WO2016200122A1 - 금속배선층이 형성된 적층체 및 이를 제조하는 방법 - Google Patents

금속배선층이 형성된 적층체 및 이를 제조하는 방법 Download PDF

Info

Publication number
WO2016200122A1
WO2016200122A1 PCT/KR2016/006019 KR2016006019W WO2016200122A1 WO 2016200122 A1 WO2016200122 A1 WO 2016200122A1 KR 2016006019 W KR2016006019 W KR 2016006019W WO 2016200122 A1 WO2016200122 A1 WO 2016200122A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible substrate
debonding
metal wiring
substrate
Prior art date
Application number
PCT/KR2016/006019
Other languages
English (en)
French (fr)
Inventor
정혜원
신보라
김경준
명지은
손용구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160068102A external-priority patent/KR102035378B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/540,191 priority Critical patent/US10512171B2/en
Priority to JP2017533961A priority patent/JP6601693B2/ja
Priority to CN201680006096.XA priority patent/CN107206771B/zh
Priority to EP16807762.6A priority patent/EP3307033B1/en
Publication of WO2016200122A1 publication Critical patent/WO2016200122A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a laminate for manufacturing a substrate in which metal wiring is embedded. More particularly, the metal wiring-embedded substrate layer can be easily separated from a carrier substrate, so that a device having a flexible substrate such as a flexible display device can be used. It relates to a laminate that can be easily manufactured.
  • Flexible electronics technology has evolved to make electronic devices and systems that are inexpensive, easy to bend, and have transparent properties.
  • a flexible substrate manufacturing technology including a transparent electrode having a transparent and low resistance is essential.
  • the specific resistance has a limit on the material, and in the case of copper which is widely used, the material has a low enough resistivity, and a material such as silver has a problem that the price is expensive and thus difficult to apply.
  • option (2) there are physical limitations due to a problem related to circuit design. As a result, the height of the wiring must be increased. In this case, as the height of the wiring increases, problems such as distorting the shape of the wiring, electrical shorts, shorts between wirings, and wiring damage may occur.
  • a technique for inserting metal wiring into the substrate includes a method of etching a desired pattern through deposition and etching, and copper, which is difficult to dry-etch for pattern formation. And a damascene method in which a CMP method is applied to a thin film of Cu, and the wiring is embedded in an insulating film groove.
  • An object of the present invention is to provide a laminate capable of easily manufacturing a flexible substrate having metal wiring embedded therein without a deposition and etching process and a flexible substrate manufactured using the same.
  • Another object of the present invention is to provide an electronic device including a flexible substrate in which the metal wiring is embedded.
  • the present invention to solve the above technical problem
  • the adhesive force between the metal wiring layer and the flexible substrate layer is greater than the adhesive force between the metal wiring layer and the debonding layer.
  • the metal wiring layer includes a plurality of metal wirings
  • the flexible substrate layer is in contact with the debonding layer while surrounding the plurality of metal wirings so that the metal wirings are embedded in the flexible substrate layer.
  • the adhesive force of the flexible substrate having the debonding layer and the metallization layer is applied to the physical stimulus exposing the cross-sections of the metallization layer and the flexible substrate layer without causing chemical change of the debonding layer. Changes by
  • Adhesion of the debonding layer to the metallization layer before the physical stimulus is applied (A1)
  • the ratio A2 / A1 of the adhesion force A2 of the debonding layer to the metal wiring layer may be 0.001 to 0.5.
  • the debonding layer may have a peel strength of 0.3 N / cm or less with respect to the metal wiring layer after a physical stimulus is applied.
  • the debonding layer may have an adhesive force of 1 N / cm or more to the metal wiring layer before a physical stimulus is applied.
  • the debonding layer may have a thickness of 0.05 to 5 ⁇ m.
  • the plurality of metal wires may be formed by inkjet printing, gravure printing, gravure offset, aerosol printing, screen printing, electroplating, vacuum deposition, or photolithography.
  • the plurality of metal wires may be arranged at intervals of 0.05 to 50 mm.
  • the metal wiring may include silver (Ag), copper (Cu), aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), titanium (Ti), molybdenum (Mo), or an alloy thereof. It may be made.
  • the polyimide resin may be prepared by curing the polyamic acid prepared by reacting the aromatic tetracarboxylic dianhydride of Formula 1 with an aromatic diamine compound having a linear structure at a temperature of 200 °C or more.
  • A is an aromatic tetravalent organic group of Formula 2a or 2b,
  • R 11 to R 14 are each independently an alkyl group having 1 to 4 carbon atoms or a haloalkyl group having 1 to 4 carbon atoms,
  • a is an integer of 0-3
  • b is an integer of 0-2
  • c and e are each independently an integer of 0-3
  • d is an integer of 0-4, and f is an integer of 0-3.
  • aromatic diamine compound may be an aromatic diamine compound of Formula 4a or 4b.
  • R 21 to R 23 are each independently an alkyl group having 1 to 10 carbon atoms or a haloalkyl group having 1 to 10 carbon atoms,
  • R 24 and R 25 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a haloalkyl group having 1 to 10 carbon atoms
  • q is an integer of 1 or 2
  • l, m and n are each independently an integer from 0 to 4, and
  • p is an integer of 0 or 1.
  • the polymer layer is polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide (PI), polyether Mid, polyamideimide, polyester, ethylene vinyl acetate (EVA), polyether amide imide, polyester amide imide, polyarylate, amorphous polyethylene terephthalate (APET), polypropylene terephthalate (PPT), polyethylene Terephthalate Glycerol (PETG), Polycyclohexylenedimethylene Terephthalate (PCTG), Modified Triacetylcellulose (TAC), Cycloolefin Polymer (COP), Cycloolefin Copolymer (COC), Dicyclopentadiene Polymer (DCPD) Cyclopentadiene polymer (CPD), polyarylate (PAR), polyetherimide (PEI), polydimethylsiloxane (PDMS), silicone resin, fluor
  • the present invention also provides
  • It provides a method for producing a flexible substrate having a metal wiring layer comprising a.
  • the separation process by the physical stimulus may be a method selected from cutting (cutting), laser cutting or diamond scribing (scribing).
  • the separation process by the physical stimulus may be a separation of the flexible substrate layer and the debonding layer on which the metal wiring layer is formed by applying a physical stimulus of more than 0 0.1N or less.
  • an electronic device comprising a flexible substrate on which the metal wiring layer is formed.
  • the electronic device may be selected from the group consisting of solar cells, organic light emitting diode lighting, semiconductor devices, and display devices.
  • the display device may be a flexible organic light emitting display device.
  • the flexible substrate on which the metal wiring layer is formed according to the present invention can be easily separated from the carrier substrate together with the metal wiring layer even with a relatively small physical stimulus such as cutting even without performing a laser or light irradiation process or a dissolution process. This makes it possible to more easily manufacture a device including a flexible substrate, such as a flexible display device.
  • the device manufacturing process can be simplified, the manufacturing cost can be greatly reduced, and the reliability of the device may be reduced by laser or light irradiation, or the like. Defects can also be suppressed, and when the metal wires are embedded in the substrate, not only the sheet resistance of the transparent electrode can be reduced, but also the metal wires can be prevented from being broken or broken even if the shape of the flexible substrate is deformed. It is useful for flexible device applications.
  • Figure 1a is a cross-sectional structural view schematically showing the structure of a laminate according to an embodiment of the present invention
  • Figure 1b is a schematic cross-sectional view showing the structure of a laminate according to another embodiment of the present invention.
  • FIG. 2 is a process schematic diagram briefly showing a manufacturing process of a flexible substrate according to an embodiment of the present invention.
  • FIG. 3 is a process schematic diagram briefly showing a manufacturing process of a flexible substrate according to a comparative example.
  • Figure 4a is a flexible substrate film manufactured by a flexible substrate manufacturing process according to Example 1 of the present invention.
  • Figure 4b shows the surface of the flexible substrate film prepared according to Example 1 of the present invention.
  • Figure 4c shows the surface of the carrier substrate after removing the flexible substrate in the manufacturing process according to Example 1 of the present invention.
  • Figure 5a is a flexible substrate film prepared by a flexible substrate manufacturing process according to Comparative Example 1.
  • Figure 5b shows a surface of the substrate produced by a flexible substrate manufacturing process according to Comparative Example 1.
  • Figure 5c shows the surface of the carrier substrate after removing the flexible substrate in the flexible substrate manufacturing process according to Comparative Example 1.
  • 6a to 6c are photographs before and after the tape test showing the peeling performance of the flexible substrate prepared according to Example 2 and Comparative Example 2.
  • the term "physical stimulus” in the present specification includes a mechanical stimulus that does not cause chemical change, such as peeling, cutting, friction, tension or compression, unless otherwise specified, and lamination regardless of means or method It means that the laminated cross section of the sieve can be exposed. In some cases, a stimulus having an intensity of more than 0 to 0.1 N or less per unit area may be applied. In other words, the application of the physical stimulus means that the laminated cross section of the laminate is exposed regardless of the means. Preferably at least two laminated cross-sections forming the ends of the flexible substrate are exposed at predetermined intervals.
  • 'adhesive force' means adhesion of the debonding layer to the flexible substrate before the application of the physical stimulus
  • 'peel strength' means the adhesion of the debonding layer to the flexible substrate after the application of the physical stimulus.
  • the present invention is a.
  • the adhesive force between the metal wiring layer and the flexible substrate layer is greater than the adhesive force between the metal wiring layer and the debonding layer.
  • the metal wiring layer includes a plurality of metal wirings
  • the flexible substrate layer is in contact with the debonding layer while surrounding the plurality of metal wirings so that the metal wirings are embedded in the flexible substrate layer.
  • the adhesive force of the flexible substrate having the debonding layer and the metal wiring layer is applied, the physical stimulus to expose the cross-section of the metal wiring layer and the flexible substrate layer without causing chemical change of the debonding layer Changes by
  • Adhesion of the debonding layer to the metallization layer before the physical stimulus is applied (A1)
  • the ratio A2 / A1 of the adhesion force A2 of the debonding layer to the metal wiring layer may be 0.001 to 0.5.
  • the debonding layer may have a peel strength of 0.3 N / cm or less and / or an adhesive force of 1 N / cm or more with respect to the metal wiring layer after a physical stimulus is applied.
  • the present invention also provides a device substrate manufactured by the above-described manufacturing method.
  • the present invention also provides an element comprising a substrate produced by the above-described manufacturing method.
  • the laminate may easily peel off the flexible substrate layer including the metal wiring layer formed on the debonding layer only by physical stimulus, and thus, the sacrifice formed between the carrier substrate and the flexible substrate layer for peeling off the substrate.
  • the substrate can be separated from the debonding layer without other processes such as a laser process and a light irradiation process for removing the layer, thereby making it easier to manufacture a flexible substrate with embedded wiring.
  • the debonding layer is in contact with the metal wiring layer.
  • the debonding layer is also partially in contact with the flexible substrate layer. That is, the debonding layer may be in contact with the metal wiring layer, or the metal wiring layer and the flexible substrate layer.
  • the debonding layer reduces the adhesion to the metal wiring layer and / or the flexible substrate when a physical stimulus for exposing the cross-sections of the metal wiring layer and the flexible substrate is applied, and more specifically, before the physical stimulus is applied. Although it has an adhesive force of 1 N / cm or more with respect to the wiring layer and / or the flexible substrate, it exhibits a peel strength of 0.3 N / cm or less with respect to the metal wiring layer and / or the flexible substrate after the physical stimulus is applied. In this case, the physical stimulus may expose the cross-sections of the metallization layer and the flexible substrate without causing chemical change of the debonding layer, and may have a strength of more than 0 and 0.1N or less.
  • the method of applying a physical stimulus for exposing the cross section of the metal wiring layer and / or the flexible substrate may be specifically, for example, by cutting, laser cutting or diamond scribing, but is not limited thereto. .
  • the cross section of the flexible substrate and the debonding layer as well as the metal wiring layer and the flexible substrate, or the cross section of the flexible substrate, the debonding layer and other functional layers, or the carrier substrate It may be a physical stimulus to be exposed.
  • a metal bonding layer is formed on the debonding layer by forming a debonding layer containing a polyimide resin having predetermined characteristics on the carrier substrate.
  • the metal wiring and the polymer layer can be easily separated from the debonding layer even if the laser or light irradiation process is omitted and only a physical stimulus is applied, thereby providing a flexible substrate on which the metal wiring layer is formed. It can be easily manufactured, and therefore, it was confirmed that a display device using the same can be manufactured very easily. This action and effect can be expected to be expressed due to the characteristics of the following polyimide resin.
  • Flexible substrates embedded with metal wires manufactured according to an embodiment of the present invention can reduce the sheet resistance of the transparent electrode, thereby improving the efficiency of the electronic device, and especially being applied to solar cells to improve the light conversion efficiency. It is possible to prevent the reduction in the light conversion efficiency due to the large area.
  • the metal wires are embedded in the substrate, even if the shape of the device is deformed, the metal wires may be prevented from being broken or disconnected, which is advantageous when applying a flexible display.
  • 1A and 1B are schematic diagrams schematically showing a cross section of a laminate according to one embodiment of the present invention. 1A and 1B are merely examples for describing the present invention, but the present invention is not limited thereto.
  • the laminates 10 and 20 according to the present invention may include carrier substrates 11 and 21; Debonding layers 12 and 22 positioned on one surface of the carrier substrate and including polyimide-based resins; Located on the debonding layers 12 and 22, the flexible substrate layers 15 and 25 and the polymer layers 15a and 25a formed by embedding metal wires 13 and 23 in the polymer layers 15a and 25a. It may include a transparent electrode layer formed on the).
  • the adhesive force between the debonding layers 12 and 22 and the flexible substrate layers 15 and 25 or the metallization layers 13 and 23 does not cause chemical change of the debonding layers 12 and 22. It is changed by the application of a physical stimulus exposing the end faces of the substrates 15a and 25a or the end faces of the metal wiring layer 13.23.
  • the carrier substrate 11 may be used without particular limitation as long as it is used to support the flexible substrate 15 so that the carrier substrate 11 can easily proceed on the laminate 10.
  • metal substrates such as a glass substrate and a stainless steel substrate, or these two or more multilayered structures, etc. are mentioned.
  • the glass substrate to which the element manufacturing process for a glass substrate, etc. can be applied most easily may be preferable.
  • the carrier substrate 11 may be pretreated by an etching treatment such as corona treatment, flamming treatment, sputtering treatment, ultraviolet irradiation, electron beam irradiation, and the like in an ozone atmosphere in order to increase adhesion with the debonding layer.
  • an etching treatment such as corona treatment, flamming treatment, sputtering treatment, ultraviolet irradiation, electron beam irradiation, and the like in an ozone atmosphere in order to increase adhesion with the debonding layer.
  • the thickness and size of the carrier substrate 11 may be appropriately selected according to the type of device to be applied, but considering the transparency of the substrate, the carrier substrate 11 preferably has a thickness of 0.1 to 50mm. can do. When the thickness range as described above can have excellent mechanical strength can exhibit excellent support properties for the flexible substrate.
  • the debonding layer 12 including polyimide resin is positioned on one or both surfaces of the carrier substrate 11.
  • the polyimide-based resin included in the debonding layer 12 is controlled to have an imidation ratio described later in an appropriate range, and is a flexible substrate (during the device manufacturing process of forming an element structure on the flexible substrate 15). Although it exhibits a certain level of adhesive strength to properly fix and support 15), after the device fabrication process is completed, the flexible substrate 15a may be subjected to a simple physical stimulus such as laser or light irradiation or cutting without dissolution. It can be easily separated while reducing the adhesion to).
  • the debonding layer 12 may have an adhesive force A1 to the metal wiring layer 13 or the flexible substrate layer 15 and the metal wiring layer 13 or the flexible layer after the physical stimulus is applied before the physical stimulus is applied.
  • the ratio A2 / A1 of the adhesion force A2 to the substrate 15 is 0.001 to 0.5, preferably 0.001 to 0.1, and the flexible substrate on which the metal wiring layer is formed by simple physical stimulation such as cutting without laser or light irradiation ( 15) and can be easily separated.
  • the debonding layer 12 is about 1N / cm or more, or about 2N / cm or more, or about 3 to 5N with respect to the metallization layer 13 or the flexible substrate 15 before the physical stimulus is applied. adhesion of / cm, but after physical stimulation, about 0.3 N / cm or less, for example, about 0.2 N / cm or less, or about 0.1 N / cm or less, or about 0.001 to 0.05 N / cm It can represent the strength (peel strength).
