JPWO2017104735A1 - 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置 - Google Patents

近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置 Download PDF

Info

Publication number
JPWO2017104735A1
JPWO2017104735A1 JP2017556116A JP2017556116A JPWO2017104735A1 JP WO2017104735 A1 JPWO2017104735 A1 JP WO2017104735A1 JP 2017556116 A JP2017556116 A JP 2017556116A JP 2017556116 A JP2017556116 A JP 2017556116A JP WO2017104735 A1 JPWO2017104735 A1 JP WO2017104735A1
Authority
JP
Japan
Prior art keywords
group
compound
resin
preferable
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017556116A
Other languages
English (en)
Other versions
JP6806706B2 (ja
Inventor
誠一 人見
誠一 人見
敬史 川島
敬史 川島
啓佑 有村
啓佑 有村
昂広 大河原
昂広 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017104735A1 publication Critical patent/JPWO2017104735A1/ja
Application granted granted Critical
Publication of JP6806706B2 publication Critical patent/JP6806706B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Abstract

耐溶剤性および耐熱衝撃耐性に優れた硬化膜を製造可能な近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置を提供する。下記条件a1を満たす樹脂Aと、赤外線吸収剤Bと、溶剤Dとを含有し、少なくとも、樹脂Aが架橋性基を有するか、あるいは、樹脂A以外の化合物であって架橋性基を有する化合物Cを含む、近赤外線吸収組成物。条件a1:樹脂Aが架橋性基を有さない場合、樹脂Aの示差走査熱量測定で測定したガラス転移温度が0〜100℃であり、樹脂Aが架橋性基を有する場合、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。

Description

本発明は、近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置に関する。
ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子である、電荷結合素子(CCD)や、相補型金属酸化膜半導体素子(CMOS)などが用いられている。これら固体撮像素子は、その受光部において近赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、近赤外線カットフィルタを用いることが多い。
特許文献1には、フタロシアニン化合物と樹脂とを含む近赤外線吸収組成物を用いて、近赤外線カットフィルタなどを製造することが記載されている。
一方、特許文献2には、基板と、基板上に配設されたテトラアザポルフィリン系色素と、ジイモニウム塩の非晶質体からなるジイモニウム系近赤外線吸収色素と、紫外線吸収剤と、銅錯体またはニッケル錯体からなる光安定剤と、アクリル系粘着剤を含有する粘着層とを備える光学フィルタが記載されている。同文献の段落0092には、アクリル系(共)重合体のガラス転移温度(Tg)は、−40〜40℃が好ましく、−30〜10℃がより好ましいとの記載がある。
特開2015−060183号公報 特開2015−001649号公報
近赤外線吸収組成物は、可視透過性、赤外線遮蔽性に優れた硬化膜を製造することに加えて、耐溶剤性に優れた硬化膜を製造することが求められている。硬化膜を多重塗布で形成したり、硬化膜上に保護膜などの他の膜などをさらに形成することがあるためである。
また、本発明者らが、赤外線吸収剤と樹脂とを含む近赤外線吸収組成物を用いて形成した硬化膜について検討したところ、このような硬化膜を寒暖差の大きい環境下で使用すると、硬化膜にひび、曇り、はがれなどの異常が生じることがあることが分かった。以下、硬化膜の寒暖差における耐久性を、耐熱衝撃性ともいう。特に、基材上に上述の近赤外線吸収組成物を用いて硬化膜を形成した場合、低温時に硬化膜が基材に引っ張られて、硬化膜にひびなどが生じやすく、耐熱衝撃性が劣り易いことが分かった。また、特許文献1に記載の近赤外線吸収組成物を用いた硬化膜においても、耐熱衝撃性が十分ではなかった。
一方、特許文献2は、ジイモニウム系近赤外線吸収色素とアクリル系粘着剤とを含む粘着層を有する光学フィルタに関する発明である。引用文献2では、同粘着層を含む光学フィルタの粘着層を、ディスプレイなどに貼付して使用している。しかしながら、特許文献2に記載の光学フィルタの粘着層は、耐溶剤性が劣るものであった。
よって、本発明は、耐溶剤性および耐熱衝撃耐性に優れた硬化膜を製造可能な近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置を提供することにある。
本発明者らが鋭意検討を行った結果、後述する構成の近赤外線吸収組成物を用いることで、本発明の目的を達成できることを見出し、本発明を完成するに至った。本発明は、以下を提供する。
<1> 下記条件a1を満たす樹脂Aと、赤外線吸収剤Bと、溶剤Dとを含有し、
少なくとも、樹脂Aが架橋性基を有するか、あるいは、樹脂A以外の化合物であって架橋性基を有する化合物Cを含む、近赤外線吸収組成物;
条件a1:樹脂Aが架橋性基を有さない場合、樹脂Aの示差走査熱量測定で測定したガラス転移温度が0〜100℃であり、樹脂Aが架橋性基を有する場合、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。
<2> 樹脂Aは、ホモポリマーのガラス転移温度が70℃以下の単量体成分由来の繰り返し単位を有する、<1>に記載の近赤外線吸収組成物。
<3> 樹脂Aは、架橋性基を有する繰り返し単位を含む、<1>または<2>に記載の近赤外線吸収組成物。
<4> 架橋性基が、エチレン性不飽和結合を有する基、環状エーテル基およびアルコキシシリル基から選ばれる少なくとも1種である、<1>〜<3>のいずれかに記載の近赤外線吸収組成物。
<5> 架橋性基が、アルコキシシリル基である、<1>〜<3>のいずれかに記載の近赤外線吸収組成物。
<6> 樹脂Aの重量平均分子量が1,000〜300,000である、<1>〜<5>のいずれかに記載の近赤外線吸収組成物。
<7> 樹脂Aがアルコキシシリル基を有し、樹脂Aのケイ素価が1.0〜3.0mmol/gである、<1>〜<6>のいずれかに記載の近赤外線吸収組成物。
<8> 化合物Cを含み、化合物Cがアルコキシシリル基を有する化合物であり、化合物Cのケイ素価が3.0〜8.0mmol/gである、<1>〜<7>のいずれかに記載の近赤外線吸収組成物。
<9> 樹脂Aの100質量部に対し、化合物Cを1〜60質量部含む、<1>〜<8>のいずれかに記載の近赤外線吸収組成物。
<10> 赤外線吸収剤Bが、銅化合物、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、および、ナフタロシアニン化合物から選ばれる少なくとも1種である、<1>〜<9>のいずれかに記載の近赤外線吸収組成物。
<11> 赤外線吸収剤Bが銅化合物であって、銅化合物が、銅に対して4個または5個の配位部位を有する化合物を配位子として有する銅錯体である、<1>〜<10>のいずれかに記載の近赤外線吸収組成物。
<12> 近赤外線カットフィルタ用である、<1>〜<11>のいずれかに記載の近赤外線吸収組成物。
<13> <1>〜<12>のいずれかに記載の近赤外線吸収組成物を用いてなる近赤外線カットフィルタ。
<14> <1>〜<12>のいずれかに記載の近赤外線吸収組成物を用いる、近赤外線カットフィルタの製造方法。
<15> <13>に記載の近赤外線カットフィルタを有する固体撮像素子。
<16> <13>に記載の近赤外線カットフィルタを有するカメラモジュール。
<17> <13>に記載の近赤外線カットフィルタを有する画像表示装置。
本発明によれば、耐溶剤性および耐熱衝撃耐性に優れた硬化膜を製造可能な近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置を提供することが可能となった。
本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。 カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。 カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。
以下において、本発明の内容について詳細に説明する。尚、本明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを表し、「(メタ)アリル」は、アリルおよびメタリルを表し、「(メタ)アクリル」は、アクリルおよびメタクリルを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルを表す。
本明細書における基(原子団)の表記において、置換および無置換を記していない表記は置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含するものである。
本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
本明細書において、近赤外線とは、波長領域が700〜2500nmの光(電磁波)をいう。
本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定によるポリスチレン換算値として定義される。
<近赤外線吸収組成物>
本発明の近赤外線吸収組成物は、下記条件a1を満たす樹脂Aと、赤外線吸収剤Bと、溶剤Dとを含有し、少なくとも、樹脂Aが架橋性基を有するか、あるいは、樹脂A以外の化合物であって架橋性基を有する化合物Cを含む。
条件a1:樹脂Aが架橋性基を有さない場合、樹脂Aの示差走査熱量測定で測定したガラス転移温度が0〜100℃であり、樹脂Aが架橋性基を有する場合、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。
上記の条件a1を満たす樹脂Aは、柔軟性に優れるので、得られる硬化膜の柔軟性が向上する。このため、硬化膜の冷却時における熱応力を緩和でき、優れた耐熱衝撃性が得られる。また、本発明の近赤外線吸収組成物は、樹脂Aが架橋性基を有する、および/または、架橋性基を有する化合物Cを含むので、前述の架橋性基が架橋点となって、樹脂A同士、または、樹脂Aと化合物Cとの架橋構造を形成して、耐溶剤性に優れた硬化膜を得ることができる。したがって、本発明によれば、耐溶剤性に優れつつ、耐熱衝撃性に優れた硬化膜を製造することができる。
なお、本発明において、樹脂のガラス転移温度(Tg)とは、樹脂の運動性が大きく変化する境界温度である。本発明における樹脂のガラス転移は、示差走査熱量測定装置(セイコーインスツルメンツ社製、DSC1000)を用い、サンプルパンにポリマー5mgを秤量し、窒素気流中で−20℃から200℃まで10℃/分の昇温速度で昇温し測定した値である。ベースラインが偏奇し始める温度と、新たにべースラインに戻る温度との平均値を樹脂のガラス転移温度とした。
また、本発明では上記条件a1において、樹脂Aが架橋性基を有する場合、「樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。」と定義している。すなわち、樹脂Aが架橋性基を有する場合においては、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂のガラス転移温度を、樹脂Aのガラス転移温度とみなすこととしている。樹脂Aのガラス転移温度を所定の範囲にして柔軟性を高めるのみならず、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造のガラス転移温度を所定の範囲に調整することでも、本発明の実施例に示す通り、耐熱衝撃性に優れた硬化膜を製造できる。樹脂Aの架橋結合を有する部位以外の部分が、硬化膜の柔軟性に寄与していると考えられるため、上記構造のガラス転移温度を所定の範囲に調整することで、耐熱衝撃性に優れた硬化膜を製造できると推測する。
以下、本発明の近赤外線吸収組成物の各成分について説明する。
<<樹脂A>>
本発明の近赤外線吸収組成物は、上述した条件a1を有する樹脂Aを含有する。樹脂の種類としては、光学材料に使用しうるものであれば特に制限されない。樹脂Aは、透明性の高い樹脂が好ましい。具体的にはポリエチレン、ポリプロピレン、カルボキシル化ポリオレフィン、塩素化ポリオレフィン、シクロオレフィンポリマー等のポリオレフィン系樹脂;ポリスチレン系樹脂;(メタ)アクリル酸エステル系樹脂や(メタ)アクリルアミド系樹脂などの(メタ)アクリル系樹脂;酢酸ビニル系樹脂;ハロゲン化ビニル系樹脂;ポリビニルアルコール系樹脂;ポリアミド系樹脂;ポリウレタン系樹脂;ポリエチレンテレフタレート(PET)やポリアリレート(PAR)等のポリエステル系樹脂;ポリカーボネート系樹脂;エポキシ系樹脂;ポリマレイミド樹脂;ポリウレア樹脂;ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂等が挙げられる。なかでも、(メタ)アクリル酸エステル系樹脂、(メタ)アクリルアミド系樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリマレイミド樹脂、ポリウレア樹脂が好ましく、(メタ)アクリル酸エステル系樹脂、(メタ)アクリルアミド系樹脂、ポリウレタン樹脂、ポリエステル樹脂がさらに好ましく、(メタ)アクリル酸エステル系樹脂、(メタ)アクリルアミド系樹脂が特に好ましい。
樹脂Aが架橋性基を有さない場合、樹脂Aの示差走査熱量測定で測定したガラス転移温度が0〜100℃である。ガラス転移温度の下限は、10℃以上が好ましく、15℃以上がさらに好ましく、20℃以上が特に好ましい。ガラス転移温度の上限は、80℃以下が好ましく、75℃以下がさらに好ましい。
樹脂Aが架橋性基を有する場合、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。ガラス転移温度の下限は、10℃以上が好ましく、15℃以上がさらに好ましい。ガラス転移温度の上限は、80℃以下が好ましく、70℃以下がさらに好ましい。
樹脂Aが架橋性基を有する場合について、具体例を挙げて説明する。例えば、樹脂Aが、下記のA−101〜A−104の構造の樹脂の場合、下記のA−101a〜A−104aの構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃となる樹脂を用いる。
ここで、「架橋性基のうち、架橋結合を形成する部位」とは、熱、光、ラジカルまたはラジカルの作用により反応して架橋結合を形成しうる部位をいう。例えば、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基などのエチレン性不飽和結合を有する基の場合は、エチレン性不飽和結合が架橋結合を形成する部位に相当する。そして、架橋性基としてエチレン性不飽和結合を有する基を用いた場合は、エチレン性不飽和結合(−C=C−)を水素原子に置換(−CH2)することとする。また、エポキシ基(オキシラニル基)、オキセタニル基などの環状エーテル基の場合は、環状エーテル基が、架橋結合を形成する部位に相当する。そして、架橋性基としてエチレン性不飽和結合を有する基を用いた場合は、環状エーテル基を水素原子に置換することとする。また、メチロール基の場合は、メチロール基が、架橋結合を形成する部位に相当する。そして、架橋性基としてメチロール基を用いた場合は、メチロール基を水素原子に置換することとする。また、アルコキシシリル基の場合は、アルコキシシリル基が、架橋結合を形成する部位に相当する。そして、架橋性基としてアルコキシシリル基を用いた場合は、アルコキシシリル基を水素原子に置換することとする。
Figure 2017104735
本発明において、樹脂Aは2種類以上を用いてもよい。
樹脂Aを2種類以上用いる場合は、2種類の樹脂Aのガラス転移温度の差が0〜90℃の範囲であることが好ましい。また、ガラス転移温度が0〜100℃(好ましくは、0〜75℃、より好ましくは20〜75℃)の範囲の樹脂Aaと、ガラス転移温度が0〜100℃(好ましくは、0〜75℃、より好ましくは20〜75℃)の範囲の樹脂Abとを併用することも好ましい。樹脂Aを2種類以上用いる場合は、少なくとも1種類は、ガラス転移温度が50℃以上75℃以下の樹脂、ガラス転移温度が20℃以上50℃未満の樹脂、ガラス転移温度が0℃以上20℃未満の樹脂およびガラス転移温度が75℃を超え100℃未満の樹脂から選ばれる少なくとも1種類を含むことが好ましく、ガラス転移温度が50℃以上75℃以下の樹脂およびガラス転移温度が20℃以上50℃未満の樹脂から選ばれる少なくとも1種類を含むことがより好ましい。
好ましい組み合わせとしては、例えば、以下が挙げられる。(1)〜(4)が好ましく、(1)〜(3)がより好ましく、(1)が特に好ましい。
(1)ガラス転移温度が50℃以上75℃以下の樹脂と、ガラス転移温度が20℃以上50℃未満の樹脂との組み合わせ。
(2)ガラス転移温度が50℃以上75℃以下の樹脂と、ガラス転移温度が0℃以上20℃未満の樹脂との組み合わせ。
(3)ガラス転移温度が50℃以上75℃以下の樹脂と、ガラス転移温度が75℃を超え100℃未満の樹脂との組み合わせ。
(4)ガラス転移温度が20℃以上50℃未満の樹脂と、ガラス転移温度が0℃以上20℃未満の樹脂との組み合わせ。
(5)ガラス転移温度が20℃以上50℃未満の樹脂と、ガラス転移温度が75℃を超え100℃未満の樹脂との組み合わせ。
(6)ガラス転移温度が0℃以上20℃未満の樹脂と、ガラス転移温度が75℃を超え100℃未満の樹脂との組み合わせ。
本発明において、架橋性基は、熱、光、またはラジカルの作用により反応して架橋結合を形成しうる部位を有する基を意味する。具体的には、エチレン性不飽和結合を有する基、環状エーテル基、メチロール基、アルコキシシリル基等が挙げられる。
エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基などが挙げられる。
環状エーテル基としては、エポキシ基(オキシラニル基)、オキセタニル基、脂環式エポキシ基などが挙げられる。脂環式エポキシ基としては、下記の基が挙げられる。
Figure 2017104735
式中、Cyは、環状アルキル基を表し、*は、結合手を表す。環状アルキル基の炭素数は、3〜20が好ましい。上限は、15以下が好ましく、10以下がより好ましい。下限は、4以上が好ましく、5以上がさらに好ましく、6以上が特に好ましい。
アルコキシシリル基としては、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基が挙げられる。
樹脂Aは、ホモポリマーのガラス転移温度が70℃以下の単量体成分a由来の繰り返し単位を有することが好ましい。単量体成分aのホモポリマーのガラス転移温度は、−40〜70℃がより好ましく、−40〜50℃が特に好ましい。樹脂Aが、上述した単量体成分a由来の繰り返し単位を含むことで、樹脂Aの柔軟性が向上し、得られる硬化膜の耐熱衝撃性が向上する傾向にある。
単量体成分a由来の繰り返し単位の含有量は、樹脂Aの全繰り返し単位の質量に対して1〜100質量%が好ましい。下限は、10質量%以上がより好ましく、20質量%以上がさらに好ましい。上限は、90質量%以下がより好ましく、80質量%以下がさらに好ましい。
樹脂Aは、下式(A1−1)〜(A1−3)から選ばれる少なくとも1種の繰り返し単位を有することが好ましく、下式(A1−1)の繰り返し単位および下式(A1−3)の繰り返し単位から選ばれる少なくとも1種を有することがより好ましい。この態様によれば、得られる硬化膜の耐熱衝撃性が向上する傾向にある。また、赤外線吸収剤として銅化合物を使用した場合、下式(A1−3)の繰り返し単位を有する樹脂を用いることで、銅化合物と樹脂Aとの相溶性が向上し、析出物などの少ない硬化膜を製造することができる。
Figure 2017104735
式(A1−1)〜(A1−3)において、R1は、水素原子またはアルキル基を表し、L1〜L3は、それぞれ独立に、単結合または2価の連結基を表し、R2およびR3は、それぞれ独立に、水素原子、脂肪族炭化水素基、または、芳香族基を表す。
式(A1−1)〜(A1−3)において、R1は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1〜5が好ましく、1〜3がさらに好ましく、1が特に好ましい。アルキル基は、直鎖、分岐のいずれも好ましく、直鎖がより好ましい。R1は、水素原子またはメチル基が好ましい。
式(A1−1)〜(A1−3)において、L1〜L3は、それぞれ独立に、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、−O−、−S−、−SO−、−CO−、−COO−、−OCO−、−SO2−、−NR10−(R10は水素原子あるいはアルキル基を表す)、または、これらの組み合わせからなる基が挙げられる。アルキレン基の炭素数は、1〜30が好ましく、1〜15がより好ましく、1〜10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。アリーレン基の炭素数は、6〜18が好ましく、6〜14がより好ましく、6〜10がさらに好ましく、フェニレン基が特に好ましい。
式(A1−1)〜(A1−3)において、L1は、単結合が好ましい。
式(A1−1)〜(A1−3)において、L2およびL3は、それぞれ独立に、単結合、アルキレン基、または、アルキレン基と−O−との組み合わせからなる基が好ましい。
また、式(A−1)において、L2とR2とで構成される鎖を構成する原子の数は、2以上であることが好ましく、3以上がより好ましく、4以上がさらに好ましい。上限は、特に限定はないが、例えば、100以下とすることもでき、50以下とすることもできる。
式(A1−1)〜(A1−3)において、R2およびR3は、それぞれ独立に、水素原子、脂肪族炭化水素基、または、芳香族基を表す。脂肪族炭化水素基および芳香族基は、無置換であってもよく、置換基を有していてもよい。置換基としては、後述する置換基Tで説明した基が挙げられる。
脂肪族炭化水素基としては、アルキル基、アルケニル基等が挙げられる。アルキル基は、直鎖、分岐または環状のいずれでもよい。アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜10がさらに好ましい。アルケニル基は、直鎖、分岐または環状のいずれでもよい。アルケニル基の炭素数は、2〜30が好ましく、2〜20がより好ましく、2〜10がさらに好ましい。
芳香族基としては、アリール基、ヘテロアリール基が挙げられる。アリール基の炭素数は、6〜30が好ましく、6〜20がより好ましく、6〜12が特に好ましい。ヘテロアリール基を構成する炭素原子の数は、1〜30が好ましく、1〜12がより好ましい。ヘテロアリール基を構成するヘテロ原子の種類としては、例えば、窒素原子、酸素原子および硫黄原子を挙げることができる。ヘテロアリール基を構成するヘテロ原子の数としては、1〜4が好ましく、1〜3がより好ましく、1〜2が更に好ましい。ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2〜8の縮合環が好ましく、単環または縮合数が2〜4の縮合環がより好ましい。
2はアルキル基が好ましい。R3はアルキル基またはアリール基が好ましい。
式(A1−1)〜(A1−3)で表される繰り返し単位の具体例としては、以下が挙げられる。
Figure 2017104735
樹脂Aは、上述した式(A1−1)〜(A1−3)から選ばれる少なくとも1種の繰り返し単位(好ましくは(A1−3)で表される繰り返し単位)を、樹脂Aの全繰り返し単位中1〜90質量%含有することが好ましく、10〜80質量%含有することがより好ましい。この態様によれば、耐熱衝撃性に優れた硬化膜が得られ易い。
また、樹脂Aは、式(A1−1)の繰り返し単位と式(A1−3)の繰り返し単位とを含む態様も好ましい。この場合、式(A1−1)の繰り返し単位を、樹脂Aの全繰り返し単位中に1〜90質量%含有することが好ましく、10〜80質量%含有することがより好ましい。また、式(A1−3)の繰り返し単位を、樹脂Aの全繰り返し単位中に1〜90質量%含有することが好ましく、10〜80質量%含有することがより好ましい。
樹脂Aは、架橋性基を有する繰り返し単位をさらに含むことが好ましい。この態様によれば、硬化膜の耐溶剤性および耐熱衝撃性をより向上できる。
架橋性基は、上述した架橋性基が挙げられ、エチレン性不飽和結合を有する基、環状エーテル基、メチロール基、アルコキシシリル基が好ましく、エチレン性不飽和結合を有する基、環状エーテル基、アルコキシシリル基がさらに好ましい。エチレン性不飽和結合を有する基、環状エーテル基、アルコキシシリル基の詳細については上述した基が挙げられる。エチレン性不飽和結合を有する基は、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基が好ましい。環状エーテル基は、エポキシ基が好ましい。アルコキシシリル基は、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基が挙げられ、ジアルコキシシリル基、トリアルコキシシリル基が好ましい。また、赤外線吸収剤として銅化合物を用いる場合、架橋性基はアルコキシシリル基が好ましい。
架橋性基を有する繰り返し単位は、例えば、下記(A2−1)〜(A2−4)等が挙げられ、記(A2−1)〜(A2−3)が好ましい。
Figure 2017104735
1は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1〜5が好ましく、1〜3がさらに好ましく、1が特に好ましい。R1は、水素原子またはメチル基が好ましい。
51は、単結合または2価の連結基を表す。2価の連結基としては、上記式(A)のL1〜L3で説明した2価の連結基が挙げられる。L51は、アルキレン基または、アルキレン基と−O−とを組み合わせてなる基が好ましい。L51の鎖を構成する原子の数は、2以上が好ましく、3以上がより好ましく、4以上がさらに好ましい。上限は、例えば200以下とすることができる。
1は、架橋性基を表す。架橋性基としては、エチレン性不飽和結合を有する基、環状エーテル基、メチロール基、アルコキシシリル基等が挙げられる。エチレン性不飽和結合を有する基、環状エーテル基、アルコキシシリル基が好ましい。エチレン性不飽和結合を有する基、環状エーテル基、アルコキシシリル基の詳細については上述した基が挙げられる。エチレン性不飽和結合を有する基は、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基が好ましい。環状エーテル基は、エポキシ基が好ましい。アルコキシシリル基は、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基が挙げられ、ジアルコキシシリル基、トリアルコキシシリル基が好ましい。また、赤外線吸収剤として銅化合物を用いる場合、架橋性基はアルコキシシリル基が好ましい。アルコキシシリル基におけるアルコキシ基の炭素数は、1〜5が好ましく、1〜3がより好ましく、1または2が特に好ましい。
樹脂Aが、架橋性基を有する繰り返し単位を含む場合、樹脂Aは、架橋性基を有する繰り返し単位を、樹脂Aの全繰り返し単位中に10〜90質量%含有することが好ましく、10〜80質量%含有することがより好ましく、30〜80質量%含有することがさらに好ましい。この態様によれば、耐溶剤性に優れた硬化膜が得られ易い。架橋性基を有する繰り返し単位の具体例としては、以下に示す構造が挙げられる。
Figure 2017104735
樹脂Aは、ホモポリマーのガラス転移温度が70℃を超える単量体成分b由来の繰り返し単位を有してもよい。単量体成分bのホモポリマーのガラス転移温度は、70℃を超え300℃以下がより好ましく、70℃を超え200℃以下がより好ましい。樹脂Aが、上述した単量体成分b由来の繰り返し単位を含むことで、得られる硬化膜の耐溶剤性などが向上する傾向にある。
樹脂Aは、式(A3−1)で表される繰り返し単位を有することもできる。
Figure 2017104735
式(A3−1)において、L21は、単結合または2価の連結基を表し、R21は、水素原子、脂肪族炭化水素基、または、芳香族基を表す。
21が表す2価の連結基としては、アルキレン基、アリーレン基、−O−、−S−、−SO−、−CO−、−COO−、−OCO−、−SO2−、−NR10−(R10は水素原子あるいはアルキル基を表す)、または、これらの組み合わせからなる基が挙げられる。アルキレン基の炭素数は、1〜30が好ましく、1〜15がより好ましく、1〜10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。アリーレン基の炭素数は、6〜18が好ましく、6〜14がより好ましく、6〜10がさらに好ましく、フェニレン基が特に好ましい。
21が表す、脂肪族炭化水素基および芳香族基は、式(A1−1)〜(A1−3)のR2およびR3で説明した脂肪族炭化水素基および芳香族基が挙られる。
樹脂Aが式(A3−1)で表される繰り返し単位を含有する場合、式(A3−1)で表される繰り返し単位を、樹脂Aの全繰り返し単位中に1〜70質量%含有することが好ましく、1〜60質量%含有することがより好ましい。この態様によれば、耐溶剤性に優れた硬化膜が得られ易い。式(A3−1)で表される繰り返し単位の具体例としては以下に示す構造が挙げられる。
Figure 2017104735
樹脂Aは、上述した繰り返し単位の他に、他の繰り返し単位を含有していてもよい。他の繰り返し単位を構成する成分としては、特開2010−106268号公報の段落番号0068〜0075(対応する米国特許出願公開第2011/0124824号明細書の[0112]〜[0118])に開示の共重合成分の記載を参酌でき、これらの内容は本明細書に組み込まれる。
樹脂Aの具体例としては、以下に示す構造が挙げられる。なお、繰り返し単位に併記した数値は、質量比である。
Figure 2017104735
Figure 2017104735
Figure 2017104735
本発明において、樹脂Aの重量平均分子量は、1000〜300,000が好ましい。下限は、2000以上がより好ましく、3000以上がさらに好ましい。上限は、100,000以下がより好ましく、50,000以下がさらに好ましい。樹脂Aの数平均分子量は、500〜150,000が好ましい。下限は、1000以上がより好ましく、2000以上がさらに好ましい。上限は、200,000以下がより好ましく、100,000以下がさらに好ましい。
本発明の近赤外線吸収組成物において、樹脂Aの含有量は、近赤外線吸収組成物の全固形分に対して、1〜90質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が更に好ましい。上限は、80質量%以下が好ましく、75質量%以下がより好ましい。樹脂Aは、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<赤外線吸収剤>>
本発明の近赤外線吸収組成物は、赤外線吸収剤を含有する。なお、本発明において、赤外線吸収剤は、赤外領域の波長領域(好ましくは、波長700〜1200mnの範囲)に吸収を有し、可視領域(好ましくは、波長400〜650mnの範囲)の波長の光を透過する化合物を意味する。赤外線吸収剤は、極大吸収波長が700〜1200nmの範囲に有する化合物が好ましく、700〜1000nmの範囲に有する化合物がより好ましい。
赤外線吸収剤としては、例えば、銅化合物、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジイモニウム化合物、チオール錯体系化合物、遷移金属酸化物系化合物、クアテリレン系化合物、クロコニウム系化合物等が挙げられる。なかでも、赤外線遮蔽性と可視透過性の両立に優れた硬化膜を形成しやすいという理由から、銅化合物、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物およびジイモニウム化合物が好ましく、銅化合物がより好ましい。
ピロロピロール化合物は、顔料であってもよく、染料であってもよい。ピロロピロール化合物としては、例えば、特開2009−263614号公報の段落番号0016〜0058に記載のピロロピロール化合物などが挙げられる。シアニン化合物、フタロシアニン化合物、ジイモニウム化合物、スクアリリウム系化合物及びクロコニウム系化合物は、特開2010−111750号公報の段落0010〜0081に記載の化合物を使用してもよく、この内容は本明細書に組み込まれる。また、シアニン系化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。また、フタロシアニン系化合物は、特開2013−195480号公報の段落0013〜0029の記載を参酌でき、この内容は本明細書に組み込まれる。
本発明の近赤外線吸収組成物は、赤外線吸収剤を、近赤外線吸収組成物の全固形分に対し、10〜85質量%含有することが好ましい。上限は、80質量%以下が好ましく、70質量%以下がより好ましい。下限は、20質量%以上が好ましく、30質量%以上がより好ましい。赤外線吸収剤の含有量が上記範囲であれば、赤外線遮蔽性に優れた硬化膜を形成しやすい。
(銅化合物)
本発明において、赤外線吸収剤として用いる銅化合物は、銅錯体が好ましい。銅錯体としては、銅と、銅に対する配位部位を有する化合物(配位子)との錯体が好ましい。銅に対する配位部位としては、アニオンで配位する配位部位、非共有電子対で配位する配位原子が挙げられる。銅錯体は、配位子を2個以上有していてもよい。配位子を2個以上有する場合は、それぞれの配位子は同一であってもよく、異なっていてもよい。銅錯体は、4配位、5配位および6配位が例示され、4配位および5配位がより好ましく、5配位がさらに好ましい。また、銅錯体は、銅と配位子によって、5員環および/または6員環が形成されていることが好ましい。このような銅錯体は、形状が安定であり、錯体安定性に優れる。
本発明において、銅錯体は、フタロシアニン銅錯体以外の銅錯体であることも好ましい。ここで、フタロシアニン銅錯体とは、フタロシアニン骨格を有する化合物を配位子とする銅錯体である。フタロシアニン骨格を有する化合物は、分子全体にπ電子共役系が広がり、平面構造を取る。フタロシアニン銅錯体は、π−π*遷移で光を吸収する。π−π*遷移で赤外領域の光を吸収するには、配位子をなす化合物が長い共役構造をとる必要がある。しかしながら、配位子の共役構造を長くすると、可視光透過性が低下する傾向にある。このため、フタロシアニン銅錯体は、可視光透過性が不十分な場合がある。
また、銅錯体は、400〜600nmの波長領域に極大吸収波長を有さない化合物を配位子とする銅錯体であることも好ましい。400〜600nmの波長領域に極大吸収波長を有する化合物を配位子とする銅錯体は、可視領域(例えば、400〜600nmの波長領域)に吸収を有するため、可視光透過性が不十分な場合がある。400〜600nmの波長領域に極大吸収波長を有する化合物としては、長い共役構造を有し、π−π*遷移の光の吸収の大きい化合物が挙げられる。具体的には、フタロシアニン骨格を有する化合物が挙げられる。
銅錯体は、例えば銅成分(銅または銅を含む化合物)に対して、銅に対する配位部位を有する化合物(配位子)を混合・反応等させて得ることができる。銅に対する配位部位を有する化合物(配位子)は、低分子化合物であってもよく、ポリマーであってもよい。両者を併用することもできる。
銅成分は、2価の銅を含む化合物が好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。銅成分としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸銅、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2−エチルヘキサン酸銅など)、スルホン酸銅(例えば、メタンスルホン酸銅など)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、フッ化銅、塩化銅、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、フッ化銅、塩化銅、硫酸銅、硝酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅、硫酸銅、硝酸銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅、塩化銅、硫酸銅が特に好ましい。
本発明において、銅錯体は、700〜1200nmの波長領域に極大吸収波長を有する化合物が好ましい。銅錯体の極大吸収波長は、720〜1200nmの波長領域に有することがより好ましく、800〜1100nmの波長領域に有することがさらに好ましい。極大吸収波長は、例えば、Cary 5000 UV−Vis−NIR(分光光度計 アジレント・テクノロジー株式会社製)を用いて測定することができる。
銅錯体の上述した波長領域における極大吸収波長でのモル吸光係数は、120(L/mol・cm)以上が好ましく、150(L/mol・cm)以上がより好ましく、200(L/mol・cm)以上がさらに好ましく、300(L/mol・cm)以上がよりさらに好ましく、400(L/mol・cm)以上が特に好ましい。上限は、特に限定はないが、例えば、30000(L/mol・cm)以下とすることができる。銅錯体の上記モル吸光係数が、100(L/mol・cm)以上であれば、薄膜であっても、赤外線遮蔽性に優れた硬化膜を形成することができる。
銅錯体の800nmでのグラム吸光係数は、0.11(L/g・cm)以上が好ましく、0.15(L/g・cm)以上がより好ましく、0.24(L/g・cm)以上がさらに好ましい。
なお、本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、銅錯体を溶媒に溶解させて1g/Lの濃度の溶液を調製し、銅錯体を溶解させた溶液の吸収スペクトルを測定して求めることができる。測定装置としては、島津製作所製UV−1800(波長領域200〜1100nm)、Agilent製Cary 5000(波長領域200〜1300nm)などを用いることができる。測定溶媒としては、水、N,N−ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、1,2,4−トリクロロベンゼン、アセトンが挙げられる。本発明では、上述した測定溶媒のうち、測定対象の銅錯体を溶解できるものを選択して用いる。なかでも、プロピレングリコールモノメチルエーテルで溶解する銅錯体の場合は、測定溶媒としては、プロピレングリコールモノメチルエーテルを用いることが好ましい。なお、溶解するとは、25℃の溶媒100gに対する、銅錯体の溶解度が0.01gを超える状態を意味する。
本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、上述した測定溶媒のいずれか1つを用いて測定した値であることが好ましく、プロピレングリコールモノメチルエーテルでの値であることがより好ましい。
赤外線吸収剤として銅化合物を用いる場合、組成中における銅の含有量を増やすことで、赤外線遮蔽性が向上することから、銅化合物の含有量は、近赤外線吸収組成物の全固形分に対して、銅を元素基準で10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。上限は特にないが、70質量%以下が好ましく、60質量%以下がより好ましい。
<<<低分子タイプの銅化合物>>>
銅化合物としては、例えば、式(Cu−1)で表される銅錯体を用いることができる。この銅錯体は、中心金属の銅に配位子Lが配位した銅化合物であり、銅は、通常2価の銅である。例えば銅成分に対して、配位子Lとなる化合物またはその塩を混合・反応等させて得ることができる。
Cu(L)n1・(X)n2 式(Cu−1)
上記式中、Lは、銅に配位する配位子を表し、Xは、対イオンを表す。n1は、1〜4の整数を表す。n2は、0〜4の整数を表す。
Xは、対イオンを表す。銅化合物は、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅化合物の電荷を中和するよう、必要に応じて対イオンが存在する。
対イオンが負の対イオンの場合、例えば、無機陰イオンでも有機陰イオンでもよい。具体例としては、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばパラトルエンスルホン酸イオン、パラクロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン(B-(C654)、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が挙げられ、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が好ましい。
対イオンが正の対イオンの場合、例えば、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオンまたはプロトンが挙げられる。
また、対イオンは金属錯体イオンであってもよく、特に対イオンが銅錯体、すなわち、カチオン性銅錯体とアニオン性銅錯体の塩であっても良い。
配位子Lは、銅に対する配位部位を有する化合物であり、銅に対しアニオンで配位する配位部位、および、銅に対し非共有電子対で配位する配位原子から選ばれる1種以上を有する化合物が挙げられる。アニオンで配位する配位部位は、解離していてもよく、非解離でも良い。配位子Lは、銅に対する配位部位を2個以上有する化合物(多座配位子)が好ましい。また、配位子Lは、可視透過性を向上させるために、芳香族などのπ共役系が連続して複数結合していないことが好ましい。配位子Lは、銅に対する配位部位を1個有する化合物(単座配位子)と、銅に対する配位部位を2個以上有する化合物(多座配位子)とを併用することもできる。単座配位子としては、アニオンまたは非共有電子対で配位する単座配位子が挙げられる。アニオンで配位する配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、アジドアニオンなどが挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、あるいは、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、または、そのエステルが挙げられる。
上記配位子Lが有するアニオンは、銅成分中の銅原子に配位可能なものであればよく、酸素アニオン、窒素アニオンまたは硫黄アニオンが好ましい。アニオンで配位する配位部位は、以下の1価の官能基群(AN−1)、または、2価の官能基群(AN−2)から選択される少なくとも1種であることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。
群(AN−1)
Figure 2017104735
群(AN−2)
Figure 2017104735
上記式中、Xは、NまたはCRを表し、Rは、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。
Rが表すアルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1〜10が好ましく、1〜6がより好ましく、1〜4がさらに好ましい。アルキル基の例としては、メチル基が挙げられる。アルキル基は置換基を有していてもよく、置換基としてはハロゲン原子、カルボキシル基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1〜3が好ましく、1または2が好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。アルキル基が置換基を有している場合、さらに置換基を有していてもよい。
Rが表すアルケニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルケニル基の炭素数は、2〜10が好ましく、2〜6がより好ましい。アルケニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
Rが表すアルキニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキニル基の炭素数は、2〜10が好ましく、2〜6がより好ましい。アルキニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
Rが表すアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6〜18が好ましく、6〜12がより好ましく、6がさらに好ましい。アリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1〜3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、硫黄原子、酸素原子が好ましい。ヘテロアリール基の炭素数は6〜18が好ましく、6〜12がより好ましい。ヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
アニオンで配位する配位部位の例として、モノアニオン性配位部位も挙げられる。モノアニオン性配位部位は、1つの負電荷を有する官能基を介して銅原子と配位する部位を表す。例えば、酸解離定数(pKa)が12以下の酸基が挙げられる。具体的には、リン原子を含有する酸基(リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基等)、スルホ基、カルボキシル基、イミド酸基等が挙げられ、スルホ基、カルボキシル基が好ましい。
非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子またはリン原子が好ましく、酸素原子、窒素原子または硫黄原子がより好ましく、酸素原子、窒素原子がさらに好ましく、窒素原子が特に好ましい。非共有電子対で配位する配位原子が窒素原子である場合、窒素原子に隣接する原子が炭素原子、または、窒素原子であることが好ましく、炭素原子がより好ましい。
非共有電子対で配位する配位原子は、環に含まれる、または、以下の1価の官能基群(UE−1)、2価の官能基群(UE−2)、3価の官能基群(UE−3)から選択される少なくとも1種の部分構造に含まれることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。
群(UE−1)
Figure 2017104735
群(UE−2)
Figure 2017104735
群(UE−3)
Figure 2017104735
群(UE−1)〜(UE−3)中、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。
非共有電子対で配位する配位原子は、環に含まれていてもよい。非共有電子対で配位する配位原子が環に含まれる場合、非共有電子対で配位する配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。非共有電子対で配位する配位原子を含む環は、5〜12員環が好ましく、5〜7員環がより好ましい。
非共有電子対で配位する配位原子を含む環は、置換基を有していてもよく、置換基としては炭素数1〜10の直鎖状、分岐状または環状のアルキル基、炭素数6〜12のアリール基、ハロゲン原子、ケイ素原子、炭素数1〜12のアルコキシ基、炭素数2〜12のアシル基、炭素数1〜12のアルキルチオ基、カルボキシル基等が挙げられる。
非共有電子対で配位する配位原子を含む環が置換基を有している場合、さらに置換基を有していてもよく、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE−1)〜(UE−3)から選択される少なくとも1種の部分構造を含む基、炭素数1〜12のアルキル基、炭素数2〜12のアシル基、ヒドロキシ基が挙げられる。
非共有電子対で配位する配位原子が群(UE−1)〜(UE−3)で表される部分構造に含まれる場合、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。
アルキル基、アルケニル基、アルキニル基、アリール基、およびヘテロアリール基は、上記アニオンで配位する配位部位で説明したアルキル基、アルケニル基、アルキニル基、アリール基、およびヘテロアリール基と同義であり、好ましい範囲も同様である。
アルコキシ基の炭素数は、1〜12が好ましく、3〜9がより好ましい。
アリールオキシ基の炭素数は、6〜18が好ましく、6〜12がより好ましい。
ヘテロアリールオキシ基は、単環であっても多環であってもよい。ヘテロアリールオキシ基を構成するヘテロアリール基は、上記アニオンで配位する配位部位で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
アルキルチオ基の炭素数は、1〜12が好ましく、1〜9がより好ましい。
アリールチオ基の炭素数は、6〜18が好ましく、6〜12がより好ましい。
ヘテロアリールチオ基は、単環であっても多環であってもよい。ヘテロアリールチオ基を構成するヘテロアリール基は、上記アニオンで配位する配位部位で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
アシル基の炭素数は、2〜12が好ましく、2〜9がより好ましい。
配位子が、1分子内に、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する場合、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子数は、1〜6であることが好ましく、1〜3であることがより好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができ、可視光透過性を高めつつ、モル吸光係数を大きくし易い。アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子の種類は、1種または2種以上であってもよい。炭素原子、または、窒素原子が好ましい。
配位子が、1分子内に、非共有電子対で配位する配位原子を2個以上有する場合、非共有電子対で配位する配位原子は3個以上有していてもよく、2〜5個有していることが好ましく、4個有していることがより好ましい。非共有電子対で配位する配位原子同士を連結する原子数は、1〜6であることが好ましく、1〜3であることがより好ましく、2〜3が更に好ましく、3が特に好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。非共有電子対で配位する配位原子同士を連結する原子は、1種または2種以上であってもよい。非共有電子対で配位する配位原子同士を連結する原子は、炭素原子が好ましい。
配位子は、少なくとも2つの配位部位を有する化合物(多座配位子ともいう)が好ましい。配位子は、配位部位を少なくとも3個有することがより好ましく、3〜5個有することが更に好ましく、4〜5個有することが特に好ましい。多座配位子は、銅成分に対し、キレート配位子として働く。すなわち、多座配位子が有する少なくとも2つの配位部位が、銅とキレート配位することにより、銅錯体の構造が歪んで、可視光領域の高い透過性が得られ、赤外線の吸光能力を向上でき、色価も向上すると考えられる。これにより、近赤外線カットフィルタを長期間使用しても、その特性が損なわれず、またカメラモジュールを安定的に製造することも可能となる。
多座配位子は、アニオンで配位する配位部位を1個以上と非共有電子対で配位する配位原子を1個以上とを含む化合物、非共有電子対で配位する配位原子を2個以上有する化合物、アニオンで配位する配位部位を2個含む化合物等が挙げられる。これらの化合物は、それぞれ独立に、1種または2種以上を組み合わせて用いることができる。また、配位子となる化合物は、配位部位を1個のみ有する化合物を用いることもできる。
多座配位子は、下記一般式(IV−1)〜(IV−14)で表される化合物であることが好ましい。例えば、配位子が4つの配位部位を有する化合物である場合は、下記式(IV−3)、(IV−6)、(IV−7)、(IV−12)で表される化合物が好ましく、中心金属により強固に配位し、耐熱性の高い安定な5配位錯体を形成しやすいという理由から、(IV−12)で表される化合物がより好ましい。また、例えば、配位子が5つの配位部位を有する化合物である場合は、下記式(IV−4)、(IV−8)〜(IV−11)、(IV−13)、(IV−14)で表される化合物が好ましく、中心金属により強固に配位し、耐熱性の高い安定な5配位錯体を形成しやすいという理由から、(IV−9)〜(IV−10)、(IV−13)、(IV−14)で表される化合物がより好ましく、(IV−13)で表される化合物が特に好ましい。
Figure 2017104735
一般式(IV−1)〜(IV−14)中、X1〜X59はそれぞれ独立して、配位部位を表し、L1〜L25はそれぞれ独立して単結合または2価の連結基を表し、L26〜L32はそれぞれ独立して3価の連結基を表し、L33〜L34はそれぞれ独立して4価の連結基を表す。
1〜X42はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN−1)、または、群(UE−1)から選択される少なくとも1種を表すことが好ましい。
43〜X56はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN−2)、または、群(UE−2)から選択される少なくとも1種を表すことが好ましい。
57〜X59はそれぞれ独立して、上述した群(UE−3)から選択される少なくとも1種を表すことが好ましい。
1〜L25はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基としては、炭素数1〜12のアルキレン基、炭素数6〜12のアリーレン基、−SO−、−O−、−SO2−または、これらの組み合わせからなる基が好ましく、炭素数1〜3のアルキレン基、フェニレン基、−SO2−またはこれらの組み合わせからなる基がより好ましい。
26〜L32はそれぞれ独立して3価の連結基を表す。3価の連結基としては、上述した2価の連結基から水素原子を1つ除いた基が挙げられる。
33〜L34はそれぞれ独立して4価の連結基を表す。4価の連結基としては、上述した2価の連結基から水素原子を2つ除いた基が挙げられる。
ここで、群(AN−1)〜(AN−2)中のR、および、群(UE−1)〜(UE−3)中のR1は、R同士、R1同士、あるいは、RとR1間で連結して環を形成しても良い。たとえば、一般式(IV−2)の具体例として、下の化合物(IV−2A)が挙げられる。なお、X3、X4、X43は以下に示した基であり、L2、L3はメチレン基、R1はメチル基であるが、このR1同士が連結して環を形成し、(IV−2B)や(IV−2C)のようになっても良い。
Figure 2017104735
配位子をなす化合物の具体例としては、以下に示す化合物、後述する多座配位子の好ましい具体例として示す化合物、および、これらの化合物の塩が挙げられる。塩を構成する原子または原子団としては、金属原子、テトラブチルアンモニウムなどが挙げられる。金属原子としては、アルカリ金属原子またはアルカリ土類金属原子がより好ましい。アルカリ金属原子としては、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子としては、カルシウム、マグネシウム等が挙げられる。また、特開2014−41318号公報の段落0022〜0042の記載、特開2015−43063号公報の段落0021〜0039の記載、特開2015−158662号公報の段落0025、0026の記載を参酌でき、これらの内容は本明細書に組み込まれる。
Figure 2017104735
Figure 2017104735
Figure 2017104735
銅錯体は、例えば、以下の(1)〜(5)の態様が好ましい一例として挙げられ、(2)〜(5)がより好ましく、(3)〜(5)が更に好ましく、(4)または(5)が一層好ましい。
(1)2つの配位部位を有する化合物の1つまたは2つを配位子として有する銅錯体
(2)3つの配位部位を有する化合物を配位子として有する銅錯体
(3)3つの配位部位を有する化合物と2つの配位部位を有する化合物とを配位子として有する銅錯体
(4)4つの配位部位を有する化合物を配位子として有する銅錯体
(5)5つの配位部位を有する化合物を配位子として有する銅錯体
上記(1)の態様において、2つの配位部位を有する化合物は、非共有電子対で配位する配位原子を2つ有する化合物、または、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物が好ましい。また、2つの配位部位を有する化合物の2つを配位子として有する場合、配位子の化合物は、同一であってもよく、異なっていてもよい。
また、(1)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1〜3個とすることもできる。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、2つの配位部位を有する化合物が非共有電子対で配位する配位原子を2つ有する化合物の場合は配位力が強いという理由からアニオンで配位する単座配位子がより好ましく、2つの配位部位を有する化合物がアニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物の場合には錯体全体が電荷を持たないという理由から非共有電子対で配位する単座配位子がより好ましい。
上記(2)の態様において、3つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を3つ有する化合物が更に好ましい。
また、(2)の態様において、銅錯体は、更に、単座配位子を有することもできる。単座配位子の数は、0個とすることもできる。また、1個以上とすることもでき、1〜3個以上がより好ましく、1〜2個がさらに好ましく、2個が一層好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、上述した理由によりアニオンで配位する単座配位子がより好ましい。
上記(3)の態様において、3つの配位部位を有する化合物は、アニオンで配位する配位部位と、非共有電子対で配位する配位原子とを有する化合物が好ましく、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位原子を1つ有する化合物が更に好ましい。さらに、この2つのアニオンで配位する配位部位が異なっていることが特に好ましい。また、2つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2つ有する化合物が更に好ましい。なかでも、3つの配位部位を有する化合物が、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位原子を1つ有する化合物であり、2つの配位部位を有する化合物が、非共有電子対で配位する配位原子を2つ有する化合物である組み合わせが、特に好ましい。
また、(3)の態様において、銅錯体は、更に、単座配位子を有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。0個がより好ましい。
上記(4)の態様において、4つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を4つ有する化合物が更に好ましい。
また、(4)の態様において、銅錯体は、更に、単座配位子を有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもでき、2個以上とすることもできる。1個が好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましい。
上記(5)の態様において、5つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を5つ有する化合物が更に好ましい。
また、(5)の態様において、銅錯体は、更に、単座配位子を有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は0個が好ましい。
多座配位子は、上述した配位子の具体例で説明した化合物のうち、配位部位を2以上有する化合物や、以下に示す化合物が挙げられる。
Figure 2017104735
Figure 2017104735
[リン酸エステル銅錯体]
本発明において、銅化合物として、リン酸エステル銅錯体を用いることもできる。リン酸エステル銅錯体は、銅を中心金属としリン酸エステル化合物を配位子とするものである。リン酸エステル銅錯体の配位子をなすリン酸エステル化合物は、下記式(L−100)で表される化合物またはその塩が好ましい。
(HO)n−P(=O)−(OR13-n 式(L−100)
式中、R1は炭素数1〜18のアルキル基、炭素数6〜18のアリール基、炭素数7〜18のアラルキル基、または炭素数2〜18のアルケニル基を表すか、−OR1が、炭素数4〜100のポリオキシアルキル基、炭素数4〜100の(メタ)アクリロイルオキシアルキル基、または、炭素数4〜100の(メタ)アクリロイルポリオキシアルキル基を表し、nは1または2を表す。nが1のとき、R2はそれぞれ同一でもよいし、異なっていてもよい。
リン酸エステル化合物の具体例としては、上述した配位子が挙げられる。また、特開2014−41318号公報の段落0022〜0042の記載を参酌でき、これらの内容は本明細書に組み込まれる。
[スルホン酸銅錯体]
本発明において、銅化合物として、スルホン酸銅錯体を用いることもできる。スルホン酸銅錯体は、銅を中心金属としスルホン酸化合物を配位子とするものである。スルホン酸銅錯体の配位子をなすスルホン酸化合物は、下記式(L−200)で表される化合物またはその塩が好ましい。
2−SO2−OH 式(L−200)
式中、R2は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基、ヘテロアリール基などを挙げることができる。
アルキル基、アリール基、ヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、重合性基(好ましくは、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイル基などのエチレン性不飽和結合を有する基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基、カルボン酸エステル基(例えば−CO2CH3)、ハロゲン化アルキル基、アルコキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、エーテル基、アルキルスルホニル基、アリールスルホニル基、スルフィド基、アミド基、アシル基、ヒドロキシ基、カルボキシル基、スルホン酸基、リン原子を含有する酸基、アミノ基、カルバモイル基、カルバモイルオキシ基等が挙げられる。
上述したアルキル基、アリール基およびヘテロアリール基は、二価の連結基を有していてもよい。二価の連結基としては、−(CH2m−(mは1〜10の整数、好ましくは1〜6の整数、より好ましくは1〜4の整数)、炭素数5〜10の環状のアルキレン基、または、これらの基と、−O−、−COO−、−S−、−NH−および−CO−の少なくとも1つの組み合わせからなる基が好ましい。
式(L−200)中、R2は、式量が300以下の有機基であることが好ましく、式量が50〜200の有機基がより好ましく、式量60〜100の有機基がさらに好ましい。
式(L−200)で表されるスルホン酸化合物の分子量は、80〜750が好ましく、80〜600がより好ましく、80〜450がさらに好ましい。
スルホン酸銅錯体は、下記式(L−201)で表される構造を有することが好ましい。
2A−SO2−O−* (L−201)
式中、R2Aは、式(L−200)におけるR2と同義であり、好ましい範囲も同様である。
スルホン酸化合物の具体例としては、上述した配位子が挙げられる。また、特開2015−43063号公報の段落0021〜0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<<ポリマータイプの銅化合物>>>
本発明において、銅化合物として、ポリマー側鎖に銅錯体部位を有する銅含有ポリマーを用いることができる。なお、ポリマータイプの銅化合物(銅含有ポリマー)は、樹脂Aとは異なる成分である。
銅錯体部位としては、銅と、銅に対して配位する部位(配位部位)とを有するものが挙げられる。銅に対して配位する部位としては、アニオンまたは非共有電子対で配位する部位が挙げられる。また、銅錯体部位は、銅に対して4座配位または5座配位する部位を有することが好ましい。配位部位の詳細については、上述した低分子タイプの銅化合物で説明したものが挙げられ、好ましい範囲も同様である。
銅含有ポリマーは、配位部位を含むポリマー(ポリマー(B1)ともいう)と、銅成分との反応で得られるポリマーや、ポリマー側鎖に反応性部位を有するポリマー(以下ポリマー(B2)ともいう)と、ポリマー(B2)が有する反応性部位と反応可能な官能基を有する銅錯体とを反応させて得られるポリマーが挙げられる。銅含有ポリマーの重量平均分子量は、2000以上が好ましく、2000〜200万がより好ましく、6000〜200,000がさらに好ましい。
銅含有ポリマーは、銅錯体部位を有する繰り返し単位の他に、他の繰り返し単位を含有していてもよい。他の繰り返し単位としては、架橋性基を有する繰り返し単位などが挙げられる。架橋性基としては、上述した樹脂Aで説明した架橋性基などが挙げられる。
銅含有ポリマーの重量平均分子量は、2000以上が好ましく、2000〜200万がより好ましく、6000〜200,000がさらに好ましい。
(ピロロピロール化合物)
本発明において、ピロロピロール化合物は、下式(1)で表される化合物であることが好ましい。この化合物を用いることで、優れた赤外線遮蔽性および可視透過性を有する硬化膜を製造しやすい。
Figure 2017104735
式中、R1aおよびR1bは、各々独立にアルキル基、アリール基またはヘテロアリール基を表し、R2およびR3は、各々独立に水素原子または置換基を表し、R2およびR3は、互いに結合して環を形成してもよく、R4は、各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、−BR4A4B、または金属原子を表し、R4は、R1a、R1bおよびR3から選ばれる少なくとも一つと、共有結合もしくは配位結合していてもよく、R4AおよびR4Bは、各々独立に置換基を表す。
式(1)中、R1aおよびR1bは、各々独立に、アルキル基、アリール基またはヘテロアリール基を表し、アリール基またはヘテロアリール基が好ましく、アリール基がより好ましい。
1a、R1bが表すアルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜10が特に好ましい。
1a、R1bが表すアリール基の炭素数は、6〜30が好ましく、6〜20がより好ましく、6〜12が特に好ましい。
1a、R1bが表すヘテロアリール基を構成する炭素原子の数は、1〜30が好ましく、1〜12がより好ましい。ヘテロアリール基を構成するヘテロ原子の種類としては、例えば、窒素原子、酸素原子および硫黄原子を挙げることができる。ヘテロアリール基を構成するヘテロ原子の数としては、1〜3が好ましく、1〜2がより好ましい。ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2〜8の縮合環が好ましく、単環または縮合数が2〜4の縮合環がより好ましい。
上述したアルキル基、アリール基およびヘテロアリール基は、置換基を有してもよく、無置換であってもよい。置換基を有していることが好ましい。置換基としては、後述する置換基Tで挙げた基が挙げられる。なかでも、アルコキシ基、ヒドロキシ基が好ましい。アルコキシ基は、分岐アルキル基を有するアルコキシ基であることが好ましい。R1a、R1bで表される基としては、分岐アルキル基を有するアルコキシ基を置換基として有するアリール基、または、ヒドロキシ基を置換基として有するアリール基であることが好ましい。分岐アルキル基の炭素数は、3〜30が好ましく、3〜20がより好ましい。
一般式(1)中のR1a、R1bは、互いに同一でも異なっていてもよい。
2およびR3は各々独立に水素原子または置換基を表す。R2およびR3は結合して環を形成していてもよい。R2およびR3の少なくとも一方は電子求引性基が好ましい。R2およびR3は各々独立にシアノ基またはヘテロアリール基を表すことが好ましい。
置換基としては例えば、特開2009−263614号公報の段落番号0020〜0022に記載された置換基が挙げられる。本明細書には、上記内容が組み込まれる。
置換基の一例としては、以下の置換基Tを一例として挙げることができる。
(置換基T)
アルキル基(好ましくは炭素数1〜30)、アルケニル基(好ましくは炭素数2〜30)、アルキニル基(好ましくは炭素数2〜30)、アリール基(好ましくは炭素数6〜30)、アミノ基(好ましくは炭素数0〜30)、アルコキシ基(好ましくは炭素数1〜30)、アリールオキシ基(好ましくは炭素数6〜30)、ヘテロアリールオキシ基(好ましくは炭素数1〜30)、アシル基(好ましくは炭素数1〜30)、アルコキシカルボニル基(好ましくは炭素数2〜30)、アリールオキシカルボニル基(好ましくは炭素数7〜30)、アシルオキシ基(好ましくは炭素数2〜30)、アシルアミノ基(好ましくは炭素数2〜30)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30)、スルファモイル基(好ましくは炭素数0〜30)、カルバモイル基(好ましくは炭素数1〜30)、アルキルチオ基(好ましくは炭素数1〜30)、アリールチオ基(好ましくは炭素数6〜30)、ヘテロアリールチオ基(好ましくは炭素数1〜30)、アルキルスルホニル基(好ましくは炭素数1〜30)、アリールスルホニル基(好ましくは炭素数6〜30)、ヘテロアリールスルホニル基(好ましくは炭素数1〜30)、アルキルスルフィニル基(好ましくは炭素数1〜30)、アリールスルフィニル基(好ましくは炭素数6〜30)、ヘテロアリールスルフィニル基(好ましくは炭素数1〜30)、ウレイド基(好ましくは炭素数1〜30)、リン酸アミド基(好ましくは炭素数1〜30)、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基(好ましくは炭素数1〜30)。カルボキシル基は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、スルホ基は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。
これらの基は、さらに置換可能な基である場合、さらに置換基を有してもよい。置換基としては、上述した置換基Tで説明した基が挙げられる。
2およびR3のうち、少なくとも一方は電子求引性基が好ましい。Hammettのσp値(シグマパラ値)が正の置換基は、電子求引性基として作用する。
本発明においては、Hammettのσp値が0.2以上の置換基を電子求引性基として例示することができる。σp値として好ましくは0.25以上であり、より好ましくは0.3以上であり、特に好ましくは0.35以上である。上限は特に制限はないが、好ましくは0.80である。
具体例としては、シアノ基(σp値=0.66)、カルボキシル基(−COOH:σp値=0.45)、アルコキシカルボニル基(例えば−COOMe:σp値=0.45)、アリールオキシカルボニル基(例えば−COOPh:σp値=0.44)、カルバモイル基(例えば−CONH2:σp値=0.36)、アルキルカルボニル基(例えば−COMe:σp値=0.50)、アリールカルボニル基(例えば−COPh:σp値=0.43)、アルキルスルホニル基(例えば−SO2Me:σp値=0.72)、またはアリールスルホニル基(例えば−SO2Ph:σp値=0.68)などが挙げられる。特に好ましくは、シアノ基である。ここで、Meはメチル基を、Phはフェニル基を表す。
ハメットの置換基定数σ値については、例えば、特開2011−68731号公報の段落0017〜0018を参酌でき、この内容は本明細書に組み込まれる。
2およびR3が互いに結合して環を形成する場合は、5〜7員環(好ましくは5または6員環)を形成することが好ましい。形成される環としては通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては、例えば特開2011−68731号公報の段落0019〜0021を参酌でき、この内容は本明細書に組み込まれる。
2は電子求引性基(好ましくはシアノ基)を表し、R3はヘテロアリール基を表すことが好ましい。ヘテロアリール基は、5員環または6員環が好ましい。また、ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2〜8の縮合環が好ましく、単環または縮合数が2〜4の縮合環がより好ましい。ヘテロアリール基を構成するヘテロ原子の数は、1〜3が好ましく、1〜2がより好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が例示される。ヘテロアリール基は、窒素原子を1個以上有することが好ましい。ヘテロアリール基を構成する炭素原子の数は1〜30が好ましく、1〜12がより好ましい。ヘテロアリール基の具体例としては、例えば、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、キノキサリル基、イソキノリル基、インドリニル基、フリル基、チエニル基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、ナフトチアゾリル基、ベンズオキサゾリル基、m−カルバゾリル基、アゼピニル基、およびこれらの基のベンゾ縮環基もしくはナフト縮環基などが挙げられる。ヘテロアリール基は置換基を有してもよく、無置換であってもよい。置換基としては、上述した置換基Tで説明した基が挙げられる。例えば、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
式(1)中の2つのR2は、互いに同一でも異なってもよく、また、2つのR3は、互いに同一でも異なってもよい。
4が、アルキル基、アリール基またはヘテロアリール基を表す場合、アルキル基、アリール基およびヘテロアリール基としては、R1a、R1bで説明したものと同義であり、好ましい範囲も同様である。
4が、−BR4A4Bを表す場合、R4A、R4Bは、各々独立に、置換基を表す。R4AおよびR4Bが表す置換基としては、上述した置換基Tが挙げられ、ハロゲン原子、アルキル基、アルコキシ基、アリール基、または、ヘテロアリール基が好ましく、アルキル基、アリール基、または、ヘテロアリール基がより好ましく、アリール基が特に好ましい。−BR4A4Bで表される基の具体例としては、ジフルオロホウ素、ジフェニルホウ素、ジブチルホウ素、ジナフチルホウ素、カテコールホウ素が挙げられる。中でもジフェニルホウ素が特に好ましい。
4が金属原子を表す場合、金属原子としては、マグネシウム、アルミニウム、カルシウム、バリウム、亜鉛、スズ、アルミニウム、亜鉛、バナジウム、鉄、コバルト、ニッケル、銅、パラジウム、イリジウム、白金が挙げられ、アルミニウム、亜鉛、バナジウム、鉄、銅、パラジウム、イリジウム、白金が特に好ましい。
4は、R1a、R1bおよびR3の少なくとも1種と共有結合もしくは配位結合していてもよく、特にR4がR3と配位結合していることが好ましい。R4は、水素原子または−BR4A4Bで表される基(特にジフェニルホウ素)であることが好ましい。式(1)中の2つのR4は、互いに同じでも異なっていてもよい。
式(1)で表される化合物は、下記式(1A)で表される化合物であることがより好ましい。
Figure 2017104735
式中、R10は各々独立に水素原子、アルキル基、アリール基、ヘテロアリール基、−BR14A14Bまたは金属原子を表す。R10は、R12と共有結合または配位結合していてもよい。R11およびR12は各々独立に水素原子または置換基を表し、少なくとも一方はシアノ基であり、R11およびR12は結合して環を形成してもよい。R13は各々独立に、水素原子または炭素数3〜30の分岐アルキル基を表す。
10は、上記式(1)で説明したR4と同義であり、好ましい範囲も同様である。水素原子または−BR14A14Bで表される基(特にジフェニルホウ素)であることが好ましく、−BR14A14B表される基が特に好ましい。
11およびR12は、上記(1)で説明したR2およびR3と同義であり、好ましい範囲も同様である。R11およびR12のいずれか一方がシアノ基で、他方がヘテロアリール基であることがより好ましい。
14AおよびR14Bは、上記(1)で説明したR4AおよびR4Bと同義であり、好ましい範囲も同様である。
13は、各々独立に、水素原子または炭素数3〜30の分岐アルキル基を表す。分岐アルキル基の炭素数は、3〜20がより好ましい。
式(1)で表される化合物の具体例としては、下記化合物が挙げられる。また、例えば特開2011−68731号公報の段落0037〜0052(対応する米国特許出願公開第2011/0070407号明細書の[0070])を参酌でき、この内容は本明細書に組み込まれる。
Figure 2017104735
(スクアリリウム化合物)
本発明において、スクアリリウム化合物は、式(11)で表される化合物が好ましい。この化合物は、近赤外線吸収性および不可視性に優れる。
Figure 2017104735
一般式(11)中、A1およびA2は、それぞれ独立に、アリール基、ヘテロアリール基または下記一般式(12)で表される基を表す;
Figure 2017104735
一般式(12)中、Z1は、含窒素複素環を形成する非金属原子団を表し、R2は、アルキル基、アルケニル基またはアラルキル基を表し、dは、0または1を表し、波線は一般式(11)の4員環との連結手を表す。
一般式(11)におけるA1およびA2は、それぞれ独立に、アリール基、ヘテロアリール基または一般式(12)で表される基を表し、一般式(12)で表される基が好ましい。
1およびA2が表すアリール基の炭素数は、6〜48が好ましく、6〜24がより好ましく、6〜12が特に好ましい。具体例としては、フェニル基、ナフチル基等が挙げられる。なお、アリール基が置換基を有する場合における上記アリール基の炭素数は、置換基の炭素数を除いた数を意味する。
1およびA2が表すヘテロアリール基としては、5員環または6員環が好ましい。また、ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2〜8の縮合環が好ましく、単環または縮合数が2〜4の縮合環がより好ましく、単環または縮合数が2または3の縮合環がより好ましい。ヘテロアリール基を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が例示され、窒素原子、硫黄原子が好ましい。ヘテロアリール基を構成するヘテロ原子の数は、1〜3が好ましく、1〜2がより好ましい。具体的には、窒素原子、酸素原子および硫黄原子の少なくとも一つを含有する5員環または6員環等の単環、多環芳香族環から誘導されるヘテロアリール基が挙げられる。
アリール基およびヘテロアリール基は、置換基を有していてもよい。置換基としては、上述したピロロピロール化合物で説明した置換基Tが挙げられる。
アリール基およびヘテロアリール基が有してもよい置換基は、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、アシルアミノ基であることが好ましい。
ハロゲン原子は、塩素原子が好ましい。
アルキル基の炭素数は、1〜20が好ましく、1〜10がより好ましく、1〜5が更に好ましく、1〜4が最も好ましい。アルキル基は、直鎖または分岐が好ましい。
アミノ基は、−NR100101で表される基が好ましい。R100およびR101は、それぞれ独立に、水素原子または、炭素数1〜30のアルキル基を表す。アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜10が更に好ましく、1〜8が特に好ましい。アルキル基は直鎖、分岐が好ましく、直鎖がより好ましい。
アシルアミノ基は、−NR102−C(=O)−R103で表される基が好ましい。R102は、水素原子またはアルキル基を表し、水素原子が好ましい。R103は、アルキル基を表す。R102およびR103が表すアルキル基の炭素数は、1〜20が好ましく、1〜10がより好ましく、1〜5が更に好ましく、1〜4が特に好ましい。
アリール基およびヘテロアリール基が、置換基を2個以上有する場合、複数の置換基は同一であってもよく、異なっていてもよい。
次に、A1およびA2が表す一般式(12)で表される基について説明する。
一般式(12)において、R2は、アルキル基、アルケニル基またはアラルキル基を表し、アルキル基が好ましい。
アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜12が更に好ましく、2〜8が特に好ましい。
アルケニル基の炭素数は、2〜30が好ましく、2〜20がより好ましく、2〜12が更に好ましい。
アルキル基およびアルケニル基は、直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
アラルキル基の炭素数は7〜30が好ましく、7〜20がより好ましい。
一般式(12)において、Z1により形成される含窒素複素環としては、5員環または6員環が好ましい。また、含窒素複素環は、単環または縮合環が好ましく、単環または縮合数が2〜8の縮合環が好ましく、単環または縮合数が2〜4の縮合環がより好ましく、縮合数が2または3の縮合環がより好ましい。含窒素複素環は、窒素原子の他に、硫黄原子を含んでいてもよい。また、含窒素複素環は置換基を有していてもよい。置換基としては、上述した置換基Tで説明した基が挙げられる。例えば、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、アシルアミノ基が好ましく、ハロゲン原子、アルキル基がより好ましい。ハロゲン原子は、塩素原子が好ましい。アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜12が更に好ましい。アルキル基は、直鎖または分岐が好ましい。
一般式(12)で表される基は、下記一般式(13)または(14)で表される基であることが好ましい。
Figure 2017104735
一般式(13)および(14)中、R11は、アルキル基、アルケニル基またはアラルキル基を表し、R12は、置換基を表し、mが2以上の場合は、R12同士は、連結して環を形成してもよく、Xは、窒素原子、または、CR1314を表し、R13およびR14は、それぞれ独立に水素原子または置換基を表し、mは、0〜4の整数を表し、波線は一般式(11)の4員環との連結手を表す。
一般式(13)および(14)におけるR11は、一般式(12)におけるR2と同義であり、好ましい範囲も同様である。
一般式(13)および(14)におけるR12は、置換基を表す。置換基としては、上述した置換基Tで説明した基が挙げられる。例えば、ハロゲン原子、アルキル基、ヒドロキシ基、アミノ基、アシルアミノ基が好ましく、ハロゲン原子、アルキル基がより好ましい。ハロゲン原子は塩素原子が好ましい。アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜12が更に好ましい。アルキル基は、直鎖または分岐が好ましい。
mが2以上の場合、R12同士は、連結して環を形成してもよい。環としては、脂環(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、多環であってもよい。置換基同士が連結して環を形成する場合の連結基としては、−CO−、−O−、−NH−、2価の脂肪族基、2価の芳香族基およびそれらの組み合わせからなる群より選ばれる2価の連結基で連結することができる。例えば、R12同士が連結してベンゼン環を形成していることが好ましい。
一般式(13)におけるXは、窒素原子、または、CR1314を表し、R13およびR14は、それぞれ独立に水素原子または置換基を表す。置換基としては、上述した置換基Tで説明した基が挙げられる。例えば、アルキル基などが挙げられる。アルキル基の炭素数は、1〜20が好ましく、1〜10がより好ましく、1〜5が更に好ましく、1〜3が特に好ましく、1が最も好ましい。アルキル基は、直鎖または分岐が好ましく、直鎖が特に好ましい。
mは、0〜4の整数を表し、0〜2が好ましい。
なお、一般式(11)においてカチオンは、以下のように非局在化して存在している。
Figure 2017104735
スクアリリウム化合物としては、例えば下記化合物を用いることができる。また、特開2011−208101号公報の段落番号0044〜0049に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure 2017104735
(シアニン化合物)
本発明において、シアニン化合物は、式(A)で表される化合物が好ましい。
一般式(A)
Figure 2017104735
一般式(A)中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子群であり、R1およびR2は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、L1は、奇数個のメチン基を有するメチン鎖を表し、aおよびbは、それぞれ独立に、0または1であり、
式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
一般式(A)において、Z1およびZ2は、それぞれ独立に、縮環してもよい5員又は6員の含窒素複素環を形成する非金属原子群を表す。
含窒素複素環には、他の複素環、芳香族環または脂肪族環が縮合してもよい。含窒素複素環は、5員環が好ましい。5員の含窒素複素環にベンゼン環又はナフタレン環が縮合しているのがさらに好ましい。含窒素複素環の具体例としては、オキサゾール環、イソオキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、オキサゾロカルバゾール環、オキサゾロジベンゾフラン環、チアゾール環、ベンゾチアゾール環、ナフトチアゾール環、インドレニン環、ベンゾインドレニン環、イミダゾール環、ベンゾイミダゾール環、ナフトイミダゾール環、キノリン環、ピリジン環、ピロロピリジン環、フロピロール環、インドリジン環、イミダゾキノキサリン環、キノキサリン環等が挙げられ、キノリン環、インドレニン環、ベンゾインドレニン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環が好ましく、インドレニン環、ベンゾチアゾール環、ベンゾイミダゾール環が特に好ましい。
含窒素複素環及びそれに縮合している環は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、−OR10、−COR11、−COOR12、−OCOR13、−NR1415、−NHCOR16、−CONR1718、−NHCONR1920、−NHCOOR21、−SR22、−SO223、−SO2OR24、−NHSO225または−SO2NR2627が挙げられる。R10〜R27は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、またはアラルキル基を表す。なお、−COOR12のR12が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、−SO2OR24のR24が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。
アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基およびヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述した置換基T群で説明した基が挙げられ、ハロゲン原子、ヒドロキシ基、カルボキシル基、スルホ基、アルコキシ基、アミノ基等が好ましく、カルボキシル基およびスルホ基がより好ましく、スルホ基が特に好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
一般式(A)において、R1およびR2は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表す。
アルキル基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜8が更に好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
アルケニル基の炭素数は、2〜20が好ましく、2〜12がより好ましく、2〜8が特に好ましい。アルケニル基は直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
アルキニル基の炭素数は、2〜40が好ましく、2〜30がより好ましく、2〜25が特に好ましい。アルキニル基は直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。
アリール基の炭素数は、6〜30が好ましく、6〜20がより好ましく、6〜12が更に好ましい。
アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7〜40が好ましく、7〜30がより好ましく、7〜25が更に好ましい。
アルキル基、アルケニル基、アルキニル基、アラルキル基およびアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシル基、スルホ基、アルコキシ基、アミノ基等が挙げられ、カルボキシル基およびスルホ基が好ましく、スルホ基が特に好ましい。カルボキシル基およびスルホ基は、水素原子が解離していてもよく、塩の状態であってもよい。
式(A)において、L1は、奇数個のメチン基を有するメチン鎖を表す。L1は、3個、5個または7個のメチン基を有するメチン鎖が好ましく、5個または7個のメチン基を有するメチン鎖がより好ましい。
メチン基は置換基を有していてもよい。置換基を有するメチン基は、中央の(メソ位の)メチン基であることが好ましい。置換基の具体例としては、Z1およびZ2の含窒素複素環が有してもよい置換基、および、下式(a)で表される基が挙げられる。また、メチン鎖の二つの置換基が結合して5または6員環を形成しても良い。
Figure 2017104735
式(a)中、*は、メチン鎖との連結部を表し、A1は、酸素原子または硫黄原子を表す。
aおよびbは、それぞれ独立に、0または1である。aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合する。aおよびbはともに0であることが好ましい。なお、aおよびbがともに0の場合は、一般式(A)は以下のように表される。
Figure 2017104735
一般式(A)において、式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表す。アニオンの例としては、ハライドイオン(Cl-、Br-、I-)、パラトルエンスルホン酸イオン、エチル硫酸イオン、PF6 -、BF4 -またはClO4 -、トリス(ハロゲノアルキルスルホニル)メチドアニオン(例えば、(CF3SO23-)、ジ(ハロゲノアルキルスルホニル)イミドアニオン(例えば(CF3SO22-)、テトラシアノボレートアニオンなどが挙げられる。
一般式(A)において、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表す。カチオンとしては、アルカリ金属イオン(Li+、Na+、K+など)、アルカリ土類金属イオン(Mg2+、Ca2+、Ba2+、Sr2+など)、遷移金属イオン(Ag+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+など)、その他の金属イオン(Al3+など)、アンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、ピリジニウムイオン、テトラブチルアンモニウムイオン、グアニジニウムイオン、テトラメチルグアニジニウムイオン、ジアザビシクロウンデセニウムなどが挙げられる。カチオンとしては、Na+、K+、Mg2+、Ca2+、Zn2+、ジアザビシクロウンデセニウムが好ましい。
一般式(A)において、式中のCyで表される部位の電荷が分子内で中和されている場合、X1は存在しない。すなわち、cは0である。
シアニン化合物としては、例えば下記化合物を用いることができる。また、特開2009−108267号公報の段落番号0044〜0045に記載の化合物、特開2002−194040号公報の段落0026〜0030に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure 2017104735
(ジイモニウム化合物)
本発明において、ジイモニウム化合物は、下記式(Im)で表される化合物が好ましい。
式(Im)
Figure 2017104735
式中、R11〜R18は、それぞれ独立に、アルキル基またはアリール基を表し、V11〜V15は、それぞれ独立に、アルキル基、アリール基、ハロゲン原子、アルコキシ基またはシアノ基を表し、Xはアニオンを表し、cは電荷のバランスを取るために必要な数を表し、n1〜n5は、それぞれ独立に、0〜4である。
11〜R18は、それぞれ独立に、アルキル基またはアリール基を表す。アルキル基の炭素数は、1〜20が好ましく、1〜12がより好ましく、1〜8が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖が特に好ましい。アリール基の炭素数は、6〜25が好ましく、6〜15がさらに好ましく、6〜12がより好ましい。アルキル基およびアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述した置換基Tで説明した基が挙げられる。
11〜V15は、それぞれ独立に、アルキル基、アリール基、ハロゲン原子、アルコキシ基またはシアノ基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基の炭素数は、1〜20が好ましく、1〜12がより好ましく、1〜8が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖が特に好ましい。アリール基の炭素数は、6〜25が好ましく、6〜15がさらに好ましく、6〜12がより好ましい。アルコキシ基の炭素数は、1〜20が好ましく、1〜12がより好ましく、1〜8が特に好ましい。アルコキシ基は直鎖、分岐、環状のいずれでもよいが、直鎖または分岐が好ましく、直鎖が特に好ましい。
n1〜n5は、それぞれ独立に、0〜4である。n1〜n4は、0〜2が好ましく0または1がより好ましい。n5は、0〜3が好ましく0〜2がより好ましい。
ジイモニウム化合物としては、例えば下記化合物を用いることができる。また、特表2008−528706号公報に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure 2017104735
(フタロシアニン化合物)
本発明において、フタロシアニン化合物は、下記式(PC)で表される化合物が好ましい。
Figure 2017104735
一般式(PC)において、X1〜X16は、各々独立に、水素原子又は置換基を表し、M1は、Cu又はV=Oを表す。
1〜X16が表す置換基は、上述した置換基Tで説明した基が挙げられ、アルキル基、ハロゲン原子、アルコキシ基、フェノキシ基、アルキルチオ基、フェニルチオ基、アルキルアミノ基、アニリノ基が好ましい。
1〜X16のうち、置換基の数は、0〜16が好ましく、0〜4がより好ましく、0〜1がさらに好ましく、0が特に好ましい。また、M1は、Ti=Oが好ましい。
フタロシアニン化合物としては、例えば下記化合物を用いることができる。また、例えば、特開2012−77153号公報の段落番号0093に記載の化合物や、特開2006−343631号公報に記載のオキシチタニウムフタロシアニンが挙げられ、この内容は本明細書に組み込まれる。
Figure 2017104735
(ナフタロシアニン化合物)
本発明において、ナフタロシアニン化合物は、下記式(NPC)で表される化合物が好ましい。
Figure 2017104735
一般式(NPC)において、X1〜X24は、各々独立に、水素原子又は置換基を表し、M1は、Cu又はV=Oを表す。X1〜X24が表す置換基は、上述した置換基T群で説明した基が挙げられ、アルキル基、ハロゲン原子、アルコキシ基、フェノキシ基、アルキルチオ基、フェニルチオ基、アルキルアミノ基、アニリノ基が好ましい。M1は、V=Oが好ましい。
ナフタロシアニン化合物としては、例えば下記化合物を用いることができる。また、特開2012−77153号公報の段落番号0093に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。以下の式中Buはブチル基を表す。
Figure 2017104735
<<無機微粒子>>
本発明の近赤外線吸収組成物は、無機微粒子を含んでいてもよい。無機微粒子は、1種のみを用いてもよいし、2種以上を用いてもよい。
無機微粒子は、主に、赤外線を遮光(吸収)する役割を果たす粒子である。無機微粒子は、赤外線遮蔽性がより優れる点で、金属酸化物微粒子または金属微粒子が好ましい。
金属酸化物粒子としては、例えば、酸化インジウムスズ(ITO)粒子、酸化アンチモンスズ(ATO)粒子、酸化亜鉛(ZnO)粒子、Alドープ酸化亜鉛(AlドープZnO)粒子、フッ素ドープ二酸化スズ(FドープSnO2)粒子、ニオブドープ二酸化チタン(NbドープTiO2)粒子などが挙げられる。
金属微粒子としては、例えば、銀(Ag)粒子、金(Au)粒子、銅(Cu)粒子、ニッケル(Ni)粒子など挙げられる。なお、赤外線遮蔽性とフォトリソグラフィ性とを両立するためには、露光波長(365−405nm)の透過率が高い方が望ましく、酸化インジウムスズ(ITO)粒子または酸化アンチモンスズ(ATO)粒子が好ましい。
無機微粒子の形状は特に制限されず、球状、非球状を問わず、シート状、ワイヤー状、チューブ状であってもよい。
また、無機微粒子としては酸化タングステン系化合物が使用できる、具体的には、下記一般式(組成式)(I)で表される酸化タングステン系化合物であることがより好ましい。
xyz・・・(I)
Mは金属、Wはタングステン、Oは酸素を表す。
0.001≦x/y≦1.1
2.2≦z/y≦3.0
Mが表す金属としては、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Biが挙げられ、アルカリ金属が好ましく、RbまたはCsがより好ましく、Csが特に好ましい。Mの金属は1種でも2種以上でも良い。
x/yが0.001以上であることにより、赤外線を十分に遮蔽することができ、1.1以下であることにより、酸化タングステン系化合物中に不純物相が生成されることをより確実に回避することができる。
z/yが2.2以上であることにより、材料としての化学的安定性をより向上させることができ、3.0以下であることにより赤外線を十分に遮蔽することができる。
上記一般式(I)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3などを挙げることができ、Cs0.33WO3又はRb0.33WO3であることが好ましく、Cs0.33WO3であることが更に好ましい。
酸化タングステン系化合物は、例えば、住友金属鉱山株式会社製のYMF−02などのタングステン微粒子の分散物として入手可能である。
無機微粒子の平均粒子径は、800nm以下が好ましく、400nm以下がより好ましく、200nm以下が更に好ましい。無機微粒子の平均粒子径がこのような範囲であることによって、可視光領域における透光性をより確実にすることができる。光散乱を回避する観点からは、平均粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、無機微粒子の平均粒子径は、通常、1nm以上である。
無機微粒子の含有量は、近赤外線吸収組成物の全固形分に対して、0.01〜30質量%が好ましい。下限は、0.1質量%以上が好ましく、1質量%以上がさらに好ましい。上限は、20質量%以下が好ましく、10質量%以下がさらに好ましい。
<<溶剤>>
本発明の近赤外線吸収組成物は、溶剤を含有する。溶剤は、特に制限はなく、各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、有機溶剤を用いることができる。
有機溶剤としては、例えば、アルコール類、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012−194534号公報の段落0136等に記載のものが挙げられ、この内容は本明細書に組み込まれる。
エステル類、ケトン類、エーテル類の具体例としては、特開2012−208494号公報の段落0497(対応する米国特許出願公開第2012/0235099号明細書の[0609])に記載のものが挙げられる。さらに、酢酸−n−アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、エチレングリコールモノブチルエーテルアセテートなどが挙げられる。
溶剤としては、1−メトキシ−2−プロパノール、シクロペンタノン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N−メチル−2−ピロリドン、酢酸ブチル、乳酸エチルおよびプロピレングリコールモノメチルエーテルから選択される少なくとも1種以上を用いることが好ましい。
本発明において、金属含有量の少ない溶剤を用いることが好ましく、溶剤の金属含有量は、例えば10ppb以下であることが好ましい。必要に応じてpptレベルの溶剤を用いてもよく、そのような高純度溶剤は例えば東洋合成社が提供している。
溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いた濾過を挙げることができる。フィルタを用いたろ過におけるフィルタ孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルタの材質としては、ポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のフィルタが好ましい。
溶剤は、異性体(同じ原子数で異なる構造の化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。
溶剤の含有量は、本発明の近赤外線吸収組成物の全固形分が5〜60質量%となる量が好ましい。下限は、10質量%以上がより好ましい。上限は、40質量%以下がより好ましい。
溶剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<架橋性基を有する化合物(架橋性化合物)>>
本発明の近赤外線吸収組成物は、上述した樹脂A以外の成分として、架橋性基を有する化合物(以下、架橋性化合物ともいう)を含有してもよい。例えば、エチレン性不飽和結合を有する基を有する化合物、環状エーテル基を有する化合物、メチロール基を有する化合物、アルコキシシリル基を有する化合物等が挙げられる。エチレン性不飽和結合を有する基、環状エーテル基、アルコキシシリル基の詳細については、上述した樹脂で説明した範囲と同様である。
架橋性化合物は、モノマー、ポリマーのいずれの形態であってもよいがモノマーが好ましい。モノマータイプの架橋性化合物は、分子量が100〜3000であることが好ましい。上限は、2000以下が好ましく、1500以下が更に好ましい。下限は、150以上が好ましく、250以上が更に好ましい。また、架橋性化合物は、分子量分布を実質的に有さない化合物であることも好ましい。ここで、分子量分布を実質的に有さないとは、化合物の分散度(重量平均分子量(Mw)/数平均分子量(Mn))が、1.0〜1.5であることが好ましく、1.0〜1.3がより好ましい。ポリマータイプの架橋性化合物としては、架橋性基を有する繰り返し単位を有する樹脂や、エポキシ樹脂などが挙げられる。架橋性基を有する繰り返し単位は、上述した樹脂Aで説明した式(A2−1)〜(A2−4)に示した繰り返し単位が挙げられる。
モノマータイプの架橋性化合物の場合、架橋性化合物の架橋性基当量は、3.0〜8.0mmol/gが好ましく、3.5〜8.0mmol/gがより好ましく、4.0〜7.0mmol/gがさらに好ましい。また、モノマータイプの架橋性化合物は、一分子中に、架橋性基を2個以上有することが好ましい。上限は、15個以下が好ましく、10個以下がより好ましく、6個以下がさらに好ましい。ポリマータイプの架橋性化合物の場合、架橋性化合物の架橋性基当量は、0.5〜4.0mmol/gが好ましく、0.5〜3.0mmol/gがより好ましく、1.0〜3.0mmol/gがさらに好ましい。なお、架橋性化合物の架橋性基当量は、試料1g中に含まれる架橋基量(mmol)で定義される。
本発明において、架橋性化合物は、エチレン性不飽和結合を有する基を有する化合物、環状エーテル基を有する化合物、アルコキシシリル基を有する化合物が好ましく、アルコキシシリル基を有する化合物がさらに好ましい。アルコキシシリル基を有するモノマータイプの化合物がさらに好ましい。また、アルコキシシリル基を有するモノマータイプの化合物は、ケイ素価が3.0〜8.0mmol/gであることが好ましく、3.5〜8.0mmol/gがより好ましく、4.0〜7.0mmol/gがさらに好ましい。なお、架橋性化合物のケイ素価は、試料1g中に含まれるケイ素量(mmol)で定義される。
(エチレン性不飽和結合を有する基を有する化合物)
本発明において、架橋性化合物として、エチレン性不飽和結合を有する基を有する化合物を用いることができる。エチレン性不飽和結合を有する基を有する化合物は、モノマーであることが好ましい。上記化合物の分子量は、100〜3000が好ましい。上限は、2000以下が好ましく、1500以下が更に好ましい。下限は、150以上が好ましく、250以上が更に好ましい。上記化合物は、3〜15官能の(メタ)アクリレート化合物であることが好ましく、3〜6官能の(メタ)アクリレート化合物であることがより好ましい。
エチレン性不飽和結合を有する基を有する化合物の例としては、特開2013−253224号公報の段落0033〜0034の記載を参酌することができ、この内容は本明細書に組み込まれる。エチレン性不飽和結合を有する基を有する化合物としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としては、NKエステルATM−35E;新中村化学工業社製)、ジペンタエリスリトールトリアクリレート(市販品としては、KAYARAD D−330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては、KAYARAD D−320;日本化薬株式会社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D−310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては、KAYARAD DPHA;日本化薬株式会社製、A−DPH−12E;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。またこれらのオリゴマータイプも使用できる。また、特開2013−253224号公報の段落0034〜0038の重合性化合物の記載を参酌することができ、この内容は本明細書に組み込まれる。また、特開2012−208494号公報の段落0477(対応する米国特許出願公開第2012/0235099号明細書の[0585])に記載の重合性モノマー等が挙げられ、これらの内容は本明細書に組み込まれる。
また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M−460;東亞合成(株)製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学工業社製、A−TMMT)、1,6−ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。例えば、RP−1040(日本化薬株式会社製)などが挙げられる。
エチレン性不飽和結合を有する基を有する化合物は、カルボキシル基、スルホ基、リン酸基等の酸基を有していてもよい。酸基を有する化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルなどが挙げられる。脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた化合物が好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM−305、M−510、M−520などが挙げられる。酸基を有する化合物の酸価は、0.1〜40mgKOH/gが好ましい。下限は5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。
エチレン性不飽和結合を有する基を有する化合物は、カプロラクトン構造を有する化合物も好ましい態様である。カプロラクトン構造を有する化合物としては、分子内にカプロラクトン構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε−カプロラクトンをエステル化することにより得られる、ε−カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。カプロラクトン構造を有する化合物としては、特開2013−253224号公報の段落0042〜0045の記載を参酌することができ、この内容は本明細書に組み込まれる。カプロラクトン構造を有する化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されている、DPCA−20、DPCA−30、DPCA−60、DPCA−120等、サートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR−494、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA−330などが挙げられる。
エチレン性不飽和結合を有する基を有する化合物としては、特公昭48−41708号公報、特開昭51−37193号公報、特公平2−32293号公報、特公平2−16765号公報に記載されているようなウレタンアクリレート類や、特公昭58−49860号公報、特公昭56−17654号公報、特公昭62−39417号公報、特公昭62−39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。また、特開昭63−277653号公報、特開昭63−260909号公報、特開平1−105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性化合物類を用いることによって、非常に感光スピードに優れた着色硬化性組成物を得ることができる。
市販品としては、ウレタンオリゴマーUAS−10、UAB−140(山陽国策パルプ社製)、UA−7200(新中村化学工業社製)、DPHA−40H(日本化薬社製)、UA−306H、UA−306T、UA−306I、AH−600、T−600、AI−600(共栄社化学製)などが挙げられる。
本発明において、エチレン性不飽和結合を有する基を有する化合物は、エチレン性不飽和結合を有する基を側鎖に有するポリマーを用いることもできる。側鎖にエチレン性不飽和結合を有する基を有する繰り返し単位の含有量は、上記ポリマーを構成する全繰り返し単位の5〜100質量%であることが好ましい。下限は、10質量%以上がより好ましく、15質量%以上が更に好ましい。上限は、90質量%以下がより好ましく、80質量%以下が更に好ましく、70質量%以下が特に好ましい。
上記ポリマーは、側鎖にエチレン性不飽和結合を有する基を有する繰り返し単位の他に、他の繰り返し単位を含んでいてもよい。他の繰り返し単位は、酸基等の官能基を含んでいてもよい。官能基を含んでいなくてもよい。酸基としては、カルボキシル基、スルホン酸基、リン酸基が例示される。酸基は1種類のみ含まれていても良いし、2種類以上含まれていても良い。酸基を有する繰り返し単位の割合は、上記ポリマーを構成する全繰り返し単位の0〜50質量%であることが好ましい。下限は、1質量%以上がより好ましく、3質量%以上が更に好ましい。上限は、35質量%以下がより好ましく、30質量%以下が更に好ましい。
上記ポリマーの具体例としては、例えば、(メタ)アリル(メタ)アクリレート/(メタ)アクリル酸共重合体などが挙げられる。上記ポリマーの市販品としては、ダイヤナールNRシリーズ(三菱レイヨン株式会社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR−264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれも(株)ダイセル製)、Ebecryl3800(ダイセルユーシービー株式会社製)、アクリキュアーRD−F8(日本触媒社製)などが挙げられる。
(環状エーテル基を有する化合物)
本発明では、架橋性化合物として、環状エーテル基を有する化合物を用いることもできる。環状エーテル基としては、エポキシ基、オキセタニル基が挙げられ、エポキシ基が好ましい。
環状エーテル基を有する化合物は、側鎖に環状エーテル基を有するポリマー、分子内に2個以上の環状エーテル基を有するモノマーまたはオリゴマーなどが挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。また単官能または多官能グリシジルエーテル化合物も挙げられ、多官能脂肪族グリシジルエーテル化合物が好ましい。
環状エーテル基を有する化合物の重量平均分子量は、500〜5,000,000が好ましく、1000〜500,000がより好ましい。これらの化合物は、市販品を用いてもよいし、ポリマーの側鎖へエポキシ基を導入することによって得られるものを用いてもよい。
環状エーテル基を有する化合物の市販品としては、例えば、特開2012−155288号公報の段落0191等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、デナコール EX−212L、EX−214L、EX−216L、EX−321L、EX−850L(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX−212、EX−214、EX−216、EX−321、EX−850なども同様に使用できる。
その他にも、ADEKA RESIN EP−4000S、同EP−4003S、同EP−4010S、同EP−4011S(以上、(株)ADEKA製)、NC−2000、NC−3000、NC−7300、XD−1000、EPPN−501、EPPN−502(以上、(株)ADEKA製)、JER1031S、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、(株)ダイセル製)、サイクロマーP ACA 200M、同ACA 230AA、同ACA Z250、同ACA Z251、同ACA Z300、同ACA Z320(以上、(株)ダイセル製)等も挙げられる。
さらに、フェノールノボラック型エポキシ樹脂の市販品として、JER−157S65、JER−152、JER−154、JER−157S70(以上、三菱化学(株)製)等が挙げられる。
また、側鎖にオキセタニル基を有するポリマー、分子内に2個以上のオキセタニル基を有する重合性モノマーまたはオリゴマーの具体例としては、アロンオキセタンOXT−121、OXT−221、OX−SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
エポキシ基を有する化合物としては、グリシジル(メタ)アクリレートやアリルグリシジルエーテル等のグリシジル基を有するものも使用可能であるが、好ましいものは脂環式エポキシ基を有する不飽和化合物である。この様なものとしては例えば特開2009−265518号公報の段落0045等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
環状エーテル基を有する化合物は、エポキシ基またはオキセタニル基を繰り返し単位として有する重合体を含んでいてもよい。
(アルコキシシリル基を有する化合物)
本発明では、架橋性化合物として、アルコキシシリル基を有する化合物を用いることもできる。アルコキシシリル基におけるアルコキシ基の炭素数は、1〜5が好ましく、1〜3がより好ましく、1または2が特に好ましい。アルコキシシリル基は、一分子中に2個以上有することが好ましく、2〜3個有することがさらに好ましい。アルコキシシリル基を有する化合物の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6−ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、トリス(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシランなどが挙げられる。また、上記以外にアルコキシオリゴマーを用いることができる。また、下記化合物を用いることもできる。
Figure 2017104735
市販品としては、信越シリコーン社製のKBM−13、KBM−22、KBM−103、KBE−13、KBE−22、KBE−103、KBM−3033、KBE−3033、KBM−3063、KBM−3066、KBM−3086、KBE−3063、KBE−3083、KBM−3103、KBM−3066、KBM−7103、SZ−31、KPN−3504、KBM−1003、KBE−1003、KBM−303、KBM−402、KBM−403、KBE−402、KBE−403、KBM−1403、KBM−502、KBM−503、KBE−502、KBE−503、KBM−5103、KBM−602、KBM−603、KBM−903、KBE−903、KBE−9103、KBM−573、KBM−575、KBM−9659、KBE−585、KBM−802、KBM−803、KBE−846、KBE−9007、X−40−1053、X−41−1059A、X−41−1056、X−41−1805、X−41−1818、X−41−1810、X−40−2651、X−40−2655A、KR−513,KC−89S,KR−500、X−40−9225、X−40−9246、X−40−9250、KR−401N、X−40−9227、X−40−9247、KR−510、KR−9218、KR−213、X−40−2308、X−40−9238などが挙げられる。
また、アルコキシシリル基を有する化合物は、アルコキシシリル基を側鎖に有するポリマーを用いることもできる。
本発明の近赤外線吸収組成物が架橋性化合物を含有する場合、架橋性化合物の含有量は、近赤外線吸収組成物の全固形分に対して、1〜30質量%が好ましく、1〜25質量%がより好ましく、1〜20質量%がさらに好ましい。また、樹脂Aの100質量部に対し、架橋性化合物の含有量は1〜60質量部が好ましく、1〜50質量部がより好ましく、1〜40質量部がさらに好ましい。架橋性化合物は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
本発明の近赤外線吸収組成物は、架橋性化合物を実質的に含有しないこともできる。「架橋性化合物を実質的に含有しない」とは、例えば、近赤外線吸収組成物の全固形分に対して、0.5質量%以下が好ましく、0.1質量%以下がより好ましく、含有しないことが一層好ましい。
<<他の樹脂>>
本発明の近赤外線吸収組成物は、上記樹脂Aおよび上記架橋性化合物以外の樹脂(以下、他の樹脂ともいう)を含んでもよい。すなわち、本発明の近赤外線吸収組成物は、ガラス転移温度が0℃未満の樹脂や、100℃を超える樹脂を含んでいてもよい。他の樹脂としては、特開2012−208494号公報の段落0558〜0571(対応する米国特許出願公開第2012/0235099号明細書の[0685]〜[0700])の記載を参酌でき、これらの内容は本明細書に組み込まれる。
本発明の近赤外線吸収組成物が、他の樹脂を含有する場合、他の樹脂の含有量は、近赤外線吸収組成物の全固形分に対して、1〜80質量%が好ましい。下限は5質量%以上が好ましく、7質量%以上がより好ましい。上限は50質量%以下が好ましく、30質量%以下がより好ましい。
<<脱水剤、アルキルアルコール>>
本発明の近赤外線吸収組成物は、さらに、脱水剤やアルキルアルコールを配合することにより液の保存安定性を向上させることができる。脱水剤の具体例としては、ビニルトリメトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、フェニルトリメトキシシラン、及びジフェニルジメトキシシランなどのシラン化合物;
オルトギ酸メチル、オルトギ酸エチル、オルト酢酸メチル、オルト酢酸エチル、オルトプロピオン酸トリメチル、オルトプロピオン酸トリエチル、オルトイソプロピオン酸トリメチル、オルトイソプロピオン酸トリエチル、オルト酪酸トリメチル、オルト酪酸トリエチル、オルトイソ酪酸トリメチル、オルトイソ酪酸トリエチルなどのオルトエステル化合物;
アセトンジメチルケタ−ル、ジエチルケトンジメチルケタ−ル、アセトフェノンジメチルケタ−ル、シクロヘキサノンジメチルケタ−ル、シクロヘキサノンジエチルケタ−ル、ベンゾフェノンジメチルケタ−ルなどのケタール化合物などが挙げられる。これらは単独で用いてもよく2種以上併用してもよい。
また、アルキルアルコールの具体例としては、例えばメタノール、エタノールなどの炭素数1から4の低級アルコールなどが挙げられる。
脱水剤やアルキルアルコールは、たとえば樹脂Aを重合する前の成分に加えてもよく、樹脂Aの重合中に加えてもよく、また、得られた樹脂Aとその他の成分との混合時に加えてもよく特に制限はない。
脱水剤およびアルキルアルコールの含有量には特に限定はないが、樹脂A100質量部に対して0.5〜20質量部が好ましく、2〜10質量部がより好ましい。
<<重合開始剤>>
本発明の近赤外線吸収組成物は、重合開始剤を含んでもよい。重合開始剤としては、光、熱のいずれか或いはその双方により重合性化合物の重合を開始する能力を有する限り、特に制限はないが、光重合開始剤が好ましい。光で重合を開始させる場合、紫外線領域から可視領域の光線に対して感光性を有するものが好ましい。また、熱で重合を開始させる場合には、150〜250℃で分解する重合開始剤が好ましい。
重合開始剤としては、芳香族基を有する化合物が好ましい。例えば、アシルホスフィン化合物、アセトフェノン化合物、α−アミノケトン化合物、ベンゾフェノン化合物、ベンゾインエーテル化合物、ケタール化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、メタロセン化合物等のオニウム塩化合物、有機硼素塩化合物、ジスルホン化合物、チオール化合物などが挙げられる。
重合開始剤は、特開2013−253224号公報の段落0217〜0228の記載を参酌することができ、この内容は本明細書に組み込まれる。
重合開始剤は、オキシム化合物、アセトフェノン化合物またはアシルホスフィン化合物が好ましい。アセトフェノン化合物の市販品としては、IRGACURE−907、IRGACURE−369、IRGACURE−379(商品名:いずれもBASF社製)等を用いることができる。アシルホスフィン化合物の市販品としては、IRGACURE−819、DAROCUR−TPO(商品名:いずれもBASF社製)等を用いることができる。
重合開始剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01〜30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。重合開始剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<触媒>>
本発明の近赤外線吸収組成物は、触媒を含んでもよい。例えば、樹脂Aとして、アルコキシシリル基等の架橋性基を有する繰り返し単位を含む樹脂を用いた場合や、架橋性化合物を用いた場合、近赤外線吸収組成物が触媒を含有することで、架橋性基の架橋を促進して、耐溶剤性や耐熱性に優れた硬化膜が得られ易い。
触媒としては、有機金属系触媒、酸系触媒、アミン系触媒などが挙げられ、有機金属系触媒が好ましい。有機金属系触媒は、Na、K、Ca、Mg、Ti、Zr、Al、Zn、Sn、及びBiからなる群より選択される少なくとも1つの金属を含む、酸化物、硫化物、ハロゲン化物、炭酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、硝酸塩、硫酸塩、アルコキシド、水酸化物、及び置換基を有していてもよいアセチルアセトナート錯体からなる群より選択される少なくとも1種であることが好ましい。なかでも、上記金属の、ハロゲン化物、カルボン酸塩、硝酸塩、硫酸塩、水酸化物、及び置換基を有していてもよいアセチルアセトナート錯体からなる群より選択される少なくとも1種であることが好ましく、アセチルアセトナート錯体が更に好ましい。特に、Alのアセチルアセトナート錯体が好ましい。有機金属系触媒の具体例としては、例えば、トリス(2,4−ペンタンジオナト)アルミニウムなどが挙げられる。
本発明の近赤外線吸収組成物が、触媒を含有する場合、触媒の含有量は、近赤外線吸収組成物の全固形分に対して0.01〜5質量%が好ましい。上限は、3質量%以下が好ましく、1質量%以下が更に好ましい。下限は、0.05質量%以上が好ましい。
<<熱安定性付与剤>>
本発明の近赤外線吸収組成物は、熱安定性付与剤を含有することもできる。熱安定性付与剤としてはオキシム化合物が挙げられる。
オキシム化合物の市販品としては、IRGACURE−OXE01(BASF社製)、IRGACURE−OXE02(BASF社製)、TR−PBG−304(常州強力電子新材料有限公司製)、アデカアークルズNCI−831(ADEKA社製)、アデカアークルズNCI−930(ADEKA社製)等を用いることができる。
本発明は、オキシム化合物として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010−262028号公報記載の化合物、特表2014−500852号公報記載の化合物24、36〜40、特開2013−164471号公報記載の化合物(C−3)などが挙げられる。この内容は本明細書に組み込まれる。
本発明は、オキシム化合物として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物の具体例としては、特開2013−114249号公報の段落0031〜0047、特開2014−137466号公報の段落0008〜0012、0070〜0079に記載されている化合物や、アデカアークルズNCI−831(ADEKA社製)が挙げられる。
熱安定性付与剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01〜30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、10質量%以下がより好ましい。
<<界面活性剤>>
本発明の近赤外線吸収組成物は、界面活性剤を含んでもよい。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.0001〜5質量%が好ましい。下限は、0.005質量%以上が好ましく、0.01質量%以上がより好ましい。上限は、2質量%以下が好ましく、1質量%以下がより好ましい。
界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。近赤外線吸収組成物は、フッ素系界面活性剤およびシリコーン系界面活性剤の少なくとも一方を含有することが好ましい。被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善される。このため、組成物の液特性(特に、流動性)が向上し、塗布厚の均一性や省液性がより改善する。その結果、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成を行える。
フッ素系界面活性剤のフッ素含有率は、3〜40質量%が好ましい。下限は、5質量%以上が好ましく、7質量%以上が更に好ましい。上限は、30質量%以下が好ましく、25質量%以下が更に好ましい。フッ素含有率が上述した範囲内である場合は、塗布膜の厚さの均一性や省液性の点で効果的であり、溶解性も良好である。
フッ素系界面活性剤として具体的には、特開2014−41318号公報の段落0060〜0064(対応する国際公開WO2014/17669号パンフレットの段落0060〜0064)等に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF−171、同F−172、同F−173、同F−176、同F−177、同F−141、同F−142、同F−143、同F−144、同R30、同F−437、同F−475、同F−479、同F−482、同F−554、同F−780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS−382、同SC−101、同SC−103、同SC−104、同SC−105、同SC1068、同SC−381、同SC−383、同S393、同KH−40(以上、旭硝子(株)製)等が挙げられる。フッ素系界面活性剤は、特開2015−117327号公報の段落0015〜0158に記載の化合物を用いることもできる。フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011−89090号公報に記載された化合物が挙げられる。
フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができ、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure 2017104735
上記の化合物の重量平均分子量は、好ましくは3,000〜50,000であり、例えば、14,000である。
また、エチレン性不飽和基を側鎖に有する含フッ素重合体をフッ素系界面活性剤として用いることもできる。具体例としては、特開2010−164965号公報の段落0050〜0090および段落0289〜0295に記載された化合物、例えばDIC社製のメガファックRS−101、RS−102、RS−718K等が挙げられる。
ノニオン系界面活性剤として具体的には、特開2012−208494号公報の段落0553(対応する米国特許出願公開第2012/0235099号明細書の[0679])等に記載のノニオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
カチオン系界面活性剤として具体的には、特開2012−208494号公報の段落0554(対応する米国特許出願公開第2012/0235099号明細書の[0680])に記載のカチオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)製)等が挙げられる。
シリコーン系界面活性剤としては、例えば、特開2012−208494号公報の段落0556(対応する米国特許出願公開第2012/0235099号明細書の[0682])等に記載のシリコーン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
<<その他の成分>>
本発明の近赤外線吸収組成物で併用可能なその他の成分としては、例えば、分散剤、増感剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする近赤外線カットフィルタの安定性、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012−003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の[0237]以降)の記載、特開2008−250074号公報の段落番号0101〜0104、0107〜0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。分子量500以上のフェノール化合物、分子量500以上の亜リン酸エステル化合物又は分子量500以上のチオエーテル化合物がより好ましい。これらは2種以上を混合して使用してもよい。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。特に、フェノール性水酸基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1〜22の置換又は無置換のアルキル基が好ましく、メチル基、エチル基、プロピオニル基、イソプロピオニル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、t−ペンチル基、ヘキシル基、オクチル基、イソオクチル基、2−エチルへキシル基がより好ましい。また、同一分子内にフェノール基と亜リン酸エステル基を有する化合物(酸化防止剤)も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。リン系酸化防止剤としてはトリス[2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン−6−イル]オキシ]エチル]アミン、トリス[2−[(4,6,9,11−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン−2−イル)オキシ]エチル]アミン、および亜リン酸エチルビス(2,4−ジーtert−ブチル−6−メチルフェニル)からなる群から選ばれる少なくとも1種の化合物が挙げられる。これらは、市販品として容易に入手可能であり、アデカスタブ AO−20、アデカスタブ AO−30、アデカスタブ AO−40、アデカスタブ AO−50、アデカスタブ AO−50F、アデカスタブ AO−60、アデカスタブ AO−60G、アデカスタブ AO−80、アデカスタブ AO−330((株)ADEKA)などが挙げられる。酸化防止剤の含有量は、組成物の全固形分に対して、0.01〜20質量%であることが好ましく、0.3〜15質量%であることがより好ましい。酸化防止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<近赤外線吸収組成物の調製、用途>
本発明の近赤外線吸収組成物は、上記各成分を混合して調製できる。
組成物の調製に際しては、組成物を構成する各成分を一括配合してもよいし、各成分を溶剤に溶解および/または分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。
本発明においては、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン−6、ナイロン−6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリプロピレンを含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度、超高分子量のポリプロピレンを含む)およびナイロンが好ましい。
フィルタの孔径は、0.01〜7.0μm程度が適しており、好ましくは0.01〜3.0μm程度、さらに好ましくは0.05〜0.5μm程度である。この範囲とすることにより、微細な異物を確実に除去することが可能となる。また、ファイバ状のろ材を用いることも好ましく、ろ材としては例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられ、具体的にはロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジを用いることができる。
フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。
また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2〜10.0μmが好ましく、0.2〜7.0μmがより好ましく、0.3〜6.0μmが更に好ましい。この範囲とすることにより、組成物に含有されている成分粒子を残存させたまま、異物を除去することができる。
本発明の近赤外線吸収組成物は、液状とすることができるため、例えば、本発明の近赤外線吸収組成物を基材などに適用し、乾燥させることにより近赤外線カットフィルタを容易に製造できる。
本発明の近赤外線吸収組成物の粘度は、塗布により近赤外線カットフィルタを形成する場合は、1〜3000mPa・sであることが好ましい。下限は、10mPa・s以上が好ましく、100mPa・s以上が更に好ましい。上限は、2000mPa・s以下が好ましく、1500mPa・s以下が更に好ましい。
本発明の近赤外線吸収組成物の全固形分は、塗布方法により変更されるが、例えば、1〜50質量%であることが好ましい。下限は10質量%以上がより好ましい。上限は30質量%以下がより好ましい。
本発明の近赤外線吸収組成物の用途は、特に限定されないが、近赤外線カットフィルタ等の形成に好ましく用いることができる。例えば、固体撮像素子の受光側における近赤外線カットフィルタ(例えば、ウエハーレベルレンズに対する近赤外線カットフィルタ用など)、固体撮像素子の裏面側(受光側とは反対側)における近赤外線カットフィルタなどに好ましく用いることができる。特に、固体撮像素子の受光側における近赤外線カットフィルタとして好ましく用いることができる。
また、本発明の近赤外線吸収組成物によれば、耐熱性が高く、可視領域では高い透過率を維持しつつ、高い赤外線遮蔽性を実現できる近赤外線カットフィルタが得られる。さらには、近赤外線カットフィルタの膜厚を薄くでき、カメラモジュールや画像表示装置の低背化に寄与できる。
<近赤外線カットフィルタ>
次に、本発明の近赤外線カットフィルタについて説明する。
本発明の近赤外線カットフィルタは、上述した本発明の近赤外線吸収組成物を用いてなるものである。
本発明の近赤外線カットフィルタは、光透過率が以下の(1)〜(9)のうちの少なくとも1つの条件を満たすことが好ましく、以下の(1)〜(8)のすべての条件を満たすことがより好ましく、(1)〜(9)のすべての条件を満たすことがさらに好ましい。
(1)波長400nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(2)波長450nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(3)波長500nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(4)波長550nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(5)波長700nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(6)波長750nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(7)波長800nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(8)波長850nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(9)波長900nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
近赤外線カットフィルタは、波長400〜550nmの全ての範囲での光透過率が85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。可視領域での透過率は高いほど好ましく、波長400〜550nmで高透過率となることが好ましい。また、波長700〜800nmの範囲の少なくとも1点での光透過率が20%以下であることが好ましく、波長700〜800nmの全ての範囲での光透過率が20%以下であることがさらに好ましい。
近赤外線カットフィルタの膜厚は、目的に応じて適宜選択することができる。例えば、500μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましく、200μm以下が特に好ましい。膜厚の下限は、例えば、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上がより好ましい。
本発明の近赤外線カットフィルタは、180℃で1分間加熱した前後における、下式で表される波長400nmにおける吸光度の変化率が6%以下であることが好ましく、3%以下であることが特に好ましい。また、180℃で1分間加熱した前後における、下式で表される波長800nmにおける吸光度の変化率が6%以下であることが好ましく、3%以下であることが特に好ましい。吸光度の変化率が上記範囲であれば、耐熱性に優れ、加熱による着色が抑制された近赤外線カットフィルタとすることができる。
波長400nmにおける吸光度の変化率(%)=|(試験前における波長400nmの吸光度−試験後における波長400nmの吸光度)/試験前における波長400nmの吸光度|×100(%)
波長800nmにおける吸光度の変化率(%)=|(試験前における波長800nmの吸光度−試験後における波長800nmの吸光度)/試験前における波長800nmの吸光度|×100(%)
本発明の近赤外線カットフィルタは、85℃で1008時間加熱した前後における、上述した式で表される波長400nmにおける吸光度の変化率が6%以下であることが好ましく、3%以下であることが特に好ましい。また、85℃で1008時間加熱した前後における、上述した式で表される波長800nmにおける吸光度の変化率が6%以下であることが好ましく、3%以下であることが特に好ましい。
本発明の近赤外線カットフィルタは、25℃のメチルプロピレングリコール中に2分間浸漬した前後における、下式で表される波長800nmにおける吸光度の変化率が6%以下であることが好ましく、3%以下であることが特に好ましい。
波長800nmにおける吸光度の変化率(%)=|(試験前における波長800nmの吸光度−試験後における波長800nmの吸光度)/試験前における波長800nmの吸光度|×100(%)
本発明の近赤外線カットフィルタは、更に、紫外・赤外光反射膜や、紫外線吸収層を有していてもよい。紫外・赤外光反射膜を有することで、入射角依存性を改良する効果が得られる。紫外・赤外光反射膜としては、例えば、特開2013−68688号公報の段落0033〜0039、WO2015/099060号の段落0110〜0114に記載の反射層を参酌することができ、この内容は本明細書に組み込まれる。紫外線吸収層を有することで、紫外線遮蔽性に優れた近赤外線カットフィルタとすることができる。紫外線吸収層としては、例えば、WO2015/099060号の段落0040〜0070、0119〜0145に記載の吸収層を参酌でき、この内容は本明細書に組み込まれる。
本発明の近赤外線カットフィルタは、近赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f−θレンズ、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルタ、省エネルギー用に熱線を遮断する近赤外線吸収フィルムや近赤外線吸収板、太陽光の選択的な利用を目的とする農業用コーティング剤、近赤外線の吸収熱を利用する記録媒体、電子機器用や写真用近赤外線フィルタ、保護めがね、サングラス、熱線遮断フィルム、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー溶着などに用いられる。またCCDカメラ用ノイズカットフィルター、CMOSイメージセンサ用フィルタとしても有用である。
<近赤外線カットフィルタの製造方法>
本発明の近赤外線カットフィルタは、本発明の近赤外線吸収組成物を用いて製造できる。具体的には、本発明の近赤外線吸収組成物を支持体などに適用して膜を形成する工程、膜を乾燥する工程を経て製造できる。膜厚、積層構造などについては、目的に応じて適宜選択することができる。また、更にパターンを形成する工程を行ってもよい。
膜を形成する工程において、近赤外線吸収組成物の適用方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009−145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットによる適用方法としては、近赤外線吸収組成物を吐出可能であれば特に限定されず、例えば「広がる・使えるインクジェット−特許に見る無限の可能性−、2005年2月発行、住べテクノリサーチ」に示された特許公報に記載の方法(特に115ページ〜133ページ)や、特開2003−262716、特開2003−185831、特開2003−261827、特開2012−126830、特開2006−169325などにおいて、吐出する組成物を本発明の近赤外線吸収組成物に置き換える方法が挙げられる。
滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、支持体上にフォトレジストを隔壁とする近赤外線吸収組成物の滴下領域を形成することが好ましい。近赤外線吸収組成物の滴下量および固形分濃度、滴下領域の面積を調整することで、所望の膜厚が得られる。乾燥後の膜の厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。
支持体は、ガラスなどの透明基板であってもよい。また、固体撮像素子であってもよい。また、固体撮像素子の受光側に設けられた別の基板であってもよい。また、固体撮像素子の受光側に設けられた平坦化層等の層であっても良い。
膜を乾燥する工程において、乾燥条件としては、各成分、溶剤の種類、使用割合等によっても異なる。例えば、60〜150℃の温度で、30秒間〜15分間が好ましい。
パターンを形成工程としては、例えば、本発明の近赤外線吸収組成物を支持体上に適用して膜状の組成物層を形成する工程と、組成物層をパターン状に露光する工程と、未露光部を現像除去してパターンを形成する工程とを含む方法などが挙げられる。パターンを形成する工程としては、フォトリソグラフィ法でパターン形成してもよいし、ドライエッチング法でパターンを形成してもよい。フォトリソグラフィ法でパターン形成する場合において、現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液が好ましく使用される。アルカリ性水溶液のアルカリ剤の濃度は、0.001〜10質量%が好ましく、0.01〜1質量%がより好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な倍率に希釈してもよい。希釈倍率は特に限定されないが、例えば2〜50倍の範囲に設定することができる。
近赤外線カットフィルタの製造方法において、その他の工程を含んでいても良い。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、硬化処理工程、後加熱工程(ポストベーク工程)などが挙げられる。
<<前加熱工程・後加熱工程>>
前加熱工程および後加熱工程における加熱温度は、80〜200℃が好ましい。上限は150℃以下が好ましい。下限は90℃以上が好ましい。また、前加熱工程および後加熱工程における加熱時間は、30〜240秒が好ましい。上限は180秒以下が好ましい。下限は60秒以上が好ましい。
<<硬化処理工程>>
硬化処理工程は、必要に応じ、形成された上記膜に対して硬化処理を行う工程であり、この処理を行うことにより、近赤外線カットフィルタの機械的強度が向上する。硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、露光処理、加熱処理などが好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、X線などの放射線照射をも包含する意味で用いられる。
露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、電子線、KrF、ArF、g線、h線、i線等の紫外線や可視光が好ましく用いられる。露光方式としては、ステッパー露光や、高圧水銀灯による露光などが挙げられる。露光量は5〜3000mJ/cm2が好ましい。上限は、2000mJ/cm2以下が好ましく、1000mJ/cm2以下がより好ましい。下限は、10mJ/cm2以上が好ましく、50mJ/cm2以上がより好ましい。露光処理の方法としては、例えば、形成された膜の全面を露光する方法が挙げられる。近赤外線吸収組成物が光重合性化合物(例えば、エチレン性不飽和基を有する化合物など)を含有する場合、全面露光により、光重合性化合物の硬化が促進され、膜の硬化が更に進行し、機械的強度、耐久性が改良される。露光装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などの紫外線露光機が好適に挙げられる。
加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。加熱処理により、パターンの膜強度が高められる。加熱温度は、100〜260℃が好ましい。下限は120℃以上が好ましく、160℃以上がより好ましい。上限は240℃以下が好ましく、220℃以下がより好ましい。加熱温度が上記範囲であれば、強度に優れた膜が得られやすい。加熱時間は、1〜180分が好ましい。下限は3分以上が好ましい。上限は120分以下が好ましい。加熱装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、赤外線ヒーターなどが挙げられる。
<固体撮像素子、カメラモジュール>
本発明の固体撮像素子は、本発明の近赤外線カットフィルタを含む。また、本発明のカメラモジュールは、本発明の近赤外線カットフィルタを含む。
図1は、本発明の実施形態に係る近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。
図1に示すカメラモジュール10は、固体撮像素子11と、固体撮像素子の主面側(受光側)に設けられた平坦化層12と、近赤外線カットフィルタ13と、近赤外線カットフィルタの上方に配置され内部空間に撮像レンズ14を有するレンズホルダー15と、を備える。カメラモジュール10は、外部からの入射光hνが、撮像レンズ14、近赤外線カットフィルタ13、平坦化層12を順次透過した後、固体撮像素子11の撮像素子部に到達するようになっている。
固体撮像素子11は、例えば、基板16の主面に、フォトダイオード、層間絶縁膜(図示せず)、ベース層(図示せず)、カラーフィルタ17、オーバーコート(図示せず)、マイクロレンズ18をこの順に備えている。カラーフィルタ17(赤色のカラーフィルタ、緑色のカラーフィルタ、青色のカラーフィルタ)やマイクロレンズ18は、固体撮像素子11に対応するように、それぞれ配置されている。なお、平坦化層12の表面に近赤外線カットフィルタ13が設けられる代わりに、マイクロレンズ18の表面、ベース層とカラーフィルタ17との間、または、カラーフィルタ17とオーバーコートとの間に、近赤外線カットフィルタ13が設けられる形態であってもよい。例えば、近赤外線カットフィルタ13は、マイクロレンズ表面から2mm以内(より好ましくは1mm以内)の位置に設けられていてもよい。この位置に設けると、近赤外線カットフィルタを形成する工程が簡略化でき、マイクロレンズへの不要な近赤外線を十分にカットすることができるので、赤外線遮蔽性をより高めることができる。
本発明の近赤外線カットフィルタは、耐熱性に優れるため、半田リフロー工程に供することができる。半田リフロー工程によりカメラモジュールを製造することによって、半田付けを行うことが必要な電子部品実装基板等の自動実装化が可能となり、半田リフロー工程を用いない場合と比較して、生産性を格段に向上することができる。更に、自動で行うことができるため、低コスト化を図ることもできる。半田リフロー工程に供される場合、250〜270℃程度の温度にさらされることとなるため、近赤外線カットフィルタは、半田リフロー工程に耐え得る耐熱性(以下、「耐半田リフロー性」ともいう。)を有することが好ましい。本明細書中で、「耐半田リフロー性を有する」とは、180℃で1分間の加熱を行う前後で近赤外線カットフィルタとしての特性を保持することをいう。より好ましくは、230℃で10分間の加熱を行う前後で特性を保持することである。更に好ましくは、250℃で3分間の加熱を行う前後で特性を保持することである。耐半田リフロー性を有しない場合には、上記条件で保持した場合に、近赤外線カットフィルタの赤外線遮蔽性が低下したり、膜としての機能が不十分となる場合がある。
本発明のカメラモジュールは、更に、紫外線吸収層を有することもできる。この態様によれば、紫外線遮蔽性を高めることができる。紫外線吸収層は、例えば、WO2015/099060号の段落0040〜0070、0119〜0145の記載を参酌でき、この内容は本明細書に組み込まれることする。また、後述する紫外・赤外光反射膜を更に有することもできる。紫外線吸収層と紫外・赤外光反射膜は、両者を併用してもよく、いずれか一方のみであってもよい。
図2〜4は、カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。
図2に示すように、カメラモジュールは、固体撮像素子11と、平坦化層12と、紫外・赤外光反射膜19と、透明基材20と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22とをこの順に有していてもよい。紫外・赤外光反射膜19は、近赤外線カットフィルタの機能を付与または高める効果を有し、例えば、特開2013−68688号公報の段落0033〜0039、WO2015/099060号の段落0110〜0114を参酌することができ、この内容は本明細書に組み込まれる。透明基材20は、可視領域の波長の光を透過するものであり、例えば、特開2013−68688号公報の段落0026〜0032を参酌することができ、この内容は本明細書に組み込まれる。近赤外線吸収層21は、上述した本発明の近赤外線吸収組成物を塗布することにより形成することができる。反射防止層22は、近赤外線カットフィルタに入射する光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、例えば、特開2013−68688号公報の段落0040を参酌することができ、この内容は本明細書に組み込まれる。
図3に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22と、平坦化層12と、反射防止層22と、透明基材20と、紫外・赤外光反射膜19とをこの順に有していてもよい。
図4に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、紫外・赤外光反射膜19と、平坦化層12と、反射防止層22と、透明基材20と、反射防止層22とをこの順に有していてもよい。
<画像表示装置>
本発明の画像表示装置は、本発明の近赤外線カットフィルタを有する。本発明の近赤外線カットフィルタは、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置などの画像表示装置に用いることもできる。例えば、各着色画素(例えば赤色、緑色、青色)とともに用いることにより、表示装置のバックライト(例えば白色発光ダイオード(白色LED))に含まれる赤外光を遮断し、周辺機器の誤作動を防止する目的や、各着色表示画素に加えて赤外の画素を形成する目的で用いることが可能である。
表示装置の定義や各表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)、平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。
画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003−45676号公報、三上明義監修、「有機EL技術開発の最前線−高輝度・高精度・長寿命化・ノウハウ集−」、技術情報協会、326−328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430nm−485nm)、緑色領域(530nm−580nm)及び黄色領域(580nm−620nm)に強い発光極大ピークを有するものが好ましい。これらの発光ピークに加え更に赤色領域(650nm−700nm)に発光極大ピークを有するものがより好ましい。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。
<重量平均分子量(Mw)>
重量平均分子量(Mw)は、以下の方法で、ゲルパーミエーションクロマトグラフィ(GPC)にて測定した。
装置:HLC−8220 GPC(東ソー株式会社製)
検出器:RI(Refractive Index)検出器
カラム:ガードカラム HZ−Lと、TSKgel Super HZM−Mと、TSKgel Super HZ4000と、TSKgel Super HZ3000と、TSKgel Super HZ2000(東ソー株式会社製)とを連結したカラム
溶離液:テトラヒドロフラン(安定剤含有)
カラム温度:40℃
注入量:10μL
分析時間:26min.
流量:流速 0.35mL/min.(サンプルポンプ) 0.20mL/min.(リファレンスポンプ)
検量線ベース樹脂:ポリスチレン
<樹脂のガラス転移温度>
樹脂のガラス転移温度は、示差走査熱量測定装置(セイコーインスツルメンツ製、DSC1000)を用い、サンプルパンにサンプルを5mg秤量し、窒素気流中で−20℃から200℃まで10℃/分の昇温速度で昇温して測定した。ベースラインが偏奇し始める温度と、新たにべースラインに戻る温度との平均値をガラス転移温度(Tg)とした。
なお、樹脂が架橋性基を有する場合は、樹脂が有する架橋性基を水素原子に置換した構造の樹脂(サンプル)を用いて測定した。
<近赤外線吸収組成物の調製>
下記に示す材料を下記に示す配合量で混合して、近赤外線吸収組成物を調製した。なお、実施例26は、樹脂として、樹脂A−1とA−8を、A−1/A−8=50/50(質量比)の割合で使用した。また、実施例27は、樹脂として、樹脂X−1とA−8を、X−1/A−8=50/50(質量比)の割合で使用した。また、実施例29は、樹脂として、樹脂A−6とA−8を、A−6/A−8=50/50(質量比)の割合で使用した。
(組成1)
下記表に記載の赤外線吸収剤:40質量部
下記表に記載の樹脂:44.95質量部
下記表に記載の架橋性化合物:10質量部
触媒:トリス(2,4−ペンタンジオナト)アルミニウム(東京化成工業(株)製):0.05質量部
熱安定性付与剤:IRGACURE OXE01(BASF社製):5.0質量部
溶剤:シクロヘキサノン:200質量部
(組成2)
下記表に記載の赤外線吸収剤:40質量部
下記表に記載の樹脂:54.95質量部
触媒:トリス(2,4−ペンタンジオナト)アルミニウム(東京化成工業(株)製):0.05質量部
熱安定性付与剤:IRGACURE OXE01(BASF社製):5.0質量部
溶剤:シクロヘキサノン:200質量部
(組成3)
下記表に記載の赤外線吸収剤:4質量部
下記表に記載の樹脂:90.95質量部
触媒:トリス(2,4−ペンタンジオナト)アルミニウム(東京化成工業(株)製):0.05質量部
熱安定性付与剤:IRGACURE OXE01(BASF社製):5.0質量部
溶剤:シクロヘキサノン:200質量部
(組成4)
下記表に記載の赤外線吸収剤:40質量部
下記表に記載の樹脂:54.95質量部
触媒:トリス(2,4−ペンタンジオナト)アルミニウム(東京化成工業(株)製):0.05質量部
熱安定性付与剤:IRGACURE OXE01(BASF社製):5.0質量部
溶剤:酢酸ブチル:200質量部
Figure 2017104735
表に記載の原料は以下である。以下に示す樹脂において、主鎖に付記した数値は質量比である。
(樹脂)
A−1:下記構造(Mw=15,000、Tg=D)
A−2:下記構造(Mw=15,000、Tg=A)
A−3:下記構造(Mw=16,000、Tg=A)
A−4:下記構造(Mw=15,000、Tg=B)
A−5:下記構造(Mw=15,000、Tg=B)
A−6:下記構造(Mw=15,000、Tg=A)
A−7:下記構造(Mw=15,000、Tg=A)
A−8:下記構造(Mw=18,000、Tg=B)
A−9:下記構造(Mw=15,000、Tg=B)
A−10:下記構造(Mw=15,000、Tg=A)
A−11:下記構造(Mw=15,000、Tg=C)
A−12:下記構造(Mw=15,000、Tg=A)
A−13:下記構造(Mw=15,000、Tg=D)
X−1:下記構造(Mw=15,000、Tg=E)
X−2:下記構造(Mw=15,000、Tg=E)
Figure 2017104735
樹脂のガラス転移温度は、示差走査熱量測定装置(セイコーインスツルメンツ社製、DSC1000)を用い、サンプルパンにサンプルを5mg秤量し、窒素気流中で−20℃から200℃まで10℃/分の昇温速度で昇温して測定した。ベースラインが偏奇し始める温度と、新たにべースラインに戻る温度との平均値をガラス転移温度(Tg)とした。
なお、架橋性基を有する樹脂A−3〜A−13においては、下記の樹脂A−3a〜A−13aをサンプルとして用いて測定した。すなわち、樹脂A−3a〜A−13aのTgを樹脂A−3〜A−13のTgとして定義した。
また、架橋性基を有さない樹脂A−1、A−2、X−1およびX−2においては、これらの樹脂をサンプルとして用いてTgを測定した。
Figure 2017104735
樹脂のTgの範囲は以下の通りである。
A:50℃以上75℃以下
B:20℃以上50℃未満
C:0℃以上20℃未満
D:75℃を超え100℃未満
E:100℃以上
(赤外線吸収剤)
B−1:下記構造(銅錯体)
Figure 2017104735
メタノール中で下記化合物(A2−14)と塩化銅(II)二水和物(和光純薬工業社製)を1:1のモル比で混合し、10分間撹拌した反応液を減圧乾固させて固形物を得た。得られた固形物を水に溶解させ、撹拌しながら過剰量のテトラキス(ペンタフルオロフェニル)ホウ酸リチウム(東京化成工業社製)水溶液を加えた。析出した固体を濾過により回収し、B−1を得た。
Figure 2017104735
B−2:下記化合物を配位子として有する銅錯体。
Figure 2017104735
B−3:下記化合物を配位子として有する銅錯体。
Figure 2017104735
B−4:下記化合物
Figure 2017104735
下記スキームに従って、上記化合物B−4を合成した。
Figure 2017104735
イソエイコサノール(ファインオキソコール2000、日産化学工業(株)製)20.0質量部、トリエチルアミン8.13質量部を酢酸エチル40質量部中で攪拌し、−10℃下で、メタンスルホニルクロリド8.44質量部を滴下した。滴下終了後、30℃で2時間反応させた。分液操作により有機層を取り出し、溶媒を減圧留去することで、淡黄色液体(A−154A0体)25.5質量部を得た。
4−シアノフェノール7.82質量部、炭酸カリウム10.1質量部をジメチルアセトアミド25質量部中で攪拌し、上記で合成したD−154A0体を25.5質量部加えて、100℃で6時間反応させた。分液操作により有機層を取り出し、有機層を水酸化ナトリウム水溶液で洗浄した後、溶媒を減圧留去することで、淡黄色液体(A−154A体)25.8質量部を得た。
1H−NMR(CDCl3):δ0.55−0.96(m,18H),0.96−2.10(m,21H),3.88(m,2H),6.93(d,2H),7.56(d,2H)
ジケトピロロピロール化合物(A−154B体)を、上記で合成したA−154A体13.1質量部を原料にして、米国特許第5,969,154号明細書に記載された方法に従って合成し、橙色固体(A−154B体)7.33質量部を得た。
1H−NMR(CDCl3):δ0.55−0.96(m,36H),0.96−2.10(m,42H),3.95(m,4H),7.06(d,4H),8.30(d,4H),8.99(brs,2H)
A−154B体7.2質量部、2−(2−ベンゾチアゾリル)アセトニトリル3.42質量部をトルエン30質量部中で攪拌し、オキシ塩化リン10.0質量部を加えて5時間加熱還流した。分液操作により有機層を取り出し、炭酸水素ナトリウム水溶液で洗浄した後、溶媒を減圧留去した。
得られた粗生成物をシリカゲルカラムクロマトグラフィ(溶媒:クロロホルム)で精製し、さらにクロロホルム/アセトニトリル溶媒を用いて再結晶することで、緑色固体(A−154D体)5.73質量部を得た。
1H−NMR(CDCl3):δ0.55−1.00(m,36H),1.00−2.10(m,42H),3.97(m,4H),7.11(d,4H),7.28(t,2H),7.43(t,2H),7.67−7.75(m,6H),7.80(d,2H),13.16(s,2H)
ジフェニルボリン酸2−アミノエチルエステル2.53質量部、トルエン70質量部を40℃で攪拌し、塩化チタン3.56質量部を添加して30分間反応させた。A−154D体5.60質量部を添加し、外接温度130℃で1時間加熱還流させた。室温まで冷やし、メタノール80質量部を添加して結晶を析出させ、これをろ別した。得られた粗結晶をシリカゲルカラムクロマトグラフィ(溶媒:クロロホルム)で精製した後、さらにトルエン/メタノール溶媒を用いて再結晶することで、目的化合物である緑色結晶(B−4)を3.87質量部得た。
B−4のλmaxは、クロロホルム中で780nmであった。モル吸光係数は、クロロホルム中、2.21×105dm3/mol・cmであった。
1H−NMR(CDCl3):δ0.55−1.01(m,36H),1.01−2.10(m,42H),3.82(m,4H),6.46(s,8H),6.90−7.05(m,6H),7.07−7.19(m,12H),7.21−7.29(m,8H), 7.32(d,2H)
B−5〜9:下記化合物。B−5、B−8、B−9は、東京化成工業社から市販されている化合物を使用した。B−6は、特開2002−194040号公報に記載の方法に従って合成した。B−7は特表2008−528706号公報に記載の方法に従って合成した。
Figure 2017104735
(架橋性化合物)
・M−1:下記構造(左式の化合物と右式の化合物とが質量比で7:3の混合物である。)
Figure 2017104735
・M−2:下記構造(EHPE 3150、(株)ダイセル製)
Figure 2017104735
・M−3:下記構造(KBM−3066、信越シリコーン(株)製)
Figure 2017104735
・M−4:下記構造(KBM−9659、信越シリコーン(株)製)
Figure 2017104735
<近赤外線カットフィルタの作製>
上記近赤外線吸収組成物を用いて、近赤外線カットフィルタを作製した。
得られた近赤外線吸収組成物を、ガラスウェハ上に乾燥後の膜厚が100μmになるようにスピンコーターを用いて塗布し、150℃のホットプレートを用いて1.5時間加熱処理を行って、近赤外線カットフィルタを製造した。
<性能評価>
(耐熱衝撃性)
近赤外線カットフィルタを、−40℃の冷凍庫に5分入れた後、取り出し、すぐに100℃のオーブンに5分入れた。膜面異常が発生するまでこの操作(−40℃〜100℃)を繰り返し行なった。繰り返し行なった回数を耐熱衝撃性とし、以下の基準で評価した。膜面異常とは、ひび、曇り、剥がれが生じることを意味する。
A:100回以上
B:80回以上100回未満
C:50回以上80回未満
D:50回未満
(相溶性)
製造した近赤外線カットフィルタにおいて、目視にて析出物の度合いを評価した。
A:析出物が全くない
B:組成物を塗布したガラスウエハ上に、塗布した組成物の全面積の内、0%を超え10%以下の析出物がある
C:組成物を塗布したガラスウエハ上に、塗布した組成物の全面積の内、10%を超え30%以下の析出物がある
D:組成物を塗布したガラスウエハ上に、塗布した組成物の全面積の内、30%を超える析出物がある
(耐熱性)
近赤外線カットフィルタを180℃で1分間放置した。加熱前後において、近赤外線カットフィルタの波長400nmにおける吸光度、および、波長800nmにおける吸光度を測定し、各波長における吸光度の変化率を下式より求め、以下の基準で、耐熱性を評価した。吸光度の測定には、分光光度計U−4100(日立ハイテクノロジーズ社製)を用いた。
波長400nmにおける吸光度の変化率(%)=|(加熱前における波長400nmの吸光度−加熱後における波長400nmの吸光度)/加熱前における波長400nmの吸光度|×100(%)
波長800nmにおける吸光度の変化率(%)=|(加熱前における波長800nmの吸光度−加熱後における波長800nmの吸光度)/加熱前における波長800nmの吸光度|×100(%)
A:吸光度の変化率≦3%
B:3%<吸光度の変化率≦6%
C:6%<吸光度の変化率≦10%
D:10%<吸光度の変化率
<低温耐熱性>
近赤外線カットフィルタを85℃で1008時間放置した。加熱前後において、近赤外線カットフィルタの波長400nmにおける吸光度、および、波長800nmにおける吸光度を測定し、各波長における吸光度の変化率を下式より求め、以下の基準で、低温耐熱性を評価した。吸光度の測定には、分光光度計U−4100(日立ハイテクノロジーズ社製)を用いた。
波長400nmにおける吸光度の変化率(%)=|(加熱前における波長400nmの吸光度−加熱後における波長400nmの吸光度)/加熱前における波長400nmの吸光度|×100(%)
波長800nmにおける吸光度の変化率(%)=|(加熱前における波長800nmの吸光度−加熱後における波長800nmの吸光度)/加熱前における波長800nmの吸光度|×100(%)
A:吸光度の変化率≦3%
B:3%<吸光度の変化率≦6%
C:6%<吸光度の変化率≦10%
D:10%<吸光度の変化率
(耐溶剤性)
近赤外線カットフィルタを、25℃のメチルプロピレングリコール(MFG)中に、2分間浸漬した。耐溶剤性試験前と耐溶剤性試験後とのそれぞれにおいて、近赤外線カットフィルタの波長800nmにおける吸光度を測定し、波長800nmにおける吸光度の変化率を、下式より求め、下記の基準で耐溶剤性を評価した。吸光度の測定には、分光光度計U−4100(日立ハイテクノロジーズ社製)を用いた。
波長800nmにおける吸光度の変化率(%)=|(試験前における波長800nmの吸光度−試験後における波長800nmの吸光度)/試験前における波長800nmの吸光度|×100(%)
A:吸光度の変化率≦3%
B:3%<吸光度の変化率≦6%
C:6%<吸光度の変化率≦10%
D:10%<吸光度の変化率
Figure 2017104735
上記表2から明らかなとおり、実施例は、耐熱衝撃性に優れていた。さらには、耐熱性および耐溶剤性に優れていた。これに対し、比較例は、耐熱衝撃性が劣っていた。
実施例1〜13、22〜29において、B−1を、下記の銅錯体B−10またはB−11に置き換えた場合であっても、実施例1〜13、22〜29と同様の効果が得られた。
実施例7において、B−1の半量を、B−2〜B−11に置き換えた場合であっても、実施例7と同様の効果が得られた。
実施例7において、M−2の半量を、M−1、M−3、M−4に置き換えた場合であっても、実施例7と同様の効果が得られた。
実施例7において、シクロヘキサノンの半量を、プロピレングリコールモノメチルエーテルアセテートに置き換えた場合であっても、実施例7と同様の効果が得られた。
Figure 2017104735
B−10の合成
リチウムテトラキス(ペンタフルオロフェニル)ボレートの代わりにカリウム1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミド(三菱マテリアル電子化成社製)を用い、B−1と同様の方法で銅錯体B−10を合成した。なお、反応後に水を滴下しただけでは固体が十分析出しなかったため、70℃で減圧濃縮した後、0℃に冷却することで、B−10の結晶を得た。
B−11の合成
三ツ口フラスコに、塩基性炭酸銅(銅含率56.2%、関東化学社製)0.60g、水15mLを導入し、室温で撹拌しながらトリフルオロ酢酸1.24gを滴下し、メタノール5mLを導入し、60℃で30分間撹拌した。ここにトリス[2−(ジメチルアミノ)エチル]アミン(東京化成工業社製)1.34gを滴下し、メタノール5mLを導入し、0℃で30分間撹拌した後、さらにメタノール50mLを導入した。リチウムテトラキス(ペンタフルオロフェニル)ボレート(水分8.0重量%含有、東ソーファインケム社製)3.56gをメタノール10mLに溶解させ、この溶液を反応液に滴下し、60℃で30分間撹拌した。水35mLを滴下し、析出した固体を濾過により回収することで、B−11を青色固体として得た。
10 カメラモジュール、11 固体撮像素子、12 平坦化層、13 近赤外線カットフィルタ、14 撮像レンズ、15 レンズホルダー、16 シリコン基板、17 カラーフィルタ、18 マイクロレンズ、19 紫外・赤外光反射膜、20 透明基材、21 近赤外線吸収層、22 反射防止層

Claims (17)

  1. 下記条件a1を満たす樹脂Aと、赤外線吸収剤Bと、溶剤Dとを含有し、
    少なくとも、前記樹脂Aが架橋性基を有するか、あるいは、前記樹脂A以外の化合物であって架橋性基を有する化合物Cを含む、近赤外線吸収組成物;
    条件a1:樹脂Aが架橋性基を有さない場合、樹脂Aの示差走査熱量測定で測定したガラス転移温度が0〜100℃であり、樹脂Aが架橋性基を有する場合、樹脂Aが有する架橋性基のうち、架橋結合を形成する部位を水素原子に置換した構造の樹脂の示差走査熱量測定で測定したガラス転移温度が0〜100℃である。
  2. 前記樹脂Aは、ホモポリマーのガラス転移温度が70℃以下の単量体成分由来の繰り返し単位を有する、請求項1に記載の近赤外線吸収組成物。
  3. 前記樹脂Aは、架橋性基を有する繰り返し単位を含む、請求項1または2に記載の近赤外線吸収組成物。
  4. 前記架橋性基が、エチレン性不飽和結合を有する基、環状エーテル基およびアルコキシシリル基から選ばれる少なくとも1種である、請求項1〜3のいずれか1項に記載の近赤外線吸収組成物。
  5. 前記架橋性基が、アルコキシシリル基である、請求項1〜3のいずれか1項に記載の近赤外線吸収組成物。
  6. 前記樹脂Aの重量平均分子量が1,000〜300,000である、請求項1〜5のいずれか1項に記載の近赤外線吸収組成物。
  7. 前記樹脂Aがアルコキシシリル基を有し、前記樹脂Aのケイ素価が1.0〜3.0mmol/gである、請求項1〜6のいずれか1項に記載の近赤外線吸収組成物。
  8. 前記化合物Cを含み、前記化合物Cがアルコキシシリル基を有する化合物であり、前記化合物Cのケイ素価が3.0〜8.0mmol/gである、請求項1〜7のいずれか1項に記載の近赤外線吸収組成物。
  9. 前記樹脂Aの100質量部に対し、前記化合物Cを1〜60質量部含む、請求項1〜8のいずれか1項に記載の近赤外線吸収組成物。
  10. 前記赤外線吸収剤Bが、銅化合物、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、および、ナフタロシアニン化合物から選ばれる少なくとも1種である、請求項1〜9のいずれか1項に記載の近赤外線吸収組成物。
  11. 前記赤外線吸収剤Bが銅化合物であって、前記銅化合物が、銅に対して4個または5個の配位部位を有する化合物を配位子として有する銅錯体である、請求項1〜10のいずれか1項に記載の近赤外線吸収組成物。
  12. 近赤外線カットフィルタ用である、請求項1〜11のいずれか1項に記載の近赤外線吸収組成物。
  13. 請求項1〜12のいずれか1項に記載の近赤外線吸収組成物を用いてなる近赤外線カットフィルタ。
  14. 請求項1〜12のいずれか1項に記載の近赤外線吸収組成物を用いる、近赤外線カットフィルタの製造方法。
  15. 請求項13に記載の近赤外線カットフィルタを有する固体撮像素子。
  16. 請求項13に記載の近赤外線カットフィルタを有するカメラモジュール。
  17. 請求項13に記載の近赤外線カットフィルタを有する画像表示装置。
JP2017556116A 2015-12-18 2016-12-15 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置 Active JP6806706B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015247488 2015-12-18
JP2015247488 2015-12-18
PCT/JP2016/087338 WO2017104735A1 (ja) 2015-12-18 2016-12-15 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2017104735A1 true JPWO2017104735A1 (ja) 2018-09-13
JP6806706B2 JP6806706B2 (ja) 2021-01-06

Family

ID=59056843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556116A Active JP6806706B2 (ja) 2015-12-18 2016-12-15 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置

Country Status (4)

Country Link
US (1) US10989846B2 (ja)
JP (1) JP6806706B2 (ja)
TW (1) TW201800459A (ja)
WO (1) WO2017104735A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232161B1 (ja) * 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ
KR101924174B1 (ko) * 2018-04-04 2019-02-22 (주)유티아이 근적외선 필터 및 그 필터의 제조방법
US20210089741A1 (en) * 2019-09-23 2021-03-25 Apple Inc. Thin-Film Transistor Optical Imaging System with Integrated Optics for Through-Display Biometric Imaging
US11839133B2 (en) 2021-03-12 2023-12-05 Apple Inc. Organic photodetectors for in-cell optical sensing
TW202321457A (zh) 2021-08-04 2023-06-01 美商薩那生物科技公司 靶向cd4之病毒載體之用途
WO2023114949A1 (en) 2021-12-16 2023-06-22 Sana Biotechnology, Inc. Methods and systems of particle production
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023193015A1 (en) 2022-04-01 2023-10-05 Sana Biotechnology, Inc. Cytokine receptor agonist and viral vector combination therapies
WO2024026377A1 (en) 2022-07-27 2024-02-01 Sana Biotechnology, Inc. Methods of transduction using a viral vector and inhibitors of antiviral restriction factors
WO2024044655A1 (en) 2022-08-24 2024-02-29 Sana Biotechnology, Inc. Delivery of heterologous proteins
WO2024064838A1 (en) 2022-09-21 2024-03-28 Sana Biotechnology, Inc. Lipid particles comprising variant paramyxovirus attachment glycoproteins and uses thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026951A1 (fr) * 1997-11-21 1999-06-03 Kureha Kagaku Kogyo Kabushiki Kaisha Compose de phosphate et de cuivre, composition contenant ce compose et produit de mise en application
WO2008084653A1 (ja) * 2006-12-26 2008-07-17 Soken Chemical & Engineering Co., Ltd. 近赤外線吸収フィルム用バインダー樹脂およびこれを利用する近赤外線吸収フィルター
WO2008087964A1 (ja) * 2007-01-17 2008-07-24 Soken Chemical & Engineering Co., Ltd. 近赤外線吸収フィルム用バインダー樹脂およびこれを利用する近赤外線吸収フィルター
JP2008268267A (ja) * 2007-04-16 2008-11-06 Nippon Shokubai Co Ltd ハードコート用樹脂組成物
JP2009031747A (ja) * 2007-07-24 2009-02-12 Lg Electronics Inc フィルタ及びそれを用いたプラズマディスプレイ装置
JP2013182028A (ja) * 2012-02-29 2013-09-12 Fujifilm Corp 赤外線吸収性組成物および赤外線カットフィルタ
JP2013195480A (ja) * 2012-03-16 2013-09-30 Fujifilm Corp 赤外線吸収性組成物および赤外線カットフィルタ
JP2015017244A (ja) * 2013-06-12 2015-01-29 富士フイルム株式会社 硬化性組成物、硬化膜、近赤外線カットフィルタ、カメラモジュールおよびカメラモジュールの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192718A1 (en) * 2012-07-10 2015-07-09 Konica Minolta, Inc. Infrared shielding film having dielectric multilayer film structure
JP6196109B2 (ja) 2013-09-20 2017-09-13 株式会社日本触媒 撮像素子用硬化性樹脂組成物及びその用途
JP2015001649A (ja) 2013-06-17 2015-01-05 旭硝子株式会社 光学フィルタ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026951A1 (fr) * 1997-11-21 1999-06-03 Kureha Kagaku Kogyo Kabushiki Kaisha Compose de phosphate et de cuivre, composition contenant ce compose et produit de mise en application
WO2008084653A1 (ja) * 2006-12-26 2008-07-17 Soken Chemical & Engineering Co., Ltd. 近赤外線吸収フィルム用バインダー樹脂およびこれを利用する近赤外線吸収フィルター
WO2008087964A1 (ja) * 2007-01-17 2008-07-24 Soken Chemical & Engineering Co., Ltd. 近赤外線吸収フィルム用バインダー樹脂およびこれを利用する近赤外線吸収フィルター
JP2008268267A (ja) * 2007-04-16 2008-11-06 Nippon Shokubai Co Ltd ハードコート用樹脂組成物
JP2009031747A (ja) * 2007-07-24 2009-02-12 Lg Electronics Inc フィルタ及びそれを用いたプラズマディスプレイ装置
JP2013182028A (ja) * 2012-02-29 2013-09-12 Fujifilm Corp 赤外線吸収性組成物および赤外線カットフィルタ
JP2013195480A (ja) * 2012-03-16 2013-09-30 Fujifilm Corp 赤外線吸収性組成物および赤外線カットフィルタ
JP2015017244A (ja) * 2013-06-12 2015-01-29 富士フイルム株式会社 硬化性組成物、硬化膜、近赤外線カットフィルタ、カメラモジュールおよびカメラモジュールの製造方法

Also Published As

Publication number Publication date
TW201800459A (zh) 2018-01-01
WO2017104735A1 (ja) 2017-06-22
US20180292586A1 (en) 2018-10-11
US10989846B2 (en) 2021-04-27
JP6806706B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6806706B2 (ja) 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
JP6595610B2 (ja) 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、および固体撮像素子
JP6243027B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
JP6602396B2 (ja) 近赤外線吸収組成物、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュール、赤外線センサおよび赤外線吸収剤
TW201803962A (zh) 組成物、膜、近紅外線截止濾波器、積層體、圖案形成方法、固體攝像元件、圖像顯示裝置、紅外線感測器及濾色器
JP6329638B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタ、固体撮像素子、カメラモジュール
JP6650040B2 (ja) 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP6709029B2 (ja) 組成物、組成物の製造方法、膜、近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP6611278B2 (ja) 近赤外線吸収組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
JP6563014B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、装置、銅含有ポリマーの製造方法および銅含有ポリマー
WO2017126527A1 (ja) 近赤外線吸収組成物、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび赤外線センサ
JP6793808B2 (ja) 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP6602387B2 (ja) 近赤外線吸収組成物、膜、近赤外線カットフィルタおよび固体撮像素子
JP6717955B2 (ja) 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250