WO2016158818A1 - 赤外線カットフィルタ、キット、および固体撮像素子 - Google Patents

赤外線カットフィルタ、キット、および固体撮像素子 Download PDF

Info

Publication number
WO2016158818A1
WO2016158818A1 PCT/JP2016/059811 JP2016059811W WO2016158818A1 WO 2016158818 A1 WO2016158818 A1 WO 2016158818A1 JP 2016059811 W JP2016059811 W JP 2016059811W WO 2016158818 A1 WO2016158818 A1 WO 2016158818A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
infrared
layer
ring
copper
Prior art date
Application number
PCT/JP2016/059811
Other languages
English (en)
French (fr)
Inventor
啓佑 有村
嶋田 和人
佐々木 大輔
友樹 平井
季彦 松村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017509948A priority Critical patent/JPWO2016158818A1/ja
Publication of WO2016158818A1 publication Critical patent/WO2016158818A1/ja
Priority to US15/717,025 priority patent/US20180017720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/086Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines more than five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/16Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms
    • C09B23/162Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms only nitrogen atoms
    • C09B23/164Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms only nitrogen atoms containing one nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Definitions

  • the present invention relates to an infrared cut filter, a kit for manufacturing the infrared cut filter, and a solid-state imaging device having the infrared cut filter.
  • Video cameras, digital still cameras, mobile phones with camera functions, etc. use CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor), which are solid-state imaging devices for color images. Since these solid-state imaging devices use silicon photodiodes having sensitivity to infrared rays in their light receiving portions, it is necessary to perform visibility correction, and infrared cut filters are often used.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • an infrared cut filter there is an infrared cut filter in which an infrared reflective film is formed on the surface of a transparent member such as glass. Infrared reflecting films are required to have a high transmittance of light having a visible wavelength. From such a viewpoint, the infrared reflecting film is a dielectric in which a plurality of high refractive index material layers and low refractive index material layers are laminated. A multilayer film is used (see Patent Documents 1 to 5). Moreover, as an infrared cut filter, it may be comprised with the infrared rays absorption glass which consists of a composition type
  • Patent Document 6 Infrared absorbing glass is known in which CuO is added to phosphate glass or fluorophosphate glass (see Patent Document 6).
  • Patent Document 7 describes an infrared cut filter in which an infrared absorption layer containing a transparent resin and an organic dye is formed on the surface of a transparent member. A polyester resin is used as the transparent resin.
  • an object of the present invention is to provide an infrared cut filter having a wide viewing angle and excellent infrared shielding properties, a kit for manufacturing the infrared cut filter, and a solid-state imaging device.
  • the inventors of the present invention have made various studies in order to achieve the above object. As a result, the inventors have found that the above object can be achieved by adopting the configuration described later, and have completed the present invention.
  • the present invention provides the following. ⁇ 1> An infrared cut filter having a transparent layer containing copper, wherein the transparent layer containing copper further contains an infrared absorber, or further has a layer containing an infrared absorber.
  • the infrared cut filter has a maximum absorption wavelength in a wavelength region of 600 nm or more, Absorbance A at the maximum absorption wavelength before immersing the infrared cut filter in at least one organic solvent selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol
  • the ratio B / A which is the ratio of absorbance B at the wavelength at which the absorbance A is measured after the infrared cut filter is immersed in an organic solvent at 25 ° C. for 2 minutes, is 0.9 or more, according to ⁇ 1>.
  • Infrared cut filter is 0.9 or more, according to ⁇ 1>.
  • ⁇ 3> The infrared cut filter according to ⁇ 1> or ⁇ 2>, wherein the layer containing the infrared absorbent includes a resin.
  • ⁇ 4> The infrared cut filter according to any one of ⁇ 1> to ⁇ 3>, wherein the layer containing the infrared absorber includes a three-dimensional crosslinked product.
  • ⁇ 5> The infrared cut filter according to ⁇ 4>, wherein the three-dimensional crosslinked product is obtained by curing a polymerizable compound having two or more polymerizable groups.
  • ⁇ 6> The infrared cut filter according to any one of ⁇ 1> to ⁇ 5>, wherein the layer containing the infrared absorber contains gelatin.
  • the infrared absorber includes an organic dye.
  • the infrared absorber contains at least one selected from a cyanine compound, a pyrrolopyrrole compound, a squarylium compound, a phthalocyanine compound, and a naphthalocyanine compound, according to any one of ⁇ 1> to ⁇ 8> Infrared cut filter.
  • X 1 represents a cation
  • c represents a number necessary to balance the charge
  • c is 0.
  • It has a transparent layer containing copper and a layer containing an infrared absorber,
  • the infrared cut filter according to any one of ⁇ 1> to ⁇ 12>, further comprising a dielectric multilayer film.
  • kits for producing an infrared cut filter having a transparent layer containing copper and a layer containing an infrared absorber comprising a transparent member containing copper and an infrared absorber containing an infrared absorber.
  • a kit comprising: a composition; ⁇ 16> A solid-state imaging device having the infrared cut filter according to any one of ⁇ 1> to ⁇ 14>.
  • the present invention can provide an infrared cut filter having a wide viewing angle and excellent infrared shielding properties.
  • the contents of the present invention will be described in detail.
  • “to” is used in the sense of including the numerical values described before and after it as lower and upper limits.
  • the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • a monomer is distinguished from an oligomer and a polymer, and means a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer.
  • the polymerizable functional group refers to a group that participates in a polymerization reaction.
  • the measuring method of the weight average molecular weight and the number average molecular weight of the compound used in the present invention can be measured by gel permeation chromatography (GPC), and is defined as a polystyrene conversion value by GPC measurement.
  • GPC gel permeation chromatography
  • infrared refers to light (electromagnetic wave) having a maximum absorption wavelength region of 700 to 2500 nm.
  • the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
  • the solid content in the present invention is a solid content at 25 ° C.
  • the infrared cut filter of the present invention has a transparent layer containing copper, and the transparent layer containing copper further contains an infrared absorber or further has a layer containing an infrared absorber.
  • the transparent layer containing copper further contains an infrared absorber, or, in addition to the transparent layer containing copper, further includes a layer containing an infrared absorber, thereby providing a viewing angle. Therefore, it is possible to provide an infrared cut filter having a wide range and excellent infrared shielding properties.
  • Embodiment of the infrared cut filter of this invention is an aspect which has the transparent layer containing copper, and the layer containing an infrared absorber.
  • the transparent layer containing copper can further contain an infrared absorber, and can also be an embodiment that does not contain an infrared absorber. That is, the transparent layer containing copper in the first aspect may contain copper and an infrared absorber.
  • the transparent layer containing copper can also use the glass base material (copper containing glass base material) comprised with the glass containing copper mentioned later, and the layer (copper complex containing layer) containing a copper complex.
  • a copper complex content layer may be used independently and you may use it combining a copper complex content layer and a support body.
  • 1st Embodiment of the infrared cut filter of this invention may be the aspect which has at least the transparent layer (copper complex content layer) containing copper, the layer containing an infrared absorber, a support body, The aspect which has at least the transparent layer (copper complex content layer) containing copper and the layer containing an infrared absorber may be sufficient. Moreover, you may have further the dielectric multilayer film mentioned later.
  • 2nd Embodiment of the infrared cut filter of this invention is an aspect which has a transparent layer containing copper and an infrared absorber.
  • the transparent layer containing copper and an infrared absorber can be used alone or in combination with a support. Moreover, you may have further the dielectric multilayer film mentioned later.
  • the infrared cut filter of the present invention preferably has a transmittance of 80% or more, more preferably 90% or more, and 95% or more with respect to light having a wavelength of 420 to 550 nm, as measured from the direction perpendicular to the infrared cut filter. Further preferred. Moreover, it is preferable that the transmittance
  • the infrared cut filter of the present invention has a wavelength of 600 to 700 nm at which the transmittance of the slope is 50% due to the decrease in the spectral transmittance in the visible to near infrared region, as measured from the direction perpendicular to the infrared cut filter. It is preferably in the range, more preferably in the range of 610 to 660 nm, and still more preferably in the range of 620 to 650 nm.
  • vertical direction (angle 0 degree) and an angle 40 degrees with respect to an infrared cut filter is less than 30 nm, more preferably less than 10 nm, and less than 5 nm. Further preferred.
  • the infrared cut filter of the present invention has a maximum absorption wavelength in a wavelength region of 600 nm or more, Absorbance A at the maximum absorption wavelength before immersing the infrared cut filter in at least one organic solvent selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol B / A, which is a ratio of the absorbance B at the wavelength at which the absorbance A is measured after the infrared cut filter is immersed in an organic solvent at 25 ° C. for 2 minutes, is preferably 0.9 or more.
  • the infrared cut filter of the present invention has a transparent layer containing copper and a layer containing an infrared absorber, the layer containing the infrared absorber has a maximum absorption wavelength in a wavelength region of 600 nm or more. It is preferable.
  • the layer containing the infrared absorber is not immersed in at least one organic solvent selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol, B / A, which is the ratio between the absorbance A at the maximum absorption wavelength and the absorbance B at the wavelength at which the absorbance A was measured after immersing the layer containing the infrared absorber in an organic solvent at 25 ° C. for 2 minutes, is 0. .9 or more is preferable.
  • organic solvent selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol, B / A, which is the ratio between the absorbance A at the maximum absorption wavelength and the absorbance B at the wavelength at which the absorbance A was measured after immersing the layer containing the infrared absorber in an
  • Transparent layer containing copper examples include a glass substrate (copper-containing glass substrate) composed of glass containing copper, a layer containing a copper complex (copper complex-containing layer), and the like.
  • the transparent layer containing copper (hereinafter also referred to as a transparent layer) preferably has a transmittance of 80% or more, measured from the direction perpendicular to the transparent layer, with respect to light having a wavelength of 420 to 550 nm, and 90% or more. More preferred is 95% or more.
  • the transparent layer containing copper can further contain an infrared absorber.
  • the infrared cut filter may have an infrared absorption layer described later, or may be omitted. The infrared absorber will be described later.
  • Copper-containing glass substrate >>> Examples of the glass containing copper include a phosphate glass containing copper and a fluorophosphate glass containing copper.
  • P 2 O 5 70-85%, Al 2 O 3 8-17%, B 2 O 3 1-10%, Li 2 O 0-3%, Na 2 O 0-5%, K 2 O 0-5%, except that CuO is added in an external ratio to 100 parts by mass of the basic glass composed of ⁇ R 2 O (R Li, Na, K) 0.1-5% and SiO 2 0-3%. Glass containing 0.1 to 5 parts by mass.
  • NF-50 (trade name, manufactured by AGC Techno Glass Co., Ltd.), BG-60, BG-61 (trade name, manufactured by Schott Corp.), CD5000 (manufactured by HOYA Corp.). Product name).
  • the above-mentioned copper-containing glass contains one or more of predetermined metal oxides such as Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 and V 2 O 5.
  • predetermined metal oxides such as Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 and V 2 O 5.
  • At least one selected from the group consisting of Fe 2 O 3 , MoO 3 , WO 3 and CeO 2 is Fe 2 O 3 0.6 to 5 parts by weight, MoO 3 0.5 ⁇ 5 parts by weight, WO 3 1 ⁇ 6 parts by weight, CeO 2 2.5 ⁇ 6 parts by weight, or Fe 2 O 3 and Sb 2 O Fe 2 O 3 0 to 2 kinds of 3 .6 to 5 parts by mass + Sb 2 O 3 0.1 to 5 parts by mass, or V 2 O 5 and CeO 2 in two kinds of V 2 O 5 0.01 to 0.5 parts by mass + CeO 2 1 to 6 parts by mass
  • the one containing is used.
  • the thickness of the copper-containing glass substrate is preferably 0.05 to 1.0 mm.
  • the lower limit is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
  • the upper limit is preferably 0.3 mm or less, and more preferably 0.2 mm or less.
  • Copper complex-containing layer As a copper complex containing layer, the layer formed using the copper complex containing composition containing a copper complex is mentioned.
  • the copper complex is preferably a compound having a maximum absorption wavelength in a wavelength region of 700 to 1200 nm.
  • the maximum absorption wavelength of the copper complex is more preferably in the wavelength region of 720 to 1200 nm, and still more preferably in the wavelength region of 800 to 1100 nm.
  • the maximum absorption wavelength can be measured using, for example, Cary 5000 UV-Vis-NIR (manufactured by Agilent Technologies, Inc.).
  • the molar extinction coefficient at the maximum absorption wavelength in the above-described wavelength region of the copper complex is preferably 120 (L / mol ⁇ cm) or more, more preferably 150 (L / mol ⁇ cm) or more, and 200 (L / mol ⁇ cm).
  • the molar extinction coefficient of the copper complex is 100 (L / mol ⁇ cm) or more, a cured film having excellent infrared shielding properties can be formed even if it is a thin film.
  • the gram extinction coefficient at 800 nm of the copper complex is preferably 0.11 (L / g ⁇ cm) or more, more preferably 0.15 (L / g ⁇ cm) or more, and 0.24 (L / g ⁇ cm).
  • the molar extinction coefficient and gram extinction coefficient of the copper complex were determined by measuring the absorption spectrum of the solution in which the copper complex was dissolved by preparing a solution having a concentration of 1 g / L by dissolving the copper complex in a solvent. Can be obtained.
  • a measuring apparatus UV-1800 (wavelength region 200 to 1100 nm) manufactured by Shimadzu Corporation, Cary 5000 (wavelength region 200 to 1300 nm) manufactured by Agilent, and the like can be used.
  • the measurement solvent include water, N, N-dimethylformamide, propylene glycol monomethyl ether, 1,2,4-trichlorobenzene, and acetone.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • the term “dissolved” means a state in which the solubility of the copper complex in a solvent at 25 ° C. exceeds 0.01 g / 100 g Solvent.
  • the molar extinction coefficient and gram extinction coefficient of the copper complex are preferably values measured using any one of the above-described measurement solvents, and more preferably values of propylene glycol monomethyl ether. .
  • Examples of the method for increasing the molar extinction coefficient of the copper complex to 100 (L / mol ⁇ cm) or more include a method using a five-coordinate copper complex, a method using a ligand having a high ⁇ -donating property, and a low symmetry.
  • Examples include a method using a copper complex.
  • the symmetry of the complex is lowered by adopting a pentadentate coordination, preferably a pentacoordinate three-way bipyramidal structure or a pentacoordinate tetragonal pyramid structure.
  • a pentacoordinate copper complex is obtained by reacting, for example, two bidentate ligands (which may be the same or different) and one monodentate ligand with respect to a copper ion.
  • Reacting a child with two bidentate ligands (which may be the same or different), reacting one tridentate ligand with one bidentate ligand, one tetradentate ligand And one monodentate ligand and one pentadentate ligand can be prepared.
  • the monodentate ligand coordinated by an unshared electron pair may be used as a reaction solvent.
  • two bidentate ligands are reacted with a copper ion in a solvent containing water, these two bidentate ligands and a pentacoordinate complex in which water is coordinated as a monodentate ligand. Is obtained.
  • the following is presumed as a mechanism that can achieve a molar extinction coefficient of 100 (L / mol ⁇ cm) or more by using a ligand having a high ⁇ -donating property. That is, by using a ligand having a high ⁇ -donating property (a ligand in which the ⁇ orbit of the ligand or the p orbital is shallow in energy), the p orbit of the metal and the p orbit of the ligand (or ⁇ orbitals) are easily mixed. At this time, the dd transition is not a pure dd transition, and the contribution of the LMCT (Land to Metal Charge Transfer) transition, which is an allowable transition, is mixed.
  • the extinction coefficient is improved, and it is considered that 100 (L / mol ⁇ cm) or more can be achieved.
  • the ligand having a high ⁇ -donating property include a halogen ligand, an oxygen anion ligand, and a sulfur anion ligand.
  • the copper complex using a ligand having a high ⁇ -donating property include a copper complex having a Cl ligand as a monodentate ligand.
  • a copper complex with low symmetry can be obtained by using a ligand with low symmetry, or by introducing a ligand asymmetrically with respect to copper ions. Specifically, for example, it is as follows.
  • a ligand with low symmetry as shown in the following formula (1):
  • a copper complex with low symmetry can be obtained by using a ligand in which L 1 and L 3 are different.
  • a copper complex having a lower symmetry is obtained when a ligand is introduced asymmetrically with respect to a copper ion, for example, when L 4 and L 5 are different from each other.
  • a ligand with low symmetry is used.
  • a copper complex with low symmetry can be obtained.
  • a copper complex having a lower symmetry is obtained when a ligand is introduced asymmetrically with respect to a copper ion, for example, when L 6 -L 7 and L 8 -L 9 are different from each other.
  • the copper complex preferably has a compound having at least two coordination sites (hereinafter also referred to as compound (A)) as a ligand.
  • the compound (A) preferably has at least three coordination sites, and more preferably has 3 to 5 coordination sites.
  • Compound (A) acts as a chelate ligand for the copper component. That is, at least two coordination atoms of compound (A) are chelate-coordinated with copper, so that the structure of the copper complex is distorted, high transparency in the visible light region is obtained, and infrared absorption ability is improved. It is thought that the color value is also improved.
  • the copper complex used in the present invention may have two or more compounds (A). When it has two or more compounds (A), each compound (A) may be the same or different. As a coordination site
  • the copper complex used in the present invention is exemplified by 4-coordination, 5-coordination, and 6-coordination, and 4-coordination and 5-coordination are more preferable, and 5-coordination is more preferable. Moreover, it is preferable that the copper complex forms a 5-membered ring and / or a 6-membered ring with copper and a ligand. Such a copper complex is stable in shape and excellent in complex stability.
  • Copper in the copper complex used in the present invention can be obtained, for example, by mixing and reacting the compound (A) with a copper component (copper or a compound containing copper).
  • the copper component is preferably a compound containing divalent copper.
  • a copper component may use only 1 type and may use 2 or more types.
  • copper component for example, copper oxide or copper salt can be used.
  • the copper salt examples include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate copper, phosphonate copper, phosphonate copper, phosphinate, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methido copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride, copper bromide are preferred, copper carboxylate, copper sulfonate, Sulfonamide copper, imide copper, acylsulfonimide copper, bissulfon
  • the amount of the copper component to be reacted with the compound (A) is preferably 1: 0.5 to 1: 8 in a molar ratio (compound (A): copper component), and is 1: 0.5 to 1: 4. More preferably.
  • the reaction conditions for reacting the copper component with the compound (A) are preferably, for example, 20 to 100 ° C. and 0.5 hours or longer.
  • the copper complex used in the present invention may have a ligand other than the compound (A).
  • the ligand other than the compound (A) include a monodentate ligand coordinated by an anion or an unshared electron pair.
  • ligands coordinated with anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amides substituted with acyl groups and sulfonyl groups), and imide anions (acyl groups and sulfonyl groups).
  • Substituted imides anilide anions (including acylides and sulfonyl substituted anilides), thiolate anions, bicarbonate anions, carboxylate anions, thiocarboxylate anions, dithiocarboxylate anions, hydrogen sulfate anions, sulfones Acid anion, phosphate dihydrogen anion, phosphate diester anion, phosphonate monoester anion, hydrogen phosphonate anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion, cyanide anion Cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions.
  • Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
  • the kind and number of monodentate ligands can be appropriately selected according to the compound (A) coordinated to the copper complex.
  • Specific examples of the monodentate ligand used as the ligand other than the compound (A) include the following, but are not limited thereto. In the following, Ph represents a phenyl group, and Me represents a methyl group.
  • the copper complex used in the present invention has no charge when the ligand compound (A) has a coordination site coordinated by an anion, depending on the number of coordination sites coordinated by an anion.
  • it may be a cation complex or an anion complex.
  • counter ions are present as necessary to neutralize the charge of the copper complex.
  • the counter ion is a negative counter ion, for example, an inorganic anion or an organic anion may be used.
  • hydroxide ions examples include hydroxide ions, halogen anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted or unsubstituted alkyl carboxylate ions (acetate ions, trifluoroacetate ions).
  • halogen anions eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.
  • substituted or unsubstituted alkyl carboxylate ions acetate ions, trifluoroacetate ions.
  • Ion substituted or unsubstituted alkylcarboxylate ion, sulfate ion, nitrate ion, tetrafluoroborate ion, tetraarylborate ion, hexafluorophosphate ion, amide ion (including amide substituted with acyl group or sulfonyl group) ),I (Including imide ion substituted with an acyl group or a sulfonyl group) Doion, Mechidoion (including methide substituted with an acyl group or a sulfonyl group).
  • the counter ion is a positive counter ion, for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetrabutylphosphonium) Tetraalkylphosphonium ions such as ions, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions or protons.
  • the counter ion may be a metal complex ion, and in particular, the counter ion may be a copper complex, that is, a salt of a cationic copper complex and an anionic copper complex.
  • Examples of the copper complex used in the present invention include the following embodiments (1) to (5) as preferred examples, (2) to (5) are more preferred, (3) to (5) are more preferred, (4) is more preferable.
  • (1) Copper complex having one or two compounds having two coordination sites as ligands (2) Copper complex having a compound having three coordination sites as ligands (3) Three coordinations Copper complex having a compound having a coordination site and a compound having two coordination sites as a ligand (4) Copper complex having a compound having four coordination sites as a ligand (5) Five coordination sites Copper complex having a compound containing
  • the compound having two coordination sites is a compound having two coordination sites coordinated by an unshared electron pair, or a coordination site and an unshared electron pair coordinated by an anion.
  • a compound having a coordination site coordinated with is preferable.
  • the compound of a ligand may be the same and may differ.
  • the copper complex can further have the monodentate ligand mentioned above.
  • the number of monodentate ligands can be 0, or 1 to 3.
  • both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable, and a compound having two coordination sites is an unshared electron pair.
  • a monodentate ligand coordinated with an anion is more preferable because the coordination power is strong, and a compound having two coordination sites is coordinated with an anion.
  • a monodentate ligand coordinated by an unshared electron pair is more preferable because the entire complex has no charge.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by a lone pair, and has three coordination sites coordinated by a lone pair. More preferred are compounds.
  • the copper complex may further have the monodentate ligand described above.
  • the number of monodentate ligands can also be zero. One or more may be used, more preferably 1 to 3, more preferably 1 to 2, and still more preferably 2.
  • As the type of monodentate ligand either a monodentate ligand coordinated by an anion or a monodentate ligand coordinated by a lone pair is preferable. More preferred.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination site coordinated by an unshared electron pair. More preferred is a compound having two coordination sites to be coordinated and one coordination site to be coordinated by a lone pair. Furthermore, it is particularly preferable that the coordination sites coordinated by the two anions are different. Further, the compound having two coordination sites is preferably a compound having a coordination site coordinated by an unshared electron pair, and more preferably a compound having two coordination sites coordinated by an unshared electron pair. Among them, a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination site coordinated by an unshared electron pair.
  • the copper complex can further have the monodentate ligand mentioned above.
  • the number of monodentate ligands can be zero, or one or more. 0 is more preferable.
  • the compound having four coordination sites is preferably a compound having a coordination site coordinated by an unshared electron pair, and has two or more coordination sites coordinated by an unshared electron pair.
  • a compound is more preferable, and a compound having four coordination sites coordinated by an unshared electron pair is still more preferable.
  • the copper complex may further have the monodentate ligand described above.
  • the number of monodentate ligands can be 0, 1 or more, or 2 or more.
  • the number of monodentate ligands is preferably one.
  • As the kind of monodentate ligand both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable.
  • the compound having five coordination sites is preferably a compound having a coordination site coordinated by an unshared electron pair, and has two or more coordination sites coordinated by an unshared electron pair.
  • a compound is more preferable, and a compound having five coordination sites coordinated by an unshared electron pair is still more preferable.
  • the copper complex may further have the above-described monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is preferably 0.
  • the copper complex include the following.
  • the content of the copper complex is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more based on the total solid content of the composition.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 50% by mass or less.
  • a copper complex containing composition contains resin.
  • Resin is (meth) acrylic resin, styrene resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide
  • resins include resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins.
  • One of these resins may be used alone, or two or more thereof may be mixed and used. These details will be described in the infrared absorbing composition described later.
  • the weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 3,000 or more, and more preferably 5,000 or more.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 or more, and more preferably 200 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 100 or more, and more preferably 200 or more.
  • the above resin preferably has a 5% thermal mass decrease temperature of 25 ° C. at 20 ° C./min, preferably 200 ° C. or higher, and more preferably 260 ° C. or higher.
  • the resin has one type selected from a repeating unit represented by the following (MX2-1), a repeating unit represented by the following (MX2-2), and a repeating unit represented by the following (MX2-3) Polymers can also be used.
  • M represents an atom selected from Si, Ti, Zr and Al
  • X 2 represents a substituent or a ligand, and at least one of n X 2 is a hydroxy group, an alkoxy group, an acyloxy group , A phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O ⁇ C (R a ) (R b ), and X 2 are bonded to each other to form a ring.
  • R 1 represents a hydrogen atom or an alkyl group
  • L 1 represents a single bond or a divalent linking group
  • n represents the number of bonds of M to X 2 .
  • M is an atom selected from Si, Ti, Zr and Al, Si, Ti and Zr are preferable, and Si is more preferable.
  • X 2 represents a substituent or a ligand, and at least one of n X 2 is a hydroxy group, an alkoxy group, an acyloxy group, a phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O ⁇ C.
  • (R a ) (R b ) is one kind selected from X 2 and X 2 may be bonded to each other to form a ring.
  • at least one alkoxy group is preferably one selected from acyloxy groups, and oxime groups, among the n X 2, is at least one is alkoxy group further
  • all of X 2 are more preferably alkoxy groups.
  • R a and R b each independently represents a monovalent organic group.
  • the number of carbon atoms of the alkoxy group represented by X 2 is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 2.
  • the alkoxy group may be linear, branched or cyclic, but is preferably linear or branched, more preferably linear.
  • the alkoxy group may be unsubstituted or may have a substituent, but is preferably unsubstituted.
  • substituents include a halogen atom (preferably a fluorine atom), a polymerizable group (for example, vinyl group, (meth) acryloyl group, styryl group, epoxy group, oxetane group, etc.), amino group, isocyanato group, isocyanurate group, Examples thereof include a ureido group, a mercapto group, a sulfide group, a sulfo group, a carboxyl group, and a hydroxyl group.
  • Examples of the acyloxy group represented by X 2 include a substituted or unsubstituted alkylcarbonyloxy group having 2 to 30 carbon atoms and a substituted or unsubstituted arylcarbonyloxy group having 6 to 30 carbon atoms. Examples include formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy, benzoyloxy group, p-methoxyphenylcarbonyloxy group and the like. Examples of the substituent include those described above.
  • the number of carbon atoms of the oxime group represented by X 2 is preferably 1-20, more preferably 1-10, and even more preferably 1-5.
  • the amino group represented by X 2 includes an amino group, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, and a heterocycle having 0 to 30 carbon atoms.
  • An amino group etc. are mentioned. Examples include amino, methylamino, dimethylamino, anilino, N-methyl-anilino, diphenylamino, N-1,3,5-triazin-2-ylamino and the like. Examples of the substituent include those described above.
  • Examples of the monovalent organic group represented by R a and R b include an alkyl group, an aryl group, and a group represented by —R 101 —COR 102 .
  • the alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be unsubstituted or may have the above-described substituent.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aryl group may be unsubstituted or may have the above-described substituent.
  • R 101 represents an arylene group
  • R 102 represents an alkyl group or an aryl group.
  • the number of carbon atoms of the arylene group represented by R 101 is preferably 1-20, and more preferably 1-10.
  • the arylene group may be linear, branched or cyclic.
  • the arylene group may be unsubstituted or may have the above-described substituent. Examples of the alkyl group and aryl group represented by R 102 include those described for R a and R b , and the preferred ranges are also the same.
  • hydrocarbon groups are preferred as substituents other than hydroxy groups, alkoxy groups, acyloxy groups, phosphoryloxy groups, sulfonyloxy groups, amino groups, and oxime groups.
  • hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the alkyl group may be linear, branched or cyclic.
  • the linear alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • the branched alkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • the carbon number of the cyclic alkyl group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
  • the alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 6 to 10 carbon atoms.
  • the hydrocarbon group may have a substituent.
  • substituents examples include an alkyl group, a halogen atom (preferably a fluorine atom), a polymerizable group (for example, a vinyl group, a (meth) acryloyl group, a styryl group, Epoxy group, oxetane group, etc.), amino group, isocyanate group, isocyanurate group, ureido group, mercapto group, sulfide group, sulfo group, carboxyl group, hydroxyl group, alkoxy group and the like.
  • a halogen atom preferably a fluorine atom
  • a polymerizable group for example, a vinyl group, a (meth) acryloyl group, a styryl group, Epoxy group, oxetane group, etc.
  • amino group isocyanate group, isocyanurate group, ureido group, mercapto group, sulfide group, s
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom.
  • the alkyl group is preferably linear or branched, and more preferably linear.
  • part or all of the hydrogen atoms may be substituted with a halogen atom (preferably a fluorine atom).
  • L 1 represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 — (R 10 represents a hydrogen atom or Represents a hydrogen atom, preferably a hydrogen atom), or a group composed of a combination thereof, and a group composed of a combination of at least one of an alkylene group, an arylene group, and an alkylene group and —O— is preferable.
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may have a substituent, but is preferably unsubstituted.
  • the alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic.
  • the carbon number of the arylene group is preferably 6 to 18, more preferably 6 to 14, still more preferably 6 to 10, and particularly preferably a phenylene group.
  • the polymer may contain other repeating units in addition to the repeating units represented by the formulas (MX2-1), (MX2-2), and (MX2-3).
  • Other components constituting the repeating unit are disclosed in paragraph Nos. 0068 to 0075 of JP 2010-106268 A (corresponding to [0112] to [0118] of the corresponding US Patent Application Publication No. 2011/0124824).
  • the description of the copolymerization component can be taken into account, the contents of which are incorporated herein.
  • Preferable other repeating units include repeating units represented by the following formulas (MX3-1) to (MX3-4).
  • R 5 represents a hydrogen atom or an alkyl group
  • L 4 represents a single bond or a divalent linking group
  • R 10 represents an alkyl group or an aryl group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • R 5 has the same meaning as R 1 in formulas (MX2-1) to (MX2-3), and the preferred range is also the same.
  • L 4 has the same meaning as L 1 in formulas (MX2-1) to (MX2-3), and the preferred range is also the same.
  • the alkyl group represented by R 10 may be linear, branched or cyclic, and is preferably cyclic.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may have a substituent, and examples of the substituent include those described above.
  • the aryl group represented by R 10 may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • R 10 is preferably a cyclic alkyl group or an aryl group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • alkyl groups are preferred.
  • the alkyl group is preferably linear.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the polymer contains other repeating units (preferably repeating units represented by formulas (MX3-1) to (MX3-4)), they are represented by formulas (MX2-1) to (MX2-3).
  • the molar ratio of the total of repeating units to the total of other repeating units is preferably 95: 5 to 20:80, and more preferably 90:10 to 30:70.
  • polymer examples include the following.
  • the weight average molecular weight of the polymer is preferably 500 to 300,000.
  • the lower limit is preferably 1000 or more, and more preferably 2000 or more.
  • the upper limit is preferably 250,000 or less, and more preferably 200000 or less.
  • the content of the resin is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more based on the total solid content of the copper complex-containing composition.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 50% by mass or less.
  • the copper complex-containing composition may contain an infrared absorber.
  • an infrared absorber about the detail of an infrared absorber, what is demonstrated with the infrared rays absorption composition mentioned later is mentioned.
  • the infrared absorber in this invention is compounds other than the copper complex mentioned above.
  • a copper complex containing composition contains an infrared absorber, 0.01 mass% or more is preferable with respect to the total solid of a copper complex containing composition, and, as for content of an infrared absorber, 0.05 mass% or more Is more preferable, and 0.1% by mass or more is more preferable.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less. Further, it is preferable to contain 10 to 90 parts by mass of an infrared absorber with respect to 100 parts by mass of the copper complex.
  • the lower limit is preferably 20 parts by mass or more, and more preferably 30 parts by mass or more.
  • the upper limit is preferably 70 parts by mass or less, and more preferably 50 parts by mass or less.
  • the copper complex-containing composition can also contain an oxime compound as a thermal stability imparting agent.
  • oxime compounds include IRGACURE-OXE01 (manufactured by BASF), IRGACURE-OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (ADEKA), Adeka Arcles NCI-930 (ADEKA), etc. can be used.
  • the content of the heat stability imparting agent is preferably 0.01 to 30% by mass with respect to the total solid content of the copper complex-containing composition.
  • the lower limit is preferably 0.1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the copper complex-containing composition preferably contains a polymerizable compound.
  • a polymerizable compound about the detail of a polymeric compound, what is demonstrated by the infrared rays absorption composition mentioned later is mentioned.
  • content of a polymeric compound 15 mass% or more is preferable with respect to the total solid of a copper complex containing composition, 20 mass% or more is more preferable, and 25 mass% or more is further more preferable.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass or less.
  • a copper complex containing composition contains a photoinitiator.
  • the content of the photopolymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the copper complex-containing composition.
  • the lower limit is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • the copper complex-containing composition preferably contains gelatin. Details of the gelatin include those described in the infrared absorbing composition described later. By containing gelatin, it is easy to form a film having excellent heat resistance.
  • the content of gelatin is preferably 1 to 99% by mass with respect to the total solid content of the copper complex-containing composition.
  • the lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the upper limit is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • a copper complex containing composition contains a solvent.
  • a solvent water or an organic solvent can be used. Moreover, water and an organic solvent can also be used together. About the detail of an organic solvent, what is demonstrated with the infrared rays absorption composition mentioned later is mentioned.
  • the content of the solvent is preferably such that the total solid content of the copper complex-containing composition is 5 to 60% by mass, and more preferably 10 to 40% by mass.
  • the copper complex-containing composition preferably contains a catalyst.
  • a catalyst By containing a catalyst, an infrared cut filter excellent in solvent resistance and heat resistance is easily obtained.
  • the catalyst include an organometallic catalyst, an acid catalyst, and an amine catalyst, and an organometallic catalyst is preferable.
  • the organometallic catalyst include tris (2,4-pentanedionato) aluminum.
  • the content of the catalyst is preferably 0.01 to 5% by mass with respect to the total solid content of the copper complex-containing composition.
  • the lower limit is preferably 0.05% by mass or more.
  • the upper limit is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • Copper complex-containing compositions include, for example, ultraviolet absorbers, dispersants, sensitizers, crosslinking agents, curing accelerators, fillers, thermosetting accelerators, thermal polymerization inhibitors, plasticizers, adhesion promoters, and other auxiliaries.
  • conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension adjusting agents, chain transfer agents, etc. can be further contained.
  • These components are described, for example, in paragraph No. 0183 and later of JP2012-003225A (corresponding to [0237] and later of US Patent Application Publication No. 2013/0034812), JP2008-250074A, and the like.
  • the description of paragraph numbers 0101 to 0104, 0107 to 0109, and the like can be referred to, and the contents thereof are incorporated in the present specification.
  • a copper complex content layer When using a copper complex content layer as a transparent layer containing copper, a copper complex content layer may be used independently, and a copper complex content layer and a support may be used in combination.
  • the material of the support is not particularly limited as long as it can transmit at least light in the visible wavelength range, and examples thereof include glass, crystals, and resins.
  • the glass include soda lime glass, borosilicate glass, alkali-free glass, and quartz glass.
  • the crystal include crystal, lithium niobate, and sapphire.
  • the resin examples include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymer, acrylic resins such as norbornene resin, polyacrylate, and polymethyl methacrylate, urethane resin, and vinyl chloride resin. , Fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin and the like. Moreover, when using a copper complex content layer in combination with a support body, another layer may intervene between a copper complex content layer and a support body.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymer
  • acrylic resins such as norbornene resin, polyacrylate, and polymethyl methacrylate, urethane resin
  • vinyl chloride resin vinyl chloride resin.
  • an infrared absorption layer described later or a dielectric multilayer film may be interposed between the copper complex-containing layer and the support.
  • an infrared absorption layer may be formed only on one side of the support, or an infrared absorption layer may be formed on both sides of the support.
  • the copper complex-containing layer when the copper complex-containing layer is not in contact with the support and another layer is interposed between the copper complex-containing layer and the support, only the copper complex-containing layer is “copper” in the present invention. It corresponds to a "transparent layer containing".
  • the thickness of the copper complex-containing layer is preferably 0.05 to 1.0 mm.
  • the lower limit is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
  • the upper limit is preferably 0.3 mm or less, and more preferably 0.2 mm or less.
  • the thickness of the copper complex-containing layer is preferably 0.1 to 1.0 mm.
  • the lower limit is preferably 0.1 mm or more, and more preferably 0.15 mm or more.
  • the upper limit is preferably 0.3 mm or less, and more preferably 0.2 mm or less.
  • the infrared cut filter of the present invention preferably has a layer containing an infrared absorber (hereinafter also referred to as an infrared absorption layer).
  • the infrared absorber in this invention is compounds other than the copper complex demonstrated with the copper complex content layer.
  • the infrared absorption layer may be provided only on one side of the transparent layer containing copper, or may be provided on both sides. From the viewpoint of suppressing warpage, it is preferable to have infrared absorbing layers on both sides of the transparent layer containing copper.
  • the infrared absorption layer may be in contact with the transparent layer containing copper or not.
  • the infrared absorbing layer may be formed on the surface of a transparent layer containing copper, and another layer (such as a dielectric multilayer film described later) is interposed between the infrared absorbing layer and the transparent layer containing copper. You may do it.
  • the transparent layer containing copper contains an infrared absorber further, the infrared cut filter of this invention may have an infrared absorption layer, and can also be abbreviate
  • the transparent layer containing copper does not contain an infrared absorber, the infrared cut filter of the present invention has an infrared absorbing layer in addition to the transparent layer containing copper.
  • the infrared absorption layer preferably has a maximum absorption wavelength in a wavelength region of 600 nm or more, and more preferably has a maximum absorption wavelength in a wavelength region of 700 to 900 nm.
  • the infrared absorption layer preferably has a transmittance of 10% or less, more preferably 5% or less, and still more preferably 1% or less, with respect to light having a wavelength of 700 nm, measured from a direction perpendicular to the infrared absorption layer.
  • the transmittance of light having a wavelength of 800 nm measured from the direction perpendicular to the infrared absorption layer is preferably 10% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the infrared absorption layer has an absorbance A at a maximum absorption wavelength before being immersed in at least one organic solvent selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol.
  • B / A which is a ratio of the absorbance B at the wavelength at which the absorbance A is measured after the infrared absorbing layer is immersed in an organic solvent at 25 ° C. for 2 minutes, is preferably 0.9 or more.
  • the absorbance ratio B / A is preferably a value with respect to two or more organic solvents selected from propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol. Particularly preferred are the values for propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl lactate, acetone and ethanol.
  • the absorbance ratio B / A is more preferably 0.9 to 1.0, still more preferably 0.95 to 1.0.
  • the content of the infrared absorber is preferably 1 to 80% by mass with respect to the mass of the infrared absorbing layer.
  • the lower limit is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the upper limit is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the infrared absorbing layer can be formed using an infrared absorbing composition containing an infrared absorber.
  • an infrared absorbing composition containing an infrared absorber.
  • the infrared absorber means a compound having absorption in the near infrared region (preferably, a wavelength region of 650 to 1300 nm).
  • the infrared absorber is preferably a compound having a maximum absorption wavelength in a wavelength region of 675 to 900 nm.
  • the infrared absorber is preferably an organic dye.
  • the organic dye means a dye made of an organic compound.
  • the infrared absorber is preferably at least one selected from a cyanine compound, a pyrrolopyrrole compound, a squarylium compound, a phthalocyanine compound, and a naphthalocyanine compound.
  • an infrared absorber is a compound which melt
  • the infrared absorber is preferably at least one selected from compounds represented by the following general formulas 1 to 3.
  • General formula 1 In general formula 1, ring A and ring B each independently represent an aromatic ring, X A and X B each independently represent a substituent, G A and G B each independently represent a substituent, kA represents an integer of 0 to nA, kB represents an integer of 0 to nB, nA represents the largest integer that can be substituted on ring A, nB represents the largest integer that can be substituted on ring B, and X A and G A, X B and G B may combine with each other to form a ring, if G A and G B are present in plural can may also be bonded to each other to form a ring;
  • General formula 2 In General Formula 2, R 1a and R 1b each independently represents an alkyl group, an aryl group, or a heteroaryl group, R 2 to R 5 each independently represents a hydrogen atom or a substituent, and R 2
  • G A and G B each independently represent a substituent.
  • Substituents include halogen atoms, cyano groups, nitro groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylthio groups, arylthio groups, Heteroarylthio group, —NR a1 R a2 , —COR a3 , —COOR a4 , —OCOR a5 , —NHCOR a6 , —CONR a7 R a8 , —NHCONR a9 R a10 , —NHCOOR a11 , —SO 2 R a12 , — SO 2 OR a13 , —NHSO 2 R a14 or —SO 2
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group, alkoxy group and alkylthio group preferably have 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkynyl group has preferably 2 to 40 carbon atoms, more preferably 2 to 30 carbon atoms, and particularly preferably 2 to 25 carbon atoms.
  • the alkynyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms. Examples of the aryl group included in the aryloxy group and the arylthio group include those described above, and the preferred ranges are also the same.
  • the alkyl part of the aralkyl group is the same as the above alkyl group.
  • the aryl part of the aralkyl group is the same as the above aryl group.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 40, more preferably 7 to 30, and still more preferably 7 to 25.
  • the heteroaryl group is preferably a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • Examples of the heteroaryl group possessed by the heteroaryloxy group and heteroarylthio group include those described above, and the preferred ranges are also the same.
  • X A and X B each independently represent a substituent.
  • the substituent is preferably a group having active hydrogen, —OH, —SH, —COOH, —SO 3 H, —NR G1 R G2 , —NHCOR G1 , —CONR G1 R G2 , —NHCONR G1 R G2 , —NHCOOR G1 , —NHSO 2 R G1 , —B (OH) 2 and —PO (OH) 2 are more preferable, —OH, —SH and —NR G1 R G2 are more preferable, and —NR G1 R G2 is particularly preferable.
  • R G1 and R G1 each independently represent a hydrogen atom or a substituent.
  • substituents examples include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group.
  • Alkyl group, an alkenyl group, an alkynyl group, an aryl group and that details of the heteroaryl group, is as defined and ranges described for the G A and G B.
  • ring A and ring B each independently represent an aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring.
  • the aromatic ring may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • Specific examples of the aromatic ring include benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indecene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, anthracene ring, naphthacene ring, chrysene ring , Triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, thiazole ring, thiazole ring, pyridine ring, pyra
  • X A and G A, X B and G B may combine with each other to form a ring, if G A and G B are present in plural can combine with each other to form a ring May be.
  • the ring is preferably a 5-membered ring or a 6-membered ring.
  • the ring may be monocyclic or multicyclic.
  • X A and G A, X B and G B, when forming a G A or between G B are bonded to each other rings, may be they are attached directly to form a ring, an alkylene group, -CO-,
  • a ring may be formed by bonding via a divalent linking group selected from the group consisting of —O—, —NH—, —BR— and combinations thereof.
  • X A and G A , X B and G B , G A or G B are preferably bonded via —BR— to form a ring.
  • R represents a hydrogen atom or a substituent.
  • kA represents an integer of 0 to nA
  • kB represents an integer of 0 to nB
  • nA represents the largest integer that can be substituted for ring A
  • nB represents the largest that can be substituted for ring B.
  • kA and kB are each independently preferably 0 to 4, more preferably 0 to 2, and particularly preferably 0 to 1.
  • the compound represented by the general formula 1 is preferably a compound represented by the following general formula 1-1. This compound is excellent in heat resistance.
  • R 1 and R 2 each independently represents an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, or a group represented by the following formula (W):
  • R 3 and R 4 each independently represents a hydrogen atom or an alkyl group
  • X 1 and X 2 each independently represents an oxygen atom or —N (R 5 ) —
  • R 5 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • Y 1 to Y 4 each independently represents a substituent
  • Y 1 and Y 2 , and Y 3 and Y 4 may be bonded to each other to form a ring
  • Y 1 to Y 4 may be bonded to each other to form a ring when there are a plurality of Y 1 to Y 4 .
  • S 1 represents a single bond, an arylene group or a heteroarylene group
  • L 1 represents an alkylene group, an alkenylene group, an alkynylene group, —O—, —S—, —NR L1 —, —CO—, —COO—, —OCO—, —CONR L1 —, —NR L1 CO—, — SO 2 —, —OR L2 —, or a combination thereof
  • R L1 represents a hydrogen atom or an alkyl group
  • R L2 represents an alkylene group
  • T 1 is alkyl group, cyano group, hydroxy group, formyl group, carboxyl group, amino group, thiol group, sulfo group, phosphoryl group, boryl group, vinyl group, ethy
  • R 1 and R 2 each independently represents an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, or a group represented by Formula (W), and R 1 and R 2 At least one preferably represents a group represented by the formula (W).
  • R 1 and R 2 may be the same or different groups. More preferably, R 1 and R 2 are the same group.
  • an aryl group means an aromatic hydrocarbon group
  • a heteroaryl group means an aromatic heterocyclic group.
  • the number of carbon atoms of the alkyl group represented by R 1 and R 2 is preferably 1-40.
  • the lower limit is more preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 13 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the number of branches of the branched alkyl group is preferably 2 to 10, for example, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the alkenyl group represented by R 1 and R 2 preferably has 2 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkenyl group is preferably straight-chain or branched, particularly preferably branched.
  • the number of branches of the branched alkenyl group is preferably 2 to 10, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the number of carbon atoms of the aryl group represented by R 1 and R 2 is preferably 6-30, more preferably 6-20, and still more preferably 6-12.
  • the heteroaryl group represented by R 1 and R 2 may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • S 1 represents a single bond, an arylene group or a heteroarylene group, and from the viewpoint of the stability of the bond with the boron atom, an arylene group or a heteroarylene group is preferable, and an arylene group is more preferable.
  • the arylene group may be monocyclic or polycyclic. A single ring is preferred. The carbon number of the arylene group is preferably 6 to 20, and more preferably 6 to 12.
  • the heteroaryl group may be monocyclic or polycyclic. A single ring is preferred. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • Specific examples of the arylene group and heteroarylene group represented by S 1 include the structures shown below.
  • R ' represents a substituent
  • R N represents a hydrogen atom or an alkyl group M represents an integer of 0 or more.
  • R ′ include the substituents described above for G A and G B of General Formula 1.
  • the number of carbon atoms of the alkyl group represented by R N is preferably from 1 to 20, more preferably 1 to 10, more preferably from 1 to 4 1 to 2 are particularly preferred.
  • the alkyl group may be linear or branched.
  • m represents an integer of 0 or more. The upper limit of m is the maximum number of substitutions for each group. m is preferably 0.
  • L 1 represents an alkylene group, an alkenylene group, an alkynylene group, —O—, —S—, —NR L1 —, —CO—, —COO—, —OCO—, —CONR L1 —, — NR L1 CO—, —SO 2 —, —OR L2 — or a combination thereof is represented, R L1 represents a hydrogen atom or an alkyl group, and R L2 represents an alkylene group.
  • L 1 represents an alkylene group, an alkenylene group, an alkynylene group, —O—, —S—, —NR L1 —, —COO—, —OCO—, —CONR L1 —, —SO 2 —, —OR L2 — or a group formed by a combination thereof is preferable, and an alkylene group, an alkenylene group, —O—, —OR L2 — or a group formed by a combination thereof is more preferable from the viewpoint of flexibility and solvent solubility.
  • An alkylene group, an alkenylene group, —O— or —OR L2 — is more preferable, and an alkylene group, —O— or —OR L2 — is particularly preferable.
  • the alkylene group represented by L 1 preferably has 1 to 40 carbon atoms.
  • the lower limit is more preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 13 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkylene group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the number of branches is preferably 2 to 10, for example, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the alkenylene group and alkynylene group represented by L 1 preferably have 2 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkenylene group and the alkynylene group may be either linear or branched, but are preferably linear or branched, and particularly preferably branched.
  • the number of branches is preferably 2 to 10, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • R L1 represents a hydrogen atom or an alkyl group, and preferably a hydrogen atom.
  • the number of carbon atoms of the alkyl group is preferably 1-20, more preferably 1-10, still more preferably 1-4, and particularly preferably 1-2.
  • the alkyl group may be linear or branched.
  • R L2 represents an alkylene group.
  • the alkylene group represented by R L2 has the same meaning as the alkylene group described for L 1 , and the preferred range is also the same.
  • T 1 represents an alkyl group, a cyano group, a hydroxy group, a formyl group, a carboxyl group, an amino group, a thiol group, a sulfo group, a phosphoryl group, a boryl group, a vinyl group, an ethynyl group, an aryl group, a hetero group Represents an aryl group, a trialkylsilyl group or a trialkoxysilyl group;
  • the alkyl group, the alkyl group of the trialkylsilyl group, and the alkyl group of the trialkoxysilyl group preferably have 1 to 40 carbon atoms.
  • the lower limit is more preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 13 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched.
  • the aryl group and heteroaryl group are synonymous with the aryl group and heteroaryl group described in R 1 and R 2 , and the preferred ranges are also the same.
  • the total number of carbon atoms contained in L 1 and T 1 is preferably 13 or more. From the viewpoint of solvent solubility, 21 or more is more preferable.
  • the upper limit is preferably 40 or less, and more preferably 35 or less.
  • the total number of carbon atoms contained in L 1 and T 1 is preferably 5 or more, preferably 9 or more, more preferably 10 or more, from the viewpoint of solvent solubility.
  • the upper limit is preferably 40 or less, and more preferably 35 or less.
  • S 1 is an arylene group or a heteroarylene group
  • L 1 is an alkylene group, an alkenylene group, an alkynylene group, —O—, —S—, —NR L1 —, —COO— , —OCO—, —CONR L1 —, —SO 2 —, —OR L2 — or a combination thereof, and a combination in which T 1 is an alkyl group or a trialkylsilyl group.
  • S 1 is more preferably an arylene group.
  • L 1 is alkylene group, alkenylene group, -O -, - OR L2 - or group is more preferably made of a combination of these, an alkylene group, an alkenylene group, -O- or -OR L2 - more preferably, an alkylene group , —O—, or —OR L2 — is particularly preferred.
  • T 1 is more preferably an alkyl group.
  • the -L 1 -T 1 moiety preferably contains a branched alkyl structure.
  • the -L 1 -T 1 moiety is particularly preferably a branched alkyl group or a branched alkoxy group.
  • the number of branches of the -L 1 -T 1 moiety is preferably 2 to 10, more preferably 2 to 8.
  • the number of carbon atoms in the -L 1 -T 1 moiety is preferably 5 or more, more preferably 9 or more, and even more preferably 10 or more.
  • the upper limit is preferably 40 or less, and more preferably 35 or less.
  • the -L 1 -T 1 moiety preferably contains an asymmetric carbon.
  • the compound represented by the general formula 1-1 can contain a plurality of optical isomers, and as a result, the solvent solubility of the compound can be further improved.
  • the number of asymmetric carbons is preferably 1 or more.
  • the upper limit of the asymmetric carbon is not particularly limited, but is preferably 4 or less, for example.
  • A is a connecting portion with the boron atom of formula (1).
  • * represents an asymmetric carbon, and the wavy bond represents a racemate.
  • R 3 and R 4 each independently represents a hydrogen atom or an alkyl group.
  • R 3 and R 4 may be the same or different groups. More preferably, R 3 and R 4 are the same group.
  • the number of carbon atoms of the alkyl group represented by R 3 and R 4 is preferably 1-20, more preferably 1-10, still more preferably 1-4, and particularly preferably 1-2.
  • the alkyl group may be linear or branched. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • R 3 and R 4 are each independently preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • X 1 and X 2 each independently represent an oxygen atom (—O—) or —N (R 5 ) —.
  • X 1 and X 2 may be the same or different, but are preferably the same.
  • R 5 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group.
  • R 5 is preferably a hydrogen atom, an alkyl group or an aryl group.
  • the alkyl group, aryl group, and heteroaryl group represented by R 5 may be unsubstituted or may have a substituent. Examples of the substituent include the substituents described above for G A and G B in the general formula 1.
  • the number of carbon atoms of the alkyl group is preferably 1-20, more preferably 1-10, still more preferably 1-4, and particularly preferably 1-2.
  • the alkyl group may be linear or branched.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the heteroaryl group may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • X 1 and X 2 are preferably each independently represented by an oxygen atom or any of the following.
  • R 5a represents an alkyl group
  • R 6 to R 8 each independently represents a substituent
  • a represents an integer of 0 to 5
  • b and c each represents an integer of 0 to 7
  • Examples of the substituent represented by R 6 to R 8 include the substituents described above for G A and G B of the general formula 1.
  • Y 1 to Y 4 each independently represent a substituent.
  • Y 1 and Y 2 , and Y 3 and Y 4 may be bonded to each other to form a ring.
  • Y 1 and Y 2 may be bonded to each other and may be combined with a naphthalene ring directly connected to Y 1 and Y 2 to form, for example, a tricyclic ring such as an acenaphthene ring or an acenaphthylene ring.
  • Y 1 to Y 4 they may be bonded to each other to form a ring structure.
  • Y 1 is a plurality, Y 1 bonded to each other to each other, along with a naphthalene ring which is directly linked to Y 1 and Y 2, for example, anthracene ring, even though a 3 ring, a phenanthrene ring, Good.
  • Y 1 is bonded to each other to form a ring structure, it is not always necessary to have a plurality of substituents Y 2 to Y 4 other than Y 1 .
  • Y 2 to Y 4 may not exist.
  • p and s each independently represent an integer of 0 to 3, preferably 0 to 1, and particularly preferably 0.
  • q and r each independently represents an integer of 0 to 2, preferably 0 to 1, and particularly preferably 0.
  • Examples of the squarylium compound represented by the general formula 1 include the following compounds. Further, compounds described in paragraph numbers 0044 to 0049 of JP2011-208101A can be mentioned, and the contents thereof are incorporated in the present specification. In the specific examples shown below, the wavy bond represents a racemate in the following formulae.
  • R 1a and R 1b each independently represent an alkyl group, an aryl group, or a heteroaryl group, preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
  • the number of carbon atoms of the alkyl group represented by R 1a and R 1b is preferably 1 to 40, more preferably 1 to 30, and particularly preferably 1 to 25.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the number of carbon atoms of the aryl group represented by R 1a and R 1b is preferably 6-30, more preferably 6-20, and still more preferably 6-12.
  • the aryl group is preferably phenyl.
  • the heteroaryl group represented by R 1a and R 1b is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, and further a single ring or a condensed ring having 2 to 4 condensations. preferable.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 10.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the above-described aryl group and heteroaryl group may have a substituent or may be unsubstituted. It is preferable that it has a substituent from a viewpoint that the solubility with respect to a solvent can be improved.
  • the substituent include a hydrocarbon group which may contain an oxygen atom, amino group, acylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, alkylsulfonyl group, sulfinyl group, ureido group, phosphate amide group, mercapto group Group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, silyl group, hydroxy group, halogen atom, cyano group and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the alkyl group preferably has 1 to 40 carbon atoms.
  • the lower limit is more preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the branched alkyl group preferably has 3 to 40 carbon atoms.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and still more preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branches of the branched alkyl group is preferably 2 to 10, for example, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the alkenyl group preferably has 2 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkenyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the branched alkenyl group preferably has 3 to 40 carbon atoms.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and still more preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branches of the branched alkenyl group is preferably 2 to 10, and more preferably 2 to 8. If the number of branches is in the above range, the solvent solubility is good.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • Examples of the hydrocarbon group containing an oxygen atom include a group represented by -LRx1 .
  • L represents —O—, —CO—, —COO—, —OCO—, — (OR x2 ) m — or — (R x2 O) m —.
  • R x1 represents an alkyl group, an alkenyl group or an aryl group.
  • R x2 represents an alkylene group or an arylene group.
  • m represents an integer of 2 or more, and m R x2 may be the same or different.
  • L is preferably —O—, — (OR x2 ) m — or — (R x2 O) m —, more preferably —O—.
  • R x1 is preferably an alkyl group or an alkenyl group, and more preferably an alkyl group.
  • the alkylene group represented by R x2 preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 5 carbon atoms.
  • the alkylene group may be linear, branched or cyclic, but is preferably linear or branched.
  • the number of carbon atoms of the arylene group represented by R x2 is preferably 6-20, and more preferably 6-12.
  • R x2 is preferably an alkylene group.
  • m represents an integer of 2 or more, preferably 2 to 20, and more preferably 2 to 10.
  • the substituent that the aryl group and heteroaryl group may have is preferably a group having a branched alkyl structure. According to this aspect, the solvent solubility is further improved.
  • the substituent is preferably a hydrocarbon group that may contain an oxygen atom, and more preferably a hydrocarbon group containing an oxygen atom.
  • the hydrocarbon group containing an oxygen atom is preferably a group represented by —O—R x1 .
  • R x1 is preferably an alkyl group or an alkenyl group, more preferably an alkyl group, and particularly preferably a branched alkyl group. That is, the substituent is more preferably an alkoxy group, and particularly preferably a branched alkoxy group.
  • the alkoxy group preferably has 1 to 40 carbon atoms.
  • the lower limit is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the alkoxy group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably branched.
  • the number of carbon atoms of the branched alkoxy group is preferably 3 to 40.
  • the lower limit is more preferably 5 or more, still more preferably 8 or more, and still more preferably 10 or more.
  • the upper limit is more preferably 35 or less, and still more preferably 30 or less.
  • the number of branched alkoxy groups is preferably 2 to 10, more preferably 2 to 8.
  • R 2 to R 5 each independently represents a hydrogen atom or a substituent.
  • substituents include an alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, amino group (including alkylamino group, arylamino group and heterocyclic amino group), alkoxy group, aryloxy group, heteroaryloxy Group, acyl group, alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio Group, arylthio group, heteroarylthio group, alkylsulfonyl group, arylsulfonyl group, sulfinyl group, ureido group,
  • R 2 and R 3 and one of R 4 and R 5 are preferably an electron-withdrawing group.
  • a substituent having a positive Hammett ⁇ p value acts as an electron-withdrawing group.
  • a substituent having a Hammett ⁇ p value of 0.2 or more can be exemplified as an electron-withdrawing group.
  • the ⁇ p value is preferably 0.25 or more, more preferably 0.3 or more, and particularly preferably 0.35 or more.
  • the upper limit is not particularly limited, but is preferably 0.80.
  • Particularly preferred is a cyano group.
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • paragraph numbers 0024 to 0025 of JP-A-2009-263614 can be referred to, the contents of which are incorporated herein.
  • Either one of R 2 and R 3 and one of R 4 and R 5 are preferably a heteroaryl group.
  • the heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having a condensation number of 2 to 8, more preferably a single ring or a condensed ring having a condensation number of 2 to 4. .
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group preferably has one or more nitrogen atoms.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 10.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • Specific examples of the heteroaryl group include imidazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, pyridazyl group, triazyl group, quinolyl group, quinoxalyl group, isoquinolyl group, indolenyl group, furyl group, thienyl group, benzoxazolyl group.
  • the heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include the substituents represented by R 2 to R 5 described above. A halogen atom, an alkyl group, an alkoxy group or an aryl group is preferred.
  • the alkyl group and alkoxy group preferably have 1 to 40 carbon atoms, more preferably 1 to 30 carbon atoms, and particularly preferably 1 to 25 carbon atoms.
  • the alkyl group and the alkoxy group are preferably linear or branched, and particularly preferably linear.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • R 2 and R 3 , R 4 and R 5 may be bonded to each other to form a ring.
  • R 2 and R 3 or R 4 and R 5 are bonded to each other to form a ring, it is preferable to form a 5- to 7-membered ring (preferably a 5- or 6-membered ring).
  • the ring formed is preferably a merocyanine dye used as an acidic nucleus. Specific examples include, for example, the structure described in paragraph No. 0026 of JP2010-222557A, the contents of which are incorporated in this specification.
  • the ring formed by combining R 2 and R 3 or R 4 and R 5 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (also a thioketone body).
  • 2-thio-2,4-thiazolidinedione nucleus 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4 -With an imidazolidinedione nucleus, a 2-thio-2,4-imidazolidinedione nucleus, a 2-imidazoline-5-one nucleus, a 3,5-pyrazolidinedione nucleus, a benzothiophen-3-one nucleus, or an indanone nucleus More preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketone body), 3,5-pyrazolidinedione nucleus, benzothiophene-3 Is one nucleus or an indanone nucleus,.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, —BR A R B , or a metal atom, and —BR A R B is more preferable.
  • the number of carbon atoms of the alkyl group represented by R 6 and R 7 is preferably 1 to 40, more preferably 1 to 30, and particularly preferably 1 to 25.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably linear.
  • the alkyl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the aryl group represented by R 6 and R 7 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the heteroaryl group represented by R 6 and R 7 is preferably a single ring or a condensed ring, more preferably a single ring.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 5.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents represented by R 2 to R 5 described above.
  • the metal atom represented by R 6 and R 7 is preferably magnesium, aluminum, calcium, barium, zinc, tin, vanadium, iron, cobalt, nickel, copper, palladium, iridium, platinum, aluminum, zinc, vanadium, iron, Copper, palladium, iridium and platinum are particularly preferred.
  • R A and R B each independently represents a hydrogen atom or a substituent.
  • substituent represented by R A and R B include the substituents represented by R 2 to R 5 described above.
  • a halogen atom, an alkyl group, an alkoxy group, an aryl group and a heteroaryl group are preferred.
  • a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are preferable, and a fluorine atom is particularly preferable.
  • the alkyl group and alkoxy group preferably have 1 to 40 carbon atoms, more preferably 1 to 30 carbon atoms, and particularly preferably 1 to 25 carbon atoms.
  • the alkyl group and the alkoxy group are preferably linear or branched, and particularly preferably linear.
  • the alkyl group and the alkoxy group may have a substituent or may be unsubstituted.
  • the substituent include an aryl group, a heteroaryl group, and a halogen atom.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, an alkoxy group, and a halogen atom.
  • the heteroaryl group may be monocyclic or polycyclic. The number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, still more preferably 3 to 12, and particularly preferably 3 to 5.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, an alkoxy group, and a halogen atom.
  • R 6 may be covalently or coordinately bonded to R 1a or R 3 .
  • R 7 may be covalently bonded or coordinated to R 1b or R 5 .
  • Examples of the pyrrolopyrrole compound represented by the general formula 2 include the following compounds. Further, compounds D-1 to D-162 described in paragraph Nos. 0049 to 0062 of JP 2010-222557 A can be mentioned, the contents of which are incorporated herein. In the following formula, Ph represents a phenyl group.
  • Z 1 and Z 2 each independently represent a nonmetallic atomic group that forms a 5-membered or 6-membered nitrogen-containing heterocyclic ring that may be condensed.
  • the nitrogen-containing heterocycle may be condensed with another heterocycle, aromatic ring or aliphatic ring.
  • the nitrogen-containing heterocycle is preferably a 5-membered ring.
  • a structure in which a benzene ring or a naphthalene ring is condensed to a 5-membered nitrogen-containing heterocycle is more preferable.
  • nitrogen-containing heterocycle examples include an oxazole ring, an isoxazole ring, a benzoxazole ring, a naphthoxazole ring, an oxazolocarbazole ring, an oxazodibenzobenzofuran ring, a thiazole ring, a benzothiazole ring, a naphthothiazole ring, an indolenine ring, Examples include benzoindolenin ring, imidazole ring, benzimidazole ring, naphthimidazole ring, quinoline ring, pyridine ring, pyrrolopyridine ring, furopyrrole ring, indolizine ring, imidazoquinoxaline ring, quinoxaline ring, quinoline ring, indolenine ring Benzoindolenine ring, benzoxazole ring, benzothiazole ring and benzimi
  • the nitrogen-containing heterocyclic ring and the ring condensed thereto may have a substituent.
  • substituents include a halogen atom, cyano group, nitro group, alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group, heteroaryl group, —OR c1 , —COR c2 , —COOR c3 , —OCOR c4 , — NR c5 R c6 , —NHCOR c7 , —CONR c8 R c9 , —NHCONR c10 R c11 , —NHCOOR c12 , —SR c13 , —SO 2 R c14 , —SO 2 OR c15 , —NHSO 2 R c16 or —SO 2 NR c17 R c18 may be mentioned.
  • R c1 to R c18 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • R c3 of -COOR c3 is a hydrogen atom (i.e., carboxyl group) may be dissociated hydrogen atom, it may be in the form of a salt.
  • R c15 of —SO 2 OR c15 is a hydrogen atom (that is, a sulfo group)
  • the hydrogen atom may be dissociated or may be in a salt state.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group.
  • a carboxyl group and a sulfo group are preferable, and a sulfo group is particularly preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • the alkenyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic.
  • the alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the alkynyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • the alkynyl group may be linear, branched or cyclic.
  • the alkynyl group may be unsubstituted or may have a substituent.
  • substituents include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • the alkyl part of the aralkyl group is the same as the above alkyl group.
  • the aryl part of the aralkyl group is the same as the above aryl group.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 40, more preferably 7 to 30, and still more preferably 7 to 25.
  • the heteroaryl group is preferably a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents that the alkyl group described above may have, and the preferred ranges are also the same.
  • R 101 and R 102 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, or an aryl group.
  • alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group those described above for the substituent can be used, and preferred ranges are also the same.
  • the alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group may have a substituent or may be unsubstituted.
  • substituents examples include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group.
  • a carboxyl group and a sulfo group are preferable, and a sulfo group is particularly preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • L 1 represents a methine chain composed of an odd number of methines.
  • L 1 is preferably a methine chain composed of 3, 5 or 7 methine groups.
  • the methine group may have a substituent.
  • the methine group having a substituent is preferably a central (meso-position) methine group.
  • Specific examples of the substituent include a substituent that the nitrogen-containing heterocycle of Z 1 and Z 2 may have, and a group represented by the following formula (a).
  • two substituents of the methine chain may be bonded to form a 5- or 6-membered ring.
  • * represents a connecting part with a methine chain
  • a 1 represents an oxygen atom or a sulfur atom.
  • a and b are each independently 0 or 1. When a is 0, the carbon atom and the nitrogen atom are bonded by a double bond, and when b is 0, the carbon atom and the nitrogen atom are bonded by a single bond. Both a and b are preferably 0. When a and b are both 0, general formula 3 is expressed as follows.
  • X 1 represents an anion
  • c represents a number necessary for balancing the charge.
  • anions include halide ions (Cl ⁇ , Br ⁇ , I ⁇ ), p-toluenesulfonate ions, ethyl sulfate ions, PF 6 ⁇ , BF 4 ⁇ or ClO 4 ⁇ , tris (halogenoalkylsulfonyl) methide anions ( For example, (CF 3 SO 2 ) 3 C ⁇ ), di (halogenoalkylsulfonyl) imide anion (for example, (CF 3 SO 2 ) 2 N ⁇ ), tetracyanoborate anion and the like can be mentioned.
  • X 1 represents a cation
  • c is represents a number necessary to balance the charge.
  • the cation include alkali metal ions (Li + , Na + , K + etc.), alkaline earth metal ions (Mg 2+ , Ca 2+ , Ba 2+ , Sr 2+ etc.), transition metal ions (Ag + , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ ), other metal ions (such as Al 3+ ), ammonium ion, triethylammonium ion, tributylammonium ion, pyridinium ion, tetrabutylammonium Ion, guanidinium ion, tetramethylguanidinium ion, diazabicycloundecenium and the like.
  • the compound represented by the general formula 3 is also preferably a compound represented by the following (3-1) or (3-2). This compound is excellent in heat resistance.
  • R 1A , R 2A , R 1B and R 2B each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group or an aryl group
  • L 1A and L 1B each independently represent a methine chain composed of an odd number of methines
  • Y 1 and Y 2 each independently represent —S—, —O—, —NR X1 — or —CR X2 R X3 —
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom or an alkyl group
  • V 1A , V 2A , V 1B and V 2B are each independently a halogen atom, cyano group, nitro group, alkyl group, alkenyl group, alkynyl group, aralky
  • n1 and m2 each independently represents 0 to 4;
  • X 1 represents an anion
  • c represents a number necessary to balance the charge
  • X 1 represents a cation
  • c represents a number necessary for balancing the charge
  • the charge at the site represented by Cy in the formula is neutralized in the molecule, X 1 does not exist.
  • R 1A , R 2A , R 1B and R 2B are synonymous with the alkyl group, alkenyl group, alkynyl group, aralkyl group and aryl group described for R 101 and R 102 in formula 3, and preferred ranges are also included. It is the same. These groups may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, an alkoxy group, and an amino group. A carboxyl group and a sulfo group are preferable, and a sulfo group is particularly preferable.
  • the carboxyl group and the sulfo group may have a hydrogen atom dissociated or a salt state.
  • R 1A , R 2A , R 1B and R 2B represent an alkyl group, it is more preferably a linear alkyl group.
  • Y 1 and Y 2 are each independently -S -, - O -, - NR X1 - or -CR X2 R X3 - represents, -NR X1 - is preferred.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear or branched, particularly preferably linear.
  • the alkyl group is particularly preferably a methyl group or an ethyl group.
  • L 1A and L 1B have the same meaning as L 1 in formula 3, and the preferred range is also the same.
  • the groups represented by V 1A , V 2A , V 1B and V 2B are synonymous with the ranges described for the substituents that the nitrogen-containing heterocycles of Z 1 and Z 2 in formula 3 may have, and preferred ranges are also included. It is the same.
  • m1 and m2 each independently represents 0 to 4, preferably 0 to 2.
  • the anion and cation represented by X 1 have the same meaning as the range described for X 1 in formula 3, and the preferred range is also the same.
  • Examples of the compound represented by the general formula 3 include the following compounds. Further, compounds described in paragraph numbers 0044 to 0045 of JP-A-2009-108267 can be mentioned, and the contents thereof are incorporated in the present specification.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Bn represents a benzyl group
  • Ph represents a phenyl group
  • PRS represents C 3 H 6 SO 3.
  • - represents
  • BUS represents C 4 H 9 SO 3-.
  • the compound represented by the general formula 3 is “FM Hemer”, “Heterocyclic Compounds Cyanine Dies and Related Compounds”, “Heterocyclic Compounds Cyanine Soybeans and Related Compounds”. -Willy & Sons (New York, London, 1964) and “D.M. Sturmer” "Heterocyclic Compounds in Special Topics in Heterocy” Click Chemistry (Heterocyclic Compounds-Specialties in heterocyclic chmi try) ”, Chapter 18, Section 14, 482-515, John Wiley & Sons-New York, London, 1977,“ Rods Chemistry of Carbon Compounds ( Rodd's Chemistry of Carbon Compounds) "2nd. Ed. vol. IV, part B, 1977, Chapter 15, pages 369-422, published by Elsevier Science Publishing Company, New York, JP-A-6-313939 and JP-A-5- It can be easily synthesized with reference to Japanese Patent No. 88293.
  • the infrared absorbing composition preferably contains at least one selected from a resin, gelatin and a polymerizable compound, and particularly preferably contains at least one selected from gelatin and a polymerizable compound. According to this aspect, it is easy to produce an infrared absorption layer excellent in heat resistance and solvent resistance. Moreover, when using a polymeric compound, it is preferable to use together a polymeric compound and a photoinitiator.
  • the resin is (meth) acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, Polyamideimide resin, polyolefin resin, cyclic olefin resin, and polyester resin are mentioned.
  • One of these resins may be used alone, or two or more thereof may be mixed and used.
  • the weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 3,000 or more, and more preferably 5,000 or more.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 or more, and more preferably 200 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 100 or more, and more preferably 200 or more.
  • the resin preferably has a 5% thermal mass reduction temperature of 25 ° C. at a rate of 20 ° C./min, preferably 200 ° C. or higher, and more preferably 260 ° C. or higher.
  • (Meth) acrylic resin includes a polymer containing a repeating unit derived from (meth) acrylic acid and / or its ester. Specific examples include polymers obtained by polymerizing at least one selected from (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylamide and (meth) acrylonitrile.
  • polyester resin examples include polyols (for example, ethylene glycol, propylene glycol, glycerin, trimethylolpropane), polybasic acids (for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatic rings thereof.
  • polyols for example, ethylene glycol, propylene glycol, glycerin, trimethylolpropane
  • polybasic acids for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatic rings thereof.
  • Aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as aromatic dicarboxylic acids, adipic acid, sebacic acid, dodecanedicarboxylic acid, etc., in which hydrogen atoms are substituted with methyl groups, ethyl groups, phenyl groups, etc., and fats such as cyclohexanedicarboxylic acid
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin and the like.
  • bisphenol A type epoxy resins JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON860, EPICLON1051, EPICLON1051, EPICLON105, EPICLON1055 Etc.).
  • Examples of the bisphenol F type epoxy resin include JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON830, EPICLON835 (above, made by DIC Corporation), LCE-21, RE-602S. (Nippon Kayaku Co., Ltd.) and the like.
  • Phenol novolac type epoxy resins include JER152, JER154, JER157S70, JER157S65 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON N-740, EPICLON N-770, EPICLON N-775 (above, manufactured by DIC Corporation), etc. Is mentioned.
  • Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation) ), EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • ADEKA RESIN EP-4080S, EP-4085S, EP-4088S manufactured by ADEKA
  • Celoxide 2021P Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (above, manufactured by Daicel Chemical Industries, Ltd.)
  • Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L aboveve, manufactured by Nagase ChemteX Corporation.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (manufactured by ADEKA Corporation), JER1031S (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the resin may have an acid group.
  • the acid group include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. These acid groups may be used alone or in combination of two or more.
  • a polymer having a carboxyl group in the side chain is preferred, and a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, a crotonic acid copolymer, a maleic acid copolymer, a partial Examples include esterified maleic acid copolymers, alkali-soluble phenol resins such as novolak resins, acidic cellulose derivatives having a carboxyl group in the side chain, and polymers having a hydroxyl group added with an acid anhydride.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable.
  • Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate
  • Examples of vinyl compounds such as hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, ⁇ -methylstyrene, vinylto
  • Examples of other monomers include N-phenylmaleimide and N-cyclohexylmaleimide as N-substituted maleimide monomers described in JP-A-10-300922.
  • only 1 type may be sufficient as the other monomer copolymerizable with these (meth) acrylic acids, and 2 or more types may be sufficient as it.
  • Resins having an acid group include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth) Multi-component copolymers composed of acrylate / (meth) acrylic acid / other monomers can be preferably used.
  • the resin having an acid group is a compound represented by the following general formula (ED1) and / or a compound represented by the following general formula (ED2) (hereinafter, these compounds may be referred to as “ether dimers”). It is also preferable to include a polymer (a) obtained by polymerizing the monomer component to be included.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description in JP 2010-168539 A can be referred to.
  • the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1 and R 2 is not particularly limited, and examples thereof include methyl, ethyl, n Linear or branched alkyl groups such as -propyl, isopropyl, n-butyl, isobutyl, tert-butyl, tert-amyl, stearyl, lauryl, 2-ethylhexyl; aryl groups such as phenyl; cyclohexyl, tert-butylcyclohexyl Alicyclic groups such as dicyclopentadienyl, tricyclodecanyl, isobornyl, adamantyl and 2-methyl-2-adamantyl; alkyl groups substituted with alkoxy such as 1-methoxyethyl and 1-ethoxyethyl; benzyl An alkyl group substituted with an aryl group such as;
  • ether dimer for example, paragraph number 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
  • the structure derived from the compound represented by the general formula (ED) may be copolymerized with other monomers.
  • the resin having an acid group may contain a repeating unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a benzene ring that may contain a benzene ring.
  • n represents an integer of 1 to 15.
  • the alkylene group of R 2 preferably has 2 to 3 carbon atoms.
  • the alkyl group of R 3 has 1 to 20 carbon atoms, more preferably 1 to 10, and the alkyl group of R 3 may contain a benzene ring.
  • Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
  • resin having an acid group include the following structures.
  • Examples of the resin having an acid group include those described in paragraphs 0558 to 0571 of JP2012-208494A (corresponding to [0685] to [0700] of the corresponding US Patent Application Publication No. 2012/0235099). -The description of paragraph numbers 0076 to 0099 of the publication No. 198408 can be referred to, the contents of which are incorporated herein.
  • the acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g.
  • the lower limit is preferably 50 mgKOH / g or more, and more preferably 70 mgKOH / g or more.
  • the upper limit is preferably 150 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
  • the resin may have a polymerizable group.
  • a film having hardness can be formed.
  • the polymerizable group include a (meth) allyl group and a (meth) acryloyl group.
  • the resin containing a polymerizable group include a dial NR series (manufactured by Mitsubishi Rayon Co., Ltd.), a Photomer 6173 (produced by COOH-containing polythylene acrylic oligomer. Diamond Shamrock Co., Ltd.), Viscoat R-264, and a KS resist 106 (KS resist 106).
  • the resin content is preferably 1 to 80% by mass with respect to the total solid content of the infrared absorbing composition.
  • the lower limit is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the upper limit is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the infrared absorbing composition preferably contains gelatin. By containing gelatin, it is easy to form an infrared absorption layer having excellent heat resistance. Although the detailed mechanism is unknown, it is assumed that it is because an aggregate is easily formed with an infrared absorber and gelatin. In particular, when a cyanine compound is used as an infrared absorber, an infrared absorption layer having excellent heat resistance can be easily formed.
  • gelatin includes acid-treated gelatin and alkali-treated gelatin (such as lime treatment) depending on the synthesis method, and both can be preferably used.
  • the molecular weight of gelatin is preferably 10,000 to 1,000,000.
  • modified gelatin modified by utilizing the amino group or carboxyl group of gelatin can be used (for example, phthalated gelatin).
  • inert gelatin for example, Nitta gelatin 750
  • phthalated gelatin for example, Nitta gelatin 801
  • curing agent conventionally known curing agents can be used.
  • aldehyde compounds such as formaldehyde and glutaraldehyde, compounds having reactive halogen described in US Pat. No. 3,288.775 and the like, Compounds described in US Pat. No. 3,642.486, JP-B-49-13563 and others having reactive ethylenically unsaturated bonds, US Pat. No. 3,017,280, etc.
  • halogen carboxyl aldehydes such as mucochloric acid, dioxanes such as dihydroxydioxane and dichlorodioxane, or inorganic hard compounds
  • film agent include chromium alum and zirconium sulfate.
  • the gelatin content is preferably 1 to 99% by mass with respect to the total solid content of the infrared absorbing composition.
  • the lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the upper limit is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the infrared absorbing composition preferably contains a polymerizable compound.
  • the polymerizable compound include a compound having an ethylenically unsaturated bond, a cyclic ether (epoxy, oxetane) group, a methylol group, and the like, and a compound having an ethylenically unsaturated bond is preferable.
  • the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • the polymerizable compound may be monofunctional or polyfunctional, but is preferably polyfunctional (polymerizable compound having two or more polymerizable groups).
  • a polyfunctional compound By including a polyfunctional compound, an infrared absorption layer having a three-dimensional crosslinked product can be formed. And since an infrared rays absorption layer has a three-dimensional crosslinked material, heat resistance and solvent resistance can be improved.
  • the number of functional groups of the polymerizable compound is not particularly limited, but is preferably 2 to 8 functions, and more preferably 3 to 6 functions.
  • the polymerizable compound may be in any chemical form such as, for example, a monomer, a prepolymer, an oligomer, or a mixture thereof and a multimer thereof.
  • the polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
  • the molecular weight of the polymerizable compound is preferably less than 2000, more preferably from 100 to less than 2000, and even more preferably from 200 to less than 2000.
  • the polymerizable compound is preferably a compound containing a group having an ethylenically unsaturated bond.
  • the compound containing a group having an ethylenically unsaturated bond the description in paragraph numbers 0033 to 0034 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
  • ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available KAYARAD D-330; Nippon Kayaku Co., Ltd.) Dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) dipentaerythritol penta (meth) acrylate (commercially available product: KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.) ), Dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth)
  • Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferable. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the compound containing a group having an ethylenically unsaturated bond may further have an acid group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • an acid group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • the compound having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids.
  • a polyfunctional monomer in which an unreacted hydroxyl group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and particularly preferably, the aliphatic polyhydroxy compound is pentaerythritol and / or Or it is a dipentaerythritol.
  • Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the acid value of the compound having an acid group is preferably 0.1 to 40 mgKOH / g.
  • the lower limit is preferably 5 mgKOH / g or more.
  • the upper limit is preferably 30 mgKOH / g or less.
  • the polymerizable compound is also preferably a compound having a caprolactone structure.
  • the compound having a caprolactone structure the description of paragraph numbers 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
  • Examples of commercially available products include SR-494, which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartomer, and DPCA-60, which is a hexafunctional acrylate having six pentyleneoxy chains, manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 which is a trifunctional acrylate having three isobutyleneoxy chains.
  • the polymeric compound can use the polymeric compound (fluorine-containing polymeric compound) which has a fluorine atom.
  • the fluorine-containing polymerizable compound is more preferably a (meth) acrylate polymer having a fluorine atom.
  • the fluorine-containing polymerizable compound preferably has at least one selected from the group consisting of an alkylene group substituted with a fluorine atom, an alkyl group substituted with a fluorine atom, and an aryl group substituted with a fluorine atom. .
  • the alkylene group substituted with a fluorine atom is preferably a linear, branched or cyclic alkylene group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the alkyl group substituted with a fluorine atom is preferably a linear, branched or cyclic alkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the number of carbon atoms in the alkylene group substituted with a fluorine atom and the alkyl group substituted with a fluorine atom is preferably 1-20, more preferably 1-10, and even more preferably 1-5. preferable.
  • the aryl group substituted with a fluorine atom is preferably directly substituted with a fluorine atom or substituted with a trifluoromethyl group.
  • the alkylene group substituted with a fluorine atom, the alkyl group substituted with a fluorine atom, and the aryl group substituted with a fluorine atom may further have a substituent other than the fluorine atom.
  • paragraphs 0266 to 0272 in JP-A-2011-100089 can be referred to. Incorporated into.
  • the fluorine-containing polymerizable compound preferably contains a group X in which an alkylene group substituted with a fluorine atom and an oxygen atom are linked (a group represented by the formula (X) (repeating unit)), and is a perfluoroalkylene ether group. It is more preferable to contain.
  • Formula (X)-(L A -O)- L A represents an alkylene group substituted with a fluorine atom.
  • the number of carbon atoms in the alkylene group is preferably 1-20, more preferably 1-10, and even more preferably 1-5.
  • the alkylene group substituted with the fluorine atom may contain an oxygen atom.
  • the alkylene group substituted with a fluorine atom may be linear or branched.
  • the perfluoroalkylene ether group intends that L A is a perfluoroalkylene group.
  • the perfluoroalkylene group means a group in which all hydrogen atoms in the alkylene group are substituted with fluorine atoms.
  • the group (repeating unit) represented by the formula (X) may be linked repeatedly, and the number of repeating units is not particularly limited, but is preferably 1 to 50 in terms of more excellent effects of the present invention. ⁇ 20 is more preferred. That is, a group represented by the formula (X-1) is preferable.
  • Formula (X-1)-(L A -O) r- In formula (X-1), L A is as described above, r represents the number of repeating units, and the preferred range thereof is as described above.
  • the plurality of - (L A -O) - L A medium may be different even in the same.
  • the fluorine-containing polymerizable compound is a monomer, it is selected from the group consisting of a fluorine atom, a silicon atom, a linear alkyl group having 8 or more carbon atoms, and a branched alkyl group having 3 or more carbon atoms in one molecule.
  • the number of the one or more groups is preferably 1 to 20, and more preferably 3 to 15.
  • the fluorine-containing polymerizable compound is a polymer
  • the polymer includes a repeating unit represented by the following formula (B1), a repeating unit represented by the following formula (B2), and a repeating unit represented by the formula (B3). It is preferable to have at least one.
  • R 1 to R 11 each independently represents a hydrogen atom, an alkyl group, or a halogen atom.
  • L 1 to L 4 each independently represents a single bond or a divalent linking group.
  • X 1 represents a (meth) acryloyloxy group, an epoxy group, or an oxetanyl group
  • X 2 represents an alkyl group substituted with a fluorine atom or an aryl group substituted with a fluorine atom
  • X 3 represents a formula (X— The repeating unit represented by 1) is represented.
  • R 1 to R 11 are preferably each independently a hydrogen atom or an alkyl group.
  • R 1 to R 11 represent an alkyl group, an alkyl group having 1 to 3 carbon atoms is preferable.
  • R 1 to R 11 represent a halogen atom, a fluorine atom is preferable.
  • L 1 to L 4 represent a divalent linking group
  • the divalent linking group includes an alkylene group which may be substituted with a halogen atom, and a halogen atom substituted.
  • a group consisting of a combination with one kind of group is preferable, an alkylene group which may be substituted with a halogen atom having 2 to 10 carbon atoms, —CO 2 —, —O—, —CO—, —CONR 12 —, or A group consisting of a combination of these groups is more preferred.
  • R 12 represents a hydrogen atom or a methyl group.
  • the content of the repeating unit represented by the formula (B1) is preferably 30 to 95 mol%, and preferably 45 to 90 mol%, based on all repeating units in the fluorine-containing polymerizable compound. More preferred. 30 mol% or more is preferable with respect to all the repeating units in a fluorine-containing polymeric compound, and, as for content of the repeating unit represented by a formula (B1), 45 mol% or more is more preferable.
  • the total content of the repeating unit represented by the formula (B2) and the repeating unit represented by the formula (B3) is 5 to 70 mol% with respect to all the repeating units in the fluorine-containing polymerizable compound. Is preferred, and more preferably 10 to 60 mol%.
  • the total content of the repeating unit represented by the formula (B2) and the repeating unit represented by the formula (B3) is preferably 5 mol% or more with respect to all the repeating units in the fluorine-containing polymerizable compound. Mole% or more is more preferable.
  • the content of the repeating unit represented by Formula (B2) is 0 mol%.
  • the content of the repeating unit represented by the formula (B3) is preferably in the above range.
  • the fluorine-containing polymerizable compound may have a repeating unit other than the repeating units represented by the above formulas (B1) to (B3).
  • the content of other repeating units is preferably 10 mol% or less, more preferably 1 mol% or less, based on all repeating units in the fluorine-containing polymerizable compound.
  • the weight average molecular weight (Mw: in terms of polystyrene) is preferably 5,000 to 100,000, and more preferably 7,000 to 50,000.
  • the weight average molecular weight is preferably 5,000 or more, and more preferably 7,000 or more.
  • the dispersity is preferably 1.80 to 3.00, and preferably 2.00 to 2.90. More preferred.
  • the GPC (gel permeation chromatography) method uses HLC-8020GPC (manufactured by Tosoh Corporation), and TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (4.6 mm ID ⁇ 15 cm, manufactured by Tosoh Corporation) as columns. Based on a method using THF (tetrahydrofuran) as an eluent.
  • fluorine-containing polymerizable compounds include, for example, MegaFac RS-72-K, MegaFac RS-75, MegaFac RS-76-E, MegaFac RS-76-NS, MegaFac RS manufactured by DIC. -77 etc. can be used.
  • the content of the polymerizable compound is preferably 1 to 50% by mass with respect to the total solid content of the infrared ray absorbing composition.
  • the lower limit is preferably 2% by mass or more, and more preferably 3% by mass or more.
  • the upper limit is preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the infrared absorbing composition may contain a photopolymerization initiator.
  • the content of the photopolymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the infrared ray absorbing composition.
  • the lower limit is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less. Only one type of photopolymerization initiator may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a curable compound by light, and can be appropriately selected according to the purpose. When polymerization is initiated by light, those having photosensitivity to visible light from the ultraviolet region are preferred.
  • the photopolymerization initiator is preferably a compound having at least an aromatic group.
  • an acylphosphine compound, an acetophenone compound, an ⁇ -aminoketone compound, a benzophenone compound, a benzoin ether compound, a ketal derivative compound, a thioxanthone compound Oxime compounds, hexaarylbiimidazole compounds, trihalomethyl compounds, azo compounds, organic peroxides, diazonium compounds, iodonium compounds, sulfonium compounds, azinium compounds, benzoin ether compounds, ketal derivative compounds, metallocene compounds and other onium salt compounds , Organic boron salt compounds, disulfone compounds, thiol compounds, and the like.
  • oxime compounds include IRGACURE-OXE01 (manufactured by BASF), IRGACURE-OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (ADEKA), Adeka Arcles NCI-930 (ADEKA), etc. can be used.
  • acetophenone compounds commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • acylphosphine compound commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and compounds described in JP-A 2013-164471 ( C-3). This content is incorporated herein.
  • the infrared absorbing composition may contain a solvent.
  • a solvent There is no restriction
  • water and an organic solvent can be used, and an organic solvent is preferable.
  • the organic solvent include alcohols (for example, methanol), ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, and dimethylformamide, dimethylacetamide, dimethylsulfoxide, and sulfolane. . These may be used alone or in combination of two or more.
  • a mixed solution composed of two or more selected from ethyl carbitol acetate, butyl carbitol acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate is preferable.
  • the alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph No. 0136 of JP 2012-194534 A, the contents of which are incorporated herein.
  • Specific examples of esters, ketones, and ethers are those described in paragraph No. 0497 of JP2012-208494A (corresponding to [0609] of the corresponding US Patent Application Publication No. 2012/0235099).
  • acetic acid-n-amyl, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate and the like can be mentioned.
  • the amount of the solvent in the infrared absorbing composition is preferably such that the solid content is 10 to 90% by mass.
  • the lower limit is preferably 20% by mass or more.
  • the upper limit is preferably 80% by mass or less.
  • the infrared absorbing composition may contain a surfactant. Only one surfactant may be used, or two or more surfactants may be combined.
  • the content of the surfactant is preferably 0.0001 to 5% by mass with respect to the total solid content of the infrared ray absorbing composition.
  • the lower limit is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
  • the upper limit is preferably 2% by mass or less, and more preferably 1% by mass or less.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the infrared absorbing composition preferably contains at least one of a fluorine-based surfactant and a silicone-based surfactant.
  • the interfacial tension between the coated surface and the coating liquid is reduced, and the wettability to the coated surface is improved.
  • liquidity) of a composition improves, and the uniformity of coating thickness and liquid-saving property improve more.
  • a thin film of about several ⁇ m is formed with a small amount of liquid, it is possible to form a film with a uniform thickness with small thickness unevenness.
  • the fluorine content of the fluorosurfactant is preferably 3 to 40% by mass.
  • the lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more.
  • the upper limit is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • the fluorosurfactant include surfactants described in JP 2014-41318 A, paragraphs 0060 to 0064 (corresponding to WO 2014/17669, paragraphs 0060 to 0064). The contents of which are incorporated herein.
  • fluorosurfactants include, for example, Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144, R30, F-437, F-475, F-479, F-482, F-554, F-780 (above, manufactured by DIC Corporation) FLORARD FC430, FC431, FC171 (manufactured by Sumitomo 3M Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC -381, SC-383, S393, KH-40 (manufactured by Asahi Glass Co., Ltd.) and the like.
  • the following compounds are also exemplified as the fluorosurfactant used in the present invention.
  • the weight average molecular weight of the above compound is, for example, 14,000.
  • Specific examples of nonionic surfactants include nonionic surfactants described in paragraph No. 0553 of JP2012-208494A (corresponding to [0679] of US 2012/0235099). The contents of which are incorporated herein by reference.
  • Specific examples of the cationic surfactant include the cationic surfactant described in paragraph No. 0554 of JP2012-208494A (corresponding to [0680] of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein by reference.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include silicone surfactants described in paragraph No. 0556 of JP 2012-208494 A (corresponding US Patent Application Publication No. 2012/0235099, [0682]). The contents of which are incorporated herein by reference.
  • the infrared absorbing composition may contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like are mentioned, and p-methoxyphenol is preferred.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the infrared ray absorbing composition.
  • the infrared absorbing composition may contain an ultraviolet absorber.
  • a well-known compound can be used for a ultraviolet absorber.
  • UV503 (Daito Chemical Co., Ltd.) etc. are mentioned, for example.
  • the content of the ultraviolet absorber is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the infrared absorbing composition.
  • Infrared absorbing compositions include, for example, dispersants, sensitizers, crosslinking agents, curing accelerators, fillers, thermal curing accelerators, thermal polymerization inhibitors, plasticizers, adhesion promoters and other auxiliaries (eg, conductive Particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, and the like).
  • These components include, for example, paragraph numbers 0183 to 0228 of JP2012-003225A (corresponding US Patent Application Publication No. 2013/0034812 [0237] to [0309]), JP2008-250074A.
  • Paragraph numbers 0101 to 0102, paragraph numbers 0103 to 0104, paragraph numbers 0107 to 0109, paragraph numbers 0159 to 0184 in JP 2013-195480 A, and the like can be referred to, and the contents thereof are incorporated in this specification. .
  • the infrared absorbing composition can be prepared by mixing the above components.
  • the infrared absorbing composition is preferably filtered with a filter for the purpose of removing foreign substances or reducing defects. If a filter is conventionally used for the filtration use etc., it can be used without being specifically limited.
  • fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon-6 and nylon-6,6, polyolefin resin such as polyethylene and polypropylene (PP) (including high density and ultra high molecular weight), etc. Filter.
  • PTFE polytetrafluoroethylene
  • polyamide resin such as nylon-6 and nylon-6,6, polyolefin resin
  • PP polypropylene
  • Filter including high density and ultra high molecular weight
  • the pore size of the filter is preferably 0.01 to 7.0 ⁇ m, more preferably 0.01 to 2.5 ⁇ m, and still more preferably 0.01 to 1.5 ⁇ m.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is preferably 0.5 to 7.0 ⁇ m, more preferably 2.5 to 7.0 ⁇ m, and even more preferably 4.5 to 6.0 ⁇ m.
  • the pore size of the filter By setting the pore size of the filter in the above range, foreign substances that obstruct the preparation of a uniform and smooth light-shielding composition are removed in a subsequent step while leaving the component particles contained in the composition mixture. be able to.
  • another component may be added and the second filtering may be performed.
  • the viscosity of the infrared absorbing composition is preferably in the range of 1 to 3000 mPa ⁇ s.
  • the lower limit is preferably 10 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • the upper limit is preferably 2000 mPa ⁇ s or less, and more preferably 1500 mPa ⁇ s or less.
  • the infrared absorbing layer can be formed by applying the above infrared absorbing composition to a transparent layer containing copper, a support, a dielectric multilayer film to be described later, and the like, followed by drying.
  • the film thickness can be appropriately selected according to the purpose.
  • the infrared ray absorbing composition As an application method of the infrared ray absorbing composition, it can be carried out by a dropping method (drop cast), a spin coater, a slit spin coater, a slit coater, screen printing, applicator coating or the like.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but the temperature is 60 ° C. to 150 ° C. for about 30 seconds to 15 minutes.
  • the infrared absorbing layer forming method may include other steps. There is no restriction
  • ⁇ Pre-heating process / Post-heating process The heating temperature in the preheating step and the postheating step is usually 80 ° C. to 200 ° C., and preferably 90 ° C. to 150 ° C.
  • the heating time in the preheating step and the postheating step is usually 30 seconds to 240 seconds, and preferably 60 seconds to 180 seconds.
  • Curing treatment process The curing process is a process of curing the formed film as necessary, and the mechanical strength of the infrared absorption layer is improved by performing this process. When an infrared absorbing composition containing a polymerizable compound is used, it is preferable to perform a curing treatment step.
  • exposure is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
  • the exposure is preferably performed by irradiation of radiation, and as the radiation that can be used for the exposure, ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays and visible light are particularly preferably used.
  • the exposure method include stepper exposure and exposure with a high-pressure mercury lamp.
  • Exposure is preferably 5 ⁇ 3000mJ / cm 2, more preferably 10 ⁇ 2000mJ / cm 2, particularly preferably 50 ⁇ 1000mJ / cm 2.
  • the entire surface exposure processing method include a method of exposing the entire surface of the formed film.
  • the infrared absorbing composition contains a polymerizable compound
  • curing of the polymerization component in the film is promoted by the entire surface exposure, the curing of the film further proceeds, and the solvent resistance and heat resistance of the infrared absorbing layer are improved.
  • a method of heating the entire surface of the formed film can be given.
  • the heating temperature in the entire surface heating is preferably 120 ° C. to 250 ° C., more preferably 160 ° C. to 220 ° C.
  • the heating time in the entire surface heating is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes.
  • an apparatus which performs whole surface heating According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, IR heater etc. are mentioned.
  • the infrared cut filter of the present invention preferably has a dielectric multilayer film.
  • a dielectric multilayer film By having a dielectric multilayer film, an infrared cut filter having a wide viewing angle and excellent infrared shielding properties can be easily obtained.
  • the dielectric multilayer film is a film that shields infrared rays by utilizing the effect of light interference. That is, the dielectric multilayer film means a film having an ability to reflect infrared rays. Specifically, it is a film formed by alternately laminating two or more dielectric layers having different refractive indexes (a high refractive index material layer and a low refractive index material layer).
  • membrane film
  • the dielectric multilayer film may be provided on one side or both sides of the transparent layer containing copper. When it is provided on one side, it is excellent in manufacturing cost and manufacturability. When provided on both sides, an infrared cut filter having high strength and less warpage can be obtained.
  • the dielectric multilayer film may or may not be in contact with the transparent layer containing copper.
  • the infrared cut filter of the present invention preferably has an infrared absorption layer between the transparent layer containing copper and the dielectric multilayer film, and the infrared absorption layer and the dielectric multilayer film are preferably in contact with each other.
  • an infrared rays absorption layer is interrupted
  • the material for the dielectric multilayer film for example, ceramic can be used.
  • ceramic In order to form an infrared cut filter utilizing the effect of light interference, it is preferable to use two or more ceramics having different refractive indexes. Specifically, a configuration in which high refractive index material layers and low refractive index material layers are alternately stacked can be suitably used as the dielectric multilayer film.
  • a material having a refractive index of 1.7 or more can be used, and a material having a refractive index range of 1.7 to 2.5 is usually selected.
  • the material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as a main component, and titanium oxide, tin oxide, and / or cerium oxide. The thing which contained a small amount is mentioned.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index range of 1.2 to 1.6 is usually selected.
  • this material include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
  • a method for forming the dielectric multilayer film is not particularly limited.
  • a high refractive index material layer and a low refractive index material layer are alternately formed by a chemical vapor deposition (CVD) method, a sputtering method, a vacuum deposition method, or the like.
  • CVD chemical vapor deposition
  • a sputtering method a vacuum deposition method, or the like.
  • a dielectric multilayer film in which a high refractive index material layer and a low refractive index material layer are alternately laminated on the surface of a transparent layer containing copper and / or an infrared absorption layer by CVD, sputtering, vacuum deposition, or the like.
  • the method of forming can be mentioned.
  • each of the high refractive index material layer and the low refractive index material layer is preferably 0.1 ⁇ to 0.5 ⁇ of the infrared wavelength ⁇ (nm) to be blocked. By setting the thickness within the above range, it is easy to control blocking / transmission of a specific wavelength.
  • the number of laminated layers in the dielectric multilayer film is preferably 2 to 100 layers, more preferably 2 to 60 layers, and further preferably 2 to 40 layers. If the substrate is warped when the dielectric multilayer film is deposited, the dielectric multilayer film is vapor-deposited on both sides of the substrate in order to solve this problem. It is possible to take a method such as irradiating the radiation. In addition, when irradiating a radiation, you may irradiate while performing the vapor deposition of a dielectric multilayer, and you may irradiate separately after vapor deposition.
  • the infrared cut filter of this invention should just be a structure which has the transparent layer containing copper, and an infrared rays absorption layer.
  • FIG. 1 is a transparent layer containing copper
  • 2 is an infrared absorption layer.
  • An example of the layer structure of the infrared cut filter of the present invention is shown below.
  • a layer containing copper and not containing an infrared absorber is layer A
  • a layer containing copper and an infrared absorber is layer A1
  • a layer containing an infrared absorber is layer B
  • a dielectric multilayer film Is referred to as layer C referred to as layer C.
  • (9), (10), (25), (26), and (32), which are layers having layers B on both sides of layer A are preferred. Of these, (9) and (10) are preferable. Further, (38) to (50) having the layer A1 are also preferable, and (38) is more preferable.
  • Layer A / Layer B (2) Layer A / Layer B / Layer C (3) Layer A / Layer C / Layer B (4) Support / Layer B / Layer A (5) Support / Layer B / Layer A / Layer C (6) Support / Layer B / Layer C / Layer A (7) Support / Layer C / Layer A / Layer B (8) Support / Layer C / Layer B / Layer A (9) Layer B / Layer A / Layer B (10) Layer B / Layer A / Layer B / Layer C (11) Layer B / Layer A / Layer C / Layer B (12) Layer B / Support / Layer B / Layer A (13) Layer B / Support / Layer B / Layer A / Layer C (14) Layer B / Support / Layer B / Layer C / Layer A (15) Layer B / Support / Layer C / Layer A / Layer B (16) Layer B / Support / Layer C / Layer B / Layer A (17) Layer C / Layer A / Layer B (18) Layer C / Layer A
  • the infrared cut filter of the present invention is a lens having a function of absorbing and cutting infrared rays (camera lenses such as digital cameras, mobile phones, and on-vehicle cameras, optical lenses such as f- ⁇ lenses and pickup lenses) and semiconductor light receiving elements. Used for optical filters. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors. Moreover, it can use preferably also for an organic electroluminescent (organic EL) element, a solar cell element, etc.
  • organic EL organic electroluminescent
  • the kit of the present invention is a kit for producing an infrared cut filter having a transparent layer containing copper and a layer containing an infrared absorber, A transparent member containing copper; And an infrared absorbing composition containing an infrared absorber.
  • an infrared rays absorption composition it is synonymous with the infrared rays absorption composition demonstrated with the infrared rays absorption layer of the infrared cut filter, and its preferable range is also the same.
  • the transparent member containing copper As the transparent member containing copper, the material described in the transparent layer containing copper of the infrared cut filter can be used, and the preferable range is also the same.
  • the solid-state imaging device of the present invention includes the infrared cut filter of the present invention. Details of the solid-state imaging device including the infrared cut filter can be referred to the description of paragraph numbers 0106 to 0107 in JP-A-2015-044188 and the descriptions of paragraph numbers 0010 to 0012 in JP-A-2014-132333. Are included in this specification.
  • Transparent layer containing copper >> Transparent layer 1 containing copper (copper-containing glass substrate): Fluorophosphate glass (manufactured by Asahi Techno Glass Co., Ltd., NF-50, thickness 0.5 mm) was used.
  • -Transparent layer 2 containing copper 45 parts by mass of the copper complex shown below, 49.9 parts by mass of the resin shown below, 5 parts by mass of IRGACURE-OXE02 (manufactured by BASF), Tris (2, 4-Pentandionato) Aluminum (III) (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.1 parts by mass, cyclohexanone 66.7 parts by mass, and water 0.5 parts by mass are mixed to form a copper complex.
  • a containing composition was prepared.
  • the obtained copper complex-containing composition was coated on a glass wafer using a spin coater so that the film thickness after drying was 100 ⁇ m, and heat-treated for 3 hours using a 150 ° C. hot plate, A transparent layer 2 containing was produced.
  • the transparent layer 2 containing copper is a laminate of a glass wafer and a copper complex-containing layer made of a copper complex-containing composition.
  • Copper complex the following structure
  • Resin The following structure
  • Transparent layer 3 containing copper was obtained in the same manner except that 22.5 parts by mass of the copper complex of transparent layer 2 containing copper were replaced with the following compounds. .
  • Transparent layer 4 containing copper Transparent layer 4 containing copper in the same manner except that 0.14 parts by mass of the following infrared absorber (compound A-52) was added to transparent layer 3 containing copper. And a layer having an infrared absorber).
  • Transparent layer 5 containing copper 21 layers of TiO 2 film, which is a high refractive index dielectric film, and SiO 2 film, which is a low refractive index dielectric film, are alternately deposited on one side of the transparent layer 1 containing copper. Laminated layers are formed to form a dielectric multilayer film (42 total layers of TiO 2 film and SiO 2 film, total film thickness 4300.82 nm), and transparent layer 5 containing copper (copper-containing glass with dielectric multilayer film) Substrate) was obtained.
  • the respective film thicknesses of the dielectric multilayer film are shown in the following table. In the following table, the left orchid number is the stacking order. No. 1 is the copper-containing glass substrate side, and No. 42 is the outermost surface. That is, each layer was laminated in order from No. 1 on a copper-containing glass substrate to form a dielectric multilayer film.
  • Infrared absorbing layer >> ⁇ Preparation of Infrared Absorbing Composition >> (Infrared absorbing composition 1) 8.04 parts by mass of resin A shown below, 0.1 parts by mass of compound SQ-23 shown below, and 0.07 parts by mass of KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) as a polymerizable compound And 0.265 parts by mass of MegaFac RS-72K (manufactured by DIC Corporation), 0.38 parts by mass of the following compound as a photopolymerization initiator, and 82.51 parts by mass of PGMEA as a solvent. After stirring, the mixture was filtered through a nylon filter (manufactured by Nippon Pole Co., Ltd.) having a pore size of 0.5 ⁇ m to prepare an infrared absorbing composition.
  • a nylon filter manufactured by Nippon Pole Co., Ltd.
  • Resin A the following compound (Mw: 41000)
  • Compound SQ-23 The following structure
  • Photopolymerization initiator Structure below Megafax RS-72K contained an alkylene group having a fluorine atom and an acryloyloxy group.
  • Infrared absorbing composition 2 (Infrared absorbing composition 2) Infrared absorbing composition 2 was prepared in the same manner as Infrared absorbing composition 1, except that the following compound A-52 was used instead of compound SQ-23.
  • Infrared absorbing composition 3 0.5 parts by mass of the following compound C-15 is dissolved in 69.5 parts by mass of ion-exchanged water, 30.0 parts by mass of a 10% by mass aqueous solution of gelatin is further added, and 1,3-divinylsulfonyl- is further used as a hardener. Infrared absorbing composition 3 was prepared by adding 0.3 part by mass of 2-propanol and stirring.
  • Infrared absorbing composition 4 An infrared absorbing composition 4 was prepared in the same manner as the infrared absorbing composition 3 except that the following compound 31 was used instead of the compound C-15.
  • the infrared cut filter was irradiated with a xenon lamp at 50,000 lux for 20 hours, and then the ⁇ Eab value of the color difference before and after the light resistance test was measured. A smaller ⁇ Eab value indicates better light resistance.
  • the ⁇ Eab value is a value obtained from the following color difference formula based on the CIE 1976 (L *, a *, b *) space color system (Japanese Color Society edited by New Color Science Handbook (Showa 60) p.266). .
  • ⁇ Eab ⁇ ( ⁇ L *) 2 + ( ⁇ a *) 2 + ( ⁇ b *) 2 ⁇ 1/2 ⁇ Criteria >> 5: ⁇ Eab value ⁇ 3 4: 3 ⁇ ⁇ Eab value ⁇ 5 3: 5 ⁇ ⁇ Eab value ⁇ 10 2: 10 ⁇ ⁇ Eab value ⁇ 20 1: 20 ⁇ ⁇ Eab value
  • ⁇ Heat resistance> The infrared cut filter was heated on a hot plate at 260 ° C. for 30 minutes, and then the ⁇ Eab value of the color difference before and after the heat resistance test was measured with a chromaticity meter MCPD-1000 (manufactured by Otsuka Electronics) and evaluated according to the following criteria. A smaller ⁇ Eab value indicates better heat resistance.
  • ⁇ Viewing angle dependency> The incident angle is changed perpendicularly to the infrared cut filter surface (angle 0 degree) and 40 degrees, and the slope transmittance due to the decrease in spectral transmittance in the visible to near infrared region with a wavelength of 600 nm or more is 50%.
  • the shift amount was evaluated according to the following criteria. 5: Less than 5 nm 4: 5 nm or more and less than 10 nm 3: 10 nm or more and less than 20 nm 2: 20 nm or more and less than 30 nm 1: 30 nm or more
  • Examples 1 to 14 were excellent in infrared shielding property and viewing angle dependency. Moreover, B / A was 0.9 or more. This infrared cut filter was free from defects even after being immersed in each organic solvent.
  • “KAYARAD DPHA” is replaced with the same amount of ethyleneoxy-modified pentaerythritol tetraacrylate (NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (KAYARAD D-330; Japan). Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) or dipentaerythritol penta (meth) acrylate (KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.) Even if it is changed, the same effect can be obtained.
  • the same effect can be obtained even if the resin A is changed to the same amount of the following resin.
  • the surfactant described in paragraph No. 0167 of the present specification may be further added in the range of 0.0001 to 5% by mass with respect to the total solid content of the infrared absorbing composition. Similar effects can be obtained.

Abstract

視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタ、赤外線カットフィルタを製造するためのキット、および固体撮像素子を提供する。銅を含有する透明層1を有し、銅を含有する透明層1が更に赤外線吸収剤を含有するか、あるいは、赤外線吸収剤を含有する層2を更に有する、赤外線カットフィルタ。

Description

赤外線カットフィルタ、キット、および固体撮像素子
 本発明は、赤外線カットフィルタ、赤外線カットフィルタを製造するためのキット、および、赤外線カットフィルタを有する固体撮像素子に関する。
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子である、CCD(電荷結合素子)や、CMOS(相補型金属酸化膜半導体)が用いられている。これら固体撮像素子は、その受光部において赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、赤外線カットフィルタを用いることが多い。
 赤外線カットフィルタとして、ガラスなどの透明部材の表面に、赤外線反射膜を形成した赤外線カットフィルタがある。赤外線反射膜は、可視波長の光の透過率が高いことが要求され、このような観点から、赤外線反射膜としては、高屈折率材料層と低屈折率材料層とを複数層積層した誘電体多層膜が用いられる(特許文献1~5参照)。
 また、赤外線カットフィルタとして、赤外線吸収性を有する組成系からなる赤外線吸収ガラスで構成する場合がある。赤外線吸収ガラスは、燐酸塩系ガラスや弗燐酸系ガラスにCuOを添加してなるものが知られている(特許文献6参照)。
 また、特許文献7には、透明部材の表面に、透明樹脂と有機色素とを含む赤外線吸収層を形成した赤外線カットフィルタが記載されている。透明樹脂としてポリエステル樹脂を用いている。
特開2000-221322号公報 特開昭57-58109号公報 特開平08-249914号公報 特開2006-36560号公報 特開2006-71851号公報 特開平01-219037号公報 国際公開第2014/168189号
 しかしながら、特許文献1~5に開示された赤外線カットフィルタの場合、垂直入射光と斜め入射光に対して、それぞれ光学特性が異なる問題があり、視野角が狭くなり易かった。
 また、特許文献6、7に開示された赤外線カットフィルタは、赤外線遮蔽性が十分ではなかった。
 よって、本発明の目的は、視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタ、赤外線カットフィルタを製造するためのキット、および固体撮像素子を提供することにある。
 本発明者らは上記目的を達成するため、種々検討したところ、後述する構成とすることで上記目的を達成できることを見出し、本発明を完成するに至った。本発明は以下を提供する。
<1> 銅を含有する透明層を有し、銅を含有する透明層が更に赤外線吸収剤を含有するか、あるいは、赤外線吸収剤を含有する層を更に有する、赤外線カットフィルタ。
<2> 赤外線カットフィルタは、600nm以上の波長領域に極大吸収波長を有し、
 赤外線カットフィルタを、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる少なくとも1種の有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、
 赤外線カットフィルタを、有機溶剤に25℃で2分浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率であるB/Aが0.9以上である、<1>に記載の赤外線カットフィルタ。
<3> 赤外線吸収剤を含有する層は、樹脂を含む、<1>または<2>に記載の赤外線カットフィルタ。
<4> 赤外線吸収剤を含有する層は、三次元架橋物を含む、<1>~<3>のいずれかに記載の赤外線カットフィルタ。
<5> 三次元架橋物は、2個以上の重合性基を有する重合性化合物を硬化してなるものである、<4>に記載の赤外線カットフィルタ。
<6> 赤外線吸収剤を含有する層は、ゼラチンを含む、<1>~<5>のいずれかに記載の赤外線カットフィルタ。
<7> 赤外線吸収剤は、波長675~900nmの波長領域に極大吸収波長を有する化合物である、<1>~<6>のいずれかに記載の赤外線カットフィルタ。
<8> 赤外線吸収剤は、有機色素を含む、<1>~<7>のいずれかに記載の赤外線カットフィルタ。
<9> 赤外線吸収剤は、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、および、ナフタロシアニン化合物から選択される少なくとも1種を含有する、<1>~<8>のいずれかに記載の赤外線カットフィルタ。
<10> 赤外線吸収剤は、下記一般式1~3で表される化合物から選択される少なくとも1種である、<1>~<9>のいずれかに記載の赤外線カットフィルタ;
一般式1
Figure JPOXMLDOC01-appb-C000004
 一般式1中、環Aおよび環Bは、それぞれ独立に、芳香族環を表し、
 XAおよびXBはそれぞれ独立に置換基を表し、
 GAおよびGBはそれぞれ独立に置換基を表し、
 kAは0~nAの整数を表し、kBは0~nBの整数を表し、
 nAは、環Aに置換可能な最大の整数を表し、nBは、環Bに置換可能な最大の整数を表し、
 XAとGA、XBとGBは互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環を形成していても良い;
一般式2
Figure JPOXMLDOC01-appb-C000005
 一般式2中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、
 R2~R5は、それぞれ独立に、水素原子または置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
 R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、RAおよびRBは、各々独立に、水素原子または置換基を表し、
 R6は、R1aまたはR3と、共有結合もしくは配位結合していてもよく、R7は、R1bまたはR5と、共有結合もしくは配位結合していてもよい;
一般式3
Figure JPOXMLDOC01-appb-C000006
 一般式3中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子団であり、
 R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1は、奇数個のメチンからなるメチン鎖を表し、
 aおよびbは、それぞれ独立に、0または1であり、
 aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
<11> 赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物である、<1>~<10>のいずれかに記載の赤外線カットフィルタ。
<12> 銅を含有する透明層と、赤外線吸収剤を含有する層とを有し、
 銅を含有する透明層の両面に、赤外線吸収剤を含有する層を有する、<1>~<11>のいずれかに記載の赤外線カットフィルタ。
<13> 更に、誘電体多層膜を有する、<1>~<12>のいずれかに記載の赤外線カットフィルタ。
<14> 銅を含有する透明層と、赤外線吸収剤を含有する層と、誘電体多層膜とを有し、
 銅を含有する透明層と誘電体多層膜との間に、赤外線吸収剤を含有する層を有し、赤外線吸収剤を含有する層と誘電体多層膜とが接している、<13>に記載の赤外線カットフィルタ。
<15> 銅を含有する透明層と、赤外線吸収剤を含有する層とを有する赤外線カットフィルタを製造するためのキットであって、銅を含有する透明部材と、赤外線吸収剤を含有する赤外線吸収組成物、とを有するキット。
<16> <1>~<14>のいずれかに記載の赤外線カットフィルタを有する、固体撮像素子。
 本発明は、視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタを提供可能になった。また、赤外線カットフィルタを製造するためのキット、および、固体撮像素子を提供することが可能になった。
本発明の赤外線カットフィルタの一実施形態の概略図である。
 以下において、本発明の内容について詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書中において、“(メタ)アクリレート”はアクリレートおよびメタクリレートを表し、“(メタ)アクリル”はアクリルおよびメタクリルを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルを表す。
 また、本明細書中において、モノマーは、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
 本明細書中において、重合性化合物とは、重合性官能基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性官能基とは、重合反応に関与する基をいう。
 本発明で用いられる化合物の重量平均分子量および数平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)により測定でき、GPCの測定によるポリスチレン換算値として定義される。
 本明細書において、赤外線とは、極大吸収波長領域が700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全組成から溶剤を除いた成分の総質量をいう。本発明における固形分は、25℃における固形分である。
<赤外線カットフィルタ>
 本発明の赤外線カットフィルタは、銅を含有する透明層を有し、銅を含有する透明層が更に赤外線吸収剤を含有するか、あるいは、赤外線吸収剤を含有する層を更に有する。
 発明の赤外線カットフィルタは、銅を含有する透明層が更に赤外線吸収剤を含有するか、あるいは、銅を含有する透明層の他に、赤外線吸収剤を含有する層を更に有することで、視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタとすることができる。
 本発明の赤外線カットフィルタの第1の実施形態は、銅を含有する透明層と、赤外線吸収剤を含有する層とを有する態様である。この態様において、銅を含有する透明層は、さらに赤外線吸収剤を含有することもでき、赤外線吸収剤を含有しない態様とすることもできる。すなわち、第1の態様における銅を含有する透明層は、銅と赤外線吸収剤とを含んでいてもよい。
 銅を含有する透明層は、後述する銅を含有するガラスで構成されたガラス基材(銅含有ガラス基材)や、銅錯体を含む層(銅錯体含有層)を用いることもできる。また、銅を含有する透明層として、銅錯体含有層を用いる場合、銅錯体含有層を単独で用いてもよく、銅錯体含有層と支持体とを組み合わせて用いてもよい。
 本発明の赤外線カットフィルタの第1の実施形態は、銅を含有する透明層(銅錯体含有層)と、赤外線吸収剤を含有する層と少なくとも有する態様であってもよいし、支持体と、銅を含有する透明層(銅錯体含有層)と、赤外線吸収剤を含有する層とを少なくとも有する態様であってもよい。また、後述する誘電体多層膜を更に有してもよい。
 また、本発明の赤外線カットフィルタの第2の実施形態は、銅と、赤外線吸収剤とを含有する透明層を有する態様である。
 銅と赤外線吸収剤とを含有する透明層は単独で用いることもでき、支持体と組み合わせて用いることもできる。また、後述する誘電体多層膜を更に有してもよい。
 本発明の赤外線カットフィルタは、波長420~550nmの光に対する、赤外線カットフィルタに対して垂直方向から測定した透過率が80%以上であることが好ましく、90%以上がより好ましく、95%以上が更に好ましい。また、波長700nmの光に対する、赤外線カットフィルタに対して垂直方向から測定した透過率が5%以下であることが好ましく、1%以下がより好ましく、0.5%以下が更に好ましい。また、波長700~1000nmの光に対する、赤外線カットフィルタに対して垂直方向から測定した透過率の平均が5%未満であることが好ましく、3%未満がより好ましく、1%未満が更に好ましい。
 また、本発明の赤外線カットフィルタは、赤外線カットフィルタに対して垂直方向から測定した、可視から近赤外領域における分光透過率の低下によるスロープの透過率が50%となる波長が600~700nmの範囲に有する事が好ましく、610~660nmの範囲に有する事がより好ましく、620~650nmの範囲に有するが更に好ましい。また、赤外線カットフィルタに対して垂直方向(角度0度)と角度40度から測定した場合の透過率50%の波長の差が30nm未満である事が好ましく、10nm未満がより好ましく、5nm未満が更に好ましい。
 本発明の赤外線カットフィルタは、600nm以上の波長領域に極大吸収波長を有し、
 赤外線カットフィルタを、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる少なくとも1種の有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、赤外線カットフィルタを、有機溶剤に25℃で2分浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率であるB/Aが0.9以上であることが好ましい。上記吸光度の比率B/Aを0.9以上としたことにより、有機溶剤による洗浄などによる欠陥の発生を抑制することができる。
 また、本発明の赤外線カットフィルタが、銅を含有する透明層と、赤外線吸収剤を含有する層とを有する場合、赤外線吸収剤を含有する層は、600nm以上の波長領域に極大吸収波長を有することが好ましい。また、赤外線吸収剤を含有する層は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる少なくとも1種の有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、赤外線吸収剤を含有する層を、有機溶剤に25℃で2分浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率であるB/Aが0.9以上であることが好ましい。
 以下、本発明の赤外線カットフィルタについて詳細に説明する。
<<銅を含有する透明層>>
 銅を含有する透明層としては、銅を含有するガラスで構成されたガラス基材(銅含有ガラス基材)、銅錯体を含む層(銅錯体含有層)などが挙げられる。
 銅を含有する透明層(以下、透明層ともいう)は、波長420~550nmの光に対する、透明層に対して垂直方向から測定した透過率が80%以上であることが好ましく、90%以上がより好ましく、95%以上が更に好ましい。
 銅を含有する透明層は、更に赤外線吸収剤を含有することもできる。この場合、赤外線カットフィルタは、後述する赤外線吸収層は有していてもよく、省略することもできる。赤外線吸収剤については、後述する。
<<<銅含有ガラス基材>>>
 銅を含有するガラスとしては、銅を含有する燐酸塩ガラス、銅を含有する弗燐酸塩ガラスなどが挙げられる。
 銅を含有するガラスの具体例としては、以下が挙げられる。
 (1)質量%で、P25 46~70%、AlF3 0.2~20%、ΣRF(R=Li、Na、K)0~25%、ΣR’F2(R’=Mg、Ca、Sr、Ba、Pb) 1~50%からなり、F 0.5~32%、O 26~54%を含む基礎ガラス100質量部に対し、外掛け表示でCuO 0.5~7質量部を含むガラス。
 (2)質量%で、P25 25~60%、Al23 1~13%、MgO 1~10%、CaO 1~16%、BaO 1~26%、SrO 0~16%、ZnO 0~16%、Li2O 0~13%、Na2O 0~10%、K2O 0~11%、CuO 1~7%、ΣRO(R=Mg、Ca、Sr、Ba) 15~40%、ΣR’2O(R’=Li、Na、K) 3~18%(ただし、39%モル量までのO2-イオンがFで置換されている)からなるガラス。
 (3)質量%で、P25 5~45%、AlF3 1~35%、ΣRF(R=Li、Na、K) 0~40%、ΣR’F2(R’=Mg、Ca、Sr、Ba、Pb、Zn) 10~75%、R”Fm(R”=La、Y、Cd、Si、B、Zr、Ta、mはR”の原子価に相当する数) 0~15%(ただし、弗化物総合計量の70%までを酸化物に置換可能)、およびCuO 0.2~15%を含むガラス。
 (4)カチオン%で、P5+ 11~43%、Al3+ 1~29%、ΣRカチオン(R=Mg、Ca、Sr、Ba、Pb、Zn) 14~50%、ΣR’カチオン(R’=Li、Na、K) 0~43%、ΣR”カチオン(R”=La、Y、Gd、Si、B、Zr、Ta) 0~8%、およびCu2+ 0.5~13%を含み、さらにアニオン%でF- 17~80%含有するガラス。
 (5)カチオン%で、P5+ 23~41%、Al3+ 4~16%、Li+ 11~40%、Na+ 3~13%、ΣRカチオン(R=Mg、Ca、Sr、Ba、Zn) 12~53%、およびCu2+ 2.6~4.7%を含み、さらにアニオン%でF- 25~48%、およびO2- 52~75%を含むガラス。
 (6)質量%で、P25 70~85%、Al23 8~17%、B23 1~10%、Li2O 0~3%、Na2O 0~5%、K2O 0~5%、ただし、ΣR2O(R=Li、Na、K) 0.1~5%、SiO2 0~3%からなる基礎ガラス100質量部に対し、外割でCuOを0.1~5質量部含むガラス。
 上記した銅含有ガラスの市販品としては、NF-50(AGCテクノグラス(株)製 商品名)、BG-60、BG-61(以上、ショット社製 商品名)、CD5000(HOYA(株)製 商品名)等が挙げられる。
 また、上記した銅含有ガラスに、所定の金属酸化物、例えば、Fe23、MoO3、WO3、CeO2、Sb23、V25等の1種または2種以上を含有させることによって、紫外線吸収特性を付与したガラスも使用できる。具体的には、上記銅含有ガラス100質量部に対して、Fe23、MoO3、WO3およびCeO2からなる群から選択される少なくとも1種を、Fe23 0.6~5質量部、MoO3 0.5~5質量部、WO3 1~6質量部、CeO2 2.5~6質量部、またはFe23とSb23の2種をFe23 0.6~5質量部+Sb23 0.1~5質量部、もしくはV25とCeO2の2種をV25 0.01~0.5質量部+CeO2 1~6質量部を含有させたものが使用される。
 銅を含有する透明層として、銅含有ガラス基材を用いる場合、銅含有ガラス基材の厚みは、0.05~1.0mmが好ましい。下限は、0.05mm以上が好ましく、0.1mm以上が更に好ましい。上限は、0.3mm以下が好ましく、0.2mm以下が更に好ましい。
<<銅錯体含有層>>
 銅錯体含有層としては、銅錯体を含む銅錯体含有組成物を用いて形成してなる層が挙げられる。
<<<銅錯体>>>
 銅錯体は、700~1200nmの波長領域に極大吸収波長を有する化合物が好ましい。銅錯体の極大吸収波長は、720~1200nmの波長領域に有することがより好ましく、800~1100nmの波長領域に有することがさらに好ましい。極大吸収波長は、例えば、Cary 5000 UV-Vis-NIR(分光光度計 アジレント・テクノロジー株式会社製)を用いて測定することができる。
 銅錯体の上述した波長領域における極大吸収波長でのモル吸光係数は、120(L/mol・cm)以上が好ましく、150(L/mol・cm)以上がより好ましく、200(L/mol・cm)以上がさらに好ましく、300(L/mol・cm)以上がよりさらに好ましく、400(L/mol・cm)以上が特に好ましい。上限は、特に限定はないが、例えば、30000(L/mol・cm)以下とすることができる。銅錯体の上記モル吸光係数が、100(L/mol・cm)以上であれば、薄膜であっても、赤外線遮蔽性に優れた硬化膜を形成することができる。
 銅錯体の800nmでのグラム吸光係数は、0.11(L/g・cm)以上が好ましく、0.15(L/g・cm)以上がより好ましく、0.24(L/g・cm)以上がさらに好ましい。
 なお、本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、銅錯体を溶媒に溶解させて1g/Lの濃度の溶液を調製し、銅錯体を溶解させた溶液の吸収スペクトルを測定して求めることができる。測定装置としては、島津製作所製UV-1800(波長領域200~1100nm)、Agilent製Cary 5000(波長領域200~1300nm)などを用いることができる。測定溶媒としては、水、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、1,2,4-トリクロロベンゼン、アセトンが挙げられる。本発明では、上述した測定溶媒のうち、測定対象の銅錯体を溶解できるものを選択して用いる。なかでも、プロピレングリコールモノメチルエーテルで溶解する銅錯体の場合は、測定溶媒としては、プロピレングリコールモノメチルエーテルを用いることが好ましい。なお、溶解するとは、25℃の溶媒に対する、銅錯体の溶解度が0.01g/100gSolventを超える状態を意味する。
 本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、上述した測定溶媒のいずれか1つを用いて測定した値であることが好ましく、プロピレングリコールモノメチルエーテルでの値であることがより好ましい。
 銅錯体のモル吸光係数を100(L/mol・cm)以上にする方法としては、例えば、5配位の銅錯体を用いる方法、π供与性の高い配位子を用いる方法、対称性の低い銅錯体を用いる方法などが挙げられる。
 5配位の銅錯体を用いることで、モル吸光係数が100(L/mol・cm)以上を達成できるメカニズムとしては、以下によるものが推測される。すなわち、5座配位、好ましくは、5配位三方両錐構造、または、5配位四角錐構造をとることにより、錯体の対称性が低下する。これにより、配位子と銅の相互作用において、d軌道にp軌道が混ざりやすくなる。このとき、d-d遷移(近赤外領域の吸収)は、純粋なd-d遷移ではなくなり、許容遷移であるp-d遷移の寄与が混ざる。これにより吸光係数が向上し、100(L/mol・cm)以上を達成することができると考えられる。
 5配位の銅錯体は、例えば、銅イオンに対して、2つの2座配位子(同一でも異なっていても良い)と1つの単座配位子を反応させること、1つの3座配位子と2つの2座配位子(同一でも異なっていても良い)を反応させること、1つの3座配位子を1つの2座配位子を反応させること、1つの4座配位子と1つの単座配位子を反応させること、1つの5座配位子を反応させることにより調製することができる。このとき、非共有電子対で配位する単座配位子は、反応溶媒として用いられることもある。たとえば、銅イオンに対して、水を含む溶媒中で2つの2座配位子を反応させると、この2つの2座配位子と、単座配位子として水が配位した5配位錯体が得られる。
 また、π供与性の高い配位子を用いることで、モル吸光係数が100(L/mol・cm)以上を達成できるメカニズムとしては、以下によるものが推測される。すなわち、π供与性が高い配位子(配位子のπ軌道あるいはp軌道がエネルギー的に浅いところにある配位子)を用いることにより、金属のp軌道と配位子のp軌道(またはπ軌道)が混ざりやすくなる。このとき、d-d遷移は、純粋なd-d遷移ではなくなり、許容遷移であるLMCT(Ligand to Metal Charge Transfer)遷移の寄与が混ざる。これにより吸光係数が向上し、100(L/mol・cm)以上を達成することができると考えられる。
 π供与性の高い配位子としては、例えば、ハロゲン配位子、酸素アニオン配位子、硫黄アニオン配位子などが挙げられる。π供与性の高い配位子を用いた銅錯体としては、例えば、単座配位子としてCl配位子を有する銅錯体などが挙げられる。
 また、対称性の低い銅錯体は、対称性の低い配位子を用いること、あるいは、銅イオンに対して配位子を非対称に導入することで得ることができる。具体的には、たとえば、次のようなことである。
 例えば、3座配位子L1-L2-L3と、2つの単座配位子L4、L5を用いる場合、下式(1)に示すように、対称性の低い配位子、例えば、L1とL3が異なっている配位子を用いることで対称性の低い銅錯体が得られる。また、銅イオンに対して配位子を非対称に導入する、例えば、L4とL5が同じよりも異なっているほうが対称性の低い銅錯体が得られる。
Figure JPOXMLDOC01-appb-C000007
 また、四角錐錯体において、L4とL5が同じとき、下式(2)のようにL4とL5が四角錐の底面上の対角線上にあるよりも、下式(3)のように底面上で隣接しているか、下式(4)のように一方の単座配位子が四角錐の頭頂位にあるほうが、対称性の低い錯体が得られる。
Figure JPOXMLDOC01-appb-C000008
 また、2つの2座配位子L6-L7、L8-L9と、単座配位子L10を用いる場合、下式(5)に示すように、対称性の低い配位子を用いる、例えば、L6とL7が異なっている配位子、および/または、L8とL9が異なっている配位子を用いることで対称性の低い銅錯体が得られる。
また、銅イオンに対して配位子を非対称に導入する、例えば、L6-L7と、L8-L9が同じよりも異なっているほうが対称性の低い銅錯体が得られる。また、L6-L7と、L8-L9が同じ場合、L6=L8でL7=L9であるよりも、L6=L9でL7=L8であるほうが対称性の低い銅錯体が得られる。
Figure JPOXMLDOC01-appb-C000009
 本発明において、銅錯体は、少なくとも2つの配位部位を有する化合物(以下、化合物(A)ともいう)を配位子として有することが好ましい。化合物(A)は、配位部位をすくなくとも3つ有することがより好ましく、3~5個有することが更に好ましい。化合物(A)は、銅成分に対し、キレート配位子として働く。すなわち、化合物(A)が有する少なくとも2つの配位原子が、銅とキレート配位することにより、銅錯体の構造が歪んで、可視光領域の高い透過性が得られ、赤外線の吸光能力を向上でき、色価も向上すると考えられる。これにより、赤外線カットフィルタを長期間使用しても、その特性が損なわれず、またカメラモジュールを安定的に製造することも可能となる。
 本発明に用いられる銅錯体は、化合物(A)を2つ以上有していてもよい。化合物(A)を2つ以上有する場合は、それぞれの化合物(A)は同一であってもよく、異なっていてもよい。
 化合物(A)が有する配位部位としては、アニオンで配位する配位部位、非共有電子対で配位する配位部位が挙げられる。
 本発明に用いられる銅錯体は、4配位、5配位および6配位が例示され、4配位および5配位がより好ましく、5配位がさらに好ましい。
 また、銅錯体は、銅と配位子によって、5員環および/または6員環が形成されていることが好ましい。このような銅錯体は、形状が安定であり、錯体安定性に優れる。
 本発明に用いられる銅錯体における銅は、例えば銅成分(銅または銅を含む化合物)に対して、化合物(A)を混合・反応等させて得ることができる。
 銅成分は、2価の銅を含む化合物が好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。
 銅成分としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸銅、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2-エチルヘキサン酸銅など)、スルホン酸銅(例えば、メタンスルホン酸銅など)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、フッ化銅、塩化銅、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、フッ化銅、塩化銅、硫酸銅、硝酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅、硫酸銅、硝酸銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅、塩化銅、硫酸銅が特に好ましい。
 化合物(A)と反応させる銅成分の量は、モル比率(化合物(A):銅成分)で1:0.5~1:8とすることが好ましく、1:0.5~1:4とすることがより好ましい。
 また、銅成分と化合物(A)とを反応させる際の反応条件は、例えば、20~100℃で、0.5時間以上とすることが好ましい。
 本発明に用いられる銅錯体は、化合物(A)以外の配位子を有していても良い。化合物(A)以外の配位子としては、アニオンまたは非共有電子対で配位する単座配位子が挙げられる。アニオンで配位する配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、アジドアニオンなどが挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、あるいは、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、または、そのエステルが挙げられる。
 単座配位子の種類および数は、銅錯体に配位する化合物(A)に応じて適宜選択することができる。
 化合物(A)以外の配位子として用いる単座配位子の具体例としては、以下のものが挙げられるが、これらに限定されるものではない。以下において、Phはフェニル基を表し、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-T000010
 本発明に用いられる銅錯体は、配位子をなす化合物(A)が、アニオンで配位する配位部位を有する場合、アニオンで配位する配位部位の数に応じて、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅錯体の電荷を中和するよう、必要に応じて対イオンが存在する。
 対イオンが負の対イオンの場合、例えば、無機陰イオンでも有機陰イオンでもよい。具体例としては、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドイオンを含む)、イミドイオン(アシル基やスルホニル基で置換されたイミドイオンを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドイオンを含む)が挙げられ、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドイオン(アシル基やスルホニル基で置換されたイミドイオンを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が好ましい。
 対イオンが正の対イオンの場合、例えば、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオンまたはプロトンが挙げられる。
 また、対イオンは金属錯体イオンであってもよく、特に対イオンが銅錯体、すなわち、カチオン性銅錯体とアニオン性銅錯体の塩であっても良い。
 本発明で用いる銅錯体は、例えば、以下の(1)~(5)の態様が好ましい一例として挙げられ、(2)~(5)がより好ましく、(3)~(5)が更に好ましく、(4)が一層好ましい。
 (1)2つの配位部位を有する化合物の1つまたは2つを配位子として有する銅錯体
 (2)3つの配位部位を有する化合物を配位子として有する銅錯体
 (3)3つの配位部位を有する化合物と2つの配位部位を有する化合物とを配位子として有する銅錯体
 (4)4つの配位部位を有する化合物を配位子として有する銅錯体
 (5)5つの配位部位を有する化合物を配位子として有する銅錯体
 上記(1)の態様において、2つの配位部位を有する化合物は、非共有電子対で配位する配位部位を2つ有する化合物、または、アニオンで配位する配位部位と非共有電子対で配位する配位部位とを有する化合物が好ましい。また、2つの配位部位を有する化合物の2つを配位子として有する場合、配位子の化合物は、同一であってもよく、異なっていてもよい。
 また、(1)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1~3個とすることもできる。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、2つの配位部位を有する化合物が非共有電子対で配位する配位部位を2つ有する化合物の場合は配位力が強いという理由からアニオンで配位する単座配位子がより好ましく、2つの配位部位を有する化合物がアニオンで配位する配位部位と非共有電子対で配位する配位部位とを有する化合物の場合には錯体全体が電荷を持たないという理由から非共有電子対で配位する単座配位子がより好ましい。
 上記(2)の態様において、3つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を3つ有する化合物が更に好ましい。
 また、(2)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもできる。また、1個以上とすることもでき、1~3個がより好ましく、1~2個がさらに好ましく、2個が一層好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、上述した理由によりアニオンで配位する単座配位子がより好ましい。
 上記(3)の態様において、3つの配位部位を有する化合物は、アニオンで配位する配位部位と、非共有電子対で配位する配位部位とを有する化合物が好ましく、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位部位を1つ有する化合物が更に好ましい。さらに、この2つのアニオンで配位する配位部位が異なっていることが特に好ましい。また、2つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2つ有する化合物が更に好ましい。なかでも、3つの配位部位を有する化合物が、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位部位を1つ有する化合物であり、2つの配位部位を有する化合物が、非共有電子対で配位する配位部位を2つ有する化合物である組み合わせが、特に好ましい。
 また、(3)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。0個がより好ましい。
 上記(4)の態様において、4つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2以上有する化合物がより好ましく、非共有電子対で配位する配位部位を4つ有する化合物が更に好ましい。
 また、(4)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもでき、2個以上とすることもできる。単座配位子の数は、1個が好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましい。
 上記(5)の態様において、5つの配位部位を有する化合物は、非共有電子対で配位する配位部位を有する化合物が好ましく、非共有電子対で配位する配位部位を2以上有する化合物がより好ましく、非共有電子対で配位する配位部位を5つ有する化合物が更に好ましい。
 また、(5)の態様において、銅錯体は、上述した単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は0個が好ましい。
 銅錯体の具体例としては、例えば、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 銅錯体の含有量は、組成物の全固形分に対して、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。上限は、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
<<<樹脂>>>
 銅錯体含有組成物は、樹脂を含有することが好ましい。
 樹脂は、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。これらの詳細については、後述する赤外線吸収組成物で説明する。
 上記樹脂の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、3,000以上が好ましく、5,000以上がより好ましい。
 また、エポキシ樹脂の場合、エポキシ樹脂の重量平均分子量(Mw)は、100以上が好ましく、200~2,000,000がより好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、100以上が好ましく、200以上がより好ましい。
 上記樹脂は、25℃から、20℃/分で昇温した5%熱質量減少温度が、200℃以上であることが好ましく、260℃以上であることがより好ましい。
 また、樹脂は、下記(MX2-1)で表される繰り返し単位、下記(MX2-2)で表される繰り返し単位および下記(MX2-3)で表される繰り返し単位から選ばれる1種を有するポリマーを用いることもできる。
Figure JPOXMLDOC01-appb-C000012
 Mは、Si、Ti、ZrおよびAlから選択される原子を表し、X2は置換基または配位子を表し、n個のX2のうち、少なくとも1つが、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基およびO=C(Ra)(Rb)から選択される1種であり、X2同士は、それぞれ結合して環を形成していてもよく、R1は、水素原子またはアルキル基を表し、L1は単結合または2価の連結基を表し、nは、MのX2との結合手の数を表す。
 Mは、Si、Ti、ZrおよびAlから選択される原子であり、Si、Ti、Zrが好ましく、Siがより好ましい。
 X2は置換基または配位子を表し、n個のX2のうち、少なくとも1つが、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基およびO=C(Ra)(Rb)から選択される1種であり、X2同士は、それぞれ結合して環を形成していてもよい。
 n個のX2のうち、少なくとも1つが、アルコキシ基、アシルオキシ基およびオキシム基から選択される1種であることが好ましく、n個のX2のうち、少なくとも1つがアルコキシ基であることが更に好ましく、X2の全てが、アルコキシ基であることがより好ましい。なお、X2が、O=C(Ra)(Rb)である場合、カルボニル基(-CO-)の酸素原子の非共有電子対でMと結合する。RaおよびRbは、それぞれ独立に1価の有機基を表す。
 X2が表すアルコキシ基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5がさらに好ましく、1~2が特に好ましい。アルコキシ基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖がより好ましい。アルコキシ基は、無置換であってもよく、置換基を有してもよいが、無置換が好ましい。置換基としては、ハロゲン原子(好ましくはフッ素原子)、重合性基(例えば、ビニル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタン基など)、アミノ基、イソアネート基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、スルホ基、カルボキシル基、ヒドロキシル基等が挙げられる。
 X2が表すアシルオキシ基としては、例えば、炭素数2~30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6~30の置換もしくは無置換のアリールカルボニルオキシ基等が挙げられる。例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基などが挙げられる。置換基としては上述したものが挙げられる。
 X2が表すオキシム基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5がさらに好ましい。例えば、エチルメチルケトオキシム基などが挙げられる。
 X2が表すアミノ基としては、アミノ基、炭素数1~30の置換もしくは無置換のアルキルアミノ基、炭素数6~30の置換もしくは無置換のアリールアミノ基、炭素数0~30のヘテロ環アミノ基等が挙げられる。例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチル-アニリノ、ジフェニルアミノ、N-1,3,5-トリアジン-2-イルアミノ等が挙げられる。置換基としては上述したものが挙げられる。
 RaおよびRbが表す1価の有機基としては、アルキル基、アリール基、-R101-COR102で表される基等が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~10がより好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよい。アルキル基は、無置換であってもよく、上述した置換基を有していてもよい。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。アリール基は、無置換であってもよく、上述した置換基を有していてもよい。
 -R101-COR102で表される基において、R101は、アリーレン基を表し、R102はアルキル基またはアリール基を表す。
 R101が表すアリーレン基の炭素数は、1~20が好ましく、1~10がより好ましい。アリーレン基は、直鎖、分岐、環状のいずれでもよい。アリーレン基は、無置換であってもよく、上述した置換基を有していてもよい。
 R102が表すアルキル基およびアリール基は、Ra、Rbで説明したものが挙げられ、好ましい範囲も同様である。
 X2が表す置換基および配位子のうち、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基以外の置換基としては、炭化水素基が好ましい。炭化水素基としては、アルキル基、アルケニル基、アリール基などが挙げられる。
 アルキル基は、直鎖状、分岐状または環状のいずれであってもよい。直鎖状のアルキル基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。分岐状のアルキル基の炭素数は、3~20が好ましく、3~12がより好ましく、3~8がさらに好ましい。環状のアルキル基は、単環、多環のいずれであってもよい。環状のアルキル基の炭素数は、3~20が好ましく、4~10がより好ましく、6~10がさらに好ましい。
 アルケニル基の炭素数は、2~10が好ましく、2~8がより好ましく、2~4がさらに好ましい。
 アリール基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましい。
 炭化水素基は、置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子(好ましくはフッ素原子)、重合性基(例えば、ビニル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタン基など)、アミノ基、イソアネート基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、スルホ基、カルボキシル基、ヒドロキシル基、アルコキシ基等が挙げられる。
 R1は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1~5が好ましく、1~3がさらに好ましく、1が特に好ましい。アルキル基は、直鎖、分岐のいずれも好ましく、直鎖がより好ましい。アルキル基は、水素原子の一部または全部がハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 L1は、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が挙げられ、アルキレン基、アリーレン基およびアルキレン基の少なくとも1つと-O-との組み合わせからなる基が好ましい。
 アルキレン基の炭素数は、1~30が好ましく、1~15がより好ましく、1~10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。
 アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましく、フェニレン基が特に好ましい。
 上記ポリマーは、式(MX2-1)、(MX2-2)、(MX2-3)で表される繰り返し単位の他に、他の繰り返し単位を含有していてもよい。
 他の繰り返し単位を構成する成分としては、特開2010-106268号公報の段落番号0068~0075(対応する米国特許出願公開第2011/0124824号明細書の[0112]~[0118])に開示の共重合成分の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 好ましい他の繰り返し単位としては、下記式(MX3-1)~(MX3-4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(MX3-1)~(MX3-4)中、R5は水素原子またはアルキル基を表し、L4は単結合または2価の連結基を表し、R10は、アルキル基またはアリール基を表す。R11およびR12は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。
 R5は、式(MX2-1)~(MX2-3)のR1と同義であり、好ましい範囲も同様である。
 L4は、式(MX2-1)~(MX2-3)のL1と同義であり、好ましい範囲も同様である。
 R10で表されるアルキル基は、直鎖状、分岐状または環状のいずれでもよく、環状が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。アルキル基は置換基を有していてもよく、置換基としては、上述したものが挙げられる。
 R10で表されるアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。
 R10は、環状のアルキル基またはアリール基が好ましい。
 R11およびR12は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。アルキル基およびアリール基は、R10と同様のものが挙げられる。アルキル基が好ましい。アルキル基は直鎖状が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましく、1~5が一層好ましい。
 上記ポリマーが、他の繰り返し単位(好ましくは式(MX3-1)~(MX3-4)で表される繰り返し単位)を含む場合、式(MX2-1)~(MX2-3)で表される繰り返し単位の合計と、他の繰り返し単位の合計とのモル比は、95:5~20:80であることが好ましく、90:10~30:70であることがより好ましい。式(MX2-1)~(MX2-3)で表される繰り返し単位の含有率を、上記範囲内で高めることで耐湿性および耐溶剤性がより向上する傾向にある。また、式(MX2-1)~(MX2-3)で表される繰り返し単位の含有率を上記範囲内で低くすることで、耐熱性がより向上する傾向にある。
 上記ポリマーの具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記ポリマーの重量平均分子量は、500~300000が好ましい。下限は、1000以上が好ましく、2000以上がより好ましい。上限は、250000以下が好ましく、200000以下がより好ましい。
 樹脂の含有量は、銅錯体含有組成物の全固形分に対して、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。上限は、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
<<<赤外線吸収剤>>>
 銅錯体含有組成物は、赤外線吸収剤を含有してもよい。赤外線吸収剤の詳細については、後述する赤外線吸収組成物で説明するものが挙げられる。なお、本発明における赤外線吸収剤は、上述した銅錯体以外の化合物である。
 銅錯体含有組成物が赤外線吸収剤を含有する場合、赤外線吸収剤の含有量は、銅錯体含有組成物の全固形分に対して、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。上限は、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましい。
 また、銅錯体100質量部に対し、赤外線吸収剤を10~90質量部含有することが好ましい。下限は、20質量部以上が好ましく、30質量部以上がより好ましい。上限は、70質量部以下が好ましく、50質量部以下がより好ましい。
<<<熱安定性付与剤>>>
 銅錯体含有組成物は、熱安定性付与剤としてオキシム化合物を含有することもできる。
 オキシム化合物としては、市販品であるIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司社製)、アデカアークルズNCI-831(ADEKA社製)、アデカアークルズNCI-930(ADEKA社製)等を用いることができる。
 熱安定性付与剤の含有量は、銅錯体含有組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、10質量%以下がより好ましい。
<<<重合性化合物>>>
 銅錯体含有組成物は、重合性化合物を含有することが好ましい。重合性化合物の詳細については、後述する赤外線吸収組成物で説明するものが挙げられる。
 重合性化合物の含有量は、銅錯体含有組成物の全固形分に対して、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。
<<<光重合開始剤>>>
 銅錯体含有組成物は、光重合開始剤を含有することが好ましい。光重合開始剤の詳細については、後述する赤外線吸収組成物で説明するものが挙げられる。
 光重合開始剤の含有量は、銅錯体含有組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。
<<<ゼラチン>>>
 銅錯体含有組成物は、ゼラチンを含有することが好ましい。ゼラチンの詳細については、後述する赤外線吸収組成物で説明するものが挙げられる。
 ゼラチンを含有することで、耐熱性に優れた膜を形成しやすい。
 ゼラチンの含有量は、銅錯体含有組成物の全固形分に対して、1~99質量%が好ましい。下限は、10質量%以上が好ましく、20質量%以上がより好ましい。上限は、95質量%以下が好ましく、90質量%以下がより好ましい。
<<<溶剤>>>
 銅錯体含有組成物は、溶剤を含有することが好ましい。溶剤としては、水、有機溶剤を用いることができる。また、水と有機溶剤とを併用することもできる。有機溶剤の詳細については、後述する赤外線吸収組成物で説明するものが挙げられる。
 溶剤の含有量は、銅錯体含有組成物の全固形分が5~60質量%となる量が好ましく、10~40質量%となる量がより好ましい。
<<<触媒>>>
 銅錯体含有組成物は、触媒を含有することが好ましい。触媒を含有することで、耐溶剤性や耐熱性に優れた赤外線カットフィルタが得られ易い。触媒としては、有機金属系触媒、酸系触媒、アミン系触媒が挙げられ、有機金属系触媒が好ましい。有機金属系触媒としては、トリス(2,4-ペンタンジオナト)アルミニウムなどが挙げられる。
 触媒の含有量は、銅錯体含有組成物の全固形分に対して、0.01~5質量%が好ましい。下限は、0.05質量%以上が好ましい。上限は、3質量%以下が好ましく、1質量%以下がより好ましい。
<<<他の成分>>>
 銅錯体含有組成物は、例えば、紫外線吸収剤、分散剤、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤、密着促進剤およびその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)をさらに含有することができる。
 これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の[0237]以降)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 銅を含有する透明層として、銅錯体含有層を用いる場合、銅錯体含有層を単独で用いてもよく、銅錯体含有層と支持体とを組み合わせて用いてもよい。支持体の材質としては、少なくとも可視波長域の光を透過できるものであれば特に限定されず、例えば、ガラス、結晶、樹脂などが挙げられる。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラスなどが挙げられる。結晶としては、例えば、水晶、ニオブ酸リチウム、サファイヤ等が挙げられる。樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。
 また、銅錯体含有層を、支持体と組み合わせて用いる場合、銅錯体含有層と、支持体との間に他の層が介在してもよい。すなわち、銅錯体含有層と、支持体との間に後述する赤外線吸収層や、誘電体多層膜が介在していてもよい。
 銅錯体含有層を、支持体と組み合わせて用いる場合、支持体の片面のみに赤外線吸収層を形成してもよく、支持体の両面に赤外線吸収層を形成してもよい。また、支持体の外周を、銅錯体含有層で被覆してもよい。
 なお、銅錯体含有層と支持体とを組み合わせて使用する場合、銅錯体含有層と支持体とが接している場合は、銅錯体含有層と支持体との積層体が、本発明における「銅を含有する透明層」に相当する。また、銅錯体含有層と支持体とが接しておらず、銅錯体含有層と支持体との間に他の層が介在している場合は、銅錯体含有層のみが、本発明における「銅を含有する透明層」に相当する。
 銅錯体含有層を単独で用いる場合、銅錯体含有層の厚みは、0.05~1.0mmが好ましい。下限は、0.05mm以上が好ましく、0.1mm以上が更に好ましい。上限は、0.3mm以下が好ましく、0.2mm以下が更に好ましい。
 銅錯体含有層を、支持体と組み合わせて用いる場合、銅錯体含有層の厚みは、0.1~1.0mmが好ましい。下限は、0.1mm以上が好ましく、0.15mm以上が更に好ましい。上限は、0.3mm以下が好ましく、0.2mm以下が更に好ましい。
<<赤外線吸収層>>
 本発明の赤外線カットフィルタは、赤外線吸収剤を含有する層(以下、赤外線吸収層ともいう)を有することが好ましい。なお、本発明における赤外線吸収剤は、銅錯体含有層で説明した銅錯体以外の化合物である。
 赤外線吸収層は、銅を含有する透明層の片面のみに有していてもよく、両面に有してもよい。反り抑制などの観点から、銅を含有する透明層の両面に、赤外線吸収層を有することが好ましい。また、赤外線吸収層は、銅を含有する透明層と接していてもよく、接していなくてもよい。すなわち、赤外線吸収層が銅を含有する透明層の表面に形成されていてもよく、赤外線吸収層と銅を含有する透明層との間に他の層(後述する誘電体多層膜など)が介在していてもよい。
 なお、上述したように、銅を含有する透明層が、更に赤外線吸収剤を含有する場合は、本発明の赤外線カットフィルタは、赤外線吸収層は、有していてもよく、省略することもできる。すなわち、本発明において、銅と赤外線吸収剤とを含有する層は、「銅を含有する透明層」に該当するものとする。
 一方、銅を含有する透明層が、赤外線吸収剤を含有しない場合は、本発明の赤外線カットフィルタは、銅を含有する透明層の他に、赤外線吸収層を有する。
 本発明において、赤外線吸収層は、600nm以上の波長領域に極大吸収波長を有することが好ましく、700~900nmの波長領域に極大吸収波長を有することがより好ましい。
 赤外線吸収層は、波長700nmの光に対する、赤外線吸収層に対して垂直方向から測定した透過率が10%以下であることが好ましく、5%以下がより好ましく、1%以下が更に好ましい。波長800nmの光に対する、赤外線吸収層に対して垂直方向から測定した透過率が10%以下であることが好ましく、5%以下がより好ましく、1%以下が更に好ましい。
 赤外線吸収層は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる少なくとも1種の有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、赤外線吸収層を、有機溶剤に25℃で2分浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率であるB/Aが0.9以上であることが好ましい。
 上記吸光度の比率B/Aは、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる2種以上の有機溶剤に対する値であることが好ましく、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールの各有機溶剤に対する値であることが特に好ましい。
 上記吸光度の比率B/Aは、0.9~1.0がより好ましく、0.95~1.0が更に好ましい。
 赤外線吸収剤の含有量は、赤外線吸収層の質量に対して1~80質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。
 赤外線吸収層は、赤外線吸収剤を含有する赤外線吸収組成物を用いて形成できる。以下、赤外線吸収組成物について説明する。
<<<赤外線吸収組成物>>>
<<<<赤外線吸収剤>>>>
 本発明において、赤外線吸収剤は、近赤外領域(好ましくは、波長650~1300nm)の波長領域に吸収を有する化合物を意味する。
 赤外線吸収剤は、波長675~900nmの波長領域に極大吸収波長を有する化合物が好ましい。
 本発明において、赤外線吸収剤は、有機色素が好ましい。本発明において、有機色素とは、有機化合物からなる色素を意味する。
 また、赤外線吸収剤は、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物およびナフタロシアニン化合物から選ばれる少なくとも1種が好ましい。
 また、本発明において、赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物であることが好ましく、25℃の水に10質量%以上溶解する化合物がより好ましい。このような化合物を用いることで、耐溶剤性が良化する。
 本発明において、赤外線吸収剤は、下記一般式1~3で表される化合物から選択される少なくとも1種であることが好ましい。
一般式1
Figure JPOXMLDOC01-appb-C000015
 一般式1中、環Aおよび環Bは、それぞれ独立に、芳香族環を表し、
 XAおよびXBはそれぞれ独立に置換基を表し、
 GAおよびGBはそれぞれ独立に置換基を表し、
 kAは0~nAの整数を表し、kBは0~nBの整数を表し、
 nAは、環Aに置換可能な最大の整数を表し、nBは、環Bに置換可能な最大の整数を表し、
 XAとGA、XBとGBは互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環を形成していても良い;
一般式2
Figure JPOXMLDOC01-appb-C000016
 一般式2中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、
 R2~R5は、それぞれ独立に、水素原子または置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
 R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、RAおよびRBは、各々独立に、水素原子または置換基を表し、
 R6は、R1aまたはR3と、共有結合もしくは配位結合していてもよく、R7は、R1bまたはR5と、共有結合もしくは配位結合していてもよい;
一般式3
Figure JPOXMLDOC01-appb-C000017
 一般式3中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子団であり、
 R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1は、奇数個のメチンからなるメチン鎖を表し、
 aおよびbは、それぞれ独立に、0または1であり、
 aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
<<<<一般式1で表される化合物(スクアリリウム化合物)>>>>
 一般式1において、GAおよびGBはそれぞれ独立に置換基を表す。
 置換基としては、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基、アリーロキシ基、ヘテロアリーロキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、-NRa1a2、-CORa3、-COORa4、-OCORa5、-NHCORa6、-CONRa7a8、-NHCONRa9a10、-NHCOORa11、-SO2a12、-SO2ORa13、-NHSO2a14または-SO2NRa15a16が挙げられる。Ra1~Ra16は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、または、ヘテロアリール基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基、アルコキシ基およびアルキルチオ基の炭素数は、1~20が好ましく、1~15がより好ましく、1~8が更に好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
 アルケニル基の炭素数は、2~20が好ましく、2~12がより好ましく、2~8が特に好ましい。アルケニル基は直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
 アルキニル基の炭素数は、2~40が好ましく、2~30がより好ましく、2~25が特に好ましい。アルキニル基は直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 アリーロキシ基およびアリールチオ基が有するアリール基は、上述したものが挙げられ、好ましい範囲も同様である。
 アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7~40が好ましく、7~30がより好ましく、7~25が更に好ましい。
 ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましい。
 ヘテロアリーロキシ基およびヘテロアリールチオ基が有するヘテロアリール基は、上述したものが挙げられ、好ましい範囲も同様である。
 一般式1において、XAおよびXBはそれぞれ独立に置換基を表す。置換基は、活性水素を有する基が好ましく、-OH、-SH、-COOH、-SO3H、-NRG1G2、-NHCORG1、-CONRG1G2、-NHCONRG1G2、-NHCOORG1、-NHSO2G1、-B(OH)2および-PO(OH)2がより好ましく、-OH、-SHおよび-NRG1G2が更に好ましく、-NRG1G2が特に好ましい。
 RG1およびRG1は、それぞれ独立に水素原子または置換基を表す。置換基としてはアルキル基、アルケニル基、アルキニル基、アリール基、または、ヘテロアリール基が挙げられる。アルキル基、アルケニル基、アルキニル基、アリール基、および、ヘテロアリール基の詳細については、GAおよびGBで説明した範囲と同義である。
 一般式1において、環Aおよび環Bは、それぞれ独立に、芳香族環を表す。
 芳香族環は、単環であってもよく、縮合環であってもよい。芳香族環は、芳香族炭化水素環であってもよく、芳香族複素環であってもよい。
 芳香族環の具体例としては、ベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インデセン環、ペリレン環、ペンタセン環、アセナフテン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、および、フェナジン環が挙げられ、ベンゼン環またはナフタレン環が好ましく、ナフタレン環がより好ましい。
 芳香族環は、無置換であってもよく、置換基を有していてもよい。置換基としては、GAおよびGBで説明した置換基が挙げられる。
 一般式1において、XAとGA、XBとGBは互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環を形成していても良い。
 環としては、5員環または6員環が好ましい。環は単環であってもよく、複環であってもよい。
 XAとGA、XBとGB、GA同士またはGB同士が結合して環を形成する場合、これらが直接結合して環を形成してもよく、アルキレン基、-CO-、-O-、-NH-、-BR-およびそれらの組み合わせからなる群より選ばれる2価の連結基を介して結合して環を形成してもよい。XAとGA、XBとGB、GA同士またはGB同士が、-BR-を介して結合して環を形成することが好ましい。
 Rは、水素原子または置換基を表す。
 一般式1において、kAは0~nAの整数を表し、kBは0~nBの整数を表し、nAは、環Aに置換可能な最大の整数を表し、nBは、環Bに置換可能な最大の整数を表す。
 kAおよびkBは、それぞれ独立に0~4が好ましく、0~2がより好ましく、0~1が特に好ましい。
 一般式1で表される化合物は、下記一般式1-1で表される化合物が好ましい。この化合物は、耐熱性に優れている。
一般式1-1
Figure JPOXMLDOC01-appb-C000018
 式中、R1およびR2は、それぞれ独立に、アルキル基、アルケニル基、アリール基、ヘテロアリール基または、下式(W)で表される基を表し、
 R3およびR4は、それぞれ独立に、水素原子、または、アルキル基を表し、
 X1およびX2は、それぞれ独立に、酸素原子、または、-N(R5)-を表し、
 R5は、水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
 Y1~Y4は、それぞれ独立に、置換基を表し、Y1とY2、および、Y3とY4は、互いに結合して環を形成していてもよく、
 Y1~Y4は、それぞれ複数有する場合は、互いに結合して環を形成していてもよく、
 pおよびsは、それぞれ独立に0~3の整数を表し、
 qおよびrは、それぞれ独立に0~2の整数を表す;
 -S1-L1-T1   ・・・(W)
 式(W)において、S1は、単結合、アリーレン基またはヘテロアリーレン基を表し、
 L1は、アルキレン基、アルケニレン基、アルキニレン基、-O-、-S-、-NRL1-、-CO-、-COO-、-OCO-、-CONRL1-、-NRL1CO-、-SO2-、-ORL2-、または、これらを組み合わせてなる基を表し、RL1は、水素原子またはアルキル基を表し、RL2は、アルキレン基を表し、
 T1は、アルキル基、シアノ基、ヒドロキシ基、ホルミル基、カルボキシル基、アミノ基、チオール基、スルホ基、ホスホリル基、ボリル基、ビニル基、エチニル基、アリール基、ヘテロアリール基、トリアルキルシリル基またはトリアルコキシシリル基を表す。
 一般式1-1において、R1およびR2は、それぞれ独立に、アルキル基、アルケニル基、アリール基、ヘテロアリール基または、式(W)で表される基を表し、R1およびR2の少なくとも一方は、式(W)で表される基を表すことが好ましい。
 一般式1-1において、R1とR2は、同一であってもよく、異なる基であってもよい。R1とR2が同じ基であることがより好ましい。
 なお、本明細書において、アリール基は、芳香族炭化水素基を意味し、ヘテロアリール基は、芳香族複素環基を意味する。
 R1およびR2が表すアルキル基の炭素数は、1~40が好ましい。下限は、3以上がより好ましく、5以上が更に好ましく、10以上が一層好ましく、13以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルキル基の分岐数は、例えば、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 R1およびR2が表すアルケニル基の炭素数は、2~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルケニル基は直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルケニル基の分岐数は、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 R1およびR2が表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 R1およびR2が表すヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましい。
 (式(W)で表される基)
 次に、式(W)で表される基について説明する。
 式(W)において、S1は、単結合、アリーレン基またはヘテロアリーレン基を表し、ホウ素原子との結合の安定性の観点から、アリーレン基またはヘテロアリーレン基が好ましく、アリーレン基がより好ましい。
 アリーレン基は、単環であっても多環であってもよい。単環が好ましい。アリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。
 ヘテロアリール基は、単環であっても多環であってもよい。単環が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子、硫黄原子またはセレン原子が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましい。
 S1が表す、アリーレン基およびヘテロアリーレン基の具体例としては、以下に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式中、波線部分は一般式1-1のホウ素原子との結合位置を表し、*は、L1との結合位置を表し、R’は置換基を表し、RNは、水素原子またはアルキル基を表し、mは0以上の整数を表す。
 R’が表す置換基としては、上述した一般式1のGAおよびGBで説明した置換基が挙げられる。
 RNが表すアルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~4が更に好ましく、1~2が特に好ましい。アルキル基は、直鎖、分岐のいずれでもよい。
 mは0以上の整数を表す。mの上限は、各基の最大置換数である。mは、0が好ましい。
 式(W)において、L1は、アルキレン基、アルケニレン基、アルキニレン基、-O-、-S-、-NRL1-、-CO-、-COO-、-OCO-、-CONRL1-、-NRL1CO-、-SO2-、-ORL2-または、これらを組み合わせてなる基を表し、RL1は、水素原子またはアルキル基を表し、RL2は、アルキレン基を表す。
 式(W)において、L1は、アルキレン基、アルケニレン基、アルキニレン基、-O-、-S-、-NRL1-、-COO-、-OCO-、-CONRL1-、-SO2-、-ORL2-または、これらを組み合わせてなる基が好ましく、柔軟性および溶剤溶解性の観点から、アルキレン基、アルケニレン基、-O-、-ORL2-または、これらを組み合わせてなる基がより好ましく、アルキレン基、アルケニレン基、-O-または-ORL2-がさらに好ましく、アルキレン基、-O-、または-ORL2-が特に好ましい。
 L1が表すアルキレン基の炭素数は、1~40が好ましい。下限は、3以上がより好ましく、5以上が更に好ましく、10以上が一層好ましく、13以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルキレン基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐数は、例えば、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 L1が表すアルケニレン基およびアルキニレン基の炭素数は、2~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルケニレン基およびアルキニレン基は直鎖、分岐のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐数は、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 RL1は、水素原子またはアルキル基を表し、水素原子が好ましい。アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~4が更に好ましく、1~2が特に好ましい。アルキル基は、直鎖、分岐のいずれでもよい。
 RL2は、アルキレン基を表す。RL2が表すアルキレン基は、L1で説明したアルキレン基と同義であり、好ましい範囲も同様である。
 式(W)において、T1は、アルキル基、シアノ基、ヒドロキシ基、ホルミル基、カルボキシル基、アミノ基、チオール基、スルホ基、ホスホリル基、ボリル基、ビニル基、エチニル基、アリール基、ヘテロアリール基、トリアルキルシリル基またはトリアルコキシシリル基を表す。
 アルキル基、トリアルキルシリル基が有するアルキル基およびトリアルコキシシリル基が有するアルキル基の炭素数は、1~40が好ましい。下限は、3以上がより好ましく、5以上が更に好ましく、10以上が一層好ましく、13以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましい。
 アリール基およびヘテロアリール基は、R1およびR2で説明したアリール基およびヘテロアリール基と同義であり、好ましい範囲も同様である。
 式(W)において、S1が単結合で、L1がアルキレン基で、T1がアルキル基の場合は、L1とT1に含まれる炭素数の総和は、13以上であることが好ましく、溶剤溶解性の観点から21以上がより好ましい。上限は、例えば40以下が好ましく、35以下がより好ましい。
 また、S1がアリーレン基の場合は、L1とT1に含まれる炭素数の総和は、5以上が好ましく、溶剤溶解性の観点から9以上が好ましく、10以上がより好ましい。上限は、例えば40以下が好ましく、35以下がより好ましい。
 式(W)の好ましい態様としては、S1がアリーレン基またはヘテロアリーレン基であり、L1がアルキレン基、アルケニレン基、アルキニレン基、-O-、-S-、-NRL1-、-COO-、-OCO-、-CONRL1-、-SO2-、-ORL2-または、これらを組み合わせてなる基であり、T1がアルキル基またはトリアルキルシリル基である組み合わせが挙げられる。S1は、アリーレン基がより好ましい。L1は、アルキレン基、アルケニレン基、-O-、-ORL2-または、これらを組み合わせてなる基がより好ましく、アルキレン基、アルケニレン基、-O-または-ORL2-がさらに好ましく、アルキレン基、-O-、または-ORL2-が特に好ましい。T1はアルキル基がより好ましい。
 式(W)において、-L1-T1部分は、分岐アルキル構造を含むことが好ましい。具体的には、-L1-T1部分は、分岐のアルキル基または分岐のアルコキシ基であることが特に好ましい。-L1-T1部分の分岐数は、2~10が好ましく、2~8がより好ましい。-L1-T1部分の炭素数は、5以上が好ましく、9以上がより好ましく、10以上がさらに好ましい。上限は、例えば40以下が好ましく、35以下がより好ましい。
 式(W)において、-L1-T1部分は、不斉炭素を含むことが好ましい。この態様によれば、一般式1-1で表される化合物が複数の光学異性体を含むことができ、その結果、化合物の溶剤溶解性をさらに向上できる。不斉炭素の数は1個以上が好ましい。不斉炭素の上限は特に限定はないが、例えば4以下が好ましい。
 式(W)で表される基の具体例としては、例えば以下が挙げられる。以下の式中、Aは、式(1)のホウ素原子との連結部である。以下の構造式において、*は不斉炭素を表し、波状結合はラセミ体を表す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 一般式1-1において、R3およびR4は、それぞれ独立に、水素原子、または、アルキル基を表す。R3とR4は、同一であってもよく、異なる基であってもよい。R3とR4が同じ基であることがより好ましい。
 R3およびR4が表すアルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~4が更に好ましく、1~2が特に好ましい。アルキル基は、直鎖、分岐のいずれでもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等が挙げられる。
 R3およびR4は、それぞれ独立に、水素原子、メチル基またはエチル基であることが好ましく、水素原子またはメチル基がより好ましく、水素原子が特に好ましい。
 一般式1-1において、X1およびX2は、それぞれ独立に、酸素原子(-O-)、または、-N(R5)-を表す。X1とX2は同一であってもよく、異なっていてもよいが、同一であることが好ましい。
 R5は、水素原子、アルキル基、アリール基またはヘテロアリール基を表す。
 R5は、水素原子、アルキル基またはアリール基が好ましい。R5が表すアルキル基、アリール基およびヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述した一般式1のGAおよびGBで説明した置換基が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~4が更に好ましく、1~2が特に好ましい。アルキル基は、直鎖、分岐のいずれでもよい。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。
 ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましい。
 X1およびX2は、それぞれ独立に、酸素原子、または、下記のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式中、R5aはアルキル基を表し、R6~R8は、それぞれ独立に、置換基を表し、aは0~5の整数を表し、bおよびcはそれぞれ0~7の整数を表し、*は連結部を表す。
 R6~R8が表す、置換基としては、上述した一般式1のGAおよびGBで説明した置換基が挙げられる。
 一般式1-1において、Y1~Y4は、それぞれ独立に、置換基を表す。
 置換基としては、上述した一般式1のGAおよびGBで説明した置換基が挙げられる。
 一般式1-1において、Y1とY2、および、Y3とY4は、互いに結合して環を形成していてもよい。例えば、Y1とY2とが互いに結合して、Y1及びY2に直結しているナフタレン環と併せて、例えば、アセナフテン環、アセナフチレン環等の3環等となっていてもよい。
 Y1~Y4は、それぞれ複数有する場合は、互いに結合して環構造を形成していてもよい。例えば、Y1が複数有する場合、Y1同士が互いに結合し、Y1およびY2に直結しているナフタレン環と併せて、例えば、アントラセン環、フェナントレン環等の3環等となっていてもよい。なお、Y1同士が互いに結合して環構造を形成する場合、Y1以外の置換基であるY2~Y4は必ずしも複数有する必要はない。また、Y2~Y4は存在しなくてもよい。Y2同士、Y3同士およびY4同士が結合して環構造を形成する場合も同様である。
 pおよびsは、それぞれ独立に0~3の整数を表し、好ましくはそれぞれ0~1であり、特に好ましくは0である。
 qおよびrは、それぞれ独立に0~2の整数を表し、好ましくはそれぞれ0~1であり、特に好ましくは0である。
 なお、一般式(1)においてカチオンは、以下のように非局在化して存在している。
Figure JPOXMLDOC01-appb-C000024
 一般式1で表されるスクアリリウム化合物としては、以下に示す化合物が挙げられる。また、特開2011-208101号公報の段落番号0044~0049に記載の化合物が挙げられ、この内容は本明細書に組み込まれることとする。
 なお、以下に示す具体例において、以下の式中、波状結合はラセミ体を表す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
<<<<一般式2で表される化合物(ピロロピロール化合物)>>>>
 一般式2中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、アリール基またはヘテロアリール基が好ましく、アリール基がより好ましい。
 R1aおよびR1bが表すアルキル基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。
 R1aおよびR1bが表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、フェニルが好ましい。
 R1aおよびR1bが表すヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がより好ましく、単環または縮合数が2~4の縮合環がさらに好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましく、3~10が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。
 上述したアリール基およびヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。溶媒に対する溶解性を向上できるという観点から置換基を有していることが好ましい。
 置換基としては、酸素原子を含んでもよい炭化水素基、アミノ基、アシルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アルキルスルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、メルカプト基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基、ヒドロキシ基、ハロゲン原子、シアノ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 炭化水素基としては、アルキル基、アルケニル基、アリール基などが挙げられる。
 アルキル基の炭素数は、1~40が好ましい。下限は、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルキル基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が一層好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルキル基の分岐数は、例えば、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 アルケニル基の炭素数は、2~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルケニル基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が一層好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルケニル基の分岐数は、2~10が好ましく、2~8がより好ましい。分岐数が上記範囲であれば、溶剤溶解性が良好である。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 酸素原子を含む炭化水素基としては、-L-Rx1で表される基が挙げられる。
 Lは、-O-、-CO-、-COO-、-OCO-、-(ORx2m-または-(Rx2O)m-を表す。Rx1は、アルキル基、アルケニル基またはアリール基を表す。Rx2は、アルキレン基またはアリーレン基を表す。mは2以上の整数を表し、m個のRx2は、同一であってもよく、異なっていてもよい。
 Lは、-O-、-(ORx2m-または-(Rx2O)m-が好ましく、-O-がより好ましい。
 Rx1が表すアルキル基、アルケニル基、アリール基は上述したものと同義であり、好ましい範囲も同様である。Rx1は、アルキル基またはアルケニル基が好ましく、アルキル基がより好ましい。
 Rx2が表すアルキレン基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましい。アルキレン基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましい。Rx2が表すアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。Rx2はアルキレン基が好ましい。
 mは2以上の整数を表し、2~20が好ましく、2~10がより好ましい。
 アリール基およびヘテロアリール基が有してもよい置換基は、分岐アルキル構造を有する基が好ましい。この態様によれば、溶剤溶解性がより向上する。また、置換基は、酸素原子を含んでもよい炭化水素基が好ましく、酸素原子を含む炭化水素基がより好ましい。酸素原子を含む炭化水素基は、-O-Rx1で表される基が好ましい。Rx1は、アルキル基またはアルケニル基が好ましく、アルキル基がより好ましく、分岐のアルキル基が特に好ましい。すなわち、置換基は、アルコキシ基がより好ましく、分岐のアルコキシ基が特に好ましい。置換基が、アルコキシ基であることにより、耐熱性および耐光性にすぐれた赤外線吸収剤とすることができる。そして、分岐のアルコキシ基であることにより、溶剤溶解性が良好である。
 アルコキシ基の炭素数は、1~40が好ましい。下限は、例えば、3以上がより好ましく、5以上が更に好ましく、8以上が一層好ましく、10以上が特に好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。アルコキシ基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、分岐が特に好ましい。分岐のアルコキシ基の炭素数は、3~40が好ましい。下限は、例えば、5以上がより好ましく、8以上が更に好ましく、10以上が一層好ましい。上限は、35以下がより好ましく、30以下が更に好ましい。分岐のアルコキシ基の分岐数は、2~10が好ましく、2~8がより好ましい。
 R2~R5は、それぞれ独立に、水素原子または置換基を表す。置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アミノ基(アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含む)、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アシル基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アルキルスルホニル基、アリールスルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基などが挙げられる。
 R2およびR3のいずれか一方と、R4およびR5のいずれか一方は、電子吸引性基であることが好ましい。
 Hammettのσp値(シグマパラ値)が正の置換基は、電子吸引性基として作用する。
 本発明においては、Hammettのσp値が0.2以上の置換基を電子吸引性基として例示することができる。σp値として好ましくは0.25以上であり、より好ましくは0.3以上であり、特に好ましくは0.35以上である。上限は特に制限はないが、好ましくは0.80である。
 電子吸引性基の具体例としては、シアノ基(σp値=0.66)、カルボキシル基(例えば-COOH:σp値=0.45)、アルコキシカルボニル基(例えば-COOMe:σp値=0.45)、アリールオキシカルボニル基(例えば-COOPh:σp値=0.44)、カルバモイル基(例えば-CONH2:σp値=0.36)、アルキルカルボニル基(例えば-COMe:σp値=0.50)、アリールカルボニル基(例えば-COPh:σp値=0.43)、アルキルスルホニル基(例えば-SO2Me:σp値=0.72)、アリールスルホニル基(例えば-SO2Ph:σp値=0.68)などが挙げられる。特に好ましくは、シアノ基である。ここで、Meはメチル基を、Phはフェニル基を表す。
 Hammettのσp値については、例えば、特開2009-263614号公報の段落番号0024~0025を参酌でき、この内容は本明細書に組み込まれる。
 R2およびR3のいずれか一方と、R4およびR5のいずれか一方は、ヘテロアリール基が好ましい。
 ヘテロアリール基は、単環、または、縮合環が好ましく、単環、または、縮合数が2~8の縮合環がより好ましく、単環、または、縮合数が2~4の縮合環がさらに好ましい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、窒素原子を1個以上有することが好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましく、3~10が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の具体例としては、例えば、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、キノキサリル基、イソキノリル基、インドレニル基、フリル基、チエニル基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、ナフトチアゾリル基、ベンズオキサゾリ基、m-カルバゾリル基、アゼピニル基、およびこれらの基のベンゾ縮環基もしくはナフト縮環基などが挙げられる。
 ヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。ハロゲン原子、アルキル基、アルコキシ基またはアリール基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、塩素原子が特に好ましい。
 アルキル基およびアルコキシ基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が特に好ましい。アルキル基およびアルコキシ基は直鎖または分岐が好ましく、直鎖が特に好ましい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 一般式2において、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよい。R2とR3、R4とR5が互いに結合して環を形成する場合は、5~7員環(好ましくは5または6員環)を形成することが好ましい。形成される環としてはメロシアニン色素で酸性核として用いられるものが好ましい。具体例としては、例えば、特開2010-222557号公報の段落番号0026に記載の構造が挙げられ、この内容は本明細書に組み込まれることとする。
 R2とR3、R4とR5が互いに結合して形成する環は、好ましくは1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、またはインダノン核であり、更に好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、またはインダノン核である。
 R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、-BRABがより好ましい。
 R6およびR7が表すアルキル基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が特に好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖が特に好ましい。アルキル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表すヘテロアリール基は、単環または縮合環が好ましく、単環がより好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましく、3~5が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したR2~R5が表す置換基が挙げられる。
 R6およびR7が表す金属原子としては、マグネシウム、アルミニウム、カルシウム、バリウム、亜鉛、スズ、バナジウム、鉄、コバルト、ニッケル、銅、パラジウム、イリジウム、白金が好ましく、アルミニウム、亜鉛、バナジウム、鉄、銅、パラジウム、イリジウム、白金が特に好ましい。
 -BRABで表される基において、RAおよびRBは、各々独立に、水素原子または置換基を表す。
 RAおよびRBが表す置換基としては、上述したR2~R5が表す置換基が挙げられる。ハロゲン原子、アルキル基、アルコキシ基、アリール基およびヘテロアリール基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、フッ素原子が特に好ましい。
 アルキル基およびアルコキシ基の炭素数は、1~40が好ましく、1~30がより好ましく、1~25が特に好ましい。アルキル基およびアルコキシ基は直鎖または分岐が好ましく、直鎖が特に好ましい。アルキル基およびアルコキシ基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アリール基、ヘテロアリール基、ハロゲン原子などが挙げられる。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましく、3~5が特に好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 一般式2において、R6は、R1aまたはR3と、共有結合もしくは配位結合していてもよい。また、R7は、R1bまたはR5と、共有結合もしくは配位結合していてもよい。
 一般式2で表されるピロロピロール化合物としては、以下に示す化合物が挙げられる。また、特開2010-222557号公報の段落番号0049~0062に記載の化合物D-1~D-162が挙げられ、この内容は本明細書に組み込まれることとする。以下の式中Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
<<<<一般式3で表される化合物(シアニン化合物)>>>>
 一般式3において、Z1およびZ2は、それぞれ独立に、縮環してもよい5員又は6員の含窒素複素環を形成する非金属原子団を表す。
 含窒素複素環には、他の複素環、芳香族環または脂肪族環が縮合してもよい。含窒素複素環は、5員環が好ましい。5員の含窒素複素環に、ベンゼン環又はナフタレン環が縮合している構造がさらに好ましい。含窒素複素環の具体例としては、オキサゾール環、イソオキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、オキサゾロカルバゾール環、オキサゾロジベンゾフラン環、チアゾール環、ベンゾチアゾール環、ナフトチアゾール環、インドレニン環、ベンゾインドレニン環、イミダゾール環、ベンゾイミダゾール環、ナフトイミダゾール環、キノリン環、ピリジン環、ピロロピリジン環、フロピロール環、インドリジン環、イミダゾキノキサリン環、キノキサリン環等が挙げられ、キノリン環、インドレニン環、ベンゾインドレニン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環が好ましく、インドレニン環、ベンゾチアゾール環、ベンゾイミダゾール環が特に好ましい。
 含窒素複素環及びそれに縮合している環は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、ヘテロアリール基、-ORc1、-CORc2、-COORc3、-OCORc4、-NRc5c6、-NHCORc7、-CONRc8c9、-NHCONRc10c11、-NHCOORc12、-SRc13、-SO2c14、-SO2ORc15、-NHSO2c16または-SO2NRc17c18が挙げられる。Rc1~Rc18は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。なお、-COORc3のRc3が水素原子の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく、塩の状態であってもよい。また、-SO2ORc15のRc15が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく、塩の状態であってもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~12がさらに好ましく、1~8が特に好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよい。アルキル基は無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、アミノ基等が挙げられ、カルボキシル基およびスルホ基が好ましく、スルホ基が特に好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 アルケニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルケニル基は、直鎖、分岐、環状のいずれでもよい。アルケニル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アルキニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルキニル基は、直鎖、分岐、環状のいずれでもよい。アルキニル基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アリール基の炭素数は、6~25が好ましく、6~15がさらに好ましく、6~10が最も好ましい。アリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7~40が好ましく、7~30がより好ましく、7~25が更に好ましい。
 ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12がさらに好ましい。ヘテロアリール基は無置換であってもよく、置換基を有していてもよい。置換基としては、上述したアルキル基が有してもよい置換基が挙げられ、好ましい範囲も同様である。
 一般式3において、R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表す。アルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基は、上記の置換基で説明したものが挙げられ、好ましい範囲も同様である。アルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、アミノ基等が挙げられ、カルボキシル基およびスルホ基が好ましく、スルホ基が特に好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 式3において、L1は、奇数個のメチンからなるメチン鎖を表す。L1は、3、5または7のメチン基からなるメチン鎖が好ましい。
 メチン基は置換基を有していてもよい。置換基を有するメチン基は、中央の(メソ位の)メチン基であることが好ましい。置換基の具体例としては、Z1およびZ2の含窒素複素環が有してもよい置換基、および、下式(a)で表される基が挙げられる。また、メチン鎖の二つの置換基が結合して5または6員環を形成しても良い。
Figure JPOXMLDOC01-appb-C000034
 式(a)中、*は、メチン鎖との連結部を表し、A1は、酸素原子または硫黄原子を表す。
 一般式3において、aおよびbは、それぞれ独立に、0または1である。aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合する。aおよびbはともに0であることが好ましい。なお、aおよびbがともに0の場合は、一般式3は以下のように表される。
Figure JPOXMLDOC01-appb-C000035
 一般式3において、式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表す。アニオンの例としては、ハライドイオン(Cl-、Br-、I-)、p-トルエンスルホン酸イオン、エチル硫酸イオン、PF6 -、BF4 -またはClO4 -、トリス(ハロゲノアルキルスルホニル)メチドアニオン(例えば、(CF3SO23-)、ジ(ハロゲノアルキルスルホニル)イミドアニオン(例えば(CF3SO22-)、テトラシアノボレートアニオンなどが挙げられる。
 一般式3において、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表す。カチオンとしては、アルカリ金属イオン(Li+、Na+、K+など)、アルカリ土類金属イオン(Mg2+、Ca2+、Ba2+、Sr2+など)、遷移金属イオン(Ag+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+など)、その他の金属イオン(Al3+など)、アンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、ピリジニウムイオン、テトラブチルアンモニウムイオン、グアニジニウムイオン、テトラメチルグアニジニウムイオン、ジアザビシクロウンデセニウムなどが挙げられる。カチオンとしては、Na+、K+、Mg2+、Ca2+、Zn2+、ジアザビシクロウンデセニウムが好ましい。
 一般式3において、式中のCyで表される部位の電荷が分子内で中和されている場合、X1は存在しない。すなわち、cは0である。
 一般式3で表される化合物は、下記(3-1)または(3-2)で表される化合物であることも好ましい。この化合物は、耐熱性に優れている。
Figure JPOXMLDOC01-appb-C000036
 式(3-1)および(3-2)中、R1A、R2A、R1BおよびR2Bは、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1AおよびL1Bは、それぞれ独立に奇数個のメチンからなるメチン鎖を表し、
 Y1およびY2は、各々独立に-S-、-O-、-NRX1-または-CRX2X3-を表し、
 RX1、RX2およびRX3は、各々独立に水素原子またはアルキル基を表し、
 V1A、V2A、V1BおよびV2Bは、それぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、ヘテロアリール基、-ORc1、-CORc2、-COORc3、-OCORc4、-NRc5c6、-NHCORc7、-CONRc8c9、-NHCONRc10c11、-NHCOORc12、-SRc13、-SO2c14、-SO2ORc15、-NHSO2c16または-SO2NRc17c18を表し、V1A、V2A、V1BおよびV2Bは、縮合環を形成していてもよく、
 Rc1~Rc18は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、
 -COORc3のRc3が水素原子の場合および-SO2ORc15のRc15が水素原子の場合は、水素原子が解離しても、塩の状態であってもよく、
 m1およびm2は、それぞれ独立に0~4を表し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、
式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、
式中のCyで表される部位の電荷が分子内で中和されている場合、X1は存在しない。
 R1A、R2A、R1BおよびR2Bが表す基は、一般式3のR101およびR102で説明したアルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基と同義であり、好ましい範囲も同様である。これらの基は無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、スルホ基、アルコキシ基、アミノ基等が挙げられ、カルボキシル基およびスルホ基が好ましく、スルホ基が特に好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
 R1A、R2A、R1BおよびR2Bがアルキル基を表す場合は、直鎖のアルキル基であることがより好ましい。
 Y1およびY2は、各々独立に-S-、-O-、-NRX1-または-CRX2X3-を表し、-NRX1-が好ましい。
 RX1、RX2およびRX3は、各々独立に水素原子またはアルキル基を表し、アルキル基が好ましい。アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖が特に好ましい。アルキル基は、メチル基またはエチル基が特に好ましい。
 L1AおよびL1Bは、一般式3のL1と同義であり、好ましい範囲も同様である。
 V1A、V2A、V1BおよびV2Bが表す基は、一般式3のZ1およびZ2の含窒素複素環が有してもよい置換基で説明した範囲と同義であり、好ましい範囲も同様である。
 m1およびm2は、それぞれ独立に0~4を表し、0~2が好ましい。
 X1が表すアニオンおよびカチオンは、一般式3のX1で説明した範囲と同義であり、好ましい範囲も同様である。
 一般式3で表される化合物としては、以下に示す化合物が挙げられる。また、特開2009-108267公報の段落番号0044~0045に記載の化合物が挙げられ、この内容は本明細書に組み込まれることとする。なお、以下の表中、Meはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Bnはベンジル基を表し、Phはフェニル基を表し、PRSはC36SO3-を表し、BUSはC49SO3-を表す。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 一般式3で表される化合物は、エフ・エム・ハーマー(F.M.Harmer)著「ヘテロサイクリック・コンパウンズーシアニンダイズ・アンド・リレイテッド・コンパウンズ(Heterocyclic Compounds Cyanine Dyes and Related Compounds)」、ジョン・ウィリー・アンド・サンズ(John Wiley & Sons)社-ニューヨーク、ロンドン、1964年刊、およびデー・エム・スターマー(D.M.Sturmer)著「ヘテロサイクリック・コンパウンズースペシャル・トッピクス・イン・ヘテロサイクリック・ケミストリー(Heterocyclic Compounds-Specialtopics in heterocyclic chmistry)」、第18章、第14節、482~515頁、ジョン・ウィリー・アンド・サンズ(John Wiley & Sons)社-ニューヨーク、ロンドン、1977年刊、「ロッズ・ケミストリー・オブ・カーボン・コンパウンズ(Rodd’s Chemistry of Carbon Compounds)」2nd.Ed.vol.IV,partB,1977年刊、第15章、369~422頁、エルセビア・サイエンス・パブリック・カンパニー・インク(Elsevier Science Publishing Company Inc.)社刊、ニューヨーク、特開平6-313939号公報および特開平5-88293号公報等を参考にして容易に合成できる。
<<<<樹脂、ゼラチン、重合性化合物>>>>
 赤外線吸収組成物は、樹脂、ゼラチンおよび重合性化合物から選ばれる少なくとも1種を含有することが好ましく、ゼラチンおよび重合性化合物から選ばれる少なくとも1種を含有することが特に好ましい。この態様によれば、耐熱性および耐溶剤性に優れた赤外線吸収層を製造しやすい。また、重合性化合物を用いる場合、重合性化合物と光重合開始剤と併用することが好ましい。
(樹脂)
 樹脂は、(メタ)アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 樹脂の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、3,000以上が好ましく、5,000以上がより好ましい。
 また、エポキシ樹脂の場合、エポキシ樹脂の重量平均分子量(Mw)は、100以上が好ましく、200~2,000,000がより好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、100以上が好ましく、200以上がより好ましい。
 樹脂は、25℃から、20℃/分で昇温した5%熱質量減少温度が、200℃以上であることが好ましく、260℃以上であることがより好ましい。
 (メタ)アクリル樹脂としては、(メタ)アクリル酸および/またはそのエステルに由来する繰り返し単位を含む重合体が挙げられる。具体的には、(メタ)アクリル酸、(メタ)アクリル酸エステル類、(メタ)アクリルアミドおよび(メタ)アクリロニトリルから選ばれる少なくとも1種を重合して得られる重合体が挙げられる。
 ポリエステル樹脂としては、ポリオール(例えば、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン)と、多塩基酸(例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びこれらの芳香環の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸、及びシクロヘキサンジカルボン酸などの脂環式ジカルボン酸など)との反応により得られるポリマーや、カプロラクトンモノマー等の環状エステル化合物の開環重合により得られるポリマー(例えばポリカプロラクトン)が挙げられる。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。市販品としては、例えば、以下のものが挙げられる。
 ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、三菱化学(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等が挙げられる。
 ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、三菱化学(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等が挙げられる。
 フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65(以上、三菱化学(株)製)、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等が挙げられる。
 脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等が挙げられる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S(三菱化学(株)製)等が挙げられる。
 また、樹脂は、酸基を有していてもよい。酸基としては、例えば、カルボキシル基、リン酸基、スルホン酸基、フェノール性ヒドロキシル基などが挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂としては、側鎖にカルボキシル基を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボキシル基を有する酸性セルロース誘導体、ヒドロキシル基を有するポリマーに酸無水物を付加させたものが挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等が挙げられる。また、他のモノマーとして、特開平10-300922号公報に記載のN位置換マレイミドモノマーとして、N-フェニルマレイミド、N-シクロヘキシルマレイミド等を挙げることができる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂は、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好ましく用いることができる。また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体なども好ましく用いることができる。
 酸基を有する樹脂は、下記一般式(ED1)で示される化合物および/または下記一般式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分を重合してなるポリマー(a)を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000042
 一般式(ED1)中、R1およびR2は、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000043
 一般式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。一般式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
 一般式(ED1)中、R1およびR2で表される置換基を有していてもよい炭素数1~25の炭化水素基としては、特に制限はないが、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、tert-アミル、ステアリル、ラウリル、2-エチルヘキシル等の直鎖状または分岐状のアルキル基;フェニル等のアリール基;シクロヘキシル、tert-ブチルシクロヘキシル、ジシクロペンタジエニル、トリシクロデカニル、イソボルニル、アダマンチル、2-メチル-2-アダマンチル等の脂環式基;1-メトキシエチル、1-エトキシエチル等のアルコキシで置換されたアルキル基;ベンジル等のアリール基で置換されたアルキル基;等が挙げられる。これらの中でも特に、メチル、エチル、シクロヘキシル、ベンジル等のような酸や熱で脱離しにくい1級または2級炭素の置換基が耐熱性の点で好ましい。
 エーテルダイマーの具体例としては、例えば、特開2013-29760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。一般式(ED)で示される化合物由来の構造体は、その他のモノマーを共重合させてもよい。
 酸基を有する樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000044
 式(X)において、R1は、水素原子またはメチル基を表し、R2は炭素数2~10のアルキレン基を表し、R3は、水素原子またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 上記式(X)において、R2のアルキレン基の炭素数は、2~3が好ましい。また、R3のアルキル基の炭素数は1~20であるが、より好ましくは1~10であり、R3のアルキル基はベンゼン環を含んでもよい。R3で表されるベンゼン環を含むアルキル基としては、ベンジル基、2-フェニル(イソ)プロピル基等を挙げることができる。
 酸基を有する樹脂の具体例としては、例えば以下に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000045
 酸基を有する樹脂としては、特開2012-208494号公報の段落番号0558~0571(対応する米国特許出願公開第2012/0235099号明細書の[0685]~[0700])の記載、特開2012-198408号公報の段落番号0076~0099の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 酸基を有する樹脂の酸価は、30~200mgKOH/gが好ましい。下限は、50mgKOH/g以上が好ましく、70mgKOH/g以上がより好ましい。上限は、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましい。
 また、樹脂は、重合性基を有していてもよい。樹脂が重合性基を有することで、硬度のある膜を形成できる。
 重合性基としては、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。重合性基を含有する樹脂としては、ダイヤナ-ルNRシリーズ(三菱レイヨン株式会社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル化学工業株式会社製)、Ebecryl3800(ダイセルユーシービー株式会社製)、アクリキュアーRD-F8(日本触媒社製)などが挙げられる。また、上述したエポキシ樹脂なども挙げられる。
 赤外線吸収組成物において、樹脂の含有量は、赤外線吸収組成物の全固形分に対し、1~80質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。
(ゼラチン)
 赤外線吸収組成物は、ゼラチンを含有することが好ましい。ゼラチンを含有することにより、耐熱性に優れた赤外線吸収層を形成しやすい。詳細なメカニズムは不明であるが、赤外線吸収剤とゼラチンとで会合体を形成しやすいためであると推測する。特に、赤外線吸収剤としてシアニン化合物を用いた場合、耐熱性に優れた赤外線吸収層を形成しやすい。
 本発明において、ゼラチンとしては、その合成方法によって、酸処理ゼラチンおよびアルカリ処理ゼラチン(石灰処理など)があり、いずれも好ましく用いることができる。ゼラチンの分子量は、10,000~1,000,000であることが好ましい。また、ゼラチンのアミノ基やカルボキシル基を利用して変性処理した変性ゼラチンも用いることができる(例えば、フタル化ゼラチンなど)。ゼラチンとしては、イナートゼラチン(例えば、新田ゼラチン750)、フタル化ゼラチン(例えば、新田ゼラチン801)などを用いることができる。
 赤外線吸収層の耐水性及び機械的強度を高めるため、種々の化合物を用いてゼラチンを硬化させる事が好ましい。硬化剤は従来公知のものを使用することができ、例えばホルムアルデヒド、グルタルアルデヒドの如きアルデヒド系化合物類、米国特許第3,288.775号その他に記載されている反応性のハロゲンを有する化合物類、米国特許第3,642.486号、特公昭49-13563号その他に記載されている反応性のエチレン性不飽和結合を持つ化合物類、米国特許第3,017,280号等に記載されているアジリジン系化合物類、米国特許第3,091,537号等に記載されているエホ士シ系化合物類、ムコクロル酸のようなハロゲンカルボキシルアルデヒド類、ジヒドロキシジオキサン、ジクロロジオキサン等ジオキサン類、あるいは又無機硬膜剤としてクロム明ばん、硫酸ジルコニウム等が挙げられる。
 赤外線吸収組成物において、ゼラチンの含有量は、赤外線吸収組成物の全固形分に対し、1~99質量%が好ましい。下限は、10質量%以上が好ましく、20質量%以上がより好ましい。上限は、95質量%以下が好ましく、90質量%以下がより好ましい。
(重合性化合物)
 赤外線吸収組成物は、重合性化合物を含有することが好ましい。重合性化合物は、例えば、エチレン性不飽和結合を有する基、環状エーテル(エポキシ、オキセタン)基、メチロール基等を有する化合物が挙げられ、エチレン性不飽和結合を有する化合物が好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。
 重合性化合物は、単官能であっても多官能であってもよいが、好ましくは、多官能(重合性基を2個以上有する重合性化合物)である。多官能化合物を含むことにより、三次元架橋物を有する赤外線吸収層を形成できる。そして、赤外線吸収層が三次元架橋物を有することにより、耐熱性や耐溶剤性を向上させることができる。重合性化合物の官能基の数は特に限定されないが、2~8官能が好ましく、3~6官能がさらに好ましい。
 重合性化合物は、例えば、モノマー、プレポリマー、オリゴマー、又はそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。
 重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。
 重合性化合物の分子量は、2000未満が好ましく、100以上2000未満がより好ましく、200以上2000未満がさらに好ましい。
 重合性化合物は、エチレン性不飽和結合を有する基を含む化合物であることが好ましい。
 エチレン性不飽和結合を有する基を含む化合物の例としては、特開2013-253224号公報の段落番号0033~0034の記載を参酌することができ、この内容は本明細書に組み込まれる。
 具体例としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としてはNKエステルATM-35E;新中村化学工業社製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA ;日本化薬株式会社製、A-DPH-12E;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。またこれらのオリゴマータイプも使用できる。
 また、特開2013-253224号公報の段落番号0034~0038の重合性化合物の記載を参酌することができ、この内容は本明細書に組み込まれる。
 また、特開2012-208494号公報の段落番号0477(対応する米国特許出願公開第2012/0235099号明細書の[0585])に記載の重合性モノマー等が挙げられ、これらの内容は本明細書に組み込まれる。
 また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亞合成株式会社製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学工業社製、A-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。例えば、RP-1040(日本化薬株式会社製)などが挙げられる。
 エチレン性不飽和結合を有する基を含む化合物としては、さらに、カルボキシル基、スルホン酸基、リン酸基等の酸基を有していてもよい。
 酸基を有する化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが挙げられる。脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、特に好ましくは、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520などが挙げられる。
 酸基を有する化合物の酸価は、0.1~40mgKOH/gが好ましい。下限は、5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。
 重合性化合物は、カプロラクトン構造を有する化合物も好ましい態様である。
 カプロラクトン構造を有する化合物としては、特開2013-253224号公報の段落番号0042~0045の記載を参酌することができ、この内容は本明細書に組み込まれる。
 市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
 また、重合性化合物は、フッ素原子を有する重合性化合物(含フッ素重合性化合物)を用いることができる。含フッ素重合性化合物は、フッ素原子を有する(メタ)アクリレートポリマーであることがより好ましい。
 含フッ素重合性化合物は、フッ素原子で置換されたアルキレン基、フッ素原子で置換されたアルキル基、及び、フッ素原子で置換されたアリール基からなる群から選択される少なくとも1つを有することが好ましい。
 フッ素原子で置換されたアルキレン基は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状、分岐状又は環状のアルキレン基であることが好ましい。
 フッ素原子で置換されたアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状、分岐状又は環状のアルキル基であることが好ましい。
 フッ素原子で置換されたアルキレン基及びフッ素原子で置換されたアルキル基中の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、1~5であることがさらに好ましい。
 フッ素原子で置換されたアリール基は、アリール基がフッ素原子で直接に置換されているか、トリフルオロメチル基で置換されていることが好ましい。
 フッ素原子で置換されたアルキレン基、フッ素原子で置換されたアルキル基、及び、フッ素原子で置換されたアリール基は、フッ素原子以外の置換基をさらに有していてもよい。
 フッ素原子で置換されたアルキル基及びフッ素原子で置換されたアリール基の例としては、例えば、特開2011-100089号公報の段落番号0266~0272を参酌することができ、この内容は本明細書に組み込まれる。
 含フッ素重合性化合物は、フッ素原子で置換されたアルキレン基と酸素原子とが連結した基X(式(X)で表される基(繰り返し単位))を含むことが好ましく、パーフルオロアルキレンエーテル基を含むことがより好ましい。
 式(X)  -(LA-O)-
 上記LAは、フッ素原子で置換されたアルキレン基を表す。なお、アルキレン基中の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、1~5であることがさらに好ましい。なお、上記フッ素原子で置換されたアルキレン基中には、酸素原子が含まれていてもよい。
 また、フッ素原子で置換されたアルキレン基は直鎖状であっても、分岐鎖状であってもよい。
 パーフルオロアルキレンエーテル基とは、上記LAがパーフルオロアルキレン基であることを意図する。パーフルオロアルキレン基とは、アルキレン基中の水素原子がすべてフッ素原子で置換された基を意図する。
 式(X)で表される基(繰り返し単位)は繰り返して連結していてもよく、その繰り返し単位数は特に制限されないが、本発明の効果がより優れる点で、1~50が好ましく、1~20がより好ましい。
 つまり、式(X-1)で表される基であることが好ましい。
 式(X-1)  -(LA-O)r
 式(X-1)中、LAは上記の通りであり、rは繰り返し単位数を表し、その好適範囲は上述の通りである。
 なお、複数の-(LA-O)-中のLAは同一であっても異なっていてもよい。
 含フッ素重合性化合物がモノマーである場合、1分子中における、フッ素原子、珪素原子、炭素数8以上の直鎖アルキル基、及び、炭素数3以上の分鎖アルキル基からなる群から選択される1種以上の基の数が1~20であることが好ましく、3~15であることがより好ましい。
 含フッ素重合性化合物がポリマーである場合、ポリマーは、下記式(B1)で表される繰り返し単位と、下記式(B2)で表される繰り返し単位及び式(B3)で表される繰り返し単位の少なくとも一方とを有することが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式(B1)~(B3)中、R1~R11は、それぞれ独立に、水素原子、アルキル基、又は、ハロゲン原子を表す。L1~L4は、それぞれ独立に、単結合又は2価の連結基を表す。X1は、(メタ)アクリロイルオキシ基、エポキシ基、又はオキセタニル基を表し、X2はフッ素原子で置換されたアルキル基またはフッ素原子で置換されたアリール基を表し、X3は式(X-1)で表される繰り返し単位を表す。
 式(B1)~(B3)中、R1~R11は、それぞれ独立に、水素原子又はアルキル基であることが好ましい。R1~R11がアルキル基を表す場合、炭素数1~3のアルキル基が好ましい。R1~R11がハロゲン原子を表す場合、フッ素原子が好ましい。
 式(B1)~(B3)中、L1~L4が2価の連結基を表す場合、2価の連結基としては、ハロゲン原子が置換していてもよいアルキレン基、ハロゲン原子が置換していてもよいアリーレン基、-NR12-、-CONR12-、-CO-、-CO2-、SO2NR12-、-O-、-S-、-SO2-、又は、これらの組み合わせが挙げられる。なかでも、炭素数2~10のハロゲン原子が置換していてもよいアルキレン基及び炭素数6~12のハロゲン原子が置換していてもよいアリーレン基からなる群から選択される少なくとも1種、又は、これらの基と-NR12-、-CONR12-、-CO-、-CO2-、SO2NR12-、-O-、-S-、及びSO2-からなる群から選択される少なくとも1種の基との組み合わせからなる基が好ましく、炭素数2~10のハロゲン原子が置換していてもよいアルキレン基、-CO2-、-O-、-CO-、-CONR12-、又は、これらの基の組み合わせからなる基がより好ましい。ここで、上記R12は、水素原子又はメチル基を表す。
 上記式(B1)で表される繰り返し単位の含有量は、含フッ素重合性化合物中の全繰り返し単位に対して、30~95モル%であることが好ましく、45~90モル%であることがより好ましい。式(B1)で表される繰り返し単位の含有量は、含フッ素重合性化合物中の全繰り返し単位に対して、30モル%以上が好ましく、45モル%以上がより好ましい。
 上記式(B2)で表される繰り返し単位及び式(B3)で表される繰り返し単位の合計含有量は、含フッ素重合性化合物中の全繰り返し単位に対して、5~70モル%であることが好ましく、10~60モル%であることがより好ましい。上記式(B2)で表される繰り返し単位及び式(B3)で表される繰り返し単位の合計含有量は、含フッ素重合性化合物中の全繰り返し単位に対して、5モル%以上が好ましく、10モル%以上がより好ましい。
 なお、式(B2)で表される繰り返し単位が含まれず、式(B3)で表される繰り返し単位が含まれる場合は、式(B2)で表される繰り返し単位の含有量は0モル%として、式(B3)で表される繰り返し単位の含有量が上記範囲であることが好ましい。
 また、含フッ素重合性化合物は、上記式(B1)~(B3)で表される繰り返し単位以外の他の繰り返し単位を有していてもよい。他の繰り返し単位の含有量は、含フッ素重合性化合物中の全繰り返し単位に対して、10モル%以下であることが好ましく、1モル%以下であることがより好ましい。
 含フッ素重合性化合物がポリマーである場合、重量平均分子量(Mw:ポリスチレン換算)が5,000~100,000であることが好ましく、7,000~50,000であることがより好ましい。硬化性化合物Aがポリマーである場合、重量平均分子量は、5,000以上が好ましく、7,000以上がより好ましい。
 また、含フッ素重合性化合物がポリマーである場合、分散度(重量平均分子量/数平均分子量)は、1.80~3.00であることが好ましく、2.00~2.90であることがより好ましい。
 GPC(ゲル浸透クロマトグラフィー)法は、HLC-8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
 含フッ素重合性化合物の市販品としては、例えば、DIC社製のメガファックRS-72-K、メガファックRS-75、メガファックRS-76-E、メガファックRS-76-NS、メガファックRS-77等を利用することができる。
 重合性化合物の含有量は、赤外線吸収組成物の全固形分に対し、1~50質量%が好ましい。下限は、2質量%以上が好ましく、3質量%以上がより好ましい。上限は、40質量%以下が好ましく、30質量%以下がより好ましい。
<<光重合開始剤>>
 赤外線吸収組成物は、光重合開始剤を含有してもよい。
 光重合開始剤の含有量は、赤外線吸収組成物の全固形分に対し、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。
 光重合開始剤は、1種のみでも、2種以上でもよく、2種以上の場合は、合計量が上記範囲となることが好ましい。
 光重合開始剤としては、光により硬化性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができる。光で重合を開始させる場合、紫外線領域から可視の光線に対して感光性を有するものが好ましい。
 光重合開始剤としては、少なくとも芳香族基を有する化合物であることが好ましく、例えば、アシルホスフィン化合物、アセトフェノン系化合物、α-アミノケトン化合物、ベンゾフェノン系化合物、ベンゾインエーテル系化合物、ケタール誘導体化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、ベンゾインエーテル系化合物、ケタール誘導体化合物、メタロセン化合物等のオニウム塩化合物、有機硼素塩化合物、ジスルホン化合物、チオール化合物などが挙げられる。
 光重合開始剤としては、特開2013-253224号公報の段落番号0217~0228の記載を参酌することができ、この内容は本明細書に組み込まれる。
 オキシム化合物としては、市販品であるIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司社製)、アデカアークルズNCI-831(ADEKA社製)、アデカアークルズNCI-930(ADEKA社製)等を用いることができる。
 アセトフェノン系化合物としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。またアシルホスフィン化合物としては市販品であるIRGACURE-819やDAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報記載の化合物、特表2014-500852号公報記載の化合物24、36~40、特開2013-164471号公報記載の化合物(C-3)などが挙げられる。この内容は本明細書に組み込まれることとする。
<<溶剤>>
 赤外線吸収組成物は溶剤を含有してもよい。溶剤は、特に制限はなく、赤外線吸収組成物の各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、有機溶剤を用いることができ、有機溶剤が好ましい。
 有機溶剤としては、例えば、アルコール類(例えばメタノール)、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の溶剤を併用する場合、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、およびプロピレングリコールモノメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。
 アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報の段落番号0136等に記載のものが挙げられ、この内容は本明細書に組み込まれる。また、エステル類、ケトン類、エーテル類の具体例としては、特開2012-208494号公報の段落番号0497(対応する米国特許出願公開第2012/0235099号明細書の[0609])に記載のものが挙げられ、さらに、酢酸-n-アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、エチレングリコールモノブチルエーテルアセテートなどが挙げられる。
 赤外線吸収組成物中における溶剤の量は、固形分が10~90質量%となる量が好ましい。下限は、20質量%以上が好ましい。上限は、80質量%以下が好ましい。
<<界面活性剤>>
 赤外線吸収組成物は、界面活性剤を含有してもよい。界面活性剤は、1種のみを用いてもよいし、2種以上を組み合わせてもよい。界面活性剤の含有量は、赤外線吸収組成物の全固形分に対して、0.0001~5質量%が好ましい。下限は、0.005質量%以上が好ましく、0.01質量%以上がより好ましい。上限は、2質量%以下が好ましく、1質量%以下がより好ましい。
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。赤外線吸収組成物は、フッ素系界面活性剤およびシリコーン系界面活性剤の少なくとも一方を含有することが好ましい。被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善される。このため、組成物の液特性(特に、流動性)が向上し、塗布厚の均一性や省液性がより改善する。その結果、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成を行える。
 フッ素系界面活性剤のフッ素含有率は、3~40質量%が好ましい。下限は、5質量%以上が好ましく、7質量%以上が更に好ましい。上限は、30質量%以下が好ましく、25質量%以下が更に好ましい。フッ素含有率が上述した範囲内である場合は、塗布膜の厚さの均一性や省液性の点で効果的であり、溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2014-41318号公報の段落番号0060~0064(対応する国際公開WO2014/17669号パンフレットの段落番号0060~0064)等に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファック F-171、同F-172、同F-173、同F-176、同F-177、同F-141、同F-142、同F-143、同F-144、同R30、同F-437、同F-475、同F-479、同F-482、同F-554、同F-780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)等が挙げられる。
 また、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000047
 上記の化合物の重量平均分子量は、例えば、14,000である。
 ノニオン系界面活性剤として具体的には、特開2012-208494号公報の段落番号0553(対応する米国特許出願公開第2012/0235099号明細書の[0679])等に記載のノニオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
 カチオン系界面活性剤として具体的には、特開2012-208494号公報の段落番号0554(対応する米国特許出願公開第2012/0235099号明細書の[0680])に記載のカチオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、特開2012-208494号公報の段落番号0556(対応する米国特許出願公開第2012/0235099号明細書の[0682])等に記載のシリコーン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
<<重合禁止剤>>
 赤外線吸収組成物は、重合禁止剤を含有してもよい。
 重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられ、p-メトキシフェノールが好ましい。
 重合禁止剤の含有量は、赤外線吸収組成物の全固形分に対して、0.01~5質量%が好ましい。
<<紫外線吸収剤>>
 赤外線吸収組成物は、紫外線吸収剤を含有してもよい。
 紫外線吸収剤は、公知の化合物を用いることができる。市販品としては、例えば、UV503(大東化学株式会社)などが挙げられる。
 紫外線吸収剤の含有量は、赤外線吸収組成物の全固形分に対して、0.01~10質量%であることが好ましく、0.01~5質量%であることがより好ましい。
<<<<他の成分>>>>
 赤外線吸収組成物は、例えば、分散剤、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤、密着促進剤およびその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)をさらに含有することができる。
 これらの成分は、例えば、特開2012-003225号公報の段落番号0183~0228(対応する米国特許出願公開第2013/0034812号明細書の[0237]~[0309])、特開2008-250074号公報の段落番号0101~0102、段落番号0103~0104、段落番号0107~0109、特開2013-195480号公報の段落番号0159~0184等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<赤外線吸収組成物の調製方法>
 赤外線吸収組成物は、上記各成分を混合して調製できる。
 赤外線吸収組成物は、異物の除去や欠陥の低減などの目的で、フィルタで濾過することが好ましい。フィルタは、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)が好ましい。
 フィルタの孔径は、0.01~7.0μmが好ましく、0.01~2.5μmがより好ましく、0.01~1.5μmが更に好ましい。フィルタの孔径を上記範囲とすることにより、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせても良い。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルターを組み合わせて2回以上フィルタリングを行う場合は、1回目のフィルタリングの孔径より2回目以降の孔径が大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.5~7.0μmが好ましく、2.5~7.0μmがより好ましく、4.5~6.0μmが更に好ましい。フィルタの孔径を上記範囲とすることにより、組成物混合液に含有されている成分粒子を残存させたまま、後工程でおいて均一及び平滑な遮光性組成物の調製を阻害する異物を除去することができる。
 例えば、第1のフィルタでのフィルタリングの後に、他の成分を追加し、第2のフィルタリングを行ってもよい。
 赤外線吸収組成物の粘度は、例えば、塗布により赤外線吸収層を形成する場合、1~3000mPa・sの範囲にあることが好ましい。下限は、10mPa・s以上が好ましく、100mPa・s以上がより好ましい。上限は、2000mPa・s以下が好ましく、1500mPa・s以下がより好ましい。
<赤外線吸収層の形成方法>
 赤外線吸収層は、上記赤外線吸収組成物を、銅を含有する透明層、支持体、後述する誘電体多層膜等に適用し、乾燥して形成できる。膜厚は、目的に応じて適宜選択することができる。
 赤外線吸収組成物の適用方法としては、滴下法(ドロップキャスト)、スピンコーター、スリットスピンコーター、スリットコーター、スクリーン印刷、アプリケータ塗布等の方法により実施できる。
 乾燥条件としては、各成分、溶剤の種類、使用割合等によっても異なるが、60℃~150℃の温度で30秒間~15分間程度である。
 赤外線吸収層の形成方法において、その他の工程を含んでいても良い。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前加熱工程(プリベーク工程)、硬化処理工程、後加熱工程(ポストベーク工程)などが挙げられる。
<<前加熱工程・後加熱工程>>
 前加熱工程および後加熱工程における加熱温度は、通常、80℃~200℃であり、90℃~150℃であることが好ましい。前加熱工程および後加熱工程における加熱時間は、通常、30秒~240秒であり、60秒~180秒であることが好ましい。
<<硬化処理工程>>
 硬化処理工程は、必要に応じ、形成された上記膜に対して硬化処理を行う工程であり、この処理を行うことにより、赤外線吸収層の機械的強度が向上する。重合性化合物を含む赤外線吸収組成物を用いた場合、硬化処理工程を行うことが好ましい。
 上記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、X線などの放射線照射をも包含する意味で用いられる。
 露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、電子線、KrF、ArF、g線、h線、i線等の紫外線や可視光が好ましく用いられる。
 露光方式としては、ステッパー露光や、高圧水銀灯による露光などが挙げられる。
 露光量は5~3000mJ/cm2が好ましく、10~2000mJ/cm2がより好ましく、50~1000mJ/cm2が特に好ましい。
 全面露光処理の方法としては、例えば、形成された上記膜の全面を露光する方法が挙げられる。赤外線吸収性組成が重合性化合物を含有する場合、全面露光により、膜中の重合成分の硬化が促進され、上記膜の硬化が更に進行し、赤外線吸収層の耐溶剤性や耐熱性が向上する。
 上記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
 また、全面加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。全面加熱により、赤外線吸収層の耐溶剤性や耐熱性が向上する。
 全面加熱における加熱温度は、120℃~250℃が好ましく、160℃~220℃がより好ましい。加熱温度が120℃以上であれば、加熱処理によって膜強度が向上し、250℃以下であれば、膜成分の分解を抑制できる。
 全面加熱における加熱時間は、3分~180分が好ましく、5分~120分がより好ましい。
 全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
<<誘電体多層膜>>
 本発明の赤外線カットフィルタは、誘電体多層膜を有することが好ましい。誘電体多層膜を有することで、視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタが得られ易い。
 なお、本発明において、誘電体多層膜は、光の干渉の効果を利用して赤外線を遮光する膜である。すなわち、誘電体多層膜は、赤外線を反射する能力を有する膜を意味する。具体的には、屈折率の異なる誘電体層(高屈折率材料層と低屈折率材料層)を、交互に2層以上積層してなる膜である。
 また、赤外線を吸収して赤外線を遮光する膜(赤外線吸収剤を含有する膜)は、赤外線吸収膜に該当し、誘電体多層膜とは異なる。
 本発明において、誘電体多層膜は、銅を含有する透明層の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合には、製造コストや製造容易性に優れる。両面に設ける場合には、高い強度を有し、反りの生じにくい赤外線カットフィルタを得ることができる。また、誘電体多層膜は、銅を含有する透明層と接していてもよく、接していなくてもよい。
 本発明の赤外線カットフィルタは、銅を含有する透明層と誘電体多層膜との間に、赤外線吸収層を有し、赤外線吸収層と誘電体多層膜とが接していることが好ましい。このような構成とすることにより、赤外線吸収層が、誘電体多層膜により酸素や湿度から遮断され、赤外線カットフィルタの耐光性や耐湿性が良化する。更には、視野角が広く、赤外線遮蔽性に優れた赤外線カットフィルタが得られ易い。
 誘電体多層膜の材料としては、例えばセラミックを用いることができる。光の干渉の効果を利用した赤外線カットフィルタを形成するためには、屈折率の異なるセラミックを2種以上用いることが好ましい。誘電体多層膜としては具体的には、高屈折率材料層と低屈折率材料層とを交互に積層した構成を好適に用いることができる。
 高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率の範囲が通常は1.7~2.5の材料が選択される。この材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウムを主成分とし酸化チタン、酸化錫および/または酸化セリウムなどを少量含有させたものが挙げられる。
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率の範囲が通常は1.2~1.6の材料が選択される。この材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。
 誘電体多層膜を形成する方法としては、特に制限はないが、例えば、CVD(chemical vapor deposition)法、スパッタ法、真空蒸着法などにより、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成し、これを、銅を含有する透明層および/または赤外線吸収層と接着剤で張り合わせる方法、
銅を含有する透明層および/または赤外線吸収層の表面に、CVD法、スパッタ法、真空蒸着法などにより、高屈折率材料層と低屈折率材料層とを交互に積層して誘電体多層膜を形成する方法を挙げることができる。
 高屈折率材料層および低屈折率材料層の各層の厚みは、遮断しようとする赤外線波長λ(nm)の0.1λ~0.5λの厚みであることが好ましい。厚みが上記範囲とすることにより、特定波長の遮断・透過をコントロールしやすい。
 また、誘電体多層膜における積層数は、2~100層が好ましく、2~60層がより好ましく、2~40層が更に好ましい。誘電体多層膜を蒸着した際に基板に反りが生じてしまう場合には、これを解消するために、基板両面へ誘電体多層膜を蒸着する、基板の誘電多層膜を蒸着した面に紫外線等の放射線を照射する等の方法をとる事ができる。なお、放射線を照射する場合、誘電体多層膜の蒸着を行いながら照射してもよいし、蒸着後別途照射してもよい。
<赤外線カットフィルタの層構成>
 本発明の赤外線カットフィルタは、銅を含有する透明層と、赤外線吸収層とを有する構造であればよい。一例として、図1に示す積層構造が挙げられる。図1において、1は銅を含有する透明層であり、2は赤外線吸収層である。
 本発明の赤外線カットフィルタの層構成の一例を以下に示す。以下において、銅を含有し、かつ、赤外線吸収剤を含有しない層を層A、銅と赤外線吸収剤とを含有する層を層A1、赤外線吸収剤を含有する層を層B、誘電体多層膜を層Cと記載する。
 以下に示す層構成のうち、層Aの両面に層Bを有する層構成である(9)、(10)、(25)、(26)、(32)が好ましい。なかでも、(9)、(10)が好ましい。
 また、層A1を有する(38)~(50)も好ましく、(38)がより好ましい。
(1)層A/層B
(2)層A/層B/層C
(3)層A/層C/層B
(4)支持体/層B/層A
(5)支持体/層B/層A/層C
(6)支持体/層B/層C/層A
(7)支持体/層C/層A/層B
(8)支持体/層C/層B/層A
(9)層B/層A/層B
(10)層B/層A/層B/層C
(11)層B/層A/層C/層B
(12)層B/支持体/層B/層A
(13)層B/支持体/層B/層A/層C
(14)層B/支持体/層B/層C/層A
(15)層B/支持体/層C/層A/層B
(16)層B/支持体/層C/層B/層A
(17)層C/層A/層B
(18)層C/層A/層B/層C
(19)層C/層A/層C/層B
(20)層C/支持体/層B/層A
(21)層C/支持体/層B/層A/層C
(22)層C/支持体/層B/層C/層A
(23)層C/支持体/層C/層A/層B
(24)層C/支持体/層C/層B/層A
(25)層C/層B/層A/層B/層C
(26)層C/層B/層A/層C/層B
(27)層C/層B/支持体/層B/層A
(28)層C/層B/支持体/層B/層A/層C
(29)層C/層B/支持体/層B/層C/層A
(30)層C/層B/支持体/層C/層A/層B
(31)層C/層B/支持体/層C/層B/層A
(32)層B/層C/層A/層C/層B
(33)層B/層C/支持体/層B/層A
(34)層B/層C/支持体/層B/層A/層C
(35)層B/層C/支持体/層B/層C/層A
(36)層B/層C/支持体/層C/層A/層B
(37)層B/層C/支持体/層C/層B/層A
(38)層A1
(39)層A1/層C
(40)層C/層A1/層C
(41)支持体/層A1/層C
(42)支持体/層C/層A1
(43)層A1/支持体/層A1/層C
(44)層C/支持体/層A1/層C
(45)層A1/支持体/層C/層A1
(46)層C/支持体/層C/層A1
(47)層C/層A1/支持体/層A1/層C
(48)層A1/層C/支持体/層A1/層C
(49)層C/層A1/支持体/層C/層A1
(50)層A1/層C/支持体/層C/層A1
<赤外線カットフィルタの用途>
 本発明の赤外線カットフィルタは、赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f-θレンズ、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルタなどに用いられる。またCCDカメラ用ノイズカットフィルタ、CMOSイメージセンサ用フィルタとしても有用である。
 また、有機エレクトロルミネッセンス(有機EL)素子や太陽電池素子等にも好ましく用いることができる。
<キット>
 本発明のキットは、銅を含有する透明層と、赤外線吸収剤を含有する層とを有する赤外線カットフィルタを製造するためのキットであって、
 銅を含有する透明部材と、
 赤外線吸収剤を含有する赤外線吸収組成物、とを有する。
 赤外線吸収組成物としては、赤外線カットフィルタの赤外線吸収層で説明した赤外線吸収組成物と同義であり、好ましい範囲も同様である。
 銅を含有する透明部材は、赤外線カットフィルタの銅を含有する透明層で説明した材料を用いることができ、好ましい範囲も同様である。
<固体撮像素子>
 本発明の固体撮像素子は、本発明の赤外線カットフィルタを含む。赤外線カットフィルタを含む固体撮像素子の詳細については、特開2015-044188号公報の段落番号0106~0107の記載、特開2014-132333号公報の段落番号0010~0012の記載を参酌でき、この内容は本明細書に含まれる事とする。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。また、以下において、プロピレングリコールモノメチルエーテルアセテートをPGMEAと記す。また、NMRは核磁気共鳴の略称である。また、以下の化学式中、Meはメチル基を表し、Phはフェニル基を表す。
<赤外線カットフィルタ>
<<銅を含有する透明層>>
・銅を含有する透明層1(銅含有ガラス基材):フツリン酸塩ガラス(旭テクノグラス社製、NF-50、厚さ0.5mm)を用いた。
・銅を含有する透明層2:以下に示す銅錯体を45質量部と、以下に示す樹脂を49.9質量部と、IRGACURE-OXE02(BASF社製)を5質量部と、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)を0.1質量部と、シクロヘキサノンを66.7質量部と、水を0.5質量部、を混合して銅錯体含有組成物を調製した。得られた銅錯体含有組成物を、ガラスウェハ上に乾燥後の膜厚が100μmになるようにスピンコーターを用いて塗布し、150℃のホットプレートを用いて3時間加熱処理を行って、銅を含有する透明層2を作製した。銅を含有する透明層2は、ガラスウエハと、銅錯体含有組成物からなる銅錯体含有層との積層体である。
銅錯体:下記構造
Figure JPOXMLDOC01-appb-C000048
樹脂:下記構造
Figure JPOXMLDOC01-appb-C000049
・銅を含有する透明層3:銅を含有する透明層2の銅錯体のうち、22.5質量部を以下に示す化合物の置き換えた以外は同様にして銅を含有する透明層3を得た。
Figure JPOXMLDOC01-appb-C000050
・銅を含有する透明層4:銅を含有する透明層3に下記赤外線吸収剤(下記化合物A-52)0.14質量部を添加した以外は同様にして銅を含有する透明層4(銅と赤外線吸収剤とを有する層)を得た。
Figure JPOXMLDOC01-appb-C000051
・銅を含有する透明層5:銅を含有する透明層1の片面に、高屈折率誘電膜であるTiO2膜と、低屈折率誘電膜であるSiO2膜を蒸着により、交互に21層ずつ積層して誘電体多層膜(TiO2膜とSiO2膜との合計積層42層、合計膜厚4300.82nm)を形成し、銅を含有する透明層5(誘電体多層膜付き銅含有ガラス基材)を得た。
 誘電体多層膜の各膜厚を下記表に示す。以下の表において、左蘭の数字は積層順番である。1番が銅含有ガラス基材側であり、42番が最表面である。すなわち、銅含有ガラス基材上に、1番から順に各層を積層して誘電体多層膜を形成した。
Figure JPOXMLDOC01-appb-T000052
<<赤外線吸収層>>
<<赤外線吸収組成物の調製>>
(赤外線吸収組成物1)
 以下に示す樹脂Aを8.04質量部と、以下に示す化合物SQ-23を0.1質量部と、重合性化合物としてKAYARAD DPHA(日本化薬(株)社製)を0.07質量部と、メガファックRS-72K(DIC(株)社製)を0.265質量部と、光重合開始剤として下記化合物を0.38質量部と、溶剤としてPGMEAを82.51質量部とを混合し、撹拌した後、孔径0.5μmのナイロン製フィルタ(日本ポール(株)社製)でろ過して、赤外線吸収組成物を調製した。
樹脂A:下記化合物(Mw:41000)
Figure JPOXMLDOC01-appb-C000053
化合物SQ-23:下記構造
Figure JPOXMLDOC01-appb-C000054
光重合開始剤:下記構造
Figure JPOXMLDOC01-appb-C000055
 メガファックRS-72Kには、フッ素原子を有するアルキレン基、及び、アクリロイルオキシ基が含まれていた。
(赤外線吸収組成物2)
 化合物SQ-23のかわりに、下記化合物A-52を用いた以外は、赤外線吸収組成物1と同様にして、赤外線吸収組成物2を調製した。
Figure JPOXMLDOC01-appb-C000056
(赤外線吸収組成物3)
 イオン交換水69.5質量部に下記化合物C-15を0.5質量部溶解させ、更にゼラチンの10質量%水溶液30.0質量部を加え、更に硬膜剤として1,3-ジビニルスルホニル-2-プロパノールを0.3質量部加え攪拌することで、赤外線吸収組成物3を調製した。
Figure JPOXMLDOC01-appb-C000057
(赤外線吸収組成物4)
 化合物C-15のかわりに、下記化合物31用いた以外は、赤外線吸収組成物3と同様にして、赤外線吸収組成物4を調製した。
Figure JPOXMLDOC01-appb-C000058
<赤外線カットフィルタの作製>
 上記で調製した各赤外線吸収組成物を、銅を含有する透明層の表面に、スピンコーター(ミカサ(株)社製)を用いて塗布し、塗膜を形成し、100℃,120秒間の前加熱(プリベーク)を行った後、i線ステッパーを用い、1000mJ/cm2で全面露光を行った。次いで、220℃、300秒間の後加熱(ポストベーク)を行い、膜厚0.8μmの赤外線吸収層を形成し、赤外線カットフィルタを得た。
<B/A比>
 赤外線カットフィルタを、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、3-メトキシプロピオン酸メチル(MMP)、乳酸エチル(EL)、アセトンおよびエタノールのそれぞれに25℃で2分間浸漬し、各有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、各有機溶剤に25℃で2分間浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率を測定し、下記基準に従って評価した。
 5:B/A≧0.95
 4:0.95>B/A≧0.90
 3:0.90>B/A≧0.80
 2:0.80>B/A≧0.70
 1:0.70>B/A
<耐光性>
 赤外線カットフィルタに対し、キセノンランプを5万ルクスで20時間照射した後、耐光テスト前後の色差のΔEab値を測定した。ΔEab値の小さい方が耐光性が良好であることを示す。
 なお、ΔEab値は、CIE1976(L*,a*,b*)空間表色系による以下の色差公式から求められる値である(日本色彩学会編 新編色彩科学ハンドブック(昭和60年)p.266)。
ΔEab={(ΔL*)2+(Δa*)2+(Δb*)21/2
 <<判定基準>>
 5:ΔEab値<3
 4:3≦ΔEab値<5
 3:5≦ΔEab値<10
 2:10≦ΔEab値<20
 1:20≦ΔEab値
<耐熱性>
 赤外線カットフィルタを、ホットプレートにより260℃で30分加熱した後、色度計MCPD-1000(大塚電子製)にて、耐熱テスト前後の色差のΔEab値を測定して、下記基準に従って評価した。ΔEab値の小さい方が耐熱性が良好であることを示す。
 <<判定基準>>
 5:ΔEab値<3
 4:3≦ΔEab値<5
 3:5≦ΔEab値<10
 2:10≦ΔEab値<20
 1:20≦ΔEab値
<赤外線遮蔽性>
 赤外線カットフィルタ面に対し垂直から測定した700~1000nmの平均透過率を以下の基準に従って評価した。
 5:1%未満
 4:1%以上3%未満
 3:3%以上5%未満
 2:5%以上10%未満
 1:10%以上
<視野角依存性>
 入射角を赤外線カットフィルタ面に対し垂直(角度0度)及び40度に変化させ、波長600nm以上の可視から近赤外線領域における、分光透過率の低下によるスロープの透過率が50%となる波長のシフト量を、下記基準に従って評価した。
 5:5nm未満
 4:5nm以上10nm未満
 3:10nm以上20nm未満
 2:20nm以上30nm未満
 1:30nm以上
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
 上記結果より、実施例1~14は、赤外線遮蔽性および視野角依存性に優れていた。また、B/Aが0.9以上であった。この赤外線カットフィルタは、各有機溶剤に浸漬後も欠陥がなかった。
 赤外線吸収組成物1において、「KAYARAD DPHA」を、同量のエチレンオキシ変性ペンタエリスリトールテトラアクリレート(NKエステルATM-35E;新中村化学工業社製)、ジペンタエリスリトールトリアクリレート(KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(KAYARAD D-320;日本化薬株式会社製)、または、ジペンタエリスリトールペンタ(メタ)アクリレート(KAYARAD D-310;日本化薬株式会社製)に変更しても同様の効果が得られる。
 赤外線吸収組成物1において、樹脂Aを、同量の下記樹脂に変更しても同様の効果が得られる。
Figure JPOXMLDOC01-appb-C000062
 赤外線吸収組成物1において、本明細書の段落番号0167に記載の界面活性剤を、赤外線吸収組成物の全固形分に対して、0.0001~5質量%の範囲でさらに添加しても、同様の効果が得られる。
 赤外線吸収組成物1において、PGMEAを、本明細書の段落番号0165に記載の溶剤に置き換えても同様の効果が得られる。
1:銅を含有する透明層
2:赤外線吸収層

Claims (16)

  1.  銅を含有する透明層を有し、
     前記銅を含有する透明層が更に赤外線吸収剤を含有するか、あるいは、赤外線吸収剤を含有する層を更に有する、赤外線カットフィルタ。
  2.  前記赤外線カットフィルタは、600nm以上の波長領域に極大吸収波長を有し、
     前記赤外線カットフィルタを、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、乳酸エチル、アセトンおよびエタノールから選ばれる少なくとも1種の有機溶剤に浸漬する前の、極大吸収波長における吸光度Aと、
     前記赤外線カットフィルタを、有機溶剤に25℃で2分浸漬した後の、吸光度Aを測定した波長での吸光度Bとの比率であるB/Aが0.9以上である、請求項1に記載の赤外線カットフィルタ。
  3.  赤外線吸収剤を含有する層は、樹脂を含む、請求項1または2に記載の赤外線カットフィルタ。
  4.  赤外線吸収剤を含有する層は、三次元架橋物を含む、請求項1~3のいずれか1項に記載の赤外線カットフィルタ。
  5.  前記三次元架橋物は、2個以上の重合性基を有する重合性化合物を硬化してなるものである、請求項4に記載の赤外線カットフィルタ。
  6.  赤外線吸収剤を含有する層は、ゼラチンを含む、請求項1~5のいずれか1項に記載の赤外線カットフィルタ。
  7.  前記赤外線吸収剤は、波長675~900nmの波長領域に極大吸収波長を有する化合物である、請求項1~6のいずれか1項に記載の赤外線カットフィルタ。
  8.  前記赤外線吸収剤は、有機色素を含む、請求項1~7のいずれか1項に記載の赤外線カットフィルタ。
  9.  前記赤外線吸収剤は、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、および、ナフタロシアニン化合物から選択される少なくとも1種を含有する、請求項1~8のいずれか1項に記載の赤外線カットフィルタ。
  10.  前記赤外線吸収剤は、下記一般式1~3で表される化合物から選択される少なくとも1種である、請求項1~9のいずれか1項に記載の赤外線カットフィルタ;
    一般式1
    Figure JPOXMLDOC01-appb-C000001
     一般式1中、環Aおよび環Bは、それぞれ独立に、芳香族環を表し、
     XAおよびXBはそれぞれ独立に置換基を表し、
     GAおよびGBはそれぞれ独立に置換基を表し、
     kAは0~nAの整数を表し、kBは0~nBの整数を表し、
     nAは、環Aに置換可能な最大の整数を表し、nBは、環Bに置換可能な最大の整数を表し、
     XAとGA、XBとGBは互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環を形成していても良い;
    一般式2
    Figure JPOXMLDOC01-appb-C000002
     一般式2中、R1aおよびR1bは、それぞれ独立に、アルキル基、アリール基またはヘテロアリール基を表し、
     R2~R5は、それぞれ独立に、水素原子または置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
     R6およびR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BRAB、または金属原子を表し、RAおよびRBは、各々独立に、水素原子または置換基を表し、
     R6は、R1aまたはR3と、共有結合もしくは配位結合していてもよく、R7は、R1bまたはR5と、共有結合もしくは配位結合していてもよい;
    一般式3
    Figure JPOXMLDOC01-appb-C000003
     一般式3中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子団であり、
     R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
     L1は、奇数個のメチンからなるメチン鎖を表し、
     aおよびbは、それぞれ独立に、0または1であり、
     aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
     式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
  11.  前記赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物である、請求項1~10のいずれか1項に記載の赤外線カットフィルタ。
  12.  銅を含有する透明層と、赤外線吸収剤を含有する層とを有し、
     前記銅を含有する透明層の両面に、前記赤外線吸収剤を含有する層を有する、請求項1~11のいずれか1項に記載の赤外線カットフィルタ。
  13.  更に、誘電体多層膜を有する、請求項1~12のいずれか1項に記載の赤外線カットフィルタ。
  14.  銅を含有する透明層と、赤外線吸収剤を含有する層と、誘電体多層膜とを有し、
     前記銅を含有する透明層と前記誘電体多層膜との間に、前記赤外線吸収剤を含有する層を有し、前記赤外線吸収剤を含有する層と前記誘電体多層膜とが接している、請求項13に記載の赤外線カットフィルタ。
  15.  銅を含有する透明層と、赤外線吸収剤を含有する層とを有する赤外線カットフィルタを製造するためのキットであって、
     銅を含有する透明部材と、
     赤外線吸収剤を含有する赤外線吸収組成物と、を有するキット。
  16.  請求項1~14のいずれか1項に記載の赤外線カットフィルタを有する、固体撮像素子。
PCT/JP2016/059811 2015-03-31 2016-03-28 赤外線カットフィルタ、キット、および固体撮像素子 WO2016158818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017509948A JPWO2016158818A1 (ja) 2015-03-31 2016-03-28 赤外線カットフィルタ、キット、および固体撮像素子
US15/717,025 US20180017720A1 (en) 2015-03-31 2017-09-27 Infrared cut filter, kit, and solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072578 2015-03-31
JP2015-072578 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/717,025 Continuation US20180017720A1 (en) 2015-03-31 2017-09-27 Infrared cut filter, kit, and solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2016158818A1 true WO2016158818A1 (ja) 2016-10-06

Family

ID=57004343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059811 WO2016158818A1 (ja) 2015-03-31 2016-03-28 赤外線カットフィルタ、キット、および固体撮像素子

Country Status (4)

Country Link
US (1) US20180017720A1 (ja)
JP (1) JPWO2016158818A1 (ja)
TW (1) TW201641459A (ja)
WO (1) WO2016158818A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060236A (ja) * 2015-07-09 2018-04-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
JP2019174798A (ja) * 2018-03-27 2019-10-10 三星電子株式会社Samsung Electronics Co.,Ltd. 近赤外線吸収フィルム及び光学フィルタ並びに電子装置
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679232B (zh) * 2014-08-26 2019-12-11 日商富士軟片股份有限公司 組成物、硬化膜、近紅外線吸收濾波器、固體攝像元件、紅外線感測器、化合物
WO2016158819A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 赤外線カットフィルタ、および固体撮像素子
JP6232161B1 (ja) * 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ
JP6259155B1 (ja) * 2017-10-03 2018-01-10 日本板硝子株式会社 光学フィルタ及び撮像装置
KR102476708B1 (ko) * 2017-11-01 2022-12-09 삼성전자주식회사 광학 필터, 및 이를 포함하는 카메라 모듈 및 전자 장치
CN109188578B (zh) * 2018-09-25 2020-09-08 武汉大学 一种基于半导体材料的红外宽光谱光吸收器
KR20200112292A (ko) * 2019-03-21 2020-10-05 삼성전자주식회사 광학 구조체, 카메라 모듈 및 전자 장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (ja) * 2004-05-26 2005-12-08 Jsr Corp 近赤外線カットフィルターおよびその製造方法
JP2008088426A (ja) * 2006-09-06 2008-04-17 Nippon Kayaku Co Ltd 新規シアニン化合物及びその用途
JP2011208101A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp スクアリリウム化合物及びその製造方法並びに赤外線吸収剤
JP2012514063A (ja) * 2008-12-31 2012-06-21 エスケー ケミカルズ カンパニー リミテッド 銅フタロシアニン化合物およびこれを用いた近赤外線吸収フィルター
JP2012137647A (ja) * 2010-12-27 2012-07-19 Canon Electronics Inc 光学フィルタ
JP2014041318A (ja) * 2012-07-27 2014-03-06 Fujifilm Corp 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2014044431A (ja) * 2008-11-28 2014-03-13 Jsr Corp 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
JP2014130344A (ja) * 2012-11-30 2014-07-10 Fujifilm Corp 硬化性樹脂組成物、これを用いたイメージセンサチップの製造方法及びイメージセンサチップ
WO2014129366A1 (ja) * 2013-02-19 2014-08-28 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
JP2015001649A (ja) * 2013-06-17 2015-01-05 旭硝子株式会社 光学フィルタ
WO2015005448A1 (ja) * 2013-07-12 2015-01-15 富士フイルム株式会社 近赤外線カットフィルタの製造方法および固体撮像素子
JP2016027400A (ja) * 2014-07-04 2016-02-18 株式会社日本触媒 積層用樹脂組成物及びその用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056613B1 (ko) * 2012-08-23 2019-12-17 에이지씨 가부시키가이샤 근적외선 커트 필터 및 고체 촬상 장치
JP6183041B2 (ja) * 2012-08-23 2017-08-23 旭硝子株式会社 近赤外線カットフィルタ
JP2015017244A (ja) * 2013-06-12 2015-01-29 富士フイルム株式会社 硬化性組成物、硬化膜、近赤外線カットフィルタ、カメラモジュールおよびカメラモジュールの製造方法
JP6304254B2 (ja) * 2013-08-09 2018-04-04 旭硝子株式会社 光学部材とその製造方法、並びに撮像装置
JP6595610B2 (ja) * 2015-09-28 2019-10-23 富士フイルム株式会社 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、および固体撮像素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (ja) * 2004-05-26 2005-12-08 Jsr Corp 近赤外線カットフィルターおよびその製造方法
JP2008088426A (ja) * 2006-09-06 2008-04-17 Nippon Kayaku Co Ltd 新規シアニン化合物及びその用途
JP2014044431A (ja) * 2008-11-28 2014-03-13 Jsr Corp 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
JP2012514063A (ja) * 2008-12-31 2012-06-21 エスケー ケミカルズ カンパニー リミテッド 銅フタロシアニン化合物およびこれを用いた近赤外線吸収フィルター
JP2011208101A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp スクアリリウム化合物及びその製造方法並びに赤外線吸収剤
JP2012137647A (ja) * 2010-12-27 2012-07-19 Canon Electronics Inc 光学フィルタ
JP2014041318A (ja) * 2012-07-27 2014-03-06 Fujifilm Corp 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2014130344A (ja) * 2012-11-30 2014-07-10 Fujifilm Corp 硬化性樹脂組成物、これを用いたイメージセンサチップの製造方法及びイメージセンサチップ
WO2014129366A1 (ja) * 2013-02-19 2014-08-28 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
JP2015001649A (ja) * 2013-06-17 2015-01-05 旭硝子株式会社 光学フィルタ
WO2015005448A1 (ja) * 2013-07-12 2015-01-15 富士フイルム株式会社 近赤外線カットフィルタの製造方法および固体撮像素子
JP2016027400A (ja) * 2014-07-04 2016-02-18 株式会社日本触媒 積層用樹脂組成物及びその用途

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060236A (ja) * 2015-07-09 2018-04-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
WO2018155050A1 (ja) * 2017-02-24 2018-08-30 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JPWO2018155050A1 (ja) * 2017-02-24 2019-11-21 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
US11066537B2 (en) 2017-03-02 2021-07-20 Fujifilm Corporation Composition, film, infrared cut filter, solid image pickup element, infrared sensor, camera module, and novel compound
JP2019174798A (ja) * 2018-03-27 2019-10-10 三星電子株式会社Samsung Electronics Co.,Ltd. 近赤外線吸収フィルム及び光学フィルタ並びに電子装置
JP7252015B2 (ja) 2018-03-27 2023-04-04 三星電子株式会社 近赤外線吸収フィルム及び光学フィルタ並びに電子装置

Also Published As

Publication number Publication date
US20180017720A1 (en) 2018-01-18
JPWO2016158818A1 (ja) 2018-03-01
TW201641459A (zh) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2016158818A1 (ja) 赤外線カットフィルタ、キット、および固体撮像素子
JP6595610B2 (ja) 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、および固体撮像素子
TWI709641B (zh) 組成物、膜、近紅外線截止濾波器、積層體、圖案形成方法、固體攝像元件、圖像顯示裝置、紅外線感測器及濾色器
WO2016158819A1 (ja) 赤外線カットフィルタ、および固体撮像素子
TWI627209B (zh) 硬化性組成物、硬化膜、近紅外線截止濾波器、照相機模組及照相機模組的製造方法
JP6647381B2 (ja) 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物
TW201410813A (zh) 近紅外線吸收性液體組成物、使用其的近紅外線截止濾波器、堆疊、以及攝像模組及其製造方法
JPWO2017104735A1 (ja) 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
WO2017018004A1 (ja) 積層体、固体撮像素子、積層体の製造方法、キット
WO2016136784A1 (ja) 近赤外線吸収組成物、硬化膜、近赤外線吸収フィルタ、固体撮像素子および赤外線センサ
JP6709029B2 (ja) 組成物、組成物の製造方法、膜、近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
TW201829633A (zh) 樹脂組成物、樹脂膜、樹脂膜的製造方法、濾光器、固體攝像元件、圖像顯示裝置及紅外線感測器
JP2016045391A (ja) 組成物、硬化膜、近赤外線吸収フィルタ、固体撮像素子、赤外線センサ、色素
JP6611278B2 (ja) 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
TWI660036B (zh) 近紅外線截止濾波器、近紅外線吸收組成物、感光性樹脂組成物、硬化膜、化合物、照相機模組及照相機模組的製造方法
JP2017125953A (ja) 感放射線性組成物、膜、カラーフィルタ、遮光膜および固体撮像素子
JP2014139617A (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
JP6400654B2 (ja) 硬化性組成物、硬化膜、近赤外線カットフィルタ、カメラモジュールおよびカメラモジュールの製造方法
JP2014139616A (ja) リン酸ジエステル銅錯体、近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
TW201912723A (zh) 硬化性組成物、硬化膜、積層體、近紅外線截止濾光片、固體攝像元件、圖像顯示裝置及紅外線感測器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772699

Country of ref document: EP

Kind code of ref document: A1