  • the peel strength of the debonding layer 12 may be measured under the conditions of Table 1 below:
  • Peel strength measurement condition Film width (mm) 10 Film length (mm) 100 Speed (mm / min) 50 Measuring equipment Texture Analyser (TA.XT plus, manufactured by Stable micro systems) Peel strength 90
  • the peel strength is prepared by preparing a laminate sample in which a debonding layer, a metal wiring layer, and a flexible substrate are sequentially formed on a glass substrate, and cutting the laminate sample into a rectangular shape having a width of 10 mm as a physical stimulus.
  • the force applied when the end portion of the cut flexible substrate is held and separated at an angle of 90 ° from the debonding layer can be calculated by measuring under the above-described measuring instruments and conditions.
  • the adhesive force has a rectangular size of 100mm in width, and prepares a laminate sample in which a debonding layer and a flexible substrate are sequentially formed on a glass substrate, and the end of the flexible substrate is a tape of 10mm in width in such a sample. It can be calculated by measuring the force when attaching and holding the end of the tape and peeling it at an angle of 90 ° from the debonding layer, wherein the measuring device and condition of the force are measured instruments and conditions of peel strength shown in Table 1 above. Can be the same as
  • the adhesion and peel strength of the debonding layer 12 may be achieved by the imidation ratio of the polyimide resin included in the debonding layer, and the imidation ratio may be different from the type of monomer for forming polyimide resin. Content, imidation conditions (heat treatment temperature and time, etc.) and the like.
  • the above-described adhesion and peel strength conditions of the debonding layer 12 may be satisfied, and even if the laser or light irradiation is omitted, the flexible substrate layer 15 on which the metal wiring layer is formed by applying only a physical stimulus
  • the polyimide resin included in the debonding layer 12 is about 60% to 99%, or about 70% to 98%, or about 75 to 96% It may have an imidation ratio of.
  • the imidation ratio of the polyimide-based resin is about 1350-1400 cm - of the IR spectrum after applying a composition containing a precursor of polyimide, for example, a polyamic acid-based resin, and performing imidization at a temperature of about 500 ° C. or higher.
  • a composition containing a precursor of polyimide for example, a polyamic acid-based resin
  • the integral intensity of the CN band represented by 1 is 100%, it may be displayed as measured as the relative integral intensity ratio of the CN band after the imidization is performed at the imidization temperature of about 200 ° C. or more.
  • the imidation range of the polyimide-based resin as described above may be achieved by controlling the curing temperature conditions during the curing process for the polyamic acid-based resin.
  • a composition containing a polyamic acid resin which is a precursor of polyimide resin, is applied onto the carrier substrate, and at a temperature of about 200 ° C. or higher, or 250 ° C. to 500 ° C.
  • about 0.3 N including polyimide resin having an imidation ratio of about 60% to 99%, or about 70% to 98%, or about 75 to 96% It is possible to form a debonding layer having a peel strength of not more than / cm.
  • the polyimide-based resin produced by controlling the curing temperature as described above has a glass transition temperature (Tg) of about 200 ° C. or higher, or about 300 ° C. or higher, or about 350 ° C. to 500 ° C., and 400 ° C. or higher. Or, it may have a decomposition temperature (Td) of 400 °C to 600 °C.
  • Tg glass transition temperature
  • Td decomposition temperature
  • the debonding layer may be about 30 ppm / ° C. or less, or about 25 ppm / ° C. or less, or about 20 ppm / ° C. or less, or about 1 to 17 ppm / ° C. under conditions of 100 to 200 ° C. It may have a coefficient of thermal expansion (CTE) of and 1% pyrolysis temperature (Td1%) of 450 °C or more, or 470 °C or more.
  • CTE coefficient of thermal expansion
  • Td1% pyrolysis temperature
  • the debonding layer 12 that satisfies the above structural and physical requirements is cleanly peeled off from the flexible substrate 13, and thus does not affect the transparency and optical properties of the manufactured device substrate.
  • the polyamic acid resin as the above-described polyimide resin or a precursor thereof may be formed by polymerization and imidization using arbitrary tetracarboxylic dianhydride compounds and diamine compounds as monomers.
  • tetracarboxylic dianhydride compound examples include pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (3, 3'4,4'-Biphenyl tetracarboxylic acid dianhydride (BPDA), meso-butane-1,2,3,4-tetracarboxylic dianhydride (meso-buthane-1,2,3,4-tetracarboxylic dianhydride), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (3,3', 4,4'-benzophenone tetracarboxylic dianhydride, BTDA), 2,3,3 ', 4'-diphenylethertetra Carboxylic dianhydrides (2,3,3 ', 4'-diphenylether tetracarboxylic dianhydride, ODPA), 3,3
  • each said monomer as a specific example of a diamine compound, p-phenylenediamine (PDA), m-phenylenediamine (m-PDA), 2,4,6-trimethyl-1,3-phenyl Lendiamine, 2,3,5,6-tetramethyl-1,4-phenylenediamine, 4,4'-diaminodiphenylether, 3,4'-diaminodiphenylether, 3,3 ' -Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl Methane, 4,4'-methylene-bis (2-methylaniline), 4,4'-methylene-bis (2,6-dimethylaniline), 4,4'-methylene-bis (2,6-diethylaniline ), 4,4'-m
  • the kind of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, in order to more suitably meet the physical properties required for the debonding layer such as the low CTE range and peel strength described above, the acid dianhydride is It is important not to have a linker structure between the aromatic rings.
  • an aromatic tetracarboxylic dianhydride of the general formula (1) may be preferable:
  • A is an aromatic tetravalent organic group derived from an acid dianhydride, specifically, may be an aromatic tetravalent organic group of Formula 2a or 2b:
  • R 11 to R 14 are each independently an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.) or a haloalkyl group having 1 to 4 carbon atoms (eg, fluoromethyl group, bromomethyl group, chloro Methyl group, trifluoromethyl group, etc.), and
  • a may be an integer of 0 to 3
  • b is an integer of 0 to 2
  • c and e are each independently an integer of 0 to 3
  • d is an integer of 0 to 4
  • f may be an integer of 0 to 3
  • c, d and e are integers of zero.
  • the tetracarboxylic dianhydride is pyromellitic dianhydride (PMDA) of Chemical Formula 3a, or has a linear structure as in Chemical Formula 3b, and two aromatic rings are directly connected without a linker structure.
  • PMDA pyromellitic dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • the packing density of the debonding layer 12 the higher the packing density of the debonding layer 12, the less the intermolecular space and the lower the bonding force due to mutual penetration. As a result, the adhesive strength to the flexible substrate 13 formed on the debonding layer 12 and the peeling strength of the flexible substrate from the laminate are lowered.
  • the packing density can be represented by CTE. The higher the packing density, the lower the CTE value, and the lower the CTE, the higher the packing density. Therefore, in order to more suitably meet the physical property requirements of the above-described debonding layer, an aromatic diamine-based compound having a linear structure among the above-described diamine compounds, specifically, using an aromatic diamine-based compound of the following formula 4a or 4b It is preferable to:
  • R 21 to R 23 are each independently an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.) or a haloalkyl group having 1 to 10 carbon atoms (eg, fluoromethyl group, bromomethyl group, Chloromethyl group, trifluoromethyl group, etc.),
  • l, m and n are each independently an integer of 0 to 4, preferably 0, and
  • p is an integer of 0 or 1, Preferably it is 0.
  • Examples of such a preferred aromatic diamine-based compound include p-phenylenediamine (PDA), benzidine (BZD), m-tolidine, or 2,2'-bis (trifluoromethyl) -benzidine (2,2 ' -bis (trifluoromethyl) benzidine, TFMB) and the like.
  • PDA p-phenylenediamine
  • BZD benzidine
  • m-tolidine or 2,2'-bis (trifluoromethyl) -benzidine (2,2 ' -bis (trifluoromethyl) benzidine, TFMB) and the like.
  • Each of these monomers is polymerized in a polar organic solvent to prepare a polyamic acid resin, and in the presence or absence of an imidization catalyst such as an amine catalyst, the polyamic acid resin is imidized under the above-described curing temperature conditions.
  • an imidization catalyst such as an amine catalyst
  • the polyamic acid resin is imidized under the above-described curing temperature conditions.
  • a polyimide resin and a debonding layer comprising the same may be formed.
  • other conditions for the preparation of the polyamic acid-based resin or polyimide-based resin in addition to the above-described curing temperature conditions may be in accordance with conventional conditions and methods well known to those skilled in the art, further description thereof will be omitted.
  • the debonding layer 12 as described above may have a thickness of 0.05 to 5 ⁇ m, 0.05 to 4 ⁇ m, or 0.05 to 3 ⁇ m, or 0.05 to 2 ⁇ m, or 0.05 to 1 ⁇ m.
  • a thickness of 0.05 to 5 ⁇ m, 0.05 to 4 ⁇ m, or 0.05 to 3 ⁇ m, or 0.05 to 2 ⁇ m, or 0.05 to 1 ⁇ m As the thickness of the debonding layer becomes thinner, the adhesive strength with the carrier substrate increases, but when too thin, the peelability is reduced due to the increased adhesive strength with the flexible substrate. Therefore, in order to show high adhesive force with a carrier substrate and high peelability with a flexible substrate, it is preferable to have said thickness range.
  • a metal wiring 13 embedded in the polymer layer 15b forming a flexible substrate is located on the debonding layer 12 in the laminate.
  • the metal wire 13 may be formed of a metal such as silver (Ag), copper (Cu), aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), titanium (Ti), molybdenum (Mo), or the like. Alloys thereof, or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), indium tin oxide-silver-indium tin oxide (ITO-Ag-ITO) , Indium zinc oxide-silver-indium zinc oxide (IZOAg-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO), aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO Coating or depositing one or more conductive metal oxides on the debonding layer 12 by inkjet printing, gravure printing, gravure offset, aerosol printing, electroplating, vacuum deposition, thermal deposition
  • a plurality of metal wires 13 arranged in parallel are provided in the polymer layer 15b of the flexible substrate 15.
  • the metal wires may be arranged at intervals of 0.05 to 50 mm.
  • the metal wiring 13 When the metal wiring 13 is densely arranged at intervals of less than 0.05 mm, there is a problem of increasing process costs. When the metal wiring is arranged at intervals exceeding 50 mm, the role of the auxiliary electrode is insignificant. There is a problem that the sheet resistance with the electrode cannot be lowered effectively.
  • the width of the metal wiring 13 is preferably 0.5 to 1000 ⁇ m. In the case where the width of the metal wiring is less than 0.5 ⁇ m, if a complicated process for forming a fine pattern is required, the resistance of the metal wiring increases, and when the width of the metal wiring exceeds 1000 ⁇ m, the light transmittance This has a problem of deterioration.
  • the metal wiring 13 may be used as an auxiliary electrode in an electronic device, and in a solar cell, an organic light emitting diode lighting, a semiconductor device, and a display device, an exposed portion of the metal wiring 13 may be formed on a substrate.
  • the sheet resistance can be reduced by directly contacting the transparent electrode provided.
  • the contact between the metal wire 13 and the transparent electrode is not limited thereto, and the metal wire may be connected to the auxiliary electrode through auxiliary means for connecting the transparent electrode and the metal wire even when the entire metal wire is embedded in the flexible substrate. It can be used as.
  • the flexible substrate 15 may include a structure selected from the group consisting of a thin film glass layer 15a, a polymer layer 15b, and a laminate of two or more thereof.
  • the thin film layer 15a can be used without particular limitation as long as it is a glass material used for a display device. Specifically, soda lime glass and neutral borosilicate glass are used. (neutral borosilicate glass), or non-alkali glass and the like.
  • the material of the thin glass layer may be appropriately selected according to the device to be applied. An alkali-free glass may be preferable when applied to a device requiring low heat shrinkage, and a soda having excellent visible light transmittance in a device requiring high transparency. Lime glass may be preferred.
  • the thin film glass layer 15a has an average linear expansion coefficient at 25 to 200 ° C (hereinafter, simply referred to as an "average linear expansion coefficient" so as to prevent positional shift during cooling of the element constituent member formed on the substrate of the heated element.
  • an average linear expansion coefficient Is 0 to 200 ⁇ 10 ⁇ 7 / ° C., preferably 0 to 50 ⁇ 10 ⁇ 7 / ° C., and it is preferable to use a mixture of the above materials so as to exhibit visible light transmittance of 90% or more. desirable.
  • the thin glass layer 15a as described above may be manufactured according to a conventional manufacturing method, and specifically, after mixing and melting glass raw materials, a float method, a slot down draw method, an overflow down draw method, a fusion method, It can be manufactured through the process of shaping
  • the thickness and size of the thin film glass layer 15a manufactured by the manufacturing method as described above may be appropriately selected according to the type of device to be applied, but considering the transparency of the device substrate, the thin film glass layer ( 15a) may preferably have a thickness of 10 to 200 mu m. When the thickness range as described above is preferable because it can exhibit flexibility with appropriate mechanical strength.
  • corona treatment when the polymer layer 15b is formed on the upper surface, the lower surface, or both surfaces of the thin film glass layer 15a, corona treatment, flamming treatment, and sputtering in an ozone atmosphere for increasing adhesion with the polymer layer 15b. It may be a pretreatment such as an etching treatment such as treatment, ultraviolet irradiation, electron beam irradiation or the like.
  • the polymer layer 15b can be included without particular limitation as long as it is a polymer known to be applicable to a substrate of a flexible device or the like.
  • the flexible substrate layer may be polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide ( PI), polyetherimide, polyamideimide, polyester, ethylene vinyl acetate (EVA), polyether amide imide, polyester amide imide, polyarylate, amorphous polyethylene terephthalate (APET), polypropylene terephthalate (PPT), polyethylene terephthalate glycerol (PETG), polycyclohexylene dimethylene terephthalate (PCTG), modified triacetyl cellulose (TAC), cycloolefin polymer (COP), cycloolefin copolymer (COC), di
  • the imidation ratio is about 50 to 99%, or about 70 to 95%, and about 200 ° C. or more, or about 300 ° C. or more, or about 350 to 500 ° C. It may be a polyimide resin having a transition temperature (Tg) and having a decomposition temperature (Td) of 400 ° C or higher, or 400 ° C to 600 ° C. Because of this excellent heat resistance, there is no fear of deformation even in the heating step for producing the laminate or the device substrate, and the heat resistance of the substrate and the device can be improved. Specifically, the polymer layer 15b may have a thermal expansion coefficient (CTE) of about 60 ppm / ° C.
  • CTE thermal expansion coefficient
  • Td1% 1% pyrolysis temperature
  • the polyimide resin in the polymer layer 15b may also cure a polyamic acid resin prepared by polymerization using an acid dianhydride and a diamine compound as a monomer, or may use a solution composition containing a polyimide resin. If dry.
  • the acid dianhydride and the diamine compound are the same as those described in the preparation of the polyimide resin for forming the debonding layer.
  • the polyimide-based resin-forming monomer it may be desirable to appropriately adjust the type, reaction ratio, imidization conditions, and the like of the polyimide-based resin-forming monomer in order to produce a polyimide-based resin that satisfies the above physical property requirements.
  • the reaction ratio of the acid dianhydride and the diamine it is preferable to properly adjust the reaction ratio of the acid dianhydride and the diamine during the polymerization reaction of the acid dianhydride and the diamine. It may be preferable to use diamine in a molar ratio of 0.8 to 1.2, or 0.9 to 1.1 with respect to 1 mole of acid dianhydride.
  • the polymer layer 15b having the above physical properties may have a thickness of 0.5 to 50 ⁇ m, or 1 to 50 ⁇ m, or 2 to 50 ⁇ m, or 3 to 50 ⁇ m, or 3 to 30 ⁇ m. .
  • the polymer layer 15b when the polymer layer 15b is in contact with the debonding layer, it may be preferable that the polymer layer 15b has an appropriate thickness, for example, 10 to 500 times, or 20 to 400 times the thickness of the debonding layer, or It may be 30 to 300 times, or 50 to 200 times.
  • the flexible substrate 15 may include the thin film glass layer 15a or the polymer layer 15b as a single layer, or a multilayer structure in which two or more layers are stacked. It may also include.
  • FIG. 1A illustrates a laminate 10 according to an embodiment of the present invention, which includes a flexible substrate having a two-layer structure in which a polymer layer 15b is stacked below a thin film glass layer 15a.
  • 1A shows a laminate 20 according to another embodiment of the present invention, which includes a flexible substrate 15 having a three-layer structure in which a polymer layer 15b is formed on both surfaces of a thin film glass layer 15a.
  • the laminate according to the present invention is not limited thereto.
  • the polymer layer 15b formed on the thin film layer 15a may serve as a protective film with respect to the thin film layer.
  • the laminate 10 having the structure as described above may include forming a debonding layer 12 including a polyimide resin on one or both surfaces of the carrier substrate 11 (S1), and Forming a metal wiring on the debonding layer 12 (S2), and forming a flexible substrate 15 including a polymer layer coated on the metal wiring (S3). Can be prepared accordingly.
  • Step S1 is a step of forming the debonding layer 12 on the carrier substrate 11.
  • the carrier substrate 11 is the same as described above, and prior to the formation of the debonding layer 12, corona treatment under an ozone atmosphere, flamming treatment, sputtering treatment, ultraviolet irradiation, and electron beam, in order to increase adhesion with the debonding layer 12. It may be pretreated by an etching treatment such as irradiation.
  • the debonding layer 12 may be formed by applying a composition for forming a debonding layer including a polyimide-based resin or a precursor thereof on the carrier substrate 11 and then curing at a temperature of 200 ° C. or higher. The imidization of the polyamic acid-based resin also proceeds during the curing process.
  • the polyimide-based resin and the polyamic acid-based resin as the precursors included in the debonding layer-forming composition are the same as described above.
  • composition for forming the debonding layer may further include additives such as a binder, a solvent, a crosslinking agent, an initiator, a dispersant plasticizer, a viscosity modifier, an ultraviolet absorber, a photosensitive monomer, or a sensitizer, which are usually used in a polyimide resin layer.
  • additives such as a binder, a solvent, a crosslinking agent, an initiator, a dispersant plasticizer, a viscosity modifier, an ultraviolet absorber, a photosensitive monomer, or a sensitizer, which are usually used in a polyimide resin layer.
  • the coating method may be carried out according to a conventional method, specifically, a spin coating method, a dip coating method, or a bar coating method, and a casting method, a rolling method or a spray coating method suitable for a continuous process may be used. Can be.
  • a drying process for removing the organic solvent present in the debonding layer forming composition may be further performed prior to the curing process.
  • the drying process may be carried out according to a conventional method, specifically, the drying process may be carried out at a temperature of 140 °C or less.
  • the curing process may be carried out by heat treatment at a temperature of 200 °C or more, or 250 to 500 °C, the heat treatment process may be carried out by a multi-stage heat treatment at various temperatures within the temperature range.
  • the curing time during the curing process is not particularly limited, it may be carried out for 3 to 30 minutes as an example.
  • a subsequent heat treatment process may be optionally further performed after the curing process.
  • the subsequent heat treatment process is preferably carried out for 1 to 30 minutes at a temperature of 300 °C or more.
  • the subsequent heat treatment process may be performed once or may be performed in multiple stages two or more times. Specifically, it may be carried out in three steps including a first heat treatment at 200 to 250 ° C., a second heat treatment at 300 to 350 ° C., and a third heat treatment at 400 to 450 ° C.
  • Step 2 is a step of forming a laminate by forming a metal wiring 13 and a flexible substrate layer 15 on the debonding layer 12 prepared in step 1.
  • the flexible substrate 15 is the same as described above, and the laminate in which the thin film glass layer 15a and the polymer layer 15b forming the flexible substrate are formed may be manufactured and formed according to a conventional method.
  • the flexible substrate 15 is a two-layer laminate in which a polymer layer 15b including a polyimide resin is formed under the thin film layer 15a, a polyamic layer is formed on the debonding layer 12.
  • a polyamic layer is formed on the debonding layer 12.
  • the composition containing the acid-based resin it is cured by heat treatment at a temperature of 200 °C or more, or in the case of a composition containing a polyamide-based resin to form a polymer layer (15b) after the glass thin film layer (15a) )
  • the composition for forming a polymer layer may further include a binder, a solvent, a crosslinking agent, an initiator, a dispersant, a plasticizer, a viscosity modifier, an ultraviolet absorber, a photosensitive monomer, a sensitizer, and the like, which are commonly used.
  • the curing process may be carried out by a multi-step heat treatment carried out at various temperatures within the above temperature range.
  • the debonding layer itself exhibits an appropriate adhesive force to the flexible substrate, and thus can properly fix and support the flexible substrate during the device manufacturing process.
  • a substrate of a device including a flexible substrate such as a flexible display device, may be easily manufactured.
  • various devices having excellent characteristics can be produced by appropriately proceeding the device manufacturing process on the laminate while omitting laser or light irradiation for separating the flexible substrate. As a result, the manufacturing process of the device having the flexible substrate can be greatly simplified, and the manufacturing cost thereof can also be significantly lowered.
  • a device substrate and a method for manufacturing the same which are manufactured using the laminate.
  • the device substrate may include forming a debonding layer including a polyimide resin on one surface of a carrier substrate, and forming a flexible substrate by coating a curable resin on a metal wire and a metal wire on the debonding layer. And separating the flexible substrate from the carrier substrate on which the debonding layer is formed by applying a physical stimulus to expose the cross-section of the flexible substrate without causing chemical change of the debonding layer to the flexible substrate. It can be produced by, wherein the process of forming the debonding layer and the flexible substrate is the same as described above.
  • FIG. 2 is a process diagram schematically showing a method of manufacturing a device substrate according to an embodiment of the present invention. 2 is only an example for describing the present invention and the present invention is not limited thereto.
  • the device substrate according to the present invention may include forming a debonding layer including a polyimide resin on one or both surfaces of a carrier substrate (S1), and forming a metal on the debonding layer.
  • It can be produced by a manufacturing method comprising the step (S4 and S5) separating from the carrier substrate.
  • Separation of the flexible substrate may be a method generally used in the related industry, for example, vacuum adsorption, but is not limited thereto. Since the method requires much weaker force than the existing method, it is possible to minimize the damage in manufacturing the display device. Can be arbitrarily selected.
  • the process before the separating step of the flexible substrate may be carried out in the same manner as in the manufacturing method of the laminate.
  • the separation of the flexible substrate exposes a cross section of the flexible substrate in which the metal wiring is embedded without causing chemical change of the debonding layer, such as cutting, laser cutting or diamond scribing. It may be carried out by applying an appropriate physical stimulus, specifically, by applying a physical stimulus of more than 0 and 0.1N or less.
  • the flexible substrate in which the metal wiring for the device manufactured by the above method is embedded is separated from the carrier substrate by applying a relatively small physical stimulus by cutting or the like even without performing a laser or light irradiation process or a melting process. It is possible to manufacture a flexible substrate in which metal wiring is embedded, and also to reduce the reliability or failure of the device due to physical and chemical changes due to laser or light irradiation, and to suppress the occurrence of defects. Electrical characteristics such as contact surface resistance with electrodes laminated or assembled on the substrate can be improved, and even if the shape of the substrate is changed, problems such as short circuits, short circuits between wirings, and wiring damage do not occur. May be advantageous.
  • an element including the substrate may be provided.
  • the device can be any solar cell (eg, flexible solar cell) with a flexible substrate, organic light emitting diode (OLED) illumination (eg, flexible OLED lighting), any semiconductor with a flexible substrate.
  • OLED organic light emitting diode
  • Devices, or flexible display devices such as organic electroluminescent devices, electrophoretic devices, or LCD devices having a flexible substrate, and organic electroluminescent devices may be preferable.
  • the device is formed on the one or both sides of the carrier substrate to sequentially form a debonding layer, a metal wiring layer and a flexible substrate containing a polyimide-based resin to obtain a laminate of one embodiment, and then on the flexible substrate of such a laminate Forming a structure (i.e., device manufacturing process step), and then applying the physical stimulus to expose the cross section of the flexible substrate layer without causing chemical change of the debonding layer without laser or light irradiation, It can be prepared by separating the formed flexible substrate.
  • the device structure may be a flexible substrate such as a semiconductor device structure including a gate electrode, a display device structure including a thin film transistor array, a diode device structure having a P / N junction, an OLED structure including an organic light emitting layer, or a solar cell structure. It may be a conventional device structure according to the type of device to be formed on the phase.
  • the transparent electrode which is located on the exposed back surface of the metal wiring of the flexible substrate in the substrate, including indium tin oxide (ITO); A light emitting part disposed on a rear surface of the transparent electrode and including an organic compound; And located on the back of the light emitting portion, it may include a metal electrode containing a metal, such as aluminum.
  • ITO indium tin oxide
  • the device manufacturing process can be simplified, the manufacturing cost can be greatly reduced, and the reliability of the device due to laser or light irradiation can be reduced or The occurrence of defects can also be suppressed, and as the metal wirings are embedded in the substrate, the sheet resistance of the transparent electrode can be reduced, thereby improving the efficiency of the device. Even if the shape of the flexible substrate is deformed, the metal wiring is broken or disconnected. It can be prevented, and is useful for the application of the flexible element which concerns on this invention.
  • a composition for forming a debonding layer comprising 3% by weight of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of PDA as a carrier substrate and 97% by weight of DMAc as a solvent, the thickness was 0.1.
  • the coating was carried out so as to have a ⁇ ⁇ .
  • the resulting coating film for debonding layer was continuously subjected to a drying step at 120 ° C. and a curing step at 30 ° C. (30 minutes) to obtain a polyimide resin (hereinafter referred to as “first polyimide resin”).
  • first polyimide resin hereinafter referred to as “first polyimide resin”.
  • the debonding layer containing was formed.
  • a fine pattern was patterned by a printing method on a substrate on which the aluminum was deposited to a thickness of 200 nm on the debonding layer.
  • a silicon-based pattern having a micropattern formed by coating a resist ink on a silicon blanket in front and then contacting the cliché with a micro pattern engraved on the blanket to form a pattern on the silicon-based blanket and then removing some coating film.
  • the blanket was prepared.
  • the resist ink fine pattern formed on the silicon blanket was transferred to a glass substrate on which aluminum was deposited on the debonding layer, and then dried in an oven at 115 ° C. for 3 minutes to remove the solvent remaining in the resist pattern.
  • the resist-patterned aluminum substrate was etched by spray using the etching solution at a temperature of 45 ° C. After cleaning and drying the etchant with deionized water, the remaining resist ink was removed using a stripper to prepare a substrate on which the aluminum wiring was formed on the debonding layer.
  • composition for forming a polymer layer of a flexible substrate comprising 12% by weight of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of TFMB and 88% by weight of DMAc as a solvent. It was applied to a thickness of 15 ⁇ m (casting), and the resulting coating film for forming a polymer layer of the flexible substrate was successively subjected to a drying step at a temperature of 100 ° C. and a curing step of 350 minutes at 350 ° C. to form a polyimide system. A polymer layer containing a resin (hereinafter referred to as 'second polyimide resin') was formed.
  • 'second polyimide resin' A polymer layer containing a resin
  • a laminate was prepared in which a carrier substrate, a debonding layer containing a BPDA-PDA polyimide resin, and a polymer layer containing a BPDA-TFMB polyimide resin as a flexible substrate were sequentially laminated.
  • FIG. 2 A laminate manufacturing process and a flexible substrate separation process including the debonding layer are shown in FIG. 2.
  • 4A to 4C show surface images of the flexible substrate and the carrier substrate embedded with the metal wires manufactured by the above method.
  • a metal wiring was formed in the same manner as in Example 1 except that a debonding layer was not formed on one surface of the alkali-free glass, and then polymerized with 1 mol of BPDA and 0.99 mol of TFMB on the metal wiring.
  • a composition for forming a polymer layer of a flexible substrate comprising 12% by weight of polyamic acid resin and 88% by weight of DMAc as a solvent was applied (casting) to a thickness of 15 ⁇ m, and the resultant polymer of the resulting flexible substrate
  • a polymer layer comprising a polyimide resin hereinafter referred to as a 'second polyimide resin'
  • the flexible substrate layer formed as a was formed.
  • a laminate laminated sequentially was prepared including a carrier substrate, metal wiring, and a flexible substrate layer containing the metal wiring.
  • the carrier substrate was cut to a depth of 10 mm x 100 mm in a size not to be cut, and then bonded with a pressure sensitive adhesive tape (adhesive strength 43 ⁇ 6 g / mm).
  • the flexible substrate layer having the metal wiring embedded therein was separated from the carrier substrate by holding the tape end and peeling it.
  • FIG. 3 The manufacturing process of the laminate and the separating process of the flexible substrate and the carrier substrate layer when the debonding layer is not formed are shown in FIG. 3, and surface images of the flexible substrate and the carrier substrate manufactured by the above method are illustrated in FIGS. 5A to 5. Shown in 5c.
  • FIG. 4a is a flexible substrate film having a debonding layer according to the present invention, it can be seen that the metal wiring is formed on the film when the carrier substrate and the film is separated.
  • FIG. 5A illustrates a flexible substrate including metal wiring on a carrier substrate on which a debonding layer is not formed. When the flexible substrate is separated, the metal wiring does not adhere to the film and remains on the carrier substrate. You can see the location.
  • FIG. 4B illustrates the exposed surface of the metallization of the flexible film separated from the debonding layer
  • FIG. 4C illustrates the surface of the debonding layer. From the results of FIGS. 4B and 4C, it can be seen that the flexible substrate including the metal wiring is well separated from the debonding layer.
  • a composition for forming a debonding layer comprising 3% by weight of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of PDA as a carrier substrate and 97% by weight of DMAc as a solvent, the thickness was 0.1.
  • the coating was carried out so as to have a thickness of ⁇ m.
  • the resulting coating film for the debonding layer was continuously subjected to a drying step at a temperature of 120 ° C. and a curing step (30 minutes) at a temperature of 300 ° C. to form a polyimide resin (hereinafter referred to as “first polyimide resin”). To form a debonding layer.
  • Aluminum was deposited on the front surface of the debonding layer using a sputtering method to a thickness of 200 nm.
  • composition for forming a polymer layer of a flexible substrate comprising 12% by weight of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of TFMB and 88% by weight of DMAc as a solvent. It was applied to a thickness of 15 ⁇ m (casting), and the resulting coating film for forming a polymer layer of the flexible substrate was successively subjected to a drying step at a temperature of 100 ° C. and a curing step of 350 minutes at 350 ° C. to form a polyimide system. A polymer layer containing a resin (hereinafter referred to as 'second polyimide resin') was formed.
  • 'second polyimide resin' A polymer layer containing a resin
  • aluminum was deposited on the entire surface using a sputtering method on an alkali free glass substrate in a thickness of 200 nm.
  • composition for forming a polymer layer of a flexible substrate comprising 12% by weight of a polyamic acid resin prepared by polymerizing 1 mol of BPDA and 0.99 mol of TFMB and 88% by weight of DMAc as a solvent. It was applied to a thickness of 15 ⁇ m (casting), and the resulting coating film for forming a polymer layer of the flexible substrate was successively subjected to a drying step at a temperature of 100 ° C. and a curing step of 350 minutes at 350 ° C. to form a polyimide system. A polymer layer containing a resin (hereinafter referred to as 'second polyimide resin') was formed.
  • 'second polyimide resin' A polymer layer containing a resin
  • a grating having a 1 mm ⁇ 1 mm square pattern was patterned so that a total of 100 gratings of 10 ⁇ 10 each were formed. Cut a 1 inch wide pressure-sensitive adhesive tape (adhesion strength 43 ⁇ 6 g / mm) to about 3 inches long on the pattern, and then adhere the center area to the lattice pattern, 10 times on the lattice using an eraser to firmly bond. Rubbed.
  • Adhesion measurement The sample was left for 60 seconds, and then held on to the end of the tape and peeled for 2 seconds in a 180 degree direction. Peeling performance was evaluated as follows. The higher the score, the higher the adhesion between the carrier substrate and the flexible substrate layer having the aluminum layer.
  • 6A is a view of a substrate before a tape test, in which (a) shows Example 2 and (b) shows the substrate of Comparative Example 2.
  • FIG. As a result of the test, the sample of Example 2 was 100% peeled to obtain 0 point, and none of the samples of Comparative Example 2 were obtained.
  • 6B is a photograph showing the glass substrate surface (a) and the tape surface (b), respectively, as a result of the tape test on the substrate of Example 2.
  • FIG. 6C is a photograph showing the glass substrate surface (a) and the tape surface (b), respectively, as a result of the tape test on the substrate of Comparative Example 2.
  • the flexible substrate having the metal layer can be easily peeled from the carrier substrate, and the metal wiring can be embedded in the flexible substrate layer. It can be seen that it is advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 금속 배선이 매립된 가요성 기판의 제조방법에 관한 것으로, 캐리어 기판; 상기 캐리어 기판의 적어도 일면에 위치하며, 폴리이미드계 수지를 포함하는 디본딩층(debonding layer); 상기 디본딩층과 접하고 있는 금속 배선층; 및 상기 금속 배선층과 접하고 있는 가요성 기판층을 포함하며, 상기 금속 배선층과 가요성 기판층 사이의 접착력은 상기 금속 배선층과 디본딩층 사이의 접착력 보다 큰 것인 적층체를 제공함으로써, 레이저 조사 또는 광 조사 공정 등을 진행하지 않더라도 캐리어 기판으로부터 금속배선층을 갖는 가요성 기판을 용이하게 분리할 수 있고 금속 배선이 가요성 기판층에 매립될 수 되어 있어 전극의 면저항을 감소시킬 수 있으며, 기판 내부에 매립됨에 따라 기판의 형태가 변형되더라도 금속 배선이 파손되거나 단선되는 것을 방지할 수 있다.

Description

금속배선층이 형성된 적층체 및 이를 제조하는 방법
본 발명은 금속배선이 함입되어 있는 기판을 제조하기 위한 적층체에 관한 것으로서, 보다 상세하게는 캐리어 기판으로부터 금속 배선 함입 기판층의 분리가 용이하여, 플렉서블 디스플레이 소자 등 가요성 기판을 갖는 소자를 보다 쉽게 제조할 수 있게 하는 적층체에 관한 것이다.
최근 플렉서블(Flexible)한 특성을 갖는 전기 전자 장치, 예를 들면, 플렉서블 디스플레이, 태양전지, 면조명, e-페이퍼, 플렉서블 이차전지 및 터치패널과 같은 플렉서블 전자기기(Flexible electronics)가 미래 유망 기술 분야로 각광받고 있는 실정이다.
플렉서블 전자기기 기술은 값싸고 굽히기 쉬우면서도 투명한 특성을 갖는 전자소자 및 시스템을 만들기 위해 발전해 왔다. 이처럼 플렉서블한 특성을 갖는 전기 전자 장치를 구현하기 위해서는 투명하면서 낮은 저항을 갖는 투명 전극을 포함하는 유연 기판 제조 기술이 필수적으로 요구된다.
금속배선의 저항을 낮추기 위한 방안으로는 (1) 비저항(ρ) 값을 낮추거나, (2) 배선 길이를 짧게 하거나, (3) 배선 높이(두께)를 두껍게 하는 방안이 있다. 그러나, 방안 (1)의 경우, 비저항은 물질에 대한 한계가 존재하고 현재 많이 사용되는 구리의 경우 충분히 비저항이 낮은 물질이며 은과 같은 물질은 가격이 비싼 문제가 있어 적용하기 어려운 한계가 있다. 방안 (2)의 경우, 공개특허 10-2014-0008606 회로설계와 관련된 문제로 물리적인 한계가 존재한다. 결국, 배선의 높이를 높여야 하는데 이 경우 배선의 높이가 커질수록 배선의 모양 흐트러짐, 전기적 단락, 배선간 쇼트, 배선 손상 등의 문제가 발생할 수 있다.
따라서, 금속 배선을 기판 내부로 삽입하는 기술이 요구되며, 금속 배선을 기판 내부로 삽입하는 종래 기술로는 증착과 식각을 통해 원하는 패턴으로 식각하는 방법과, 패턴형성을 위한 드라이 에칭이 곤란한 구리(Cu) 박막 등에 CMP법을 응용하여 절연막 홈 내에 배선을 박아 넣는 다마신(Damascene) 공법 등이 있다.
하지만 이러한 종래 방법은 증착, 식각을 반복함에 따라 재료 소모가 많고 공정 단계가 복잡하며, 플라스틱 기판에 형성된 금속층을 열처리할 때 플라스틱 기판이 열에 의해 손상될 수 있는 문제점이 있다.
상기의 문제점을 해결하기 위하여 경질의 기판 상에 금속 배선을 먼저 형성하고 그 위에 경화성 고분자를 코팅 경화한 다음, 상기 경질의 기판을 기계적으로 뜯어내는 방식이 제안되었다. 그러나, 이러한 종래 기술의 경우 금속 배선이 함입된 폴리머 기판으로부터 상기 경질의 기판을 강제적으로 박리시키는 과정에서 금속 배선 내지 폴리머 기판의 손상을 야기하여 제품 불량으로 이어질 수 있고, 또한 상기 경질의 기판이 폴리머 기판으로부터 완전하게 제거되지 못하고 일부 잔류하여 이물로 작용하는 문제점이 있다.
이에 캐리어 기판 상에 물 또는 유기용매에 가용성이거나 광분해되는 희생층을 형성한 후 금속배선이 함입된 유연기판층을 형성하고, 희생층을 제거하여 유연기판을 캐리어 기판으로부터 분리 회수하는 방법이 제안되었다(대한민국특허 공개 10-2014-0028243호). 그러나 이 방법은 상기 희생층을 물 또는 유기용매로 용해시키거나 광분해시켜 희생층을 제거하는 공정에서 배출되는 폐수, 폐유기용제 등 처리로 인해 비용이 증가하는 문제점이 있다.
본 발명의 목적은, 증착 및 식각공정 없이 금속 배선이 매립된 가요성 기판을 용이하게 제조할 수 있는 적층체 및 이를 이용하여 제조된 가요성 기판을 제공하는 것이다.
본 발명의 다른 목적은 상기 금속배선이 매립된 가요성 기판을 포함하는 전자소자를 제공하는 것이다
본 발명은 전술한 기술적 과제를 해결하기 위해,
캐리어 기판;
상기 캐리어 기판의 적어도 일면에 위치하며, 폴리이미드계 수지를 포함하는 디본딩층(debonding layer);
상기 디본딩층과 접하고 있는 금속 배선층; 및
상기 금속 배선층과 접하고 있는 가요성 기판층을 포함하며,
상기 금속 배선층과 가요성 기판층 사이의 접착력은 상기 금속 배선층과 디본딩층 사이의 접착력 보다 큰 것인 적층체를 제공한다.
일 실시예에 따르면, 상기 금속 배선층은 복수개의 금속 배선을 구비하며, 상기 가요성 기판층은 상기 복수개의 금속 배선을 감싸면서 상기 디본딩층과 접하고 있어 금속 배선이 가요성 기판층에 매립된 형태일 수 있다.
일 실시예에 따르면, 상기 디본딩층과 금속배선층을 구비한 가요성 기판의 접착력은, 상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속배선층 및 가요성 기판층의 단면을 노출시키는 물리적 자극 인가에 의해 변화하며,
상기 물리적 자극이 가해지기 전 금속 배선층에 대한 디본딩층의 접착력(A1)과,
상기 물리적 자극이 가해진 후 금속 배선층에 대한 디본딩층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 일 수 있다.
또한, 상기 디본딩층은 물리적 자극이 가해진 후 상기 금속 배선층에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 갖는 것일 수 있다.
또한, 상기 디본딩층은 물리적 자극이 가해지기 전 상기 금속 배선층에 대해 1 N/cm 이상의 접착력을 갖는 것일 수 있다.
또한, 상기 디본딩층은 0.05 내지 5㎛의 두께를 갖는 것일 수 있다
또한, 상기 복수개의 금속 배선은 잉크젯프린팅, 그라비아프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스크린 프린팅, 전기도금, 진공증착 또는 포토리소그래피 공정으로 형성될 수 있다.
또한, 상기 복수개의 금속 배선은 0.05 내지 50 mm 간격으로 배열될 수 있다.
또한, 상기 금속 배선은 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 백금(Pt), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo) 또는 이들의 합금으로 이루어진 것일 수 있다.
또한, 상기 폴리이미드계 수지가 하기 화학식 1의 방향족 테트라카르복실산 이무수물과 직선형 구조를 갖는 방향족 다이아민 화합물을 반응시켜 제조한 폴리아믹산을 200℃ 이상의 온도에서 경화시켜 제조된 것일 수 있다.
[화학식 1]
Figure PCTKR2016006019-appb-I000001
상기 화학식 1에서, A는 하기 화학식 2a 또는 2b의 방향족 4가 유기기이며,
[화학식 2a]
Figure PCTKR2016006019-appb-I000002
[화학식 2b]
Figure PCTKR2016006019-appb-I000003
상기 화학식 2a 및 2b에서,
R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기 또는 탄소수 1 내지 4의 할로알킬기이고,
a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수이다.
또한, 상기 방향족 다이아민 화합물은 하기 화학식 4a 또는 4b의 방향족 다이아민 화합물일 수 있다.
[화학식 4a]
Figure PCTKR2016006019-appb-I000004
[화학식 4b]
Figure PCTKR2016006019-appb-I000005
상기 식에서,
R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 할로알킬기이고,
X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기, 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 할로알킬기로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 그리고
p는 0 또는 1의 정수이다.
또한, 상기 폴리머층은 폴리에틸렌 테레프탈레이트 (PET), 폴리에테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드 (PI), 폴리에테르이미드, 폴리아마이드이미드, 폴리에스테르, 에틸렌비닐아세테이트(EVA), 폴리에테르 아마이드 이미드, 폴리에스테르 아마이드 이미드, 폴리아릴레이트, 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 폴리다이메틸실록산(PDMS), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군에서 선택된 1종 이상의 경화성 고분자 수지일 수 있다.
본 발명은 또한,
캐리어 기판을 준비하는 단계;
상기 캐리어 기판 상에 폴리이미드계 수지를 포함하는 디본딩층을 형성하는 단계;
상기 디본딩층 상에 금속 배선층을 형성하는 단계;
상기 금속 배선층이 형성된 디본딩층 상부에 경화성 고분자를 코팅하여 가요성 기판층을 형성하는 단계; 및
상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속배선층 및 가요성 기판의 단면을 노출시키는 물리적 자극에 의해 상기 캐리어 기판으로부터 상기 금속배선층이 형성된 가요성 기판을 분리하는 단계;
를 포함하는 금속배선층이 형성된 가요성 기판의 제조방법을 제공한다.
일 실시예에 따르면, 상기 물리적인 자극에 의한 분리공정은 커팅(cutting), 레이저 커팅 또는 다이아몬드 스크라이빙(scribing)에서 선택되는 방법일 수 있다.
또한, 상기 물리적인 자극에 의한 분리공정은 0 초과 0.1N 이하의 물리적인 자극을 가해짐으로써 상기 금속 배선층이 형성된 가요성 기판층과 디본딩층이 분리되는 것일 수 있다.
본 발명의 또 다른 과제를 해결하기 위해, 상기 금속 배선층이 형성된 가요성 기판을 포함하는 전자소자를 제공한다.
일 실시예에 따르면, 상기 전자소자는 태양전지, 유기발광다이오드 조명, 반도체 소자, 및 디스플레이 소자로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 디스플레이 소자는 플렉서블 유기전계발광소자일 수 있다.
기타 본 발명의 다양한 측면에 따른 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 금속배선층이 형성된 가요성 기판은, 레이저 또는 광 조사 공정, 또는 용해 공정 등을 진행하지 않더라도 커팅 등의 비교적 작은 물리적 자극만으로도 캐리어 기판으로부터 금속배선층과 함께 가요성 기판층을 용이하게 분리할 수 있어, 플렉서블 디스플레이 소자 등 가요성 기판을 포함하는 소자를 보다 쉽게 제조할 수 있도록 한다.
이에 따라, 본 발명에 따르면 별도의 레이저 또는 광 조사 공정, 용해 공정 등이 필요하지 않기 때문에 소자 제조 공정을 단순화하고, 제조 단가를 크게 감소시킬 수 있으며, 레이저 또는 광 조사 등에 의한 소자의 신뢰성 저하 또는 불량 발생 또한 억제할 수 있으며, 기판 내부에 금속 배선이 매립시키는 경우 투명전극의 면저항을 감소시킬 수 있을 뿐만 아니라, 가요성 기판의 형태가 변형되더라도 금속 배선이 파손되거나 단선되는 것을 방지할 수 있어, 플렉서블(flexible) 소자 적용에 유용하다.
도 1a는 본 발명의 일 구현예에 따른 적층체의 구조를 개략적으로 나타낸 단면 구조도이고, 도 1b는 본 발명의 다른 일 구현예에 따른 적층체의 구조를 개략적으로 나타낸 단면 구조도이다.
도 2는 본 발명의 일 구현예에 따른 가요성 기판의 제조공정을 간략하게 나타낸 공정 모식도이다.
도 3은 비교예에 따른 가요성 기판의 제조공정을 간략하게 나타낸 공정 모식도이다.
도 4a는 본 발명의 실시예 1에 따른 가요성 기판 제조공정으로 제조된 가요성 기판필름이다.
도 4b는 본 발명의 실시예 1에 따라 제조된 가요성 기판필름의 표면을 나타낸 것이다.
도 4c는 본 발명의 실시예 1에 따른 제조공정에서 가요성 기판을 제거한 후 캐리어기판의 표면을 나타낸 것이다.
도 5a는 비교예 1에 따른 가요성 기판 제조공정으로 제조된 가요성 기판필름이다.
도 5b는 비교예 1에 따른 가요성 기판 제조공정으로 제조된 기판의 표면을 나타낸 것이다.
도 5c는 비교예 1에 따른 가요성 기판 제조공정에서 가요성 기판을 제거한 후 캐리어기판의 표면을 나타낸 것이다.
도 6a 내지 6c는 실시예 2 및 비교예 2에 따라 제조된 가요성 기판의 박리성능을 보여주는 테이프 테스트 전후 사진이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 명세서에서 층, 막, 필름, 기판 등의 부분이 다른 부분 '위에' 또는 '상에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 필름, 기판 등의 부분이 다른 부분 '아래에' 있다고 할 때, 이는 다른 부분 '바로 아래에' 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
또, 본 명세서에서 '물리적 자극'이라 함은 다른 특별한 언급이 없는 한, 박리, 절단, 마찰, 인장 또는 압축 등과 같이, 화학적 변화를 야기하지 않는 기계적 자극을 포함하며, 그 수단이나 방식에 관계없이 적층체의 적층 단면을 노출시킬 수 있는 것을 의미한다. 경우에 따라, 단위면적당 0 초과 내지 0.1N 이하의 강도를 갖는 자극이 가해질 수 있다. 즉 물리적 자극이 인가되었다는 것은 그 수단에 구애 받지 않고 적층체의 적층 단면이 노출되었다는 것을 의미한다. 바람직하게는 가요성 기판의 단부를 형성하는 둘 이상의 적층 단면이 소정 간격을 두고 노출되도록 한다.
또, 본 명세서에서 '접착력'은 물리적 자극의 인가 전 가요성 기판에 대한 디본딩층의 접착력을 의미하고, '박리 강도'는 물리적 자극의 인가 후 가요성 기판에 대한 디본딩층의 접착력을 의미한다.
본 발명은
캐리어 기판;
상기 캐리어 기판의 적어도 일면에 위치하며, 폴리이미드계 수지를 포함하는 디본딩층(debonding layer); 및
상기 디본딩층과 접하고 있는 금속 배선층; 및
상기 금속 배선층과 접하고 있는 가요성 기판층을 포함하며,
상기 금속 배선층과 가요성 기판층 사이의 접착력은 상기 금속 배선층과 디본딩층 사이의 접착력 보다 큰 것인 적층체를 제공한다.
일 실시예에 따르면, 상기 금속 배선층은 복수개의 금속 배선을 구비하며, 상기 가요성 기판층은 상기 복수개의 금속 배선을 감싸면서 상기 디본딩층과 접하고 있어 금속 배선이 가요성 기판층에 매립된 형태일 수 있다.
일 실시예에 따르면, 상기 디본딩층과 금속 배선층을 구비한 가요성 기판의 접착력은, 상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속배선층 및 가요성 기판층의 단면을 노출시키는 물리적 자극 인가에 의해 변화하며,
상기 물리적 자극이 가해지기 전 금속 배선층에 대한 디본딩층의 접착력(A1)과,
상기 물리적 자극이 가해진 후 금속 배선층에 대한 디본딩층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 일 수 있다.
또한, 상기 디본딩층은 물리적 자극이 가해진 후 상기 금속 배선층에 대해 0.3N/cm 이하의 박리 강도(peel strength) 및/또는, 1 N/cm 이상의 접착력을 갖는 것일 수 있다.
본 발명은 또한, 상기한 제조방법에 의해 제조된 소자용 기판을 제공한다.
본 발명은 또한, 상기한 제조방법에 의해 제조된 기판을 포함하는 소자를 제공한다.
이하, 발명의 구현예에 따른 적층체 및 그 제조방법, 상기 적층체를 이용하여 제조된 소자용 기판 및 그 제조방법, 그리고 상기 기판을 포함하는 소자 및 그 제조방법에 대하여 보다 상세하게 설명한다.
구체적으로, 상기 적층체는 디본딩층 상에 형성된 금속 배선층을 포함하는 가요성 기판층을 물리적 자극만으로 쉽게 박리시킬 수 있으며, 따라서 기판의 박리를 위하여 캐리어 기판과 가요성 기판층 사이에 형성되는 희생층의 제거를 위해 진행되는 레이저공정 및 광조사 공정 등 기타 공정 없이도 기판을 디본딩층과 분리할 수 있어, 배선이 매립된 가요성 기판을 보다 용이하게 제조할 수 있다.
디본딩층은 금속 배선층하고 접하고 있으며, 금속 배선층이 패턴으로 형성되어 복수개의 금속 배선이 가요성 기판에 매립되는 경우에는 가요성 기판층과도 일부 접하게 된다. 즉 디본딩층은 금속 배선층, 또는 금속배선층 및 가요성 기판층과 접할 수 있다.
상기 디본딩층은 금속 배선층 및 가요성 기판의 단면을 노출시키기 위한 물리적 자극이 인가되면 상기 금속 배선층 및/또는 가요성 기판에 대한 접착력이 감소되며, 보다 구체적으로는 물리적 자극이 가해지기 전에는 상기 금속 배선층 및/또는 가요성 기판에 대해 1N/cm 이상의 접착력을 갖지만, 물리적 자극이 가해진 후에는 상기 금속 배선층 및/또는 가요성 기판에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 나타낸다. 이때 물리적 자극은 상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속 배선층 및 가요성 기판의 단면을 노출시키는 것으로서, 0 초과 0.1N 이하의 강도를 갖는 것일 수 있다.
금속 배선층 및/또는 가요성 기판의 단면을 노출시키기 위한 물리적 자극 인가 방법은 구체적으로 예를 들면, 커팅(cutting), 레이저 커팅 또는 다이아몬드 스크라이빙(scribing)에 의한 것일 수 있으나 이에 한정되는 것은 아니다.
금속 배선층 및 가요성 기판의 단면만 노출된다면 금속 배선층 및 가요성 기판 뿐만 아니라 가요성 기판과 디본딩층의 단면, 또는 가요성 기판, 디본딩층 및 다른 기능성 층, 또는 이들과 캐리어기판의 단면이 노출되는 물리적 자극이어도 된다.
본 발명은 금속 배선층이 형성된 가요성 기판의 제조에 있어, 소정의 특성을 갖는 폴리이미드계 수지를 포함한 디본딩층을 캐리어 기판상에 형성함으로써, 상기 디본딩층 상에 금속배선층을 형성하고 이어서 가요성 기판을 형성하는 고분자 층을 코팅시킴으로써, 레이저 또는 광 조사 공정을 생략하고 단순히 물리적 자극만을 가하더라도 상기 금속배선 및 고분자 층이 상기 디본딩층으로부터 쉽게 분리될 수 있어 금속배선층이 형성된 가요성 기판을 용이하게 제조할 수 있으며, 따라서, 이를 이용한 디스플레이 소자를 매우 용이하게 제조할 수 있음이 확인되었다. 이러한 작용 및 효과는 다음과 같은 폴리이미드계 수지의 특성에 기인하여 발현되는 것으로 예측될 수 있다.
본 발명의 일 구현예에 따라 제조된 금속배선이 매립된 가요성 기판은 투명전극의 면저항을 감소시킬 수 있어 전자소자의 효율을 향상시킬 수 있으며, 특히 태양전지에 적용되어 광변환효율을 향상시킬 수 있고, 대면적화에 따른 광변환효율의 감소를 방지할 수 있다. 또한, 금속 배선이 기판 내부에 매립됨에 따라 소자의 형태가 변형되더라도 금속 배선이 파손되거나 단선되는 것을 방지할 수 있어, 플렉서블(flexible) 디스플레이 적용시 유리하다.
도 1a 및 도1 b는 본 발명의 일 구현예에 따른 적층체의 단면을 개략적으로 나타낸 모식도이다. 도 1a 및 도 1b는 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.
이하 도 1a 및 도 1b를 참조하여 상세히 설명하면, 본 발명에 따른 적층체(10,20)는 캐리어 기판(11,21); 상기 캐리어 기판의 일면에 위치하며, 폴리이미드계 수지를 포함하는 디본딩층(12,22); 상기 디본딩층(12,22) 상에 위치하며, 폴리머층(15a,25a) 내에 금속배선(13,23)이 매립되어 형성된 가요성 기판층(15,25) 및 상기 폴리머층(15a,25a) 상에 형성된 투명전극층를 포함하고 있을 수 있다. 상기 디본딩층(12,22)과 가요성 기판층(15,25) 또는 금속배선층(13,23) 사이의 접착력은, 상기 디본딩층(12,22)의 화학적 변화를 야기하지 않으면서 상기 가요성 기판(15a,25a)의 단면 또는 금속배선층(13.23)의 단면을 노출시키는 물리적 자극 인가에 의해 변화하는 것이다.
이하에서 보다 구체적으로 살펴본다.
상기 캐리어 기판(11)은 상기 적층체(10) 상에서 용이하게 진행될 수 있도록, 상기 가요성 기판(15)을 지지하는데 사용되는 것이라면 특별한 한정없이 사용될 수 있다. 구체적으로는 유리 기판, 스테인리스 스틸 기판 등의 금속 기판, 또는 이들의 2층 이상의 다층 구조체 등을 들 수 있다. 이 중에서도 유리 기판용 소자 제조 공정 등이 가장 용이하게 적용될 수 있는 유리 기판이 바람직할 수 있다.
또, 상기 캐리어 기판(11)은 디본딩층과의 밀착성 증가를 위해 오존 분위기 하에서의 코로나 처리, 플레이밍 처리, 스퍼터링 처리, 자외선 조사, 전자선 조사 등의 에칭 처리 등으로 전처리된 것일 수 있다.
또, 상기 캐리어 기판(11)의 두께 및 크기는 적용하고자 하는 소자의 종류에 따라 적절히 선택될 수 있으나, 기판의 투명성 등을 고려할 때 상기 캐리어 기판(11)은 0.1 내지 50mm의 두께를 갖는 것이 바람직할 수 있다. 상기와 같은 두께 범위를 가질 때 우수한 기계적 강도를 가져 가요성 기판에 대해 우수한 지지 특성을 나타낼 수 있다.
상기한 캐리어 기판(11)의 일면 또는 양면에는 폴리이미드계 수지를 포함하는 디본딩층(12)이 위치한다.
상기 디본딩층(12)에 포함된 폴리이미드계 수지는 후술하는 이미드화율이 적절한 범위로 제어된 것으로서, 상기 가요성 기판(15) 상에 소자 구조를 형성하는 소자 제조 공정 중에는 가요성 기판(15)을 적절히 고정 및 지지할 수 있도록 일정 수준 이상의 접착력을 나타내지만, 상기 소자 제조 공정이 완료된 후에는, 레이저 또는 광 조사, 또는 용해공정 없이 절단 등의 간단한 물리적 자극에 의해 상기 가요성 기판(15a)에 대한 접착력이 감소되면서 용이하게 분리될 수 있다.
구체적으로, 상기 디본딩층(12)은 물리적 자극이 가해지기 전 금속 배선층(13) 또는 가요성 기판층(15)에 대한 접착력(A1)과 물리적 자극이 가해진 후 금속 배선층(13) 또는 가요성 기판(15)에 대한 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5, 바람직하게는 0.001 내지 0.1 로, 레이저 또는 광 조사 없이 절단 등의 간단한 물리적 자극만으로도 금속 배선층이 형성된 가요성 기판(15)과 용이하게 분리될 수 있다.
보다 구체적으로, 상기 디본딩층(12)은 물리적 자극이 가해지기 전에는 금속 배선층(13) 또는 가요성 기판(15)에 대해 약 1N/cm 이상, 혹은 약 2N/cm 이상, 혹은 약 3 내지 5N/cm 의 접착력을 나타내지만, 물리적 자극이 가해진 후에는 약 0.3N/cm 이하, 예를 들어, 약 0.2N/cm 이하, 혹은 약 0.1N/cm 이하, 또는 약 0.001 내지 0.05N/cm의 박리 강도(peel strength)를 나타낼 수 있다.
이때, 상기 디본딩층(12)의 박리 강도는 하기 표 1의 조건 하에 측정될 수 있다:
박리강도측정조건 필름 폭(mm) 10
필름 길이(mm) 100
속도(mm/min) 50
측정기기 Texture Analyser(TA.XT plus, Stable micro systems사제)
박리강도 90
구체적으로, 상기 박리 강도는 유리 기판 상에 디본딩층 및 금속 배선층과 가요성 기판이 순차적으로 형성된 적층체 샘플을 준비하고, 물리적 자극으로서 상기 적층체 샘플을 폭 10mm의 직사각형 형태로 커팅한 후, 커팅한 가요성 기판의 끝 부분을 잡아서 디본딩층으로부터 90°의 각도로 떼어낼 때 드는 힘을 상술한 측정 기기 및 조건 하에서 측정함으로써 산출할 수 있다.
또, 상기 접착력은 폭 100mm의 직사각형 크기를 가지며, 유리 기판 상에 디본딩층 및 가요성 기판이 순차적으로 형성된 적층체 샘플을 준비하고, 이러한 샘플에서 가요성 기판의 끝 부분을 폭 10mm의 테이프로 붙여서 테이프의 끝을 잡아서 디본딩층으로부터 90°의 각도로 떼어낼 때 드는 힘을 측정함으로써 산출할 수 있으며, 이때, 상기 힘의 측정 기기 및 조건은 상기 표 1에 나타난 박리 강도의 측정 기기 및 조건과 동일하게 될 수 있다.
이러한 디본딩층(12)의 접착력 및 박리 강도는, 디본딩층 내에 포함되는 폴리이미드계 수지의 이미드화율에 의해 달성될 수 있으며, 상기 이미드화율은 폴리이미드계 수지 형성용 단량체의 종류와 함량, 이미드화 조건(열처리 온도 및 시간 등) 등을 통해 조절될 수 있다.
일 예에서, 상술한 디본딩층(12)의 접착력 및 박리 강도 조건을 충족할 수 있고, 이를 통해 레이저 또는 광 조사 등을 생략하더라도, 물리적 자극만을 가하여 금속 배선층이 형성된 가요성 기판층(15)이 디본딩층(12)으로부터 용이하게 분리되기 위해서는, 상기 디본딩층(12)에 포함되는 폴리이미드계 수지는 약 60% 내지 99%, 혹은 약 70% 내지 98%, 혹은 약 75 내지 96%의 이미드화율을 갖는 것일 수 있다. 이때 상기 폴리이미드계 수지의 이미드화율은 폴리이미드의 전구체, 예를 들면 폴리아믹산계 수지를 포함하는 조성물을 도포하고 약 500℃ 이상의 온도에서 이미드화를 진행한 후에 IR 스펙트럼의 약 1350 내지 1400cm-1 에서 나타나는 CN 밴드의 적분 강도를 100%로 하였을 때, 상기 약 200℃ 이상의 이미드화 온도에서 이미드화를 진행한 후의 CN 밴드의 상대적 적분 강도 비율로서 측정된 것으로 표시될 수 있다.
상기와 같은 폴리이미드계 수지의 이미드화율 범위는 폴리아믹산계 수지에 대한 경화 공정시 경화 온도 조건을 제어함으로써 달성될 수 있다.
본 발명자들의 실험 결과, 폴리이미드계 수지 제조를 위한 경화온도 조건, 폴리이미드계 수지의 이미드화율 그리고 폴리이미드계 수지층의 박리 강도는 하기 표 2와 같은 관계를 충족할 수 있는 것으로 확인되었다.
경화 온도(℃) 150 200 250 300 350 500
이미드화율(%) 10.36 49.21 79.34 92.69 95.69 100
박리강도(N/cm) 2.8 2.8 0.03 0.016 0.03 0.35
상기 표 2에 나타난 바와 같이, 예를 들어, 상기 캐리어 기판 상에 폴리이미드계 수지의 전구체인 폴리아믹산계 수지를 포함하는 조성물을 도포하고, 약 200℃ 이상, 혹은 250℃ 내지 500℃의 온도에서 경화시켜 디본딩층을 형성하는 경우, 상술한 약 60% 내지 99%, 혹은 약 70% 내지 98%, 혹은 약 75 내지 96%의 이미드화율을 갖는 폴리이미드계 수지를 포함하여, 약 0.3N/cm 이하의 박리 강도를 갖는 디본딩층을 형성할 수 있다. 이를 통해, 일 구현예의 적층체를 제공하여, 플렉서블 디스플레이 소자 등의 가요성 기판을 포함하는 소자의 제조 공정을 크게 단순화할 수 있음은 이미 상술한 바와 같다.
또, 상기한 바와 같은 경화온도의 제어를 통해 제조된 폴리이미드계 수지는 약 200℃ 이상, 혹은 약 300℃ 이상, 혹은 약 350℃ 내지 500℃의 유리전이온도(Tg)를 가지며, 400℃ 이상, 혹은 400℃ 내지 600℃의 분해온도(Td)를 갖는 것일 수 있다. 이와 같이 상기 폴리이미드계 수지가 우수한 내열성을 갖기 때문에, 상기 디본딩층은 소자 제조 공정 중에 부가되는 고온의 열에 대해서도 우수한 내열성을 나타낼 수 있으며, 상기 적층체 상에서 소자를 제조하는 공정 중에 휨의 발생 및 기타 소자의 신뢰성 저하 발생을 억제할 수 있고, 그 결과 보다 향상된 특성 및 신뢰성을 갖는 소자의 제조가 가능하다. 구체적으로 상술한 일 구현예의 적층체에서, 상기 디본딩층은 100 내지 200℃의 조건에서 약 30ppm/℃ 이하, 혹은 약 25ppm/℃ 이하, 혹은 약 20ppm/℃ 이하, 혹은 약 1 내지 17ppm/℃의 열팽창계수(Coefficient of Thermal Expansion; CTE) 및 450℃ 이상, 혹은 470℃ 이상의 1% 열분해온도(Td1%)를 갖는 것일 수 있다.
또, 상기와 같은 구성적, 물성적 요건을 충족하는 디본딩층(12)은 가요성 기판(13)에 대해 깨끗하게 박리됨으로써, 제조된 소자용 기판의 투명도 및 광학 특성에 영향을 미치지 않는다.
한편, 상술한 폴리이미드계 수지 또는 이의 전구체로서 폴리아믹산계 수지는 임의의 테트라카르복실산 이무수물 화합물 및 다이아민 화합물을 단량체로 사용하여 중합 및 이미드화시켜 형성될 수 있다.
이러한 각 단량체 중, 테트라카르복실산 이무수물 화합물의 구체적인 예로는, 피로멜리트산 이무수물(pyromellitic dianhydride, PMDA), 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3'4,4'-Biphenyl tetracarboxylic acid dianhydride, BPDA), 메소-부탄-1,2,3,4-테트라카르복실산 이무수물(meso-buthane-1,2,3,4-tetracarboxylic dianhydride), 3,3',4,4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenone tetracarboxylic dianhydride, BTDA), 2,3,3',4'-디페닐에테르테트라카르복실산 이무수물(2,3,3',4'-diphenylether tetracarboxylic dianhydride, ODPA), 3,3',4,4'-디페닐술폰테트라카르복실산 이무수물(3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, DSDA), 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride), 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3',4,4'-biphenyltetracarboxylic dianhydride, S-BPDA), 1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2-디메틸-1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2,3,4-테트라메틸-1,2,3,4-시클로부탄테트라카르복실산 이무수물(1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride), 1,2,3,4-시클로펜탄테트라카르복실산 이무수물(1,2,3,4-cyclopentane tetracarboxylic dianhydride), 1,2,4,5-시클로헥산테트라카르복실산 이무수물(1,2,4,5-cyclohexane tetracarboxylic dianhydride), 3,4-디카르복시-1,2,3,4-테트라히드로-1-나프탈렌 숙신산 이무수물(3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride), 5-(2,5-디옥소테트라히드로푸릴)-3-메틸-3-시클로헥센-1,2-디카르복실산 이무수물(5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride), 2,3,5-트리카르복시-2-시클로펜탄 아세트산 이무수물(2,3,5-tricarboxy-2-cyclopentane acetic dianhydride), 비시클로[2.2.2]옥토-7-엔-2,3,5,6-테트라카르복실산 이무수물(bicyclo[2.2.2]octo-7-en-2,3,5,6-tetracarboxylic dianhydride), 2,3,4,5-테트라히드로푸란테트라카르복실산 이무수물(2,3,4,5-tetrahydrofurane tetracarboxylic dianhydride) 3,5,6-트리카르복시-2-노르보르난 아세트산 이무수물(3,5,6-tricarboxy-2-norbornane acetic dianhydride) 또는 이들의 유도체 등을 들 수 있으며, 이외에도 다양한 테트라카르복실산 이무수물을 사용할 수 있음은 물론이다.
또, 상기 각 단량체 중, 다이아민 화합물의 구체적인 예로는, p-페닐렌다이아민(PDA), m-페닐렌다이아민(m-PDA), 2,4,6-트리메틸-1,3-페닐렌다이아민, 2,3,5,6-테트라메틸-1,4-페닐렌다이아민, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 4,4'-디아미노디페닐설피드, 4,4'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 3,3'-디아미노디페닐메탄, 4,4'-메틸렌-비스(2-메틸아닐린), 4,4'-메틸렌-비스(2,6-디메틸아닐린), 4,4'-메틸렌-비스(2,6-디에틸아닐린), 4,4'-메틸렌-비스(2-이소프로필-6-메틸아닐린), 4,4'-메틸렌-비스(2,6-디이소프로필아닐린), 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 벤지딘, o-톨리딘, m-톨리딘, 3,3',5,5'-테트라메틸벤지딘, 2,2'-비스(트리플루오로메틸)벤지딘, 1,4-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 비스[4-(4-아미노페녹시)페닐]술폰, 비스[4-(3-아미노페녹시)페닐]술폰, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)-페닐]프로판(6HMDA), 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFMB), 3,3'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(3,3'-TFDB), 4,4'-비스(3-아미노페녹시)디페닐설폰(DBSDA), 비스(3-아미노페닐)설폰(3DDS), 비스(4-아미노페닐)설폰(4DDS), 1,3-비스(3-아미노페녹시)벤젠(APB-133), 1,4-비스(4-아미노페녹시)벤젠(APB-134), 2,2'-비스[3(3-아미노페녹시)페닐]헥사플루오로프로판(3-BDAF), 2,2'-비스[4(4-아미노페녹시)페닐]헥사플루오로프로판(4-BDAF), 2,2'-비스(3-아미노페닐)헥사플루오로프로판(3,3'-6F), 2,2'-비스(4-아미노페닐)헥사플루오로프로판(4,4'-6F) 또는 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA) 등의 방향족 다이아민; 또는 1,6-헥산다이아민, 1,4-시클로헥산다이아민, 1,3-시클로헥산다이아민, 1,4-비스(아미노메틸)시클로헥산, 1,3-비스(아미노메틸)시클로헥산, 4,4'-디아미노디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 1,2-비스-(2-아미노에톡시)에탄, 비스(3-아미노프로필)에테르, 1,4-비스(3-아미노프로필)피페라진, 3,9-비스(3-아미노프로필)-2,4,8,10-테트라옥사스피로[5.5]-운데칸, 또는 1,3-비스(3-아미노프로필)테트라메틸디실록산 등의 지방족 다이아민 등을 들 수 있다.
상기 테트라카르복실산 이무수물 및 다이아민 화합물의 종류는 특별히 제한되지는 않지만, 상술한 낮은 CTE 범위나 박리 강도 등 디본딩층에 요구되는 물성을 보다 적절히 충족할 수 있도록 하기 위해서는, 산 이무수물이 방향족 고리 사이에 링커구조를 갖지 않는 것이 중요하다. 상기 테트라카르복실산 이무수물로는 하기 화학식 1의 방향족 테트라카르복실산 이무수물이 바람직할 수 있다:
[화학식 1]
Figure PCTKR2016006019-appb-I000006
상기 화학식 1에서, A는 산 이무수물로부터 유도된 방향족 4가 유기기로서, 구체적으로는 하기 화학식 2a 또는 2b의 방향족 4가 유기기일 수 있다:
[화학식 2a]
Figure PCTKR2016006019-appb-I000007
[화학식 2b]
Figure PCTKR2016006019-appb-I000008
상기 화학식 2a 및 2b에서,
R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 또는 탄소수 1 내지 4의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)이고, 그리고
a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수일 수 있으며, 상기 b, c, d 및 e는 0의 정수인 것이 바람직할 수 있다.
이중에서도 상기 테트라카르복실산 이무수물은 하기 화학식 3a 의 피로멜리트산 이무수물(pyromellitic dianhydride, PMDA)이거나, 또는 하기 화학식 3b에서와 같이 직선형 구조를 가지며, 두 개의 방향족 고리가 링커 구조가 없이 직접 연결된 것이 바람직하며, 예를 들면 3,3',4,4'-비페닐테트라카르복실산 이무수물(BPDA)일 수 있다:
[화학식 3a]
Figure PCTKR2016006019-appb-I000009
[화학식 3b]
Figure PCTKR2016006019-appb-I000010
또한, 상기 디본딩층(12)의 패킹 밀도(packing density)가 높을수록 분자간 공간이 적어져 상호 침투로 인한 결합력이 낮아진다. 그 결과 디본딩층(12) 위에 형성된 가요성 기판(13)에 대한 접착력 및 적층체로부터 가요성 기판의 박리강도가 낮아지게 된다. 또 패킹 밀도는 CTE로 대변할 수 있는데 패킹 밀도가 높아질수록 낮은 CTE값을 가지며 CTE가 낮을수록 높은 패킹밀도를 나타낸다. 따라서, 상기한 디본딩층의 물성적 요건을 보다 적절히 충족할 수 있도록 하기 위해서는 상술한 다이아민 화합물 중에서도 직선형 구조를 갖는 방향족 다이아민계 화합물, 구체적으로 하기 화학식 4a 또는 4b의 방향족 다이아민계 화합물을 사용하는 것이 바람직하다:
[화학식 4a]
Figure PCTKR2016006019-appb-I000011
[화학식 4b]
Figure PCTKR2016006019-appb-I000012
상기 식에서,
R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 또는 탄소수 1 내지 10의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)이고,
X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기(예를 들면, 사이클로헥실렌기, 노르보르넨기 등), 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기(예를 들면, 페닐렌기, 나프탈렌기 등) 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기 등) 및 탄소수 1 내지 10의 할로알킬기(예를 들면, 플루오로메틸기, 브로모메틸기, 클로로메틸기, 트리플루오로메틸기 등)로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 바람직하게는 0 이며, 그리고
p는 0 또는 1의 정수이며, 바람직하게는 0 이다.
이러한 바람직한 방향족 다이아민계 화합물의 예로는, p-페닐렌다이아민(PDA), 벤지딘(BZD), m-톨리딘, 또는 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFMB) 등을 들 수 있다.
이들 각 단량체를 극성 유기 용매 중에서 중합하여 폴리아믹산계 수지를 제조하고, 아민계 촉매 등과 같은 이미드화 촉매의 존재 혹은 부존재 하에, 상술한 경화온도 조건에서 폴리아믹산계 수지를 이미드화함으로써 상술한 물성적 요건을 충족하는 폴리이미드계 수지 및 이를 포함하는 디본딩층을 형성할 수 있다. 다만, 상술한 경화온도 조건 외에 폴리아믹산계 수지 또는 폴리이미드계 수지의 제조를 위한 다른 조건은 당업자에게 잘 알려진 통상적인 조건 및 방법에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
상기와 같은 디본딩층(12)은 0.05 내지 5㎛, 0.05 내지 4㎛, 혹은 0.05 내지 3㎛, 혹은 0.05 내지 2㎛, 혹은 0.05 내지 1 ㎛의 두께를 가질 수 있다. 디본딩층의 두께가 얇아질수록 캐리어 기판과의 접착력이 증가하지만 지나치게 얇을 경우 가요성 기판과의 접착력 증가로 인해 박리성이 떨어지게 된다. 따라서 캐리어 기판과의 높은 접착력 및 가요성 기판과의 높은 박리성을 나타내기 위해서는 상기한 두께 범위를 갖는 것이 바람직하다.
한편, 상기 적층체에 있어서 상기한 디본딩층(12) 상에는 가요성 기판을 형성하는 폴리머층(15b)에 매립된 금속배선(13)이 위치한다.
상기 금속배선(13)은 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 백금(Pt), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo) 등의 금속 또는 이들의 합금, 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZOAg-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등의 전도성 금속 산화물 1종 이상을 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 전기도금, 진공증착, 열증착, 스퍼터링, 전자빔 증착 등의 방법으로 디본딩층(12) 상에 코팅 또는 증착하여 형성될 수 있으나, 상기 금속배선으로 사용될 수 있는 물질이 이에 제한되는 것은 아니며, 우수한 전기전도성을 나타내어 전극의 면저항을 낮출 수 있는 물질을 적절히 선택하여 사용할 수 있다.
이때, 상기 가요성 기판(15)의 폴리머층(15b) 내부에는 병렬로 배열된 복수개의 금속배선(13)이 구비되며, 바람직하게는 0.05 내지 50 mm 간격으로 상기 금속배선이 배열될 수 있다.
상기 금속배선(13)이 0.05 mm 미만의 간격으로 조밀하게 배열되는 경우에는 공정비용 상승 문제가 있으며, 상기 금속배선이 50 mm를 초과하는 간격으로 배열되는 경우에는 보조전극으로의 역할이 미미하여 접촉하는 전극과의 면저항을 효과적으로 낮출 수 없는 문제가 있다.
또한, 상기 금속배선(13)의 폭은 0.5 내지 1000 ㎛인 것이 바람직하다. 금속배선의 폭이 0.5 ㎛ 미만의 간격인 경우에는 미세 패턴 형성을 위한 복잡한 공정이 요구되면 또한 금속배선의 저항이 증가하는 문제가 있으며, 상기 금속배선의 폭이 1000 ㎛를 초과하는 경우에는 광 투과율이 저하되는 문제가 있다.
상기 금속배선(13)은 전자소자에 있어서, 보조전극으로 이용될 수 있으며, 태양전지, 유기발광다이오드 조명, 반도체 소자, 및 디스플레이 소자에 있어서, 금속배선(13)이 노출된 부분이 기판상에 구비되는 투명전극과 직접 접촉하여 이들의 면저항을 낮출 수 있다. 그러나, 상기 금속배선(13)과 투명전극의 접촉이 이에 제한되는 것은 아니며, 금속배선 전체가 가요성 기판내에 매립된 경우에도 투명전극과 금속배선을 연결하는 보조수단을 통해 상기 금속배선을 보조전극으로써 이용할 수 있다.
상기 가요성 기판(15)은 박막유리층(15a), 폴리머층(15b) 및 이들의 2층 이상의 적층체로 이루어진 군에서 선택되는 구조체를 포함할 수 있다.
상기한 가요성 기판(15)에 있어서, 박막유리층(15a)은 통상 디스플레이 소자에 사용되는 유리 재질이라면 특별한 제한없이 사용가능하며, 구체적으로는 소다 라임 유리(soda lime glass), 중성 보로실리케이트 유리(neutral borosilicate glass), 또는 무알칼리 유리(non-alkali glass) 등을 들 수 있다. 박막유리층의 재질은 적용되는 소자에 따라 적절히 선택될 수 있는데, 낮은 열수축율이 요구되는 소자에 적용시에는 무알칼리 유리가 바람직할 수 있고, 높은 투명도가 요구되는 소자에서는 가시광선 투과도가 우수한 소다 라임 유리가 바람직할 수 있다.
보다 바람직하게는 가열된 소자의 기판 상에 형성되는 소자 구성 부재의 냉각시 위치 어긋남을 방지할 수 있도록 박막유리층(15a)이 25 내지 200℃에서의 평균 선팽창 계수(이하, 간단히 "평균 선팽창 계수"라고 함)가 0 내지 200×10-7/℃, 바람직하게는 0 내지 50×10-7/℃이며, 또한 90% 이상의 가시광선 투과도를 나타낼 수 있도록 상기한 재질들을 적절히 혼합하여 사용하는 것이 바람직하다.
상기와 같은 박막유리층(15a)은 통상의 제조방법에 따라 제조될 수 있으며, 구체적으로는 유리 원료를 혼합하여 용융시킨 후, 플로트법, 슬롯 다운드로법, 오버플로 다운드로법, 퓨전법, 리드로법, 또는 롤 아웃법 등의 방법으로 판형으로 성형하고 절단하는 공정을 거쳐 제조될 수 있다.
상기와 같은 제조방법에 의해 제조되는 박막유리층(15a)의 두께 및 크기 등은 적용하고자 하는 소자의 종류에 따라 적절히 선택될 수 있으나, 소자용 기판의 투명성 등을 고려할 때, 상기 박막유리층(15a)은 10 내지 200㎛의 두께를 갖는 것이 바람직할 수 있다. 상기와 같은 두께 범위를 가질 때 적절한 기계적 강도와 함께 가요성을 나타낼 수 있어 바람직하다.
또한, 상기 박막유리층(15a)은, 그 상면 또는 하면, 또는 양면에 폴리머층(15b)이 형성될 경우, 폴리머층(15b)과의 밀착성 증가를 위해 오존 분위기 하에서의 코로나 처리, 플레이밍 처리, 스퍼터링 처리, 자외선 조사, 전자선 조사 등의 에칭 처리 등의 전처리된 것일 수 있다.
한편, 상기 가요성 기판(15)에 있어서, 폴리머층(15b)은 통상 가요성 소자의 기판 등에 적용가능한 것으로 알려진 폴리머라면 특별한 한정없이 포함할 수 있다. 구체적인 예로는, 상기 가요성 기판층은 폴리에틸렌 테레프탈레이트 (PET), 폴리에테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN), , 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드 (PI), 폴리에테르이미드, 폴리아마이드이미드, 폴리에스테르, 에틸렌비닐아세테이트(EVA), 폴리에테르 아마이드 이미드, 폴리에스테르 아마이드 이미드, 폴리아릴레이트, 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC),사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 폴리다이메틸실론세인(PDMS), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군에서 선택된 1종 이상의 고분자 수지를 포함할 수 있다.
이중에서도 폴리이미드계 수지가 바람직하며, 구체적으로는 이미드화율이 약 50 내지 99%, 혹은 약 70 내지 95%이고, 약 200℃ 이상, 혹은 약 300℃ 이상, 혹은 약 350 내지 500℃의 유리전이온도(Tg)를 가지며, 400℃ 이상, 혹은 400℃ 내지 600℃의 분해온도(Td)를 갖는 폴리이미드계 수지일 수 있다. 이와 같이 우수한 내열성을 나타내기 때문에 적층체 또는 소자용 기판의 제조를 위한 가열 공정에서도 변형의 우려가 없으며, 기판 및 소자의 내열성을 개선시킬 수 있다. 구체적으로 상기 폴리머층(15b)은 100 내지 200℃의 조건에서 약 60ppm/℃ 이하, 혹은 50ppm/℃ 이하, 혹은 40ppm/℃ 이하, 혹은 약 1 내지 30ppm/℃의 열 팽창 계수(CTE), 및 450℃ 이상, 혹은 470℃ 이상의 1% 열분해온도(Td1%)를 나타내는 것일 수 있다.
상기 폴리머층(15b)내 폴리이미드계 수지 역시 산 이무수물과 다이아민 화합물을 단량체로 사용하여 중합시켜 제조한 폴리아믹산계 수지를 경화시키거나, 또는 폴리이미드계 수지를 포함하는 용액상의 조성물을 이용하는 경우 건조시킴으로써 제조될 수 있다. 이때 산 이무수물과 다이아민 화합물은 앞서 디본딩층 형성용 폴리이미드계 수지의 제조에서 설명한 것과 동일하다.
또, 상기한 물성적 요건을 충족하는 폴리이미드계 수지를 제조하기 위해 폴리이미드계 수지 형성용 단량체의 종류나 반응비, 이미드화 조건 등을 적절히 조절하는 것이 바람직할 수 있다. 일 례로, 상기 폴리머층(15b)에 요구되는 물성적 요건을 충족하기 위하여 산 이무수물과 다이아민의 중합반응시 산 이무수물과 다이아민의 반응비를 적절히 조절하는 것이 바람직하며, 구체적으로는 상기 테트라카르복실산 이무수물 1몰에 대하여 다이아민을 0.8 내지 1.2, 혹은 0.9 내지 1.1의 몰비로 사용하는 것이 바람직할 수 있다.
또, 상기와 같은 물성적 특성을 갖는 폴리머층(15b)은 0.5 내지 50㎛, 혹은 1 내지 50㎛, 혹은 2 내지 50㎛, 혹은 3 내지 50㎛, 혹은 3 내지 30㎛의 두께를 가질 수 있다. 특히 폴리머층(15b)이 디본딩층과 접하는 경우에는 폴리머층(15b)이 적정 두께를 갖는 것이 바람직할 수 있다, 예를 들면 디본딩층 두께의 10 내지 500배, 혹은 20 내지 400배, 혹은 30 내지 300배, 혹은 50 내지 200배 일 수 있다.
일 구현예에 따른 적층체에 있어서, 상기 가요성 기판(15)은 상기한 박막유리층(15a) 또는 폴리머층(15b)을 각각 단층으로 포함할 수도 있고, 또는 이들이 2층 이상 적층된 다층 구조체를 포함할 수도 있다. 일 예로서, 도 1a에는 박막유리층(15a) 아래에 폴리머층(15b)이 적층된 2층의 구조를 갖는 가요성 기판을 포함하는 본 발명의 일 구현예에 따른 적층체(10)가, 그리고 도 1a에는 박막유리층(15a)의 양면에 폴리머층(15b)이 형성된 3층 구조를 갖는 가요성 기판(15)을 포함하는 본 발명의 다른 일 구현예에 따른 적층체(20)가 제시되어 있으나, 본 발명에 따른 적층체가 이에 한정되는 것은 아니다. 이와 같은 다층 구조를 갖는 가요성 기판에 있어서, 박막 유리층(15a) 위에 형성된 폴리머층(15b)은 박막 유리층에 대해 보호 필름의 역할을 할 수 있다.
상기와 같은 구조를 갖는 적층체(10)는 도 2를 참고하면, 캐리어 기판(11)의 일면 또는 양면에 폴리이미드계 수지를 포함하는 디본딩층(12)을 형성하는 단계(S1), 및 상기 디본딩층(12) 상에 금속배선을 형성하는 단계(S2), 상기 금속배선 상에 코팅된 폴리머층을 포함하는 가요성 기판(15)을 형성하는 단계(S3)를 포함하는 제조방법에 따라 제조될 수 있다.
이하 각 단계별로 상세히 설명하면, 단계 S1 은 캐리어 기판(11) 위에 디본딩층(12)을 형성하는 단계이다.
상기 캐리어 기판(11)은 앞서 설명한 바와 동일하며, 디본딩층(12)의 형성에 앞서, 상기 디본딩층과의 밀착성 증가를 위해 오존 분위기 하에서의 코로나 처리, 플레이밍 처리, 스퍼터링 처리, 자외선 조사, 전자선 조사 등의 에칭 처리 등으로 전처리 될 수 있다.
또, 상기 디본딩층(12)은 상기 캐리어 기판(11) 위에 폴리이미드계 수지 또는 그 전구체를 포함하는 디본딩층 형성용 조성물을 도포한 후 200℃ 이상의 온도에서 경화시킴으로써 형성될 수 있다. 상기 경화 공정 동안에 폴리아믹산계 수지의 이미드화도 함께 진행된다.
상기 디본딩층 형성용 조성물에 포함되는 폴리이미드계 수지 및 그 전구체로서 폴리아믹산계 수지는 앞서 설명한 바와 동일하다.
또, 상기 디본딩층 형성용 조성물은 통상 폴리이미드계 수지층에 사용되는 바인더, 용매, 가교제, 개시제, 분산제 가소제, 점도조절제, 자외선 흡수제, 감광성 모노머 또는 증감제 등의 첨가제를 더 포함할 수도 있다.
또, 상기 도포 방법은 통상의 방법에 따라 실시될 수 있으며, 구체적으로는 스핀 코팅법, 딥 코팅법, 또는 바 코팅법, 그리고 연속 공정에 적합한 캐스팅법, 롤링법 또는 스프레이 코팅법 등이 이용될 수 있다.
또, 상기 경화 공정에 앞서 디본딩층 형성용 조성물내에 존재하는 유기용매를 제거하기 위한 건조공정이 더 실시될 수 있다. 상기 건조공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로 상기 건조공정은 140℃ 이하의 온도에서 실시될 수 있다.
또, 상기 경화 공정은 200℃ 이상, 혹은 250 내지 500℃의 온도에서의 열처리에 의해 실시될 수 있으며, 상기 열처리 공정은 상기 온도범위 내 다양한 온도에서의 다단계 열처리로 실시될 수도 있다.
또, 상기 경화 공정시 경화 시간은 특별히 한정되지 않으며, 일 예로서 3 내지 30분 동안 실시될 수 있다.
또, 상기 경화 공정 후 후속의 열처리 공정이 선택적으로 더 실시될 수 있다.
상기 후속의 열처리 공정은 300℃ 이상의 온도에서 1분 내지 30분 동안 실시되는 것이 바람직하다. 또 상기 후속의 열처리 공정은 1회 실시될 수도 있고 또는 2회 이상 다단계로 실시될 수도 있다. 구체적으로는 200 내지 250℃에서의 제1열처리, 300 내지 350℃ 에서의 제2열처리 및 400 내지 450℃ 에서의 제3열처리를 포함하는 3단계로 실시될 수 있다.
단계 2는 단계 1에서 제조한 디본딩층(12) 상에 금속배선(13) 및 가요성 기판층(15)을 형성하여 적층체를 제조하는 단계이다.
상기 가요성 기판(15)은 앞서 설명한 바와 동일하며, 가요성 기판을 형성하는 박막유리층(15a), 폴리머층(15b)이 형성된 적층체는 통상의 방법에 따라 제조 및 형성될 수 있다.
일례로, 상기 가요성 기판(15)이 박막유리층(15a) 아래에 폴리이미드계 수지를 포함하는 폴리머층(15b)이 형성된 2층 적층체인 경우, 상기 디본딩층(12) 상에 폴리아믹산계 수지를 포함하는 조성물을 도포한 후, 200℃ 이상의 온도에서의 열처리에 의해 경화시키거나, 또는 폴리아미드계 수지를 포함하는 조성물의 경우 건조시켜 폴리머층(15b)을 형성한 후 유리박막층(15a)을 위치시키고 200 내지 300℃의 온도로 열처리하여 라미네이션하는 방법에 의해 제조될 수 있다.
이때 상기 폴리머층 형성용 조성물은 통상적으로 사용되는 바인더, 용매, 가교제, 개시제, 분산제, 가소제, 점도조절제, 자외선 흡수제, 감광성 단량체 및 증감제 등을 더욱 포함할 수 있다.
또, 상기 경화 공정은 상기한 온도범위 내의 다양한 온도에서 실시되는 다단계 열처리로 진행될 수도 있다.
상기와 같은 제조방법에 따라 제조된 적층체에서, 상기 디본딩층은 그 자체로 가요성 기판에 대한 적절한 접착력 등을 나타내어 소자 제조 공정 중에 가요성 기판을 적절히 고정 및 지지할 수 있으므로, 본 발명의 일 구현예의 적층체를 사용해 플렉서블 디스플레이 소자 등 가요성 기판을 포함하는 소자의 기판을 용이하게 제조할 수 있다. 또 가요성 기판 분리를 위한 레이저 또는 광 조사 등을 생략하면서도, 소자 제조 공정을 상기 적층체 상에서 적절히 진행하여 우수한 특성을 갖는 각종 소자를 제조할 수 있다. 그 결과, 상기 가요성 기판을 갖는 소자의 제조 공정을 크게 단순화할 수 있고, 그 제조 단가 역시 크게 낮출 수 있다.
이에 본 발명의 다른 일 구현예에 따르면, 상기한 적층체를 이용하여 제조한 소자용 기판 및 그 제조방법이 제공된다.
상기 소자용 기판은 캐리어 기판의 일면에 폴리이미드계 수지를 포함하는 디본딩층을 형성하는 단계, 상기 디본딩층 상에 금속배선 및 금속배선상에 경화성 수지를 코팅하여 가요성 기판을 형성하는 단계, 및 상기 가요성 기판에 디본딩층의 화학적 변화를 야기하지 않으면서 가요성 기판의 단면을 노출시키는 물리적 자극을 가하여 상기 가요성 기판을 디본딩층이 형성된 캐리어 기판으로부터 분리하는 단계를 포함하는 제조방법에 의해 제조될 수 있으며, 이때 디본딩층 및 가요성 기판의 형성 공정은 앞서 설명한 바와 동일하다.
도 2는 본 발명의 일 구현예에 따른 소자용 기판의 제조방법을 개략적으로 나타낸 공정도이다. 도 2는 본 발명을 설명하기 위한 일례일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 2를 참조하여 보다 상세히 설명하면, 본 발명에 따른 소자용 기판은 캐리어 기판의 일면 또는 양면에 폴리이미드계 수지를 포함하는 디본딩층을 형성하는 단계(S1), 상기 디본딩층 상에 금속배선을 형성하는 단계(S2), 상기 금속배선상에 경화성 수지를 코팅하여 가요성 기판층을 제조하는 단계(S3), 및 상기 가요성 기판에 물리적 자극(p)을 가한 다음 디본딩층이 형성된 캐리어 기판으로부터 분리하는 단계(S4 및 S5)를 포함하는 제조방법에 의해 제조될 수 있다. 가요성 기판의 분리는 관련 업계에서 일반적으로 사용하는 방법, 예를 들면 진공흡착방법을 사용할 수 있으나 이에 제한되는 것은 아니며, 기존 방법보다 훨씬 약한 힘만 있으면 되므로 표시소자 제조시 손상을 최소화 할 수 있는 방법을 임의로 선택할 수 있다.
상기한 소자용 기판의 제조방법에 있어서, 가요성 기판의 분리 단계 이전의 공정은 앞서 적층체의 제조방법에서와 동일한 방법으로 실시될 수 있다.
한편, 상기 가요성 기판의 분리는 커팅(cutting), 레이저 커팅 또는 다이아몬드 스크라이빙(scribing) 등과 같은, 디본딩층의 화학적 변화를 야기하지 않으면서 금속배선이 매립된 가요성 기판의 단면을 노출시키는 적절한 물리적 자극을 가하여 실시될 수 있으며, 구체적으로는 0 초과 0.1N 이하의 물리적인 자극을 가하여 실시될 수 있다.
상기와 같은 방법에 의해 제조된 소자용 금속배선이 매립된 가요성 기판은, 레이저 또는 광 조사 공정, 또는 용해공정 등을 진행하지 않더라도 커팅 등의 방법으로 비교적 작은 물리적 자극만을 가해 캐리어 기판으로부터 분리하여 금속배선이 매립된 가요성 기판을 제조할 수 있어, 레이저 또는 광 조사 등에 의한 물성 및 화학적 변화로인한 소자의 신뢰성 저하 또는 불량 발생 또한 억제할 수 있으며, 금속배선이 기판에 매립되어 있음으로써, 상기 기판상에 적층 또는 조립되는 전극과의 접촉 면저항등의 전기적 특성이 향상될 수 있으며, 기판의 형상이 변하더라도 배선의 단락, 배선간 쇼트 및 배선 손상등의 문제가 발생하지 않아 플렉서블 소자의 사용에 유리할 수 있다.
이에 따라 본 발명의 다른 일 구현예에 따르면, 상기한 기판을 포함하는 소자가 제공될 수 있다.
구체적으로는 상기 소자는 가요성 기판을 갖는 임의의 태양전지(예를 들어, 플렉서블 태양전지), 유기발광다이오드(OLED) 조명(예를 들어, 플렉서블 OLED 조명), 가요성 기판을 갖는 임의의 반도체 소자, 또는 가요성 기판을 갖는 유기전계발광소자, 전기영동 소자 또는 LCD 소자 등의 플렉서블 디스플레이 소자일 수 있으며, 이중에서도 유기전계발광소자가 바람직할 수 있다.
상기 소자는 캐리어 기판의 일면 또는 양면에 폴리이미드계 수지를 포함하는 디본딩층, 금속배선층 및 가요성 기판을 순차 형성하여 일 구현예의 적층체를 얻은 후, 이러한 적층체의 가요성 기판 상에 소자 구조를 형성하는 단계(즉, 소자 제조 공정 단계)를 실시하고, 이후 레이저 또는 광 조사 없이 디본딩층의 화학적 변화를 야기하지 않으면서 가요성 기판층의 단면을 노출시키는 물리적 자극을 가하여 상기 소자 구조가 형성된 가요성 기판을 분리함으로써 제조될 수 있다.
이때, 상기 소자 구조는 게이트 전극을 포함하는 반도체 소자 구조, 박막 트랜지스터 어레이를 포함하는 디스플레이 소자 구조, P/N 정션을 갖는 다이오드 소자 구조, 유기 발광층을 포함하는 OLED 구조 또는 태양전지 구조 등 가요성 기판 상에 형성하고자 하는 소자의 종류에 따른 통상적인 소자 구조로 될 수 있다. 일 실시예에 따르면, 상기 소자 구조가 유기전계발광소자 구조인 경우, 상기 기판에서의 가요성 기판의 금속배선이 노출된 배면에 위치하며, 인듐주석산화물(ITO) 등을 포함하는 투명전극; 상기 투명전극의 배면에 위치하며 유기 화합물을 포함하는 발광부; 그리고 상기 발광부의 배면에 위치하며, 알루미늄 등의 금속을 포함하는 금속전극을 포함할 수 있다.
상기한 바와 같이 본 발명에 따른 소자는, 레이저 또는 광 조사 등이 필요하지 않기 때문에 소자의 제조시 공정을 단순화하고, 제조 단가를 크게 감소시킬 수 있으며, 레이저 또는 광 조사 등에 의한 소자의 신뢰성 저하 또는 불량 발생 또한 억제할 수 있으며, 기판 내부에 금속 배선이 매립됨에 따라, 투명전극의 면저항을 감소시킬 수 있어 소자의 효율을 향상시킬 수 있으며, 가요성 기판의 형태가 변형되더라도 금속 배선이 파손되거나 단선되는 것을 방지할 수 있어, 본 발명에 따른 플렉서블(flexible) 소자의 적용에 유용하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상위한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1: 적층체 및 가요성 기판의 제조
캐리어 기판으로서 무알카리 유리의 일면에, BPDA 1mol 과 PDA 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 3중량%와 용매로서 DMAc 97중량%를 포함하는 디본딩층 형성용 조성물을 건조 후 두께가 0.1㎛가 되도록 도포하였다. 결과로서 제조된 디본딩층용 도막에 대해 120℃에서의 건조 공정 및 300℃에서의 경화 공정(30분간)을 연속적으로 실시하여 폴리이미드계 수지(이하 '제1폴리이미드계 수지'라 함)를 포함하는 디본딩층을 형성하였다.
상기 디본딩층상에 알루미늄을 200nm 두께로 증착한 기판 위에 인쇄 방식으로 미세패턴을 패터닝하였다. 구체적으로, 레지스트 잉크를 실리콘계 블랭킷 상에 전면 코팅한 후 상기 블랭킷 상에 미세 패턴이 음각으로 각인되어 있는 클리쉐를 접촉시킴으로써 상기 실리콘계 블랭킷 상에 패턴을 형성한 뒤 일부 도막을 제거함으로써 미세패턴이 형성된 실리콘계 블랭킷을 제조하였다. 상기 실리콘계 블랭킷에 형성된 레지스트 잉크 미세패턴을 상기 디본딩층 상에 알루미늄이 증착되어 있는 유리기재에 전사한 후 115℃ 오븐에서 3분간 건조하여 레지스트 패턴 내에 잔류된 용매를 제거하였다. 상기 레지스트가 패턴된 알루미늄 기판을 식각액을 사용하여 온도 45℃ 조건에서 스프레이 방식으로 식각하였다. 탈이온수로 식각액을 깨끗이 세정 및 건조 한 후 남아있는 레지스트 잉크를 스트리퍼(stripper)를 이용하여 제거하여 디본딩층 위에 알루미늄이 배선이 형성된 기판을 제작하였다.
상기 알루미늄 배선이 형성된 기판상에 BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판의 폴리머층 형성용 조성물을 건조 후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 350℃에서 60분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지(이하 '제2폴리이미드계 수지'라 함)를 포함하는 폴리머층을 형성하였다. 결과로서 캐리어 기판, BPDA-PDA 폴리이미드계 수지를 포함하는 디본딩층, 그리고 가요성 기판으로서 BPDA-TFMB 폴리이미드계 수지를 포함하는 폴리머층이 순차적으로 적층된 적층체를 제조하였다.
상기 적층체를 가로세로 10mm x 100mm 크기로 자르되, 디본딩층까지만 자르고 캐리어 기판은 잘리지 않을 정도의 깊이로 자른 후(디본딩층의 화학적 변화를 야기하지 않으면서 가요성 기판층의 단면을 노출시키는 물리적 자극을 인가한 후) 감압접착테이프(Pressure sensitive adhesive tape, adhesion strength 43±6 g/mm)를 접착시킨 후 테이프 끝을 잡고 박리하는 방법으로 금속배선이 매립된 가요성 기판층을 디본딩층으로부터 분리하였다.
상기 디본딩층을 포함하는 적층체 제조공정 및 가요성 기판 분리공정을 도 2에 나타내었다. 상기한 방법으로 제조된 금속배선이 매립된 가요성 기판 및 캐리어 기판의 표면 이미지를 도 4a 내지 4c에 나타내었다.
비교예 1: 적층체 및 가요성 기판의 제조
캐리어 기판으로서 무알카리 유리의 일면에, 디본딩층을 형성하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 금속배선을 형성한 뒤 상기 금속배선 상에 BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판의 폴리머층 형성용 조성물을 건조후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 350℃에서 60분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지(이하 '제2폴리이미드계 수지'라 함)를 포함하는 폴리머층으로 형성된 가요성 기판층을 형성하였다. 결과로서 캐리어 기판, 금속배선, 상기 금속배선을 내포하는 가요성 기판층을 포함하이 순차적으로 적층된 적층체를 제조하였다.
적층체를 실시예 1과 동일한 방법으로 가로세로 10mm x 100mm 크기로 캐리어 기판은 잘리지 않을 정도의 깊이로 자른 후 감압접착테이프(Pressure sensitive adhesive tape, adhesion strength 43±6 g/mm)를 접착시킨 후 테이프 끝을 잡고 박리하는 방법으로 금속배선이 매립된 가요성 기판층을 캐리어 기판으로부터 분리하였다.
디본딩층이 형성되지 않은 경우의 적층체의 제조공정 및 가요성 기판과 캐리어 기판층의 분리공정을 도 3에 나타내었으며, 상기 방법으로 제조된 가요성 기판 및 캐리어 기판의 표면 이미지를 도 5a 내지 5c에 나타내었다.
도 4a는 본 발명에 따라 디본딩층이 형성된 가요성 기판 필름으로써, 캐리어 기판과 필름을 분리하였을 때 금속배선이 필름상에 형성되어 있는 것을 확인할 수 있다. 반면 도 5a는 디본딩층이 형성되어 있지 않는 캐리어 기판상에서 금속배선을 포함하는 가요성 기판을 형성한 것으로서, 가요성 기판을 분리하였을 때, 금속배선이 필름에 부착되어있지 못하고 캐리어 기판 상에 그대로 위치하는 것을 확인할 수 있다.
도 4b는 디본딩층에서 분리된 가요성 필름의 금속배선이 노출된 표면을 나타내며, 도 4c는 디본딩층의 표면을 나타낸다. 상기 도 4b 및 도 4c의 결과로부터 금속 배선을 포함하는 가요성 기판이 디본딩층으로부터 분리가 잘 일어났음을 확인할 수 있다.
반면, 도 5b 및 5c로부터 디본딩층이 없어 물리적 자극에 의한 분리가 잘 되지 않으며, 가요성 기판의 분리 이후에 캐리어 기판상에 금속 배선이 그대로 남아 있는 것을 확인할 수 있다.
실시예 2
캐리어 기판으로서 무알카리 유리의 일면에, BPDA 1mol 과 PDA 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 3중량%와 용매로서 DMAc 97중량%를 포함하는 디본딩층 형성용 조성물을 건조 후 두께가 0.1㎛가 되도록 도포하였다. 결과로서 제조된 디본딩층용 도막에 대해 120℃의 온도에서의 건조 공정 및 300℃ 온도에서의 경화 공정(30분간)을 연속적으로 실시하여 폴리이미드계 수지(이하 '제1폴리이미드계 수지'라 함)를 포함하는 디본딩층을 형성하였다.
상기 디본딩층상에 스퍼터 방식을 이용하여 알루미늄을 200nm 두께로 전면에 증착하였다.
상기 알루미늄이 증착된 기판상에 BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판의 폴리머층 형성용 조성물을 건조 후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 350℃에서 60분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지(이하 '제2폴리이미드계 수지'라 함)를 포함하는 폴리머층을 형성하였다.
비교예 2
캐리어 기판으로서 무알카리 유리기판상에 스퍼터 방식을 이용하여 알루미늄을 200nm 두께로 전면에 증착하였다.
상기 알루미늄이 증착된 기판 상에 BPDA 1mol과 TFMB 0.99mol을 중합시켜 제조한 폴리아믹산계 수지 12중량%와 용매로서 DMAc 88중량%를 포함하는 가요성 기판의 폴리머층 형성용 조성물을 건조 후 두께가 15㎛가 되도록 도포(캐스팅)하고, 결과로서 제조된 가요성 기판의 폴리머층 형성용 도막에 대해 100℃의 온도에서의 건조 공정 및 350℃에서 60분의 경화 공정을 연속적으로 실시하여 폴리이미드계 수지(이하 '제2폴리이미드계 수지'라 함)를 포함하는 폴리머층을 형성하였다.
접착력 테스트
실시예 2 및 비교예 2에서 제조한 적층체의 가요성 기판 쪽에 1mmX1mm 정사각형 무늬를 가지는 격자를 가로 세로 10X10 개씩 총 100개의 격자가 형성되도록 패터닝하였다. 상기 패턴 상에 1 inch 폭을 가지는 감압접착테이프 (adhesion strength 43±6 g/mm)를 약 3inch 길이로 자른 후 중앙 부위를 격자무늬에 접착시키고, 견고히 접착시키기 위해 지우개를 이용하여 격자 위로 10회 문질렀다.
접착력 측정 샘플을 60초간 방치한 후 테이프의 끝을 잡고 180도 방항으로 2초동안 박리하였다. 박리 성능은 다음과 같이 평가하였다. 점수가 높을수록 캐리어 기판과 알루미늄층을 구비한 가요성 기판층의 접착력이 높은 것을 의미한다.
5점: 박리없음
4점: 5% 이하 박리
3점: 5~15% 박리
2점: 15~35% 박리
1점: 35~65% 박리
0점: 65% 이상 박리
도 6a는 테이프 테스트를 실시하기전 기판의 모습으로 (a)는 실시예 2, (b)는 비교예 2의 기판을 나타낸다. 테스트결과 실시예 2의 샘플은 100% 박리되어 0점, 비교예 2의 샘플은 하나도 박되지 않아 0점을 얻었다. 도 6b는 실시예 2의 기판에 대해 테이프 테스트한 결과 유리기판 면(a)과 테이프면(b)을 각각 보여주는 사진이다. 도 6c는 비교예 2의 기판에 대해 테이프 테스트한 결과 유리기판 면(a)과 테이프면(b)을 각각 보여주는 사진이다.
실험결과로부터 본 발명에 따라 디본딩층을 형성하는 경우 금속층을 구비한 가요성 기판을 캐리어 기판으로부터 박리하기가 용이하고, 또한 금속배선을 가요성 기판 층내에 매립시키는 것이 가능하므로 전자소자의 박형화에도 유리함을 알 수 있다.

Claims (20)

  1. 캐리어 기판;
    상기 캐리어 기판의 적어도 일면에 위치하며, 폴리이미드계 수지를 포함하는 디본딩층(debonding layer);
    상기 디본딩층과 접하고 있는 금속 배선층; 및
    상기 금속 배선층과 접하고 있는 가요성 기판층을 포함하며,
    상기 금속 배선층과 가요성 기판층 사이의 접착력은 상기 금속 배선층과 디본딩층 사이의 접착력 보다 큰 것인 적층체.
  2. 제1항에 있어서,
    상기 디본딩층이 0.05 내지 5㎛의 두께를 갖는 것인 적층체.
  3. 제1항에 있어서,
    상기 금속 배선층은 복수개의 금속 배선을 구비하며, 상기 가요성 기판층은 상기 복수개의 금속 배선을 감싸면서 상기 디본딩층과 접하고 있어 금속 배선이 가요성 기판층에 매립된 형태인 것인 적층체.
  4. 제3항에 있어서,
    상기 복수개의 금속 배선은 0.05 내지 50 mm 간격으로 배열된 것인 적층체.
  5. 제1항에 있어서,
    상기 디본딩층과 금속배선층을 구비한 가요성 기판의 접착력은, 상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속배선층 및 가요성 기판층의 단면을 노출시키는 물리적 자극 인가에 의해 변화하며,
    상기 물리적 자극이 가해지기 전 금속 배선층에 대한 디본딩층의 접착력(A1)과,
    상기 물리적 자극이 가해진 후 금속 배선층에 대한 디본딩층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 인 적층체.
  6. 제5항에 있어서,
    상기 디본딩층이 상기 물리적 자극이 가해진 후 상기 금속 배선층에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 갖는 적층체.
  7. 제5항에 있어서,
    상기 디본딩층이 상기 물리적 자극이 가해지기 전 상기 금속 배선층에 대해 1 N/cm 이상의 접착력을 갖는 적층체.
  8. 제1항에 있어서.
    상기 금속 배선이 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 백금(Pt), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo) 또는 이들의 합금으로 이루어진 것인 적층체.
  9. 제1항에 있어서,
    상기 디본딩층을 형성하는 폴리이미드계 수지가 하기 화학식 1의 방향족 테트라카르복실산 이무수물과 직선형 구조를 갖는 방향족 다이아민 화합물을 반응시켜 제조한 폴리아믹산을 200℃ 이상의 온도에서 경화시켜 제조된 것인 적층체:
    [화학식 1]
    Figure PCTKR2016006019-appb-I000013
    (상기 화학식 1에서, A는 하기 화학식 2a 또는 2b의 방향족 4가 유기기이며,
    [화학식 2a]
    Figure PCTKR2016006019-appb-I000014
    [화학식 2b]
    Figure PCTKR2016006019-appb-I000015
    상기 화학식 2a 및 2b에서,
    R11 내지 R14는 각각 독립적으로 탄소수 1 내지 4의 알킬기 또는 탄소수 1 내지 4의 할로알킬기이고,
    a는 0 내지 3의 정수, b는 0 내지 2의 정수, c 및 e는 각각 독립적으로 0 내지 3의 정수, d는 0 내지 4의 정수, 그리고 f는 0 내지 3의 정수이다.
  10. 제9항에 있어서,
    상기 방향족 다이아민 화합물은 하기 화학식 4a 또는 4b의 방향족 다이아민 화합물인 것인 적층체:
    [화학식 4a]
    Figure PCTKR2016006019-appb-I000016
    [화학식 4b]
    Figure PCTKR2016006019-appb-I000017
    상기 식에서,
    R21 내지 R23은 각각 독립적으로, 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 할로알킬기이고,
    X는 각각 독립적으로 -O-, -CR24R25-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO2-, -O[CH2CH2O]q-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기, 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기 및 이들의 조합으로 이루어진 군에서 선택되며, 이때 상기 R24 및 R25는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 할로알킬기로 이루어진 군에서 선택되며, q는 1 또는 2의 정수이고,
    l, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 그리고
    p은 0 또는 1의 정수이다.
  11. 제1항에 있어서,
    상기 가요성 기판층은 폴리에틸렌 테레프탈레이트 (PET), 폴리에테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드 (PI), 폴리에테르이미드, 폴리아마이드이미드, 폴리에스테르, 에틸렌비닐아세테이트(EVA), 폴리에테르 아마이드 이미드, 폴리에스테르 아마이드 이미드, 폴리아릴레이트, 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 폴리다이메틸실론세인(PDMS), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군에서 선택된 1종 이상의 경화성 고분자 수지인 적층체.
  12. 캐리어 기판을 준비하는 단계;
    상기 캐리어 기판 상에 폴리이미드계 수지를 포함하는 디본딩층을 형성하는 단계;
    상기 디본딩층 상에 금속 배선층을 형성하는 단계;
    상기 금속 배선층이 형성된 디본딩층 상부에 경화성 고분자를 코팅하여 가요성 기판층을 형성하는 단계; 및
    상기 디본딩층의 화학적 변화를 야기하지 않으면서 상기 금속배선층 및 가요성 기판층의 단면을 노출시키는 물리적 자극을 가한 후 상기 캐리어 기판으로부터 상기 금속 배선층이 형성된 가요성 기판층을 분리하는 단계;
    를 포함하는 금속 배선층을 구비한 가요성 기판의 제조방법.
  13. 제12항에 있어서,
    상기 물리적인 자극은 커팅(cutting), 레이저 커팅 또는 다이아몬드 스크라이빙(scribing)에서 선택되는 방법에 의해 가해지는 것인 가요성 기판의 제조방법.
  14. 제12항에 있어서,
    상기 디본딩층이 0.05 내지 5㎛의 두께를 갖는 것인 가요성 기판의 제조방법.
  15. 제12항에 있어서,
    상기 금속 배선층은 복수개의 금속 배선을 구비하며, 상기 가요성 기판층은 상기 복수개의 금속 배선을 감싸면서 상기 디본딩층과 접하고 있어 금속 배선이 가요성 기판층에 매립된 형태인 것인 가요성 기판의 제조방법.
  16. 제15항에 있어서,
    상기 복수개의 금속 배선은 0.05 내지 50 mm 간격으로 배열된 것인 가요성 기판의 제조방법.
  17. 제12항에 있어서,
    상기 물리적 자극이 가해지기 전 금속 배선층에 대한 디본딩층의 접착력(A1)과,
    상기 물리적 자극이 가해진 후 금속 배선층에 대한 디본딩층의 접착력(A2)의 비(A2/A1)가 0.001 내지 0.5 인 가요성 기판의 제조방법.
  18. 제12항에 있어서,
    상기 디본딩층이 상기 물리적 자극이 가해진 후 상기 금속 배선층에 대해 0.3N/cm 이하의 박리 강도(peel strength)를 갖는 가요성 기판의 제조방법.
  19. 제12항에 있어서,
    상기 디본딩층이 상기 물리적 자극이 가해지기 전 상기 금속 배선층에 대해 1 N/cm 이상의 접착력을 갖는 가요성 기판의 제조방법.
  20. 제12항에 따른 방법으로 얻은, 금속 배선층이 구비된 가요성 기판을 포함하는 전자소자.
PCT/KR2016/006019 2015-06-08 2016-06-08 금속배선층이 형성된 적층체 및 이를 제조하는 방법 WO2016200122A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/540,191 US10512171B2 (en) 2015-06-08 2016-06-08 Laminated body comprising metal wire layer, and manufacturing method therefor
JP2017533961A JP6601693B2 (ja) 2015-06-08 2016-06-08 金属配線層が形成された積層体及びそれを製造する方法
CN201680006096.XA CN107206771B (zh) 2015-06-08 2016-06-08 包括金属线层的层合体及其制造方法
EP16807762.6A EP3307033B1 (en) 2015-06-08 2016-06-08 Laminated body comprising metal wire layer, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0080282 2015-06-08
KR20150080282 2015-06-08
KR1020160068102A KR102035378B1 (ko) 2015-06-08 2016-06-01 금속배선층이 형성된 적층체 및 이를 제조하는 방법
KR10-2016-0068102 2016-06-01

Publications (1)

Publication Number Publication Date
WO2016200122A1 true WO2016200122A1 (ko) 2016-12-15

Family

ID=57503948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006019 WO2016200122A1 (ko) 2015-06-08 2016-06-08 금속배선층이 형성된 적층체 및 이를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2016200122A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762024A (zh) * 2019-12-26 2022-07-15 Agc株式会社 柔性透明电子器件的制造方法以及物品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731856B1 (ko) * 2000-02-01 2007-06-25 신닛테츠가가쿠 가부시키가이샤 접착용 폴리이미드 수지 및 접착성 적층체
KR20100027526A (ko) * 2008-09-02 2010-03-11 삼성전기주식회사 박막 소자 제조방법
KR101191865B1 (ko) * 2011-04-20 2012-10-16 한국기계연구원 금속 배선이 함몰된 유연 기판의 제조방법 및 이에 따라 제조되는 유연 기판
KR20130046150A (ko) * 2011-10-27 2013-05-07 엘지디스플레이 주식회사 플렉서블 디스플레이 장치의 제조장치 및 그 제조방법
KR20140122207A (ko) * 2013-04-09 2014-10-17 주식회사 엘지화학 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731856B1 (ko) * 2000-02-01 2007-06-25 신닛테츠가가쿠 가부시키가이샤 접착용 폴리이미드 수지 및 접착성 적층체
KR20100027526A (ko) * 2008-09-02 2010-03-11 삼성전기주식회사 박막 소자 제조방법
KR101191865B1 (ko) * 2011-04-20 2012-10-16 한국기계연구원 금속 배선이 함몰된 유연 기판의 제조방법 및 이에 따라 제조되는 유연 기판
KR20130046150A (ko) * 2011-10-27 2013-05-07 엘지디스플레이 주식회사 플렉서블 디스플레이 장치의 제조장치 및 그 제조방법
KR20140122207A (ko) * 2013-04-09 2014-10-17 주식회사 엘지화학 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3307033A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762024A (zh) * 2019-12-26 2022-07-15 Agc株式会社 柔性透明电子器件的制造方法以及物品

Similar Documents

Publication Publication Date Title
WO2014168400A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
KR102035378B1 (ko) 금속배선층이 형성된 적층체 및 이를 제조하는 방법
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2010002182A2 (en) Plastic substrate and device including the same
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2014168423A1 (en) Polyimide cover substrate
EP2981413A1 (en) Polyimide cover substrate
TWI662868B (zh) 顯示裝置的製造方法、樹脂溶液及剝離裝置
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
KR20180014799A (ko) 가요성 기판의 제조방법
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2020138687A1 (ko) 디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
CN104952780B (zh) 柔性元件的制造方法、柔性元件及柔性元件制造装置
WO2017018753A1 (ko) 가요성 기판의 제조방법
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2016200122A1 (ko) 금속배선층이 형성된 적층체 및 이를 제조하는 방법
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018101540A1 (ko) 패턴이 형성된 플렉서블 투명전극의 제조방법
WO2014133297A1 (ko) 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 제조 및 표면 평탄화 방법
WO2018216890A1 (ko) 폴리이미드 적층필름 롤체 및 그 제조 방법
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2017078247A1 (ko) 필름 터치 센서
WO2020141710A1 (ko) 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리이미드 필름.
WO2020241983A1 (ko) 고탄성 폴리이미드 필름 및 이를 포함하는 연성금속박적층판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807762

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016807762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017533961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15540191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE