의 제조방법을 나타낸 것이나 본 발명이 이에 한정되는 것은 아니다.
롤 형태로 말려있는 캐리어 기판(1)을 구비하는 캐리어 기판 공급수단(2)으로부터 캐리어 기판(1)이 공급되고, 상기 공급된 캐리어 기판(1)이 이송되면서 상기 캐리어 기판(1)상에 고분자 코팅수단(미도시)에 의해 경화성 고분자(5)를 코팅 및 경화시킴으로써 가요성 기판층(11)이 상기 캐리어 기판상에 형성될 수 있다.
상기 가요성 기판층(11)은 수거수단(10)에 의해 권취되어 롤 형태로 수거됨으로써, 가요성 기판롤을 얻을 수 있다.
도 2는 본 발명의 일 실시예에 따라 금속패턴이 형성된 가요성 기판의 제조방법을 나타낸 것이나 본 발명이 이에 한정되는 것은 아니다.
이하 도 2를 참조하여 본 발명에 따른 금속패턴이 형성된 가요성 기판의 제조방법을 이하에서 보다 구체적으로 살펴본다.
캐리어 기판(1)이 롤 형태로 말려있는 캐리어 기판을 구비하는 캐리어 기판 공급수단(2)로부터 공급되고, 상기 공급된 캐리어 기판(1)이 이송되면서 상기 캐리어 기판(1)상에 패터닝 수단(미도시)에 의해 금속패턴(3)이 형성된 후 상기 금속패턴상에 고분자 코팅수단(미도시)에 의해 경화성 고분자(5)를 코팅 및 경화시킴으로써 금속패턴이 형성된 가요성 기판층(13)을 상기 캐리어 기판상에 형성할 수 있다.
상기 금속패턴이 형성된 가요성 기판층(11)은 수거수단(10)에 의해 권취되어 롤 형태로 수거됨으로써, 금속패턴이 형성된 가요성 기판롤을 얻을 수 있다.
또한, 상기 가요성 기판층(11, 13)과 분리된 캐리어 기판(1) 또한 캐리어 기판 수거수단(20)에 의해 권취됨으로써 캐리어 기판롤로 수거되거나, 캐리어 기판 공급수단(2)와 연결되어 재공급됨으로써 가요성 기판의 제조에 재사용될 수 있다.
상기 용이한 박리 특성을 갖는 캐리어 기판의 작용 및 효과는 다음과 같은 폴리이미드계 수지의 특성에 기인하여 발현되는 것일 수 있다.
상기 캐리어 기판(1)에 포함된 폴리이미드계 수지는 이미드화율이 적절한 범위로 제어된 것으로서, 상기 가요성 기판층(11, 13)을 제조하는 공정 중에는 일정 수준 이상의 접착력을 나타내지만, 상기 가요성 기판의 제조 공정이 완료된 후에는, 레이저 또는 광 조사, 또는 용해공정 없이 권취 수단에 의해 가해지는 장력 등의 간단한 물리적 자극에 의해 상기 가요성 기판에 대한 접착력이 감소되면서 용이하게 분리될 수 있다.
구체적으로, 상기 캐리어 기판은 물리적 자극이 가해지기 전 가요성 기판층에 대한 접착력(A1)과 물리적 자극이 가해진 후 가요성 기판에 대한 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5, 바람직하게는 0.001 내지 0.1 로, 레이저 또는 광 조사 없이 권취수단에 의해 가해지는 장력 등의 간단한 물리적 자극만으로도 가요성 기판과 용이하게 분리될 수 있다.
보다 구체적으로, 상기 캐리어 기판은 물리적 자극이 가해지기 전에는 가요성 기판층에 대해 약 1N/cm 이상, 혹은 약 2N/cm 이상, 혹은 약 3 내지 5N/cm 의 접착력을 나타내지만, 물리적 자극이 가해진 후에는 약 0.3N/cm 이하, 예를 들어, 약 0.2N/cm 이하, 혹은 약 0.1N/cm 이하, 또는 약 0.001 내지 0.05N/cm의 박리 강도(peel strength)를 나타낼 수 있다.
이때, 상기 캐리어 기판의 박리 강도는 하기 표 1의 조건 하에 측정될 수 있다.
박리강도측정조건 필름 폭(mm) 10
필름 길이(mm) 100
속도(mm/min) 50
측정 기기 Texture Analyser(TA.XT plus, Stable micro systems사제)
박리각도 90°
구체적으로, 상기 박리 강도는 캐리어 기판상에 가요성 기판이 순차적으로 형성된 적층체 샘플을 준비하고, 물리적 자극으로서 상기 적층체 샘플을 폭 10mm의 직사각형 형태로 커팅한 후, 커팅한 가요성 기판의 끝 부분을 잡아서 가요성 기판층으로부터 90°각도로 떼어낼 때 드는 힘을 상술한 측정 기기 및 조건 하에서 측정함으로써 산출할 수 있다.
또, 상기 접착력은 폭 100mm의 직사각형 크기를 갖는 캐리어 기판 상에 가요성 기판이 순차적으로 형성된 적층체 샘플을 준비하고, 이러한 샘플에서 가요성 기판의 끝 부분을 폭 10mm의 테이프로 붙여서 테이프의 끝을 잡아서 캐리어 기판으로부터 90°각도로 떼어낼 때 드는 힘을 측정함으로써 산출할 수 있으며, 이때, 상기 힘의 측정 기기 및 조건은 상기 표 1에 나타난 박리 강도의 측정 기기 및 조건과 동일하게 될 수 있다.
이러한 캐리어 기판의 접착력 및 박리 강도는, 캐리어 기판 내에 포함되는 폴리이미드계 수지의 이미드화율에 의해 달성될 수 있으며, 상기 이미드화율은 폴리이미드계 수지 형성용 단량체의 종류와 함량, 이미드화 조건(열처리 온도 및 시간 등) 등을 통해 조절될 수 있다.
