WO2017018004A1 - 積層体、固体撮像素子、積層体の製造方法、キット - Google Patents

積層体、固体撮像素子、積層体の製造方法、キット Download PDF

Info

Publication number
WO2017018004A1
WO2017018004A1 PCT/JP2016/061382 JP2016061382W WO2017018004A1 WO 2017018004 A1 WO2017018004 A1 WO 2017018004A1 JP 2016061382 W JP2016061382 W JP 2016061382W WO 2017018004 A1 WO2017018004 A1 WO 2017018004A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
infrared light
liquid crystal
layer
compound
Prior art date
Application number
PCT/JP2016/061382
Other languages
English (en)
French (fr)
Inventor
大貴 瀧下
嶋田 和人
啓佑 有村
昂広 大河原
佐々木 大輔
啓之 山本
吉川 将
亮司 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020177036753A priority Critical patent/KR102026551B1/ko
Priority to JP2017531033A priority patent/JP6749907B2/ja
Publication of WO2017018004A1 publication Critical patent/WO2017018004A1/ja
Priority to US15/853,859 priority patent/US20180136379A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive

Definitions

  • the present invention relates to a laminate, a solid-state imaging device, a laminate production method, and a kit.
  • a video camera, a digital still camera, a mobile phone with a camera function, or the like uses a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) which is a solid-state imaging device for color images.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • These solid-state imaging devices usually use a silicon photodiode having sensitivity to infrared light at the light receiving portion thereof. Therefore, it is necessary to perform visibility correction, and an infrared light cut filter is often used.
  • an infrared light cut filter there is an infrared light cut filter in which an infrared light reflection film is formed on the surface of a transparent substrate such as glass. Infrared light reflecting films are required to have a high transmittance for light having a visible wavelength. From such a viewpoint, the infrared light reflecting film includes a plurality of high refractive index material layers and low refractive index material layers.
  • the dielectric multilayer film described in Patent Document 1 has a high refractive index material layer and a low refractive index material layer formed by vapor deposition, which takes time and labor to produce, and is expensive.
  • the required characteristics required for infrared light cut filters have also increased.
  • the transmittance in the visible light region relative to the transmittance in the infrared light region has increased. There is a need to make it higher.
  • the present inventors have found that the above-mentioned problems can be solved by using an antireflection layer and a predetermined infrared light reflection layer, and have completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the infrared light reflection layer includes a first selective reflection layer formed by fixing a liquid crystal phase in which the rotation direction of the spiral axis is the right direction, and a second liquid crystal phase in which the rotation direction of the spiral axis is fixed by the left direction.
  • At least one of the first selective reflection layer and the second selective reflection layer is a layer formed using a compound represented by the general formula (5), described in (1) or (2) Laminated body.
  • a 1 to A 4 each independently represents an aromatic carbocycle or heterocycle which may have a substituent.
  • X 1 and X 2 are each independently a single bond, —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —CH ⁇ CH —COO—, —OCO—CH ⁇ CH—, or —C ⁇ C— is represented.
  • Sp 1 and Sp 2 each independently represents a single bond or a carbon chain having 1 to 25 carbon atoms.
  • P 1 and P 2 each independently represent a hydrogen atom or a polymerizable group, and at least one of P 1 and P 2 represents a polymerizable group.
  • n 1 and n 2 each independently represents an integer of 0 to 2, and when n 1 or n 2 is 2, a plurality of A 1 , A 2 , X 1 and X 2 may be the same or different.
  • the laminate according to (6), wherein the inorganic particles are composed of silica.
  • the laminate according to any one of (1) to (8), wherein the antireflection layer is a layer formed using a particle aggregate in which a plurality of silica particles are chain-connected.
  • (11) The laminate according to any one of (1) to (10), wherein the antireflective layer has a refractive index of 1.35 or less.
  • a liquid crystal composition containing at least a liquid crystal compound and a right-turning chiral agent, and a liquid crystal composition containing at least a liquid crystal compound and a left-turning chiral agent are applied in random order to form an infrared light reflecting layer.
  • the laminated body which can be manufactured more simply and has the high transmittance
  • the kit used in order to manufacture the manufacturing method of the said laminated body, the solid-state image sensor containing the said laminated body, and the said laminated body can be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • infrared light as used in the present specification may vary depending on the sensitivity of the solid-state imaging device, but is intended to be in the range of at least about 700 to 1200 nm. Further, “visible light” intends a range of at least about 400 to 700 nm.
  • substitution and non-substitution includes not only a substituent but also a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • FIG. 1 shows a cross-sectional view of a first embodiment of the laminate of the present invention.
  • the laminate 10 includes an antireflection layer 12, an infrared light absorption layer 14, and an infrared light reflection layer 16 in this order.
  • the infrared light reflection layer 16 fixes the first selective reflection layers 18a and 18b in which the rotation direction of the spiral axis is the right direction and the liquid crystal phase in which the rotation direction of the spiral axis is the left direction.
  • Second selective reflection layers 20a and 20b In the laminated body 10, when light is incident from the direction of the white arrow shown in FIG.
  • the antireflection layer 12 is disposed on the outermost layer side of the stacked body 10 and reduces light reflected on the surface of the stacked body 10.
  • the refractive index of the antireflection layer 12 is 1.45 or less, and is preferably 1.35 or less, more preferably less than 1.30, and preferably 1.25 or less from the viewpoint of increasing the transmittance of the visible light region of the laminate. Further preferred.
  • the lower limit is not particularly limited, but usually it is often 1.00 or more and often 1.20 or more.
  • the said refractive index intends the refractive index in wavelength 633nm as follows.
  • the refractive index of the antireflection layer 12 was measured using an ellipsometer (VUV-base [trade name] manufactured by JA Woollam) (wavelength 633 nm, measurement temperature 25 ° C.).
  • the material constituting the antireflection layer 12 is not particularly limited, and may be an organic material or an inorganic material, and an inorganic material (for example, an inorganic resin (siloxane resin), inorganic particles, etc.) is preferable from the viewpoint of durability. Especially, it is preferable that the antireflection layer 12 contains inorganic particles.
  • the siloxane resin can be obtained through a hydrolysis reaction and a condensation reaction using a known alkoxysilane raw material.
  • a catalyst such as an acid or a base may be used as necessary.
  • the catalyst is not particularly limited as long as the pH is changed.
  • the acid organic acid, inorganic acid
  • the alkali includes, for example, Ammonia, triethylamine, ethylenediamine and the like can be mentioned.
  • a solvent may be added to the reaction system for the hydrolysis reaction and the condensation reaction.
  • the solvent is not particularly limited as long as a hydrolysis reaction and a condensation reaction can be performed.
  • alcohols such as water, methanol, ethanol, and propanol
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether
  • ethylene glycol monopropyl examples include ethers such as ether, esters such as methyl acetate, ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and methyl isoamyl ketone. .
  • the conditions (temperature, time, amount of solvent) for the hydrolysis reaction and condensation reaction are appropriately selected according to the type of material used.
  • the weight average molecular weight of the siloxane resin is preferably 1,000 to 50,000. Among these, 2,000 to 45,000 is more preferable, 2,500 to 25,000 is more preferable, and 3,000 to 25,000 is particularly preferable.
  • the weight average molecular weight is not less than the above lower limit value, the coating property to the substrate is particularly good, and the surface shape and flatness after coating are preferably maintained.
  • a weight average molecular weight is a value when it measures using well-known GPC (gel permeation chromatography), and converts into standard polystyrene.
  • Examples of the material constituting the inorganic particles include silica (silicon oxide), lanthanum fluoride, calcium fluoride, magnesium fluoride, cerium fluoride, and the like. More specifically, preferred examples of the inorganic particles include silica particles, hollow silica particles, and porous silica particles.
  • the “hollow particle” refers to a particle having a structure having a cavity inside and having a cavity surrounded by an outer shell.
  • Porous particles refers to porous particles having multiple cavities. As an inorganic particle, you may use individually by 1 type or in combination of 2 or more types.
  • the particle size of the inorganic particles is not particularly limited, and the average particle size is preferably 1 nm or more, and more preferably 10 nm or more from the viewpoint of handleability.
  • the upper limit is preferably 200 nm or less, and more preferably 100 nm or less.
  • the average particle diameter of the inorganic particles here can be determined from the photograph obtained by observing the inorganic particles with a transmission electron microscope. The projected area of the inorganic particles is obtained, and the equivalent circle diameter is obtained therefrom, and the average particle diameter is obtained.
  • the “average particle size” is obtained by measuring the projected area of 300 or more inorganic particles, obtaining the equivalent circle diameter, and calculating the number average diameter.
  • the content of the inorganic particles in the antireflection layer 12 is not particularly limited, often 70% by mass or more, the transmittance of the visible light region of the laminate is further increased, and the solvent resistance of the laminate is excellent. 80 mass% or more is preferable, 90 mass% or more is more preferable, and 95 mass% or more is still more preferable. An upper limit in particular is not restrict
  • the refractive index of the inorganic particles is preferably from 1.00 to 1.45, more preferably from 1.10 to 1.40, and more preferably from 1.15 to 1.35 from the viewpoint that the transmittance in the visible light region of the laminate is further increased. Is more preferable, and 1.15 to 1.30 is particularly preferable.
  • the refractive index of inorganic particles can be measured by the following method. A mixed solution sample of a matrix resin and inorganic particles having a solid content concentration of 10%, prepared so that the content of inorganic particles is 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass is prepared. Each is coated on a silicon wafer by using a spin coater so that the thickness becomes 0.3 to 1.0 ⁇ m.
  • the coating film is obtained by heating and drying on a hot plate at 200 ° C. for 5 minutes.
  • the refractive index at a wavelength of 633 nm (25 ° C.) is obtained using an ellipsometer (VUV-base [trade name] manufactured by JA Woollam), and the value of 100% by mass of inorganic particles can be extrapolated.
  • the average thickness of the antireflection layer 12 is not particularly limited, and is preferably 0.01 to 1.00 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, from the viewpoint that the transmittance in the visible light region of the laminate is further increased.
  • the said average thickness measures the thickness of arbitrary 10 points
  • the antireflection layer 12 may contain components other than the above inorganic particles as necessary, for example, a so-called binder (especially a low refractive index binder) such as a fluororesin or polysiloxane. Also good.
  • a so-called binder especially a low refractive index binder
  • fluororesin or polysiloxane especially a fluororesin or polysiloxane. Also good.
  • the antireflection layer 12 has a single layer structure, but may have a multilayer structure as necessary.
  • the production method of the antireflection layer 12 is not particularly limited, and examples thereof include a dry method (for example, sputtering method, vacuum deposition method) and a wet method (for example, coating method). preferable.
  • a wet method for example, a composition for forming an antireflection layer containing an inorganic material (preferably inorganic particles) is applied on a predetermined substrate, and if necessary, a drying treatment is performed, and an antireflection layer is formed.
  • a method for producing is preferably mentioned.
  • the content of the inorganic particles in the composition for forming an antireflection layer is not particularly limited, is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and still more preferably 15 to 30% by mass.
  • the composition for forming an antireflection layer appropriately contains a solvent (water or an organic solvent).
  • a spin coat method, a dip coat method, a roller blade method, a spray method, or the like can be applied.
  • the method for the drying treatment is not particularly limited, and examples thereof include heat treatment or air drying treatment, and heat treatment is preferable.
  • the conditions for the heat treatment are not particularly limited and are preferably 50 ° C. or higher, more preferably 65 ° C. or higher, and still more preferably 70 ° C. or higher.
  • the said heating time is not specifically limited, It is preferable that it is 0.5 to 60 minutes, and it is more preferable that it is 1 to 10 minutes.
  • the method for the heat treatment is not particularly limited, and heating can be performed by a hot plate, an oven, a furnace, or the like.
  • the atmosphere for the heat treatment is not particularly limited, and an inert atmosphere, an oxidizing atmosphere, or the like can be applied.
  • the inert atmosphere can be realized by an inert gas such as nitrogen, helium and argon.
  • the oxidizing atmosphere can be realized by a mixed gas of these inert gas and oxidizing gas, or air may be used. Examples of the oxidizing gas include oxygen, carbon monoxide, and oxygen dinitride.
  • the heating step can be performed under pressure, normal pressure, reduced pressure, or vacuum.
  • a particle aggregate in which a plurality of silica particles are linked in a chain form (hereinafter, referred to as a chain aggregate) from the viewpoint that the visible light region transmittance of the laminate is further increased and the solvent resistance of the laminate is excellent.
  • a layer formed using beaded silica More specifically, it is more preferable to use a composition (sol) in which beaded silica is dispersed in a solvent.
  • a composition (sol) in which beaded silica is dispersed in a solvent is widely known.
  • a composition in which the beaded silica is dispersed (silica sol) Is preferably used.
  • the beaded silica is preferably one in which a plurality of silica particles having an average particle diameter of 5 to 50 nm (preferably 5 to 30 nm) are joined by metal oxide-containing silica.
  • the beaded silica is obtained from the number average particle diameter (D 1 nm) measured by the dynamic light scattering method of the silica particles and the specific surface area Sm 2 / g measured by the nitrogen adsorption method of the silica particles.
  • D 1 / D 2 is preferably 3 to 20 from the viewpoint that particles are difficult to aggregate and increase in haze of the antireflection layer can be suppressed.
  • D 1 is preferably 35 to 150 nm.
  • a metal oxide containing silica which joins a silica particle an amorphous silica, an amorphous alumina, etc. are illustrated, for example.
  • the solvent in which the beaded silica is dispersed include methanol, ethanol, IPA (isopropyl alcohol), ethylene glycol, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate, and the SiO 2 concentration is 5 to 40 mass. % Is preferred.
  • a composition containing beaded silica (silica sol) for example, a silica sol described in Japanese Patent No. 4328935 or Japanese Patent Application Laid-Open No. 2013-253145 can be used.
  • the method of the wet method mentioned above can be suitably employ
  • the antireflection layer can also be formed using a commercially available low refractive material.
  • commercially available low-refractive materials include Opstar-TU series manufactured by JSR Corporation, low-refractive index polysiloxane LS series manufactured by Toray Industries, Inc., and Asahi Glass Co., Ltd. fluorine resin Cytop series.
  • the infrared light absorption layer 14 is a layer that absorbs infrared light. By including the infrared light absorption layer 14, the angle dependency can be reduced.
  • the “angle dependency” represents a difference between transmission characteristics of light incident on the stacked body from the front direction and transmission characteristics of light incident on the stacked body from an oblique direction.
  • a large angle dependency means that the difference between the two is large, that is, a large difference in transmission characteristics depending on the incident direction of light
  • a small angle dependency means that the difference between the two is small, that is, light It is intended that the difference in transmission characteristics depending on the incident direction is small.
  • the infrared light absorption layer 14 is an arbitrary constituent member.
  • the infrared light absorbing layer 14 contains an infrared light absorber.
  • the “infrared light absorber” means a compound having absorption in the wavelength region of the infrared light region.
  • a compound having a maximum absorption wavelength in a wavelength region of 600 to 1200 nm is preferable.
  • the maximum absorption wavelength can be measured using, for example, Cary 5000 UV-Vis-NIR (manufactured by Agilent Technologies, Inc.).
  • the content of the infrared light absorbing agent in the infrared light absorbing layer 14 is not particularly limited, and is preferably 1 to 80% by weight, more preferably 5 to 60% by weight with respect to the total weight of the infrared light absorbing layer 14. .
  • the infrared light absorber is preferably an organic dye.
  • the “organic dye” means a dye made of an organic compound.
  • the infrared light absorber is preferably at least one selected from a copper compound, a cyanine compound, a pyrrolopyrrole compound, a squarylium compound, a phthalocyanine compound, and a naphthalocyanine compound, and more preferably a copper compound, a cyanine compound, or a pyrrolopyrrole compound. preferable.
  • an infrared absorber is a compound which melt
  • the solvent resistance is improved.
  • a copper compound, a cyanine compound, and a pyrrolopyrrole compound, which are preferred embodiments of the infrared light absorber, will be described in detail.
  • the copper compound is preferably a copper compound having a maximum absorption wavelength within a wavelength range of 700 to 1200 nm (near infrared region).
  • the copper compound may be a copper complex or not a copper complex, and is preferably a copper complex.
  • the ligand L coordinated to copper is not particularly limited as long as it can be coordinated to a copper ion, sulfonic acid, phosphoric acid, phosphate ester, Examples thereof include phosphonic acid, phosphonic acid ester, phosphinic acid, phosphinic acid ester, carboxylic acid, carbonyl (ester, ketone), amine, amide, sulfonamide, urethane, urea, alcohol, thiol and the like.
  • the phosphorus-containing copper compound specifically, compounds described in WO 2005 / 030898A, page 5, line 27 to page 7, line 20 can be referred to, and the contents thereof are incorporated in the present specification. It is.
  • the copper compound may be a compound represented by the following formula (A).
  • L represents a ligand coordinated to copper, and X does not exist or represents a counter ion as necessary so as to neutralize the charge of the copper complex.
  • n1 and n2 each independently represents an integer of 0 or more.
  • the ligand L has a substituent containing a C atom, an N atom, an O atom, or an S atom as an atom that can coordinate to copper, and more preferably an N atom, an O atom, or an S atom. And the like having a group having a lone electron pair.
  • the preferred ligand L has the same meaning as the ligand L described above.
  • the group capable of coordinating is not limited to one type in the molecule and may include two or more types, and may be dissociated or non-dissociated.
  • Examples of the counter ion include a counter ion contained in a copper complex described later, which will be described in detail later.
  • the copper complex is preferably a compound having a maximum absorption wavelength in a wavelength region of 700 to 1200 nm.
  • the maximum absorption wavelength of the copper complex is more preferably in the wavelength region of 720 to 1200 nm, and still more preferably in the wavelength region of 800 to 1100 nm.
  • the molar extinction coefficient at the maximum absorption wavelength in the above-described wavelength region of the copper complex is preferably 120 (L / mol ⁇ cm) or more, more preferably 150 (L / mol ⁇ cm) or more, and 200 (L / mol ⁇ cm). ) Or more, more preferably 300 (L / mol ⁇ cm) or more, and particularly preferably 400 (L / mol ⁇ cm) or more.
  • the upper limit is not particularly limited, and can be, for example, 30000 (L / mol ⁇ cm) or less.
  • the molar extinction coefficient of the copper complex is 100 (L / mol ⁇ cm) or more, an infrared light absorbing layer having excellent infrared shielding properties can be formed even with a thin film.
  • the gram extinction coefficient at 800 nm of the copper complex is preferably 0.11 (L / g ⁇ cm) or more, more preferably 0.15 (L / g ⁇ cm) or more, and 0.24 (L / g ⁇ cm). The above is more preferable.
  • the molar extinction coefficient and gram extinction coefficient of the copper complex were determined by measuring the absorption spectrum of the solution in which the copper complex was dissolved by preparing a solution having a concentration of 1 g / L by dissolving the copper complex in a solvent. Can be obtained.
  • a measuring device UV-1800 (wavelength region 200 to 1100 nm) manufactured by Shimadzu Corporation, Cary 5000 (wavelength region 200 to 1300 nm) manufactured by Agilent, or the like can be used.
  • the measurement solvent include water, N, N-dimethylformamide, propylene glycol monomethyl ether, 1,2,4-trichlorobenzene, and acetone.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • dissolve means a state in which the solubility of the copper complex in a solvent at 25 ° C. exceeds 0.01 g / 100 g Solvent.
  • the molar extinction coefficient and gram extinction coefficient of the copper complex are preferably values measured using any one of the above-described measurement solvents, and more preferably values of propylene glycol monomethyl ether. .
  • Examples of the method for increasing the molar extinction coefficient of the copper complex to 100 (L / mol ⁇ cm) or more include a method using a five-coordinate copper complex, a method using a ligand with high ⁇ -donating property, and symmetry.
  • a method using a copper complex having a low value As a mechanism that can achieve a molar extinction coefficient of 100 (L / mol ⁇ cm) or more by using a five-coordinate copper complex, the following is presumed. That is, the symmetry of the complex is lowered by adopting a pentadentate coordination, preferably a pentacoordinate three-way bipyramidal structure or a pentacoordinate tetragonal pyramid structure.
  • a pentacoordinate copper complex is obtained by reacting, for example, two bidentate ligands (which may be the same or different) and one monodentate ligand with respect to a copper ion.
  • Reacting a ligand with two bidentate ligands (which may be the same or different), reacting one tridentate ligand with one bidentate ligand, one tetradentate It can be prepared by reacting a ligand with one monodentate ligand or reacting one pentadentate ligand. At this time, the monodentate ligand coordinated by an unshared electron pair may be used as a reaction solvent. For example, when two bidentate ligands are reacted with a copper ion in a solvent containing water, these two bidentate ligands are coordinated with water as a monodentate ligand. A complex is obtained.
  • the following is presumed as a mechanism that can achieve a molar extinction coefficient of 100 (L / mol ⁇ cm) or more by using a ligand having a high ⁇ -donating property. That is, by using a ligand having a high ⁇ -donating property (a ligand in which the ⁇ orbit of the ligand or the p orbital is shallow in energy), the p orbit of the metal and the p orbit of the ligand (or ⁇ orbitals) are easily mixed. At this time, the dd transition is not a pure dd transition, and the contribution of the LMCT (Land to Metal Charge Transfer) transition, which is an allowable transition, is mixed.
  • the extinction coefficient is improved, and it is considered that 100 (L / mol ⁇ cm) or more can be achieved.
  • the ligand having a high ⁇ -donating property include a halogen ligand, an oxygen anion ligand, and a sulfur anion ligand.
  • the copper complex using a ligand having a high ⁇ -donating property include a copper complex having a Cl ligand as a monodentate ligand.
  • a copper complex with low symmetry can be obtained by using a ligand with low symmetry or by introducing the ligand asymmetrically with respect to the copper ion. Specifically, for example, it is as follows.
  • a ligand having low symmetry For example, when a tridentate ligand L 1 -L 2 -L 3 and two monodentate ligands L 4 and L 5 are used, as shown in the following formula (1), a ligand having low symmetry
  • a copper complex with low symmetry can be obtained by using a ligand in which L 1 and L 3 are different.
  • a copper complex having a lower symmetry is obtained when a ligand is introduced asymmetrically with respect to a copper ion, for example, when L 4 and L 5 are different from each other.
  • a ligand having low symmetry For example, by using a ligand having different L 6 and L 7 and / or a ligand having different L 8 and L 9 , a copper complex with low symmetry can be obtained.
  • a copper complex having a lower symmetry is obtained when a ligand is introduced asymmetrically with respect to a copper ion, for example, when L 6 -L 7 and L 8 -L 9 are different from each other.
  • the copper complex preferably has a compound having at least two coordination sites (hereinafter also referred to as compound (A)) as a ligand.
  • the compound (A) preferably has at least three coordination sites, and more preferably has 3 to 5 coordination sites.
  • Compound (A) acts as a chelate ligand for the copper component. That is, at least two coordination atoms of the compound (A) are chelate-coordinated with copper, so that the structure of the copper complex is distorted and high transmittance in the visible light region is obtained, and the ability to absorb infrared light. It is thought that the color value can also be improved. As a result, even if the laminate is used for a long period of time, its characteristics are not impaired, and the camera module can be stably manufactured.
  • the copper complex may have two or more compounds (A). When it has two or more compounds (A), each compound (A) may be the same or different. As a coordination site
  • the copper complex is exemplified by 4-coordination, 5-coordination, and hexacoordination, and 4-coordination and 5-coordination are more preferable, and 5-coordination is more preferable. Moreover, it is preferable that the copper complex forms a 5-membered ring and / or a 6-membered ring with copper and a ligand. Such a copper complex is stable in shape and excellent in complex stability.
  • Copper in the copper complex used in the present invention can be obtained, for example, by mixing or reacting the compound (A) with a copper component (copper or a compound containing copper).
  • the copper component is preferably a compound containing divalent copper.
  • a copper component may use only 1 type and may use 2 or more types.
  • copper component for example, copper oxide or copper salt can be used.
  • the copper salt examples include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate ester copper, phosphonate copper, phosphonate ester copper, phosphinate copper, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride, or copper bromide are preferred, copper carboxylate, sulfonic acid Copper, sulfonamide copper, imide copper, acylsulfonimide
  • the amount of the copper component to be reacted with the compound (A) is preferably 1: 0.5 to 1: 8 in a molar ratio (compound (A): copper component), and is 1: 0.5 to 1: 4. More preferably.
  • the reaction conditions for reacting the copper component with the compound (A) are preferably, for example, 20 to 100 ° C. and 0.5 hours or longer.
  • the copper complex used in the present invention may have a ligand other than the compound (A).
  • the ligand other than the compound (A) include a monodentate ligand coordinated by an anion or an unshared electron pair.
  • ligands coordinated with anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amides substituted with acyl groups and sulfonyl groups), and imide anions (acyl groups and sulfonyl groups).
  • Substituted imides anilide anions (including acylides and sulfonyl substituted anilides), thiolate anions, bicarbonate anions, carboxylate anions, thiocarboxylate anions, dithiocarboxylate anions, hydrogen sulfate anions, sulfones Acid anion, phosphate dihydrogen anion, phosphate diester anion, phosphonate monoester anion, hydrogen phosphonate anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion, cyanide anion Cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, and azide anion and the like.
  • Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, or esters thereof.
  • the kind and number of monodentate ligands can be appropriately selected according to the compound (A) coordinated to the copper complex.
  • Specific examples of the monodentate ligand used as a ligand other than the compound (A) include, but are not limited to, the following. In the following, Ph represents a phenyl group, and Me represents a methyl group.
  • the copper complex is not limited to a neutral complex having no charge depending on the number of coordination sites coordinated with the anion. , May be a cation complex or an anion complex.
  • counter ions are present as necessary to neutralize the charge of the copper complex.
  • the counter ion is a negative counter ion, for example, an inorganic anion or an organic anion may be used.
  • hydroxide ions examples include hydroxide ions, halogen anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted or unsubstituted alkyl carboxylate ions (acetate ions, trifluoroacetate ions).
  • halogen anions eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.
  • substituted or unsubstituted alkyl carboxylate ions acetate ions, trifluoroacetate ions.
  • substituted or unsubstituted aryl carboxylate ion (benzoate ion, etc.), substituted or unsubstituted alkyl sulfonate ion (methane sulfonate ion, trifluoromethane sulfonate ion, etc.), substituted or unsubstituted aryl sulfonic acid Ions (for example, p-toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, etc.), aryl disulfonic acid ions (for example, 1,3-benzenedisulfonic acid ion, 1,5-naphthalenedisulfonic acid ion, 2,6-naphthalenedisulfonic acid ion) Ions), alkyl sulfate ions For example, methyl sulfate ion), sulfate ion, thiocyanate ion,
  • halogen anion substituted or unsubstituted alkylcarboxylate ion, sulfate ion, nitrate ion, tetrafluoroborate ion, tetraarylborate ion, hexafluorophosphate ion, amide ion (substituted with acyl group or sulfonyl group) And methide ions (including methides substituted with an acyl group or a sulfonyl group).
  • the counter ion is a positive counter ion, for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetrabutylphosphonium) And tetraalkylphosphonium ions such as ions, alkyltriphenylphosphonium ions, and triethylphenylphosphonium ions), and alkali metal ions or protons.
  • the counter ion may be a metal complex ion, and in particular, the counter ion may be a copper complex, that is, a salt of a cationic copper complex and an anionic copper complex.
  • Examples of the copper complex used in the present invention include the following embodiments (1) to (5) as preferred examples, (2) to (5) are more preferred, (3) to (5) are more preferred, (4) is particularly preferred.
  • (1) Copper complex having one or two compounds having two coordination sites as ligands (2) Copper complex having a compound having three coordination sites as ligands (3) Three coordinations Copper complex having a compound having a coordination site and a compound having two coordination sites as a ligand (4) Copper complex having a compound having four coordination sites as a ligand (5) Five coordination sites Copper complex having a compound containing
  • the compound having two coordination sites is a compound having two coordination sites coordinated by an unshared electron pair, or a coordination site and an unshared electron pair coordinated by an anion.
  • a compound having a coordination site coordinated with is preferable.
  • the compound of a ligand may be the same and may differ.
  • the copper complex can further have the monodentate ligand mentioned above.
  • the number of monodentate ligands can be 0, or 1 to 3.
  • any of a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by a lone pair of electrons is preferable.
  • a monodentate ligand coordinated by an anion is more preferable because the coordination power is strong. preferable.
  • the entire complex has no charge. More preferred are monodentate ligands coordinated by unshared electron pairs.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by a lone pair, and has three coordination sites coordinated by a lone pair.
  • the copper complex may further have the monodentate ligand described above.
  • the number of monodentate ligands can also be zero. It can also be 1 or more, more preferably 1 to 3 or more, still more preferably 1 to 2, and particularly preferably 2.
  • the type of monodentate ligand any of a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by a lone pair of electrons is preferable. A child is more preferred.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination site coordinated by an unshared electron pair.
  • a compound having two coordination sites to be coordinated and one coordination site coordinated by an unshared electron pair is more preferable.
  • the coordination sites coordinated by the two anions are different.
  • the compound having two coordination sites is preferably a compound having a coordination site coordinated by a lone pair, and more preferably a compound having two coordination sites coordinated by a lone pair.
  • a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination site coordinated by an unshared electron pair.
  • the copper complex can further have the monodentate ligand mentioned above.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is preferably 0.
  • the compound having four coordination sites is preferably a compound having a coordination site coordinated by an unshared electron pair, and has two or more coordination sites coordinated by an unshared electron pair.
  • a compound is more preferable, and a compound having four coordination sites coordinated by an unshared electron pair is still more preferable.
  • the copper complex may further have the monodentate ligand described above.
  • the number of monodentate ligands can be 0, 1 or more, or 2 or more.
  • the number of monodentate ligands is preferably one.
  • any of a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by a lone pair of electrons is preferable.
  • the compound having five coordination sites is preferably a compound having a coordination site coordinated by an unshared electron pair, and has two or more coordination sites coordinated by an unshared electron pair.
  • a compound is more preferable, and a compound having five coordination sites coordinated by an unshared electron pair is still more preferable.
  • the copper complex may further have the above-described monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is preferably 0.
  • the copper complex include the following.
  • the copper complex may be supported on a polymer.
  • R 1a and R 1b each independently represent an alkyl group, an aryl group, or a heteroaryl group
  • R 2 to R 5 each independently represents a hydrogen atom or a substituent
  • R 2 and R 3 , R 4 and R 5 may be bonded to each other to form a ring
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, —BR A R B , or a metal atom
  • R A and R B each independently represent a hydrogen atom or Represents a substituent
  • R 6 may be covalently or coordinated with R 1a or R 3
  • R 7 may be covalently or coordinated with R 1b or R 5 .
  • R 1a and R 1b each independently represents an alkyl group, an aryl group, or a heteroaryl group, preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
  • the number of carbon atoms of the alkyl group represented by R 1a and R 1b is preferably 1 to 40, more preferably 1 to 30, and still more preferably 1 to 25.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably branched.
  • the number of carbon atoms of the aryl group represented by R 1a and R 1b is preferably 6-30, more preferably 6-20, and still more preferably 6-12.
  • the aryl group is preferably a phenyl group.
  • the heteroaryl group represented by R 1a and R 1b is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations. .
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 10.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the above-described aryl group and heteroaryl group may have a substituent or may be unsubstituted. It is preferable that it has a substituent from a viewpoint that the solubility with respect to a solvent can be improved.
  • the substituent include a hydrocarbon group which may contain an oxygen atom, amino group, acylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, alkylsulfonyl group, sulfinyl group, ureido group, phosphate amide group, mercapto group Group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, silyl group, hydroxy group, halogen atom, cyano group and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the alkyl group preferably has 1 to 40 carbon atoms.
  • the lower limit is more preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably branched.
  • the branched alkyl group preferably has 3 to 40 carbon atoms.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branches of the branched alkyl group is preferably 2 to 10, for example, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the alkenyl group preferably has 2 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched, particularly preferably branched.
  • the branched alkenyl group preferably has 3 to 40 carbon atoms.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branches of the branched alkenyl group is preferably 2 to 10, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • Examples of the hydrocarbon group containing an oxygen atom include a group represented by -LRx1 .
  • L represents —O—, —CO—, —COO—, —OCO—, — (OR x2 ) m — or — (R x2 O) m —.
  • R x1 represents an alkyl group, an alkenyl group or an aryl group.
  • R x2 represents an alkylene group or an arylene group.
  • m represents an integer of 2 or more, and m R x2 may be the same or different.
  • L is preferably —O—, — (OR x2 ) m — or — (R x2 O) m —, more preferably —O—.
  • R x1 is preferably an alkyl group or an alkenyl group, and more preferably an alkyl group.
  • the alkylene group represented by R x2 preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 5 carbon atoms.
  • the alkylene group may be linear, branched or cyclic, and is preferably linear or branched.
  • the number of carbon atoms of the arylene group represented by R x2 is preferably 6-20, and more preferably 6-12.
  • R x2 is preferably an alkylene group.
  • m represents an integer of 2 or more, preferably 2 to 20, and more preferably 2 to 10.
  • the substituent that the aryl group and heteroaryl group may have is preferably a group having a branched alkyl structure. According to this aspect, the solvent solubility is further improved.
  • the substituent is preferably a hydrocarbon group that may contain an oxygen atom, and more preferably a hydrocarbon group containing an oxygen atom.
  • the hydrocarbon group containing an oxygen atom is preferably a group represented by —O—R x1 .
  • R x1 is preferably an alkyl group or an alkenyl group, more preferably an alkyl group, and particularly preferably a branched alkyl group. That is, the substituent is more preferably an alkoxy group, and still more preferably a branched alkoxy group.
  • the alkoxy group preferably has 1 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkoxy group may be linear, branched or cyclic, and is preferably linear or branched, more preferably branched.
  • the number of carbon atoms of the branched alkoxy group is preferably 3 to 40.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and still more preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branched alkoxy groups is preferably 2 to 10, more preferably 2 to 8.
  • R 2 to R 5 each independently represents a hydrogen atom or a substituent.
  • substituents include an alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, amino group (including alkylamino group, arylamino group and heterocyclic amino group), alkoxy group, aryloxy group, heteroaryloxy Group, acyl group, alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio Group, arylthio group, heteroarylthio group, alkylsulfonyl group, arylsulfonyl group, sulfinyl group, ureido group,
  • R 2 and R 3 and one of R 4 and R 5 are preferably an electron-withdrawing group.
  • a substituent having a positive Hammett ⁇ p value acts as an electron-withdrawing group.
  • a substituent having a Hammett ⁇ p value of 0.2 or more can be exemplified as an electron-withdrawing group.
  • the ⁇ p value is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more.
  • the upper limit is not particularly limited and is preferably 0.80.
  • the electron withdrawing group include a cyano group (0.66), a carboxyl group (—COOH: 0.45), an alkoxycarbonyl group (—COOMe: 0.45), an aryloxycarbonyl group (—COOPh: 0). .44), a carbamoyl group (—CONH 2 : 0.36), an alkylcarbonyl group (—COMe: 0.50), an arylcarbonyl group (—COPh: 0.43), an alkylsulfonyl group (—SO 2 Me: 0) .72), arylsulfonyl groups (—SO 2 Ph: 0.68), and the like.
  • a cyano group is preferable.
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the Hammett ⁇ p value for example, paragraphs 0024 to 0025 of JP-A-2009-263614 can be referred to, the contents of which are incorporated herein.
  • Either one of R 2 and R 3 and one of R 4 and R 5 are preferably a heteroaryl group.
  • the heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having a condensation number of 2 to 8, more preferably a single ring or a condensed ring having a condensation number of 2 to 4. .
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group preferably has one or more nitrogen atoms.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 10.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • Specific examples of the heteroaryl group include imidazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, pyridazyl group, triazyl group, quinolyl group, quinoxalyl group, isoquinolyl group, indolenyl group, furyl group, thienyl group, benzoxazolyl group.
  • the heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include the substituents represented by R 2 to R 5 described above. A halogen atom, an alkyl group, an alkoxy group or an aryl group is preferred.
  • a fluorine atom a chlorine atom, a bromine atom, or an iodine atom is preferable, and a chlorine atom is more preferable.
  • the alkyl group and alkoxy group preferably have 1 to 40 carbon atoms, more preferably 1 to 30 carbon atoms, and still more preferably 1 to 25 carbon atoms.
  • the alkyl group and alkoxy group are preferably linear or branched, and more preferably linear.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • R 2 and R 3 , R 4 and R 5 may be bonded to each other to form a ring.
  • R 2 and R 3 or R 4 and R 5 are bonded to each other to form a ring, it is preferable to form a 5- to 7-membered ring (preferably a 5- or 6-membered ring).
  • the ring formed is preferably a merocyanine dye used as an acidic nucleus. Specific examples include, for example, a structure described in paragraph 0026 of JP 2010-222557 A, and the contents thereof are incorporated in the present specification.
  • the ring formed by combining R 2 and R 3 or R 4 and R 5 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (also a thioketone body).
  • 2-thio-2,4-thiazolidinedione nucleus 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4 -With an imidazolidinedione nucleus, a 2-thio-2,4-imidazolidinedione nucleus, a 2-imidazoline-5-one nucleus, a 3,5-pyrazolidinedione nucleus, a benzothiophen-3-one nucleus, or an indanone nucleus More preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketone body), 3,5-pyrazolidinedione nucleus, benzothiophene-3 Is one nucleus or an indanone nucleus,.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, —BR A R B , or a metal atom, and —BR A R B is more preferable.
  • the number of carbon atoms of the alkyl group represented by R 6 and R 7 is preferably 1 to 40, more preferably 1 to 30, and still more preferably 1 to 25.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkyl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the aryl group represented by R 6 and R 7 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the heteroaryl group represented by R 6 and R 7 is preferably a single ring or a condensed ring, and more preferably a single ring.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 5.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the metal atom represented by R 6 and R 7 is preferably magnesium, aluminum, calcium, barium, zinc, tin, aluminum, zinc, tin, vanadium, iron, cobalt, nickel, copper, palladium, iridium, or platinum, Aluminum, zinc, vanadium, iron, copper, palladium, iridium, or platinum is more preferable.
  • R A and R B each independently represents a hydrogen atom or a substituent.
  • substituent represented by R A and R B include the substituents represented by R 2 to R 5 described above.
  • a halogen atom, an alkyl group, an alkoxy group, an aryl group and a heteroaryl group are preferred.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, and a fluorine atom is more preferable.
  • the alkyl group and alkoxy group preferably have 1 to 40 carbon atoms, more preferably 1 to 30 carbon atoms, and still more preferably 1 to 25 carbon atoms.
  • the alkyl group and alkoxy group are preferably linear or branched, and more preferably linear.
  • the alkyl group and the alkoxy group may have a substituent or may be unsubstituted. Examples of the substituent include an aryl group, a heteroaryl group, and a halogen atom.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or may be unsubstituted.
  • the substituent examples include an alkyl group, an alkoxy group, and a halogen atom.
  • the heteroaryl group may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 5.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, an alkoxy group, and a halogen atom.
  • R 6 may be covalently bonded or coordinated to R 1a or R 3 .
  • R 7 may be covalently bonded or coordinated to R 1b or R 5 .
  • Examples of the pyrrolopyrrole compound represented by the general formula 1 include compounds D-1 to D-162 described in paragraphs 0049 to 0062 of JP 2010-222557 A, the contents of which are incorporated herein.
  • a preferred embodiment of the pyrrolopyrrole compound represented by the general formula 1 includes a pyrrolopyrrole compound represented by the general formula 1-1.
  • R 31a and R 31b each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms.
  • R 32 is a cyano group, an acyl group having 1 to 6 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, an alkyl or arylsulfinyl group having 1 to 10 carbon atoms, or a nitrogen-containing heteroaryl group having 3 to 10 carbon atoms Represents.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a heteroaryl group having 4 to 10 carbon atoms, and R 6 and R 7 May combine to form a ring, which is an alicyclic ring having 5 to 10 carbon atoms, an aryl ring having 6 to 10 carbon atoms, or a heteroaryl ring having 3 to 10 carbon atoms.
  • R 8 and R 9 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 10 carbon atoms.
  • X represents an oxygen atom, a sulfur atom, —NR—, —CRR′—, or —CH ⁇ CH—, wherein R and R ′ are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a carbon number of 6 to 10 aryl groups are represented.
  • R 31a and R 31b each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms, Is synonymous with the example demonstrated by R ⁇ 1a> and R ⁇ 1b> in the said General formula 1, and its preferable range is also the same.
  • R 31a and R 31b are preferably the same.
  • R 32 is a cyano group, an alkoxycarbonyl group having 1 to 6 carbon atoms, an alkyl or arylsulfinyl group having 1 to 10 carbon atoms, or a nitrogen-containing heteroaryl group having 3 to 10 carbon atoms. are the same as examples of R 2 in formula 1, the preferable range is also the same.
  • R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a heteroaryl group having 4 to 10 carbon atoms, specifically, These are synonymous with the examples of the substituents of R 2 and R 3 in the general formula 1, and the preferred ranges are also the same.
  • R 6 and R 7 may combine to form a ring, and the ring to be formed is an alicyclic ring having 5 to 10 carbon atoms, an aryl ring having 6 to 10 carbon atoms, or a hetero ring having 3 to 10 carbon atoms.
  • An aryl ring, and preferred examples include a benzene ring, a naphthalene ring, or a pyridine ring.
  • R 8 and R 9 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 10 carbon atoms, Specifically are the same as examples of the substituent of R 2 and R 3 in the general formula 1, preferred ranges are also the same.
  • X represents an oxygen atom, a sulfur atom, —NR—, —CRR′—, or —CH ⁇ CH—.
  • R and R ′ each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms, preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • Z 1 and Z 2 are each independently a nonmetallic atom group forming a 5-membered or 6-membered nitrogen-containing heterocyclic ring that may be condensed
  • R 101 and R 102 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group or an aryl group
  • L 1 represents a methine chain composed of an odd number of methines
  • a and b are each independently 0 or 1
  • X 1 represents an anion
  • c represents the number necessary for balancing the charge
  • the site represented by Cy in the formula is an anion moiety.
  • X 1 represents a cation
  • c represents a number necessary to balance the charge, and when the charge
  • Z 1 and Z 2 each independently represent a nonmetallic atom group that forms a 5-membered or 6-membered nitrogen-containing heterocyclic ring that may be condensed.
  • the nitrogen-containing heterocycle may be condensed with another heterocycle, aromatic ring or aliphatic ring.
  • the nitrogen-containing heterocycle is preferably a 5-membered ring.
  • a structure in which a 5-membered nitrogen-containing heterocyclic ring is condensed with a benzene ring or a naphthalene ring is more preferable.
  • nitrogen-containing heterocycle examples include an oxazole ring, an isoxazole ring, a benzoxazole ring, a naphthoxazole ring, an oxazolocarbazole ring, an oxazodibenzobenzofuran ring, a thiazole ring, a benzothiazole ring, a naphthothiazole ring, an indolenine ring, Examples thereof include benzoindolenin ring, imidazole ring, benzimidazole ring, naphthimidazole ring, quinoline ring, pyridine ring, pyrrolopyridine ring, furopyrrole ring, indolizine ring, imidazoquinoxaline ring, and quinoxaline ring.
  • a quinoline ring, an indolenine ring, a benzoindolenine ring, a benzoxazole ring, a benzothiazole ring, or a benzimidazole ring is preferable, and an indolenine ring, a benzothiazole ring, or a benzimidazole ring is more preferable.
  • the nitrogen-containing heterocyclic ring and the ring condensed thereto may have a substituent.
  • substituents include a halogen atom, cyano group, nitro group, alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group, heteroaryl group, —OR c1 , —COR c2 , —COOR c3 , —OCOR c4 , — NR c5 R c6 , —NHCOR c7 , —CONR c8 R c9 , —NHCONR c10 R c11 , —NHCOOR c12 , —SR c13 , —SO 2 R c14 , —SO 2 OR c15 , —NHSO 2 R c16 , and — SO 2 NR c17 R c18 may be mentioned.
  • R c1 to R c18 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • R c3 of —COOR c3 is a hydrogen atom (that is, a carboxyl group)
  • the hydrogen atom may be dissociated (that is, a carbonate group) or may be in a salt state.
  • R c15 of —SO 2 OR c15 is a hydrogen atom (ie, a sulfo group)
  • the hydrogen atom may be dissociated (ie, a sulfonate group) or may be in a salt state.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group.
  • a carboxyl group or a sulfo group is preferable, and a sulfo group is more preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and still more preferably 2 to 8 carbon atoms.
  • the alkenyl group may be linear, branched, or cyclic.
  • the alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and still more preferably 2 to 8 carbon atoms.
  • the alkynyl group may be linear, branched, or cyclic.
  • the alkynyl group may be unsubstituted or may have a substituent.
  • substituents include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and still more preferably 6 to 10 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the alkyl part of the aralkyl group is the same as the above alkyl group.
  • the aryl part of the aralkyl group is the same as the above aryl group.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 40, more preferably 7 to 30, and still more preferably 7 to 25.
  • the heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, and still more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • R 101 and R 102 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, or an aryl group.
  • alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group those described above for the substituent can be used, and preferred ranges are also the same.
  • the alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group may have a substituent or may be unsubstituted.
  • substituents examples include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group.
  • a carboxyl group or a sulfo group is preferable, and a sulfo group is more preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • L 1 represents a methine chain composed of an odd number of methines.
  • L 1 is preferably a methine chain composed of 3, 5 or 7 methine groups.
  • the methine group may have a substituent.
  • the methine group having a substituent is preferably a central (meso-position) methine group.
  • Specific examples of the substituent include a substituent that the nitrogen-containing heterocycle of Z 1 and Z 2 may have, and a group represented by the following formula (a). Further, two substituents of the methine chain may be bonded to form a 5- or 6-membered ring.
  • * represents a connecting part with a methine chain
  • a 1 represents an oxygen atom or a sulfur atom.
  • a and b are each independently 0 or 1. When a is 0, the carbon atom and the nitrogen atom are bonded by a double bond, and when b is 0, the carbon atom and the nitrogen atom are bonded by a single bond. Both a and b are preferably 0. When a and b are both 0, general formula 2 is expressed as follows.
  • X 1 is an anion
  • c is represents a number necessary to balance the charge.
  • anions include halide ions (Cl ⁇ , Br ⁇ , I ⁇ ), p-toluenesulfonate ions, ethyl sulfate ions, PF 6 ⁇ , BF 4 ⁇ , ClO 4 ⁇ , tris (halogenoalkylsulfonyl) methide anions ( For example, (CF 3 SO 2 ) 3 C ⁇ ), di (halogenoalkylsulfonyl) imide anion (eg (CF 3 SO 2 ) 2 N ⁇ ), tetracyanoborate anion and the like can be mentioned.
  • X 1 represents a cation
  • c is represents a number necessary to balance the charge.
  • the cations include alkali metal ions (Li + , Na + , K + etc.), alkaline earth metal ions (Mg 2+ , Ca 2+ , Ba 2+ , Sr 2+ etc.), transition metal ions (Ag + , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ etc.), other metal ions (Al 3+ etc.), ammonium ion, triethylammonium ion, tributylammonium ion, pyridinium ion, tetrabutylammonium Ion, guanidinium ion, tetramethylguanidinium ion, diazabicycloundecenium, and the like.
  • the compound represented by the general formula 2 is also preferably a compound represented by the following formula (3-1) or (3-2). This compound is excellent in heat resistance.
  • R 1A , R 2A , R 1B and R 2B each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group or an aryl group
  • L 1A and L 1B each independently represent a methine chain consisting of an odd number of methine groups
  • Y 1 and Y 2 each independently represent —S—, —O—, —NR X1 — or —CR X2 R X3 —
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom or an alkyl group
  • V 1A , V 2A , V 1B and V 2B are each independently a halogen atom, cyano group, nitro group, alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group, heteroaryl group, —OR c1 , — COR c2 , —
  • n1 and m2 each independently represents an integer of 0 to 4,
  • X 1 represents an anion
  • c represents a number necessary to balance the charge
  • X 1 represents a cation
  • c represents a number necessary for balancing the charge
  • the charge at the site represented by Cy in the formula is neutralized in the molecule, X 1 does not exist.
  • R 1A , R 2A , R 1B and R 2B are synonymous with the alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group described for R 101 and R 102 in formula 2, and preferred ranges are also included. It is the same. These groups may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group. A carboxyl group or a sulfo group is preferable, and a sulfo group is more preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • R 1A , R 2A , R 1B and R 2B represent an alkyl group, it is more preferably a linear alkyl group.
  • Y 1 and Y 2 are each independently -S -, - O -, - NR X1 - or -CR X2 R X3 - represents, -NR X1 - is preferred.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, more preferably linear.
  • the alkyl group is more preferably a methyl group or an ethyl group.
  • L 1A and L 1B have the same meaning as L 1 in formula 2, and the preferred range is also the same.
  • the groups represented by V 1A , V 2A , V 1B and V 2B are synonymous with the ranges described for the substituents that the nitrogen-containing heterocycles of Z 1 and Z 2 in formula 2 may have, and preferred ranges are also included. It is the same.
  • m1 and m2 each independently represents an integer of 0 to 4, preferably 0 to 2.
  • the anion and cation represented by X 1 have the same meaning as the range described for X 1 in formula 2, and the preferred range is
  • Examples of the compound represented by the general formula 2 include compounds described in paragraphs 0044 to 0045 of JP-A-2009-108267, the contents of which are incorporated herein.
  • the squarylium dye is preferably a compound represented by the general formula (1).
  • a 1 and A 2 each independently represent an aryl group, a heterocyclic group, or a group represented by the following General Formula (2);
  • Z 1 represents a nonmetallic atom group forming a nitrogen-containing heterocyclic ring
  • R 2 represents an alkyl group, an alkenyl group or an aralkyl group
  • d represents 0 or 1
  • a 1 and A 2 in the general formula (1) each independently represent an aryl group, a heterocyclic group or a group represented by the general formula (2), and a group represented by the general formula (2) is preferable.
  • the number of carbon atoms of the aryl group represented by A 1 and A 2 is preferably 6 to 48, more preferably 6 to 24, and still more preferably 6 to 12. Specific examples include a phenyl group and a naphthyl group. When the aryl group has a substituent, the carbon number of the aryl group means the number excluding the carbon number of the substituent.
  • the heterocyclic group represented by A 1 and A 2 is preferably a 5-membered ring or a 6-membered ring.
  • the heterocyclic group is preferably a monocyclic ring or a condensed ring, more preferably a monocyclic ring or a condensed ring having 2 to 8 condensations, a monocyclic ring or a condensed ring having 2 to 4 condensations being more preferable, A condensed ring having a condensation number of 2 or 3 is particularly preferred.
  • a hetero atom contained in a heterocyclic group a nitrogen atom, an oxygen atom, and a sulfur atom are illustrated, and a nitrogen atom or a sulfur atom is preferable.
  • the number of heteroatoms is preferably 1 to 3, and more preferably 1 to 2.
  • a heterocyclic group derived from a monocyclic or polycyclic aromatic ring such as a 5-membered or 6-membered ring containing at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
  • the aryl group and heterocyclic group may have a substituent.
  • the substituent T group shown below is mentioned, for example.
  • a halogen atom for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • a linear or branched alkyl group a linear or branched, substituted or unsubstituted alkyl group, preferably an alkyl group having 1 to 30 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group) Group, tert-butyl group, n-octyl group, 2-chloroethyl group, 2-cyanoethyl group, 2-ethylhexyl group);
  • a cycloalkyl group preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as a cyclohexyl group and a cyclopentyl group, and a multicycloalkyl group such as a bicycloalkyl group
  • a group such as a bicycloalkenyl group preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms such as a bicyclo [2,2,1] hept-2-en-1-yl group, bicyclo [2,2,2] oct-2-en-4-yl group) and a tricycloalkenyl group, preferably a monocyclic cycloalkenyl group
  • An alkynyl group preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as an ethynyl group, a propargyl group, or a trimethylsilylethynyl group
  • Aryl group preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as phenyl group, para-tolyl group, naphthyl group, meta-chlorophenyl group, and ortho-hex
  • a cyano group preferably a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, such as a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, an n-octyloxy group, and a 2-methoxy group; Ethoxy group); Aryloxy group (preferably a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, such as phenoxy group, 2-methylphenoxy group, 2,4-di-tert-amylphenoxy group, 4-tert -Butylphenoxy group
  • the substituent that the aryl group and heterocyclic group may have is preferably a halogen atom, an alkyl group, a hydroxy group, an amino group, or an acylamino group.
  • the halogen atom is preferably a chlorine atom.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the alkyl group is preferably linear or branched.
  • the amino group is preferably a group represented by —NR 100 R 101 .
  • R 100 and R 101 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • the alkyl group is preferably linear or branched, and more preferably linear.
  • the acylamino group is preferably a group represented by —NR 102 —C ( ⁇ O) —R 103 .
  • R102 represents a hydrogen atom or an alkyl group, and preferably a hydrogen atom.
  • R 103 represents an alkyl group.
  • the number of carbon atoms of the alkyl group represented by R 102 and R 103 is preferably 1-20, more preferably 1-10, still more preferably 1-5, and particularly preferably 1-4.
  • the aryl group and the heterocyclic group have two or more substituents, the plurality of substituents may be the same or different.
  • R 2 represents an alkyl group, an alkenyl group or an aralkyl group, and is preferably an alkyl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and still more preferably 2 to 12 carbon atoms.
  • the alkyl group and alkenyl group may be linear, branched, or cyclic, and are preferably linear or branched.
  • the aralkyl group preferably has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms.
  • the nitrogen-containing heterocycle formed by Z 1 is preferably a 5-membered ring or a 6-membered ring. Further, the nitrogen-containing heterocycle is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, more preferably a single ring or a condensed ring having 2 to 4 condensations. Particularly preferred are 2 or 3 fused rings.
  • the nitrogen-containing heterocyclic ring may contain a sulfur atom in addition to the nitrogen atom.
  • the nitrogen-containing heterocycle may have a substituent. Examples of the substituent include the groups described in the substituent group T described above.
  • a halogen atom, an alkyl group, a hydroxy group, an amino group, or an acylamino group is preferable, and a halogen atom or an alkyl group is more preferable.
  • the halogen atom is preferably a chlorine atom.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 12 carbon atoms.
  • the alkyl group is preferably linear or branched.
  • the group represented by the general formula (2) is preferably a group represented by the following general formula (3) or (4).
  • R 11 represents an alkyl group, an alkenyl group or an aralkyl group
  • R 12 represents a substituent
  • m is 2 or more
  • R 12 are linked to each other.
  • X may represent a nitrogen atom or CR 13 R 14
  • R 13 and R 14 each independently represent a hydrogen atom or a substituent
  • m is an integer of 0 to 4
  • the wavy line represents a connecting hand with the general formula (1).
  • R 11 in the general formulas (3) and (4) has the same meaning as R 2 in the general formula (2), and the preferred range is also the same.
  • R 12 in the general formulas (3) and (4) represents a substituent.
  • the substituent include the groups described in the substituent group T described above.
  • a halogen atom, an alkyl group, a hydroxy group, an amino group, or an acylamino group is preferable, and a halogen atom or an alkyl group is more preferable.
  • the halogen atom is preferably a chlorine atom.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 12 carbon atoms.
  • the alkyl group is preferably linear or branched.
  • R 12 may be linked to form a ring.
  • the ring include an alicyclic ring (non-aromatic hydrocarbon ring), an aromatic ring, and a heterocyclic ring.
  • the ring may be monocyclic or multicyclic.
  • the linking group is a group consisting of —CO—, —O—, —NH—, a divalent aliphatic group, a divalent aromatic group, and combinations thereof. They can be linked by a divalent linking group selected from the above.
  • R 12 are connected to each other to form a benzene ring.
  • X in the general formula (3) represents a nitrogen atom or CR 13 R 14
  • R 13 and R 14 each independently represent a hydrogen atom or a substituent.
  • substituents include the groups described in the substituent group T described above.
  • an alkyl group etc. are mentioned.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10, more preferably 1 to 5, particularly preferably 1 to 3, and most preferably 1.
  • the alkyl group is preferably linear or branched, and more preferably linear.
  • m represents an integer of 0 to 4, preferably 0 to 2.
  • the infrared light absorption layer 14 may contain components other than the infrared light absorber. Regarding other components, components that may be contained in an infrared light absorbing composition to be described later are mentioned, and will be described in detail later.
  • the method for producing the infrared light absorbing layer 14 is not particularly limited.
  • the infrared light absorbing composition containing the infrared light absorbing agent is applied onto a predetermined substrate, and dried as necessary. Can be formed.
  • the infrared light absorbing composition contains the above infrared light absorber, and in addition, a binder (for example, resin, gelatin), a polymerizable compound, an initiator, or a surfactant is included. Also good.
  • Binders include (meth) acrylic resins, styrene resins, epoxy resins, ene / thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, poly Examples include arylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, and polyester resin. One of these resins may be used alone, or two or more thereof may be mixed and used.
  • the weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is more preferably 1,000,000 or less, and further preferably 500,000 or less.
  • the lower limit is more preferably 3,000 or more, and even more preferably 5,000 or more.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 or more, and more preferably 200 to 2,000,000.
  • the upper limit is more preferably 1,000,000 or less, and particularly preferably 500,000 or less.
  • the above resin preferably has a 5% thermal mass decrease temperature of 25 ° C. at 20 ° C./min, preferably 200 ° C. or higher, and more preferably 260 ° C. or higher.
  • the resin is selected from a repeating unit represented by the following formula (MX2-1), a repeating unit represented by the following formula (MX2-2), and a repeating unit represented by the following formula (MX2-3).
  • MX2-1 a repeating unit represented by the following formula
  • MX2-2 a repeating unit represented by the following formula
  • MX2-3 a repeating unit represented by the following formula (MX2-3).
  • a seed-containing polymer can also be used.
  • M represents an atom selected from Si, Ti, Zr and Al
  • X 2 represents a substituent or a ligand
  • at least one of n X 2 is a hydroxy group, an alkoxy group, an acyloxy group , A phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O ⁇ C (R a ) (R b ), and X 2 are bonded to each other to form a ring.
  • R a and R b each independently represent a monovalent organic group
  • R 1 represents a hydrogen atom or an alkyl group
  • L 1 represents a single bond or a divalent linking group
  • n is This represents the number of bonds of M with X 2 .
  • M is an atom selected from Si, Ti, Zr and Al, Si, Ti or Zr is preferable, and Si is more preferable.
  • X 2 represents a substituent or a ligand, and at least one of n X 2 is a hydroxy group, an alkoxy group, an acyloxy group, a phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O ⁇ C.
  • (R a ) (R b ) is one kind selected from X 2 and X 2 may be bonded to each other to form a ring.
  • at least one alkoxy group is preferably one selected from acyloxy groups, and oxime groups, among the n X 2, more be at least one is alkoxy group More preferably, all of X 2 are alkoxy groups.
  • R a and R b each independently represents a monovalent organic group.
  • the number of carbon atoms of the alkoxy group represented by X 2 is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 2.
  • the alkoxy group may be linear, branched or cyclic, but is preferably linear or branched, more preferably linear.
  • the alkoxy group may be unsubstituted, may have a substituent, and is preferably unsubstituted.
  • substituents examples include a halogen atom (preferably a fluorine atom), a polymerizable group (for example, a vinyl group, a (meth) acryloyl group, a styryl group, an epoxy group, and an oxetane group), an amino group, an isocyanate group, and an isocyanurate.
  • a halogen atom preferably a fluorine atom
  • a polymerizable group for example, a vinyl group, a (meth) acryloyl group, a styryl group, an epoxy group, and an oxetane group
  • amino group an isocyanate group
  • isocyanurate an isocyanurate.
  • Examples of the acyloxy group represented by X 2 include a substituted or unsubstituted alkylcarbonyloxy group having 2 to 30 carbon atoms and a substituted or unsubstituted arylcarbonyloxy group having 6 to 30 carbon atoms. Examples include formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy, benzoyloxy group, and p-methoxyphenylcarbonyloxy group. Examples of the substituent include those described above.
  • the number of carbon atoms of the oxime group represented by X 2 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.
  • an ethyl methyl ketoxime group and the like can be mentioned.
  • the amino group represented by X 2 include an amino group, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, and 0 to 30 carbon atoms.
  • Heterocyclic amino groups and the like can be mentioned. Examples thereof include an amino group, a methylamino group, a dimethylamino group, an anilino group, an N-methyl-anilino group, a diphenylamino group, and an N-1,3,5-triazin-2-ylamino group.
  • Examples of the substituent include those described above.
  • Examples of the monovalent organic group represented by R a and R b include an alkyl group, an aryl group, and a group represented by —R 101 —COR 102 .
  • the alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be unsubstituted or may have the above-described substituent.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aryl group may be unsubstituted or may have the above-described substituent.
  • R 101 represents an arylene group
  • R 102 represents an alkyl group or an aryl group.
  • the number of carbon atoms of the arylene group represented by R 101 is preferably 1-20, and more preferably 1-10.
  • the arylene group may be linear, branched, or cyclic.
  • the arylene group may be unsubstituted or may have the above-described substituent. Examples of the alkyl group and aryl group represented by R 102 include those described for R a and R b , and the preferred ranges are also the same.
  • hydrocarbon groups are preferred as substituents other than hydroxy groups, alkoxy groups, acyloxy groups, phosphoryloxy groups, sulfonyloxy groups, amino groups, and oxime groups.
  • hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the alkyl group may be linear, branched or cyclic.
  • the linear alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • the branched alkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • the carbon number of the cyclic alkyl group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
  • the carbon number of the alkenyl group is preferably 2 to 10, more preferably 2 to 8, and further preferably 2 to 4.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 6 to 10 carbon atoms.
  • the hydrocarbon group may have a substituent.
  • substituents examples include an alkyl group, a halogen atom (preferably a fluorine atom), a polymerizable group (for example, a vinyl group, a (meth) acryloyl group, a styryl group, Epoxy group, oxetane group, etc.), amino group, isocyanate group, isocyanurate group, ureido group, mercapto group, sulfide group, sulfo group, carboxyl group, hydroxyl group, and alkoxy group.
  • a halogen atom preferably a fluorine atom
  • a polymerizable group for example, a vinyl group, a (meth) acryloyl group, a styryl group, Epoxy group, oxetane group, etc.
  • amino group isocyanate group, isocyanurate group, ureido group, mercapto group, sulfide group, sulf
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably 1.
  • the alkyl group is preferably linear or branched, and more preferably linear.
  • part or all of the hydrogen atoms may be substituted with a halogen atom (preferably a fluorine atom).
  • L 1 represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 — (R 10 represents a hydrogen atom or An alkyl group, preferably a hydrogen atom), and a group consisting of a combination thereof, and an alkylene group, an arylene group, or a group consisting of a combination of —O— and at least one of the alkylene groups is preferable.
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may have a substituent and is preferably unsubstituted.
  • the alkylene group may be any of linear, branched and cyclic.
  • the cyclic alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • a phenylene group is preferable.
  • the polymer may contain other repeating units in addition to the repeating units represented by formulas (MX2-1), (MX2-2), and (MX2-3).
  • Other components constituting the repeating unit are the same as those disclosed in paragraphs 0068 to 0075 of JP2010-106268A (corresponding to ⁇ 0112> to ⁇ 0118> of the corresponding US Patent Application Publication No. 2011/0124824).
  • the description of the polymerization components can be taken into account, the contents of which are incorporated herein.
  • Preferable other repeating units include repeating units represented by the following formulas (MX3-1) to (MX3-4).
  • R 5 represents a hydrogen atom or an alkyl group
  • L 4 represents a single bond or a divalent linking group
  • R 10 represents an alkyl group or an aryl group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • R 5 has the same meaning as R 1 in formulas (MX2-1) to (MX2-3), and the preferred range is also the same.
  • L 4 has the same meaning as L 1 in formulas (MX2-1) to (MX2-3), and the preferred range is also the same.
  • the alkyl group represented by R 10 may be linear, branched or cyclic, and is preferably cyclic.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may have a substituent, and examples of the substituent include those described above.
  • the aryl group represented by R 10 may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6.
  • R 10 is preferably a cyclic alkyl group or an aryl group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an aryl group. Examples of the alkyl group and aryl group are the same as those for R 10 .
  • Alkyl groups are preferred.
  • the alkyl group is preferably linear.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 5 carbon atoms.
  • the polymer contains other repeating units (preferably repeating units represented by formulas (MX3-1) to (MX3-4)), they are represented by formulas (MX2-1) to (MX2-3).
  • the molar ratio of the total of repeating units to the total of other repeating units is preferably 95: 5 to 20:80, and more preferably 90:10 to 30:70.
  • polymer examples include the following.
  • the weight average molecular weight of the polymer is preferably 500 to 300,000.
  • the lower limit is more preferably 1000 or more, and still more preferably 2000 or more.
  • the upper limit is more preferably 250,000 or less and even more preferably 200000 or less.
  • (Meth) acrylic resin includes a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester. Specific examples include polymers obtained by polymerizing at least one selected from (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylamide and (meth) acrylonitrile.
  • polyester resin examples include polyols (for example, ethylene glycol, propylene glycol, glycerin, and trimethylolpropane), polybasic acids (for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatics thereof.
  • polyols for example, ethylene glycol, propylene glycol, glycerin, and trimethylolpropane
  • polybasic acids for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatics thereof.
  • C2-C20 aliphatic dicarboxylic acid such as aromatic dicarboxylic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, etc., in which nuclear hydrogen atom is substituted with methyl group, ethyl group, phenyl group, etc., and cyclohexanedicarboxylic acid
  • a polymer obtained by a ring-opening polymerization of a cyclic ester compound such as a caprolactone monomer (for example, polycaprolactone).
  • Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and aliphatic epoxy resin.
  • Examples of bisphenol A type epoxy resins include JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resins Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1055 Etc.).
  • Examples of the bisphenol F type epoxy resin include JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON 830, EPICLON 835 (above, made by DIC Corporation), LCE-21, RE- 602S (Nippon Kayaku Co., Ltd.) etc. are mentioned.
  • Phenol novolac type epoxy resins include JER152, JER154, JER157S70, JER157S65 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON N-740, EPICLON N-740, EPICLON N-770, EPICLON N-775 (above, DIC Corporation) and the like.
  • Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation) ), EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • aliphatic epoxy resins examples include ADEKA RESIN EP-4080S, ADEKA RESIN EP-4085S, ADEKA RESIN EP-4088S (manufactured by ADEKA Corporation) Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EHPE3150 EPOLEAD PB 4700 (manufactured by Daicel Chemical Industries, Ltd.), Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (manufactured by Nagase ChemteX Corporation), etc. It is done.
  • ADEKA RESIN EP-4000S ADEKA RESIN EP-4003S
  • ADEKA RESIN EP-4010S ADEKA RESIN EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD -1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S (manufactured by Japan Epoxy Resin Corporation), and the like.
  • the resin may have an acid group.
  • the acid group include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. These acid groups may be used alone or in combination of two or more.
  • a polymer having a carboxyl group in the side chain is preferred, and a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, a crotonic acid copolymer, a maleic acid copolymer, a partial An esterified maleic acid copolymer, an alkali-soluble phenol resin such as a novolak-type resin, etc., an acid cellulose derivative having a carboxyl group in the side chain, and a polymer having a hydroxyl group and an acid anhydride added thereto Can be mentioned.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable.
  • Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate,
  • vinyl compounds such as hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, and cyclohexyl (meth) acrylate, Styrene, ⁇ -methylstyrene, vinyl tolu
  • Examples of the resin having an acid group include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, and benzyl Multi-component copolymers composed of (meth) acrylate / (meth) acrylic acid / other monomers are preferred.
  • Examples of the resin having an acid group include a compound represented by the following general formula (ED1) and / or a compound represented by the following general formula (ED2) (hereinafter, these compounds may be referred to as “ether dimers”).
  • ED1 a compound represented by the following general formula
  • ED2 a compound represented by the following general formula
  • a polymer (a) obtained by polymerizing a monomer component containing is also preferred.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • ED2 general formula (ED2)
  • JP 2010-168539 A the description in JP 2010-168539 A can be referred to.
  • the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1 and R 2 is not particularly limited, and examples thereof include a methyl group, an ethyl group, linear or branched alkyl groups such as n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, tert-amyl group, stearyl group, lauryl group, and 2-ethylhexyl group; Aryl groups such as phenyl; alicyclic groups such as cyclohexyl, tert-butylcyclohexyl, dicyclopentadienyl, tricyclodecanyl, isobornyl, adamantyl, and 2-methyl-2-adamantyl An alkyl group substituted with an alkoxy group such as a 1-methoxyethyl group and a 1-ethoxyethyl
  • a primary or secondary carbon substituent which is difficult to be removed by an acid or heat such as a methyl group, an ethyl group, a cyclohexyl group, and a benzyl group is preferable.
  • ether dimer for example, paragraph 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
  • the structure derived from the compound represented by the general formula (ED) may be copolymerized with other monomers.
  • the resin having an acid group may contain a structural unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a benzene ring that may contain a benzene ring.
  • n represents an integer of 1 to 15.
  • the alkylene group of R 2 preferably has 2 to 3 carbon atoms.
  • the alkyl group of R 3 has 1 to 20 carbon atoms, preferably 1 to 10, and the alkyl group of R 3 may contain a benzene ring.
  • Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
  • resin having an acid group include the following structures.
  • Examples of the resin having an acid group include paragraphs 0558 to 0571 of JP2012-208494A (corresponding to ⁇ 0685> to ⁇ 0700> of US Patent Application Publication No. 2012/0235099). -The description of paragraphs 0076 to 0099 of 198808 can be referred to, and the contents thereof are incorporated in the present specification.
  • the acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g.
  • the lower limit is more preferably 50 mgKOH / g or more, and still more preferably 70 mgKOH / g or more.
  • the upper limit is more preferably 150 mgKOH / g or less, and still more preferably 120 mgKOH / g or less.
  • the resin may have a polymerizable group.
  • a film having hardness can be formed.
  • the polymerizable group include a (meth) allyl group and a (meth) acryloyl group.
  • the resin containing a polymerizable group include: Dial NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (produced by COOH containing polyurethane acrylic oligomer. Diamond Shamrock Co. Ltd., biscort R-264, KS resist 106).
  • the content of the resin is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more based on the total solid content of the infrared light absorbing composition.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
  • the infrared light absorbing composition preferably contains at least one selected from a resin, gelatin and a polymerizable compound, and more preferably contains at least one selected from gelatin and a polymerizable compound. According to this aspect, it is easy to produce an infrared light absorption layer excellent in heat resistance and solvent resistance. Moreover, when using a polymeric compound, it is preferable to use together a polymeric compound and a photoinitiator.
  • the infrared light absorbing composition preferably contains gelatin.
  • gelatin By containing gelatin, it is easy to form an infrared light absorption layer having excellent heat resistance. Although the detailed mechanism is unknown, it is assumed that it is because an aggregate is easily formed with an infrared light absorber and gelatin.
  • a cyanine compound is used as an infrared light absorber, an infrared light absorption layer excellent in heat resistance is easily formed.
  • Gelatin includes acid-treated gelatin and alkali-treated gelatin (such as lime treatment) depending on the synthesis method, and both can be preferably used.
  • the molecular weight of gelatin is preferably 10,000 to 1,000,000.
  • modified gelatin modified by utilizing the amino group or carboxyl group of gelatin can also be used (eg, phthalated gelatin).
  • inert gelatin for example, Nitta gelatin 750
  • phthalated gelatin for example, Nitta gelatin 801
  • the curing agent conventionally known ones can be used.
  • aldehyde compounds such as formaldehyde and glutaraldehyde, reactive halogens described in US Pat. No. 3,288.775 and others.
  • halogen carboxyl aldehydes such as mucochloric acid, dihydroxydioxane, dichlorodioxane Dioxanes such as, or inorganic hardeners such as chromium alum, zirconium sulfate, etc. And the like.
  • the gelatin content is preferably 1 to 99% by mass with respect to the total solid content of the infrared light absorbing composition.
  • the lower limit is more preferably 10% by mass or more, and still more preferably 20% by mass or more.
  • the upper limit is more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • the infrared light absorbing composition preferably contains a polymerizable compound.
  • the polymerizable compound include a compound having a group having an ethylenically unsaturated bond, a cyclic ether (epoxy, oxetane) group, or a methylol group, and a compound having an ethylenically unsaturated bond is preferable.
  • the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • the polymerizable compound may be monofunctional or polyfunctional, and is preferably polyfunctional (polymerizable compound having two or more polymerizable groups).
  • a polyfunctional compound By including a polyfunctional compound, an infrared light absorption layer having a three-dimensional crosslinked product can be formed. And since an infrared-light absorption layer has a three-dimensional crosslinked material, heat resistance and solvent resistance can be improved.
  • the number of functional groups of the polymerizable compound is not particularly limited, preferably 2 to 8 functions, and more preferably 3 to 6 functions.
  • the polymerizable compound may be in any of chemical forms such as a monomer, a prepolymer, an oligomer, a mixture thereof, and a multimer thereof.
  • the polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
  • the molecular weight of the polymerizable compound is preferably less than 2000, more preferably 100 or more and less than 2000, and still more preferably 200 or more and less than 2000.
  • the polymerizable compound is preferably a compound containing a group having an ethylenically unsaturated bond.
  • description in paragraphs 0033 to 0034 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification.
  • ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available KAYARAD D-330; Nippon Kayaku Co., Ltd.) Dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) dipentaerythritol penta (meth) acrylate (commercially available product: KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.) ), Dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth)
  • Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferred. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the compound containing a group having an ethylenically unsaturated bond may further have an acid group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • an acid group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • the compound having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids.
  • a polyfunctional monomer in which an unreacted hydroxyl group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and more preferably, the aliphatic polyhydroxy compound is pentaerythritol and / or Or it is a dipentaerythritol.
  • Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the acid value of the compound having an acid group is preferably 0.1 to 40 mgKOH / g.
  • the lower limit is more preferably 5 mgKOH / g or more.
  • the upper limit is more preferably 30 mgKOH / g or less.
  • the polymerizable compound is also preferably a compound having a caprolactone structure.
  • the compound having a caprolactone structure description in paragraphs 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification.
  • Examples of commercially available products include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, and DPCA-60, a hexafunctional acrylate having six pentyleneoxy chains, manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 which is a trifunctional acrylate having three isobutyleneoxy chains.
  • the infrared light absorbing composition may contain a polymerization initiator.
  • the polymerization initiator include a thermal polymerization initiator or a photopolymerization initiator, and a photopolymerization initiator is preferable.
  • the content of the photopolymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the infrared light absorbing composition.
  • the lower limit is more preferably 0.1% by mass or more, and further preferably 0.5% by mass or more.
  • an upper limit 20 mass% or less is more preferable, and 15 mass% or less is still more preferable.
  • photopolymerization initiators Only one type or two or more types of photopolymerization initiators may be used, and in the case of two or more types, the total amount is preferably within the above range.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a curable compound by light, and can be appropriately selected according to the purpose. When polymerization is initiated by light, those having photosensitivity to visible light from the ultraviolet region are preferred.
  • the photopolymerization initiator is preferably a compound having at least an aromatic group.
  • acetophenone compounds commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • acylphosphine compound commercially available products IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and compounds described in JP-A 2013-164471 ( C-3). This content is incorporated herein.
  • the infrared light absorbing composition may contain a solvent.
  • a solvent There is no restriction
  • water and an organic solvent can be used, and an organic solvent is preferable.
  • the organic solvent for example, alcohols (for example, methanol), ketones, esters, ethers, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like are preferable. It is mentioned in. These may be used alone or in combination of two or more.
  • a mixed solution composed of two or more selected from ethyl carbitol acetate, butyl carbitol acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate is preferable.
  • alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph 0136 of JP2012-194534A, the contents of which are incorporated herein.
  • esters, ketones, and ethers are described in paragraph 0497 of JP2012-208494A (corresponding to ⁇ 0609> in US 2012/0235099 corresponding).
  • Further examples include acetic acid-n-amyl, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, and ethylene glycol monobutyl ether acetate.
  • the amount of the solvent in the infrared light absorbing composition is preferably such that the solid content is 10 to 90% by mass.
  • the lower limit is more preferably 20% by mass or more.
  • the upper limit is more preferably 80% by mass or less.
  • the infrared light absorbing composition may contain various surfactants from the viewpoint of further improving coatability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the liquid properties (particularly fluidity) when prepared as a coating liquid are further improved, and the uniformity of coating thickness and liquid-saving properties are further improved. can do. That is, when a film is formed using a coating liquid to which a composition containing a fluorosurfactant is applied, the interfacial tension between the coated surface and the coating liquid is reduced, and the wettability to the coated surface is improved. The applicability to the coated surface is improved. For this reason, it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in the composition.
  • fluorosurfactant examples include Megafuck F171, Megafuck F172, Megafuck F173, Megafuck F176, Megafuck F177, Megafuck F141, Megafuck F142, Megafuck F143, Megafuck F144, Megafuck R30, Mega Fuck F437, Mega Fuck F 475, Mega Fuck F 479, Mega Fuck F 482, Mega Fuck F 554, Mega Fuck F 780, RS-72-K (manufactured by DIC Corporation), Florard FC430, Florard FC 431, Florard FC 171 (and above, Manufactured by Sumitomo 3M Limited), Surflon S-382, Surflon SC-101, Surflon SC-103, Surflon SC-104, Surflon SC-105, Surflon SC1068, Furon SC-381, SURFLON SC-383, Surflon S393, Surflon KH-40 (Asahi Glass Co., Ltd.), PF636, PF656, PF6320,
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meth).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
  • the fluoropolymer which has an ethylenically unsaturated group in a side chain can also be used as a fluorine-type surfactant.
  • Specific examples thereof include compounds described in JP-A 2010-164965, paragraphs 0050 to 0090 and paragraphs 0289 to 0295, such as MegaFac RS-101, RS-102, and RS-718K manufactured by DIC. .
  • nonionic surfactant examples include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62 manufactured by BASF, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1) Solsperse 20000 (manufactured by Nippon Lubrizol Corporation), and the like. Also, NCW-101, NCW-1001, NCW-1002 manufactured by Wako Pure Chemical Industries, Ltd. can be
  • cationic surfactant examples include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
  • phthalocyanine derivatives trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.), Sandet BL (manufactured by Sanyo Chemical Co., Ltd.), and the like.
  • silicone-based surfactants include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torresilicone SH21PA, Torree Silicone SH28PA, Torree Silicone SH29PA, Torree Silicone SH30PA, Torree Silicone SH8400 (above, Toray Dow Corning Co., Ltd.) )), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4442 (above, manufactured by Momentive Performance Materials), KP341, KF6001, KF6002 (above, manufactured by Shin-Etsu Silicone Co., Ltd.) , BYK307, BYK323, BYK330 (above, manufactured by BYK Chemie) and the like.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the total solid content of the composition.
  • the surfactant may be contained not only in the infrared light absorbing layer but also in other layers.
  • the infrared light absorbing composition includes, for example, a dispersant, a sensitizer, a crosslinking agent, a curing accelerator, a filler, a thermosetting accelerator, a thermal polymerization inhibitor, a plasticizer, an adhesion promoter, and Further containing other auxiliary agents (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.) Can do.
  • auxiliary agents for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.
  • the infrared light absorbing composition can be applied by a method such as a dropping method (drop cast), a spin coater, a slit spin coater, a slit coater, screen printing, and applicator application.
  • the drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but at a temperature of 60 ° C. to 150 ° C. for about 30 seconds to 15 minutes.
  • the infrared light absorbing layer forming method may include other steps. There is no restriction
  • the heating temperature in the preheating step and the postheating step is usually 80 to 200 ° C, preferably 90 to 150 ° C.
  • the heating time in the preheating step and the postheating step is usually 30 to 240 seconds, and preferably 60 to 180 seconds.
  • the curing process is a process of curing the formed film as necessary, and the mechanical strength of the infrared light absorption layer is improved by performing this process.
  • an infrared light absorbing composition containing a polymerizable compound it is preferable to perform a curing treatment step.
  • a curing treatment step There is no restriction
  • “exposure” is used to include not only light of various wavelengths but also irradiation of an electron beam and X-ray radiation.
  • the exposure is preferably performed by irradiation with radiation, and as the radiation that can be used for the exposure, in particular, ultraviolet rays or visible light such as electron beams, KrF, ArF, g rays, h rays, and i rays are preferably used.
  • the exposure method include stepper exposure and exposure with a high-pressure mercury lamp. Exposure is preferably 5 ⁇ 3000mJ / cm 2, more preferably 10 ⁇ 2000mJ / cm 2, more preferably 50 ⁇ 1000mJ / cm 2.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the formed film.
  • the infrared light absorbing composition contains a polymerizable compound
  • the entire surface exposure promotes the curing of the polymerization components in the film, the curing of the film further proceeds, and the solvent resistance and heat resistance of the infrared light absorbing layer.
  • an apparatus which performs the said whole surface exposure According to the objective, it can select suitably, For example, UV (ultraviolet light) exposure machines, such as an ultrahigh pressure mercury lamp, are mentioned suitably.
  • a method of the whole surface heat treatment a method of heating the entire surface of the formed film can be given. By heating the entire surface, the solvent resistance and heat resistance of the infrared light absorbing layer are improved.
  • the heating temperature in the entire surface heating is preferably 120 to 250 ° C, more preferably 160 to 220 ° C.
  • the heating time in the entire surface heating is preferably 3 to 180 minutes, and more preferably 5 to 120 minutes.
  • an apparatus which performs whole surface heating According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hotplate, etc. are mentioned.
  • the infrared light reflection layer 16 is a layer having a shielding property (reflection property) with respect to light in the infrared light region.
  • the infrared light reflection layer 16 includes four layers, a first selective reflection layer 18a, a second selective reflection layer 20a, a first selective reflection layer 18b, and a second selective reflection layer 20b, from the infrared light absorption layer 14 side. It consists of the laminated body laminated
  • the first selective reflection layers 18a to 18b are layers in which a liquid crystal phase whose rotation direction of the spiral axis is the right direction is fixed, and a layer for selectively reflecting right circularly polarized light in a wavelength region having an infrared light region.
  • the second selective reflection layers 20a to 20b are layers formed by fixing a liquid crystal phase in which the rotation direction of the spiral axis is the left direction, and are layers for selectively reflecting left circularly polarized light in a wavelength region having an infrared light region. It is.
  • the infrared light absorption layer 14 is observed from the white arrow side (antireflection layer 12 side) in FIG.
  • the first selective reflection layers 18a to 18b and the second selective reflection layers 20a to 20b are each composed of a layer in which a liquid crystal phase (rod-like liquid crystal, disk-like liquid crystal) having a helical axis is fixed.
  • the liquid crystal phase having the respective spiral axes of each selective reflection layer is formed by overlapping a plurality of layers, and in one thin layer, the liquid crystal compound is arranged, for example, with the long axis parallel to the layer and aligned. is doing.
  • the one thin layer is accumulated so that the arrangement direction of the molecules is spiral.
  • the helical axis is usually perpendicular to the surface of each selective reflection layer. Therefore, either one of the left / right circularly polarized components is selectively reflected corresponding to the helical pitch.
  • the first selective reflection layer 18a and the second selective reflection layer 20a have substantially the same helical pitch, and the first selective reflection layer 18b and the second selective reflection layer 20b have substantially the same helical pitch.
  • the first selective reflection layer 18a and the second selective reflection layer 20a serve to reflect the short wavelength side of the infrared light band, and the first selective reflection layer 18b and the second selective reflection layer 20b are red. It plays a role of reflecting the long wavelength side in the outside light band. In other words, the infrared light band is complementarily reflected by using four selective reflection layers.
  • the selective reflection wavelengths of the first selective reflection layers are different from the viewpoint of reflecting the infrared light band in a complementary manner.
  • the selective reflection wavelengths of the two first selective reflection layers are different from each other, the difference between the two selective reflection wavelengths is preferably at least 20 nm, more preferably 30 nm or more, and even more preferably 40 nm or more.
  • the selective reflection wavelengths of the respective second selective reflection layers are different as in the case where there are a plurality of the first selective reflection layers.
  • the preferred embodiment is as described above.
  • the “selective reflection wavelength of the selective reflection layer” indicates a half-value transmittance: T1 / 2 (%) represented by the following equation, where Tmin (%) is the minimum value of the transmittance in the selective reflection layer.
  • Tmin the minimum value of the transmittance in the selective reflection layer.
  • T1 / 2 100 ⁇ (100 ⁇ Tmin) ⁇ 2
  • the infrared light reflection layer 16 shows the aspect of 4 layer structure, it is not limited to this aspect.
  • the total number of the first selective reflection layer and the second selective reflection layer is not particularly limited. For example, it is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the total number of first selective reflection layers and the total number of second selective reflection layers are independent of each other, and may be the same or different, and are preferably the same.
  • the infrared light reflection layer 16 may have two or more sets each including one first selective reflection layer and one second selective reflection layer. At this time, it is preferable that the selective reflection wavelengths of the first selective reflection layer and the second selective reflection layer included in each group are equal to each other.
  • the selective reflection wavelength of at least one first selective reflection layer and the selective reflection wavelength of at least one second selective reflection layer are preferably equal to each other.
  • at least one first selective reflection layer and at least one second selective reflection layer have the same helical pitch and exhibit opposite optical rotations, left and right of the same wavelength Any circularly polarized light can be reflected, which is preferable.
  • selective reflecting wavelengths of the selective reflection layer does not mean that they are exactly equal, and an error in a range that does not affect optically is allowed.
  • the selective reflection wavelengths of the two selective reflection layers are “equal to each other” means that the selective reflection wavelength difference between the two selective reflection layers is 20 nm or less, and the difference is 15 nm or less. Is preferable, and it is more preferable that it is 10 nm or less.
  • the transmission spectrum of the laminate shows one strong peak at this selective reflection wavelength, which is preferable from the viewpoint of reflection performance.
  • the infrared light reflection layer 16 preferably reflects light of at least 600 to 1200 nm, and at least one of the first selective reflection layer and the second selective reflection layer has a maximum reflectance value of 40% at 650 nm to 1200 nm. More preferably, it is more preferably 45% or more. All of the first selective reflection layers and all of the second selective reflection layers have a maximum value of reflectance at 650 nm to 1200 nm of preferably 40% or more, and more preferably 45% or more.
  • the thickness of the first selective reflection layer and the second selective reflection layer is not particularly limited, and is preferably about 1 to 8 ⁇ m (preferably about 2 to 7 ⁇ m). However, it is not limited to these ranges.
  • Each selective reflection layer having a desired helical pitch is formed by adjusting the type and concentration of materials (mainly liquid crystal compounds and chiral agents) used for forming each first selective reflection layer and second selective reflection layer. can do.
  • Each selective reflection layer is preferably a layer in which a cholesteric liquid crystal phase is fixed (a layer in which a cholesteric liquid crystal compound is fixed). That is, the first selective reflection layer is preferably a layer formed by fixing a cholesteric liquid crystal phase in which the rotation direction of the helical axis is the right direction, and the second selective reflection layer is a rotation direction of the helical axis in the left direction. A layer formed by fixing a certain cholesteric liquid crystal phase is preferable. Each selective reflection layer is preferably fixed by photopolymerization after applying a liquid crystal compound having a polymerizable group (cholesteric liquid crystal compound) and aligning it in a cholesteric liquid crystal phase.
  • each selective reflection layer it is preferable to use a curable (polymerizable) liquid crystal composition.
  • the liquid crystal composition an embodiment containing at least a rod-like liquid crystal compound having a polymerizable group, an optically active compound (chiral agent), and a polymerization initiator is preferable. Two or more of each component may be included.
  • a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound can be used in combination. Also, a combination of a low-molecular liquid crystal compound and a high-molecular liquid crystal compound is possible.
  • the polymerizable liquid crystal composition contains at least one selected from various additives such as a horizontal alignment agent, a non-uniformity inhibitor, a repellency inhibitor, and a polymerizable monomer. May be. Further, in the polymerizable liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, or metal oxide fine particles are added to the optical performance. Can be added within a range that does not decrease.
  • various additives such as a horizontal alignment agent, a non-uniformity inhibitor, a repellency inhibitor, and a polymerizable monomer. May be.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, or metal oxide fine particles are added to the optical performance. Can be added within a range that does not decrease.
  • the liquid crystal compound that can be used may be a so-called rod-shaped liquid crystal compound or a disk-shaped liquid crystal compound, and is not particularly limited. Among these, a rod-like liquid crystal compound is preferable. Examples of the rod-like liquid crystal compound that can be used in the present invention are rod-like nematic liquid crystal compounds.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferred. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the liquid crystal compound may be polymerizable or non-polymerizable, and a liquid crystal compound having a polymerizable group is preferably used.
  • the first selective reflection layer and / or the second selective reflection layer is preferably a layer formed using a liquid crystal compound having a polymerizable group. That is, the first selective reflection layer and / or the second selective reflection layer is preferably a layer formed by polymerizing a liquid crystal compound having a polymerizable group.
  • the polymerizable group includes an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group (for example, acryloyloxy group, methacryloyloxy group). .
  • the number of polymerizable groups possessed by the liquid crystal compound is preferably 1 to 6, more preferably 1 to 3.
  • Specific examples of the liquid crystal compound include compounds described in paragraphs 0031 to 0053 of JP2014-119605A, the contents of which are incorporated herein.
  • ⁇ n at 30 ° C. of the liquid crystal compound is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more.
  • the upper limit is not particularly limited, and is often 0.6 or less.
  • a method for measuring the refractive index anisotropy ⁇ n a method using a wedge-shaped liquid crystal cell described in page 202 of a liquid crystal handbook (edited by the Liquid Crystal Handbook Editorial Committee, published by Maruzen Co., Ltd.) is generally used. In such a case, the evaluation can be performed by using a mixture with another liquid crystal compound and estimated from the extrapolated value.
  • liquid crystal compound exhibiting a high ⁇ n examples include, for example, US Pat. No. 6,514,578, Japanese Patent No. 3,999,400, Japanese Patent No. 4117832, Japanese Patent No. 4517416, Japanese Patent No. 4836335, and Japanese Patent No. 5411770.
  • liquid crystal compound having a polymerizable group is a compound represented by the general formula (5).
  • a 1 to A 4 each independently represents an aromatic carbocyclic ring or heterocyclic ring which may have a substituent.
  • the aromatic carbocycle include a benzene ring and a naphthalene ring.
  • the heterocyclic ring furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, Pyrazolidine ring, triazole ring, furazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine
  • a 1 to A 4 are preferably aromatic carbocycles, and more preferably benzene rings.
  • the type of substituent that may be substituted on the aromatic carbocycle or heterocyclic ring is not particularly limited, and examples thereof include a halogen atom, a cyano group, a nitro group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, and an acyloxy group.
  • X 1 and X 2 are each independently a single bond, —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —CH ⁇ CH —COO—, —OCO—CH ⁇ CH— or —C ⁇ C— is represented.
  • a single bond, —COO—, or —C ⁇ C— is preferable.
  • Sp 1 and Sp 2 each independently represents a single bond or a carbon chain having 1 to 25 carbon atoms.
  • the carbon chain may be linear, branched, or cyclic.
  • a so-called alkyl group is preferable. Of these, an alkyl group having 1 to 10 carbon atoms is more preferable.
  • P 1 and P 2 each independently represent a hydrogen atom or a polymerizable group, and at least one of P 1 and P 2 represents a polymerizable group.
  • a polymeric group the polymeric group which the liquid crystal compound which has a polymeric group mentioned above has is illustrated.
  • n 1 and n 2 each independently represents an integer of 0 to 2, and when n 1 or n 2 is 2, a plurality of A 1 , A 2 , X 1 and X 2 may be the same or different. Good.
  • the liquid crystal composition exhibits a cholesteric liquid crystal phase, and for that purpose, it preferably contains a chiral agent (optically active compound).
  • a cholesteric liquid crystal phase may be stably formed without adding a chiral agent.
  • various known chiral agents for example, Liquid Crystal Device Handbook, Chapter 3-4, Chiral agent for TN (Twisted Nematic), STN (Super-twisted nematic), 199 pages, Japan Society for the Promotion of Science 142th Committee, 1989).
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the chiral agent has a polymerizable group and the rod-shaped liquid crystal compound used in combination also has a polymerizable group, a repeating unit derived from the rod-shaped liquid crystal compound by a polymerization reaction between the polymerizable chiral agent and the polymerizable rod-shaped liquid crystal compound , Polymers having repeating units derived from chiral agents can be formed.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
  • the chiral agent may be a liquid crystal compound.
  • the content of the chiral agent in the liquid crystal composition is preferably 1 to 30 mol% with respect to the liquid crystal compound used in combination.
  • a smaller amount of the chiral agent is preferred because it often does not affect liquid crystallinity. Therefore, the chiral agent is preferably a compound having a strong twisting force so that the twisted orientation of the desired helical pitch can be achieved even with a small amount. Examples of such a chiral agent exhibiting a strong twisting force include those described in JP-A-2003-287623, which can be preferably used in the present invention. Specific examples of the chiral agent include compounds described in paragraphs 0055 to 0080 of JP2014-119605A, the contents of which are incorporated herein.
  • the chiral agent mainly includes a right-turning chiral agent and a left-turning chiral agent.
  • a right-turning chiral agent is used as the second turning agent.
  • a left-turning chiral agent is preferably used.
  • the liquid crystal composition used for forming each selective reflection layer is preferably a polymerizable liquid crystal composition, and for that purpose, it preferably contains a polymerization initiator.
  • the curing reaction is preferably allowed to proceed by irradiation with ultraviolet rays
  • the polymerization initiator used is preferably a photopolymerization initiator that can initiate the polymerization reaction by irradiation with ultraviolet rays.
  • the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ether (described in US Pat. No.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 20% by mass, more preferably 1 to 8% by mass, based on the liquid crystal composition (solid content in the case of a coating liquid).
  • the liquid crystal composition may contain an alignment control agent that contributes to stably or rapidly becoming a cholesteric liquid crystal phase.
  • the orientation control agent include fluorine-containing (meth) acrylate polymers. You may contain 2 or more types selected from these. These compounds can reduce the tilt angle of the molecules of the liquid crystal compound or substantially horizontally align them at the air interface of the layer.
  • horizontal alignment means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel. It means an orientation with an inclination angle of less than 20 degrees.
  • the liquid crystal compound When the liquid crystal compound is horizontally aligned in the vicinity of the air interface, alignment defects are unlikely to occur, so that the transparency in the visible light region is increased and the reflectance in the infrared region is increased.
  • the fluorine-containing (meth) acrylate-based polymer that can be used as an orientation control agent are described in ⁇ 0018> to ⁇ 0043> of JP-A-2007-272185.
  • Specific examples of the alignment control agent include compounds described in JP-A-2014-119605, paragraphs 0081 to 0090, the contents of which are incorporated herein.
  • the method for producing the infrared light reflecting layer is not particularly limited, and a method using the above-described liquid crystal composition is preferably exemplified. More specifically, an example of the manufacturing method of the infrared light reflection layer is as follows: (1) Applying a curable liquid crystal composition to the surface of a predetermined substrate or the like to form a cholesteric liquid crystal phase; (2) irradiating the curable liquid crystal composition with ultraviolet rays to advance a curing reaction, fixing a cholesteric liquid crystal phase, and forming a selective reflection layer; Is a production method comprising at least By repeating the steps (1) and (2) four times on one surface of the substrate while changing the type of the liquid crystal composition, an infrared light reflection layer having the same configuration as that shown in FIG.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal used or the type of chiral agent added, and the helical pitch (that is, the central reflection wavelength) can be arbitrarily adjusted by the concentration of these materials.
  • the liquid crystal composition containing at least a liquid crystal compound and a right-turning chiral agent In forming the second selective reflection layer, the liquid crystal compound is used. It is preferable to use a liquid crystal composition containing at least a left-rotating chiral agent.
  • a curable liquid crystal composition is applied to the surface of a predetermined substrate.
  • the curable liquid crystal composition is preferably prepared as a coating solution in which a material is dissolved and / or dispersed in a solvent.
  • the coating liquid can be applied by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • the curable liquid crystal composition applied to the surface to become a coating film is brought into a cholesteric liquid crystal phase.
  • the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the curable liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like.
  • the coating film in the cholesteric liquid crystal phase is irradiated with ultraviolet rays to advance the curing reaction.
  • a light source such as an ultraviolet lamp is used.
  • the curing reaction of the liquid crystal composition proceeds by irradiating with ultraviolet rays, the cholesteric liquid crystal phase is fixed, and the selective reflection layer is formed.
  • ultraviolet irradiation may be performed under heating conditions.
  • the cholesteric liquid crystal phase is fixed and the selective reflection layer is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • this layer has no fluidity and is oriented by an external field or external force. It means a state in which the fixed orientation form can be kept stable without causing a change in form.
  • the alignment state of the cholesteric liquid crystal phase is preferably fixed by a curing reaction that proceeds by ultraviolet irradiation.
  • the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal composition in the selective reflection layer is no longer required to exhibit liquid crystal properties.
  • the liquid crystal composition may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the manufacturing order in particular with a 1st selective reflection layer and a 2nd selective reflection layer is not restrict
  • the laminate 10 having the above members has a high transmittance in the visible light region. More specifically, the transmittance at a wavelength of 450 to 650 nm is preferably 90% or more, and more preferably 95% or more. The upper limit is not particularly limited and is 100%. Moreover, the laminated body 10 has a low transmittance in the infrared light region. More specifically, the transmittance at a wavelength of 700 to 1100 nm is preferably 10% or less, and more preferably 5% or less. The lower limit is not particularly limited and is 0%. The transmittance of the laminate 10 is measured in a wavelength range of 300 to 1300 nm using a spectrophotometer (ref. Glass substrate) of an ultraviolet-visible near-infrared spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation). .
  • a spectrophotometer ref. Glass substrate
  • U-4100 ultraviolet-visible near-infrared spectrophotometer
  • All layers constituting the laminate 10 may contain a fluorine-containing compound.
  • the infrared light reflection layer may contain a fluorine-containing compound that is unevenly distributed in the vicinity of the interface in order to prevent disorder of the alignment of the liquid crystal compound in the vicinity of the interface.
  • the infrared light absorbing layer and the antireflection layer may contain a fluorine-containing compound for improving coating properties.
  • the “fluorine-containing compound” is a compound containing a fluorine atom.
  • the laminated body 10 may include layers other than the antireflection layer 12, the infrared light absorption layer 14, and the infrared light reflection layer 16 described above.
  • other layers include substrates (preferably transparent substrates) such as glass substrates and resin substrates, adhesive layers, adhesion layers, undercoat layers, and hard coat layers.
  • the laminated body 10 can be manufactured by implementing the methods described in the above-described manufacturing method of each member. More specifically, in order to manufacture the laminate 10, a composition for forming the first selective reflection layer (liquid crystal composition) and a composition for forming the second selective reflection layer (liquid crystal composition) A kit containing a composition for forming an infrared light absorption layer (infrared light absorption composition) and a composition for forming an antireflection layer (an antireflection layer forming composition) is prepared. Next, each member is formed using each composition in order.
  • the infrared light absorption layer is manufactured by the above-described method
  • the infrared light absorption layer is manufactured by the above-described method on the manufactured infrared light reflection layer, and then the above-described method is applied on the infrared light absorption layer.
  • the antireflection layer may be manufactured by When manufacturing a laminated body using the above various compositions, a laminated body can be directly manufactured on various members.
  • the antireflection layer 12, the infrared light absorption layer 14, and the infrared light reflection layer 16 are laminated in this order.
  • the invention is not limited to this embodiment.
  • the positions of the layer 14 and the infrared light reflection layer 16 may be reversed.
  • the infrared light absorption layer 14 is provided.
  • the present invention is not limited to this embodiment.
  • the infrared light absorption layer 14 is not provided, and a predetermined infrared light absorber is reflected. It may be contained in any one of the prevention layer 12 and the infrared light reflection layer 16.
  • the infrared light reflection layer 16 also has a function of absorbing infrared light.
  • the infrared light absorbing layer 14 is not provided, and a predetermined infrared light absorbent may be included in the underlayer described later.
  • the aspect which has an infrared-light absorption layer is preferable at the point which the transmittance
  • the said laminated body can be applied to various uses, for example, an infrared-light cut filter, a thermal insulation film, etc. are mentioned.
  • an infrared light cut filter a lens having a function of absorbing infrared light (a camera lens such as a digital camera, a mobile phone, and an in-vehicle camera, an f- ⁇ lens, and Optical lenses such as pickup lenses) and optical filters for semiconductor light receiving elements.
  • a camera lens such as a digital camera, a mobile phone, and an in-vehicle camera, an f- ⁇ lens, and Optical lenses such as pickup lenses
  • optical filters for semiconductor light receiving elements.
  • it can use preferably also for an organic electroluminescent (organic EL) element, a solar cell element, etc.
  • the solid-state image sensor of the present invention includes the laminate of the present invention.
  • description in paragraphs 0106 to 0107 in JP-A-2015-044188 and paragraphs 0010 to 0012 in JP-A-2014-132333 can be referred to. Included in the description.
  • FIG. 2 shows a cross-sectional view of a second embodiment of the laminate of the present invention.
  • the stacked body 100 includes an antireflection layer 12, an infrared light absorption layer 14, an infrared light reflection layer 16, and a base layer 22 in this order.
  • the laminated body 100 of the second embodiment has the same members as those of the laminated body 10 of the first embodiment described above except that the underlayer 22 is provided. The description will be omitted, and in the following, the aspect of the base layer 22 will be mainly described in detail.
  • the underlayer 22 is disposed adjacent to the infrared light reflection layer 16. By disposing the underlayer 22 adjacent to the infrared light reflection layer 16, the orientation of the liquid crystal compound contained in the infrared light reflection layer 16 is further controlled, and the transmission characteristics of the laminate are more preferable.
  • the underlayer has a function of more precisely defining the alignment direction of the liquid crystal compound in the liquid crystal phase (particularly, the cholesteric liquid crystal phase) in the first selective reflection layer and the second selective reflection layer.
  • a material used for the underlayer a polymer of an organic compound is preferable, and a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent is often used. Of course, polymers having both functions are also used.
  • polymers examples include polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleimide copolymer, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylol acrylamide) Styrene / vinyl toluene copolymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethyl cellulose And polymers such as silica, gelatin, polyethylene, polypropylene and polycarbonate, and compounds such as silane coupling agents.
  • the thickness of the underlayer is preferably 0.1 to 2.0 ⁇ m.
  • an alignment layer for example, an alignment layer containing polyvinyl alcohol
  • a photo-alignment layer can also be used as the underlayer.
  • the polymer preferably has a polymerizable group.
  • it is preferable to have a cyclic hydrocarbon group.
  • the cyclic hydrocarbon group may be a non-aromatic cyclic hydrocarbon group or an aromatic cyclic hydrocarbon group.
  • FIG. 3 shows a cross-sectional view of a third embodiment of the laminate of the present invention.
  • the stacked body 200 includes an antireflection layer 12, an infrared light absorption layer 14, an infrared light reflection layer 16, and an antireflection layer 12 in this order.
  • the laminated body 200 of the third embodiment has the same members as the laminated body 10 of the first embodiment described above except that it has two antireflection layers 12, and the same members are denoted by the same reference numerals. Therefore, the description is omitted.
  • the antireflection layer 12 is disposed on the surface of the infrared light absorption layer 14 and the surface of the infrared light reflection layer 16 in the laminate 200.
  • the antireflection layers 12 are disposed on both surface sides of the laminate 200.
  • the multilayer body 200 when two antireflection layers 12 are arranged, when light is incident on the multilayer body 200 and when light is emitted from the multilayer body 200, the multilayer body 200 is used. Reflection of light (especially visible light) on the surface of the layer is prevented, and the transmittance of light (particularly visible light) transmitted through the laminate 200 is improved.
  • Coating Liquid (R1)) ⁇ Preparation of Cholesteric Liquid Crystalline Mixture (Coating Liquid (R1))> The following compound 1, compound 2, fluorine-based horizontal alignment agent, chiral agent, polymerization initiator, and cyclohexanone were mixed to prepare a coating solution having the following composition. The obtained coating liquid was made into the coating liquid (R1) which is a cholesteric liquid crystalline mixture.
  • Compound 1 80 parts by mass Compound 2 20 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 parts by mass Right-turning chiral agent LC756 (manufactured by BASF) 3 .95 parts by mass-polymerization initiator IRGACURE 819 (manufactured by Ciba Japan) 4 parts by mass-solvent (cyclohexanone) Amount at which the solute concentration is 40% by mass
  • a cholesteric liquid crystalline mixture (coating liquid) was prepared in the same manner as the preparation of the cholesteric liquid crystalline mixture (coating liquid (R1)) except that the amount of right-turning chiral agent LC756 (manufactured by BASF) was changed to 3.47 parts by mass. (R2)) was prepared.
  • cholesteric liquid crystalline mixture (coating liquid (R3)) was prepared in the same manner as the preparation of the cholesteric liquid crystalline mixture (coating liquid (R1)) except that the amount of the right-turning chiral agent LC756 (manufactured by BASF) was changed to 3.10 parts by mass. Liquid (R3)) was prepared.
  • cholesteric liquid crystalline mixture (coating liquid (R4)) was prepared in the same manner as the preparation of the cholesteric liquid crystalline mixture (coating liquid (R1)) except that the amount of the right-turning chiral agent LC756 (manufactured by BASF) was changed to 2.80 parts by mass. Liquid (R4)) was prepared.
  • Coating Liquid (L1) ⁇ Preparation of Cholesteric Liquid Crystalline Mixture (Coating Liquid (L1))> Compound 1, Compound 2, a fluorine-based horizontal alignment agent, a chiral agent, a polymerization initiator, and cyclohexanone were mixed to prepare a coating solution having the following composition.
  • the obtained coating liquid was used as the coating liquid (L1) which is a cholesteric liquid crystalline mixture.
  • “Bu” represents a butyl group.
  • -Compound 1 80 parts by mass-Compound 2 20 parts by mass-Fluorine-based horizontal alignment agent 1 0.1 part by mass-Fluorine-based horizontal alignment agent 2 0.007 parts by mass-Left-turning chiral agent (A) 6.0 parts by mass -Polymerization initiator IRGACURE 819 (Ciba Japan) 4 parts by mass-Solvent (cyclohexanone) Amount at which the solute concentration is 40% by mass
  • cholesteric liquid crystalline mixture (coating liquid (L3)) was prepared in the same manner as the preparation of the cholesteric liquid crystalline mixture (coating liquid (L1)) except that the amount of the left-turning chiral agent (A) was changed to 4.7 parts by mass. ) was prepared.
  • cholesteric liquid crystalline mixture (coating liquid (L4)) was prepared in the same manner as the preparation of the cholesteric liquid crystalline mixture (coating liquid (L1)) except that the amount of the left-turning chiral agent (A) was changed to 4.3 parts by mass. ) was prepared.
  • composition 1 for underlayer The following component was mixed and the composition 1 for base layers was prepared.
  • Cyclomer P (Daicel Chemical) 20.3 parts by mass Megafac-F781 (Dainippon Ink Chemical) 0.8 parts by mass (0.2% by mass propylene glycol monomethyl ether acetate solution) 78.9 parts by mass of propylene glycol monomethyl ether
  • the underlayer composition 1 prepared above was applied on a glass substrate to a thickness of 0.1 ⁇ m using a spin coater (manufactured by Mikasa Co., Ltd.) to form a coating film. Subsequently, preheating (prebaking) for 120 seconds at 100 ° C. was performed on the glass substrate having the coating film. Subsequently, the glass substrate having the coating film was post-heated (post-baked) at 220 ° C. for 300 seconds to obtain a base layer 1.
  • the coating solution (R1) was applied on a glass substrate on which the underlayer 1 was formed at room temperature using a spin coater so that the film thickness after drying was 5 ⁇ m to form a coating film.
  • the glass substrate having the coating film was dried at room temperature for 30 seconds to remove the solvent from the coating film, and then heated at 90 ° C. for 2 minutes to form a cholesteric liquid crystal phase.
  • the coating film was subjected to UV irradiation for 6 to 12 seconds at an output of 60% with an electrodeless lamp “D bulb” (90 mW / cm) manufactured by Fusion UV Systems Co., Ltd., and the cholesteric liquid crystal phase was fixed.
  • a cholesteric liquid crystal film (FR1) having a cholesteric liquid crystal phase fixed on a substrate was produced.
  • the coating liquid (L1) was applied on a cholesteric liquid crystal film (FR1) at room temperature so that the thickness of the film after drying with a spin coater was 5 ⁇ m to form a coating film.
  • the glass substrate having the coating film was dried at room temperature for 30 seconds to remove the solvent from the coating film, it was heated in an atmosphere of 90 ° C. for 2 minutes, and then converted into a cholesteric liquid crystal phase at 35 ° C.
  • the coating film was subjected to UV irradiation for 6 to 12 seconds at an output of 60% with an electrodeless lamp “D bulb” (90 mW / cm) manufactured by Fusion UV Systems Co., Ltd., and the cholesteric liquid crystal phase was fixed.
  • a liquid crystal film (FL1) was produced.
  • a cholesteric liquid crystal laminate (FRL-1) formed by fixing two cholesteric liquid crystal phases on a glass substrate was produced.
  • the produced cholesteric liquid crystal laminate (FRL-1) had good defects and no noticeable defects and streaks.
  • the selective reflection wavelengths were 750 nm and 755 nm, respectively. Further, when the transmission spectrum of the cholesteric liquid crystal laminate (FRL-1) was measured, one strong peak was observed around 750 nm. From this, it was found that the cholesteric liquid crystal layer formed by applying the coating liquid (R1) and the coating liquid (L1) has the same selective reflection wavelength. Next, when the haze value of the cholesteric liquid crystal laminate (FRL-1) was measured with a haze meter, the average value measured three times was 0.3 (%).
  • the coating liquid (R1) a result of the HTP of the chiral agent used in the coating liquid (L1) was calculated according to the following equation, respectively, 54 .mu.m -1, 35 [mu] m -1, and the both HTP were 30 [mu] m -1 or more .
  • the HTP was 30 ⁇ m ⁇ 1 or more.
  • HTP 1 ⁇ ⁇ (spiral pitch length ( ⁇ m)) ⁇ (mass% concentration of chiral agent in solid content) ⁇ (However, the helical pitch length ( ⁇ m) was calculated by (selective reflection wavelength ( ⁇ m)) ⁇ (average refractive index of solid content), and the average refractive index of solid content was calculated assuming 1.5.)
  • a cholesteric liquid crystal film (FR1) was prepared in the same manner as the cholesteric liquid crystal film (FR1) except that the coating liquid (R2, R3, R4, L2, L3, L4) was used instead of the coating liquid (R1).
  • FR2, FR3, FR4, FL2, FL3, FL4) were prepared respectively.
  • the spectroscopic measurement results are shown in FIGS.
  • the transmission spectra of the cholesteric liquid crystal films (FR1), (FR2), (FR3), and (FR4) correspond to R1, R2, R3, and R4, respectively.
  • the transmission spectra of the cholesteric liquid crystal films (FL1), (FL2), (FL3), and (FL4) correspond to L1, L2, L3, and L4, respectively.
  • the selective reflection wavelengths of the cholesteric liquid crystal films (FR2), (FR3) and (FR4) containing the right-turning chiral agent are cholesteric liquid crystal films (FL2), (FL3) and They were equal to the selective reflection wavelength of (FL4).
  • the coating liquid (R2) and the coating liquid (L2), the coating liquid (R3) and the coating liquid (L3), the coating liquid (R4) and the coating liquid ( A cholesteric liquid crystal laminate was prepared by combining L4).
  • the haze value of the produced (FRL-2, 3, 4) was measured with a haze meter, the average value measured three times for all was 0.3 (%).
  • ⁇ Preparation of coating solution (R5)> Compound 2-11, a fluorine-based horizontal alignment agent, a chiral agent, a polymerization initiator, and a solvent were mixed to prepare a coating liquid (R5) having the following composition.
  • a coating liquid (L5) having the following composition.
  • Compound 2-11 100 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 part by mass Left-turning chiral agent (A) 3.3 parts by mass Polymerization initiator : Adeka Cruz NCI-831 (manufactured by ADEKA) 4 parts by mass / solvent (cyclohexanone) Amount of solute concentration 40% by mass
  • Cholesteric liquid crystal films (FR5, FL5) were produced in the same manner as the cholesteric liquid crystal film (FR1), except that the coating liquids (R5, L5) were used instead of the coating liquid (R1).
  • the selective reflection wavelength of the cholesteric liquid crystal film (FR5) containing the right-turning chiral agent was equal to the selective reflection wavelength of the cholesteric liquid crystal film (FL5) containing the left-turning chiral agent.
  • Resin A The following compound (Mw (weight average molecular weight): 41000)
  • Infrared light absorbent 1 structure below
  • Infrared light absorbing composition 2 By dissolving 0.5 parts by mass of the following infrared absorbent 2 (maximum absorption wavelength: 710 nm) in 69.5 parts by mass of ion-exchanged water, and further adding 30.0 parts by mass of a 10% by mass aqueous solution of gelatin, the mixture is stirred. Infrared light absorbing composition 2 was prepared.
  • Infrared light absorber 2 The following structure
  • Infrared light absorber 3 (copper complex): structure shown below
  • ⁇ Infrared light absorbing composition 4 12.5 parts by mass of the resin A, 2.38 parts by mass of the infrared light absorber 4 (maximum absorption wavelength: 820 nm) shown below, and KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) as the polymerizable compound ), 2.38 parts by mass, Megafac RS-72K (fluorinated polymer having an ethylenically unsaturated group in the side chain) (manufactured by DIC Corporation), 2.7 parts by mass, and a photopolymerization initiator
  • 2.61 parts by mass of the following compound and 76.54 parts by mass of PGMEA (propylene glycol monomethyl ether acetate) as a solvent were mixed and stirred, and then a nylon filter having a pore size of 0.5 ⁇ m (Nippon Pole Co., Ltd.) Infrared light absorbing composition 4 was prepared by filtration.
  • Infrared light absorber 4 the following structure
  • TMOS tetramethoxysilane
  • TFPTMS trifluoropropyltrimethoxysilane
  • B silicon alkoxide containing a fluoroalkyl group
  • the mass of silicon alkoxide (A) is 1.
  • the fluoroalkyl group-containing silicon alkoxide (B) was weighed so that the ratio (mass ratio) was 0.6, and these were put into a separable flask and mixed to obtain a mixture.
  • PMEA Propylene glycol monomethyl ether acetate
  • E organic solvent
  • the first liquid was stirred at a temperature of 30 ° C. for 15 minutes.
  • silicon alkoxide (A) an oligomer obtained by polymerizing about 3 to 5 monomers in advance was used.
  • ion exchange water (C) in an amount of 1.0 part by mass and formic acid (D) in an amount of 0.01 part by mass with respect to 1 part by mass of the mixture are contained in a beaker.
  • the second liquid was prepared by stirring at 15 ° C. for 15 minutes.
  • the second liquid was added to the first liquid and stirred for 60 minutes while maintaining the temperature. Thereby, a hydrolyzate of the silicon alkoxide (A) and the fluoroalkyl group-containing silicon alkoxide (B) was obtained.
  • silica sol (F) in which the obtained hydrolyzate and beaded colloidal silica particles (average particle diameter of spherical particles: 15 nm, D 1 / D 2 : 5.5, D 1 : 80 nm) are dispersed,
  • the low refractive dispersion 1 was obtained by stirring and mixing at a ratio where the SiO 2 content in the silica sol (F) was 200 parts by mass relative to 100 parts by mass of the SiO 2 content in the hydrolyzate.
  • the beaded colloidal silica particles are composed of a plurality of spherical colloidal silica particles and a metal oxide-containing silica that joins the plurality of spherical colloidal silica particles to each other, and an average measured by a dynamic light scattering method of the spherical colloidal silica particles.
  • Example 1 Production of infrared light cut filter>
  • the coating liquid (R1), the coating liquid (L1), the coating liquid (R2), the coating liquid (L2), and the coating are applied on the substrate on which the base layer is formed in accordance with the same procedure as described above in ⁇ Infrared light reflection layer formation>
  • the liquid (R3), the coating liquid (L3), the coating liquid (R4), and the coating liquid (L4) were sequentially applied and laminated to produce an infrared light reflection layer (F-IR).
  • the infrared light absorbing composition 1 was applied using a spin coater (manufactured by Mikasa Co., Ltd.) to form a coating film.
  • the coating film was pre-heated (prebaked) at 100 ° C. for 120 seconds, and then exposed entirely at 1000 mJ / cm 2 using an i-line stepper. Subsequently, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to obtain an infrared light absorption layer 1 having a thickness of 0.7 ⁇ m. Furthermore, the low refractive composition 1 prepared by the following procedure was applied onto the infrared light absorption layer 1 using a spin coater (Mikasa Co., Ltd.) to form a coating film, and the coating film was formed at 100 ° C. for 120 seconds. Preheating (pre-baking) was performed.
  • Example 2> instead of the infrared light absorbing composition 1, the infrared light absorbing composition 2 was used, and the infrared light absorbing layer 2 was formed according to the following procedure. The light cut filter 2 was manufactured.
  • infrared light absorption layer 2 On the infrared light reflection layer (F-IR), the infrared light absorbing composition 2 prepared above was applied using a spin coater (manufactured by Mikasa Co., Ltd.) to form a coating film at 100 ° C. Preheating (pre-baking) was performed for 120 seconds. Next, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to obtain an infrared light absorption layer 2 having a thickness of 0.2 ⁇ m.
  • a spin coater manufactured by Mikasa Co., Ltd.
  • Example 3> instead of the infrared light absorbing composition 1, the infrared light absorbing composition 3 was used, and the infrared light absorbing layer 3 was formed according to the following procedure. The light cut filter 3 was manufactured.
  • infrared light absorption layer 3 (Manufacture of infrared light absorption layer 3) On the infrared light reflecting layer (F-IR), the infrared light absorbing composition 3 prepared above was applied using a spin coater so that the film thickness after drying was 100 ⁇ m, and the hot light at 150 ° C. Heat treatment was performed for 3 hours using the plate, and the infrared light absorption layer 3 was produced.
  • Example 4> instead of the infrared light absorbing composition 1, the infrared light absorbing composition 4 was used, and the infrared light absorbing layer 4 was formed according to the following procedure.
  • the light cut filter 4 was manufactured. (Manufacture of infrared light absorption layer 4) On the infrared light reflection layer (F-IR), the infrared light absorbing composition 4 was applied using a spin coater (manufactured by Mikasa Co., Ltd.) to form a coating film, and the coating film was formed at 100 ° C. for 120 seconds. Preheating (pre-baking) was performed. Then, the whole surface exposure was performed at 1000 mJ / cm 2 using an i-line stepper. Next, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to obtain an infrared light absorption layer 4 having a thickness of 0.7 ⁇ m.
  • Example 5 An infrared light cut filter 5 was manufactured according to the same procedure as in Example 1 except that the antireflection layer 2 was formed according to the following procedure instead of the antireflection layer 1.
  • a low refractive dispersion 2 was prepared in the same manner as in the low refractive dispersion 1, except that the beaded colloidal silica particles contained in the low refractive dispersion 1 were changed to hollow particles. Specifically, the low refractive dispersion liquid is obtained by stirring and mixing the hydrolyzate and the silica of the hollow particles at a ratio of 200 parts by mass of hollow particles to 100 parts by mass of SiO 2 in the hydrolyzate. 2 was obtained.
  • the low refractive composition 2 prepared by the following procedure was applied onto the infrared light absorption layer 1 using a spin coater (Mikasa Co., Ltd.) to form a coating film, and the coating was formed at 100 ° C. for 120 seconds. Heating (pre-baking) was performed. Then, the whole surface exposure was performed at 1000 mJ / cm 2 using an i-line stepper. Subsequently, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to provide an antireflection layer 2 having a thickness of 0.1 ⁇ m.
  • Example 6 The infrared light cut filter 1 produced in Example 1 is turned over, and the antireflective layer 1 is produced according to the same procedure as in Example 1 using the low refractive composition 1 on the substrate surface side where the antireflective layer 1 is not provided. By forming a film, an infrared light cut filter 6 provided with the antireflection layer 1 on both sides was obtained.
  • Example 7 An infrared light cut filter 7 was manufactured according to the same procedure as in Example 1 except that the underlayer 1 was not provided.
  • Example 8 An infrared light cut filter 8 was manufactured according to the same procedure as in Example 1 except that the antireflection layer 3 was formed according to the following procedure instead of the antireflection layer 1.
  • (Synthesis of siloxane resin) Hydrolysis condensation reaction was performed using methyltriethoxysilane. The solvent used at this time was ethanol.
  • the resulting siloxane resin A-1 had a weight average molecular weight of about 10,000.
  • the said weight average molecular weight was confirmed by GPC (gel permeation chromatography) according to the procedure demonstrated previously.
  • low refractive composition 3 Siloxane resin A-1 20 parts by mass Propylene glycol monomethyl ether acetate (PGMEA) 64 parts by mass Ethyl 3-ethoxypropionate (EEP) 16 parts by mass Emulsogen COL-020 (manufactured by Clariant Japan Co., Ltd.) 2 parts by mass
  • the low refractive composition 3 obtained above was spin-coated at 1000 rpm on the infrared light absorption layer 1 using a spin coater (manufactured by Mikasa Co., Ltd.) to obtain a coating film.
  • the obtained coating film was heated on a hot plate at 100 ° C. for 2 minutes, and immediately after heating, it was heated at 230 ° C. for 10 minutes to form an antireflection layer 3 having a thickness of 0.1 ⁇ m.
  • Example 9 An infrared light cut filter 9 was manufactured according to the same procedure as in Example 1 except that the infrared light absorption layer 1 was not provided.
  • Example 10 An infrared light cut filter 10 was manufactured according to the same procedure as in Example 1 except that the infrared light absorbing layer 1 was not provided and the underlying layer 1 was changed to the underlying layer 2 described below. (Preparation of composition 2 for underlayer) The following component was mixed and the composition 2 for base layers was prepared. Cyclomer P (Daicel Chemical) 20.3 parts by mass Infrared absorber 1 6.0 parts by mass Megafac-F781 (Dainippon Ink Chemical) 0.8 parts by mass (0.2% by mass propylene glycol monomethyl) Ether acetate solution) ⁇ 78.9 parts by mass of propylene glycol monomethyl ether
  • the underlayer composition 2 prepared above was applied onto a glass substrate using a spin coater (manufactured by Mikasa Co., Ltd.) to form a coating film, and preheated at 100 ° C. for 120 seconds (prebaked) ) Subsequently, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to obtain a base layer 2 having a film thickness of 0.3 ⁇ m.
  • a spin coater manufactured by Mikasa Co., Ltd.
  • Example 11 An infrared light cut filter 11 was manufactured according to the same procedure as in Example 1 except that the infrared light absorption layer 1 was not provided and the antireflection layer was changed to the following antireflection layer 4.
  • -Low refractive dispersion 1 75.3 parts by mass-Infrared light absorber 1 3.0 parts by mass-Surfactant 1: fluorinated surfactant 0.1 part by mass-Organic solvent 1: ethyl lactate 24. 6 parts by mass
  • the low refractive composition 4 prepared as described above was applied using a spin coater (Mikasa Co., Ltd.) to form a coating film. Preheating (pre-baking) for 2 seconds was performed. Subsequently, post-heating (post-baking) was performed at 220 ° C. for 300 seconds to provide an antireflection layer 4 having a thickness of 0.3 ⁇ m.
  • Example 12 An infrared light cut filter 12 was manufactured according to the same procedure as in Example 1 except that the antireflection layer 5 was formed according to the following procedure instead of the antireflection layer 1.
  • a low-refractive-index material OPSTA-TU2361 manufactured by JSR Corporation was used to form a coating film on the infrared light absorption layer 1 so as to have a film thickness of 0.1 ⁇ m using a spin coater (manufactured by Mikasa Corporation). . Then, after drying at 60 degreeC for 1 minute, the whole surface exposure was performed by 300 mJ / cm ⁇ 2 > using i line
  • Example 13 Production of infrared light cut filter> By applying and laminating the coating liquid (R5) and the coating liquid (L5) sequentially on the substrate on which the underlayer has been formed according to the same procedure as described above for ⁇ infrared light reflecting layer formation>, infrared light is obtained. A reflective layer (F-IR-2) was produced. An infrared light cut filter 13 was manufactured according to the same procedure as in Example 1 except that the infrared light reflection layer (F-IR-2) was used instead of the infrared light reflection layer (F-IR). .
  • the number of layers included in the infrared light cut filter was 15 or less, and “A” was greater than 15 layers, and “B” was greater than 15 layers.
  • ⁇ Angle dependence> The incident angle is changed perpendicularly to the infrared light cut filter surface (angle 0 degree) and 30 degrees, and the transmittance of the slope due to the decrease in the spectral transmittance in the visible to near infrared region having a wavelength of 600 nm or more becomes 50%.
  • the amount of wavelength shift was evaluated according to the following criteria. More specifically, the “shift amount” is more specifically the wavelength position X at which the transmittance at a wavelength of 600 nm or more becomes 50% when incident light is incident from the direction perpendicular to the infrared light cut filter surface.
  • the difference from the wavelength position Y at which the transmittance at a wavelength of 600 nm or more when incident light is incident on the infrared light cut filter surface from an oblique direction is 50% is intended.
  • in Table 1, “1” to “3” in the “infrared light absorbing layer” column are intended to be produced from the infrared light absorbing compositions 1 to 3, respectively.
  • “single side” means that the antireflection layer is arranged only on one outermost side of the infrared light cut filter, and “double side” means red It is intended that antireflection layers are disposed on the outermost surfaces on both sides of the external light cut filter.
  • inorganic particle content represents the content of inorganic particles (silica particles) in the antireflection layer relative to the total mass of the antireflection layer.
  • “* 1” in Example 10 intends that the infrared light absorbent 1 is included in the underlayer.
  • “* 2” in Example 11 intends that the infrared light absorbing agent 1 is included in the antireflection layer.
  • the infrared light cut filter of the present invention shows that the transmittance in the infrared light region is relatively low with respect to the transmittance in the visible light region, and an excellent effect is obtained.
  • Example 1 and 5 it was confirmed that when the content of the inorganic particles is 70% by mass (more preferably 90% by mass) or more, the solvent resistance is more excellent.
  • Example 1, 5, and 8 it was confirmed that the measurement accuracy was more excellent when the refractive index of the antireflection layer was less than 1.30 (preferably, 1.25 or less).

Abstract

無機粒子を含む反射防止層と、赤外光反射層とを有し、赤外光反射層が、螺旋軸の回転方向が右方向である液晶相を固定化してなる第1選択反射層と、螺旋軸の回転方向が左方向である液晶相を固定化してなる第2選択反射層とを含む、積層体およびその積層体の製造方法、上記積層体を含む固体撮像素子、並びに、上記積層体を製造するために用いられるキット。

Description

積層体、固体撮像素子、積層体の製造方法、キット
 本発明は、積層体、固体撮像素子、積層体の製造方法、および、キットに関する。
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話等には、カラー画像の固体撮像素子である、CCD(電荷結合素子)、または、CMOS(相補型金属酸化膜半導体)が用いられている。これら固体撮像素子は、通常、その受光部において赤外光に感度を有するシリコンフォトダイオードを使用している。そのため、視感度補正を行うことが必要であり、赤外光カットフィルタを用いることが多い。
 赤外光カットフィルタとして、ガラス等の透明基板の表面に、赤外光反射膜を形成した赤外光カットフィルタがある。赤外光反射膜は、可視波長の光の透過率が高いことが要求され、このような観点から、赤外光反射膜としては、高屈折率材料層と低屈折率材料層とを複数層積層した誘電体多層膜が用いられる(特許文献1参照)。
特開2011-100084号公報
 一方、上記特許文献1に記載の誘電体多層膜は、高屈折率材料層と低屈折率材料層とを蒸着により形成しており、作製に時間と手間がかかり、高コストであった。
 また、昨今、固体撮像素子に求められる性能要求の高まりに伴って、赤外光カットフィルタに求められる要求特性も上がっており、特に、赤外光領域の透過率に対する可視光領域の透過率をより高くすることが求められている。
 本発明は、上記実情に鑑みて、より簡便に製造でき、赤外光領域の透過率に対する可視光領域の透過率が高い積層体を提供することを目的とする。
 また、本発明は、上記積層体の製造方法、上記積層体を含む固体撮像素子、および、上記積層体を製造するために用いられるキットを提供することも目的とする。
 本発明者は、上記課題を達成すべく鋭意研究した結果、反射防止層および所定の赤外光反射層を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 屈折率が1.45以下である反射防止層と、赤外光反射層と、を有し、
 赤外光反射層が、螺旋軸の回転方向が右方向である液晶相を固定化してなる第1選択反射層と、螺旋軸の回転方向が左方向である液晶相を固定化してなる第2選択反射層と、を含む、積層体。
(2) 前記第1選択反射層および前記第2選択反射層の少なくとも一方に、30℃における屈折率異方性Δnが0.25以上である液晶化合物が含まれる、(1)に記載の積層体。
(3) 前記第1選択反射層および前記第2選択反射層の少なくとも一方が、一般式(5)で表される化合物を用いて形成される層である、(1)または(2)に記載の積層体。
Figure JPOXMLDOC01-appb-C000002

一般式(5)中、A1~A4は、それぞれ独立に、置換基を有していてもよい芳香族炭素環または複素環を表す。X1およびX2は、それぞれ独立に、単結合、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。Y1およびY2は、それぞれ独立に、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1~25の炭素鎖を表す。P1およびP2は、それぞれ独立に、水素原子または重合性基を表し、P1およびP2の少なくとも一方は重合性基を表す。n1およびn2はそれぞれ独立に0~2の整数を表し、n1またはn2が2の場合、複数あるA1、A2、X1およびX2は同じでもあっても異なっていてもよい。
(4) 赤外光吸収剤が反射防止層もしくは赤外光反射層に含まれるか、または、赤外光吸収剤を含む赤外光吸収層を更に有する、(1)~(3)のいずれかに記載の積層体。
(5) 赤外光吸収剤が波長600~1200nmの範囲に極大吸収を有する、(4)に記載の積層体。
(6) 反射防止層が無機粒子を含む、(1)~(5)のいずれかに記載の積層体。
(7) 無機粒子が、シリカより構成される、(6)に記載の積層体。
(8) 反射防止層全質量に対する無機粒子の含有量が、70質量%以上である、(6)または(7)に記載の積層体。
(9) 反射防止層が、複数のシリカ粒子が鎖状に連なった粒子凝集体を用いて形成された層である、(1)~(8)のいずれかに記載の積層体。
(10) 赤外光反射層の両面側にそれぞれ反射防止層が配置されている、(1)~(9)のいずれかに記載の積層体。
(11) 反射防止層の屈折率が、1.35以下である、(1)~(10)のいずれかに記載の積層体。
(12) 反射防止層の屈折率が、1.25以下である、(1)~(11)のいずれかに記載の積層体。
(13) 更に、赤外光反射層に隣接して下地層が配置される、(1)~(12)のいずれかに記載の積層体。
(14) 赤外光(赤外線)カットフィルタに用いられる、(1)~(13)のいずれかに記載の積層体。
(15) (1)~(14)のいずれかに記載の積層体を含む固体撮像素子。
(16) 液晶化合物および右旋回性のキラル剤を少なくとも含む液晶組成物、並びに、液晶化合物および左旋回性のキラル剤を少なくとも含む液晶組成物を順不同に塗布して、赤外光反射層を形成する工程と、
 赤外光吸収剤を含む赤外光吸収組成物を赤外光反射層上に塗布して、赤外光吸収層を形成する工程と、
 無機粒子を含む反射防止層形成用組成物を赤外光吸収層上に塗布して、反射防止層を形成する工程と、を有する、(4)に記載の積層体の製造方法。
(17) 液晶化合物および右旋回性のキラル剤を少なくとも含む液晶組成物と、
 液晶化合物および左旋回性のキラル剤を少なくとも含む液晶組成物と、
 赤外光吸収剤を含む赤外光吸収組成物と、
 無機粒子を含む反射防止層形成用組成物と、を有する、キット。
 本発明によれば、より簡便に製造でき、赤外光領域の透過率に対する可視光領域の透過率が高い積層体を提供することができる。
 また、本発明によれば、上記積層体の製造方法、上記積層体を含む固体撮像素子、および、上記積層体を製造するために用いられるキットを提供することができる。
本発明の積層体の第1実施態様の断面図である。 本発明の積層体の第2実施態様の断面図である。 本発明の積層体の第3実施態様の断面図である。 実施例にて作製したコレステリック液晶フィルム(FR1)、(FR2)、(FR3)、および、(FR4)の透過スペクトル図である。 実施例にて作製したコレステリック液晶フィルム(FL1)、(FL2)、(FL3)、および、(FL4)の透過スペクトル図である。
 以下、積層体の好適態様について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 なお、本明細書でいう「赤外光」とは、固体撮像素子の感度に応じて変動し得るものであるが、少なくとも700~1200nm程度の範囲を意図する。また、「可視光」とは、少なくとも400~700nm程度の範囲を意図する。
 本明細書に於ける基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
<<第1実施態様>>
 図1は、本発明の積層体の第1実施態様の断面図を示す。
 図1に示すように、積層体10は、反射防止層12と、赤外光吸収層14と、赤外光反射層16とをこの順で備える。赤外光反射層16は、螺旋軸の回転方向が右方向である液晶相を固定してなる第1選択反射層18a、18bと、螺旋軸の回転方向が左方向である液晶相を固定してなる第2選択反射層20a、20bとを備える。
 積層体10においては、図1に示す、白抜き矢印の方向から光が入射されると、反射防止層12が最外層にあることによって、積層体10の表面で反射される光(特に、可視光)が低減する。また、反射防止層12を通過した光のうち、赤外光が赤外光吸収層14によって吸収されるか、または、赤外光反射層16によって反射される。その結果、可視光は積層体10を透過しやすく、かつ、赤外光は積層体10を透過しづらくなり、所望の効果が得られる。
 以下、積層体10を構成する各部材について詳述する。
<反射防止層12>
 反射防止層12は、積層体10の最外層側に配置され、積層体10表面にて反射される光を低減する。
 反射防止層12の屈折率は1.45以下であり、積層体の可視光領域の透過率がより高まる点から、1.35以下が好ましく、1.30未満がより好ましく、1.25以下が更に好ましい。下限は特に制限されないが、通常、1.00以上の場合が多く、1.20以上の場合が多い。なお、上記屈折率は、以下のように波長633nmでの屈折率を意図する。
 反射防止層12の屈折率は、エリプソメータ(J.Aウーラム製VUV-vase[商品名])を用いて測定した(波長633nm、測定温度25℃)。
 反射防止層12を構成する材料は特に制限されず、有機材料でも無機材料でもよく、耐久性の点から、無機材料(例えば、無機系樹脂(シロキサン樹脂)、無機粒子等)が好ましい。なかでも、反射防止層12は、無機粒子を含むことが好ましい。
 シロキサン樹脂は、公知のアルコキシシラン原料を用いて、加水分解反応および縮合反応を介して得ることができる。
 加水分解反応および縮合反応としては公知の方法を使用することができ、必要に応じて、酸または塩基等の触媒を使用してもよい。触媒としてはpHを変更させるものであれば特に制限がなく、具体的には、酸(有機酸、無機酸)としては、例えば硝酸、シュウ酸、酢酸、蟻酸、塩酸等、アルカリとしては、例えばアンモニア、トリエチルアミン、エチレンジアミン等が挙げられる。
 加水分解反応および縮合反応の反応系には、必要に応じて、溶媒を加えてもよい。溶媒としては加水分解反応および縮合反応が実施できれば特に制限されず、例えば、水、メタノール、エタノール、および、プロパノール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、および、エチレングリコールモノプロピルエーテル等のエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル、および、プロピレングリコールモノメチルエーテルアセテート等のエステル類、並びに、アセトン、メチルエチルケトン、メチルイソブチルケトン、および、メチルイソアミルケトン等のケトン類等が挙げられる。
 加水分解反応および縮合反応の条件(温度、時間、溶媒量)は使用される材料の種類に応じて、適宜最適な条件が選択される。
 シロキサン樹脂の重量平均分子量は、1,000~50,000が好ましい。なかでも、2,000~45,000がより好ましく、2,500~25,000が更に好ましく、3,000~25,000が特に好ましい。重量平均分子量が上記下限値以上の場合、基板に対する塗布性が特に良く、塗布後の面状、平坦性が良好に維持され好ましい。
 なお、重量平均分子量は、公知のGPC(ゲル浸透クロマトグラフィー)を用いて測定し、標準ポリスチレンに換算したときの値である。特に断らない限り、GPC測定においては、カラムとしてWaters2695およびShodex製GPCカラムKF-805L(カラム3本を直結)を使用し、カラム温度40℃、試料濃度0.5質量%のテトラヒドロフラン溶液を50μl注入し、溶出溶媒としてテトラヒドロフランを毎分1mlの流量でフローさせ、RI(示差屈折)検出装置(Waters2414)およびUV(紫外線)検出装置(Waters2996)にて試料ピークを検出することで行う。
 無機粒子を構成する材料としては、例えば、シリカ(酸化珪素)、フッ化ランタン、フッ化カルシウム、フッ化マグネシウム、および、フッ化セリウム等が挙げられる。無機粒子としては、より具体的には、シリカ粒子、中空シリカ粒子、および、多孔質シリカ粒子等が好ましく挙げられる。なお、「中空粒子」は、内部に空洞を有する構造のものであり、外郭に包囲された空洞を有する粒子を指す。「多孔質粒子」は、多数の空洞を有する多孔質の粒子を指す。
 無機粒子としては、1種単独でも、2種以上を組み合わせて使用してもよい。
 無機粒子の粒径は特に制限されず、取り扱い性の点で、平均粒子径が1nm以上が好ましく、10nm以上がより好ましい。上限は、200nm以下が好ましく、100nm以下がより好ましい。
 ここでの無機粒子の平均粒子径は、無機粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。無機粒子の投影面積を求め、そこから円相当径を求め平均粒子径とする。本明細書における「平均粒子径」は、300個以上の無機粒子について投影面積を測定して、円相当径を求めてその数平均径を算出する。
 反射防止層12中における無機粒子の含有量は特に制限されず、70質量%以上の場合が多く、積層体の可視光領域の透過率がより高まり、積層体の耐溶剤性が優れる点から、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。上限は特に制限されず、100質量%が挙げられる。
 無機粒子の屈折率は、積層体の可視光領域の透過率がより高まる点から、1.00~1.45が好ましく、1.10~1.40がより好ましく、1.15~1.35が更に好ましく、1.15~1.30が特に好ましい。
 本明細書において無機粒子の屈折率は以下の方法で測定することができる。無機粒子の含有率を0質量%、20質量%、30質量%、40質量%、50質量%に調製した固形分濃度10%のマトリックス樹脂と無機粒子の混合溶液サンプルを作製する。それぞれ、シリコンウェハ上に、厚さが0.3~1.0μmとなるように、スピンコーターを用いて塗布する。ついで200℃のホットプレートで5分間、加熱、乾燥させ、コーティング膜を得る。次に例えばエリプソメータ(J.Aウーラム製VUV-vase[商品名])を用いて波長633nm(25℃)での屈折率を求め、無機粒子100質量%の値を外挿して求めることができる。
 反射防止層12の平均厚みは特に制限されず、積層体の可視光領域の透過率がより高まる点から、0.01~1.00μmが好ましく、0.05~0.5μmがより好ましい。
 なお、上記平均厚みは、反射防止層12の任意の10点以上の厚みを測定して、それらを算術平均したものである。
 反射防止層12には、必要に応じて、上記無機粒子以外の成分が含まれていてもよく、例えば、フッ素樹脂またはポリシロキサン等のいわゆるバインダー(特に、低屈折率バインダー)が含まれていてもよい。
 図1において、反射防止層12は、単層構造であるが、必要に応じて複層構造であってもよい。
(反射防止層の製造方法)
 反射防止層12の製造方法は特に制限されず、乾式法(例えば、スパッタリング法、真空蒸着法等)や、湿式法(例えば、塗布法等)が挙げられ、生産性の点から、湿式法が好ましい。
 湿式法としては、例えば、無機材料(好ましくは、無機粒子)を含む反射防止層形成用組成物を所定の基板上に塗布して、必要に応じて、乾燥処理を実施して、反射防止層を製造する方法が好適に挙げられる。
 反射防止層形成用組成物中における無機粒子の含有量は特に制限されず、10~50質量%が好ましく、15~40質量%がより好ましく、15~30質量%が更に好ましい。
 また、反射防止層形成用組成物には、溶媒(水または有機溶媒)が適宜含まれる。
 塗布の態様として、スピンコート法、ディップコート法、ローラーブレード法、および、スプレー法等を適用することができる。
 乾燥処理の方法は特に制限されず、加熱処理、または、風乾処理が挙げられ、加熱処理が好ましい。加熱処理の条件は特に制限されず、50℃以上であることが好ましく、65℃以上であることがより好ましく、70℃以上であることが更に好ましい。上限としては、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが更に好ましい。上記加熱時間は特に限定されず、0.5分以上60分以下であることが好ましく、1分以上10分以下であることがより好ましい。
 加熱処理の方法としては特に制限されず、ホットプレート、オーブン、および、ファーネス等により加熱することができる。
 加熱処理の際の雰囲気としては特に制限されず、不活性雰囲気、および、酸化性雰囲気等を適用することができる。不活性雰囲気は、窒素、ヘリウム、および、アルゴン等の不活性ガスにより実現できる。酸化性雰囲気は、これら不活性ガスと酸化性ガスの混合ガスにより実現することができる他、空気を利用してもよい。酸化性ガスとしては、例えば、酸素、一酸化炭素、および、二窒化酸素等を挙げることができる。加熱工程は、加圧下、常圧下、減圧下、および、真空中のいずれの圧力でも実施することができる。
(好適態様)
 反射防止層12の好適態様としては、積層体の可視光領域の透過率がより高まり、積層体の耐溶剤性が優れる点から、複数のシリカ粒子が鎖状に連なった粒子凝集体(以下、数珠状シリカとも称する)を用いて形成された層が挙げられる。より具体的には、数珠状シリカが溶媒中に分散した組成物(ゾル)を用いることがより好ましい。
 一般に、シリカゾルに含まれるシリカ粒子としては、数珠状の他に、球状、針状または板状のもの等が広く知られており、本実施形態では、数珠状シリカが分散した組成物(シリカゾル)を用いることが好ましい。この数珠状シリカを用いることによって、形成される反射防止層に空孔ができやすく、屈折率を低下させることができる。
 上記数珠状シリカは、平均粒子径が5~50nm(好ましくは5~30nm)の複数のシリカ粒子が、金属酸化物含有シリカによって接合されたものであることが好ましい。
 また、上記数珠状シリカは、上記シリカ粒子の動的光散乱法により測定された数平均粒子径(Dnm)と、上記シリカ粒子の窒素吸着法により測定された比表面積Sm/gからD=2720/Sの式により得られる平均粒子径(Dnm)との比D/Dが3以上であって、このDが30~300nmであり、上記シリカ粒子が一平面内のみにつながっていることが好ましい。D/Dは、粒子が凝集しづらく、かつ、反射防止層のヘイズの増加が抑制できる点で、3~20であることが好ましい。Dは35~150nmであることが好ましい。
 また、シリカ粒子を接合する金属酸化物含有シリカとしては、例えば、非晶質のシリカ、または、非晶質のアルミナ等が例示される。数珠状シリカが分散する溶媒としては、例えば、メタノール、エタノール、IPA(イソプロピルアルコール)、エチレングリコール、プロピレングリコールモノメチルエーテル、および、プロピレングリコールモノメチルエーテルアセテート等が例示され、SiO濃度が5~40質量%であるものが好ましい。
 このような数珠状シリカを含む組成物(シリカゾル)としては、例えば特許第4328935号公報または特開2013-253145号公報に記載されているシリカゾル等を使用することができる。
 なお、数珠状シリカを含む組成物を用いた反射防止層の製造方法は、上述した湿式法の方法が適宜採用できる。
 また、反射防止層は、市販の低屈折材料を用いて形成することもできる。市販の低屈折材料としては、JSR(株)製オプスター-TUシリーズ、東レ(株)製低屈折率化ポリシロキサンLSシリーズ、および、旭硝子(株)フッ素系樹脂サイトップシリーズ等が挙げられる。
<赤外光吸収層>
 赤外光吸収層14は、赤外光を吸収する層である。赤外光吸収層14が含まれることにより、角度依存性を低下させることができる。なお、「角度依存性」とは、積層体に正面方向から入射した光の透過特性と、積層体に斜め方向から入射した光の透過特性との差を表す。例えば、角度依存性が大きいとは、両者の差が大きい、つまり、光の入射方向による透過特性の差が大きいことを意図し、角度依存性が小さいとは両者の差が小さい、つまり、光の入射方向による透過特性の差が小さいことを意図する。
 なお、赤外光吸収層14は任意の構成部材である。
 赤外光吸収層14には、赤外光吸収剤が含まれる。「赤外光吸収剤」とは、赤外光領域の波長領域に吸収を有する化合物を意味する。
 赤外光吸収剤としては、波長600~1200nmの波長領域に極大吸収波長を有する化合物が好ましい。極大吸収波長は、例えば、Cary 5000 UV-Vis-NIR(分光光度計 アジレント・テクノロジー株式会社製)を用いて測定できる。
 赤外光吸収層14中における赤外光吸収剤の含有量は特に制限されず、赤外光吸収層14全質量に対して、1~80質量%が好ましく、5~60質量%がより好ましい。
 本発明において、赤外光吸収剤は、有機色素が好ましい。本発明において、「有機色素」とは、有機化合物からなる色素を意味する。
 また、赤外光吸収剤は、銅化合物、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物およびナフタロシアニン化合物から選ばれる少なくとも1種が好ましく、銅化合物、シアニン化合物、または、ピロロピロール化合物がより好ましい。
 また、本発明において、赤外光吸収剤は、25℃の水に1質量%以上溶解する化合物であることが好ましく、25℃の水に10質量%以上溶解する化合物であることがより好ましい。このような化合物を用いることで、耐溶剤性が良化する。
 なお、以下に、赤外光吸収剤の好適態様である、銅化合物、シアニン化合物、および、ピロロピロール化合物について詳述する。
<銅化合物>
 銅化合物は、波長700~1200nmの範囲内(近赤外線領域)に極大吸収波長を有する銅化合物が好ましい。
 銅化合物は、銅錯体であっても銅錯体でなくてもよく、銅錯体であることが好ましい。
 本発明で用いる銅化合物が銅錯体である場合、銅に配位する配位子Lとしては、銅イオンと配位結合可能であれば特に制限されず、スルホン酸、リン酸、リン酸エステル、ホスホン酸、ホスホン酸エステル、ホスフィン酸、ホスフィン酸エステル、カルボン酸、カルボニル(エステル、ケトン)、アミン、アミド、スルホンアミド、ウレタン、ウレア、アルコール、および、チオール等を有する化合物が挙げられる。
 リン含有銅化合物として、具体的にはWO2005/030898Aの第5頁第27行目~第7頁第20行目に記載された化合物を参酌することができ、これらの内容は本願明細書に組み込まれる。
 また、銅化合物は、下記式(A)で表される化合物であってもよい。
 Cu(L)n1・(X)n2   式(A)
 上記式(A)中、Lは、銅に配位する配位子を表し、Xは、存在しないか、銅錯体の電荷を中和するよう、必要に応じて対イオンを表す。n1、n2は、それぞれ独立に0以上の整数を表す。
 配位子Lは、銅に配位可能な原子としてC原子、N原子、O原子、または、S原子を含む置換基を有するものであり、更に好ましくはN原子、O原子、または、S原子等の孤立電子対を持つ基を有するものである。好ましい配位子Lとしては、上述した配位子Lと同義である。配位可能な基は分子内に1種類に限定されず、2種以上を含んでもよく、解離しても非解離でもよい。
 対イオンとしては、後述する銅錯体に含まれる対イオンが挙げられ、後段で詳述する。
(銅錯体)
 銅錯体は、700~1200nmの波長領域に極大吸収波長を有する化合物が好ましい。銅錯体の極大吸収波長は、720~1200nmの波長領域に有することがより好ましく、800~1100nmの波長領域に有することが更に好ましい。
 銅錯体の上述した波長領域における極大吸収波長でのモル吸光係数は、120(L/mol・cm)以上が好ましく、150(L/mol・cm)以上がより好ましく、200(L/mol・cm)以上が更に好ましく、300(L/mol・cm)以上がより更に好ましく、400(L/mol・cm)以上が特に好ましい。上限は、特に限定はなく、例えば、30000(L/mol・cm)以下とすることができる。銅錯体の上記モル吸光係数が、100(L/mol・cm)以上であれば、薄膜であっても、赤外線遮蔽性に優れた赤外光吸収層を形成することができる。
 銅錯体の800nmでのグラム吸光係数は、0.11(L/g・cm)以上が好ましく、0.15(L/g・cm)以上がより好ましく、0.24(L/g・cm)以上が更に好ましい。
 なお、本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、銅錯体を溶媒に溶解させて1g/Lの濃度の溶液を調製し、銅錯体を溶解させた溶液の吸収スペクトルを測定して求めることができる。測定装置としては、島津製作所製UV-1800(波長領域200~1100nm)、Agilent製Cary 5000(波長領域200~1300nm)等を用いることができる。測定溶媒としては、水、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、1,2,4-トリクロロベンゼン、または、アセトンが挙げられる。本発明では、上述した測定溶媒のうち、測定対象の銅錯体を溶解できるものを選択して用いる。なかでも、プロピレングリコールモノメチルエーテルで溶解する銅錯体の場合は、測定溶媒としては、プロピレングリコールモノメチルエーテルを用いることが好ましい。なお、「溶解する」とは、25℃の溶媒に対する、銅錯体の溶解度が0.01g/100gSolventを超える状態を意味する。
 本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、上述した測定溶媒のいずれか1つを用いて測定した値であることが好ましく、プロピレングリコールモノメチルエーテルでの値であることがより好ましい。
 銅錯体のモル吸光係数を100(L/mol・cm)以上にする方法としては、例えば、5配位の銅錯体を用いる方法、π供与性の高い配位子を用いる方法、および、対称性の低い銅錯体を用いる方法、等が挙げられる。
 5配位の銅錯体を用いることで、モル吸光係数が100(L/mol・cm)以上を達成できるメカニズムとしては、以下によるものが推測される。すなわち、5座配位、好ましくは、5配位三方両錐構造、または、5配位四角錐構造をとることにより、錯体の対称性が低下する。これにより、配位子と銅の相互作用において、d軌道にp軌道が混ざりやすくなる。このとき、d-d遷移(赤外領域の吸収)は、純粋なd-d遷移ではなくなり、許容遷移であるp-d遷移の寄与が混ざる。これによりモル吸光係数が向上し、100(L/mol・cm)以上を達成することができると考えられる。
 5配位の銅錯体は、例えば、銅イオンに対して、2つの2座配位子(同一でも異なっていてもよい)と1つの単座配位子とを反応させること、1つの3座配位子と2つの2座配位子(同一でも異なっていてもよい)とを反応させること、1つの3座配位子と1つの2座配位子とを反応させること、1つの4座配位子と1つの単座配位子とを反応させること、1つの5座配位子を反応させることにより調製することができる。このとき、非共有電子対で配位する単座配位子は、反応溶媒として用いられることもある。例えば、銅イオンに対して、水を含む溶媒中で2つの2座配位子を反応させると、この2つの2座配位子と、単座配位子として水とが配位した5配位錯体が得られる。
 また、π供与性の高い配位子を用いることで、モル吸光係数が100(L/mol・cm)以上を達成できるメカニズムとしては、以下によるものが推測される。すなわち、π供与性が高い配位子(配位子のπ軌道あるいはp軌道がエネルギー的に浅いところにある配位子)を用いることにより、金属のp軌道と配位子のp軌道(またはπ軌道)が混ざりやすくなる。このとき、d-d遷移は、純粋なd-d遷移ではなくなり、許容遷移であるLMCT(Ligand to Metal Charge Transfer)遷移の寄与が混ざる。これにより吸光係数が向上し、100(L/mol・cm)以上を達成することができると考えられる。
 π供与性の高い配位子としては、例えば、ハロゲン配位子、酸素アニオン配位子、および、硫黄アニオン配位子等が挙げられる。π供与性の高い配位子を用いた銅錯体としては、例えば、単座配位子としてCl配位子を有する銅錯体等が挙げられる。
 また、対称性の低い銅錯体は、対称性の低い配位子を用いること、または、銅イオンに対して配位子を非対称に導入することで得ることができる。具体的には、例えば、次のようなことである。
 例えば、3座配位子L1-L2-L3と、2つの単座配位子L4、L5とを用いる場合、下記式
(1)に示すように、対称性の低い配位子、例えば、L1とL3が異なっている配位子を用いることで対称性の低い銅錯体が得られる。また、銅イオンに対して配位子を非対称に導入する、例えば、L4とL5が同じよりも異なっているほうが対称性の低い銅錯体が得られる。
Figure JPOXMLDOC01-appb-C000003
 また、四角錐錯体において、L4とL5が同じとき、下記式(2)のようにL4とL5が四角錐の底面上の対角線上にあるよりも、下記式(3)のように底面上で隣接しているか、下記式(4)のように一方の単座配位子が四角錐の頭頂位にあるほうが、対称性の低い錯体が得られる。
Figure JPOXMLDOC01-appb-C000004
 また、2つの2座配位子L6-L7、L8-L9と、単座配位子L10とを用いる場合、下記式(5)に示すように、対称性の低い配位子を用いる、例えば、L6とL7が異なっている配位子、および/または、L8とL9が異なっている配位子を用いることで対称性の低い銅錯体が得られる。
 また、銅イオンに対して配位子を非対称に導入する、例えば、L6-L7と、L8-L9が同じよりも異なっているほうが対称性の低い銅錯体が得られる。また、L6-L7と、L8-L9が同じ場合、L6=L8でL7=L9であるよりも、L6=L9でL7=L8であるほうが対称性の低い銅錯体が得られる。
Figure JPOXMLDOC01-appb-C000005
 銅錯体は、少なくとも2つの配位部位を有する化合物(以下、化合物(A)ともいう)を配位子として有することが好ましい。化合物(A)は、配位部位を少なくとも3つ有することがより好ましく、3~5つ有することが更に好ましい。化合物(A)は、銅成分に対し、キレート配位子として働く。すなわち、化合物(A)が有する少なくとも2つの配位原子が、銅とキレート配位することにより、銅錯体の構造が歪んで、可視光領域の高い透過性が得られ、赤外光の吸光能力を向上でき、色価も向上すると考えられる。これにより、積層体を長期間使用しても、その特性が損なわれず、またカメラモジュールを安定的に製造することも可能となる。
 銅錯体は、化合物(A)を2つ以上有していてもよい。化合物(A)を2つ以上有する場合は、それぞれの化合物(A)は同一であってもよく、異なっていてもよい。
 化合物(A)が有する配位部位としては、アニオンで配位する配位部位、非共有電子対で配位する配位部位が挙げられる。
 銅錯体は、4配位、5配位および6配位が例示され、4配位および5配位がより好ましく、5配位が更に好ましい。
 また、銅錯体は、銅と配位子によって、5員環および/または6員環が形成されていることが好ましい。このような銅錯体は、形状が安定であり、錯体安定性に優れる。
 本発明に用いられる銅錯体における銅は、例えば、銅成分(銅または銅を含む化合物)に対して、化合物(A)を混合または反応等させて得ることができる。
 銅成分は、2価の銅を含む化合物が好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。
 銅成分としては、例えば、酸化銅または銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸銅、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2-エチルヘキサン酸銅等)、スルホン酸銅(例えば、メタンスルホン酸銅等)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、フッ化銅、塩化銅、または、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、フッ化銅、塩化銅、硫酸銅、または、硝酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅、硫酸銅、または、硝酸銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅、塩化銅、または、硫酸銅が特に好ましい。
 化合物(A)と反応させる銅成分の量は、モル比率(化合物(A):銅成分)で1:0.5~1:8とすることが好ましく、1:0.5~1:4とすることがより好ましい。
 また、銅成分と化合物(A)とを反応させる際の反応条件は、例えば、20~100℃で、0.5時間以上とすることが好ましい。
 本発明に用いられる銅錯体は、化合物(A)以外の配位子を有していてもよい。化合物(A)以外の配位子としては、アニオンまたは非共有電子対で配位する単座配位子が挙げられる。アニオンで配位する配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、および、アジドアニオン等が挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、または、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、もしくは、そのエステルが挙げられる。
 単座配位子の種類および数は、銅錯体に配位する化合物(A)に応じて適宜選択することができる。
 化合物(A)以外の配位子として用いる単座配位子の具体例としては、以下のものが挙げられ、これらに限定されない。以下において、Phはフェニル基を表し、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000006
 銅錯体は、配位子をなす化合物(A)が、アニオンで配位する配位部位を有する場合、アニオンで配位する配位部位の数に応じて、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅錯体の電荷を中和するよう、必要に応じて対イオンが存在する。
 対イオンが負の対イオンの場合、例えば、無機陰イオンでも有機陰イオンでもよい。具体例としては、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換または無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換または無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、および、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が挙げられる。なかでも、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、または、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が好ましい。
 対イオンが正の対イオンの場合、例えば、無機または有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオン等のテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオン等のテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、および、アルカリ金属イオンまたはプロトンが挙げられる。
 また、対イオンは金属錯体イオンであってもよく、特に対イオンが銅錯体、すなわち、カチオン性銅錯体とアニオン性銅錯体の塩であってもよい。
 本発明で用いる銅錯体は、例えば、以下の(1)~(5)の態様が好ましい一例として挙げられ、(2)~(5)がより好ましく、(3)~(5)が更に好ましく、(4)が特に好ましい。
 (1)2つの配位部位を有する化合物の1つまたは2つを配位子として有する銅錯体
 (2)3つの配位部位を有する化合物を配位子として有する銅錯体
 (3)3つの配位部位を有する化合物と2つの配位部位を有する化合物とを配位子として有する銅錯体
 (4)4つの配位部位を有する化合物を配位子として有する銅錯体
 (5)5つの配位部位を有する化合物を配位子として有する銅錯体
 上記(1)の態様において、2つの配位部位を有する化合物は、非共有電子対で配位する配位部位を2つ有する化合物、または、アニオンで配位する配位部位と非共有電子対で配位する配位部位とを有する化合物が好ましい。また、2つの配位部位を有する化合物の2つを配位子として有する場合、配位子の化合物は、同一であってもよく、異なっていてもよい。
 また、(1)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1~3個とすることもできる。単座配位子の種類としては、アニオンで配位する単座配位子、および、非共有電子対で配位する単座配位子のいずれも好ましい。また、2つの配位部位を有する化合物が非共有電子対で配位する配位部位を2つ有する化合物の場合は、配位力が強いという理由からアニオンで配位する単座配位子がより好ましい。また、2つの配位部位を有する化合物がアニオンで配位する配位部位と非共有電子対で配位する配位部位とを有する化合物の場合には、錯体全体が電荷を持たないという理由から非共有電子対で配位する単座配位子がより好ましい。
 上記(2)の態様において、3つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を3つ有する化合物がより好ましい。
 また、(2)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもできる。また、1個以上とすることもでき、1~3個以上がより好ましく、1~2個が更に好ましく、2個が特に好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、および、非共有電子対で配位する単座配位子のいずれも好ましく、上述した理由によりアニオンで配位する単座配位子がより好ましい。
 上記(3)の態様において、3つの配位部位を有する化合物は、アニオンで配位する配位部位と、非共有電子対で配位する配位部位とを有する化合物が好ましく、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位部位を1つ有する化合物がより好ましい。更に、この2つのアニオンで配位する配位部位が異なっていることが特に好ましい。また、2つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2つ有する化合物がより好ましい。なかでも、3つの配位部位を有する化合物が、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位部位を1つ有する化合物であり、2つの配位部位を有する化合物が、非共有電子対で配位する配位部位を2つ有する化合物である組み合わせが、特に好ましい。
 また、(3)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は、0個が好ましい。
 上記(4)の態様において、4つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2以上有する化合物がより好ましく、非共有電子対で配位する配位部位を4つ有する化合物が更に好ましい。
 また、(4)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもでき、2個以上とすることもできる。単座配位子の数は、1個が好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、および、非共有電子対で配位する単座配位子のいずれも好ましい。
 上記(5)の態様において、5つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2以上有する化合物がより好ましく、非共有電子対で配位する配位部位を5つ有する化合物が更に好ましい。
 また、(5)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は0個が好ましい。
 銅錯体の具体例としては、例えば、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 なお、銅錯体は、ポリマーに担持していてもよい。
(ピロロピロール化合物:一般式1で表される化合物)
Figure JPOXMLDOC01-appb-C000008
 一般式1中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、
 R2~R5は、それぞれ独立に、水素原子または置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
 R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、RAおよびRBは、それぞれ独立に、水素原子または置換基を表し、
 R6は、R1aまたはR3と、共有結合または配位結合していてもよく、R7は、R1bまたはR5と、共有結合または配位結合していてもよい。
 一般式1中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、アリール基またはヘテロアリール基が好ましく、アリール基がより好ましい。
 R1aおよびR1bが表すアルキル基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が更に好ましい。アルキル基は直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましく、分岐がより好ましい。
 R1aおよびR1bが表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、フェニル基が好ましい。
 R1aおよびR1bが表すヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましく、3~10が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。
 上述したアリール基およびヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。溶媒に対する溶解性を向上できるという観点から置換基を有していることが好ましい。
 置換基としては、酸素原子を含んでもよい炭化水素基、アミノ基、アシルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アルキルスルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、メルカプト基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基、ヒドロキシ基、ハロゲン原子、および、シアノ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子等が挙げられる。
 炭化水素基としては、アルキル基、アルケニル基、および、アリール基等が挙げられる。
 アルキル基の炭素数は、1~40が好ましい。下限は、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルキル基は直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましく、分岐がより好ましい。分岐のアルキル基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルキル基の分岐数は、例えば、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 アルケニル基の炭素数は、2~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルケニル基は直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルケニル基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルケニル基の分岐数は、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 酸素原子を含む炭化水素基としては、-L-Rx1で表される基が挙げられる。
 Lは、-O-、-CO-、-COO-、-OCO-、-(ORx2m-または-(Rx2O)m-を表す。Rx1は、アルキル基、アルケニル基またはアリール基を表す。Rx2は、アルキレン基またはアリーレン基を表す。mは2以上の整数を表し、m個のRx2は、同一であってもよく、異なっていてもよい。
 Lは、-O-、-(ORx2m-または-(Rx2O)m-が好ましく、-O-がより好ましい。
 Rx1が表すアルキル基、アルケニル基、および、アリール基は上述したものと同義であり、好ましい範囲も同様である。Rx1は、アルキル基またはアルケニル基が好ましく、アルキル基がより好ましい。
 Rx2が表すアルキレン基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましい。アルキレン基は直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましい。Rx2が表すアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。Rx2はアルキレン基が好ましい。
 mは2以上の整数を表し、2~20が好ましく、2~10がより好ましい。
 アリール基およびヘテロアリール基が有してもよい置換基は、分岐アルキル構造を有する基が好ましい。この態様によれば、溶剤溶解性がより向上する。また、置換基は、酸素原子を含んでもよい炭化水素基が好ましく、酸素原子を含む炭化水素基がより好ましい。酸素原子を含む炭化水素基は、-O-Rx1で表される基が好ましい。Rx1は、アルキル基またはアルケニル基が好ましく、アルキル基がより好ましく、分岐のアルキル基が特に好ましい。すなわち、置換基は、アルコキシ基がより好ましく、分岐のアルコキシ基が更に好ましい。置換基が、アルコキシ基であることにより、耐熱性および耐光性にすぐれた赤外光吸収剤とすることができる。そして、分岐のアルコキシ基であることにより、溶剤溶解性が良好である。
 アルコキシ基の炭素数は、1~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルコキシ基は直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましく、分岐がより好ましい。分岐のアルコキシ基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が一層好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルコキシ基の分岐数は、2~10が好ましく、2~8がより好ましい。
 R2~R5は、それぞれ独立に、水素原子または置換基を表す。置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アミノ基(アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含む)、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アシル基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アルキルスルホニル基、アリールスルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、シリル基等が挙げられる。
 R2およびR3のいずれか一方と、R4およびR5のいずれか一方は、電子吸引性基であることが好ましい。
 Hammettのσp値(シグマパラ値)が正の置換基は、電子吸引性基として作用する。
 本発明においては、Hammettのσp値が0.2以上の置換基を電子吸引性基として例示することができる。σp値として好ましくは0.25以上であり、より好ましくは0.3以上であり、更に好ましくは0.35以上である。上限は特に制限はなく、好ましくは0.80である。
 電子吸引性基の具体例としては、シアノ基(0.66)、カルボキシル基(-COOH:0.45)、アルコキシカルボニル基(-COOMe:0.45)、アリールオキシカルボニル基(-COOPh:0.44)、カルバモイル基(-CONH2:0.36)、アルキルカルボニル基(-COMe:0.50)、アリールカルボニル基(-COPh:0.43)、アルキルスルホニル基(-SO2Me:0.72)、および、アリールスルホニル基(-SO2Ph:0.68)等が挙げられる。好ましくは、シアノ基である。ここで、Meはメチル基を、Phはフェニル基を表す。
 Hammettのσp値については、例えば、特開2009-263614号公報の段落0024~0025を参酌でき、この内容は本明細書に組み込まれる。
 R2およびR3のいずれか一方と、R4およびR5のいずれか一方は、ヘテロアリール基が好ましい。
 ヘテロアリール基は、単環、または、縮合環が好ましく、単環、または、縮合数が2~8の縮合環がより好ましく、単環、または、縮合数が2~4の縮合環が更に好ましい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、窒素原子を1個以上有することが好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましく、3~10が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の具体例としては、例えば、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、キノキサリル基、イソキノリル基、インドレニル基、フリル基、チエニル基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、ナフトチアゾリル基、ベンズオキサゾリ基、m-カルバゾリル基、アゼピニル基、およびこれらの基のベンゾ縮環基もしくはナフト縮環基等が挙げられる。
 ヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。ハロゲン原子、アルキル基、アルコキシ基またはアリール基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、または、ヨウ素原子が好ましく、塩素原子がより好ましい。
 アルキル基およびアルコキシ基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が更に好ましい。アルキル基およびアルコキシ基は、直鎖または分岐が好ましく、直鎖がより好ましい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 一般式1において、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよい。R2とR3、R4とR5が互いに結合して環を形成する場合は、5~7員環(好ましくは5または6員環)を形成することが好ましい。形成される環としてはメロシアニン色素で酸性核として用いられるものが好ましい。具体例としては、例えば、特開2010-222557号公報の段落0026に記載の構造が挙げられ、この内容は本明細書に組み込まれることとする。
 R2とR3、R4とR5が互いに結合して形成する環は、好ましくは1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、またはインダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、またはインダノン核である。
 R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、-BRABがより好ましい。
 R6およびR7が表すアルキル基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が更に好ましい。アルキル基は、直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表すヘテロアリール基は、単環または縮合環が好ましく、単環がより好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましく、3~5が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表す金属原子としては、マグネシウム、アルミニウム、カルシウム、バリウム、亜鉛、スズ、アルミニウム、亜鉛、スズ、バナジウム、鉄、コバルト、ニッケル、銅、パラジウム、イリジウム、または、白金が好ましく、アルミニウム、亜鉛、バナジウム、鉄、銅、パラジウム、イリジウム、または、白金がより好ましい。
 -BRABで表される基において、RAおよびRBは、それぞれ独立に、水素原子または置換基を表す。
 RAおよびRBが表す置換基としては、上述したR2~R5が表す置換基が挙げられる。ハロゲン原子、アルキル基、アルコキシ基、アリール基およびヘテロアリール基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、または、ヨウ素原子が好ましく、フッ素原子がより好ましい。
 アルキル基およびアルコキシ基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が更に好ましい。アルキル基およびアルコキシ基は直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基およびアルコキシ基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アリール基、ヘテロアリール基、および、ハロゲン原子等が挙げられる。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アルキル基、アルコキシ基、および、ハロゲン原子等が挙げられる。
 ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましく、3~5が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アルキル基、アルコキシ基、および、ハロゲン原子等が挙げられる。
 一般式1において、R6は、R1aまたはR3と、共有結合または配位結合していてもよい。また、R7は、R1bまたはR5と、共有結合または配位結合していてもよい。
 一般式1で表されるピロロピロール化合物としては、特開2010-222557号公報の段落0049~0062に記載の化合物D-1~D-162が挙げられ、この内容は本明細書に組み込まれる。
 一般式1で表されるピロロピロール化合物の好適態様としては、一般式1-1で表されるピロロピロール化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式中、R31aおよびR31bは、それぞれ独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基または炭素数3~20のヘテロアリール基を表す。R32はシアノ基、炭素数1~6のアシル基、炭素数1~6のアルコキシカルボニル基、炭素数1~10のアルキルもしくはアリールスルフィニル基、または、炭素数3~10の含窒素ヘテロアリール基を表す。R6およびR7は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、または炭素数4~10のヘテロアリール基を表し、R6およびR7は結合して環を形成してよく、形成する環としては炭素数5~10の脂環、炭素数6~10のアリール環、または、炭素数3~10のヘテロアリール環である。R8およびR9は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~20のアリール基、または、炭素数3~10のヘテロアリール基を表す。Xは酸素原子、イオウ原子、-NR-、-CRR’-、または、-CH=CH-を表し、RおよびR’は水素原子、炭素数1~10のアルキル基、または、炭素数6~10のアリール基を表す。
 一般式1-1中、R31aおよびR31bは、それぞれ独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基または炭素数3~20のヘテロアリール基を表し、具体的には、上記一般式1におけるR1aおよびR1bで説明した例と同義であり、好ましい範囲も同様である。R31aおよびR31bは同一であることが好ましい。
 R32はシアノ基、炭素数1~6のアルコキシカルボニル基、炭素数1~10のアルキルもしくはアリールスルフィニル基、または炭素数3~10の含窒素ヘテロアリール基であり、具体的には、上記一般式1におけるR2の例と同義であり、好ましい範囲も同様である。
 R6およびR7は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、または、炭素数4~10のヘテロアリール基であり、具体的には、上記一般式1におけるR2およびR3の置換基の例と同義であり、好ましい範囲も同様である。また、R6およびR7は結合して環を形成してよく、形成する環としては炭素数5~10の脂環、炭素数6~10のアリール環、または、炭素数3~10のヘテロアリール環であり、好ましい例としてはベンゼン環、ナフタレン環、または、ビリジン環等が挙げられる。
 R6およびR7が置換した5員含窒素ヘテロ環を導入し、更にホウ素錯体とすることで、高い堅牢性、および、高い不可視性を両立する赤外光吸収色素を実現することができる。
 R8およびR9はそれぞれ独立に炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~20のアリール基、または、炭素数3~10のヘテロアリール基であり、具体的には、上記一般式1におけるR2およびR3の置換基の例と同義であり、好ましい範囲も同様である。
 Xは酸素原子、イオウ原子、-NR-、-CRR’-、または、-CH=CH-を表す。RおよびR’はそれぞれ独立に水素原子、炭素数1~10のアルキル基、または炭素数6~10のアリール基を表し、水素原子、炭素数1~6のアルキル基、または、フェニル基が好ましい。
(シアニン化合物:一般式2で表される化合物)
;一般式2
Figure JPOXMLDOC01-appb-C000010
 一般式2中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子群であり、
 R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1は、奇数個のメチンからなるメチン鎖を表し、
 aおよびbは、それぞれ独立に、0または1であり、
 aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
 一般式2において、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子群を表す。
 含窒素複素環には、他の複素環、芳香族環または脂肪族環が縮合してもよい。含窒素複素環は、5員環が好ましい。5員の含窒素複素環に、ベンゼン環またはナフタレン環が縮合している構造がより好ましい。含窒素複素環の具体例としては、オキサゾール環、イソオキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、オキサゾロカルバゾール環、オキサゾロジベンゾフラン環、チアゾール環、ベンゾチアゾール環、ナフトチアゾール環、インドレニン環、ベンゾインドレニン環、イミダゾール環、ベンゾイミダゾール環、ナフトイミダゾール環、キノリン環、ピリジン環、ピロロピリジン環、フロピロール環、インドリジン環、イミダゾキノキサリン環、および、キノキサリン環等が挙げられる。なかでも、キノリン環、インドレニン環、ベンゾインドレニン環、ベンゾオキサゾール環、ベンゾチアゾール環、または、ベンゾイミダゾール環が好ましく、インドレニン環、ベンゾチアゾール環、または、ベンゾイミダゾール環がより好ましい。
 含窒素複素環およびそれに縮合している環は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、ヘテロアリール基、-ORc1、-CORc2、-COORc3、-OCORc4、-NRc5c6、-NHCORc7、-CONRc8c9、-NHCONRc10c11、-NHCOORc12、-SRc13、-SO2c14、-SO2ORc15、-NHSO2c16、および、-SO2NRc17c18が挙げられる。Rc1~Rc18は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。なお、-COORc3のRc3が水素原子の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SO2ORc15のRc15が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8が更に好ましい。アルキル基は、直鎖、分岐、および、環状のいずれでもよい。アルキル基は無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、および、アミノ基等が挙げられ、カルボキシル基またはスルホ基が好ましく、スルホ基がより好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 アルケニル基の炭素数は、2~20が好ましく、2~12がより好ましく、2~8が更に好ましい。アルケニル基は、直鎖、分岐、および、環状のいずれでもよい。アルケニル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アルキニル基の炭素数は、2~20が好ましく、2~12がより好ましく、2~8が更に好ましい。アルキニル基は、直鎖、分岐、および、環状のいずれでもよい。アルキニル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アリール基の炭素数は、6~25が好ましく、6~15がより好ましく、6~10が更に好ましい。アリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7~40が好ましく、7~30がより好ましく、7~25が更に好ましい。
 ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がより好ましく、単環または縮合数が2~4の縮合環が更に好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましい。ヘテロアリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 一般式2において、R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表す。アルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基は、上記の置換基で説明したものが挙げられ、好ましい範囲も同様である。アルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、および、アミノ基等が挙げられ、カルボキシル基またはスルホ基が好ましく、スルホ基がより好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 一般式2において、L1は、奇数個のメチンからなるメチン鎖を表す。L1は、3、5または7のメチン基からなるメチン鎖が好ましい。
 メチン基は置換基を有していてもよい。置換基を有するメチン基は、中央の(メソ位の)メチン基であることが好ましい。置換基の具体例としては、Z1およびZ2の含窒素複素環が有してもよい置換基、および、下記式(a)で表される基が挙げられる。また、メチン鎖の二つの置換基が結合して5または6員環を形成してもよい。
Figure JPOXMLDOC01-appb-C000011
 式(a)中、*は、メチン鎖との連結部を表し、A1は、酸素原子または硫黄原子を表す。
 一般式2において、aおよびbは、それぞれ独立に、0または1である。aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合する。aおよびbはともに0であることが好ましい。なお、aおよびbがともに0の場合は、一般式2は以下のように表される。
Figure JPOXMLDOC01-appb-C000012
 一般式2において、式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表す。アニオンの例としては、ハライドイオン(Cl-、Br-、I-)、p-トルエンスルホン酸イオン、エチル硫酸イオン、PF6 -、BF4 -、ClO4 -、トリス(ハロゲノアルキルスルホニル)メチドアニオン(例えば、(CF3SO23-)、ジ(ハロゲノアルキルスルホニル)イミドアニオン(例えば(CF3SO22-)、および、テトラシアノボレートアニオン等が挙げられる。
 一般式2において、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表す。カチオンとしては、アルカリ金属イオン(Li+、Na+、K+等)、アルカリ土類金属イオン(Mg2+、Ca2+、Ba2+、Sr2+等)、遷移金属イオン(Ag+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+等)、その他の金属イオン(Al3+等)、アンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、ピリジニウムイオン、テトラブチルアンモニウムイオン、グアニジニウムイオン、テトラメチルグアニジニウムイオン、および、ジアザビシクロウンデセニウム等が挙げられる。カチオンとしては、Na+、K+、Mg2+、Ca2+、Zn2+、または、ジアザビシクロウンデセニウムが好ましい。
 一般式2において、式中のCyで表される部位の電荷が分子内で中和されている場合、X1は存在しない。すなわち、cは0である。
 一般式2で表される化合物は、下記式(3-1)または(3-2)で表される化合物であることも好ましい。この化合物は、耐熱性に優れている。
Figure JPOXMLDOC01-appb-C000013
 式(3-1)および(3-2)中、R1A、R2A、R1BおよびR2Bは、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1AおよびL1Bは、それぞれ独立に奇数個のメチン基からなるメチン鎖を表し、
 Y1およびY2は、それぞれ独立に-S-、-O-、-NRX1-または-CRX2X3-を表し、
 RX1、RX2およびRX3は、それぞれ独立に水素原子またはアルキル基を表し、
 V1A、V2A、V1BおよびV2Bは、それぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、ヘテロアリール基、-ORc1、-CORc2、-COORc3、-OCORc4、-NRc5c6、-NHCORc7、-CONRc8c9、-NHCONRc10c11、-NHCOORc12、-SRc13、-SO2c14、-SO2ORc15、-NHSO2c16または-SO2NRc17c18を表し、V1A、V2A、V1BおよびV2Bは、縮合環を形成していてもよく、
 Rc1~Rc18は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、
 -COORc3のRc3が水素原子の場合および-SO2ORc15のRc15が水素原子の場合は、水素原子が解離しても、塩の状態であってもよく、
 m1およびm2は、それぞれ独立に0~4の整数を表し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、
 式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、
 式中のCyで表される部位の電荷が分子内で中和されている場合、X1は存在しない。
 R1A、R2A、R1BおよびR2Bが表す基は、一般式2のR101およびR102で説明したアルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基と同義であり、好ましい範囲も同様である。これらの基は無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、および、アミノ基等が挙げられ、カルボキシル基またはスルホ基が好ましく、スルホ基がより好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 R1A、R2A、R1BおよびR2Bがアルキル基を表す場合は、直鎖のアルキル基であることがより好ましい。
 Y1およびY2は、それぞれ独立に-S-、-O-、-NRX1-または-CRX2X3-を表し、-NRX1-が好ましい。
 RX1、RX2およびRX3は、それぞれ独立に水素原子またはアルキル基を表し、アルキル基が好ましい。アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。アルキル基は直鎖、分岐、および、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は、メチル基またはエチル基が更に好ましい。
 L1AおよびL1Bは、一般式2のL1と同義であり、好ましい範囲も同様である。
 V1A、V2A、V1BおよびV2Bが表す基は、一般式2のZ1およびZ2の含窒素複素環が有してもよい置換基で説明した範囲と同義であり、好ましい範囲も同様である。
 m1およびm2は、それぞれ独立に0~4の整数を表し、0~2が好ましい。
 X1が表すアニオンおよびカチオンは、一般式2のX1で説明した範囲と同義であり、好ましい範囲も同様である。
 一般式2で表される化合物としては、特開2009-108267号公報の段落0044~0045に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
(スクアリリウム色素)
 本発明において、スクアリリウム色素は、一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(1)中、A1およびA2は、それぞれ独立に、アリール基、ヘテロ環基または下記一般式(2)で表される基を表す;
Figure JPOXMLDOC01-appb-C000015
 一般式(2)中、Z1は、含窒素複素環を形成する非金属原子群を表し、R2は、アルキル基、アルケニル基またはアラルキル基を表し、dは、0または1を表し、波線は一般式(1)との連結手を表す。
 一般式(1)におけるA1およびA2は、それぞれ独立に、アリール基、ヘテロ環基または一般式(2)で表される基を表し、一般式(2)で表される基が好ましい。
 A1およびA2が表すアリール基の炭素数は、6~48が好ましく、6~24がより好ましく、6~12が更に好ましい。具体例としては、フェニル基、および、ナフチル基等が挙げられる。なお、アリール基が置換基を有する場合、上記アリール基の炭素数は、置換基の炭素数を除いた数を意味する。
 A1およびA2が表すヘテロ環基としては、5員環または6員環が好ましい。また、ヘテロ環基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がより好ましく、単環または縮合数が2~4の縮合環が更に好ましく、単環または縮合数が2または3の縮合環が特に好ましい。ヘテロ環基に含まれるヘテロ原子としては、窒素原子、酸素原子、および、硫黄原子が例示され、窒素原子、または、硫黄原子が好ましい。ヘテロ原子の数は、1~3が好ましく、1~2がより好ましい。具体的には、窒素原子、酸素原子および硫黄原子の少なくとも一つを含有する5員環または6員環等の単環、多環芳香族環から誘導されるヘテロ環基等が挙げられる。
 アリール基およびヘテロ環基は、置換基を有していてもよい。置換基としては、例えば、以下に示す置換基T群が挙げられる。
(置換基T群)
 ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子);
 直鎖もしくは分岐のアルキル基(直鎖または分岐の、置換または無置換のアルキル基で、好ましくは炭素数1~30のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-クロロエチル基、2-シアノエチル基、2-エチルヘキシル基);
 シクロアルキル基(好ましくは、炭素数3~30の置換または無置換のシクロアルキル基であり、例えば、シクロヘキシル基、シクロペンチル基が挙げられ、多シクロアルキル基、例えば、ビシクロアルキル基(好ましくは、炭素数5~30の置換または無置換のビシクロアルキル基で、例えば、ビシクロ[1,2,2]ヘプタン-2-イル基、ビシクロ[2,2,2]オクタン-3-イル基)、および、トリシクロアルキル基等の多環構造の基が挙げられる。好ましくは単環のシクロアルキル基、ビシクロアルキル基であり、単環のシクロアルキル基がより好ましい);
 直鎖もしくは分岐のアルケニル基(直鎖または分岐の、置換または無置換のアルケニル基で、好ましくは炭素数2~30のアルケニル基であり、例えば、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基);
 シクロアルケニル基(好ましくは、炭素数3~30の置換または無置換のシクロアルケニル基であり、例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基が挙げられ、多シクロアルケニル基、例えば、ビシクロアルケニル基(好ましくは、炭素数5~30の置換または、無置換のビシクロアルケニル基で、例えば、ビシクロ[2,2,1]ヘプト-2-エン-1-イル基、ビシクロ[2,2,2]オクト-2-エン-4-イル基)、および、トリシクロアルケニル基であり、単環のシクロアルケニル基が好ましい。);
 アルキニル基(好ましくは、炭素数2~30の置換または無置換のアルキニル基であり、例えば、エチニル基、プロパルギル基、トリメチルシリルエチニル基);
 アリール基(好ましくは炭素数6~30の置換または無置換のアリール基であり、例えば、フェニル基、パラ-トリル基、ナフチル基、メタ-クロロフェニル基、および、オルト-ヘキサデカノイルアミノフェニル基);
 ヘテロアリール基(好ましくは5~7員の置換または無置換の、単環または縮環のヘテロアリール基であり、より好ましくは、環構成原子が炭素原子、窒素原子および硫黄原子から選択され、かつ窒素原子、酸素原子および硫黄原子のいずれかのヘテロ原子を少なくとも一個有するヘテロアリール基であり、更に好ましくは、炭素数3~30の5または6員のヘテロアリール基である。例えば、2-フリル基、2-チエニル基、2-ピリジル基、4-ピリジル基、2-ピリミジニル基、および、2-ベンゾチアゾリル基);
 シアノ基;
 ヒドロキシル基;
 ニトロ基;
 カルボキシル基(水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい);
 アルコキシ基(好ましくは、炭素数1~30の置換または無置換のアルコキシ基であり、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、および、2-メトキシエトキシ基);
 アリールオキシ基(好ましくは、炭素数6~30の置換または無置換のアリールオキシ基であり、例えば、フェノキシ基、2-メチルフェノキシ基、2,4-ジ-tert-アミルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、および、2-テトラデカノイルアミノフェノキシ基);
 シリルオキシ基(好ましくは、炭素数3~20のシリルオキシ基であり、例えば、トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基);
 ヘテロアリールオキシ基(好ましくは、炭素数2~30の置換または無置換のヘテロアリールオキシ基で、ヘテロアリール部は前述のヘテロアリール基で説明されたヘテロアリール部が好ましく、例えば、1-フェニルテトラゾール-5-オキシ基、および、2-テトラヒドロピラニルオキシ基);
 アシルオキシ基(好ましくは、炭素数2~30の置換もしくは無置換のアルキルカルボニルオキシ基、または、炭素数6~30の置換もしくは無置換のアリールカルボニルオキシ基であり、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、および、パラ-メトキシフェニルカルボニルオキシ基);
 カルバモイルオキシ基(好ましくは、炭素数1~30の置換または無置換のカルバモイルオキシ基で、例えば、N,N-ジメチルカルバモイルオキシ基、N,N-ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N-ジ-n-オクチルアミノカルボニルオキシ基、および、N-n-オクチルカルバモイルオキシ基);
 アルコキシカルボニルオキシ基(好ましくは、炭素数2~30の置換または無置換アルコキシカルボニルオキシ基であり、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert-ブトキシカルボニルオキシ基、および、n-オクチルオキシカルボニルオキシ基);
 アリールオキシカルボニルオキシ基(好ましくは、炭素数7~30の置換または無置換のアリールオキシカルボニルオキシ基であり、例えば、フェノキシカルボニルオキシ基、パラ-メトキシフェノキシカルボニルオキシ基、および、パラ-n-ヘキサデシルオキシフェノキシカルボニルオキシ基);
 アミノ基(好ましくは、アミノ基、炭素数1~30の置換もしくは無置換のアルキルアミノ基、炭素数6~30の置換もしくは無置換のアリールアミノ基、または、炭素数0~30のヘテロアリールアミノ基であり、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基、および、N-1,3,5-トリアジン-2-イルアミノ基);
 アシルアミノ基(好ましくは、炭素数1~30の置換もしくは無置換のアルキルカルボニルアミノ基、または、炭素数6~30の置換もしくは無置換のアリールカルボニルアミノ基であり、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基、および、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノ基);
 アミノカルボニルアミノ基(好ましくは、炭素数1~30の置換または無置換のアミノカルボニルアミノ基であり、例えば、カルバモイルアミノ基、N,N-ジメチルアミノカルボニルアミノ基、N,N-ジエチルアミノカルボニルアミノ基、および、モルホリノカルボニルアミノ基);
 アルコキシカルボニルアミノ基(好ましくは、炭素数2~30の置換または無置換アルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基、n-オクタデシルオキシカルボニルアミノ基、および、N-メチル-メトキシカルボニルアミノ基);
 アリールオキシカルボニルアミノ基(好ましくは、炭素数7~30の置換または無置換のアリールオキシカルボニルアミノ基であり、例えば、フェノキシカルボニルアミノ基、パラ-クロロフェノキシカルボニルアミノ基、および、メタ-n-オクチルオキシフェノキシカルボニルアミノ基);
 スルファモイルアミノ基(好ましくは、炭素数0~30の置換または無置換のスルファモイルアミノ基であり、例えば、スルファモイルアミノ基、N,N-ジメチルアミノスルホニルアミノ基、および、N-n-オクチルアミノスルホニルアミノ基);
 アルキル又はアリールスルホニルアミノ基(好ましくは炭素数1~30の置換もしくは無置換のアルキルスルホニルアミノ基、または、炭素数6~30の置換もしくは無置換のアリールスルホニルアミノ基であり、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、および、パラ-メチルフェニルスルホニルアミノ基);
 メルカプト基;
 アルキルチオ基(好ましくは、炭素数1~30の置換または無置換のアルキルチオ基であり、例えばメチルチオ基、エチルチオ基、および、n-ヘキサデシルチオ基);
 アリールチオ基(好ましくは炭素数6~30の置換または無置換のアリールチオ基で、例えば、フェニルチオ基、パラ-クロロフェニルチオ基、および、メタ-メトキシフェニルチオ基);
 ヘテロアリールチオ基(好ましくは、炭素数2~30の置換または無置換のヘテロアリールチオ基であり、ヘテロアリール部は前述のヘテロアリール基で説明したヘテロアリール部が好ましく、例えば、2-ベンゾチアゾリルチオ基、および、1-フェニルテトラゾール-5-イルチオ基);
 スルファモイル基(好ましくは、炭素数0~30の置換または無置換のスルファモイル基であり、例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、および、N-(N'-フェニルカルバモイル)スルファモイル基);
 スルホ基(水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい);
 アルキル又はアリールスルフィニル基(好ましくは、炭素数1~30の置換もしくは無置換のアルキルスルフィニル基、または、6~30の置換もしくは無置換のアリールスルフィニル基であり、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、および、パラ-メチルフェニルスルフィニル基);
 アルキル又はアリールスルホニル基(好ましくは、炭素数1~30の置換もしくは無置換のアルキルスルホニル基、または、6~30の置換もしくは無置換のアリールスルホニル基であり、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、および、パラ-メチルフェニルスルホニル基);
 アシル基(好ましくはホルミル基、炭素数2~30の置換もしくは無置換のアルキルカルボニル基、または、炭素数7~30の置換もしくは無置換のアリールカルボニル基であり、例えば、アセチル基、ピバロイル基、2-クロロアセチル基、ステアロイル基、ベンゾイル基、および、パラ-n-オクチルオキシフェニルカルボニル基);
 アリールオキシカルボニル基(好ましくは、炭素数7~30の置換または無置換のアリールオキシカルボニル基であり、例えば、フェノキシカルボニル基、オルト-クロロフェノキシカルボニル基、メタ-ニトロフェノキシカルボニル基、および、パラ-tert-ブチルフェノキシカルボニル基);
 アルコキシカルボニル基(好ましくは、炭素数2~30の置換または無置換アルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基、および、n-オクタデシルオキシカルボニル基);
 カルバモイル基(好ましくは、炭素数1~30の置換または無置換のカルバモイル基であり、例えば、カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、および、N-(メチルスルホニル)カルバモイル基);
 アリール又はヘテロアリールアゾ基(好ましくは炭素数6~30の置換もしくは無置換のアリールアゾ基、または、炭素数3~30の置換もしくは無置換のヘテロアリールアゾ基(ヘテロアリール部は前述のヘテロアリール基で説明したヘテロアリール部が好ましい)であり、例えば、フェニルアゾ基、パラ-クロロフェニルアゾ基、および、5-エチルチオ-1,3,4-チアジアゾール-2-イルアゾ基);
 イミド基(好ましくは、炭素数2~30の置換または無置換のイミド基であり、例えばN-スクシンイミド基、および、N-フタルイミド基);
 ホスフィノ基(好ましくは、炭素数2~30の置換または無置換のホスフィノ基であり、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、および、メチルフェノキシホスフィノ基);
 ホスフィニル基(好ましくは、炭素数2~30の置換または無置換のホスフィニル基であり、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、および、ジエトキシホスフィニル基);
 ホスフィニルオキシ基(好ましくは、炭素数2~30の置換または無置換のホスフィニルオキシ基であり、例えば、ジフェノキシホスフィニルオキシ基、および、ジオクチルオキシホスフィニルオキシ基);
 ホスフィニルアミノ基(好ましくは、炭素数2~30の置換または無置換のホスフィニルアミノ基であり、例えば、ジメトキシホスフィニルアミノ基、および、ジメチルアミノホスフィニルアミノ基);
 シリル基(好ましくは、炭素数3~30の置換または無置換のシリル基であり、例えば、トリメチルシリル基、tert-ブチルジメチルシリル基、および、フェニルジメチルシリル基)が挙げられる。
 アリール基およびヘテロ環基が有してもよい置換基は、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、または、アシルアミノ基であることが好ましい。
 ハロゲン原子は、塩素原子が好ましい。
 アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~4が特に好ましい。アルキル基は、直鎖または分岐が好ましい。
 アミノ基は、-NR100101で表される基が好ましい。R100およびR101は、それぞれ独立に、水素原子、または、炭素数1~30のアルキル基を表す。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましく、1~8が特に好ましい。アルキル基は直鎖、または、分岐が好ましく、直鎖がより好ましい。
 アシルアミノ基は、-NR102-C(=O)-R103で表される基が好ましい。R102は、水素原子またはアルキル基を表し、水素原子が好ましい。R103は、アルキル基を表す。R102およびR103が表すアルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~4が特に好ましい。
 アリール基およびヘテロ環基が、置換基を2個以上有する場合、複数の置換基は同一であってもよく、異なっていてもよい。
 次に、A1およびA2が表す一般式(2)で表される基について説明する。
 一般式(2)において、R2は、アルキル基、アルケニル基またはアラルキル基を表し、アルキル基が好ましい。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~12が更に好ましく、2~8が特に好ましい。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~12が更に好ましい。
 アルキル基およびアルケニル基は、直鎖、分岐、および、環状のいずれでもよく、直鎖または分岐が好ましい。
 アラルキル基の炭素数は7~30が好ましく、7~20がより好ましい。
 一般式(2)において、Z1により形成される含窒素複素環としては、5員環または6員環が好ましい。また、含窒素複素環は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がより好ましく、単環または縮合数が2~4の縮合環が更に好ましく縮合数が2または3の縮合環が特に好ましい。含窒素複素環は、窒素原子の他に、硫黄原子を含んでいてもよい。また、含窒素複素環は置換基を有していてもよい。置換基としては、上述した置換基T群で説明した基が挙げられる。例えば、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、または、アシルアミノ基が好ましく、ハロゲン原子、または、アルキル基がより好ましい。ハロゲン原子は、塩素原子が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~12が更に好ましい。アルキル基は、直鎖または分岐が好ましい。
 一般式(2)で表される基は、下記一般式(3)または(4)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(3)および(4)中、R11は、アルキル基、アルケニル基またはアラルキル基を表し、R12は、置換基を表し、mが2以上の場合は、R12同士は、連結して環を形成してもよく、Xは、窒素原子、または、CR1314を表し、R13およびR14は、それぞれ独立に水素原子または置換基を表し、mは、0~4の整数を表し、波線は一般式(1)との連結手を表す。
 一般式(3)および(4)におけるR11は、一般式(2)におけるR2と同義であり、好ましい範囲も同様である。
 一般式(3)および(4)におけるR12は、置換基を表す。置換基としては、上述した置換基T群で説明した基が挙げられる。例えば、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、または、アシルアミノ基が好ましく、ハロゲン原子、または、アルキル基がより好ましい。ハロゲン原子は塩素原子が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~12が更に好ましい。アルキル基は、直鎖または分岐が好ましい。
 mが2以上の場合、R12同士は、連結して環を形成してもよい。環としては、脂環(非芳香性の炭化水素環)、芳香環、および、複素環等が挙げられる。環は単環であってもよく、複環であってもよい。置換基同士が連結して環を形成する場合の連結基としては、-CO-、-O-、-NH-、2価の脂肪族基、2価の芳香族基およびそれらの組み合わせからなる群より選ばれる2価の連結基で連結することができる。例えば、R12同士が連結してベンゼン環を形成することが好ましい。
 一般式(3)におけるXは、窒素原子、または、CR1314を表し、R13およびR14は、それぞれ独立に水素原子または置換基を表す。置換基としては、上述した置換基T群で説明した基が挙げられる。例えば、アルキル基等が挙げられる。アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~3が特に好ましく、1が最も好ましい。アルキル基は、直鎖または分岐が好ましく、直鎖がより好ましい。
 mは、0~4の整数を表し、0~2が好ましい。
 なお、一般式(1)においてカチオンは、以下のように非局在化して存在している。
Figure JPOXMLDOC01-appb-C000017
 赤外光吸収層14には、上記赤外光吸収剤以外の成分が含まれていてもよい。その他の成分に関しては、後述する赤外光吸収組成物に含まれてもよい成分が挙げられ、後段で詳述する。
(赤外光吸収層14の製造方法)
 赤外光吸収層14の製造方法は特に制限されず、例えば、上記赤外光吸収剤を含有する赤外光吸収組成物を所定の基板上に塗布して、必要に応じて、乾燥して形成できる。
 赤外光吸収組成物には、上記赤外光吸収剤が含まれ、それ以外に、バインダー(例えば、樹脂、ゼラチン)、重合性化合物、開始剤、または、界面活性剤等が含まれていてもよい。
 バインダー(樹脂)としては、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、および、ポリエステル樹脂等が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 上記樹脂の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下がより好ましく、500,000以下が更に好ましい。下限は、3,000以上がより好ましく、5,000以上が更に好ましい。
 また、エポキシ樹脂の場合、エポキシ樹脂の重量平均分子量(Mw)は、100以上が好ましく、200~2,000,000がより好ましい。上限は、1,000,000以下が更に好ましく、500,000以下が特に好ましい。
 上記樹脂は、25℃から、20℃/分で昇温した5%熱質量減少温度が、200℃以上であることが好ましく、260℃以上であることがより好ましい。
 また、樹脂は、下記式(MX2-1)で表される繰り返し単位、下記式(MX2-2)で表される繰り返し単位および下記式(MX2-3)で表される繰り返し単位から選ばれる1種を有するポリマーを用いることもできる。
Figure JPOXMLDOC01-appb-C000018
 Mは、Si、Ti、ZrおよびAlから選択される原子を表し、X2は置換基または配位子を表し、n個のX2のうち、少なくとも1つが、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基およびO=C(Ra)(Rb)から選択される1種であり、X2同士は、それぞれ結合して環を形成していてもよく、RaおよびRbは、それぞれ独立に1価の有機基を表し、R1は、水素原子またはアルキル基を表し、L1は単結合または2価の連結基を表し、nは、MのX2との結合手の数を表す。
 Mは、Si、Ti、ZrおよびAlから選択される原子であり、Si、Ti、または、Zrが好ましく、Siがより好ましい。
 X2は置換基または配位子を表し、n個のX2のうち、少なくとも1つが、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基およびO=C(Ra)(Rb)から選択される1種であり、X2同士は、それぞれ結合して環を形成していてもよい。
 n個のX2のうち、少なくとも1つが、アルコキシ基、アシルオキシ基およびオキシム基から選択される1種であることが好ましく、n個のX2のうち、少なくとも1つがアルコキシ基であることがより好ましく、X2の全てが、アルコキシ基であることが更に好ましい。なお、X2が、O=C(Ra)(Rb)である場合、カルボニル基(-CO-)の酸素原子の非共有電子対でMと結合する。RaおよびRbは、それぞれ独立に1価の有機基を表す。
 X2が表すアルコキシ基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~2が特に好ましい。アルコキシ基は直鎖、分岐、および、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖がより好ましい。アルコキシ基は、無置換であってもよく、置換基を有してもよく、無置換が好ましい。置換基としては、ハロゲン原子(好ましくはフッ素原子)、重合性基(例えば、ビニル基、(メタ)アクリロイル基、スチリル基、エポキシ基、および、オキセタン基等)、アミノ基、イソシアネート基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、スルホ基、カルボキシル基、および、ヒドロキシル基等が挙げられる。
 X2が表すアシルオキシ基としては、例えば、炭素数2~30の置換または無置換のアルキルカルボニルオキシ基、および、炭素数6~30の置換または無置換のアリールカルボニルオキシ基等が挙げられる。例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ、ベンゾイルオキシ基、および、p-メトキシフェニルカルボニルオキシ基等が挙げられる。置換基としては上述したものが挙げられる。
 X2が表すオキシム基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましい。例えば、エチルメチルケトオキシム基等が挙げられる。
 X2が表すアミノ基としては、アミノ基、炭素数1~30の置換または無置換のアルキルアミノ基、炭素数6~30の置換または無置換のアリールアミノ基、および、炭素数0~30のヘテロ環アミノ基等が挙げられる。例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基、および、N-1,3,5-トリアジン-2-イルアミノ基等が挙げられる。置換基としては上述したものが挙げられる。
 RaおよびRbが表す1価の有機基としては、アルキル基、アリール基、および、-R101-COR102で表される基等が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~10がより好ましい。アルキル基は、直鎖、分岐、および、環状のいずれでもよい。アルキル基は、無置換であってもよく、上述した置換基を有していてもよい。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。アリール基は、無置換であってもよく、上述した置換基を有していてもよい。
 -R101-COR102で表される基において、R101は、アリーレン基を表し、R102はアルキル基またはアリール基を表す。
 R101が表すアリーレン基の炭素数は、1~20が好ましく、1~10がより好ましい。アリーレン基は、直鎖、分岐、および、環状のいずれでもよい。アリーレン基は、無置換であってもよく、上述した置換基を有していてもよい。
 R102が表すアルキル基およびアリール基は、Ra、Rbで説明したものが挙げられ、好ましい範囲も同様である。
 X2が表す置換基および配位子のうち、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、および、オキシム基以外の置換基としては、炭化水素基が好ましい。炭化水素基としては、アルキル基、アルケニル基、および、アリール基等が挙げられる。
 アルキル基は、直鎖状、分岐状、および、環状のいずれであってもよい。直鎖状のアルキル基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8が更に好ましい。分岐状のアルキル基の炭素数は、3~20が好ましく、3~12がより好ましく、3~8が更に好ましい。環状のアルキル基は、単環、および、多環のいずれであってもよい。環状のアルキル基の炭素数は、3~20が好ましく、4~10がより好ましく、6~10が更に好ましい。
 アルケニル基の炭素数は、2~10が好ましく、2~8がより好ましく、2~4が更に好ましい。
 アリール基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10が更に好ましい。
 炭化水素基は、置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子(好ましくはフッ素原子)、重合性基(例えば、ビニル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタン基等)、アミノ基、イソシアネート基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、スルホ基、カルボキシル基、ヒドロキシル基、および、アルコキシ基等が挙げられる。
 R1は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1が更に好ましい。アルキル基は、直鎖、および、分岐のいずれも好ましく、直鎖がより好ましい。アルキル基は、水素原子の一部または全部がハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 L1は、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、および、これらの組み合わせからなる基が挙げられ、アルキレン基、アリーレン基、または、アルキレン基の少なくとも1つと-O-との組み合わせからなる基が好ましい。
 アルキレン基の炭素数は、1~30が好ましく、1~15より好ましく、1~10が更に好ましい。アルキレン基は、置換基を有していてもよく、無置換が好ましい。アルキレン基は、直鎖、分岐、および、環状のいずれであってもよい。また、環状のアルキレン基は、単環、および、多環のいずれであってもよい。
 アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10が更に好ましい。アリーレン基としては、フェニレン基が好ましい。
 上記ポリマーは、式(MX2-1)、(MX2-2)、および、(MX2-3)で表される繰り返し単位の他に、他の繰り返し単位を含有していてもよい。
 他の繰り返し単位を構成する成分としては、特開2010-106268号公報の段落0068~0075(対応する米国特許出願公開第2011/0124824号明細書の<0112>~<0118>)に開示の共重合成分の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 好ましい他の繰り返し単位としては、下記式(MX3-1)~(MX3-4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(MX3-1)~(MX3-4)中、R5は水素原子またはアルキル基を表し、L4は単結合または2価の連結基を表し、R10は、アルキル基またはアリール基を表す。R11およびR12は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。
 R5は、式(MX2-1)~(MX2-3)のR1と同義であり、好ましい範囲も同様である。
 L4は、式(MX2-1)~(MX2-3)のL1と同義であり、好ましい範囲も同様である。
 R10で表されるアルキル基は、直鎖状、分岐状、および、環状のいずれでもよく、環状が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は置換基を有していてもよく、置換基としては、上述したものが挙げられる。
 R10で表されるアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6が更に好ましい。
 R10は、環状のアルキル基またはアリール基が好ましい。
 R11およびR12は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。アルキル基およびアリール基は、R10と同様のものが挙げられる。アルキル基が好ましい。アルキル基は直鎖状が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましく、1~5が特に好ましい。
 上記ポリマーが、他の繰り返し単位(好ましくは式(MX3-1)~(MX3-4)で表される繰り返し単位)を含む場合、式(MX2-1)~(MX2-3)で表される繰り返し単位の合計と、他の繰り返し単位の合計とのモル比は、95:5~20:80であることが好ましく、90:10~30:70であることがより好ましい。式(MX2-1)~(MX2-3)で表される繰り返し単位の含有率を、上記範囲内で高めることで耐湿性および耐溶剤性がより向上する傾向にある。また、式(MX2-1)~(MX2-3)で表される繰り返し単位の含有率を上記範囲内で低くすることで、耐熱性がより向上する傾向にある。
 上記ポリマーの具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 上記ポリマーの重量平均分子量は、500~300000が好ましい。下限は、1000以上がより好ましく、2000以上が更に好ましい。上限は、250000以下がより好ましく、200000以下が更に好ましい。
 (メタ)アクリル樹脂としては、(メタ)アクリル酸および/またはそのエステルに由来する構成単位を含む重合体が挙げられる。具体的には、(メタ)アクリル酸、(メタ)アクリル酸エステル類、(メタ)アクリルアミドおよび(メタ)アクリロニトリルから選ばれる少なくとも1種を重合して得られる重合体が挙げられる。
 ポリエステル樹脂としては、ポリオール(例えば、エチレングリコール、プロピレングリコール、グリセリン、および、トリメチロールプロパン)と、多塩基酸(例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸およびこれらの芳香核の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸、および、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等)との反応により得られるポリマー、および、カプロラクトンモノマー等の環状エステル化合物の開環重合により得られるポリマー(例えばポリカプロラクトン)が挙げられる。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、および、脂肪族エポキシ樹脂等を挙げることができる。市販品としては、例えば、以下のものが挙げられる。
 ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、ジャパンエポキシレジン(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等が挙げられる。
 ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、ジャパンエポキシレジン(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等が挙げられる。
 フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65、(以上、ジャパンエポキシレジン(株)製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等が挙げられる。
 脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、ADEKA RESIN EP-4085S、ADEKA RESIN EP-4088S(以上、(株)ADEKA製)セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、EPOLEAD PB 4700(以上、ダイセル化学工業(株)製)、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等が挙げられる。
 その他にも、ADEKA RESIN EP-4000S、ADEKA RESIN EP-4003S、ADEKA RESIN EP-4010S、ADEKA RESIN EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S(ジャパンエポキシレジン(株)製)等が挙げられる。
 また、樹脂は、酸基を有していてもよい。酸基としては、例えば、カルボキシル基、リン酸基、スルホン酸基、および、フェノール性ヒドロキシル基等が挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂としては、側鎖にカルボキシル基を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、および、ノボラック型樹脂等のアルカリ可溶性フェノール樹脂等、並びに、側鎖にカルボキシル基を有する酸性セルロース誘導体、および、ヒドロキシル基を有するポリマーに酸無水物を付加させたもの挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、および、ビニル化合物等が挙げられる。アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、および、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、および、ポリメチルメタクリレートマクロモノマー等、特開平10-300922号公報に記載のN位置換マレイミドモノマーとしては、N―フェニルマレイミド、N-シクロヘキシルマレイミド等を挙げることができる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂としては、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、および、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好ましい。また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、および、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体等も好ましい。
 酸基を有する樹脂としては、下記一般式(ED1)で示される化合物および/または下記一般式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分を重合してなるポリマー(a)も好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(ED1)中、R1およびR2は、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000022
 一般式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。一般式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
 一般式(ED1)中、R1およびR2で表される置換基を有していてもよい炭素数1~25の炭化水素基としては、特に制限はなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、tert-アミル基、ステアリル基、ラウリル基、および、2-エチルヘキシル基等の直鎖状または分岐状のアルキル基;フェニル等のアリール基;シクロヘキシル基、tert-ブチルシクロヘキシル基、ジシクロペンタジエニル基、トリシクロデカニル基、イソボルニル基、アダマンチル基、および、2-メチル-2-アダマンチル基等の脂環式基;1-メトキシエチル基、および、1-エトキシエチル基等のアルコキシ基で置換されたアルキル基;ベンジル基等のアリール基で置換されたアルキル基;等が挙げられる。これらの中でも、耐熱性の点で、メチル基、エチル基、シクロヘキシル基、および、ベンジル基等のような酸や熱で脱離しにくい1級または2級炭素の置換基が好ましい。
 エーテルダイマーの具体例としては、例えば、特開2013-29760号公報の段落0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。一般式(ED)で示される化合物由来の構造体は、その他のモノマーを共重合させてもよい。
 酸基を有する樹脂は、下記式(X)で示される化合物に由来する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000023
 式(X)において、R1は、水素原子またはメチル基を表し、R2は炭素数2~10のアルキレン基を表し、R3は、水素原子またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 上記式(X)において、R2のアルキレン基の炭素数は、2~3が好ましい。また、R3のアルキル基の炭素数は1~20であり、1~10が好ましく、R3のアルキル基はベンゼン環を含んでもよい。R3で表されるベンゼン環を含むアルキル基としては、ベンジル基、および、2-フェニル(イソ)プロピル基等を挙げることができる。
 酸基を有する樹脂の具体例としては、例えば以下に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 酸基を有する樹脂としては、特開2012-208494号公報の段落0558~0571(対応する米国特許出願公開第2012/0235099号明細書の<0685>~<0700>)以降の記載、特開2012-198408号公報の段落0076~0099の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 酸基を有する樹脂の酸価は、30~200mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上が更に好ましい。上限は、150mgKOH/g以下がより好ましく、120mgKOH/g以下が更に好ましい。
 また、樹脂は、重合性基を有していてもよい。樹脂が重合性基を有することで、硬度のある膜を形成できる。
 重合性基としては、(メタ)アリル基、および、(メタ)アクリロイル基等が挙げられる。重合性基を含有する樹脂としては、ダイヤナ-ルNRシリーズ(三菱レイヨン株式会社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.Ltd.,製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル化学工業株式会社製)、Ebecryl3800(ダイセルユーシービー株式会社製)、および、アクリキュア-RD-F8(日本触媒社製)等が挙げられる。また、上述したエポキシ樹脂等も挙げられる。
 樹脂の含有量は、赤外光吸収組成物の全固形分に対して、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましい。上限は、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下が更に好ましい。
 赤外光吸収組成物は、樹脂、ゼラチンおよび重合性化合物から選ばれる少なくとも1種を含有することが好ましく、ゼラチンおよび重合性化合物から選ばれる少なくとも1種を含有することがより好ましい。この態様によれば、耐熱性および耐溶剤性に優れた赤外光吸収層を製造しやすい。また、重合性化合物を用いる場合、重合性化合物と光重合開始剤と併用することが好ましい。
(ゼラチン)
 赤外光吸収組成物は、ゼラチンを含有することが好ましい。ゼラチンを含有することにより、耐熱性に優れた赤外光吸収層を形成しやすい。詳細なメカニズムは不明であるが、赤外光吸収剤とゼラチンとで会合体を形成しやすいためであると推測する。特に、赤外光吸収剤としてシアニン化合物を用いた場合、耐熱性に優れた赤外光吸収層を形成しやすい。
 ゼラチンとしては、その合成方法によって、酸処理ゼラチンおよびアルカリ処理ゼラチン(石灰処理等)があり、いずれも好ましく用いることができる。ゼラチンの分子量は、10,000~1,000,000であることが好ましい。また、ゼラチンのアミノ基またはカルボキシル基を利用して変性処理した変性ゼラチンも用いることができる(例えば、フタル化ゼラチン等)。ゼラチンとしては、イナートゼラチン(例えば、新田ゼラチン750)、および、フタル化ゼラチン(例えば、新田ゼラチン801)等を用いることができる。
 赤外光吸収層の耐水性および機械的強度を高めるため、種々の化合物を用いてゼラチンを硬化させることが好ましい。硬化剤は従来公知のものを使用することができ、例えば、ホルムアルデヒド、グルタルアルデヒド等のようなアルデヒド系化合物類、米国特許第3,288.775号明細書その他に記載されている反応性のハロゲンを有する化合物類、米国特許第3,642.486号明細書、特公昭49-13563号その他に記載されている反応性のエチレン不飽和結合を持つ化合物類、米国特許第3,017,280号明細書等に記載されているアジリジン系化合物類、米国特許第3,091,537号明細書等に記載されているエポキシ系化合物類、ムコクロル酸のようなハロゲンカルボキシルアルデヒド類、ジヒドロキシジオキサン、ジクロロジオキサン等のようなジオキサン類、または、クロム明ばん、硫酸ジルコニウム等のような無機硬膜剤が挙げられる。
 赤外光吸収組成物において、ゼラチンの含有量は、赤外光吸収組成物の全固形分に対し、1~99質量%が好ましい。下限は、10質量%以上がより好ましく、20質量%以上が更に好ましい。上限は、95質量%以下がより好ましく、90質量%以下が更に好ましい。
(重合性化合物)
 赤外光吸収組成物は、重合性化合物を含有することが好ましい。重合性化合物は、例えば、エチレン性不飽和結合を有する基、環状エーテル(エポキシ、オキセタン)基、または、メチロール基等を有する化合物が挙げられ、エチレン性不飽和結合を有する化合物が好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、および、(メタ)アクリロイル基等が挙げられる。
 重合性化合物は、単官能であっても多官能であってもよく、好ましくは、多官能(重合性基を2個以上有する重合性化合物)である。多官能化合物を含むことにより、三次元架橋物を有する赤外光吸収層を形成できる。そして、赤外光吸収層が三次元架橋物を有することにより、耐熱性および耐溶剤性を向上させることができる。重合性化合物の官能基の数は特に限定されず、2~8官能が好ましく、3~6官能がより好ましい。
 重合性化合物は、例えば、モノマー、プレポリマー、オリゴマー、または、それらの混合物並びにそれらの多量体等の化学的形態のいずれであってもよい。
 重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。
 重合性化合物の分子量は、2000未満が好ましく、100以上2000未満がより好ましく、200以上2000未満が更に好ましい。
 重合性化合物は、エチレン性不飽和結合を有する基を含む化合物であることが好ましい。
 エチレン性不飽和結合を有する基を含む化合物の例としては、特開2013-253224号公報の段落0033~0034の記載を参酌することができ、この内容は本明細書に組み込まれる。
 具体例としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としてはNKエステルATM-35E;新中村化学工業社製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA ;日本化薬株式会社製、A-DPH-12E;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造が好ましい。またこれらのオリゴマータイプも使用できる。
 また、特開2013-253224号公報の段落0034~0038の重合性化合物の記載を参酌することができ、この内容は本明細書に組み込まれる。
 また、特開2012-208494号公報の段落0477(対応する米国特許出願公開第2012/0235099号明細書の<0585>)に記載の重合性モノマー等が挙げられ、これらの内容は本願明細書に組み込まれる。
 また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学社工業製、A-TMMT)、および、1,6-ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。例えば、RP-1040(日本化薬株式会社製)等が挙げられる。
 エチレン性不飽和結合を有する基を含む化合物としては、更に、カルボキシル基、スルホン酸基、および、リン酸基等の酸基を有していてもよい。
 酸基を有する化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが挙げられる。脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、より好ましくは、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520等が挙げられる。
 酸基を有する化合物の酸価は、0.1~40mgKOH/gが好ましい。下限は、5mgKOH/g以上がより好ましい。上限は、30mgKOH/g以下がより好ましい。
 重合性化合物は、カプロラクトン構造を有する化合物も好ましい態様である。
 カプロラクトン構造を有する化合物としては、特開2013-253224号公報の段落0042~0045の記載を参酌することができ、この内容は本明細書に組み込まれる。
 市販品としては、例えば、サートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330等が挙げられる。
(重合開始剤)
 赤外光吸収組成物は、重合開始剤を含有してもよい。重合開始剤としては、熱重合開始剤または光重合開始剤が挙げられ、光重合開始剤が好ましい。以下、主に、光重合開始剤について詳述する。
 光重合開始剤の含有量は、赤外光吸収組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。上限は、20質量%以下がより好ましく、15質量%以下が更に好ましい。
 光重合開始剤は、1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
 光重合開始剤としては、光により硬化性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができる。光で重合を開始させる場合、紫外線領域から可視の光線に対して感光性を有するものが好ましい。
 光重合開始剤としては、少なくとも芳香族基を有する化合物であることが好ましく、例えば、アシルホスフィン化合物、アセトフェノン系化合物、α-アミノケトン化合物、ベンゾフェノン化合物、ベンゾインエーテル化合物、ケタール誘導体化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、ベンゾインエーテル化合物、オニウム塩化合物(例えば、メタロセン化合物等)、有機硼素塩化合物、ジスルホン化合物、および、チオール化合物等が挙げられる。
 光重合開始剤としては、特開2013-253224号公報の段落0217~0228の記載を参酌することができ、この内容は本明細書に組み込まれる。
 オキシム化合物としては、市販品であるIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831(ADEKA社製)、および、アデカアークルズNCI-930(ADEKA社製)等を用いることができる。
 アセトフェノン系化合物としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。また、アシルホスフィン化合物としては、市販品であるIRGACURE-819およびDAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報記載の化合物、特表2014-500852号公報記載の化合物24、36~40、特開2013-164471号公報記載の化合物(C-3)等が挙げられる。この内容は本明細書に組み込まれる。
(溶剤)
 赤外光吸収組成物は溶剤を含有してもよい。溶剤は、特に制限はなく、赤外光吸収組成物の各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、および、有機溶剤を用いることができ、有機溶剤が好ましい。
 有機溶剤としては、例えば、アルコール類(例えばメタノール)、ケトン類、エステル類、エーテル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の溶剤を併用する場合、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、および、プロピレングリコールモノメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。
 アルコール類、芳香族炭化水素類、および、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報の段落0136等に記載のものが挙げられ、この内容は本願明細書に組み込まれる。また、エステル類、ケトン類、および、エーテル類の具体例としては、特開2012-208494号公報の段落0497(対応する米国特許出願公開第2012/0235099号明細書の<0609>)に記載のものが挙げられ、更に、酢酸-n-アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、および、エチレングリコールモノブチルエーテルアセテート等が挙げられる。
 赤外光吸収組成物中における溶剤の量は、固形分が10~90質量%となる量が好ましい。下限は、20質量%以上がより好ましい。上限は、80質量%以下がより好ましい。
(界面活性剤)
 赤外光吸収組成物は、塗布性をより向上させる観点から、各種の界面活性剤を含有してもよい。
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、および、シリコーン系界面活性剤等の各種界面活性剤を使用できる。
 赤外光吸収組成物にフッ素系界面活性剤を含有させることで、塗布液として調製したときの液特性(特に、流動性)がより向上し、塗布厚の均一性や省液性をより改善することができる。
 即ち、フッ素系界面活性剤を含有する組成物を適用した塗布液を用いて膜形成する場合、被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、厚みムラの小さい均一厚の膜形成をより好適に行うことができる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、更に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。
 フッ素系界面活性剤としては、例えば、メガファックF171、メガファックF172、メガファックF173、メガファックF176、メガファックF177、メガファックF141、メガファックF142、メガファックF143、メガファックF144、メガファックR30、メガファックF437、メガファックF475、メガファックF479、メガファックF482、メガファックF554、メガファックF780、RS-72-K(以上、DIC(株)製)、フロラードFC430、フロラードFC431、フロラードFC171(以上、住友スリーエム(株)製)、サーフロンS-382、サーフロンSC-101、サーフロンSC-103、サーフロンSC-104、サーフロンSC-105、サーフロンSC1068、サーフロンSC-381、サーフロンSC-383、サーフロンS393、サーフロンKH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011-89090号公報に記載された化合物が挙げられる。
 フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができ、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000025
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。
 また、エチレン性不飽和基を側鎖に有する含フッ素重合体をフッ素系界面活性剤として用いることもできる。具体例としては、特開2010-164965号公報の段落0050~0090および段落0289~0295に記載された化合物、例えばDIC社製のメガファックRS-101、RS-102、RS-718K等が挙げられる。
 ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレートおよびプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1)、ソルスパース20000(日本ルーブリゾール(株)製)等が挙げられる。また、和光純薬工業社製の、NCW-101、NCW-1001、NCW-1002を使用することもできる。
 カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名:EFKA-745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)、サンデットBL(三洋化成(株)社製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、KF6002(以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
 界面活性剤の含有量は、組成物の全固形分に対して、0.001~2.0質量%が好ましく0.005~1.0質量%がより好ましい。
 なお、上記界面活性剤は、赤外光吸収層のみならず、他の層にも含まれていてもよい。
 上記以外にも、赤外光吸収組成物は、例えば、分散剤、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤、密着促進剤、および、その他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤等)を更に含有することができる。
 赤外光吸収組成物の塗布方法としては、滴下法(ドロップキャスト)、スピンコーター、スリットスピンコーター、スリットコーター、スクリーン印刷、および、アプリケータ塗布等の方法により実施できる。
 乾燥条件としては、各成分、溶剤の種類、および、使用割合等によっても異なるが、60℃~150℃の温度で30秒間~15分間程度である。
 赤外光吸収層の形成方法において、その他の工程を含んでいてもよい。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前加熱工程(プリベーク工程)、硬化処理工程、および、後加熱工程(ポストベーク工程)等が挙げられる。
 前加熱工程および後加熱工程における加熱温度は、通常、80~200℃であり、90~150℃であることが好ましい。前加熱工程および後加熱工程における加熱時間は、通常、30~240秒であり、60~180秒であることが好ましい。
 硬化処理工程は、必要に応じ、形成された上記膜に対して硬化処理を行う工程であり、この処理を行うことにより、赤外光吸収層の機械的強度が向上する。重合性化合物を含む赤外光吸収組成物を用いた場合、硬化処理工程を行うことが好ましい。
 上記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、全面露光処理、および、全面加熱処理等が好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、および、X線等の放射線照射をも包含する意味で用いられる。
 露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、電子線、KrF、ArF、g線、h線、および、i線等の紫外線または可視光が好ましく用いられる。
 露光方式としては、ステッパー露光や、高圧水銀灯による露光等が挙げられる。
 露光量は5~3000mJ/cm2が好ましく、10~2000mJ/cm2がより好ましく、50~1000mJ/cm2が更に好ましい。
 全面露光処理の方法としては、例えば、形成された上記膜の全面を露光する方法が挙げられる。赤外光吸収組成物が重合性化合物を含有する場合、全面露光により、膜中の重合成分の硬化が促進され、上記膜の硬化が更に進行し、赤外光吸収層の耐溶剤性および耐熱性が向上する。
 上記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯等のUV(紫外光)露光機が好適に挙げられる。
 また、全面加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。全面加熱により、赤外光吸収層の耐溶剤性および耐熱性が向上する。
 全面加熱における加熱温度は、120~250℃が好ましく、160~220℃がより好ましい。加熱温度が120℃以上であれば、加熱処理によって膜強度が向上し、250℃以下であれば、膜成分の分解を抑制できる。
 全面加熱における加熱時間は、3~180分が好ましく、5~120分がより好ましい。
 全面加熱を行う装置としては特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、および、ホットプレート等が挙げられる。
<赤外光反射層>
 赤外光反射層16は、赤外光領域の光に対して遮蔽性(反射性)を有する層である。赤外光反射層16は、第1選択反射層18a、第2選択反射層20a、第1選択反射層18b、および、第2選択反射層20bの4層が赤外光吸収層14側からこの順に積層された積層体からなる。第1選択反射層18a~18bは、螺旋軸の回転方向が右方向である液晶相が固定されてなる層であり、赤外光領域のある波長領域の右円偏光を選択反射するための層である。第2選択反射層20a~20bは、螺旋軸の回転方向が左方向である液晶相が固定されてなる層であり、赤外光領域のある波長領域の左円偏光を選択反射するための層である。
 なお、上記回転方向は、図1において白抜きの矢印側(反射防止層12側)から赤外光吸収層14を観察した際に右方向回転か左方向回転かを判断する。
 第1選択反射層18a~18bおよび第2選択反射層20a~20bは、それぞれ螺旋軸を有する液晶相(棒状液晶、円盤状液晶)を固定した層からなる。各選択反射層のそれぞれの螺旋軸を有する液晶相は、多数の層の重なりからなり、その一つの薄い層内において、液晶化合物は、例えば長軸を層と平行にすると共に方向を揃えて配列している。そして、その一つの薄い層は、互いに分子の配列方向が螺旋状になるように集積している。螺旋軸は、通常、各選択反射層の表面に対して垂直方向となる。このため、螺旋ピッチに対応して左/右円偏光成分のいずれか一方を選択的に反射する。
 第1選択反射層18aおよび第2選択反射層20aは、概ね同一の螺旋ピッチを有し、第1選択反射層18bおよび第2選択反射層20bは、概ね同一の螺旋ピッチを有する。
 例えば、第1選択反射層18aおよび第2選択反射層20aは、赤外光帯域のうちの短波長側を反射する役割を担い、第1選択反射層18bおよび第2選択反射層20bは、赤外光帯域のうちの長波長側を反射する役割を担う。すなわち、4層の選択反射層を用いることによって相補的に赤外光帯域を反射する。
 上記のように赤外光反射層16に含まれる第1選択反射層が複数存在する場合、相補的に赤外光帯域を反射する観点から、各第1選択反射層の選択反射波長は異なることが好ましい。ここで、2つの第1選択反射層の選択反射波長が互いに異なるとは、2つの選択反射波長の差が少なくとも20nmを超えることが好ましく、30nm以上がより好ましく、40nm以上が更に好ましい。
 赤外光反射層16に含まれる第2選択反射層が複数存在する場合においても、上記第1選択反射層が複数存在する場合と同様に、各第2選択反射層の選択反射波長が異なることが好ましく、好適な態様は上記の通りである。
 なお、「選択反射層の選択反射波長」とは、選択反射層における透過率の極小値をTmin(%)とした場合、以下式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
 半値透過率を求める式: T1/2= 100-(100-Tmin)÷2
 より詳細には、選択反射層1層あたりには前述の半値透過率を示す波長が長波側(λ1)と短波側(λ2)に2つ存在し、選択反射波長の値は、λ1とλ2の平均値で表される。
 なお、図1においては、赤外光反射層16が4層構造の態様を示すが、この態様に限定されない。
 第1選択反射層および第2選択反射層は、その総層数に特に制限はなく、例えば、それぞれ1~10層とすることが好ましく、1~5層とすることがより好ましい。
 第1選択反射層の総層数と第2選択反射層の総層数は、互いに独立であり、同一であっても異なっていてもよく、同一であることが好ましい。
 赤外光反射層16は、1層の第1選択反射層および1層の第2選択反射層からなる組をそれぞれ2組以上有していてもよい。このとき、各組にそれぞれ含まれる第1選択反射層および第2選択反射層の選択反射波長が互いに等しいことが好ましい。
 赤外光反射層16は、少なくとも1層の第1選択反射層の選択反射波長と少なくとも1層の第2選択反射層の選択反射波長が互いに等しいことが好ましい。少なくとも1層の第1選択反射層と少なくとも1層の第2選択反射層が同程度の螺旋ピッチを有すると共に、互いに逆向きの旋光性を示している態様では、同程度の波長の左および右円偏光のいずれも反射することができるので好ましい。
 また、選択反射層の選択反射波長が「互いに等しい」とは、厳密に等しいことを意味するものではなく、光学的に影響のない範囲の誤差は許容される。本明細書中、2つの選択反射層の選択反射波長が「互いに等しい」とは、2つの選択反射層の選択反射波長の差が20nm以下であることを言い、この差は15nm以下であることが好ましく、10nm以下であることがより好ましい。
 選択反射波長が互いに等しく、左右異なる旋回性を有する2つの選択反射層を積層することで、積層体の透過スペクトルは、この選択反射波長において1つの強いピークを示し、反射性能の観点から好ましい。
 赤外光反射層16は、少なくとも600~1200nmの光を反射することが好ましく、第1選択反射層および第2選択反射層のうち少なくとも1層は650nm~1200nmにおける反射率の極大値が40%以上であることがより好ましく、45%以上であることが更に好ましい。すべての第1選択反射層とすべての第2選択反射層は650nm~1200nmにおける反射率の極大値が40%以上であることが好ましく、45%以上であることがより好ましい。
 第1選択反射層および第2選択反射層の厚みは特に制限されず、1~8μm程度(好ましくは2~7μm程度)が好ましい。ただし、これらの範囲に限定されるものではない。各第1選択反射層および第2選択反射層の形成に用いる材料(主には液晶化合物およびキラル剤)の種類およびその濃度等を調整することで、所望の螺旋ピッチの各選択反射層を形成することができる。
 各選択反射層(第1選択反射層および第2選択反射層)は、コレステリック液晶相が固定された層(コレステリック液晶化合物が固定された層)であることが好ましい。つまり、第1選択反射層は、螺旋軸の回転方向が右方向であるコレステリック液晶相を固定してなる層であることが好ましく、第2選択反射層は、螺旋軸の回転方向が左方向であるコレステリック液晶相を固定してなる層であることが好ましい。
 各選択反射層は、重合性基を有する液晶化合物(コレステリック液晶化合物)を塗布し、コレステリック液晶相に配向させたのちに光重合によって固定化されてなることが好ましい。
 各選択反射層の形成には、硬化性(重合性)の液晶組成物を用いるのが好ましい。液晶組成物の一例として、重合性基を有する棒状液晶化合物、光学活性化合物(キラル剤)、および、重合開始剤を少なくとも含有する態様が好ましい。各成分を2種以上含んでいてもよい。例えば、重合性の液晶化合物と非重合性の液晶化合物との併用が可能である。また、低分子液晶化合物と高分子液晶化合物との併用も可能である。更に、配向の均一性や塗布適性、膜強度を向上させるために、水平配向剤、ムラ防止剤、ハジキ防止剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、重合性の液晶組成物中には、必要に応じて、更に重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、または、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
(液晶化合物)
 使用可能な液晶化合物は、いわゆる棒状液晶化合物であっても、円盤状液晶化合物であってもよく、特に限定されない。その中でも、棒状液晶化合物であることが好ましい。
 本発明に使用可能な棒状液晶化合物の例は、棒状ネマチック液晶化合物である。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく挙げられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 液晶化合物は、重合性であっても非重合性であってもよく、重合性基を有する液晶化合物が好ましく使用される。上述したように、第1選択反射層および/または第2選択反射層は、重合性基を有する液晶化合物を用いて形成された層であることが好ましい。つまり、第1選択反射層および/または第2選択反射層は、重合性基を有する液晶化合物を用いて、これらを重合させて形成される層であることが好ましい。
 重合性基としては不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基(例えば、アクリロイルオキシ基、メタクリロイルオキシ基)がより好ましい。液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。
 液晶化合物の具体例としては、例えば、特開2014-119605号公報の段落0031~0053に記載される化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 第1選択反射層および第2選択反射層による選択反射の帯域幅Δλは、用いられる液晶化合物(例えば、重合性基を有する液晶化合物)の屈折率異方性Δnと、らせんピッチPとを用いて、Δλ=Δn×Pで表される。よって、広い帯域幅Δλを得るためには、高いΔnを示す液晶化合物を用いることが好ましい。具体的には、液晶化合物の30℃におけるΔnは0.25以上が好ましく、0.3以上がより好ましく、0.35以上が更に好ましい。上限は特に制限されず、0.6以下の場合が多い。
 屈折率異方性Δnの測定方法としては、液晶便覧(液晶便覧編集委員会編、丸善株式会社刊)202頁に記載の楔形液晶セルを用いた方法が一般的であり、結晶化しやすい化合物の場合は、他の液晶化合物との混合物による評価を行い、その外挿値から見積もることもできる。
 高いΔnを示す液晶化合物としては、例えば、米国特許第6514578号明細書、特許第3999400号明細書、特許第4117832号明細書、特許第4517416号明細書、特許第4836335号明細書、特許第5411770号明細書、特許第5411771号明細書、特許第5510321号明細書、特許第5705465号明細書、特許第5721484号明細書、および、特許第5723641号明細書等に記載の化合物が挙げられる。
 重合性基を有する液晶化合物の他の好適態様としては、一般式(5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 A1~A4は、それぞれ独立に、置換基を有していてもよい芳香族炭素環または複素環を表す。芳香族炭素環としては、ベンゼン環およびナフタレン環が挙げられる。複素環としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、および、トリアジン環が挙げられる。なかでも、A1~A4は、芳香族炭素環であることが好ましく、ベンゼン環であることがより好ましい。
 芳香族炭素環または複素環に置換してもよい置換基の種類は特に制限されず、例えば、ハロゲン原子、シアノ基、ニトロ基、アルキル基、ハロゲン置換アルキル基、アルコキシ基、アルキルチオ基、アシルオキシ基、アルコキシカルボニル基、カルバモイル基、アルキル置換カルバモイル基、および、炭素数が2~6のアシルアミノ基が挙げられる。
 X1およびX2は、それぞれ独立に、単結合、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-または-C≡C-を表す。なかでも、単結合、-COO-、または、-C≡C-が好ましい。
 Y1およびY2は、それぞれ独立に、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。なかでも、-O-が好ましい。
 Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1~25の炭素鎖を表す。炭素鎖は、直鎖状、分岐鎖状、および、環状のいずれもよい。炭素鎖としては、いわゆるアルキル基が好ましい。なかでも、炭素数1~10のアルキル基がより好ましい。
 P1およびP2は、それぞれ独立に、水素原子または重合性基を表し、P1およびP2の少なくとも一方は重合性基を表す。重合性基としては、上述した重合性基を有する液晶化合物が有している重合性基が例示される。
 n1およびn2はそれぞれ独立に0~2の整数を表し、n1またはn2が2の場合、複数あるA1、A2、X1およびX2は同じでもあっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(キラル剤)
 液晶組成物は、コレステリック液晶相を示すものであり、そのためには、キラル剤(光学活性化合物)を含有しているのが好ましい。但し、上記棒状液晶化合物が不斉炭素原子を有する分子である場合には、キラル剤を添加しなくても、コレステリック液晶相を安定的に形成可能である場合もある。キラル剤としては、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN(Twisted Nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)から選択することができる。キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤が重合性基を有すると共に、併用する棒状液晶化合物も重合性基を有する場合は、重合性キラル剤と重合性棒状液晶化合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがより好ましく、エチレン性不飽和重合性基であることが更に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 液晶組成物中のキラル剤の含有量は、併用される液晶化合物に対して、1~30モル%であることが好ましい。キラル剤の含有量は、より少なくした方が液晶性に影響を及ぼさないことが多いため好まれる。従って、キラル剤は、少量でも所望の螺旋ピッチの捩れ配向を達成可能なように、強い捩り力のある化合物が好ましい。この様な、強い捩れ力を示すキラル剤としては、例えば、特開2003-287623号公報に記載のキラル剤が挙げられ、本発明に好ましく用いることができる。
 キラル剤の具体例としては、例えば、特開2014-119605号公報の段落0055~0080に記載される化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 なお、キラル剤としては、主に、右旋回性のキラル剤および左旋回性のキラル剤が挙げられ、第1選択反射層を製造する際には右旋回性のキラル剤が、第2選択反射層を製造する際には左旋回性のキラル剤が用いられることが好ましい。
(重合開始剤)
 各選択反射層の形成に用いる液晶組成物は、重合性液晶組成物であるのが好ましく、そのためには、重合開始剤を含有しているのが好ましい。本発明では、紫外線照射により硬化反応を進行させるのが好ましく、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。光重合開始剤としては、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、並びに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 光重合開始剤の使用量は、液晶組成物(塗布液の場合は固形分)の0.1~20質量%であることが好ましく、1~8質量%であることがより好ましい。
(配向制御剤)
 液晶組成物は、安定的にまたは迅速にコレステリック液晶相となるのに寄与する配向制御剤を含有していてもよい。配向制御剤としては、含フッ素(メタ)アクリレート系ポリマーが挙げられる。これらから選択される2種以上を含有していてもよい。これらの化合物は、層の空気界面において、液晶化合物の分子のチルト角を低減または実質的に水平配向させることができる。なお、本明細書で「水平配向」とは、液晶分子長軸と膜面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が20度未満の配向を意味する。液晶化合物が空気界面付近で水平配向する場合、配向欠陥が生じ難いため、可視光領域での透明性が高くなり、また赤外領域での反射率が増大する。
 配向制御剤として利用可能な含フッ素(メタ)アクリレート系ポリマーの例としては、特開2007-272185号公報の<0018>~<0043>等に記載がある。
 配向制御剤の具体例としては、例えば、特開2014-119605号公報の段落0081~0090に記載される化合物が挙げられ、これらの内容は本明細書に組み込まれる。
(赤外光反射層の製造方法)
 赤外光反射層の製造方法は特に制限されず、上述した液晶組成物を用いる方法が好適に挙げられる。より具体的には、赤外光反射層の製造方法の一例は、
(1)所定の基板等の表面に、硬化性の液晶組成物を塗布して、コレステリック液晶相の状態にすること、
(2)硬化性の液晶組成物に紫外線を照射して硬化反応を進行させ、コレステリック液晶相を固定して選択反射層を形成すること、
を少なくとも含む製造方法である。
 (1)および(2)の工程を、液晶組成物の種類を変更しつつ、基板の一方の表面上で4回繰り返すことで図1に示す構成と同様の構成の赤外光反射層を作製することができる。
 なお、コレステリック液晶相の旋回の方向は、用いる液晶の種類または添加されるキラル剤の種類によって調整でき、螺旋ピッチ(すなわち、中心反射波長)は、これらの材料の濃度によって任意に調整できる。
 なお、第1選択反射層を形成する際には、液晶化合物および右旋回性のキラル剤を少なくとも含む液晶組成物を用いることが好ましく、第2選択反射層を形成する際には、液晶化合物および左旋回性のキラル剤を少なくとも含む液晶組成物を用いることが好ましい。
 上記(1)工程では、まず、所定の基板の表面に、硬化性の液晶組成物を塗布する。硬化性の液晶組成物は、溶媒に材料を溶解および/または分散した、塗布液として調製されるのが好ましい。塗布液の塗布は、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法等の種々の方法によって行うことができる。
 次に、表面に塗布され、塗膜となった硬化性液晶組成物を、コレステリック液晶相の状態にする。硬化性液晶組成物が、溶媒を含む塗布液として調製されている態様では、塗膜を乾燥し、溶媒を除去することで、コレステリック液晶相の状態にすることができる場合がある。また、コレステリック液晶相への転移温度とするために、所望により、塗膜を加熱してもよい。例えば、一旦等方性相の温度まで加熱し、その後、コレステリック液晶相転移温度まで冷却する等によって、安定的にコレステリック液晶相の状態にすることができる。硬化性液晶組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。
 次に、(2)の工程では、コレステリック液晶相の状態となった塗膜に、紫外線を照射して、硬化反応を進行させる。紫外線照射には、紫外線ランプ等の光源が利用される。この工程では、紫外線を照射することによって、液晶組成物の硬化反応が進行し、コレステリック液晶相が固定されて、選択反射層が形成される。
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。また、紫外線照射時の温度は、コレステリック液晶相が乱れないように、コレステリック液晶相を呈する温度範囲に維持するのが好ましい。
 上記工程では、コレステリック液晶相が固定されて、選択反射層が形成される。ここで、液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、かつ、好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、この層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味する。本発明では、紫外線照射によって進行する硬化反応により、コレステリック液晶相の配向状態を固定することが好ましい。
 なお、本発明においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、最終的に選択反射層中の液晶組成物がもはや液晶性を示す必要はない。例えば、液晶組成物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 なお、第1選択反射層と第2選択反射層との製造順番は特に制限されず、どちらを先に(順不同で)製造してもよい。
<積層体10>
 上記各部材を有する積層体10は、可視光領域の透過率が高い。より具体的には、波長450~650nmの透過率は、90%以上が好ましく、95%以上がより好ましい。上限は特に制限されず、100%である。
 また、積層体10は、赤外光領域の透過率が低い。より具体的には、波長700~1100nmの透過率は、10%以下が好ましく、5%以下がより好ましい。下限は特に制限されず、0%である。
 積層体10の透過率の測定は、紫外可視近赤外分光光度計(日立ハイテクノロジーズ社製 U-4100)の分光光度計(ref.ガラス基板)を用いて、波長300~1300nmの範囲において行う。
 積層体10を構成する全ての層には、含フッ素化合物が含まれていてもよい。赤外光反射層には、界面付近での液晶化合物の配向の乱れを防ぐ目的で、界面付近に偏在する含フッ素化合物が含まれる場合がある。また、赤外光吸収層および反射防止層中には、塗布性の改善のために含フッ素化合物が含まれる場合がある。
 「含フッ素化合物」とは、フッ素原子を含む化合物である。
 なお、積層体10には、上述した反射防止層12、赤外光吸収層14、および、赤外光反射層16以外の他の層が含まれていてもよい。
 他の層としては、例えば、ガラス基板および樹脂基板等の基板(好ましくは、透明基板)、接着層、密着層、下塗り層、および、ハードコート層等が挙げられる。
 積層体10は、上述した各部材の製造方法にて説明した方法をそれぞれ実施して製造することができる。
 より具体的には積層体10を製造するためには、第1選択反射層を形成するための組成物(液晶組成物)、第2選択反射層を形成するための組成物(液晶組成物)、赤外光吸収層を形成するための組成物(赤外光吸収組成物)、および、反射防止層を形成するための組成物(反射防止層形成用組成物)を含むキットを用意する。
 次に、各組成物を順に用いて、各部材を形成する。例えば、上述した方法により赤外光反射層を製造した後、製造した赤外光反射層上に上述した方法により赤外光吸収層を製造し、その後、赤外光吸収層上に上述した方法により反射防止層を製造すればよい。
 上記のような各種組成物を用いて積層体を製造する際には、各種部材上に直接積層体を製造することができる。
<第1実施態様の変形例>
 図1の態様においては、反射防止層12、赤外光吸収層14、および、赤外光反射層16の順で積層されているが、この態様には限定されず、例えば、赤外光吸収層14と赤外光反射層16との位置が逆になっていてもよい。
 また、図1の態様においては赤外光吸収層14を有しているが、この態様には限定されず、例えば、赤外光吸収層14がなく、所定の赤外光吸収剤が、反射防止層12および赤外光反射層16のいずれか一方に含まれていてもよい。その場合、例えば、赤外光反射層16中に所定の赤外光吸収剤が含まれる場合、赤外光反射層16は赤外光を吸収する機能も併せ持つ。
 また、例えば、赤外光吸収層14がなく、所定の赤外光吸収剤が、後述する下地層中に含まれていてもよい。
 なお、赤外光領域の透過率に対する可視光領域の透過率がより高い点で、赤外光吸収層を有する態様が好ましい。
<積層体の用途>
 上記積層体は、種々の用途に適用することができ、例えば、赤外光カットフィルタ、および、遮熱フィルム等が挙げられる。
 本発明の積層体が赤外光カットフィルタに用いられる場合、赤外光を吸収する機能を有するレンズ(デジタルカメラ、携帯電話、および、車載カメラ等のカメラ用レンズ、f-θレンズ、および、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルタ等に用いられる。また、CCDカメラ用ノイズカットフィルター、および、CMOSイメージセンサ用フィルタとしても有用である。
 また、有機エレクトロルミネッセンス(有機EL)素子、および、太陽電池素子等にも好ましく用いることができる。
<固体撮像素子>
 本発明の固体撮像素子は、本発明の積層体を含む。積層体を含む固体撮像素子の詳細については、特開2015-044188号公報の段号0106~0107の記載、特開2014-132333号公報の段落0010~0012の記載を参酌でき、この内容は本明細書に含まれる。
<<第2実施態様>>
 図2は、本発明の積層体の第2実施態様の断面図を示す。
 図2に示すように、積層体100は、反射防止層12と、赤外光吸収層14と、赤外光反射層16と、下地層22とをこの順で備える。
 第2実施態様の積層体100は、下地層22を有する点以外は、上述した第1実施態様の積層体10と同様の部材を有し、同一の部材には同一の符号を付してその説明を省略し、以下では主に下地層22の態様について詳述する。
(下地層)
 下地層22は、赤外光反射層16に隣接して配置される。下地層22が赤外光反射層16に隣接して配置されることにより、赤外光反射層16中に含まれる液晶化合物の配向がより制御され、積層体の透過特性がより好ましくなる。
 下地層は、第1選択反射層および第2選択反射層中の液晶相(特に、コレステリック液晶相)中の液晶化合物の配向方向をより精密に規定する機能を有する。
 下地層として用いられる材料としては、有機化合物のポリマーが好ましく、それ自体が架橋可能なポリマー、または、架橋剤により架橋されるポリマーがよく用いられる。当然、双方の機能を有するポリマーも用いられる。
 ポリマーの例としては、ポリメチルメタクリレ-ト、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、ポリビニルアルコ-ルおよび変性ポリビニルアルコ-ル、ポリ(N-メチロ-ルアクリルアミド)、スチレン/ビニルトルエン共重合体、クロロスルホン化ポリエチレン、ニトロセルロース、ポリ塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体、カルボキシメチルセルロ-ス、ゼラチン、ポリエチレン、ポリプロピレンおよびポリカーボネート等のポリマー、並びに、シランカップリング剤等の化合物を挙げることができる。
 下地層の厚みは、0.1~2.0μmが好ましい。
 なお、下地層としては、ラビング処理を行った配向層(例えば、ポリビニルアルコールを含む配向層)を用いることもできる。また、下地層としては、光配向層も用いることができる。
 上記ポリマーの好適態様としては、重合性基を有することが好ましい。
 また、上記ポリマーの他の好適態様としては、環状炭化水素基を有することが好ましい。環状炭化水素基としては、非芳香族環状炭化水素基であっても、芳香族環状炭化水素基であってもよい。
<<第3実施態様>>
 図3は、本発明の積層体の第3実施態様の断面図を示す。
 図3に示すように、積層体200は、反射防止層12と、赤外光吸収層14と、赤外光反射層16と、反射防止層12とをこの順で備える。
 第3実施態様の積層体200は、反射防止層12を2層有する点以外は、上述した第1実施態様の積層体10と同様の部材を有し、同一の部材には同一の符号を付してその説明を省略する。
 第3実施態様においては、積層体200中の赤外光吸収層14の表面上および赤外光反射層16の表面上にそれぞれ反射防止層12が配置されている。つまり、積層体200の両表面側に反射防止層12が配置されている。
 第3実施態様に示すように、反射防止層12が2層配置されている場合、積層体200に光が入射される際、および、積層体200から光が出射される際において、積層体200の表面で光(特に、可視光)の反射が防止され、積層体200を透過する光(特に、可視光)の透過率が向上する。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されない。なお、特に断りのない限り、「%」および「部」は質量基準である。
<コレステリック液晶性混合物(塗布液(R1))の調製>
 下記化合物1、化合物2、フッ素系水平配向剤、キラル剤、重合開始剤、および、シクロヘキサノンを混合し、下記組成の塗布液を調製した。得られた塗布液を、コレステリック液晶性混合物である塗布液(R1)とした。
・化合物1                        80質量部
・化合物2                        20質量部
・フッ素系水平配向剤1                 0.1質量部
・フッ素系水平配向剤2               0.007質量部
・右旋回性キラル剤LC756(BASF社製)     3.95質量部
・重合開始剤IRGACURE819(チバジャパン社製)   4質量部
・溶媒(シクロヘキサノン)       溶質濃度が40質量%となる量
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
<コレステリック液晶性混合物(塗布液(R2))の調製>
 右旋回性キラル剤LC756(BASF社製)の量を3.47質量部に変えた以外はコレステリック液晶性混合物(塗布液(R1))の調製と同様にして、コレステリック液晶性混合物(塗布液(R2))を調製した。
<コレステリック液晶性混合物(塗布液(R3))の調製>
 右旋回性キラル剤LC756(BASF社製)の量を3.10質量部に変えた以外は、コレステリック液晶性混合物(塗布液(R1))の調製と同様にして、コレステリック液晶性混合物(塗布液(R3))を調製した。
<コレステリック液晶性混合物(塗布液(R4))の調製>
 右旋回性キラル剤LC756(BASF社製)の量を2.80質量部に変えた以外は、コレステリック液晶性混合物(塗布液(R1))の調製と同様にして、コレステリック液晶性混合物(塗布液(R4))を調製した。
<コレステリック液晶性混合物(塗布液(L1))の調製>
 化合物1、化合物2、フッ素系水平配向剤、キラル剤、重合開始剤、および、シクロヘキサノンを混合し、下記組成の塗布液を調製した。得られた塗布液を、コレステリック液晶性混合物である塗布液(L1)とした。なお、以下の式中「Bu」はブチル基を表す。
・化合物1                        80質量部
・化合物2                        20質量部
・フッ素系水平配向剤1                 0.1質量部
・フッ素系水平配向剤2               0.007質量部
・左旋回性キラル剤(A)                6.0質量部
・重合開始剤IRGACURE819(チバジャパン社製)   4質量部
・溶媒(シクロヘキサノン)       溶質濃度が40質量%となる量
Figure JPOXMLDOC01-appb-C000034
<コレステリック液晶性混合物(塗布液(L2))の調製>
 左旋回性キラル剤(A)の量を5.4質量部に変えた以外は、コレステリック液晶性混合物(塗布液(L1))の調製と同様にして、コレステリック液晶性混合物(塗布液(L2))を調製した。
<コレステリック液晶性混合物(塗布液(L3))の調製>
 左旋回性キラル剤(A)の量を4.7質量部に変えた以外は、コレステリック液晶性混合物(塗布液(L1))の調製と同様にして、コレステリック液晶性混合物(塗布液(L3))を調製した。
<コレステリック液晶性混合物(塗布液(L4))の調製>
 左旋回性キラル剤(A)の量を4.3質量部に変えた以外は、コレステリック液晶性混合物(塗布液(L1))の調製と同様にして、コレステリック液晶性混合物(塗布液(L4))を調製した。
<下地層用組成物1の調製>
 下記成分を混合して、下地層用組成物1を調製した。
サイクロマーP(ダイセル化学)            20.3質量部
Megafac-F781(大日本インキ化学)      0.8質量部
(0.2質量%プロピレングリコールモノメチルエーテルアセテート溶液)
プロピレングリコールモノメチルエーテル        78.9質量部
<赤外光反射層の形成>
 上記で調製した下地層用組成物1を、ガラス基板上に、スピンコーター(ミカサ(株)社製)を用いて0.1μmとなるように塗布し、塗膜を形成した。次いで、塗膜を有するガラス基板に対して、100℃にて120秒間の前加熱(プリベーク)を行った。次いで、塗膜を有するガラス基板に対して、220℃にて300秒間の後加熱(ポストベーク)を行い、下地層1を得た。
 上記塗布液(R1)を、スピンコーターで、乾燥後の膜厚が5μmになるように、下地層1を形成したガラス基板上に室温にて塗布して、塗膜を形成した。次に、塗膜を有するガラス基板を室温にて30秒間乾燥させて塗膜から溶媒を除去した後、90℃の雰囲気で2分間加熱し、コレステリック液晶相とした。次いで、フージョンUVシステムズ(株)製無電極ランプ「Dバルブ」(90mW/cm)にて、出力60%で6~12秒間UV照射を塗膜に対して行い、コレステリック液晶相を固定し、ガラス基板上にコレステリック液晶相を固定してなるコレステリック液晶フィルム(FR1)を作製した。
 上記塗布液(L1)を、スピンコーターで乾燥後の膜の厚みが5μmになるように、コレステリック液晶フィルム(FR1)上に、室温にて塗布して、塗膜を形成した。次に、塗膜を有するガラス基板を室温にて30秒間乾燥させて塗膜から溶剤を除去した後、90℃の雰囲気で2分間加熱し、その後35℃でコレステリック液晶相とした。次いで、フージョンUVシステムズ(株)製無電極ランプ「Dバルブ」(90mW/cm)にて、出力60%で6~12秒間UV照射を塗膜に対して行い、コレステリック液晶相を固定し、コレステリック液晶フィルム(FL1)を作製した。
 上記処理により、ガラス基板上にはコレステリック液晶相を2層固定してなるコレステリック液晶積層体(FRL-1)が作製された。作製したコレステリック液晶積層体(FRL-1)は顕著な欠陥およびスジがなく面状は良好であった。
 コレステリック液晶フィルム(FR1)および(FL1)の透過スペクトルを測定したところ、それぞれ選択反射波長は750nm、755nmであった。また、コレステリック液晶積層体(FRL-1)の透過スペクトルを測定したところ、750nm付近に1つの強いピークが観測された。このことから塗布液(R1)および塗布液(L1)を塗布してなるコレステリック液晶層は互いに等しい選択反射波長を有することがわかった。
 次に、コレステリック液晶積層体(FRL-1)のヘイズ値をヘイズメーターにより測定したところ、3回測定した平均値が0.3(%)であった。
 更に、塗布液(R1)、塗布液(L1)に用いたキラル剤のHTPを次式に従って算出した結果、それぞれ、54μm-1、35μm-1となり、どちらもHTPは30μm-1以上であった。
 塗布液(R2、R3、R4、L2、L3、L4)に用いたキラル剤に関しても同様にHTPを算出した結果、HTPは30μm-1以上であった。
式:HTP=1÷{(らせんピッチ長(μm))×(固形分中のキラル剤の質量%濃度)}
(ただし、らせんピッチ長(μm)は(選択反射波長(μm))÷(固形分の平均屈折率)で算出され、固形分の平均屈折率は1.5と仮定して算出した。)
 また、塗布液(R1)の代わりに塗布液(R2、R3、R4、L2、L3、L4)を用いた以外はコレステリック液晶フィルム(FR1)を作製した方法と同様の方法で、コレステリック液晶フィルム(FR2、FR3、FR4、FL2、FL3、FL4)をそれぞれ作製した。
 これらの分光測定結果を図4、図5に示す。なお、図4中、コレステリック液晶フィルム(FR1)、(FR2)、(FR3)、および、(FR4)の透過スペクトルは、それぞれR1、R2、R3、および、R4に該当する。また、図5中、コレステリック液晶フィルム(FL1)、(FL2)、(FL3)、および、(FL4)の透過スペクトルは、それぞれL1、L2、L3、および、L4に該当する。
 右旋回性のキラル剤を含有するコレステリック液晶フィルム(FR2)、(FR3)および(FR4)の選択反射波長は、左旋回性のキラル剤を含有するコレステリック液晶フィルム(FL2)、(FL3)および(FL4)の選択反射波長とそれぞれ互いに等しかった。
 次に、コレステリック液晶積層体(FRL-1)と同様にして、塗布液(R2)および塗布液(L2)、塗布液(R3)および塗布液(L3)、塗布液(R4)および塗布液(L4)をそれぞれ組み合わせて、コレステリック液晶積層体を作製した。作製した(FRL-2、3、4)のヘイズ値をヘイズメーターにより測定したところ、いずれも3回測定した平均値が0.3(%)であった。
<塗布液(R5)の調製>
 化合物2-11、フッ素系水平配向剤、キラル剤、重合開始剤、および、溶剤を混合し、下記組成の塗布液(R5)を調製した。なお、以下の化合物2-11の屈折率異方性Δnは、0.375であった。
・化合物2-11                    100質量部
・フッ素系水平配向剤1                 0.1質量部
・フッ素系水平配向剤2               0.007質量部
・右旋回性キラル剤LC756(BASF社製)      2.2質量部
・重合開始剤:アデカクルーズNCI-831(ADEKA社製)4質量部
・溶剤(シクロヘキサノン)       溶質濃度が40質量%となる量
Figure JPOXMLDOC01-appb-C000035
<塗布液(L5)の調製>
 化合物2-11、フッ素系水平配向剤、キラル剤、重合開始剤、および、溶剤を混合し、下記組成の塗布液(L5)を調製した。
・化合物2-11                    100質量部
・フッ素系水平配向剤1                 0.1質量部
・フッ素系水平配向剤2               0.007質量部
・左旋回性キラル剤(A)                3.3質量部
・重合開始剤:アデカクルーズNCI-831(ADEKA社製)4質量部
・溶剤(シクロヘキサノン)       溶質濃度が40質量%となる量
<赤外光反射層の形成>
 塗布液(R1)の代わりに塗布液(R5、L5)を用いた以外はコレステリック液晶フィルム(FR1)を作製した方法と同様の方法で、コレステリック液晶フィルム(FR5、FL5)をそれぞれ作製した。
 右旋回性のキラル剤を含有するコレステリック液晶フィルム(FR5)の選択反射波長は、左旋回性のキラル剤を含有するコレステリック液晶フィルム(FL5)の選択反射波長と互いに等しかった。
<赤外光吸収組成物1の調製>
 以下に示す樹脂Aを8.04質量部と、以下に示す赤外光吸収剤1(極大吸収波長:760nm)を1.4質量部と、重合性化合物としてKAYARAD DPHA(日本化薬(株)社製)を0.07質量部と、メガファックRS-72K(エチレン性不飽和基を側鎖に有する含フッ素重合体)(DIC(株)社製)を0.265質量部と、光重合開始剤として下記化合物を0.38質量部と、溶剤としてPGMEA(プロピレングリコールモノメチルエーテルアセテート)を82.51質量部とを混合し、撹拌した後、孔径0.5μmのナイロン製フィルタ(日本ポール(株)社製)でろ過して、赤外光吸収組成物1を調製した。
 樹脂A:下記化合物(Mw(重量平均分子量):41000)
Figure JPOXMLDOC01-appb-C000036
 赤外光吸収剤1:下記構造
Figure JPOXMLDOC01-appb-C000037
光重合開始剤:下記構造
Figure JPOXMLDOC01-appb-C000038
<赤外光吸収組成物2>
 イオン交換水69.5質量部に下記赤外光吸収剤2(極大吸収波長:710nm)を0.5質量部溶解させ、更にゼラチンの10質量%水溶液30.0質量部を加え攪拌することで、赤外光吸収組成物2を調製した。
 赤外光吸収剤2:下記構造
Figure JPOXMLDOC01-appb-C000039
<赤外光吸収組成物3>
 以下に示す赤外光吸収剤3(極大吸収波長:910nm)(銅錯体)を45質量部と、以下に示す樹脂を49.9質量部と、IRGACURE-OXE02(BASF社製)を5質量部と、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)を0.1質量部と、シクロヘキサノンを66.7質量部と、水を0.5質量部と、を混合して赤外光吸収組成物3を調製した。
 赤外光吸収剤3(銅錯体):下記構造
Figure JPOXMLDOC01-appb-C000040
 樹脂:下記構造
Figure JPOXMLDOC01-appb-C000041
<赤外光吸収組成物4>
 上記樹脂Aを12.5質量部と、以下に示す赤外光吸収剤4(極大吸収波長:820nm)を2.38質量部と、重合性化合物としてKAYARAD DPHA(日本化薬(株)社製)を2.38質量部と、メガファックRS-72K(エチレン性不飽和基を側鎖に有する含フッ素重合体)(DIC(株)社製)を2.7質量部と、光重合開始剤として下記化合物を2.61質量部と、溶剤としてPGMEA(プロピレングリコールモノメチルエーテルアセテート)を76.54質量部とを混合し、撹拌した後、孔径0.5μmのナイロン製フィルタ(日本ポール(株)社製)でろ過して、赤外光吸収組成物4を調製した。
赤外光吸収剤4:下記構造
Figure JPOXMLDOC01-appb-C000042
光重合開始剤:下記構造
Figure JPOXMLDOC01-appb-C000043
<低屈折分散液1>
 先ず、ケイ素アルコキシド(A)としてテトラメトキシシラン(TMOS)を、フルオロアルキル基含有のケイ素アルコキシド(B)としてトリフルオロプロピルトリメトキシシラン(TFPTMS)を用意し、ケイ素アルコキシド(A)の質量を1としたときのフルオロアルキル基含有のケイ素アルコキシド(B)の割合(質量比)が0.6になるように秤量し、これらをセプラブルフラスコ内に投入して混合することにより混合物を得た。この混合物1質量部に対して1.0質量部となる量のプロピレングリコールモノメチルエーテルアセテート(PGMEA)を有機溶媒(E)として添加し、30℃の温度で15分間撹拌することにより第1液を調製した。なお、ケイ素アルコキシド(A)としては、単量体を予め3~5程度重合させたオリゴマーを使用した。
 また、この第1液とは別に、混合物1質量部に対して1.0質量部となる量のイオン交換水(C)と0.01質量部となる量のギ酸(D)とをビーカー内に投入して混合し、30℃の温度で15分間撹拌することにより第2液を調製した。次に、上記調製した第1液を、ウォーターバスにて55℃の温度に保持してから、この第1液に第2液を添加し、上記温度を保持した状態で60分間撹拌した。これにより、上記ケイ素アルコキシド(A)と上記フルオロアルキル基含有のケイ素アルコキシド(B)との加水分解物を得た。
 そして、上記得られた加水分解物と、数珠状コロイダルシリカ粒子(球状粒子の平均粒子径:15nm、D1/D2:5.5、D1:80nm)が分散したシリカゾル(F)を、加水分解物中のSiO2分100質量部に対するシリカゾル(F)中のSiO2分が200質量部となる割合で、撹拌して混合することにより低屈折分散液1を得た。
 上記数珠状コロイダルシリカ粒子は、複数の球状コロイダルシリカ粒子と上記複数の球状コロイダルシリカ粒子を互いに接合する金属酸化物含有シリカからなり、上記球状コロイダルシリカ粒子の動的光散乱法により測定された平均粒子径をD1(nm)と上記球状コロイダルシリカ粒子の窒素吸着法により測定された比表面積Sm2/gからD2=2720/Sの式により得られる平均粒子径をD2(nm)とする。詳細は、特開2013-253145号公報に記載される。
<実施例1:赤外光カットフィルタの製造>
 上述した<赤外光反射層の形成>と同様の手順に従って、下地層を形成した基板上に塗布液(R1)、塗布液(L1)、塗布液(R2)、塗布液(L2)、塗布液(R3)、塗布液(L3)、塗布液(R4)、および、塗布液(L4)を順次塗布して、積層することにより、赤外光反射層(F-IR)を製造した。
 赤外光反射層(F-IR)の上に、赤外光吸収組成物1をスピンコーター(ミカサ(株)社製)を用いて塗布し、塗膜を形成した。その後、塗膜に対して100℃にて120秒間の前加熱(プリベーク)を行った後、i線ステッパーを用い、1000mJ/cm2で全面露光を行った。次いで、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.7μmの赤外光吸収層1を得た。
 更に、以下の手順で調製した低屈折組成物1をスピンコーター(ミカサ(株)社製)を用いて赤外光吸収層1上に塗布して塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。次に、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.1μmの反射防止層1を設けた。上記手順によって、赤外光カットフィルタ1を製造した。
<低屈折組成物1の調製>
・低屈折分散液1                   75.3質量部
・界面活性剤1:含フッ素系界面活性剤          0.1質量部
・有機溶剤1:乳酸エチル               24.6質量部
<実施例2>
 赤外光吸収組成物1の代わりに、赤外光吸収組成物2を使用して、以下の手順に従って赤外光吸収層2を形成した以外は、実施例1と同様の手順に従って、赤外光カットフィルタ2を製造した。
(赤外光吸収層2の製造)
 赤外光反射層(F-IR)の上に、上記で調製した赤外光吸収組成物2をスピンコーター(ミカサ(株)社製)を用いて塗布し、塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。次いで、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.2μmの赤外光吸収層2を得た。
<実施例3>
 赤外光吸収組成物1の代わりに、赤外光吸収組成物3を使用して、以下の手順に従って赤外光吸収層3を形成した以外は、実施例1と同様の手順に従って、赤外光カットフィルタ3を製造した。
(赤外光吸収層3の製造)
 赤外光反射層(F-IR)の上に、上記で調製した赤外光吸収組成物3を、乾燥後の膜厚が100μmになるようにスピンコーターを用いて塗布し、150℃のホットプレートを用いて3時間加熱処理を行って、赤外光吸収層3を作製した。
<実施例4>
 赤外光吸収組成物1の代わりに、赤外光吸収組成物4を使用して、以下の手順に従って赤外光吸収層4を形成した以外は、実施例1と同様の手順に従って、赤外光カットフィルタ4を製造した。
(赤外光吸収層4の製造)
 赤外光反射層(F-IR)の上に、赤外光吸収組成物4をスピンコーター(ミカサ(株)社製)を用いて塗布し、塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。その後、i線ステッパーを用い、1000mJ/cm2で全面露光を行った。次いで、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.7μmの赤外光吸収層4を得た。
<実施例5>
 反射防止層1の代わりに下記の手順に従って、反射防止層2を形成したこと以外は、実施例1と同様の手順に従って、赤外光カットフィルタ5を製造した。
(低屈折分散液2の調製)
 低屈折分散液1において、低屈折分散液1に含まれる数珠状コロイダルシリカ粒子を中空粒子に変えた以外は、同様の手順に従って、低屈折分散液2を調製した。具体的に、加水分解物と、中空粒子のシリカとを、加水分解物中のSiO2分100質量部に対する中空粒子が200質量部となる割合で、撹拌して混合することにより低屈折分散液2を得た。
 以下の手順で調製した低屈折組成物2をスピンコーター(ミカサ(株)社製)を用いて赤外光吸収層1上に塗布して塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。その後、i線ステッパーを用い、1000mJ/cm2で全面露光を行った。続いて、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.1μmの反射防止層2を設けた。
(低屈折組成物2の調製)
・低屈折分散液2                   50.0質量部
・KAYARAD DPHA(日本化薬(株)社製)    2.7質量部
・IRGACURE-OXE02(BASF社製)     5.0質量部
・界面活性剤1:含フッ素系界面活性剤          0.1質量部
・有機溶剤1:乳酸エチル               41.9質量部
<実施例6>
 実施例1で作製した赤外光カットフィルタ1を裏返し、反射防止層1が設けられていない基板表面側に低屈折組成物1を用いて実施例1と同様の手順に従って反射防止層1を製膜することで、両面に反射防止層1を備えた赤外光カットフィルタ6を得た。
<実施例7>
 下地層1を設けなかった以外は、実施例1と同様の手順に従って、赤外光カットフィルタ7を製造した。
<実施例8>
 反射防止層1の代わりに以下の手順に従って反射防止層3を形成したこと以外は、実施例1と同様の手順に従って、赤外光カットフィルタ8を製造した。
(シロキサン樹脂の合成)
 メチルトリエトキシシランを用いて、加水分解縮合反応を行った。このときに用いた溶媒はエタノールであった。得られたシロキサン樹脂A-1の重量平均分子量は、約10000であった。なお、上記重量平均分子量は先に説明の手順に沿ってGPC(ゲル浸透クロマトグラフィー)により確認した。
 下記組成の成分を攪拌機で混合して、低屈折組成物3を調製した。
<低屈折組成物3の調製>
・シロキサン樹脂A-1                       20質量部
・プロピレングリコールモノメチルエーテルアセテート(PGMEA)  64質量部
・3-エトキシプロピオン酸エチル(EEP)             16質量部
・Emulsogen COL-020(クラリアントジャパン(株)製) 2質量部
(反射防止層3の形成)
 上記で得られた低屈折組成物3を、スピンコーター(ミカサ(株)社製)を用いて、赤外光吸収層1上に1000rpmでスピン塗布し、塗布膜を得た。得られた塗布膜を、ホットプレート上にて100℃で2分間加熱し、加熱後即座に230℃で10分間加熱し、膜厚0.1μmの反射防止層3を形成させた。
<実施例9>
 赤外光吸収層1を設けなかった以外は実施例1と同様の手順に従って、赤外光カットフィルタ9を製造した。
<実施例10>
 赤外光吸収層1を設けず、下地層1を下記の下地層2に変更した以外は、実施例1と同様の手順に従って、赤外光カットフィルタ10を製造した。
(下地層用組成物2の調製)
 下記成分を混合して、下地層用組成物2を調製した。
・サイクロマーP(ダイセル化学)           20.3質量部
・上記赤外光吸収剤1                  6.0質量部
・Megafac-F781(大日本インキ化学)     0.8質量部
(0.2質量%プロピレングリコールモノメチルエーテルアセテート溶液)
・プロピレングリコールモノメチルエーテル       78.9質量部
 上記で調製した下地層用組成物2を、ガラス基板上に、スピンコーター(ミカサ(株)社製)を用いて塗布し、塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。次いで、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.3μmの下地層2を得た。
<実施例11>
 赤外光吸収層1を設けず、反射防止層を下記の反射防止層4に変えた以外は実施例1と同様の手順に従って、赤外光カットフィルタ11を製造した。
<低屈折組成物4の調製>
・低屈折分散液1                   75.3質量部
・上記赤外光吸収剤1                  3.0質量部
・界面活性剤1:含フッ素系界面活性剤          0.1質量部
・有機溶剤1:乳酸エチル               24.6質量部
 赤外光反射層(F-IR)上に、上記で調製した低屈折組成物4をスピンコーター(ミカサ(株)社製)を用いて塗布して塗膜を形成し、100℃にて120秒間の前加熱(プリベーク)を行った。続いて、220℃にて300秒間の後加熱(ポストベーク)を行い、膜厚0.3μmの反射防止層4を設けた。
<実施例12>
 反射防止層1の代わりに以下の手順に従って反射防止層5を形成したこと以外は、実施例1と同様の手順に従って、赤外光カットフィルタ12を製造した。
(反射防止層5の形成)
 JSR(株)製低屈折材料オプスター-TU2361を、スピンコーター(ミカサ(株)社製)を用いて、赤外光吸収層1上に、膜厚0.1μmになるように塗膜を形成した。その後、60℃で1分乾燥した後に、窒素置換下で、i線ステッパーを用い、300mJ/cm2で全面露光を行い、反射防止層5を形成させた。
<実施例13:赤外光カットフィルタの製造>
 上述した<赤外光反射層の形成>と同様の手順に従って、下地層を形成した基板上に塗布液(R5)および塗布液(L5)を順次塗布して、積層することにより、赤外光反射層(F-IR-2)を製造した。
 赤外光反射層(F-IR)の代わりに、赤外光反射層(F-IR-2)を使用した以外は、実施例1と同様の手順に従って、赤外光カットフィルタ13を製造した。
<比較例1>
 反射防止層を設けなかった以外は、実施例1と同様の手順に従って、赤外光カットフィルタC1を製造した。
<比較例2>
 反射防止層と赤外光吸収層とを設けなかった以外は、実施例1と同様の手順に従って、赤外光カットフィルタC2を製造した。
<<各種評価>>
<測定精度>
 紫外可視近赤外分光光度計(日立ハイテクノロジーズ社製 U-4100)を用いて、各実施例および比較例にて得られた赤外光カットフィルタの透過率を測定し、(450-650nmの最低透過率)/(700-1100nmの最高透過率)が95以上の場合を「AA」、95より小さく、90以上の場合を「A」、90より小さく、80以上の場合を「B」、80より小さい場合を「C」とした。
<生産性>
 各実施例および比較例にて得られた赤外光カットフィルタ中に含まれる層数が15層以下のものを「A」、15層より多いものを「B」とした。
<角度依存性>
 入射角を赤外光カットフィルタ面に対し垂直(角度0度)および30度に変化させ、波長600nm以上の可視から近赤外線領域における、分光透過率の低下によるスロープの透過率が50%となる波長のシフト量を、下記基準に従って評価した。なお、上記「シフト量」とは、より具体的には、入射光が赤外光カットフィルタ面に対して垂直方向から入射した際の波長600nm以上の透過率が50%となる波長位置Xと、入射光が赤外光カットフィルタ面に対して斜め方向から入射した際の波長600nm以上の透過率が50%となる波長位置Yとの差を意図する。
 A:5nm未満
 B:5nm以上
<耐溶剤性>
 シクロヘキサノン中に各実施例および比較例にて得られた赤外光カットフィルタを5分間浸漬した際の400-1200nmにおける透過率の変化の最大値が1%以下であるものを「A」、1%超5%以下のものを「B」、5%超のものを「C」とした。
 表1中、「赤外光吸収層」欄において、「1」~「3」は、それぞれ赤外光吸収組成物1~3にて製造されたことを意図する。
 表1中、反射防止層欄の「位置」において、「片面」は赤外光カットフィルタの一方の最外面側にのみ反射防止層が配置されていることを意図し、「両面」とは赤外光カットフィルタの両側の最外面側に反射防止層が配置されていることを意図する。
 表1中、「無機粒子含有量」とは、反射防止層中における無機粒子(シリカ粒子)の反射防止層全質量に対する含有量を表す。
 なお、表1中、実施例10の「*1」は、赤外光吸収剤1が下地層中に含まれることを意図する。実施例11の「*2」は、赤外光吸収剤1が反射防止層中に含まれることを意図する。
Figure JPOXMLDOC01-appb-T000044
 表1に示すように、本発明の赤外光カットフィルタは、可視光領域の透過率に対して赤外光領域の透過率が相対的に低いことが示され、優れた効果が得られることが確認された。
 特に、実施例1と5との比較より、無機粒子の含有量が70質量%(より好ましくは、90質量%)以上の場合、耐溶剤性がより優れることが確認された。
 また、実施例1と、5と、8との比較より、反射防止層の屈折率が1.30未満の場合(好ましくは、1.25以下)、測定精度がより優れることが確認された。
 また、実施例1と6との比較より、反射防止層が両側に設けられている場合、測定精度がより優れることが確認された。
 また、実施例1と7との比較より、下地層が設けられている場合、測定精度がより優れることが確認された。
 また、実施例1と9との比較より、赤外光吸収層がある場合、測定精度および角度依存性がより優れることが確認された。
 一方、反射防止層を設けていない比較例1および2では、所望の効果が得られなかった。
  10,100,200  積層体
  12  反射防止層
  14  赤外光吸収層
  16  赤外光反射層
  18a,18b  第1選択反射層
  20a,20b  第2選択反射層
  22  下地層
 

Claims (17)

  1.  屈折率が1.45以下である反射防止層と、赤外光反射層と、を有し、
     前記赤外光反射層が、螺旋軸の回転方向が右方向である液晶相を固定化してなる第1選択反射層と、螺旋軸の回転方向が左方向である液晶相を固定化してなる第2選択反射層と、を含む、積層体。
  2.  前記第1選択反射層および前記第2選択反射層の少なくとも一方に、30℃における屈折率異方性Δnが0.25以上である液晶化合物が含まれる、請求項1に記載の積層体。
  3.  前記第1選択反射層および前記第2選択反射層の少なくとも一方が、一般式(5)で表される化合物を用いて形成される層である、請求項1または2に記載の積層体。
    Figure JPOXMLDOC01-appb-C000001

    一般式(5)中、A1~A4は、それぞれ独立に、置換基を有していてもよい芳香族炭素環または複素環を表す。X1およびX2は、それぞれ独立に、単結合、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。Y1およびY2は、それぞれ独立に、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1~25の炭素鎖を表す。P1およびP2は、それぞれ独立に、水素原子または重合性基を表し、P1およびP2の少なくとも一方は重合性基を表す。n1およびn2はそれぞれ独立に0~2の整数を表し、n1またはn2が2の場合、複数あるA1、A2、X1およびX2は同じでもあっても異なっていてもよい。
  4.  赤外光吸収剤が前記反射防止層もしくは前記赤外光反射層に含まれるか、または、赤外光吸収剤を含む赤外光吸収層を更に有する、請求項1~3のいずれか1項に記載の積層体。
  5.  前記赤外光吸収剤が波長600~1200nmの範囲に極大吸収を有する、請求項4に記載の積層体。
  6.  前記反射防止層が無機粒子を含む、請求項1~5のいずれか1項に記載の積層体。
  7.  前記無機粒子が、シリカより構成される、請求項6に記載の積層体。
  8.  前記反射防止層全質量に対する前記無機粒子の含有量が、70質量%以上である、請求項6または7に記載の積層体。
  9.  前記反射防止層が、複数のシリカ粒子が鎖状に連なった粒子凝集体を用いて形成された層である、請求項1~8のいずれか1項に記載の積層体。
  10.  前記赤外光反射層の両面側にそれぞれ前記反射防止層が配置されている、請求項1~9のいずれか1項に記載の積層体。
  11.  前記反射防止層の屈折率が、1.35以下である、請求項1~10のいずれか1項に記載の積層体。
  12.  前記反射防止層の屈折率が、1.25以下である、請求項1~11のいずれか1項に記載の積層体。
  13.  更に、前記赤外光反射層に隣接して下地層が配置される、請求項1~12のいずれか1項に記載の積層体。
  14.  赤外光カットフィルタに用いられる、請求項1~13のいずれか1項に記載の積層体。
  15.  請求項1~14のいずれか1項に記載の積層体を含む固体撮像素子。
  16.  液晶化合物および右旋回性のキラル剤を少なくとも含む液晶組成物、並びに、液晶化合物および左旋回性のキラル剤を少なくとも含む液晶組成物を順不同に塗布して、前記赤外光反射層を形成する工程と、
     赤外光吸収剤を含む赤外光吸収組成物を前記赤外光反射層上に塗布して、前記赤外光吸収層を形成する工程と、
     無機粒子を含む反射防止層形成用組成物を前記赤外光吸収層上に塗布して、前記反射防止層を形成する工程と、を有する、請求項4に記載の積層体の製造方法。
  17.  液晶化合物および右旋回性のキラル剤を少なくとも含む液晶組成物と、
     液晶化合物および左旋回性のキラル剤を少なくとも含む液晶組成物と、
     赤外光吸収剤を含む赤外光吸収組成物と、
     無機粒子を含む反射防止層形成用組成物と、を有する、キット。
PCT/JP2016/061382 2015-07-30 2016-04-07 積層体、固体撮像素子、積層体の製造方法、キット WO2017018004A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177036753A KR102026551B1 (ko) 2015-07-30 2016-04-07 적층체, 고체 촬상 소자, 적층체의 제조 방법, 키트
JP2017531033A JP6749907B2 (ja) 2015-07-30 2016-04-07 積層体、固体撮像素子、積層体の製造方法、キット
US15/853,859 US20180136379A1 (en) 2015-07-30 2017-12-25 Laminate, solid-state imaging device, method for producing laminate, and kit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015151334 2015-07-30
JP2015-151334 2015-07-30
JP2016-066281 2016-03-29
JP2016066281 2016-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/853,859 Continuation US20180136379A1 (en) 2015-07-30 2017-12-25 Laminate, solid-state imaging device, method for producing laminate, and kit

Publications (1)

Publication Number Publication Date
WO2017018004A1 true WO2017018004A1 (ja) 2017-02-02

Family

ID=57884706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061382 WO2017018004A1 (ja) 2015-07-30 2016-04-07 積層体、固体撮像素子、積層体の製造方法、キット

Country Status (5)

Country Link
US (1) US20180136379A1 (ja)
JP (1) JP6749907B2 (ja)
KR (1) KR102026551B1 (ja)
TW (1) TW201704005A (ja)
WO (1) WO2017018004A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042924A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 イメージセンサー用カラーフィルター、イメージセンサーおよびイメージセンサー用カラーフィルターの製造方法
WO2018155173A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 樹脂組成物、膜、赤外線カットフィルタ及びその製造方法、固体撮像素子、赤外線センサ、並びに、カメラモジュール
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
JP2019020725A (ja) * 2017-07-12 2019-02-07 住友化学株式会社 楕円偏光板
CN110418823A (zh) * 2017-03-15 2019-11-05 富士胶片株式会社 树脂组合物、树脂成型体及树脂成型体的制造方法
WO2022011882A1 (zh) * 2020-07-15 2022-01-20 深圳市国华光电科技有限公司 液晶多层膜及该多层膜的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679232B (zh) * 2014-08-26 2019-12-11 日商富士軟片股份有限公司 組成物、硬化膜、近紅外線吸收濾波器、固體攝像元件、紅外線感測器、化合物
JP2019163228A (ja) * 2018-03-20 2019-09-26 株式会社東芝 金属有機構造体、蛍光体膜、および分子検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340681A (ja) * 1998-05-22 1999-12-10 Dainippon Printing Co Ltd 電磁波シールド部材とその製造方法、及び表示装置
JP2000056128A (ja) * 1998-08-07 2000-02-25 Nitto Denko Corp 光学フィルムフィルタおよびプラズマディスプレイ表示装置
JP2000281629A (ja) * 1999-03-31 2000-10-10 Fuji Photo Film Co Ltd 重合性棒状ネマチック液晶性化合物、コレステリック液晶性組成物および液晶表示装置
WO2006077960A1 (ja) * 2005-01-21 2006-07-27 Asahi Glass Company, Limited 粘着剤組成物および光学フィルタ
JP2013041141A (ja) * 2011-08-17 2013-02-28 Asahi Glass Co Ltd 撮像装置、固体撮像素子、撮像装置用レンズ、及び近赤外光カットフィルタ
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635692B2 (ja) * 1994-10-20 2005-04-06 日産化学工業株式会社 低屈折率反射防止膜
JP2003058064A (ja) * 2001-08-13 2003-02-28 Asahi Glass Co Ltd 平面型ディスプレイパネル
JP2007103426A (ja) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd 長尺光学フィルタ、枚葉の光学フィルタ、及びそれらの製造方法
KR101300850B1 (ko) * 2006-02-27 2013-08-27 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및 표시 장치
JP5489669B2 (ja) 2008-11-28 2014-05-14 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340681A (ja) * 1998-05-22 1999-12-10 Dainippon Printing Co Ltd 電磁波シールド部材とその製造方法、及び表示装置
JP2000056128A (ja) * 1998-08-07 2000-02-25 Nitto Denko Corp 光学フィルムフィルタおよびプラズマディスプレイ表示装置
JP2000281629A (ja) * 1999-03-31 2000-10-10 Fuji Photo Film Co Ltd 重合性棒状ネマチック液晶性化合物、コレステリック液晶性組成物および液晶表示装置
WO2006077960A1 (ja) * 2005-01-21 2006-07-27 Asahi Glass Company, Limited 粘着剤組成物および光学フィルタ
JP2013041141A (ja) * 2011-08-17 2013-02-28 Asahi Glass Co Ltd 撮像装置、固体撮像素子、撮像装置用レンズ、及び近赤外光カットフィルタ
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018042924A1 (ja) * 2016-08-29 2019-06-24 富士フイルム株式会社 イメージセンサー用カラーフィルター、イメージセンサーおよびイメージセンサー用カラーフィルターの製造方法
WO2018042924A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 イメージセンサー用カラーフィルター、イメージセンサーおよびイメージセンサー用カラーフィルターの製造方法
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JPWO2018155050A1 (ja) * 2017-02-24 2019-11-21 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JPWO2018155173A1 (ja) * 2017-02-27 2019-11-07 富士フイルム株式会社 樹脂組成物、膜、赤外線カットフィルタ及びその製造方法、固体撮像素子、赤外線センサ、並びに、カメラモジュール
WO2018155173A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 樹脂組成物、膜、赤外線カットフィルタ及びその製造方法、固体撮像素子、赤外線センサ、並びに、カメラモジュール
US11028251B2 (en) 2017-02-27 2021-06-08 Fujifilm Corporation Resin composition, film, infrared cut filter, method of manufacturing infrared cut filter, solid image pickup element, infrared sensor, and camera module
CN110352221A (zh) * 2017-03-02 2019-10-18 富士胶片株式会社 组合物、膜、红外线截止滤光片、固体摄像元件、红外线传感器、相机模块及新型化合物
JPWO2018159235A1 (ja) * 2017-03-02 2019-11-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
US11066537B2 (en) 2017-03-02 2021-07-20 Fujifilm Corporation Composition, film, infrared cut filter, solid image pickup element, infrared sensor, camera module, and novel compound
CN110418823A (zh) * 2017-03-15 2019-11-05 富士胶片株式会社 树脂组合物、树脂成型体及树脂成型体的制造方法
US11180633B2 (en) 2017-03-15 2021-11-23 Fujifilm Corporation Resin composition, resin molded article, and method of producing resin molded article
JP2019020725A (ja) * 2017-07-12 2019-02-07 住友化学株式会社 楕円偏光板
WO2022011882A1 (zh) * 2020-07-15 2022-01-20 深圳市国华光电科技有限公司 液晶多层膜及该多层膜的制备方法

Also Published As

Publication number Publication date
JPWO2017018004A1 (ja) 2018-05-24
KR20180011208A (ko) 2018-01-31
KR102026551B1 (ko) 2019-09-27
TW201704005A (zh) 2017-02-01
JP6749907B2 (ja) 2020-09-02
US20180136379A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6749907B2 (ja) 積層体、固体撮像素子、積層体の製造方法、キット
JP6606555B2 (ja) 積層体、光学センサー、および、キット
KR101945210B1 (ko) 경화성 조성물, 경화막, 근적외선 차단 필터, 카메라 모듈 및 카메라 모듈의 제조 방법
WO2016158818A1 (ja) 赤外線カットフィルタ、キット、および固体撮像素子
KR20230115958A (ko) 광학 필름 및 그 제조 방법
TWI760311B (zh) 著色感光性組成物、硬化膜、彩色濾光片、遮光膜、固體攝影元件、圖像顯示裝置以及硬化膜的製造方法
WO2017030174A1 (ja) 光学フィルタおよび撮像装置
CN110869827A (zh) 椭圆偏光板
US9879034B2 (en) Near-infrared absorption composition, cured film, near-infrared cut filter, solid-state imaging device, infrared sensor, and compound
JPWO2016143824A1 (ja) 組成物キット、積層体およびその製造方法、バンドパスフィルター
WO2019124439A1 (ja) 液晶表示装置
KR20200039731A (ko) 광학 보상 기능 부착 위상차판
KR20200018567A (ko) 중합성 액정 조성물 및 위상차판
JP7443413B2 (ja) 垂直配向液晶硬化膜
JP7398868B2 (ja) 組成物
CN114930206A (zh) 光吸收各向异性层、层叠体、光学膜、图像显示装置、背光模组
JP6400654B2 (ja) 硬化性組成物、硬化膜、近赤外線カットフィルタ、カメラモジュールおよびカメラモジュールの製造方法
CN117642655A (zh) 层叠体、视线追踪系统及头戴式显示器
WO2022234789A1 (ja) 偏光板及び有機el表示装置
WO2023085255A1 (ja) 有機el表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830109

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20177036753

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017531033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830109

Country of ref document: EP

Kind code of ref document: A1