일 예에서, 상술한 캐리어 기판의 접착력 및 박리 강도 조건을 충족할 수 있고, 이를 통해 레이저 또는 광 조사 등을 생략하더라도, 물리적 자극만을 가하여 가요성 기판층(11, 13)이 캐리어 기판(1)으로부터 용이하게 분리되기 위해서는, 상기 캐리어 기판(1)에 포함되는 폴리이미드계 수지가 약 60% 내지 99%, 혹은 약 70% 내지 98%, 혹은 약 75 내지 96%의 이미드화율을 갖는 것일 수 있다. 이때 상기 폴리이미드계 수지의 이미드화율은 폴리이미드의 전구체, 예를 들면 폴리아믹산계 수지를 포함하는 조성물을 도포하고 약 500℃ 이상의 온도에서 이미드화를 진행한 후에 IR 스펙트럼의 약 1350 내지 1400cm- 1 에서 나타나는 CN 밴드의 적분 강도를 100%로 하였을 때, 상기 약 200℃ 이상의 이미드화 온도에서 이미드화를 진행한 후의 CN 밴드의 상대적 적분 강도 비율로서 측정된 것으로 표시될 수 있다.
상기와 같은 폴리이미드계 수지의 이미드화율 범위는 폴리아믹산계 수지에 대한 경화 공정시 경화 온도 조건을 제어함으로써 달성될 수 있다.
본 발명자들의 실험 결과, 폴리이미드계 수지 제조를 위한 경화온도 조건, 폴리이미드계 수지의 이미드화율 그리고 폴리이미드계 수지층의 박리 강도는 하기 표 2와 같은 관계를 충족할 수 있는 것으로 확인되었다.
경화 온도 (℃) 150 200 250 300 350 500
이미드화율 (%) 10.36 49.21 79.34 92.78 95.69 100
박리 강도 (N/cm) 2.8 2.8 0.03 0.016 0.03 0.35
상기 표 2에 나타난 바와 같이, 예를 들어, 상기 캐리어 기판 상에 폴리이미드계 수지의 전구체인 폴리아믹산계 수지를 포함하는 조성물을 도포하고, 약 200℃ 이상, 혹은 250℃ 내지 500℃의 온도에서 경화시켜 캐리어 기판을 형성하는 경우, 상술한 약 60% 내지 99%, 혹은 약 70% 내지 98%, 혹은 약 75 내지 96%의 이미드화율을 갖는 폴리이미드계 수지를 포함하여, 약 0.3N/cm 이하의 박리 강도를 갖는 캐리어 기판을 형성할 수 있다. 이를 통해, 일 구현예의 적층체를 제공하여, 플렉서블 디스플레이 소자 등의 가요성 기판을 포함하는 소자의 제조 공정을 크게 단순화할 수 있음은 이미 상술한 바와 같다.
또, 상기한 바와 같은 경화온도의 제어를 통해 제조된 폴리이미드계 수지는 약 200℃ 이상, 혹은 약 300℃ 이상, 혹은 약 350 내지 500℃의 유리전이온도(Tg)를 가지며, 400℃ 이상, 혹은 400 내지 600℃의 분해온도(Td)를 갖는 것일 수 있다. 이와 같이 상기 폴리이미드계 수지가 우수한 내열성을 갖기 때문에, 상기 캐리어 기판은 소자 제조 공정 중에 부가되는 고온의 열에 대해서도 우수한 내열성을 나타낼 수 있으며, 상기 캐리어 기판상에서 가요성 기판을 제조하는 공정 중에 휨의 발생 및 기타 소자의 신뢰성 저하 발생을 억제할 수 있고, 그 결과 보다 향상된 특성 및 신뢰성을 갖는 소자의 제조가 가능하다. 구체적으로 상술한 일 구현예에서, 상기 캐리어 기판은 100 내지 200℃의 조건에서 약 30ppm/℃ 이하, 혹은 약 25ppm/℃ 이하, 혹은 약 20ppm/℃ 이하, 혹은 약 1 내지 17ppm/℃ 의 열 팽창 계수(Coefficient of Thermal Expansion; CTE) 및 450℃ 이상, 혹은 470℃ 이상의 1% 열분해온도(Td1%)를 갖는 것일 수 있다.
또, 상기와 같은 구성적, 물성적 요건을 충족하는 캐리어 기판(1)은 가요성 기판(11, 13)에 대해 깨끗하게 박리됨으로써, 상기 가요성 기판을 포함하는 소자용 기판의 투명도 및 광학 특성에 영향을 미치지 않는다.
또한, 가요성 기판(11, 13)과 깨끗하게 분리된 캐리어 기판(1)은 캐리어 기판 수거수단(20)에 의해 권취되어 캐리어 기판롤을 형성하여 상기 제조장치의 공급부로 재공급될 수 있으며, 또는 상기 수거수단(20)가 캐리어 기판 공급수단(2)와 직접적으로 연결됨으로써, 상기 수거된 캐리어 기판을 상기 가요성 기판을 제조하는데 재사용할 수 있다.
또한, 상술한 폴리이미드계 수지 또는 이의 전구체로서 폴리아믹산계 수지는 임의의 테트라카르복실산 이무수물 화합물 및 다이아민 화합물을 단량체로 사용하여 중합 및 이미드화시켜 형성될 수 있다.
이러한 각 단량체 중, 테트라카르복실산 이무수물 화합물의 구체적인 예로는, 피로멜리트산 이무수물(pyromellitic dianhydride, PMDA), 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3'4,4'-biphenyl tetracarboxylic acid dianhydride, BPDA), 메소-부탄-1,2,3,4-테트라카르복실산 이무수물(meso-butane-1,2,3,4-tetracarboxylic dianhydride), 3,3',4,4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenone tetracarboxylic dianhydride, BTDA), 2,3,3',4'-디페닐에테르테트라카르복실산 이무수물(2,3,3',4'-diphenylether tetracarboxylic dianhydride, ODPA), 3,3',4,4'-디페닐술폰테트라카르복실산 이무수물(3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, DSDA), 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride), 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3',4,4'-biphenyltetracarboxylic dianhydride, S-BPDA), 1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2-디메틸-1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2,3,4-테트라메틸-1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2,3,4-시클로펜탄테트라카르복실산 이무수물(1,2,3,4-cyclopentane tetracarboxylic dianhydride), 1,2,4,5-시클로헥산테트라카르복실산 이무수물(1,2,4,5-cyclohexane tetracarboxylic dianhydride), 3,4-디카르복시-1,2,3,4-테트라히드로-1-나프탈렌 숙신산 이무수물(3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride), 5-(2,5-디옥소테트라히드로푸릴)-3-메틸-3-시클로헥센-1,2-디카르복실산 이무수물(5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride), 2,3,5-트리카르복시-2-시클로펜탄 아세트산 이무수물(2,3,5-tricarboxy-2-cyclopentane acetic dianhydride), 비시클로[2.2.2]옥토-7-엔-2,3,5,6-테트라카르복실산 이무수물(bicyclo[2.2.2]octo-7-en-2,3,5,6-tetracarboxylic dianhydride), 2,3,4,5-테트라히드로푸란테트라카르복실산 이무수물(2,3,4,5-tetrahydrofurane tetracarboxylic dianhydride) 3,5,6-트리카르복시-2-노르보르난 아세트산 이무수물(3,5,6-tricarboxy-2-norbornane acetic dianhydride) 또는 이들의 유도체 등을 들 수 있으며, 이외에도 다양한 테트라카르복실산 이무수물을 사용할 수 있음은 물론이다.
또, 상기 각 단량체 중, 다이아민 화합물의 구체적인 예로는, p-페닐렌다이아민(PDA), m-페닐렌다이아민(m-PDA), 2,4,6-트리메틸-1,3-페닐렌다이아민, 2,3,5,6-테트라메틸-1,4-페닐렌다이아민, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 4,4'-디아미노디페닐설피드, 4,4'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 3,3'-디아미노디페닐메탄, 4,4'-메틸렌-비스(2-메틸아닐린), 4,4'-메틸렌-비스(2,6-디메틸아닐린), 4,4'-메틸렌-비스(2,6-디에틸아닐린), 4,4'-메틸렌-비스(2-이소프로필-6-메틸아닐린), 4,4'-메틸렌-비스(2,6-디이소프로필아닐린), 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 벤지딘, o-톨리딘, m-톨리딘, 3,3',5,5'-테트라메틸벤지딘, 2,2'-비스(트리플루오로메틸)벤지딘, 1,4-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 비스[4-(4-아미노페녹시)페닐]술폰, 비스[4-(3-아미노페녹시)페닐]술폰, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)-페닐]프로판(6HMDA), 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFMB), 3,3'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(3,3'-TFDB), 4,4'-비스(3-아미노페녹시)디페닐설폰(DBSDA), 비스(3-아미노페닐)설폰(3DDS), 비스(4-아미노페닐)설폰(4DDS), 1,3-비스(3-아미노페녹시)벤젠(APB-133), 1,4-비스(4-아미노페녹시)벤젠(APB-134), 2,2'-비스[3(3-아미노페녹시)페닐]헥사플루오로프로판(3-BDAF), 2,2'-비스[4(4-아미노페녹시)페닐]헥사플루오로프로판(4-BDAF), 2,2'-비스(3-아미노페닐)헥사플루오로프로판(3,3'-6F), 2,2'-비스(4-아미노페닐)헥사플루오로프로판(4,4'-6F) 또는 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA) 등의 방향족 다이아민; 또는 1,6-헥산다이아민, 1,4-시클로헥산다이아민, 1,3-시클로헥산다이아민, 1,4-비스(아미노메틸)시클로헥산, 1,3-비스(아미노메틸)시클로헥산, 4,4'-디아미노디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 1,2-비스-(2-아미노에톡시)에탄, 비스(3-아미노프로필)에테르, 1,4-비스(3-아미노프로필)피페라진, 3,9-비스(3-아미노프로필)-2,4,8,10-테트라옥사스피로[5.5]-운데칸, 또는 1,3-비스(3-아미노프로필)테트라메틸디실록산 등의 지방족 다이아민 등을 들 수 있다. 상기 테트라카르복실산 이무수물 및 다이아민 화합물의 종류는 특별히 제한되지는 않지만, 상술한 낮은 CTE 범위나 박리 강도 등 캐리어 기판에 요구되는 물성을 보다 적절히 충족할 수 있도록 하기 위해서는, 산 이무수물이 방향족 고리 사이에 링커구조를 갖지 않는 것이 중요하다. 상기 테트라카르복실산 이무수물로는 하기 화학식 1의 방향족 테트라카르복실산 이무수물이 바람직할 수 있다.
[화학식 1]
Figure PCTKR2016008074-appb-I000006
상기 화학식 1에서, A는 산 이무수물로부터 유도된 방향족 4가 유기기로서, 구체적으로는 하기 화학식 2a 또는 2b의 방향족 4가 유기기일 수 있다.
[화학식 2a]
Figure PCTKR2016008074-appb-I000007
[화학식 2b]
Figure PCTKR2016008074-appb-I000008
상기 화학식 2a 및 2b에서,
R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 또는 탄소수 1 내지 4의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)이고, 그리고
a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수일 수 있으며, 상기 b, c, d 및 e는 0의 정수인 것이 바람직할 수 있다.
이중에서도 상기 테트라카르복실산 이무수물은 하기 화학식 3a 의 피로멜리트산 이무수물(pyromellitic dianhydride, PMDA)이거나, 또는 하기 화학식 3b에서와 같이 직선형 구조를 가지며, 두 개의 방향족 고리가 링커 구조가 없이 직접 연결된 3,3',4,4'-비페닐테트라카르복실산 이무수물(BPDA)인 것이 보다 바람직할 수 있다:
[화학식 3a]
Figure PCTKR2016008074-appb-I000009
[화학식 3b]
Figure PCTKR2016008074-appb-I000010
또한, 상기 캐리어 기판의(1)의 패킹 밀도(packing density)가 높을수록 분자간 공간이 적어져 상호 침투로 인한 결합력이 낮아진다. 그 결과 캐리어 기판(1) 위에 형성된 가요성 기판층(11)에 대한 접착력 및 적층체로부터 가요성 기판의 박리강도가 낮아지게 된다. 또 패킹 밀도는 CTE로 대변할 수 있는데 패킹 밀도가 높아질수록 낮은 CTE값을 가지며 CTE가 낮을수록 높은 패킹밀도를 나타낸다. 따라서, 상기한 캐리어 기판의 물성적 요건을 보다 적절히 충족할 수 있도록 하기 위해서는 상술한 다이아민 화합물 중에서도 직선형 구조를 갖는 방향족 다이아민계 화합물, 구체적으로 하기 화학식 4a 또는 4b의 방향족 다이아민계 화합물을 사용하는 것이 바람직하다:
[화학식 4a]
Figure PCTKR2016008074-appb-I000011
[화학식 4b]
Figure PCTKR2016008074-appb-I000012
상기 식에서,
R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 또는 탄소수 1 내지 10의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)이고,
X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기(예를 들면, 사이클로헥실렌기, 노르보르넨기, 등), 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기(예를 들면, 페닐렌기, 나프탈렌기 등) 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 및 탄소수 1 내지 10의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 바람직하게는 0 이며, 그리고
p는 0 또는 1의 정수이며, 바람직하게는 0 이다.
이러한 바람직한 방향족 다이아민계 화합물의 예로는, p-페닐렌다이아민(PDA), 벤지딘(BZD), m-톨리딘, 또는 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFMB) 등을 들 수 있다.
이들 각 단량체를 극성 유기 용매 중에서 중합하여 폴리아믹산계 수지를 제조하고, 아민계 촉매 등과 같은 이미드화 촉매의 존재 혹은 부존재 하에, 상술한 경화온도 조건에서 폴리아믹산계 수지를 이미드화함으로써 상술한 물성적 요건을 충족하는 폴리이미드계 수지 및 이를 포함하는 캐리어 기판을 제조할 수 있다.
특히 방향족 다이아민에 비해 테트라카르복실산 이무수물을 과량 사용하는 것이 결과적으로 제조되는 가요성 기판층의 투과성을 향상시킬 수 있기 때문에 바람직하다. 예를 들어 테트라카르복실산:다이아민의 몰비를 1:0.95~0.999, 바람직하게는 1:0.98~0.995의 범위로 할 수 있다.
다만, 상술한 경화온도 조건 외에 폴리아믹산계 수지 또는 폴리이미드계 수지의 제조를 위한 다른 조건은 당업자에게 잘 알려진 통상적인 조건 및 방법에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
또, 상기 캐리어 기판(1)의 두께 및 크기는 적용하고자 하는 소자의 종류에 따라 적절히 선택될 수 있으나, 기판의 투명성 등을 고려할 때 상기 캐리어 기판(1)은 0.01 내지 50mm의 두께, 또는 0.02 내지 20mm의 두께를 갖는 것이 바람직할 수 있다. 상기와 같은 두께 범위를 가질 때 우수한 기계적 강도를 가져 가요성 기판에 대해 우수한 지지 특성을 나타낼 수 있다.
상기 캐리어 기판층의 두께가 얇아질수록 캐리어 기판과의 접착력이 증가할 수 있지만 지나치게 얇을 경우 가요성 기판과의 접착력 증가로 인해 박리성이 떨어지게 될 수 있다. 따라서 캐리어 기판과의 높은 접착력 및 가요성 기판과의 높은 박리성을 나타내기 위해서는 상기한 두께 범위를 갖는 것이 바람직하다.
캐리어 기판층은 텐터 법 및 캐스트 법 등 자기 지지 필름을 제조할 수 있는 임의의 방법으로 제조할 수 있다.
일 실시예에 따르면, 캐리어 기판층은 지지체 상에 캐스팅 한 후 100~150℃에서의 건조공정과 150~400℃ 에서의 경화 공정을 거쳐 제조될 수 있는데 경화 공정의 온도를 점진적으로 승온시키면서 경화시키는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따르면, 상기 가요성 기판형성용 수지를 캐리어 기판상에 도포하기전 금속 미세 패턴을 캐리어 기판상에 형성함으로써, 금속 패턴이 형성된 가요성 기판을 형성할 수 있다. 상기 금속패턴이 형성된 가요성 기판은 상기 가요성 기판층 상에 금속패턴을 형성한 후 고분자를 코팅 및 경화 시킴으로써 상기 금속패턴이 매립된 형태로 형성될 수 있다.
상기 금속 패턴이 기판 내부에 매립된 형태를 가짐으로써, 투명전극과의 면저항을 감소시킬 수 있으며, 소자의 효율 또한 향상되는 효과를 나타낼 수 있으며, 가요성 기판의 형태가 변형되더라도 금속패턴이 파손되거나 단선되는 것을 방지할 수 있어, 플렉서블(flexible) 소자의 적용에 매우 유용한 형태일 수 있다.
상기 금속패턴은 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 백금(Pt), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo) 등의 금속 또는 이들의 합금, 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZOAg-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등의 전도성 금속 산화물 또는 실리콘 산화물(SiO2), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON), 알루미늄 산화물(Al2O3), 티타늄 산화물(TiO2), 탄탈륨 산화물(Ta2O5), 하프늄 산화물(HfO2), 지르코늄 산화물(ZrO2), BST(Barium Strontium Titanate), PZT(Lead Zirconate-Titanate)등의 무기 물질로 이루어진 군에서 선택되는 1종 이상의 금속, 금속 산화물, 금속질화물, 금속산질화물일 수 있으나, 상기 금속패턴으로 사용될 수 있는 물질이 이에 제한되는 것은 아니며, 우수한 전기전도성을 나타내어 전극의 면저항을 낮출 수 있는 물질을 적절히 선택하여 사용할 수 있다.
또한, 상기 금속패턴의 패턴형성방법은, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 전기도금, 진공증착, 열증착, 스퍼터링, 전자빔 증착 등의 방법으로 캐리어 기판층 또는 가요성 기판층 상에 코팅 또는 증착하는 방법 등으로 형성될 수 있다.
이때, 상기 금속패턴은 0.05 내지 50 mm 간격으로 배열될 수 있다.
상기 금속패턴이 0.05 mm 미만의 간격으로 조밀하게 배열되는 경우에는 공정비용 상승 문제가 있으며, 상기 금속패턴이 50 mm를 초과하는 간격으로 배열되는 경우에는 보조전극으로의 역할이 미미하여 접촉하는 전극과의 면저항을 효과적으로 낮출 수 없는 문제가 있다.
또한, 상기 금속패턴의 폭은 0.5 내지 1000 ㎛인 것이 바람직하다. 금속패턴의 폭이 0.5 ㎛ 미만의 간격인 경우에는 미세 패턴 형성을 위한 복잡한 공정이 요구되면 또한 금속패턴의 저항이 증가하는 문제가 있으며, 상 기 금속패턴의 폭이 1000 ㎛를 초과하는 경우에는 광 투과율이 저하되는 문제가 있다.
상기 금속패턴은 전자소자에 있어서, 보조전극으로 이용될 수 있으며, 태양전지, 유기발광다이오드 조명, 반도체 소자, 및 디스플레이 소자에 있어서, 금속패턴(3)이 노출된 부분이 기판상에 구비되는 투명전극과 직접 접촉하여 이들의 면저항을 낮출 수 있다. 그러나, 상기 금속패턴(3)과 투명전극의 접촉이 이에 제한되는 것은 아니며, 금속패턴 전체가 가요성 기판내에 매립된 경우에도 투명전극과 금속패턴을 연결하는 보조수단을 통해 상기 금속패턴을 보조전극으로써 이용할 수 있다.
본 발명에 따른 형성된 가요성 기판층(11, 13)은 도 1 및 도 2에 나타낸 바와 같이 가요성 기판 수거수단(10)에 의해 권취되어 롤 형태의 가요성 기판을 형성할 수 있으며, 상기 가요성 기판을 포함하는 소자를 제조하는데 사용될 수 있으며, 보다 구체적으로는 롤투롤 방식의 연속 제조공정을 이용하는 전자소자의 제조방법에 사용될 수 있다.
상기와 같은 제조방법에 따라 제조된 가요성 기판은, 상기 캐리어 기판은 그 자체로 가요성 기판에 대한 적절한 접착력 등을 나타내어 소자 제조 공정 중에 가요성 기판을 적절히 고정 및 지지할 수 있으면서도 가요성 기판 분리를 위한 레이저 또는 광 조사 등의 공정이 제외됨으로써, 상기 가요성 기판을 갖는 소자의 제조 공정을 크게 단순화할 수 있고, 그 제조 단가 역시 크게 낮출 수 있다.
이에 본 발명의 다른 일 구현예에 따르면, 상기 제조방법으로 제조된 가요성 기판을 포함하는 소자용 기판 및 그 제조방법이 제공된다.
상기 가요성 기판은 캐리어 기판에 의해 지지된 형태로 공정을 거치기 때문에 장력의 변화를 거의 받지 않아 길이방향 및 폭방향의 기계적, 열적, 광학적 특성이 균일하다는 장점이 있다. 예를 들어, 기계적 강도(tensile strength) 차이가 10MPa 이내, 또는 5MPa 이내, 또는 3MPa 이내이고, 길이방향 및 폭방향의 열팽창계수 차이가 5ppm/℃ 이내, 또는 3 ppm/℃ 이내, 또는 1ppm/℃ 이내 일 수 있다.
구체적으로는 상기 소자는 가요성 기판을 갖는 임의의 태양전지(예를 들어, 플렉서블 태양전지), 유기발광다이오드(OLED) 조명(예를 들어, 플렉서블 OLED 조명), 가요성 기판을 갖는 임의의 반도체 소자, 또는 가요성 기판을 갖는 유기전계발광소자, 전기 영동 소자 또는 LCD 소자 등의 플렉서블 디스플레이 소자일 수 있으며, 이중에서도 유기전계발광소자가 바람직할 수 있다.
상기 소자는 금속패턴이 형성된 가요성 기판을 얻은 후, 이러한 가요성 기판 상에 소자 구조를 형성하는 단계(즉, 소자 제조 공정 단계)를 실시할 수 있으며, 이때, 상기 소자 구조는 게이트 전극을 포함하는 반도체 소자 구조, 박막 트랜지스터 어레이를 포함하는 디스플레이 소자 구조, P/N 정션을 갖는 다이오드 소자 구조, 유기 발광층을 포함하는 OLED 구조 또는 태양전지 구조 등 가요성 기판 상에 형성하고자 하는 소자의 종류에 따른 통상적인 소자 구조로 될 수 있다. 일 실시예에 따르면, 상기 소자 구조가 유기전계발광소자 구조인 경우, 상기 기판에서의 가요성 기판의 금속패턴이 노출된 배면에 위치하며, 인듐주석산화물(ITO) 등을 포함하는 투명전극; 상기 투명전극의 배면에 위치하며 유기 화합물을 포함하는 발광부; 그리고 상기 발광부의 배면에 위치하며, 알루미늄 등의 금속을 포함하는 금속전극을 포함할 수 있다.
일 실시예에 따르면, 가요성 기판층 형성전 이나 형성 후에 상기 캐리어 기판 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
또한, 일 실시예에 따르면, 가요성 기판층 상에 형성된 하드코팅층 상에 금속 패턴층을 형성하거나, 금속패턴이 형성된 가요성 기판층 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 금속패턴층과 하드코팅층이 형성된 가요성 기판을 제조할 수 있다.
하드코팅층은 관련업계에서 일반적으로 사용되는 것이라면 제한없이 적용할 수 있으므로 구체적인 설명을 생략한다.
일 실시예에 따르면, 상기 가요성 기판을 포함하는 소자의 제조공정은 롤투롤 공정일 수 있으며, 상기 롤 형태의 가요성 기판은 롤투롤 공정에 사용되기 적합하여, 공정 동안에는 평평하게 펴질 수 있으며, 금속 패턴이 가요성 기판상에 형성되는 경우에는, 기판상에 형성된 금속패턴이 내충격성 등과 같은 기계적 특성을 향상시킴으로써 롤투롤 공정시 작용하는 힘을 견딜 수 있다.
상기한 바와 같이 본 발명에 따른 소자는, 레이저 또는 광 조사 등이 필요하지 않기 때문에 소자의 제조시 공정을 단순화하고, 제조 단가를 크게 감소시킬 수 있으며, 레이저 또는 광 조사 등에 의한 소자의 신뢰성 저하 또는 불량 발생 또한 억제할 수 있으며, 또한, 금속 패턴이 형성된 가요성 기판은, 기판 내부에 금속패턴이 매립됨에 따라, 투명전극의 면저항을 감소시킬 수 있어 소자의 효율을 향상시킬 수 있으며, 가요성 기판의 형태가 변형되더라도 금속패턴이 파손되거나 단선되는 것을 방지할 수 있어, 본 발명에 따른 플렉서블(flexible) 소자의 적용에 유용할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상위한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
캐리어 기판으로서 BPDA 1mol 과 PDA 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 20중량%와 용매로서 DMAc 80중량%를 포함하는 조성물을 지지체 상에 캐스팅 한 후 120℃의 온도에서의 건조 공정 및 150℃-230℃-300℃-400℃ 온도에서의 경화 공정(30분간)을 연속적으로 실시하여) 하여 두께 50 미크론의 폴리이미드계 수지(캐리어 기판)를 포함하는 필름을 롤 형태로 제조하였다.
BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판 형성용 조성물을 준비하였다.
상기 롤 형태의 캐리어 기판을 0.5m/min의 속도로 권출 및 이송하면서 가요성 기판 형성용 조성물을 건조 후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 300℃에서 30분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지를 포함하는 폴리머층(가요성 기판층)을 형성하였다.
가요성 기판 권취부에서, 캐리어 기판은 잘리지 않을 정도의 깊이로 자르고(캐리어 기판층의 화학적 변화를 야기하지 않으면서 가요성 기판층의 단면을 노출시키는 물리적 자극을 인가한 후) 감압접착테이프(Pressure sensitive adhesive tape, adhesion strength 43±6 g/mm)를 접착시킨 후 테이프 끝을 권취롤에 부착하여 5N 장력으로 권취하는 방법으로 캐리어기판과 가요성 기판을 분리하여 권취하였다. 결과로서 도 1에 도시된 바와 같이, BPDA-PDA 폴리이미드계 수지를 포함하는 캐리어기판, 그리고 BPDA-TFMB 폴리이미드계 수지를 포함하는 가요성 기판층을 각각 롤 형태로 얻었다.
이와 같이 제조된 가요성 기판층의 길이방향(MD) 및 폭방향(TD) 기계적 물성을 다음와 같이 평가하였다.
기계적 강도
Instron 사의 UTM을 사용하여 필름의 기계적 물성(모듈러스, 최고스트레스, 최고 연신율)을 측정하였다. 구체적으로 필름을 5mmx60mm 이상으로 자른 후 그립 간의 간격은 40mm로 설정하여 20mm/min의 속도로 샘픔을 당기면서 인장강도를 확인 하였다.
열팽창계수
필름의 열팽창계수(CTE) 및 치수변화는 TA사의 Q400을 이용하여 측정하였다. 15미크론 두께 필름을 5mmx20mm 크기로 준비한 뒤 악세서리를 이용하여 시료를 로딩하였다. 실제 측정되는 필름의 길이는 16mm로 동일하게 하였다. 필름을 당기는 힘을 0.02N으로 설정하고, 측정시작 온도는 30℃에서 5℃/min의 속도로 300℃ 까지 가열하고 이를 다시 -5℃/min 으로 80℃로 냉각시킨 후 다시 5℃/min의 속도로 400℃ 까지 가열하고 100~200℃의 범위에서 평균값으로서 폴리이미드계 필름의 MD 및 TD 방향 선열팽창계수를 측정하였다.
구분 MD TD
기계적 강도 (tensile strength) 250 MPa 252 MPa
열팽창 계수(ppm/℃) 13.4 13.8
실시예 2
실시예 1과 동일한 방법으로 실시하되, 도 2에 도시된 바와 같이, 캐리어 기판 상에 가요성 기판 형성용 조성물을 도포하기 전에, 캐리어 기판 상에 알루미늄을 200nm 두께로 증착하고 미세패턴을 패터닝하였다. 구체적으로, 레지스트 잉크를 실리콘계 블랭킷 상에 전면 코팅한 후 상기 블랭킷 상에 미세 패턴이 음각으로 각인되어 있는 클리쉐를 접촉시킴으로써 상기 실리콘계 블랭킷 상에 패턴을 형성한 뒤 일부 도막을 제거함으로써 미세패턴이 형성된 실리콘계 블랭킷을 제조하였다. 상기 실리콘계 블랭킷에 형성된 레지스트 잉크 미세패턴을 상기 캐리어 기판 상에 증착된 알루미늄에 전사한 후 115℃ 오븐에서 3분간 건조하여 레지스트 패턴 내에 잔류된 용매를 제거하였다. 상기 레지스트가 패턴된 알루미늄 기판을 식각액을 사용하여 온도 45℃ 조건에서 스프레이 방식으로 식각하였다. 탈이온수로 식각액을 깨끗이 세정 및 건조 한 후 남아있는 레지스트 잉크를 스트리퍼(stripper)를 이용하여 제거하여 캐리어 기판 상에 알루미늄이 배선을 제작하였다.
상기 알루미늄 배선이 형성된 캐리어 기판상에 BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판 형성용 조성물을 건조 후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 300℃에서 30분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지를 포함하는 폴리머층(가요성 기판층)을 형성하였다. 실시예 1과 동일한 방법으로 캐리어 기판, 금속배선이 매립된 가요성 기판을 각각 롤 형태로 얻었다.
도 3은 알루미늄 배선이 형성된 가요성 기판층 제조과정 및 이에 대한 사진(우측)과 알루미늄배선, 가요성기판층 및 캐리어기판층에 대한 SEM 이미지(좌측)를 보여준다. 도 3으로부터 확인할 수 있는 바와 같이, 알루미늄 배선이 가요성 기판층으로 완전히 전사되어 캐리어 기판에 남아 있지 않음을 확인할 수 있다.
이상 살펴본 바와 같이 본 발명에 따른 방법으로 제조되는 가요성 기판은 길이방향 및 폭방향에 따른 기계적, 열적, 광학적 물성의 차이가 적고 균일하다는 장점이 있다. 또한, 본 발명에 따른 방법은 금속 배선이 형성된 가요성 기판을 롤 형태로 얻을 수 있으므로, 후속 소자 제조공정의 효율성을 높일 수 있다.
[부호의 설명]
1 캐리어 기판
2 캐리어 기판 공급수단
3 금속패턴
5 경화성 고분자
10 가요성 기판 수거수단
11 가요성 기판층
13 금속패턴이 형성된 가요성 기판층
20 캐리어기판 수거수단

Claims (21)

  1. 폴리이미드계 수지를 포함하는 캐리어 기판을 공급하는 단계;
    상기 캐리어 기판상에 경화성 고분자를 포함하는 가요성 기판층을 형성하는 단계;
    상기 캐리어 기판 및 가요성 기판층의 화학적 변화를 야기하지 않는 물리적 자극을 가하여 상기 가요성 기판층을 캐리어 기판층과 분리시키는 단계; 및
    상기 캐리어 기판층과 분리된 가요성 기판층을 권취하여 롤 형태로 수거하는 단계를 포함하며, 상기 단계들이 롤투롤(roll to roll) 공정에 의해 수행되는 것인 가요성 기판의 제조방법.
  2. 제1항에 있어서,
    상기 가요성 기판층은 다이아민에 비해 과량의 산이무수물을 포함하는 조성물을 상기 캐리어 기판 상에 캐스팅한 후 가열 및 경화하여 제조하는 것인 가요성 기판의 제조방법.
  3. 제1항에 있어서, 상기 가요성 기판층 형성전에 상기 캐리어 기판상에 금속패턴을 형성하는 단계를 더 포함함으로써 금속패턴이 형성된 가요성 기판을 제조하는 것인 가요성 기판의 제조방법.
  4. 제1항에 있어서, 상기 가요성 기판층 형성 전에 상기 캐리어 기판 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조하는 것인 가요성 기판의 제조방법.
  5. 제1항에 있어서, 상기 가요성 기판층 형성 후 가요성 기판층 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조하는 것인 가요성 기판의 제조방법.
  6. 제5항에 있어서, 상기 하드코팅층 상에 금속패턴을 형성하는 단계를 더 포함하는 가요성 기판의 제조방법.
  7. 제3항에 있어서, 상기 금속패턴이 형성된 가요성 기판층 상에 하드코팅층을 형성하는 단계를 더 포함함으로써 하드코팅층이 형성된 가요성 기판을 제조하는 것인 가요성 기판의 제조방법.
  8. 제3항에 있어서,
    상기 폴리이미드계 수지를 포함하는 캐리어 기판상에 상기 가요성 기판층의 적어도 일부가 직접적으로 접촉하고 있는 것인 가요성 기판의 제조방법.
  9. 제3항에 있어서,
    상기 금속패턴이 상기 가요성 기판층에 매립되어 있는 형태인 가요성 기판의 제조방법.
  10. 제1항에 있어서,
    상기 가요성 기판층과 분리된 상기 캐리어 기판층이 권취되어 롤 형태로 수거되는 단계를 더 포함하는 가요성 기판의 제조방법.
  11. 제1항에 있어서,
    상기 물리적 자극은 상기 캐리어 기판 및 가요성 기판층을 권취하여 수거하는 공정에서 가해지는 장력인 것인 가요성 기판의 제조방법.
  12. 제1항에 있어서,
    상기 가요성 기판층이 상기 물리적 자극이 가해지기 전 상기 가요성 기판층에 대해 1 N/cm 이상의 접착력을 갖는 가요성 기판의 제조방법.
  13. 제1항에 있어서,
    상기 물리적 자극이 가해진 후 상기 가요성 기판층에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 갖는 가요성 기판의 제조방법.
  14. 제1항에 있어서,
    상기 캐리어 기판과 가요성 기판층에 화학적 변화를 야기하지 않는 물리적 자극이 가해지기 전 가요성 기판층에 대한 캐리어 기판층의 접착력(A1)과, 상기 물리적 자극이 가해진 후 가요성 기판층에 대한 캐리어 기판층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 인 가요성 기판의 제조방법.
  15. 제1항에 있어서,
    상기 캐리어 기판에 포함된 폴리이미드계 수지가 하기 화학식 1의 방향족 테트라카르복실산 이무수물과 직선형 구조를 갖는 방향족 다이아민 화합물을 반응시켜 제조한 폴리아믹산을 200℃ 이상의 온도에서 경화시켜 제조된 것인 가요성 기판의 제조방법:
    [화학식 1]
    Figure PCTKR2016008074-appb-I000013
    (상기 화학식 1에서, A는 하기 화학식 2a 또는 2b의 방향족 4가 유기기이며,
    [화학식 2a]
    Figure PCTKR2016008074-appb-I000014
    [화학식 2b]
    Figure PCTKR2016008074-appb-I000015
    상기 화학식 2a 및 2b에서,
    R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기 또는 탄소수 1 내지 4의 할로알킬기이고,
    a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수이다.
  16. 제15항에 있어서,
    상기 이무수물을 상기 다이아민 화합물에 비해 과량으로 반응시키는 것인 가요성 기판의 제조방법.
  17. 제16항에 있어서,
    상기 방향족 다이아민 화합물은 하기 화학식 4a 또는 4b의 방향족 다이아민 화합물인 것인 가요성 기판의 제조방법:
    [화학식 4a]
    Figure PCTKR2016008074-appb-I000016
    [화학식 4b]
    Figure PCTKR2016008074-appb-I000017
    상기 식에서,
    R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 할로알킬기이고,
    X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기, 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 할로알킬기로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
    l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 그리고
    p은 0 또는 1의 정수이다.
  18. 제1항 내지 제17항 중 어느 한 항에 따른 제조방법으로 제조되며, 길이방향 및 폭방향의 기계적 강도 차이가 10MPa 이내이고, 길이방향 및 폭방향의 열팽창계수 차이가 5 ppm/℃ 이내인 가요성 기판.
  19. 제18항의 가요성 기판을 포함하는 전자소자.
  20. 제19항에 있어서,
    상기 전자소자가 태양전지, 유기발광다이오드 조명, 반도체 소자, 및 디스플레이 소자로 이루어진 군에서 선택되는 것인 전자소자.
  21. 제20항에 있어서,
    상기 디스플레이 소자가 플렉서블 유기전계발광소자인 것인 전자소자.
PCT/KR2016/008074 2015-07-24 2016-07-25 가요성 기판의 제조방법 WO2017018753A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16830786.6A EP3327731B1 (en) 2015-07-24 2016-07-25 Method for fabricating flexible substrate
JP2017530032A JP6429137B2 (ja) 2015-07-24 2016-07-25 可撓性基板の製造方法
US15/527,261 US10517171B2 (en) 2015-07-24 2016-07-25 Method for fabricating flexible substrate
CN201680003320.XA CN107073915B (zh) 2015-07-24 2016-07-25 用于制造柔性基底的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0104964 2015-07-24
KR20150104964 2015-07-24
KR10-2016-0093295 2016-07-22
KR1020160093295A KR20170012123A (ko) 2015-07-24 2016-07-22 가요성 기판의 제조방법

Publications (1)

Publication Number Publication Date
WO2017018753A1 true WO2017018753A1 (ko) 2017-02-02

Family

ID=57884704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008074 WO2017018753A1 (ko) 2015-07-24 2016-07-25 가요성 기판의 제조방법

Country Status (1)

Country Link
WO (1) WO2017018753A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012165A (ja) * 2017-06-30 2019-01-24 大日本印刷株式会社 表示装置用部材
WO2019116951A1 (ja) * 2017-12-15 2019-06-20 東レ株式会社 高分子薄膜の製造装置および製造方法
CN110739397A (zh) * 2018-07-02 2020-01-31 霍尼韦尔特性材料和技术(中国)有限公司 一种柔性显示器基板、其制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360647A (en) * 1990-09-28 1994-11-01 Daicel Chemical Industries, Ltd. Composite metal sheets
KR101291703B1 (ko) * 2012-12-04 2013-07-31 주식회사 남영기계 연성 인쇄회로기판 제작용 롤투롤타입 와인더장치
KR20140028243A (ko) * 2012-08-28 2014-03-10 한국기계연구원 금속배선이 함입된 유연기판 제조 장치
KR20140122205A (ko) * 2013-04-09 2014-10-17 주식회사 엘지화학 디스플레이 소자의 제조방법 및 이를 이용하여 제조된 디스플레이 소자
KR20150047002A (ko) * 2013-10-23 2015-05-04 (주)창성 금속 박막을 포함하는 캐리어 필름 제조 방법 및 이를 이용한 복합필름.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360647A (en) * 1990-09-28 1994-11-01 Daicel Chemical Industries, Ltd. Composite metal sheets
KR20140028243A (ko) * 2012-08-28 2014-03-10 한국기계연구원 금속배선이 함입된 유연기판 제조 장치
KR101291703B1 (ko) * 2012-12-04 2013-07-31 주식회사 남영기계 연성 인쇄회로기판 제작용 롤투롤타입 와인더장치
KR20140122205A (ko) * 2013-04-09 2014-10-17 주식회사 엘지화학 디스플레이 소자의 제조방법 및 이를 이용하여 제조된 디스플레이 소자
KR20150047002A (ko) * 2013-10-23 2015-05-04 (주)창성 금속 박막을 포함하는 캐리어 필름 제조 방법 및 이를 이용한 복합필름.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012165A (ja) * 2017-06-30 2019-01-24 大日本印刷株式会社 表示装置用部材
WO2019116951A1 (ja) * 2017-12-15 2019-06-20 東レ株式会社 高分子薄膜の製造装置および製造方法
JPWO2019116951A1 (ja) * 2017-12-15 2020-10-22 東レ株式会社 高分子薄膜の製造装置および製造方法
JP7156036B2 (ja) 2017-12-15 2022-10-19 東レ株式会社 高分子薄膜の製造装置および製造方法
CN110739397A (zh) * 2018-07-02 2020-01-31 霍尼韦尔特性材料和技术(中国)有限公司 一种柔性显示器基板、其制备方法及其应用
CN110739397B (zh) * 2018-07-02 2024-05-14 霍尼韦尔特性材料和技术(中国)有限公司 一种柔性显示器基板、其制备方法及其应用

Similar Documents

Publication Publication Date Title
KR101917559B1 (ko) 가요성 기판의 제조방법
WO2014168402A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2014163352A1 (en) Polyimide cover substrate
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2016108491A1 (ko) 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2020138687A1 (ko) 디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2017018753A1 (ko) 가요성 기판의 제조방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2016108631A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
CN104952780B (zh) 柔性元件的制造方法、柔性元件及柔性元件制造装置
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2016200122A1 (ko) 금속배선층이 형성된 적층체 및 이를 제조하는 방법
WO2014133297A1 (ko) 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 제조 및 표면 평탄화 방법
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2016108675A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2020075908A1 (ko) 접착력이 우수한 폴리이미드 수지를 제조하기 위한 폴리아믹산 조성물 및 이로부터 제조된 폴리이미드 수지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830786

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016830786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016830786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15527261

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017530032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE