WO2017017955A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2017017955A1
WO2017017955A1 PCT/JP2016/003487 JP2016003487W WO2017017955A1 WO 2017017955 A1 WO2017017955 A1 WO 2017017955A1 JP 2016003487 W JP2016003487 W JP 2016003487W WO 2017017955 A1 WO2017017955 A1 WO 2017017955A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency transmission
optical module
module
frequency
Prior art date
Application number
PCT/JP2016/003487
Other languages
English (en)
French (fr)
Inventor
清史 菊池
福田 浩
才田 隆志
亀井 新
都築 健
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201680044607.7A priority Critical patent/CN107851962B/zh
Priority to CA2993930A priority patent/CA2993930C/en
Priority to JP2017531019A priority patent/JP6511141B2/ja
Priority to EP16830060.6A priority patent/EP3331110B1/en
Priority to US15/744,193 priority patent/US10277271B2/en
Publication of WO2017017955A1 publication Critical patent/WO2017017955A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6461Means for preventing cross-talk
    • H01R13/6464Means for preventing cross-talk by adding capacitive elements
    • H01R13/6466Means for preventing cross-talk by adding capacitive elements on substrates, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0228Compensation of cross-talk by a mutually correlated lay-out of printed circuit traces, e.g. for compensation of cross-talk in mounted connectors

Definitions

  • the present invention relates to an optical module for transmitting and processing high-frequency electrical signals and optical signals, and more particularly to an optical module in which high-frequency crosstalk is reduced by a three-dimensional ground structure in the module.
  • a conventional optical modulation format mainly uses an amplitude shift keying (ASK) method in which one channel of a high-frequency electric signal is assigned to one channel of light.
  • ASK amplitude shift keying
  • the ASK method can only give a 1-bit signal to a certain frequency band. Therefore, in recent years, a quadrature phase shift keying (QPSK) system and a quadrature amplitude modulation (QAM) system have been actively researched and developed and put into practical use.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • an IQ modulator In order to generate a QPSK signal or a QAM signal, an IQ modulator is usually used that individually amplitude-modulates the real axis and the imaginary axis when light is complexly expressed.
  • the IQ modulator can modulate one channel of light with two channels of high-frequency electrical signals corresponding to the real axis and the imaginary axis.
  • a polarization multiplexing system in which separate signals are transmitted for light X-polarized light and light Y-polarized light is generally used. When IQ modulation and polarization multiplexing are used together to improve frequency utilization efficiency for increasing communication capacity, one channel of light can be modulated by four channels of high-frequency electrical signals.
  • the transmission capacity per unit volume is increased by downsizing the transmitting / receiving device.
  • the number of devices mounted in the transmission apparatus can be increased, and the transmission capacity as the transmission apparatus can be increased.
  • FIGS. 1A and 1B are diagrams showing a configuration of a conventional optical module 100.
  • FIG. FIG. 1A is a top perspective view of the optical module 100
  • FIG. 1B is a cross-sectional view taken along 1B-1B of FIG. 1A.
  • the optical module 100 shown in FIGS. 1A and 1B is disposed at the bottom of the housing 101 and covered with a lid 110.
  • FIG. 1A is a diagram in a state where the lid 110 of the optical module 100 is removed
  • FIG. 1B is a diagram in a state where the lid 110 of the optical module 100 is attached.
  • an optical processing circuit 103 In the optical module 100, an optical processing circuit 103, an electro-optical conversion element 104 connected to the optical processing circuit 103, and a lower substrate 109 are arranged at the bottom of the housing 101.
  • a lower ground 108 is formed on the lower substrate 109, and a high-frequency substrate 107 is formed on the lower ground 108.
  • Four high-frequency transmission lines 105 connected to the electro-optic conversion element 104 are formed on the high-frequency substrate 107, and the four high-frequency transmission lines 105 constitute a microstrip line.
  • the housing 101 is provided with one optical port 102 and four electrical ports 106, the optical port 102 is connected to the optical processing circuit 103, and the four electrical ports 106 are respectively connected to the high-frequency transmission line 105. .
  • An optical signal transmission module or an optical signal reception module is provided by an optical port 102, an optical processing circuit 103, an electro-optical conversion element 104, a high-frequency transmission line 105, and an electric port 106.
  • An optical signal transmission module is provided by an optical port 102, an optical processing circuit 103, an electro-optical conversion element 104, a high-frequency transmission line 105, and an electric port 106.
  • a high frequency electrical signal is input from the electrical port 106 of the optical module 100.
  • the high-frequency electric signal passes through the high-frequency transmission line 105, is converted into an optical signal by the electro-optical conversion element 104, is combined in the optical processing circuit 103, and is output from the optical port 102 as a wavelength multiplexed optical signal. .
  • high-frequency electrical signals are transmitted as electromagnetic fields spread around the high-frequency transmission line, so that crosstalk is likely to occur due to interference with adjacent channels. Therefore, as the size of the housing 101 is reduced, the high-frequency transmission lines 105 are densely packed and the interval is narrowed, so that the crosstalk between the high-frequency transmission lines is increased and the transmitted signal characteristics are affected. There was a problem.
  • the present invention has been made in view of the prior art as described above, and an object thereof is to provide an optical module that suppresses crosstalk between high-frequency transmission lines.
  • an aspect of the present invention includes an optical port, an optical processing circuit optically connected to the optical port, and an electro-optical conversion element optically connected to the optical processing circuit. And an optical module comprising at least one set of two or more high-frequency transmission lines connected to the electro-optic conversion element and an electric port connected to the high-frequency transmission line, wherein the high-frequency transmission line has the high-frequency transmission line on the high-frequency transmission line.
  • a conductive cover block is provided so as to cover at least a part of the transmission line and is grounded.
  • the present invention has an effect of reducing crosstalk between transmission lines in a plurality of dense high-frequency transmission lines in an optical module.
  • FIG. 1B is a cross-sectional view taken along the line 1B-1B of FIG. 1A.
  • 1 is a top perspective view showing an optical module according to a first embodiment of the present invention. It is sectional drawing in 2B-2B of FIG. 2A. It is an upper surface perspective view which shows the optical module which concerns on 2nd Embodiment of this invention. It is sectional drawing in 3B-3B of FIG. 3A. It is an upper surface perspective view which shows the optical module which concerns on 3rd Embodiment of this invention. It is sectional drawing in 4B-4B of FIG. 4A. It is a top perspective view which shows the optical module which concerns on 4th Embodiment of this invention.
  • FIG. 5B is a cross-sectional view taken along 5B-5B in FIG. 5A. It is a figure showing the crosstalk suppression effect of 4th Embodiment of this invention. It is a top perspective view showing an optical module according to a fifth embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along 7B-7B in FIG. 7A. It is a top perspective view which shows the optical module which concerns on 6th Embodiment of this invention.
  • FIG. 8B is a cross-sectional view taken along 8B-8B in FIG. 8A.
  • FIG. 8B is a cross-sectional view taken along 8B-8B in FIG. 8A. It is a top perspective view which shows the optical module which concerns on 7th Embodiment of this invention.
  • FIG. 7B is a cross-sectional view taken along 7B-7B in FIG. 7A. It is a top perspective view which shows the optical module which concerns on 6th Embodiment of this invention.
  • FIG. 8B is
  • FIG. 9B is a cross-sectional view taken along 9B-9B of FIG. 9A. It is a top perspective view which shows the optical module which concerns on 8th Embodiment of this invention.
  • FIG. 10B is a cross-sectional view taken along the line 10B-10B of FIG. 10A. It is a top perspective view which shows the optical module which concerns on 9th Embodiment of this invention. It is sectional drawing in 11B-11B of FIG. 11A. It is a top perspective view which shows the optical module which concerns on 10th Embodiment of this invention.
  • FIG. 12B is a cross-sectional view taken along 12B-12B in FIG. 12A. It is a top perspective view which shows the optical module which concerns on 11th Embodiment of this invention.
  • FIG. 13B is a cross-sectional view taken along 13B-13B of FIG. 13A. It is a figure showing the crosstalk suppression effect of the 11th Embodiment of this invention. It is a top perspective view which shows the optical module which concerns on 12th Embodiment of this invention.
  • FIG. 15B is a cross-sectional view taken along the line 15B-15B of FIG. 15A. It is a top perspective view which shows the optical module which concerns on 13th Embodiment of this invention.
  • FIG. 16B is a cross-sectional view taken along 16B-16B of FIG. 16A. It is a top perspective view which shows the optical module which concerns on 14th Embodiment of this invention.
  • FIG. 17B is a cross-sectional view taken along 17B-17B of FIG.
  • FIG. 17A It is a top perspective view which shows the optical module which concerns on 15th Embodiment of this invention.
  • FIG. 18B is a cross-sectional view taken along the line 18B-18B of FIG. 18A. It is a top perspective view which shows the optical module which concerns on 16th Embodiment of this invention.
  • FIG. 19B is a cross-sectional view taken along 19B-19B of FIG. 19A.
  • FIGS. 2A and 2B are diagrams showing the configuration of the optical module 200 according to the first embodiment of the present invention.
  • 2A is a top perspective view of the optical module 200
  • FIG. 2B is a cross-sectional view taken along 2B-2B in FIG. 2A.
  • the optical module 200 of FIGS. 2A and 2B is disposed at the bottom of the housing 201 and covered with a lid 214.
  • FIG. 2A is a diagram in a state in which the lid 214 of the optical module 200 is removed
  • FIG. 2B is a diagram in a state in which the lid 214 of the optical module 200 is attached.
  • an optical processing circuit 203 In the optical module 200, an optical processing circuit 203, an electro-optical conversion element 204 connected to the optical processing circuit 203, and a lower substrate 213 are disposed at the bottom of the housing 201.
  • a lower ground 208 is formed on the lower substrate 213, and a high-frequency substrate 207 is formed on the lower ground 208.
  • Four high-frequency transmission lines 205 connected to the electro-optic conversion element 204 are formed on the high-frequency substrate 207, and the four high-frequency transmission lines 205 constitute a microstrip line.
  • the housing 201 is provided with one optical port 202 and four electrical ports 206, the optical port 202 is connected to the optical processing circuit 203, and the four electrical ports 206 are each connected to the high-frequency transmission line 205. .
  • the optical module 200 is provided with a conductive cover block 209 so as to cover the high-frequency transmission line 205, and the cover block 209 is fixed to the high-frequency substrate 207 via a spacer 210.
  • the spacer 210 maintains a certain space between the cover block 209 and the high-frequency substrate 207 and the high-frequency transmission line 205 on the high-frequency substrate 207.
  • the cover block 209 is made of copper.
  • the material of the housing 201 is copper tungsten.
  • the optical module 200 according to the present invention is not limited to this material, and may be, for example, a general metal.
  • the cover block 209 is grounded.
  • the spacer 210 and the housing 201 are electrically conductive parts and then electrically connected to the lower ground 208. Further, the housing 201 may be connected to the ground of the electro-optical conversion element 204 or the ground of the electrical port 206 (for example, the ground of the GPPO connector).
  • An optical signal transmission module or an optical signal reception module is provided by an optical port 202, an optical processing circuit 203, an electro-optical conversion element 204, a high-frequency transmission line 205, and an electric port 206.
  • the optical processing circuit 203 combines a plurality of input optical signals and converts them into wavelength multiplexed optical signals.
  • the optical module 200 functions as an optical signal receiving module, the input wavelength division multiplexed optical signal is converted into a plurality of optical signals.
  • a high frequency electrical signal is input from the electrical port 206 of the optical module 200.
  • the high-frequency electrical signal passes through the high-frequency transmission line 205, is converted into an optical signal by the electro-optical conversion element 204, is combined in the optical processing circuit 203, and is output from the optical port 202 as a wavelength multiplexed optical signal.
  • a wavelength multiplexed optical signal is input from the optical port 202 of the optical module 200.
  • the wavelength multiplexed optical signal is divided into respective wavelengths in the optical processing circuit 203, converted into a high frequency electrical signal by the electro-optical conversion element 204, passes through the high frequency transmission line 205, and is output as a high frequency electrical signal from the electrical port 206. .
  • a high-frequency electric signal passing through the high-frequency transmission line 205 is generally propagated in a mode that spreads around the line.
  • the lines of electric force emitted from the high-frequency transmission line 205 are directed in the direction in which the electric field lines spread around.
  • the high-frequency crosstalk is generated when electric lines of force emitted from a certain high-frequency transmission line are terminated at the adjacent high-frequency transmission line. Therefore, if a grounded conductor cover block 209 is provided above the high-frequency transmission line 205, electric lines of force emitted from a certain high-frequency transmission line are attracted to the cover block 209, and it is difficult to go to the adjacent high-frequency transmission line. Therefore, when the cover block 209 is provided, the crosstalk between the transmission lines of the high-frequency transmission line 205 can be reduced.
  • this embodiment reduces high-frequency crosstalk of the high-frequency transmission line 205, which is a microstrip line, even when a cover block is provided on the upper part of the coplanar line, crosstalk between transmission lines is reduced. Is possible.
  • FIGS. 3A and 3B are diagrams showing the configuration of the optical module 300 according to the second embodiment of the present invention.
  • 3A is a top perspective view of the optical module 300
  • FIG. 3B is a cross-sectional view taken along 3B-3B in FIG. 3A.
  • the optical module 300 in FIGS. 3A and 3B is disposed at the bottom of the housing 301 and covered with a lid 314.
  • FIG. 3A is a diagram with the cover 314 of the optical module 300 removed
  • FIG. 3B is a diagram with the cover 314 of the optical module 300 attached.
  • an optical processing circuit 303 In the optical module 300, an optical processing circuit 303, an electro-optical conversion element 304 connected to the optical processing circuit 303, and a lower substrate 313 are disposed at the bottom of the housing 301.
  • a lower ground 308 is formed on the lower substrate 313, and a high-frequency substrate 307 is formed on the lower ground 308.
  • Four high-frequency transmission lines 305 connected to the electro-optic conversion element 304 are formed on the high-frequency substrate 307, and the four high-frequency transmission lines 305 constitute a microstrip line.
  • the housing 301 is provided with one optical port 302 and four electrical ports 306, the optical port 302 is connected to the optical processing circuit 303, and the four electrical ports 306 are each connected to the high-frequency transmission line 305. .
  • the optical module 300 is provided with a conductive cover block 309 so as to cover the high-frequency transmission line 305, and the cover block 309 is fixed to the high-frequency substrate 307 through the spacer 310.
  • the spacer 310 maintains a certain space between the cover block 309 and the high-frequency substrate 307 and the high-frequency transmission line 305 on the high-frequency substrate 307.
  • the material of the cover block 309 is copper.
  • the material of the housing 301 is copper tungsten, but it may be a general metal.
  • a ground electrode 311 is formed in the longitudinal direction of the casing between two adjacent high-frequency transmission lines of the four high-frequency transmission lines 305 formed on the high-frequency substrate 307.
  • the cover block 309 and the ground electrode 311 are grounded.
  • the cover block 309 is connected to the ground by electrically connecting the spacer 310 and the housing 301 to the ground of the lower ground 308 after making the spacer 310 and the housing 301 conductive.
  • the ground electrode 311 is electrically connected to the lower ground 308 through a metal via provided in the high-frequency substrate 307.
  • the housing 301 may be connected to the ground of the electro-optical conversion element 304 or the ground of the electrical port 306.
  • the high-frequency electric signal passing through the high-frequency transmission line 305 is generally propagated in a mode that spreads around the line. That is, it can be said that the electric lines of force emitted from the high-frequency transmission line 305 are directed in the direction in which the electric field lines spread around.
  • the high-frequency crosstalk is generated when electric lines of force emitted from a certain high-frequency transmission line are terminated at the adjacent high-frequency transmission line. Therefore, when the grounded conductor cover block 309 and the ground electrode 311 are provided, the electric lines of force emitted from a certain high-frequency transmission line are attracted to the cover block 309 and the ground electrode 311, and are not easily directed to the adjacent high-frequency transmission line. . Therefore, when the cover block 309 and the ground electrode 311 are provided, crosstalk between the transmission lines of the high-frequency transmission line 305 can be reduced.
  • the cover block 309 and the ground electrode 311 are made of copper.
  • FIGS. 4A and 4B are diagrams showing the configuration of an optical module 400 according to the third embodiment of the present invention.
  • 4A is a top perspective view of the optical module 400
  • FIG. 4B is a cross-sectional view taken along 4B-4B of FIG. 4A.
  • the optical module 400 of FIGS. 4A and 4B is disposed at the bottom of the housing 401 and is covered with a lid 414.
  • FIG. 4A is a diagram with the cover 414 of the optical module 400 removed
  • FIG. 4B is a diagram with the cover 414 of the optical module 400 attached.
  • an optical processing circuit 403, an electro-optical conversion element 404 connected to the optical processing circuit 403, and a lower substrate 413 are arranged at the bottom of the housing 401.
  • a lower ground 408 is formed on the lower substrate 413, and a high-frequency substrate 407 is formed on the lower ground 408.
  • Four high-frequency transmission lines 405 connected to the electro-optic conversion element 404 are formed on the high-frequency substrate 407, and the four high-frequency transmission lines 405 constitute a microstrip line.
  • the housing 401 is provided with one optical port 402 and four electrical ports 406, the optical port 402 is connected to the optical processing circuit 403, and the four electrical ports 406 are each connected to the high-frequency transmission line 405. .
  • the optical module 400 is provided with a conductive cover block 409 so as to cover the high-frequency transmission line 405, and a ground electrode 411 is provided in each gap between the four high-frequency transmission lines 405 formed on the high-frequency substrate 407. It is formed.
  • the cover block 409 is fixed to the high frequency substrate 407 through the ground electrode 411.
  • the ground electrode 411 maintains a certain space between the cover block 409 and the high-frequency substrate 407 and the high-frequency transmission line 405 on the high-frequency substrate 407.
  • the cover block 409 is made of copper.
  • the material of the housing 401 is copper tungsten, but it may be a general metal.
  • the cover block 409 and the ground electrode 411 are grounded.
  • the ground electrode 411 is electrically connected to the lower ground 408 after a metal via is provided in the high-frequency substrate 407.
  • the housing 401 may be connected to the ground of the electro-optical conversion element 404 or the ground of the electrical port 406.
  • FIGS. 5A and 5B are diagrams showing the configuration of an optical module 500 according to the fourth embodiment of the present invention.
  • 5A is a top perspective view of the optical module 500
  • FIG. 5B is a cross-sectional view taken along 5B-5B of FIG. 5A.
  • the optical module 500 in FIGS. 5A and 5B is disposed at the bottom of the housing 513 and is covered with a lid 519.
  • FIG. 5A is a diagram with the lid 519 of the optical module 500 removed
  • FIG. 5B is a diagram with the lid 519 of the optical module 500 attached.
  • the optical module 500 includes an optical modulator 505, a driver IC 506 connected to the optical modulator 505, an optical receiver 507, and a TIA (Transimpedance Amplifier) IC 508 connected to the optical receiver 507. Located at the bottom.
  • the optical modulator 505 and the optical receiver 507 have both functions of an optical processing circuit and an electro-optical signal conversion element.
  • the optical modulator 505 and the driver IC 506 are connected by wire bonding, and the optical receiver 507 and the TIA IC 508 are also connected by wire bonding.
  • the lower substrate 512 is disposed at the bottom of the housing 513.
  • a lower ground 516 is formed on the lower substrate 512
  • a high-frequency substrate 515 is formed on the lower ground 516.
  • four high-frequency transmission lines 514-1 connected to the driver IC 506 and four high-frequency transmission lines 514-2 connected to the TIA IC 508 are formed, and four high-frequency transmission lines are formed.
  • 514-1 and 514-2 constitute a microstrip line.
  • the housing 513 is provided with a sapphire window 503-1 for light output, a sapphire window 503-2 for light input, and eight GPPO connectors 511 and 511-2.
  • An output optical fiber 502-1 is connected to the sapphire window 503-1 for light output, and an output optical connector 501-1 is connected to the output optical fiber 502-1.
  • An input optical fiber 502-2 is connected to the sapphire window 503-2 for optical input, and an input optical connector 501-2 is connected to the input optical fiber 502-2.
  • a lens 504-1 is disposed between the sapphire window 503-1 for light output and the light modulator 505, and a lens 504 is disposed between the sapphire window 503-2 for light input and the light receiver 507. -2 is arranged.
  • the GPPO connector 511-1 is connected to the high-frequency transmission line 514-1, and the GPPO connector 511-2 is connected to the 514-2, respectively.
  • the optical module 500 includes a DC pin 509-1 connected to the optical receiver 507 and a DC pin 509-2 electrically connected to the TIAIC 508.
  • the optical module 500 includes a DC block capacitor 510-1 provided in the high frequency transmission line 514-1 and a DC block capacitor 510-2 provided in the high frequency transmission line 514-2.
  • the optical module 500 is provided with a cover block 517 so as to cover the high-frequency transmission lines 514-1 and 514-2, and the cover block 517 is fixed to the high-frequency substrate 515 via a spacer 518.
  • the spacer 518 maintains a certain space between the cover block 517 and the high-frequency substrate 515 and the high-frequency transmission lines 514-1 and 514-2 on the high-frequency substrate 515.
  • the cover block 517 is made of copper.
  • the material of the housing 513 is copper tungsten.
  • the cover block 517 is grounded.
  • the spacer 518 and the housing 513 are conductive components, and a metal via is provided in the lower substrate 512, and then electrically connected to the lower ground 516.
  • the optical module 500 has a parallel configuration of an optical signal transmission module and an optical signal reception module. That is, an optical connector 501-1, an optical fiber 502-1, a sapphire window 503-1, a lens 504-1, an optical modulator 505, a driver IC 506-1, a high-frequency transmission line 514-1, a DC
  • the block capacitor 510-1 and the GPPO connector 511-1 constitute an optical signal transmission module.
  • the block capacitor 510-2 and the GPPO connector 511-2 constitute an optical signal receiving module.
  • a high-frequency voltage signal is input from each of the GPPO connectors 511-1 of the optical module 500.
  • the high frequency voltage signal passes through each of the DC block capacitors 510 and each of the high frequency transmission lines 514-1 and is input to the driver IC 506.
  • the high-frequency voltage signal is converted into a high-frequency current signal by the driver IC 506, converted into an optical signal by the optical modulator 505, and then combined to become a wavelength multiplexed optical signal.
  • the wavelength multiplexed optical signal from the optical modulator 505 is collected on the sapphire window 503-1 by the lens 504-1, passes through the sapphire window 503-1, and reaches the optical connector 501-1 through the optical fiber 502-1. Propagate.
  • the wavelength multiplexed optical signal input from the optical connector 501-2 propagates to the sapphire window 503-2 through the optical fiber 502-2.
  • the wavelength multiplexed optical signal transmitted through the sapphire window 503-2 is collimated by the lens 504-2 and input to the optical receiver 507.
  • the wavelength multiplexed optical signal is demultiplexed by the optical receiver 507, converted into a high frequency current signal, and converted into a high frequency voltage signal by the TIAIC 508.
  • the high frequency voltage signal passes from the TIAIC 508 through each of the high frequency transmission line 514 and each of the DC block capacitors 510 and is output from the GPPO connector 511-2.
  • the optical module 500 has a parallel configuration of an optical signal transmission module and an optical signal reception module. Also in the optical module having the parallel configuration as in the present embodiment, by providing the cover block 517, from the transmission side (514-1) to the reception side (514-2) and the reception side (514-2) of the high-frequency transmission line. ) To the transmission side (514-1) can be reduced.
  • FIG. 6 is a diagram illustrating the crosstalk suppression effect of the present embodiment.
  • FIG. 6A shows the crosstalk characteristic in the conventional optical module
  • FIG. 6B shows the crosstalk characteristic in the optical module 500.
  • the optical module 500 according to the present embodiment has a crosstalk suppression effect of a maximum of 7 dB compared to the conventional signal frequency range of 0 to 20 GHz. I understand that.
  • the material of the housing 513 is copper tungsten, which is because copper tungsten has a high thermal conductivity and excellent exhaust heat.
  • the optical module 500 according to the present invention is not limited to this material, and may be a general metal, for example.
  • the cover block 517 is made of copper.
  • the optical module 500 according to the present invention is not limited to this example.
  • a conductor material other than copper may be used, or ceramic.
  • it may be a block in which a conductor film is provided on the surface of an insulator material.
  • the lower ground 516 and the cover block 517 are provided below the high-frequency substrate 515 and the high-frequency transmission lines 514-1 and 514-2, but the optical module 500 according to the present invention is provided. Is not limited to this example, and the positional relationship between the ground and the cover block may be upside down, or may be in the horizontal direction.
  • FIGS. 7A and 7B are diagrams showing the configuration of an optical module 700 according to the fifth embodiment of the present invention.
  • 7A is a top perspective view of the optical module 700
  • FIG. 7B is a cross-sectional view taken along 7B-7B in FIG. 7A.
  • the optical module 700 of FIGS. 7A and 7B is disposed at the bottom of the housing 713 and is covered with a lid 719.
  • FIG. 7A is a diagram in a state where the lid 719 of the optical module 700 is removed
  • FIG. 7B is a diagram in a state where the lid 719 of the optical module 700 is attached.
  • the optical module 700 includes an optical modulator 705, a driver IC 706 connected to the optical modulator 705, an optical receiver 707, and a TIA (Transimpedance Amplifier) IC 708 connected to the optical receiver 707. Located at the bottom.
  • the optical modulator 705 and the optical receiver 707 have both functions of an optical processing circuit and an electro-optical signal conversion element.
  • the optical modulator 705 and the driver IC 706 are connected by wire bonding, and the optical receiver 707 and the TIA IC 708 are also connected by wire bonding.
  • the lower substrate 712 is disposed at the bottom of the housing 713.
  • a lower ground 716 is formed on the lower substrate 712, and a high-frequency substrate 715 is formed on the lower ground 716.
  • four high-frequency transmission lines 714-1 connected to the driver IC 706 and four high-frequency transmission lines 714-2 connected to the TIA IC 708 are formed to constitute a microstrip line. ing.
  • the housing 713 is provided with a sapphire window for light output 703-1, a sapphire window for light input 703-2, and eight GPPO connectors 711-1 and 711-2.
  • An output optical fiber 702-1 is connected to the optical output sapphire window 703-1, and an output optical connector 701-1 is connected to the output optical fiber 702-1.
  • An input optical fiber 702-2 is connected to the sapphire window 703-2 for optical input, and an input optical connector 701-2 is connected to the input optical fiber 702-2.
  • a lens 704-1 is disposed between the sapphire window 703-1 for light output and the light modulator 705, and a lens 704 is disposed between the sapphire window 703-2 for light input and the light receiver 707. -2 is arranged.
  • the GPPO connector 711-1 is connected to the high-frequency transmission line 714-1, and the GPPO connector 711-2 is connected to the 714-2, respectively.
  • the optical module 700 also includes a DC pin 709-1 connected to the optical receiver 707 and a DC pin 709-2 electrically connected to the TIA IC 708.
  • the optical module 700 also includes a DC block capacitor 710-1 provided on the high frequency transmission line 714-1 and a DC block capacitor 710-2 provided on the high frequency transmission line 714-2.
  • the optical module 700 covers the high-frequency transmission lines 714-1 and 714-2, the driver IC 706 and the TIA IC 708, the connection wire between the driver IC 706 and the optical modulator 705, and the connection wire between the TIA ICIC 708 and the optical receiver 707.
  • a cover block 717 is provided.
  • the cover block 717 is fixed to the high frequency substrate 715 via the spacer 718.
  • the spacer 718 maintains a constant space between the cover block 717 and the high-frequency substrate 715 and the high-frequency transmission lines 714-1 and 714-2 on the high-frequency substrate 715.
  • the cover block 717 is made of copper.
  • casing 713 is copper tungsten, a common metal may be sufficient.
  • the cover block 717 is grounded.
  • the spacer 718 and the housing 713 are conductive parts, and a metal via is provided in the lower substrate 712, and then electrically connected to the lower ground 716.
  • the optical module 700 has a parallel configuration of an optical signal transmission module and an optical signal reception module. That is, optical connector 701-1, optical fiber 702-1, sapphire window 703-1, lens 704-1, optical modulator 705, driver IC 706-1, high frequency transmission line 714-1, DC
  • the block capacitor 710-1 and the GPPO connector 711-1 constitute an optical signal transmission module.
  • the block capacitor 710-2 and the GPPO connector 711-2 constitute an optical signal receiving module.
  • the transmission side (714-1) to the reception side (714-2) and the reception side (714-2) of the high-frequency transmission line are provided.
  • crosstalk can be reduced.
  • crosstalk between the wires generated in the connection wire between the driver IC 706 and the optical modulator 705 and the connection wire between the TIA IC 708 and the optical receiver 707 can be suppressed at the same time.
  • FIGS. 8A and 8B are diagrams showing a configuration of an optical module 800 according to the sixth embodiment of the present invention.
  • FIG. 8C is a diagram showing a configuration of an optical module 800 according to a modification of the sixth embodiment of the present invention.
  • 8A is a top perspective view of the optical module 800
  • FIGS. 8B and 8C are cross-sectional views taken along line 8B-8B in FIG. 8A.
  • the optical module 800 of FIGS. 8A, 8B, and 8C is disposed at the bottom of the housing 813 and is covered with a lid 819.
  • FIG. 8A is a diagram with the lid 819 of the optical module 800 removed, and FIGS.
  • the optical module 800 includes an optical modulator 805, a driver IC 806 connected to the optical modulator 805, an optical receiver 807, and a TIA (Transimpedance Amplifier) IC 808 connected to the optical receiver 807. Located at the bottom.
  • the optical modulator 805 and the optical receiver 807 have both functions of an optical processing circuit and an electro-optical signal conversion element.
  • the optical modulator 805 and the driver IC 806 are connected by wire bonding, and the optical receiver 807 and the driver IC 808 are also connected by wire bonding.
  • the lower substrate 812 is disposed at the bottom of the housing 813.
  • a lower ground 816 is formed on the lower substrate 812, and a high-frequency substrate 815 is formed on the lower ground 816.
  • four high-frequency transmission lines 814-1 connected to the driver IC 806 and four high-frequency transmission lines 814-2 connected to the TIA IC 808 are formed to constitute a microstrip line. ing.
  • the housing 813 is provided with a sapphire window 803-1 for light output, a sapphire window 803-2 for light input, and eight GPPO connectors 811 and 811-2.
  • An output optical fiber 802-1 is connected to the sapphire window 803-1 for optical output, and an output optical connector 801-1 is connected to the output optical fiber 802-1.
  • An input optical fiber 802-2 is connected to the sapphire window 803-2 for optical input, and an input optical connector 801-2 is connected to the input optical fiber 802-2.
  • a lens 804-1 is disposed between the sapphire window 803-1 for light output and the light modulator 805, and a lens 804 is disposed between the sapphire window 803-2 for light input and the light receiver 807. -2 is arranged.
  • the GPPO connector 811-1 is connected to the high-frequency transmission line 814-1, and the GPPO connector 811-2 is connected to the 814-2, respectively.
  • the optical module 800 also includes a DC pin 809-1 connected to the optical receiver 807 and a DC pin 809-2 electrically connected to the TIA IC 808.
  • the optical module 800 includes a DC block capacitor 810-1 provided in the high frequency transmission line 814-1 and a DC block capacitor 810-2 provided in the high frequency transmission line 814-2.
  • the optical module 800 covers the high-frequency transmission lines 814-1 and 814-2, the driver IC 806 and the TIA IC 808, the connection wire between the driver IC 806 and the optical modulator 805, and the connection wire between the TIA IC 808 and the optical receiver 807.
  • a cover block 817 is provided.
  • the cover block 817 is fixed to the high frequency substrate 815 via a spacer 818.
  • the spacer 818 maintains a constant space between the cover block 817 and the high-frequency substrate 815 and the high-frequency transmission lines 814-1 and 814-2 on the high-frequency substrate 815.
  • the cover block 817 may be large enough to cover only the high-frequency transmission lines 814-1 and 814-2.
  • the cover block 817 is made of copper.
  • the material of the housing 813 is copper tungsten, it may be a general metal.
  • the optical module 800 includes a transmission-side high-frequency transmission line 814-1 and a reception-side high-frequency transmission line 814-2 formed between the transmission-side driver IC 806 and the reception-side TIA IC 808 and on the high-frequency substrate 815. In between, a ground electrode 820 is formed.
  • the cover block 817 and the ground electrode 820 are grounded.
  • the cover block 817 is connected to the ground by using the spacer 810 and the housing 801 as conductive parts and providing a metal via on the lower substrate 812 and then electrically connecting the lower ground 816.
  • the ground electrode 820 is electrically connected to the lower ground 816 after a metal via is provided on the high-frequency substrate 815.
  • a cover block 817 is fixed to a high-frequency substrate 815 via a ground electrode 820 having a predetermined thickness instead of the spacer 818. Also good.
  • a metal via is provided in the high-frequency substrate 815, and then the lower ground 816 and the ground electrode 820 are electrically connected.
  • the optical module 800 has a parallel configuration of an optical signal transmission module and an optical signal reception module. That is, optical connector 801-1, optical fiber 802-1, sapphire window 803-1, lens 804-1, optical modulator 805, driver IC 806-1, high frequency transmission line 814-1, DC
  • the block capacitor 810-1 and the GPPO connector 811-1 constitute an optical signal transmission module.
  • the block capacitor 810-2 and the GPPO connector 811-2 constitute an optical signal receiving module.
  • the transmission side (814-1) to the reception side (814-2) and the reception side of the high frequency transmission line are provided.
  • Crosstalk from (814-2) to the transmission side (814-1) can be reduced.
  • the present embodiment is effective when there is a signal level difference between the signal flowing on the transmission side (814-1) and the signal flowing on the reception side (814-2).
  • crosstalk between the wires generated in the connection wire between the driver IC 806 and the optical modulator 805 and the connection wire between the TIA IC 808 and the optical modulator 807 can be suppressed at the same time.
  • FIGS. 9A and 9B are diagrams showing the configuration of an optical module 900 according to the seventh embodiment of the present invention.
  • 9A is a top perspective view of the optical module 900
  • FIG. 9B is a cross-sectional view taken along 9B-9B of FIG. 9A.
  • the optical module 900 of FIGS. 9A and 9B is disposed at the bottom of the housing 913 and is covered with a lid 919.
  • FIG. 9A is a diagram with the lid 919 of the optical module 900 removed
  • FIG. 9B is a diagram with the lid 919 of the optical module 900 attached.
  • the optical module 900 includes an optical modulator 905, a driver IC 906 connected to the optical modulator 905, an optical receiver 907, and a TIA (Transimpedance Amplifier) IC 908 connected to the optical receiver 907. Located at the bottom.
  • the optical modulator 905 and the optical receiver 907 have both functions of an optical processing circuit and an electro-optical signal conversion element.
  • the optical modulator 905 and the driver IC 906 are connected by wire bonding, and the optical receiver 907 and the driver IC 908 are also connected by wire bonding.
  • the lower substrate 912 is disposed at the bottom of the housing 913.
  • a lower ground 916 is formed on the lower substrate 912, and a high-frequency substrate 915 is formed on the lower ground 916.
  • four high-frequency transmission lines 914-1 connected to the driver IC 906 and four high-frequency transmission lines 914-2 connected to the TIA IC 908 are formed to constitute a microstrip line. ing.
  • the housing 913 is provided with a sapphire window 903-1 for light output, a sapphire window 903-2 for light input, and eight GPPO connectors 911 and 811-2.
  • An output optical fiber 902-1 is connected to the sapphire window 903-1 for light output, and an output optical connector 901-1 is connected to the output optical fiber 902-1.
  • An input optical fiber 902-2 is connected to the sapphire window 903-2 for optical input, and an input optical connector 901-2 is connected to the input optical fiber 902-2.
  • a lens 904-1 is disposed between the sapphire window 903-1 for light output and the light modulator 905, and a lens 904 is disposed between the sapphire window 903-2 for light input and the light receiver 907. -2 is arranged.
  • the GPPO connector 911-1 is connected to the high-frequency transmission line 914-1, and the GPPO connector 911-2 is connected to the 914-2, respectively.
  • the optical module 900 includes a DC pin 909-1 connected to the optical receiver 907 and a DC pin 909-2 electrically connected to the TIA IC 908.
  • the optical module 900 includes a DC block capacitor 910-1 provided on the high frequency transmission line 914-1 and a DC block capacitor 910-2 provided on the high frequency transmission line 914-2.
  • the optical module 900 covers high-frequency transmission lines 914-1 and 914-2, driver IC 906 and TIA IC 908, connection wires between the driver IC 906 and the optical modulator 905, and connection wires between the TIA IC 908 and the optical receiver 907.
  • a cover block 917 is provided.
  • the optical module 900 includes a transmission-side high-frequency transmission line 914-1 and a reception-side high-frequency transmission line 914-2 formed between the transmission-side driver IC 906 and the reception-side TIA IC 908 and on the high-frequency substrate 915.
  • the ground electrode 920 is formed in the longitudinal direction of the casing.
  • the cover block 914 is fixed to the high-frequency substrate 915 through a ground electrode 920 having a predetermined thickness.
  • the ground electrode 920 maintains a certain space between the cover block 917 and the high-frequency substrate 915 and the high-frequency transmission lines 914-1 and 914-2 on the high-frequency substrate 915.
  • the cover block 914 is made of copper.
  • casing 913 is taken as copper tungsten, a common metal may be sufficient.
  • the cover block 917 and the ground electrode 920 are grounded.
  • the lower ground 916 and the ground electrode 920 are electrically connected after providing a metal via on the high-frequency substrate 915.
  • the cover block 917 need not cover all of the high-frequency transmission lines 914-1 and 914-2. If the cover block 917 can reduce crosstalk from the transmission side (914-1) to the reception side (914-2) and from the reception side (914-2) to the transmission side (914-1) of the high-frequency transmission line, The high-frequency transmission lines 914-1 and 914-2 may partially protrude from the range covered by the cover block 917.
  • the transmission side (914-1) to the reception side (914-2) and the reception side (914-2) to the transmission side ( 914-1) can reduce crosstalk, especially when there is a signal level difference between the signal flowing through the transmission side (914-1) and the signal flowing through the reception side (914-2). It is.
  • FIGS. 10A and 10B are diagrams showing a configuration of an optical module 1000 according to the eighth embodiment of the present invention.
  • 10A is a top perspective view of the optical module 1000
  • FIG. 10B is a cross-sectional view taken along 10B-10B of FIG. 10A.
  • the optical module 1000 in FIGS. 10A and 10B is disposed at the bottom of the housing 1013 and is covered with a lid 1019.
  • FIG. 10A is a diagram with the lid 1019 of the optical module 1000 removed
  • FIG. 10B is a diagram with the lid 1019 of the optical module 1000 attached.
  • the optical module 1000 has a parallel configuration of two optical signal transmission modules.
  • the optical connector 1001-1, the optical fiber 1002-1, the sapphire window 1003-1, the lens 1004-1, the optical modulator 1005-1, the driver IC 1006-1, and the high-frequency transmission line 1014-1 The DC block capacitor 1010-1 and the GPPO connector 1011-1 constitute a first optical signal transmission module.
  • the DC block capacitor 1010-2 and the GPPO connector 1011-2 constitute a second optical signal transmission module.
  • the optical module 1000 by providing the grounded cover block 1017, it is possible to reduce crosstalk between the high-frequency transmission lines (1014-1 and 1014-2) constituting the microstrip line. .
  • the same method as in the fourth embodiment can be used.
  • FIGS. 11A and 11B are diagrams showing the configuration of an optical module 1100 according to the ninth embodiment of the present invention.
  • 11A shows a top perspective view of the optical module 1100
  • FIG. 11B shows a cross-sectional view taken along 11B-11B of FIG. 11A.
  • the optical module 1100 in FIGS. 11A and 11B is disposed at the bottom of the housing 1113 and covered with a lid 1119.
  • FIG. 11A is a diagram with the lid 1119 of the optical module 1100 removed
  • FIG. 11B is a diagram with the lid 1119 of the optical module 1100 attached.
  • the optical module 1100 according to this embodiment has a parallel configuration of two optical signal receiving modules.
  • the optical connector 1101-1, the optical fiber 1102-1, the sapphire window 1103-1, the lens 1104-1, the optical receiver 1107-1, the driver IC 1106-1, and the high-frequency transmission line 1114-1 The DC block capacitor 1110-1 and the GPPO connector 11111-1 constitute a first optical signal receiving module.
  • the DC block capacitor 1110-2 and the GPPO connector 111-2 constitute a second optical signal receiving module.
  • optical module 1100 by providing the grounded cover block 1117, crosstalk between the high-frequency transmission lines (1114-1 and 1114-2) constituting the microstrip line can be reduced. .
  • the same method as in the first to eighth embodiments can be used to connect the cover block 1117 to the ground.
  • FIGS. 12A and 12B are diagrams showing a configuration of an optical module 1200 according to the twelfth embodiment of the present invention.
  • 12A shows a top perspective view of the optical module 700
  • FIG. 12B shows a cross-sectional view taken along 12B-12B of FIG. 12A.
  • the optical module 1200 of FIGS. 12A and 12B is disposed at the bottom of the housing 1213 and is covered with a lid 1219.
  • FIG. 12A is a diagram with the lid 1219 of the optical module 1200 removed
  • FIG. 12B is a diagram with the lid 1219 of the optical module 1200 attached.
  • An optical module 1200 includes an optical transceiver chip 1205 in which the optical modulator 505 and the optical receiver 507 of the optical module 500 of the fourth embodiment shown in FIGS. 5A and 5B are integrated on one chip. It is characterized by having. That is, optical connector 1201-1, optical fiber 1202-1, sapphire window 1203-1, lens 1204-1, optical transceiver chip 1205, driver IC 1206-1, high-frequency transmission line 1214-1, DC The block capacitor 1210-1 and the GPPO connector 1211-1 constitute an optical signal transmission module.
  • the block capacitor 1210-2 and the GPPO connector 1211-2 constitute an optical signal receiving module.
  • the optical module 1200 by providing the grounded cover block 1217, it is possible to reduce crosstalk between the high-frequency transmission lines (1214-1 and 1214-2) constituting the microstrip line. .
  • the same method as in the fourth embodiment can be used.
  • the configuration of the present embodiment is advantageous in terms of cost reduction and size reduction, and achieves the effects of the present invention.
  • FIGS. 13A and 13B are diagrams showing the configuration of an optical module 1300 according to the eleventh embodiment of the present invention.
  • FIG. 13A is a top perspective view of the optical module 1300
  • FIG. 13B is a cross-sectional view taken along 13B-13B in FIG. 13A.
  • the optical module 1300 in FIGS. 13A and 13B is disposed at the bottom of the housing 1301 and is covered with a lid 1314.
  • FIG. 13A is a diagram with the lid 1314 of the optical module 1300 removed
  • FIG. 13B is a diagram with the lid 1314 of the optical module 1300 attached.
  • an optical processing circuit 1303, an electro-optical conversion element 1304 connected to the optical processing circuit 1303, and a lower substrate 1313 are arranged at the bottom of the housing 1301.
  • a lower ground 1308 is formed on the lower substrate 1313
  • a high-frequency substrate 1307 is formed on the lower ground 1308.
  • four high-frequency transmission lines 1305 connected to the electro-optical conversion element 1304 are formed to constitute a microstrip line.
  • the housing 1301 is provided with one optical port 1302 and four electrical ports 1306, the optical port 1302 is connected to the optical processing circuit 1303, and the four electrical ports 1306 are each connected to the high-frequency transmission line 1305. .
  • the optical module 1300 is provided with a cover block 1309 above the high-frequency transmission line 1305, and the cover block 1309 is fixed to the high-frequency substrate 1307 by a spacer 1310 and grounded.
  • the spacer 1310 and the housing 1301 are electrically conductive parts and then electrically connected to the lower ground 1308.
  • the cover block 1309 has a groove formed in accordance with the high-frequency transmission line 1305, and the groove portion of the cover block 1309 is positioned directly above the high-frequency transmission line 1305.
  • the groove portion can be shaped so as to cover the high frequency transmission line 1305 from above, and the crosstalk reduction effect between the high frequency transmission lines 1305 of the cover block 1309 can be further enhanced. it can.
  • a gold high-frequency transmission line 1305 is formed on a ceramic high-frequency substrate 1307 having a thickness of 150 ⁇ m, and a copper cover block 1309 is disposed on the high-frequency transmission line 1305.
  • the high frequency transmission line 1305 has a pattern thickness of 2 ⁇ m, a width of 90 ⁇ m, a gap between transmission lines of 400 ⁇ m, and a distance between the cover block 1309 and the high frequency substrate 1307 of 200 ⁇ m.
  • FIG. 14 is a diagram showing the crosstalk suppression effect of this embodiment. 14A shows the crosstalk characteristic in the conventional optical module, and FIG. 14B shows the crosstalk characteristic in the optical module 1400. 14 (a) and 14 (b), it can be seen that the optical module 1400 according to the present embodiment has a crosstalk suppression effect of 12 dB compared to the conventional one.
  • FIGS. 15A and 15B are diagrams showing a configuration of an optical module 1500 according to the twelfth embodiment of the present invention.
  • 15A is a top perspective view of the optical module 1500
  • FIG. 15B is a cross-sectional view taken along 15B-15B in FIG. 15A.
  • the optical module 1500 in FIGS. 15A and 15B is disposed at the bottom of the housing 1501 and is covered with a lid 1514.
  • FIG. 15A is a diagram with the lid 1514 of the optical module 1500 removed
  • FIG. 15B is a diagram with the lid 1514 of the optical module 1500 attached.
  • an optical processing circuit 1503, an electro-optical conversion element 1504 connected to the optical processing circuit 1503, and a lower substrate 1513 are arranged at the bottom of the housing 1501.
  • a lower ground 1508 is formed on the lower substrate 1513, and a high-frequency substrate 1507 is formed on the lower ground 1508.
  • Four high-frequency transmission lines 1505 connected to the electro-optical conversion element 1504 are formed on the high-frequency substrate 1507, and constitute a microstrip line.
  • the four high-frequency transmission lines 155 are each equipped with a DC block capacitor 1510 for cutting the DC component of the signal.
  • the housing 1501 is provided with one optical port 1502 and four electrical ports 1506.
  • the optical port 1502 is connected to the optical processing circuit 1503, and the four electrical ports 1506 are each connected to the high-frequency transmission line 1505. .
  • the optical module 1500 is provided with a cover block 1509 above the high-frequency transmission line 1505, and the cover block 1509 is fixed to the high-frequency substrate 1507 by a spacer 1511 and grounded.
  • the spacer 1511 and the housing 1501 are electrically conductive parts and then electrically connected to the lower ground 1508.
  • the cover block 1509 has a groove formed in accordance with the high frequency transmission line 1505, and the groove portion of the cover block 1509 is positioned directly above the high frequency transmission line 1505 and the block capacitor 1511.
  • the groove portion can be shaped to cover the high-frequency transmission line 1505 and the block capacitor 1510 from above. Also in this embodiment, the cover block 1509 can further enhance the crosstalk reduction effect between the high-frequency transmission lines 1505.
  • the component mounted on the high-frequency transmission line is a DC block capacitor
  • the present invention is not limited to this.
  • the component may be a chip resistor or a component having a complicated function such as an integrated circuit.
  • the DC block capacitor 1510 is solder-mounted on the high frequency line.
  • the present invention is not limited to solder mounting.
  • a component mounted with silver paste, a component mounted with bumps, or a component mounted with wire bonding may be used. Of course, it doesn't matter.
  • FIGS. 16A and 16B are diagrams showing a configuration of an optical module 1600 according to the sixteenth embodiment of the present invention.
  • FIG. 16A shows a top perspective view of the optical module 1600 with the lid 1614 removed
  • FIG. 16B shows a cross-sectional view taken along 16B-16B in FIG. 16A.
  • the optical module 1600 in FIGS. 16A and 16B is disposed at the bottom of the housing 1601 and is covered with a lid 1614.
  • FIG. 16A is a diagram with the lid 1614 of the optical module 1600 removed
  • FIG. 16B is a diagram with the lid 1614 of the optical module 1600 attached.
  • an optical processing circuit 1603, an electro-optical conversion element 1604 connected to the optical processing circuit 1603, and a lower substrate 1613 are arranged on the bottom of the housing 1601 on a substrate 1613.
  • a lower ground 1608 is formed on the lower substrate 1613, and a high-frequency substrate 1607 is formed on the lower ground 1608.
  • four high-frequency transmission lines 1605 connected to the electro-optic conversion element 1604 are formed to constitute a microstrip line.
  • the housing 1601 is provided with one optical port 1602 and four electrical ports 1606.
  • the optical port 1602 is connected to the optical processing circuit 1603, and the four electrical ports 1606 are each connected to the high-frequency transmission line 1605. .
  • the optical module 1600 is provided with a cover block 1609 above the high-frequency transmission line 1605, and the cover block 1609 is fixed to the high-frequency substrate 1607 by a spacer 1610 and grounded.
  • the spacer 1610 and the housing 1601 are electrically conductive parts and then electrically connected to the lower ground 1608.
  • the cover block 1609 is formed with a groove in accordance with the high frequency transmission line 1605, and the groove portion of the cover block 1609 is positioned directly above the high frequency transmission line 1605.
  • the optical module 1600 is further provided with an opening 1611 in the cover block 1609 and a marker 1612 on the high-frequency substrate 1607.
  • the cover block 1609 is aligned so that the opening 1611 coincides with the upper portion of the marker 1612. Then, the grooves formed in the cover block 1609 and the high frequency transmission line 1605 formed on the high frequency substrate 1607 can be accurately aligned.
  • crosstalk can be suppressed without impairing the characteristics of the high-frequency transmission line.
  • FIGS. 17A and 17B are views showing the configuration of an optical module 1700 according to the fourteenth embodiment of the present invention.
  • 17A is a top perspective view of the optical module 1700
  • FIG. 17B is a cross-sectional view taken along line 17B-17B of FIG. 17A.
  • the optical module 1700 of FIGS. 17A and 17B is disposed at the bottom of the housing 1701 and is covered with a lid 1714.
  • FIG. 17A is a diagram with the lid 1714 of the optical module 1700 removed
  • FIG. 17B is a diagram with the lid 1714 of the optical module 1700 attached.
  • an optical processing circuit 1703, an electro-optical conversion element 1704 connected to the optical processing circuit 1703, and a lower substrate 1713 are arranged at the bottom of the housing 1701.
  • a lower ground 1708 is formed on the lower substrate 1713, and a high-frequency substrate 1707 is formed on the lower ground 1708.
  • four high-frequency transmission lines 1705 connected to the electro-optical conversion element 1704 are formed to constitute a microstrip line.
  • the housing 1701 is provided with one optical port 1702 and four electrical ports 1706, the optical port 1702 is connected to the optical processing circuit 1703, and the four electrical ports 1706 are each connected to the high-frequency transmission line 1705. .
  • a cover block 1709 is provided on the high frequency transmission line 1705, and the cover block 1709 is fixed to the housing 1701 with solder 1710.
  • the cover block 1709 is grounded. Connection to the ground is made by electrically connecting the lower ground 1708 after the housing 1701 is made of a conductive component.
  • a cover block 1709 serving as a ground for a high-frequency transmission line 1705 and a housing 1701 serving as a ground for an electrical port 1706 are electrically connected via a solder 1710. Yes.
  • a path of a return current flowing to the ground when a high-frequency signal passes through the high-frequency transmission line 1705 is secured, and crosstalk can be suppressed without impairing the characteristics of the high-frequency transmission line.
  • FIGS. 18A and 18B are diagrams showing a configuration of an optical module 1800 according to the fifteenth embodiment of the present invention.
  • FIG. 18A is a top perspective view of the optical module 1800
  • FIG. 18B is a view taken along 18B-18B in FIG. 18A.
  • a cross-sectional view is shown.
  • the optical module 1800 in FIGS. 18A and 18B is disposed at the bottom of the housing 1801 and is covered with a lid 1814.
  • FIG. 18A is a diagram with the lid 1814 of the optical module 1800 removed
  • FIG. 18B is a diagram with the lid 1814 of the optical module 1800 attached.
  • an optical processing circuit 1803, an electro-optical conversion element 1804 connected to the optical processing circuit 1803, and a lower substrate 1813 are arranged at the bottom of the housing 1801.
  • a lower ground 1808 is formed on the lower substrate 1813
  • a high-frequency substrate 1807 is formed on the lower ground 1808.
  • four high-frequency transmission lines 1805 connected to the electro-optic conversion element 1804 are formed to constitute a microstrip line.
  • the housing 1801 is provided with one optical port 1802 and four electrical ports 1806.
  • the optical port 1802 is connected to the optical processing circuit 1803, and the four electrical ports 1806 are each connected to the high-frequency transmission line 1805. .
  • the optical module 1800 is provided with a cover block 1809 above the high-frequency transmission line 1805, and the cover block 1809 is fixed to the ground of the electro-optic conversion element 1804 with solder 1810 and is grounded.
  • the ground of the electro-optical conversion element 1804 is connected to the lower ground 1808 by a metal wire or the like.
  • the optical module 1800 is characterized in that the cover block 1809 serving as the ground of the high-frequency transmission line 1805 and the ground of the electro-optic conversion element 1804 are electrically connected by solder 1801.
  • the cover block 1809 can be grounded even when the housing 1801 is not a conductive material.
  • a path of a return current flowing to the ground when a signal passes through the high-frequency transmission line 1805 is secured, and crosstalk can be suppressed without impairing the characteristics of the high-frequency transmission line.
  • FIGS. 19A and 19B are diagrams showing a configuration of an optical module 1900 according to the sixteenth embodiment of the present invention.
  • FIG. 19A shows a top perspective view of the optical module 1900
  • FIG. 19B shows a cross-sectional view taken along 19B-19B in FIG. 19A.
  • the optical module 1900 in FIGS. 19A and 19B is disposed at the bottom of the housing 1901 and is covered with a lid 1909.
  • an optical processing circuit 1903, an electro-optical conversion element 1904 connected to the optical processing circuit 1903, and a lower substrate 1913 are arranged at the bottom of the housing 1901.
  • a lower ground 1908 is formed on the lower substrate 1913, and a high-frequency substrate 1907 is formed on the lower ground 1908.
  • a high-frequency substrate 1907 is formed on the lower ground 1908.
  • four high-frequency transmission lines 1905 connected to the electro-optic conversion element 1904 are formed to constitute a microstrip line.
  • the housing 1901 is provided with one optical port 1902 and four electrical ports 1906, the optical port 1902 is connected to the optical processing circuit 1903, and the four electrical ports 1906 are respectively connected to the high-frequency transmission line 1905. .
  • the optical module 1900 is provided with a lid 1909 serving as a cover block on the upper part of the high-frequency transmission line 1905.
  • the housing 1901 is formed to a height that can maintain a certain space between the lid 1909 and the high-frequency substrate 1907 and the high-frequency transmission line 1905 on the high-frequency substrate 1907.
  • the lid 1909 is grounded.
  • the housing 1901 is made of a conductive component and then electrically connected to the lower ground 1908.
  • the housing material of the first to fourteenth and sixteenth embodiments is replaced with a conductive material (for example, copper tungsten), such as ceramic and resin. It can also be a non-conductive substance. However, it is necessary to electrically connect the cover block and the ground electrode to the lower ground.
  • a conductive material for example, copper tungsten

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

高周波伝送線路間のクロストークを抑制する光モジュールを提供する。本発明の光モジュールは、光ポートと、光ポートに光学的に接続された光処理回路と、光処理回路に光学的に接続された電気光変換素子と、電気光変換素子に接続された2以上の高周波伝送線路と、高周波伝送線路に接続された電気ポートとを少なくとも一組備え、高周波伝送線路上に、高周波伝送線路の少なくとも一部を覆うように設けられ、接地された導電性のカバーブロックを備える。

Description

光モジュール
 本発明は、高周波電気信号及び光信号を伝達および信号処理するための光モジュールに関し、より詳細には、モジュール内の立体的なグランド構造により高周波クロストークが低減された光モジュールに関する。
 通信需要の急速な増大を背景として、通信網の大容量化に向けた検討が精力的に行われている。従来の光変調フォーマットは、1チャネルの光に対して1チャネルの高周波電気信号を割り当てる振幅変調(ASK:Amplitude Shift Keying)方式が主流であった。しかし、ASK方式は、ある周波数帯域に1ビットの信号しか付与することができない。従って、近年では、四位相偏移変調(QPSK:Quadrature Phase ShiftKeying)方式、及び直交振幅変調(QAM:Quadrature Amplitude Modulation)方式が盛んに研究開発されており、実用化に至っている。
 QPSK信号又はQAM信号を生成するためには、通常は光を複素表記したときの実軸と虚軸を個別に振幅変調するIQ変調器の形態がとられる。IQ変調器は、1チャネルの光を実軸と虚軸の分の2チャネルの高周波電気信号により変調することができる。また、光のX偏光と光のY偏光とに別個の信号を付与して伝送する偏波多重方式も一般的に多く用いられている。通信容量の大容量化のための周波数利用効率向上に向けて、IQ変調と偏波多重を併せて用いる場合には、1チャネルの光を4チャネルの高周波電気信号により変調することができる。
 周波数利用効率を高めて通信容量増大を図る一方で、送受信デバイスの小型化により単位体積あたりの伝送容量を増大する営みも行われている。1デバイスあたりの伝送容量を変えずに小型化することにより、伝送装置に搭載されるデバイスの数を増加させ、伝送装置としての伝送容量を増大できる。
 しかしながら、1チャネルの光に対する高周波電気信号の多チャネル化や光送受信モジュールの小型化を行うと、電気信号が伝送される高周波伝送線路間の距離が短くなり、高周波伝送線路間のクロストークが大きくなるという課題がある(例えば特許文献1)。
 図1A及び図1Bは、従来の光モジュール100の構成を示す図である。図1Aは、光モジュール100の上面透視図を示し、図1Bは図1Aの1B-1Bにおける断面図を示している。図1A及び図1Bの光モジュール100は、筐体101底部に配置され、蓋110に覆われている。ここで、図1Aは、光モジュール100の蓋110を外した状態の図であり、図1Bは、光モジュール100の蓋110を取り付けた状態の図である。光モジュール100は、光処理回路103と、光処理回路103に接続された電気光変換素子104と、下部基板109とが筐体101底部に配置されている。下部基板109上には、下部グランド108が形成され、下部グランド108上には高周波基板107が形成されている。高周波基板107上には、電気光変換素子104に接続された4本の高周波伝送線路105が形成され、4本の高周波伝送線路105はマイクロストリップ線路を構成している。筐体101には、1つの光ポート102及び4つの電気ポート106が設けられ、光ポート102は光処理回路103に接続され、4つの電気ポート106は、それぞれ高周波伝送線路105と接続されている。
 上記の構成は光モジュール一般に適用される形態であり、光ポート102と、光処理回路103と、電気光変換素子104と、高周波伝送線路105と、電気ポート106により光信号送信又は光信号受信モジュールを構成する。ここで、光信号送信モジュールを例に信号の流れを説明する。光モジュール100の電気ポート106から、高周波電気信号が入力される。高周波電気信号は、高周波伝送線路105を通過し、電気光変換素子104により光信号に変換され、光処理回路103内において合波された上で、光ポート102から波長多重光信号として出力される。
 一般に、高周波電気信号は高周波伝送線路の周囲に拡がった電磁界として伝送されるため、隣接チャネルとの干渉によるクロストークを起こしやすい。したがって、筐体101のサイズを小さくしていくと、高周波伝送線路105が密集して間隔が狭くなるため、高周波伝送線路間のクロストークが大きくなって、伝送される信号特性に影響を与えるという問題があった。
 本発明は、上述のような従来技術に鑑みてなされたもので、その目的は、高周波伝送線路間のクロストークを抑制する光モジュールを提供することである。
特開2014-154686号公報
 このような目的を達成するために、本発明の態様は、光ポートと、前記光ポートに光学的に接続された光処理回路と、前記光処理回路に光学的に接続された電気光変換素子と、前記電気光変換素子に接続された2以上の高周波伝送線路と、前記高周波伝送線路に接続された電気ポートとを少なくとも一組備える光モジュールであって、前記高周波伝送線路上に、前記高周波伝送線路の少なくとも一部を覆うように設けられ、接地された導電性のカバーブロックを備えることを特徴とする。
 本発明は、光モジュール内の複数の密集した高周波伝送線路において伝送線路間のクロストークを低減する効果を奏する。
従来の光モジュールを示す上面透視図である。 図1Aの1B-1Bにおける断面図である。 本発明の第1実施形態に係る光モジュールを示す上面透視図である。 図2Aの2B-2Bにおける断面図である。 本発明の第2実施形態に係る光モジュールを示す上面透視図である。 図3Aの3B-3Bにおける断面図である。 本発明の第3実施形態に係る光モジュールを示す上面透視図である。 図4Aの4B-4Bにおける断面図である。 本発明の第4実施形態に係る光モジュールを示す上面透視図である。 図5Aの5B-5Bにおける断面図である。 本発明の第4実施形態のクロストーク抑制効果を表す図である。 本発明の第5実施形態に係る光モジュールを示す上面透視図である。 図7Aの7B-7Bにおける断面図を示している。 本発明の第6実施形態に係る光モジュールを示す上面透視図である。 図8Aの8B-8Bにおける断面図である。 図8Aの8B-8Bにおける断面図である。 本発明の第7実施形態に係る光モジュールを示す上面透視図である。 図9Aの9B-9Bにおける断面図である。 本発明の第8実施形態に係る光モジュールを示す上面透視図である。 図10Aの10B-10Bにおける断面図を示している。 本発明の第9実施形態に係る光モジュールを示す上面透視図である。 図11Aの11B-11Bにおける断面図である。 本発明の第10実施形態に係る光モジュールを示す上面透視図である。 図12Aの12B-12Bにおける断面図である。 本発明の第11実施形態に係る光モジュールを示す上面透視図である。 図13Aの13B-13Bにおける断面図を示している。 本発明の第11の実施形態のクロストーク抑制効果を表す図である。 本発明の第12実施形態に係る光モジュールを示す上面透視図である。 図15Aの15B-15Bにおける断面図である。 本発明の第13実施形態に係る光モジュールを示す上面透視図である。 図16Aの16B-16Bにおける断面図である。 本発明の第14実施形態に係る光モジュールを示す上面透視図である。 図17Aの17B-17Bにおける断面図である。 本発明の第15実施形態に係る光モジュールを示す上面透視図である。 図18Aの18B-18Bにおける断面図である。 本発明の第16実施形態に係る光モジュールを示す上面透視図である。 図19Aの19B-19Bにおける断面図である。
 以下、図面を参照して本発明の実施形態を説明する。
 [第1の実施形態]
 図2A及び図2Bは、本発明の第1の実施形態に係る光モジュール200の構成を示す図である。図2Aは光モジュール200の上面透視図を示し、図2Bは図2Aの2B-2Bにおける断面図を示している。図2A及び図2Bの光モジュール200は、筐体201の底部に配置され、蓋214に覆われている。ここで、図2Aは、光モジュール200の蓋214を外した状態の図であり、図2Bは、光モジュール200の蓋214を取り付けた状態の図である。光モジュール200は、光処理回路203と、光処理回路203に接続された電気光変換素子204と、下部基板213とが筐体201底部に配置されている。下部基板213上には、下部グランド208が形成され、下部グランド208上には高周波基板207が形成されている。高周波基板207上には、電気光変換素子204に接続された4本の高周波伝送線路205が形成され、4本の高周波伝送線路205は、マイクロストリップ線路を構成している。筐体201には、1つの光ポート202及び4つの電気ポート206が設けられ、光ポート202は光処理回路203に接続され、4つの電気ポート206は、それぞれ高周波伝送線路205に接続されている。
 また、光モジュール200は、高周波伝送線路205を覆うように導電性のカバーブロック209が設けられ、カバーブロック209はスペーサ210を介して高周波基板207に固定されている。スペーサ210により、カバーブロック209と、高周波基板207及び高周波基板207上の高周波伝送線路205との間に一定のスペースが維持される。本実施形態において、カバーブロック209の材料は銅としている。また、筐体201の材料は、銅タングステンとしている。ただし、本発明に係る光モジュール200はこの材料に限定されるものではなく、たとえば、一般の金属であっても良い
 ここで、カバーブロック209は接地されている。グランドへの接続は、スペーサ210及び筐体201を導電性の部品とした上で、下部グランド208と電気的に接続する。また、筐体201を電気光変換素子204のグランド又は電気ポート206のグランド(例えばGPPOコネクタのグランド)と接続してもよい。
 上記の構成は光モジュール一般に適用される形態であり、光ポート202と、光処理回路203と、電気光変換素子204と、高周波伝送線路205と、電気ポート206により光信号送信又は光信号受信モジュールを構成する。光処理回路203は、光モジュール200が光信号送信モジュールとして機能する場合、複数の入力光信号を合波して波長多重光信号に変換する。また、光モジュール200が光信号受信モジュールとして機能する場合、入力した波長多重光信号を複数の光信号に変換する。
 光信号送信モジュールの信号の流れとしては、光モジュール200の電気ポート206から、高周波電気信号が入力される。高周波電気信号は、高周波伝送線路205を通過し、電気光変換素子204により光信号に変換され、光処理回路203において合波された上で、光ポート202から波長多重光信号として出力される。また、光信号受信モジュールとしては、光モジュール200の光ポート202から波長多重光信号が入力される。波長多重光信号は光処理回路203内でそれぞれの波長に分割され、電気光変換素子204により高周波電気信号に変換され、高周波伝送線路205を通過し、電気ポート206から高周波電気信号として出力される。
 高周波伝送線路205を通過する高周波電気信号は、一般に線路の周囲に拡がるモードで伝搬される。すなわち、高周波伝送線路205から出される電気力線が周囲に拡がる方向に向いているといえる。高周波クロストークは、ある高周波伝送線路から出される電気力線が隣の高周波伝送線路に終端されることにより発生する。従って、高周波伝送線路205上部に接地された導体のカバーブロック209を設けると、ある高周波伝送線路から出される電気力線はカバーブロック209に吸い寄せられ、隣の高周波伝送線路には向かいにくくなる。よって、カバーブロック209を設けると、高周波伝送線路205の伝送線路間のクロストークを低減することができる。
 なお、本実施形態はマイクロストリップ線路である高周波伝送線路205の高周波クロストークを低減するものであるが、コプレーナ線路上部にカバーブロックを設けた場合であっても、伝送線路間のクロストークを軽減することが可能である。
 [第2の実施形態]
 図3A及び図3Bは、本発明の第2の実施形態に係る光モジュール300の構成を示す図である。図3Aは光モジュール300の上面透視図を示し、図3Bは図3Aの3B-3Bにおける断面図を示している。図3A及び図3Bの光モジュール300は、筐体301の底部に配置され、蓋314に覆われている。ここで、図3Aは、光モジュール300の蓋314を外した状態の図であり、図3Bは、光モジュール300の蓋314を取り付けた状態の図である。光モジュール300は、光処理回路303と、光処理回路303に接続された電気光変換素子304と、下部基板313とが筐体301底部に配置されている。下部基板313上には、下部グランド308が形成され、下部グランド308上には高周波基板307が形成されている。高周波基板307上には、電気光変換素子304に接続された4本の高周波伝送線路305が形成され、4本の高周波伝送線路305は、マイクロストリップ線路を構成している。筐体301には、1つの光ポート302及び4つの電気ポート306が設けられ、光ポート302は光処理回路303に接続され、4つの電気ポート306は、それぞれ高周波伝送線路305に接続されている。
 また、光モジュール300は、高周波伝送線路305を覆うように導電性のカバーブロック309が設けられ、カバーブロック309はスペーサ310を介して高周波基板307に固定されている。スペーサ310により、カバーブロック309と、高周波基板307及び高周波基板307上の高周波伝送線路305との間に一定のスペースが維持される。本実施形態において、カバーブロック309の材料は銅としている。また、筐体301の材料は、銅タングステンとしているが、一般の金属であっても良い。
 さらに、光モジュール300は、高周波基板307上に形成された4本の高周波伝送線路305の隣り合う2本の高周波伝送線路の間に、グランド電極311が筐体長手方向に形成される。
 ここで、カバーブロック309及びグランド電極311は接地されている。カバーブロック309のグランドへの接続は、スペーサ310及び筐体301を導電性の部品とした上で、下部グランド308のグランドと電気的に接続する。また、グランド電極311のグランドへの接続は、高周波基板307に設けられた金属製のビアを介して、下部グランド308と電気的に接続する。また、筐体301を電気光変換素子304のグランド又は電気ポート306のグランドと接続してもよい。
 高周波伝送線路305を通過する高周波電気信号は、一般に線路の周囲に拡がるモードで伝搬される。すなわち、高周波伝送線路305から出される電気力線が周囲に拡がる方向に向いているといえる。高周波クロストークは、ある高周波伝送線路から出される電気力線が隣の高周波伝送線路に終端されることにより発生する。従って、接地された導体のカバーブロック309及びグランド電極311を設けると、ある高周波伝送線路から出される電気力線はカバーブロック309及びグランド電極311に吸い寄せられ、隣の高周波伝送線路には向かいにくくなる。よって、カバーブロック309及びグランド電極311を設けると、高周波伝送線路305の伝送線路間のクロストークを低減することができる。なお、本実施形態において、カバーブロック309及びグランド電極311の材料は銅としている。
 [第3の実施形態]
 図4A及び図4Bは、本発明の第3の実施形態に係る光モジュール400の構成を示す図である。図4Aは光モジュール400の上面透視図を示し、図4Bは図4Aの4B-4Bにおける断面図を示している。図4A及び図4Bの光モジュール400は、筐体401の底部に配置され、蓋414に覆われている。ここで、図4Aは、光モジュール400の蓋414を外した状態の図であり、図4Bは、光モジュール400の蓋414を取り付けた状態の図である。光モジュール400は、光処理回路403と、光処理回路403に接続された電気光変換素子404と、下部基板413とが筐体401底部に配置されている。下部基板413上には、下部グランド408が形成され、下部グランド408上には高周波基板407が形成されている。高周波基板407上には、電気光変換素子404に接続された4本の高周波伝送線路405が形成され、4本の高周波伝送線路405は、マイクロストリップ線路を構成している。筐体401には、1つの光ポート402及び4つの電気ポート406が設けられ、光ポート402は光処理回路403に接続され、4つの電気ポート406は、それぞれ高周波伝送線路405に接続されている。
 また、光モジュール400は、高周波伝送線路405を覆うように導電性のカバーブロック409が設けられ、高周波基板407上に形成された4本の高周波伝送線路405のそれぞれの隙間に、グランド電極411が形成される。カバーブロック409は、グランド電極411を介して高周波基板407に固定されている。グランド電極411により、カバーブロック409と、高周波基板407及び高周波基板407上の高周波伝送線路405との間に一定のスペースが維持される。本実施形態において、カバーブロック409の材料は銅としている。また、筐体401の材料は、銅タングステンとしているが、一般の金属であっても良い。
 ここで、カバーブロック409及びグランド電極411は接地されている。グランドへの接続は、高周波基板407に金属製のビアを設けた上で、グランド電極411を下部グランド408と電気的に接続する。また、筐体401を電気光変換素子404のグランド又は電気ポート406のグランドと接続してもよい。
 [第4の実施形態]
 図5A及び図5Bは、本発明の第4の実施形態に係る光モジュール500の構成を示す図である。図5Aは光モジュール500の上面透視図を示し、図5Bは図5Aの5B-5Bにおける断面図を示す。図5A及び図5Bの光モジュール500は、筐体513の底部に配置され、蓋519に覆われている。ここで、図5Aは、光モジュール500の蓋519を外した状態の図であり、図5Bは、光モジュール500の蓋519を取り付けた状態の図である。光モジュール500は、光変調器505と、光変調器505に接続されたドライバIC506と、光受信器507と、光受信器507に接続されたTIA(Transimpedance Amplifier)IC508とが、筐体513の底部に配置されている。光変調器505及び光受信器507は、光処理回路及び電気光信号変換素子の機能を併せ持つものである。光変調器505とドライバIC506とは、ワイヤボンディングにより接続され、光受信器507とTIA IC508とについても、ワイヤボンディングにより接続される。
 また、光モジュール500は、下部基板512が、筐体513の底部に配置されている。下部基板512上には下部グランド516が形成され、下部グランド516上には高周波基板515が形成されている。高周波基板515上には、ドライバIC506に接続された4本の高周波伝送線路514-1と、TIA IC508に接続された4本の高周波伝送線路514-2とが形成され、4本の高周波伝送線路514-1及び514-2は、マイクロストリップ線路を構成している。
 また、筐体513には、光出力用のサファイア窓503-1と、光入力用のサファイア窓503-2と、及び8つのGPPOコネクタ511及び511-2が設けられている。光出力用のサファイア窓503-1には、出力用光ファイバ502-1が接続され、出力用光ファイバ502-1には、出力用光コネクタ501-1が接続される。光入力用のサファイア窓503-2には、入力用光ファイバ502-2が接続され、入力用光ファイバ502-2には、入力用光コネクタ501-2が接続される。光出力用のサファイア窓503-1と光変調器505との間には、レンズ504-1が配置され、光入力用のサファイア窓503-2と光受信器507との間には、レンズ504-2が配置される。GPPOコネクタ511-1はそれぞれ、高周波伝送線路514-1に、GPPOコネクタ511-2はそれぞれ514-2と接続される。
 また、光モジュール500は、光受信器507に接続されたDCピン509-1と、TIAIC508に電気的に接続されたDCピン509-2とを備える。また、光モジュール500は、高周波伝送線路514-1に設けられたDCブロックコンデンサ510-1と、高周波伝送線路514-2に設けられたDCブロックコンデンサ510-2とを備える。
 また、光モジュール500は、高周波伝送線路514-1及び514-2を覆うようにカバーブロック517が設けられ、カバーブロック517はスペーサ518を介して高周波基板515に固定されている。スペーサ518により、カバーブロック517と、高周波基板515及び高周波基板515上の高周波伝送線路514-1及び514-2との間に一定のスペースが維持される。本実施形態において、カバーブロック517の材料は銅としている。また、筐体513の材料は、銅タングステンとしている。
 カバーブロック517は接地されている。グランドへの接続は、スペーサ518及び筐体513を導電性の部品とし、下部基板512に金属製のビアを設けた上で、下部グランド516と電気的に接続する。
 光モジュール500は、光信号送信モジュールと光信号受信モジュールの並列構成である。すなわち、光コネクタ501-1と、光ファイバ502-1と、サファイア窓503-1と、レンズ504-1と、光変調器505と、ドライバIC506-1と、高周波伝送線路514-1と、DCブロックコンデンサ510-1と、GPPOコネクタ511-1とで光信号送信モジュールを構成している。また、光コネクタ501-2と、光ファイバ502-2と、サファイア窓503-2と、レンズ504-2と、光受信器507と、ドライバIC506-2と、高周波伝送線路514-2と、DCブロックコンデンサ510-2と、GPPOコネクタ511-2とで光信号受信モジュールを構成している。
 光信号送信モジュールにおける信号の流れは、光モジュール500のGPPOコネクタ511-1のそれぞれから、高周波電圧信号が入力される。高周波電圧信号は、DCブロックコンデンサ510のそれぞれ及び高周波伝送線路514-1のそれぞれを通過し、ドライバIC506に入力される。高周波電圧信号は、ドライバIC506により高周波電流信号に変換され、光変調器505により光信号に変換された上で合波され、波長多重光信号となる。光変調器505からの波長多重光信号は、レンズ504-1によりサファイア窓503-1に集光され、サファイア窓503-1を透過して光ファイバ502-1を介して光コネクタ501-1まで伝搬する。
 一方で光信号受信モジュールにおける信号の流れは、光コネクタ501-2から入力した波長多重光信号が光ファイバ502-2を介してサファイア窓503-2まで伝搬する。サファイア窓503-2を透過した波長多重光信号は、レンズ504-2によりコリメートされ光受信器507に入力される。波長多重光信号は、光受信器507により分波された上で高周波電流信号に変換され、TIAIC508により高周波電圧信号に変換される。高周波電圧信号はTIAIC508から高周波伝送線路514のそれぞれ及びDCブロックコンデンサ510のそれぞれを通過し、GPPOコネクタ511-2から出力される。
 本実施形態に係る光モジュール500は光信号送信モジュールと光信号受信モジュールの並列構成である。本実施形態のような並列構成の光モジュールおいても、カバーブロック517を設けることにより、高周波伝送線路の送信側(514-1)から受信側(514-2)、及び受信側(514-2)から送信側(514-1)のクロストークを低減することができる。
 本実施形態において、厚さ150μmのセラミックの高周波基板515上に金の高周波伝送線路514-1及び514-2を形成し、高周波伝送線路514-1及び514-2の上部に銅製のカバーブロック517を設けた。高周波伝送線路514-1及び514-2のパタン厚は2μm、幅は100μm、線路間ギャップは400μm、カバーブロック517と高周波基板515との距離は200μmで作製した。図6は、本実施形態のクロストーク抑制効果を示す図である。図6(a)は従来の光モジュールにおけるクロストーク特性を示し、図6(b)は光モジュール500におけるクロストーク特性を示している。図6(a)及び(b)より、本実施形態に係る光モジュール500は、一般的に使用される信号周波数0~20GHzの間で、従来と比較して最大7dBのクロストーク抑制効果があることがわかる。
 本実施形態に係る光モジュール500においては、筐体513の材料は銅タングステンとしたが、これは銅タングステンの熱伝導度が高く排熱に優れるためである。しかしながら、本発明に係る光モジュール500はこの材料に限定されるものではなく、たとえば、一般の金属であっても良い。
 また、上記の説明ではカバーブロック517の材料を銅としたが、本発明に係る光モジュール500はこの例に限定されるものではなく、例えば、銅以外の導体材料であっても良いし、セラミックなどの絶縁体材料の表面に導体膜が設けられているブロックであってももちろん構わない。
 また、上記の説明では高周波基板515及び高周波伝送線路514-1及び514-2の下部に下部グランド516が、上部にカバーブロック517が設けられている構成としたが、本発明に係る光モジュール500はこの例に限定されるものではなく、グランドとカバーブロックの位置関係が上下逆であっても構わないし、左右方向の位置関係であっても、構わない。
 [第5の実施形態]
 図7A及び図7Bは、本発明の第5の実施形態に係る光モジュール700の構成を示す図である。図7Aは光モジュール700の上面透視図を示し、図7Bは図7Aの7B-7Bにおける断面図を示す。図7A及び図7Bの光モジュール700は、筐体713の底部に配置され、蓋719に覆われている。ここで、図7Aは、光モジュール700の蓋719を外した状態の図であり、図7Bは、光モジュール700の蓋719を取り付けた状態の図である。光モジュール700は、光変調器705と、光変調器705に接続されたドライバIC706と、光受信器707と、光受信器707に接続されたTIA(Transimpedance Amplifier)IC708とが、筐体713の底部に配置されている。光変調器705及び光受信器707は、光処理回路及び電気光信号変換素子の機能を併せ持つものである。光変調器705とドライバIC706とは、ワイヤボンディングにより接続され、光受信器707とTIA IC708とについても、ワイヤボンディングにより接続される。
 また、光モジュール700は、下部基板712が、筐体713の底部に配置されている。下部基板712上には下部グランド716が形成され、下部グランド716上には高周波基板715が形成されている。高周波基板715上には、ドライバIC706に接続された4本の高周波伝送線路714-1と、TIA IC708に接続された4本の高周波伝送線路714-2とが形成され、マイクロストリップ線路を構成している。
 また、筐体713には、光出力用のサファイア窓703-1と、光入力用のサファイア窓703-2と、及び8つのGPPOコネクタ711-1及び711-2が設けられている。光出力用のサファイア窓703-1には、出力用光ファイバ702-1が接続され、出力用光ファイバ702-1には、出力用光コネクタ701-1が接続される。光入力用のサファイア窓703-2には、入力用光ファイバ702-2が接続され、入力用光ファイバ702-2には、入力用光コネクタ701-2が接続される。光出力用のサファイア窓703-1と光変調器705との間には、レンズ704-1が配置され、光入力用のサファイア窓703-2と光受信器707との間には、レンズ704-2が配置される。GPPOコネクタ711-1はそれぞれ、高周波伝送線路714-1に、GPPOコネクタ711-2はそれぞれ714-2と接続される。
 また、光モジュール700は、光受信器707に接続されたDCピン709-1と、TIA IC708に電気的に接続されたDCピン709-2とを備える。また、光モジュール700は、高周波伝送線路714-1に設けられたDCブロックコンデンサ710-1と、高周波伝送線路714-2に設けられたDCブロックコンデンサ710-2とを備える。
 また、光モジュール700は、高周波伝送線路714-1及び714-2、ドライバIC706及びTIA IC708、ドライバIC706と光変調器705との接続ワイヤ、並びにTIA ICIC708と光受信器707との接続ワイヤを覆うようにカバーブロック717が設けられる。カバーブロック717はスペーサ718を介して高周波基板715に固定されている。スペーサ718により、カバーブロック717と、高周波基板715及び高周波基板715上の高周波伝送線路714-1及び714-2との間に一定のスペースが維持される。本実施形態において、カバーブロック717の材料は銅としている。また、筐体713の材料は、銅タングステンとしているが、一般の金属であっても良い。
 カバーブロック717は接地されている。グランドへの接続は、スペーサ718及び筐体713を導電性の部品とし、下部基板712に金属製のビアを設けた上で、下部グランド716と電気的に接続する。
 光モジュール700は、光信号送信モジュールと光信号受信モジュールの並列構成である。すなわち、光コネクタ701-1と、光ファイバ702-1と、サファイア窓703-1と、レンズ704-1と、光変調器705と、ドライバIC706-1と、高周波伝送線路714-1と、DCブロックコンデンサ710-1と、GPPOコネクタ711-1とで光信号送信モジュールを構成している。また、光コネクタ701-2と、光ファイバ702-2と、サファイア窓703-2と、レンズ704-2と、光受信器707と、ドライバIC706-2と、高周波伝送線路714-2と、DCブロックコンデンサ710-2と、GPPOコネクタ711-2とで光信号受信モジュールを構成している。
 本実施形態のような並列構成の光モジュールおいては、カバーブロック717を設けることにより、高周波伝送線路の送信側(714-1)から受信側(714-2)、及び受信側(714-2)から送信側(714-1)のクロストークを低減することができる。また、ドライバIC706と光変調器705との接続ワイヤ、並びにTIA IC708と光受信器707との接続ワイヤにおいて発生するそれぞれのワイヤ間のクロストークも同時に抑制できる。
 [第6の実施形態]
 図8A及び図8Bは、本発明の第6の実施形態に係る光モジュール800の構成を示す図である。また、図8Cは、本発明の第6の実施形態の変形例に係る光モジュール800の構成を示す図である。図8Aは光モジュール800の上面透視図を示し、図8B及び図8Cは、図8Aの8B-8Bにおける断面図を示す。図8A、図8Bおよび図8Cの光モジュール800は、筐体813の底部に配置され、蓋819に覆われている。ここで、図8Aは、光モジュール800の蓋819を外した状態の図であり、図8Bおよび図8Cは、光モジュール800の蓋819を取り付けた状態の図である。光モジュール800は、光変調器805と、光変調器805に接続されたドライバIC806と、光受信器807と、光受信器807に接続されたTIA(Transimpedance Amplifier)IC808とが、筐体813の底部に配置されている。光変調器805及び光受信器807は、光処理回路及び電気光信号変換素子の機能を併せ持つものである。光変調器805とドライバIC806とは、ワイヤボンディングにより接続され、光受信器807とドライバIC808とについても、ワイヤボンディングにより接続される。
 また、光モジュール800は、下部基板812が、筐体813の底部に配置されている。下部基板812上には下部グランド816が形成され、下部グランド816上には高周波基板815が形成されている。高周波基板815上には、ドライバIC806に接続された4本の高周波伝送線路814-1と、TIA IC808に接続された4本の高周波伝送線路814-2とが形成され、マイクロストリップ線路を構成している。
 また、筐体813には、光出力用のサファイア窓803-1と、光入力用のサファイア窓803-2と、及び8つのGPPOコネクタ811及び811-2が設けられている。光出力用のサファイア窓803-1には、出力用光ファイバ802-1が接続され、出力用光ファイバ802-1には、出力用光コネクタ801-1が接続される。光入力用のサファイア窓803-2には、入力用光ファイバ802-2が接続され、入力用光ファイバ802-2には、入力用光コネクタ801-2が接続される。光出力用のサファイア窓803-1と光変調器805との間には、レンズ804-1が配置され、光入力用のサファイア窓803-2と光受信器807との間には、レンズ804-2が配置される。GPPOコネクタ811-1はそれぞれ、高周波伝送線路814-1に、GPPOコネクタ811-2はそれぞれ814-2と接続される。
 また、光モジュール800は、光受信器807に接続されたDCピン809-1と、TIA IC808に電気的に接続されたDCピン809-2とを備える。また、光モジュール800は、高周波伝送線路814-1に設けられたDCブロックコンデンサ810-1と、高周波伝送線路814-2に設けられたDCブロックコンデンサ810-2とを備える。
 また、光モジュール800は、高周波伝送線路814-1及び814-2、ドライバIC806及びTIA IC808、ドライバIC806と光変調器805との接続ワイヤ、並びにTIA IC808と光受信器807との接続ワイヤを覆うようにカバーブロック817が設けられる。カバーブロック817はスペーサ818を介して高周波基板815に固定されている。スペーサ818により、カバーブロック817と、高周波基板815及び高周波基板815上の高周波伝送線路814-1及び814-2との間に一定のスペースが維持される。なお、カバーブロック817は、高周波伝送線路814-1及び814-2のみを覆う程度の大きさであってもよい。本実施形態において、カバーブロック817の材料は銅としている。また、筐体813の材料は、銅タングステンとしているが、一般の金属であっても良い。
 さらに、光モジュール800は、送信側のドライバIC806と受信側のTIA IC808との間、及び高周波基板815上に形成された送信側の高周波伝送線路814-1と受信側の高周波伝送線路814-2との間に、グランド電極820が形成される。
 カバーブロック817及びグランド電極820は接地されている。カバーブロック817のグランドへの接続は、スペーサ810及び筐体801を導電性の部品とし、下部基板812に金属製のビアを設けた上で、下部グランド816と電気的に接続する。グランド電極820のグランドへの接続は、高周波基板815に金属製のビアを設けた上で、下部グランド816と電気的に接続する。
 また、図8Cに示すように、第6の実施形態の変形例として、スペーサ818の替わりに、所定の厚さを持たせたグランド電極820を介してカバーブロック817を高周波基板815に固定してもよい。グランドへの接続は、高周波基板815に金属製のビアを設けた上で、下部グランド816とグランド電極820とを電気的に接続する。
 光モジュール800は、光信号送信モジュールと光信号受信モジュールの並列構成である。すなわち、光コネクタ801-1と、光ファイバ802-1と、サファイア窓803-1と、レンズ804-1と、光変調器805と、ドライバIC806-1と、高周波伝送線路814-1と、DCブロックコンデンサ810-1と、GPPOコネクタ811-1とで光信号送信モジュールを構成している。また、光コネクタ801-2と、光ファイバ802-2と、サファイア窓803-2と、レンズ804-2と、光受信器807と、ドライバIC806-2と、高周波伝送線路814-2と、DCブロックコンデンサ810-2と、GPPOコネクタ811-2とで光信号受信モジュールを構成している。
 本実施形態のような並列構成の光モジュールおいては、カバーブロック817及びグランド電極820を設けることにより、高周波伝送線路の送信側(814-1)から受信側(814-2)、及び受信側(814-2)から送信側(814-1)のクロストークを低減することができる。特に本実施形態は、送信側(814-1)を流れる信号と受信側(814-2)を流れる信号との間に信号のレベル差がある場合に、有効である。また、ドライバIC806と光変調器805との接続ワイヤ、並びにTIA IC808と光変調器807との接続ワイヤにおいて発生するそれぞれのワイヤ間のクロストークも同時に抑制できる。
 [第7の実施形態]
 図9A及び図9Bは、本発明の第7の実施形態に係る光モジュール900の構成を示す図である。図9Aは光モジュール900の上面透視図を示し、図9Bは、図9Aの9B-9Bにおける断面図を示す。図9Aおよび図9Bの光モジュール900は、筐体913の底部に配置され、蓋919に覆われている。ここで、図9Aは、光モジュール900の蓋919を外した状態の図であり、図9Bは、光モジュール900の蓋919を取り付けた状態の図である。光モジュール900は、光変調器905と、光変調器905に接続されたドライバIC906と、光受信器907と、光受信器907に接続されたTIA(Transimpedance Amplifier)IC908とが、筐体913の底部に配置されている。光変調器905及び光受信器907は、光処理回路及び電気光信号変換素子の機能を併せ持つものである。光変調器905とドライバIC906とは、ワイヤボンディングにより接続され、光受信器907とドライバIC908とについても、ワイヤボンディングにより接続される。
 また、光モジュール900は、下部基板912が、筐体913の底部に配置されている。下部基板912上には下部グランド916が形成され、下部グランド916上には高周波基板915が形成されている。高周波基板915上には、ドライバIC906に接続された4本の高周波伝送線路914-1と、TIA IC908に接続された4本の高周波伝送線路914-2とが形成され、マイクロストリップ線路を構成している。
 また、筐体913には、光出力用のサファイア窓903-1と、光入力用のサファイア窓903-2と、及び8つのGPPOコネクタ911及び811-2が設けられている。光出力用のサファイア窓903-1には、出力用光ファイバ902-1が接続され、出力用光ファイバ902-1には、出力用光コネクタ901-1が接続される。光入力用のサファイア窓903-2には、入力用光ファイバ902-2が接続され、入力用光ファイバ902-2には、入力用光コネクタ901-2が接続される。光出力用のサファイア窓903-1と光変調器905との間には、レンズ904-1が配置され、光入力用のサファイア窓903-2と光受信器907との間には、レンズ904-2が配置される。GPPOコネクタ911-1はそれぞれ、高周波伝送線路914-1に、GPPOコネクタ911-2はそれぞれ914-2と接続される。
 また、光モジュール900は、光受信器907に接続されたDCピン909-1と、TIA IC908に電気的に接続されたDCピン909-2とを備える。また、光モジュール900は、高周波伝送線路914-1に設けられたDCブロックコンデンサ910-1と、高周波伝送線路914-2に設けられたDCブロックコンデンサ910-2とを備える。
 また、光モジュール900は、高周波伝送線路914-1及び914-2、ドライバIC906及びTIA IC908、ドライバIC906と光変調器905との接続ワイヤ、並びにTIA IC908と光受信器907との接続ワイヤを覆うようにカバーブロック917が設けられる。さらに、光モジュール900は、送信側のドライバIC906と受信側のTIA IC908との間、及び高周波基板915上に形成された送信側の高周波伝送線路914-1と受信側の高周波伝送線路914-2との間に、グランド電極920が筐体長手方向に形成される。カバーブロック914は、所定の厚さを持たせたグランド電極920を介して高周波基板915に固定されている。グランド電極920により、カバーブロック917と、高周波基板915及び高周波基板915上の高周波伝送線路914-1及び914-2との間に一定のスペースが維持される。本実施形態において、カバーブロック914の材料は銅としている。また、筐体913の材料は、銅タングステンとしているが、一般の金属であってもよい。
 ここで、カバーブロック917及びグランド電極920は接地されている。グランドへの接続は、高周波基板915に金属製のビアを設けた上で、下部グランド916とグランド電極920とを電気的に接続する。
 ただし、カバーブロック917は、高周波伝送線路914-1及び914-2の全てを覆う必要はない。カバーブロック917は、高周波伝送線路の送信側(914-1)から受信側(914-2)、及び受信側(914-2)から送信側(914-1)のクロストークを低減することができれば、高周波伝送線路914-1及び914-2の一部が、カバーブロック917が覆う範囲からはみ出していてもよい。
 本実施形態においても、カバーブロック917及びグランド電極920を設けることにより、高周波伝送線路の送信側(914-1)から受信側(914-2)、及び受信側(914-2)から送信側(914-1)のクロストークを低減することができ、特に送信側(914-1)を流れる信号と受信側(914-2)を流れる信号との間に信号のレベル差がある場合に、有効である。
 [第8の実施形態]
 図10A及び図10Bは、本発明の第8の実施形態に係る光モジュール1000の構成を示す図である。図10Aは光モジュール1000の上面透視図を示し、図10Bは図10Aの10B-10Bにおける断面図を示す。図10A及び図10Bの光モジュール1000は、筐体1013の底部に配置され、蓋1019に覆われている。ここで、図10Aは、光モジュール1000の蓋1019を外した状態の図であり、図10Bは、光モジュール1000の蓋1019を取り付けた状態の図である。光モジュール1000は、2個の光信号送信モジュールの並列構成である。つまり、光コネクタ1001-1と、光ファイバ1002-1と、サファイア窓1003-1と、レンズ1004-1と、光変調器1005-1と、ドライバIC1006-1と、高周波伝送線路1014-1と、DCブロックコンデンサ1010-1と、GPPOコネクタ1011-1とで第1の光信号送信モジュールを構成している。また、光コネクタ1001-2と、光ファイバ1002-2と、サファイア窓1003-2と、レンズ1004-2と、光変調器1005-2と、ドライバIC1006-2と、高周波伝送線路1014-2と、DCブロックコンデンサ1010-2と、GPPOコネクタ1011-2とで第2の光信号送信モジュールを構成している。
 本実施形態に係る光モジュール1000においても、接地されたカバーブロック1017を設けることにより、マイクロストリップ線路を構成する高周波伝送線路(1014-1、1014-2)間のクロストークを低減することができる。カバーブロック1017のグランドへの接続は、第4の実施形態と同一の方法が使用できる。
 [第9の実施形態]
 図11A及び図11Bは、本発明の第9の実施形態に係る光モジュール1100の構成を示す図である。図11Aは光モジュール1100の上面透視図を示し、図11Bは図11Aの11B-11Bにおける断面図を示す。図11A及び図11Bの光モジュール1100は、筐体1113の底部に配置され、蓋1119に覆われている。ここで、図11Aは、光モジュール1100の蓋1119を外した状態の図であり、図11Bは、光モジュール1100の蓋1119を取り付けた状態の図である。本実施形態に係る光モジュール1100は、2個の光信号受信モジュールの並列構成である。つまり、光コネクタ1101-1と、光ファイバ1102-1と、サファイア窓1103-1と、レンズ1104-1と、光受信器1107-1と、ドライバIC1106-1と、高周波伝送線路1114-1と、DCブロックコンデンサ1110-1と、GPPOコネクタ1111-1とで第1の光信号受信モジュールを構成している。また、光コネクタ1101-2と、光ファイバ1102-2と、サファイア窓1103-2と、レンズ1104-2と、光受信器1107-2と、ドライバIC1106-2と、高周波伝送線路1114-2と、DCブロックコンデンサ1110-2と、GPPOコネクタ1111-2とで第2の光信号受信モジュールを構成している。
 本実施形態に係る光モジュール1100においても、接地されたカバーブロック1117を設けることにより、マイクロストリップ線路を構成する高周波伝送線路(1114-1、1114-2)間のクロストークを低減することができる。カバーブロック1117のグランドへの接続は、第1乃至第8の実施形態と同一の方法が使用できる。
 [第10の実施形態]
 図12A及び図12Bは、本発明の第12の実施形態に係る光モジュール1200の構成を示す図である。図12Aは光モジュール700の上面透視図を示し、図12Bは図12Aの12B-12Bにおける断面図を示している。図12A及び図12Bの光モジュール1200は、筐体1213の底部に配置され、蓋1219に覆われている。ここで、図12Aは、光モジュール1200の蓋1219を外した状態の図であり、図12Bは、光モジュール1200の蓋1219を取り付けた状態の図である。本実施形態に係る光モジュール1200は、図5A及び図5Bの第4の実施形態の光モジュール500の光変調器505と光受信器507とを、1のチップに集積した光送受信チップ1205を備えていることを特徴としている。すなわち、光コネクタ1201-1と、光ファイバ1202-1と、サファイア窓1203-1と、レンズ1204-1と、光送受信チップ1205と、ドライバIC1206-1と、高周波伝送線路1214-1と、DCブロックコンデンサ1210-1と、GPPOコネクタ1211-1とで光信号送信モジュールを構成している。また、光コネクタ1201-2と、光ファイバ1202-2と、サファイア窓1203-2と、レンズ1204-2と、光送受信チップ1205と、ドライバIC1206-2と、高周波伝送線路1214-2と、DCブロックコンデンサ1210-2と、GPPOコネクタ1211-2とで光信号受信モジュールを構成している。
 本実施形態に係る光モジュール1200においても、接地されたカバーブロック1217を設けることにより、マイクロストリップ線路を構成する高周波伝送線路(1214-1、1214-2)間のクロストークを低減することができる。カバーブロック1217のグランドへの接続は、第4の実施形態と同一の方法が使用できる。
 本実施形態の構成は、低コスト化、小型化に有利な構成で、本発明の効果を実現している。
 [第11の実施形態]
 図13A及び図13Bは、本発明の第11の実施形態に係る光モジュール1300の構成を示す図である。図13Aは光モジュール1300の上面透視図を示し、図13Bは図13Aの13B-13Bにおける断面図を示す。図13A及び図13Bの光モジュール1300は、筐体1301の底部に配置され、蓋1314に覆われている。ここで、図13Aは、光モジュール1300の蓋1314を外した状態の図であり、図13Bは、光モジュール1300の蓋1314を取り付けた状態の図である。光モジュール1300は、光処理回路1303と、光処理回路1303に接続された電気光変換素子1304と、下部基板1313とが筐体1301の底部に配置されている。下部基板1313上には下部グランド1308が形成され、下部グランド1308上には高周波基板1307が形成されている。高周波基板1307上には、電気光変換素子1304に接続された4本の高周波伝送線路1305が形成され、マイクロストリップ線路を構成している。筐体1301には、1つの光ポート1302及び4つの電気ポート1306が設けられ、光ポート1302は光処理回路1303に接続され、4つの電気ポート1306は、それぞれ高周波伝送線路1305と接続されている。
 また、光モジュール1300は、高周波伝送線路1305の上部にカバーブロック1309が設けられ、カバーブロック1309はスペーサ1310により高周波基板1307に固定され、接地されている。グランドへの接続は、スペーサ1310及び筐体1301を導電性の部品とした上で、下部グランド1308と電気的に接続する。
 カバーブロック1309は、高周波伝送線路1305に合わせて溝が形成されており、高周波伝送線路1305の真上にカバーブロック1309の溝部分が位置する構成となっている。カバーブロック1309に溝を形成することにより、溝部分が高周波伝送線路1305を上から覆うような形状とすることができ、カバーブロック1309の高周波伝送線路1305間のクロストーク低減効果をさらに高めることができる。
 本実施形態において、厚さ150μmのセラミックの高周波基板1307上に金の高周波伝送線路1305を形成し、高周波伝送線路1305上に銅製のカバーブロック1309が配置される。高周波伝送線路1305のパタン厚は2μm、幅は90μm、伝送線路間ギャップは400μm、カバーブロック1309と高周波基板1307との距離は200μmで作製している。図14は本実施形態のクロストーク抑制効果を示す図である。図14(a)は従来の光モジュールにおけるクロストーク特性を示し、図14(b)は光モジュール1400におけるクロストーク特性を示している。図14(a)及び(b)より、本実施形態に係る光モジュール1400は、従来と比較して12dBのクロストーク抑制効果があることがわかる。
 [第12の実施形態]
 図15A及び図15Bは、本発明の第12の実施形態に係る光モジュール1500の構成を示す図である。図15Aは光モジュール1500の上面透視図を示し、図15Bは図15Aの15B-15Bにおける断面図を示している。図15A及び図15Bの光モジュール1500は、筐体1501の底部に配置され、蓋1514に覆われている。ここで、図15Aは、光モジュール1500の蓋1514を外した状態の図であり、図15Bは、光モジュール1500の蓋1514を取り付けた状態の図である。光モジュール1500は、光処理回路1503と、光処理回路1503に接続された電気光変換素子1504と、下部基板1513とが、筐体1501の底部に配置されている。下部基板1513上には、下部グランド1508が形成され、下部グランド1508上には高周波基板1507が形成されている。高周波基板1507上に、電気光変換素子1504に接続された4本の高周波伝送線路1505が形成され、マイクロストリップ線路を構成している。4本の高周波伝送線路155には、それぞれ信号の直流成分をカットするためのDCブロックコンデンサ1510が実装されている。筐体1501には、1つの光ポート1502及び4つの電気ポート1506が設けられ、光ポート1502は光処理回路1503に接続され、4つの電気ポート1506は、それぞれ高周波伝送線路1505と接続されている。
 また、光モジュール1500は、高周波伝送線路1505の上部にカバーブロック1509が設けられ、カバーブロック1509はスペーサ1511により高周波基板1507に固定され、接地されている。グランドへの接続は、スペーサ1511及び筐体1501を導電性の部品とした上で、下部グランド1508と電気的に接続する。
 カバーブロック1509は、高周波伝送線路1505に合わせて溝が形成されており、高周波伝送線路1505及びブロックコンデンサ1511の真上にカバーブロック1509の溝部分が位置する構成となっている。カバーブロック1509に溝を形成することにより、溝部分が高周波伝送線路1505及びブロックコンデンサ1510を上から覆うような形状とすることができる。本実施形態においても、カバーブロック1509により高周波伝送線路1505間のクロストーク低減効果をさらに高めることができる。
 本実施形態においては、高周波伝送線路上に実装された部品がDCブロックコンデンサである場合を例に説明したが、本発明はこれに限定されるものではない。例えば、部品がチップ抵抗であっても構わないし、集積回路のように複雑な機能を持つ部品であっても、もちろん構わない。
 本実施形態において、DCブロックコンデンサ1510は高周波線路上に半田実装されている。しかし、本発明は半田実装に限定されるものではなく、例えば銀ペーストで実装された部品であってもよいし、バンプ実装された部品であっても良いし、ワイヤボンディングで実装された部品であっても、もちろん構わない。
 [第13の実施形態]
 図16A及び図16Bは、本発明の第16の実施形態に係る光モジュール1600の構成を示す図である。図16Aは光モジュール1600の蓋1614を外した状態での上面透視図を示し、図16Bは図16Aの16B-16Bにおける断面図を示している。図16A及び図16Bの光モジュール1600は、筐体1601の底部に配置され、蓋1614に覆われている。ここで、図16Aは、光モジュール1600の蓋1614を外した状態の図であり、図16Bは、光モジュール1600の蓋1614を取り付けた状態の図である。光モジュール1600は、基板1613上に、光処理回路1603と、光処理回路1603に接続された電気光変換素子1604と、下部基板1613とが、筐体1601の底部に配置されている。下部基板1613上には、下部グランド1608が形成され、下部グランド1608上には、高周波基板1607が形成されている。高周波基板1607上には、電気光変換素子1604に接続された4本の高周波伝送線路1605が形成され、マイクロストリップ線路を構成している。筐体1601には、1つの光ポート1602及び4つの電気ポート1606が設けられ、光ポート1602は光処理回路1603に接続され、4つの電気ポート1606は、それぞれ高周波伝送線路1605と接続されている。
 また、光モジュール1600は、高周波伝送線路1605の上部にカバーブロック1609が設けられ、カバーブロック1609はスペーサ1610により高周波基板1607に固定され、接地されている。グランドへの接続は、スペーサ1610及び筐体1601を導電性の部品とした上で、下部グランド1608と電気的に接続する。
 カバーブロック1609は、高周波伝送線路1605に合わせて溝が形成されており、高周波伝送線路1605の真上にカバーブロック1609の溝部分が位置する構成となっている。
 光モジュール1600は、さらにカバーブロック1609に開口部1611が設けられており、高周波基板1607上にマーカ1612が設けられている。本実施形態において、高周波基板1607上にカバーブロック1609を実装する際、開口部1611がマーカ1612の上部に一致するようにカバーブロック1609を位置合わせする。そうすると、カバーブロック1609に形成された溝と高周波基板1607上に形成された高周波伝送線路1605とを正確に位置あわせすることができる。カバーブロック1609の正確な位置合わせにより、高周波伝送線路の特性を損なうことなくクロストークを抑制することができる。
 [第14の実施形態]
 図17A及び図17Bは、本発明の第14の実施形態に係る光モジュール1700の構成を示す図である。図17Aは光モジュール1700の上面透視図を示し、図17Bは図17Aの17B-17Bにおける断面図を示している。図17A及び図17Bの光モジュール1700は、筐体1701の底部に配置され、蓋1714に覆われている。ここで、図17Aは、光モジュール1700の蓋1714を外した状態の図であり、図17Bは、光モジュール1700の蓋1714を取り付けた状態の図である。光モジュール1700は、光処理回路1703と、光処理回路1703に接続された電気光変換素子1704と、下部基板1713とが、筐体1701の底部に配置されている。下部基板1713上には、下部グランド1708が形成され、下部グランド1708上には、高周波基板1707が形成されている。高周波基板1707上には、電気光変換素子1704に接続された4本の高周波伝送線路1705が形成され、マイクロストリップ線路を構成している。筐体1701には、1つの光ポート1702及び4つの電気ポート1706が設けられ、光ポート1702は光処理回路1703に接続され、4つの電気ポート1706は、それぞれ高周波伝送線路1705と接続されている。
 また、光モジュール1700は、高周波伝送線路1705の上部にカバーブロック1709が設けられ、カバーブロック1709は半田1710により筐体1701に固定されている。カバーブロック1709は接地されている。グランドへの接続は、筐体1701を導電性の部品とした上で、下部グランド1708と電気的に接続する。
 本実施形態に係る光モジュール1700は、高周波伝送線路1705のグランドの役割を果たすカバーブロック1709と、電気ポート1706のグランドの役割を果たす筐体1701とが半田1710を介して電気的に接続されている。そうすると、高周波伝送線路1705を高周波信号が透過する際にグランドに流れるリタン電流のパスが確保され、高周波伝送線路の特性を損なうことなくクロストークを抑制することができる。
 [第15の実施形態]
 図18A及び図18Bは、本発明の第15の実施形態に係る光モジュール1800の構成を示す図である図18Aは光モジュール1800の上面透視図を示し、図18Bは図18Aの18B-18Bにおける断面図を示している。図18A及び図18Bの光モジュール1800は、筐体1801の底部に配置され、蓋1814に覆われている。ここで、図18Aは、光モジュール1800の蓋1814を外した状態の図であり、図18Bは、光モジュール1800の蓋1814を取り付けた状態の図である。光モジュール1800は、光処理回路1803と、光処理回路1803に接続された電気光変換素子1804と、下部基板1813とが、筐体1801の底部に配置されている。下部基板1813上には、下部グランド1808が形成され、下部グランド1808上には、高周波基板1807が形成されている。高周波基板1807上には、電気光変換素子1804に接続された4本の高周波伝送線路1805が形成され、マイクロストリップ線路を構成している。筐体1801には、1つの光ポート1802及び4つの電気ポート1806が設けられ、光ポート1802は光処理回路1803に接続され、4つの電気ポート1806は、それぞれ高周波伝送線路1805と接続されている。
 また、光モジュール1800は、高周波伝送線路1805の上部にカバーブロック1809が設けられ、カバーブロック1809は半田1810により電気光変換素子1804のグランドに固定され、接地されている。また、電気光変換素子1804のグランドは、金属線等により下部グランド1808と接続されている。
 本実施形態に係る光モジュール1800は、高周波伝送線路1805のグランドの役割を果たすカバーブロック1809と、電気光変換素子1804のグランドとが半田1801によって電気的に接続されていることを特徴とする。このような構成とすることで、筐体1801が導電性材料でない場合でも、カバーブロック1809を接地させることができる。また、高周波伝送線路1805を信号が透過する際にグランドに流れるリタン電流のパスが確保され、高周波伝送線路の特性を損なうことなくクロストークを抑制することができる。
 [第16の実施形態]
 図19A及び図19Bは、本発明の第16の実施形態に係る光モジュール1900の構成を示す図である。図19Aは光モジュール1900の上面透視図を示し、図19Bは図19Aの19B-19Bにおける断面図を示している。図19A及び図19Bの光モジュール1900は、筐体1901の底部に配置され、蓋1909に覆われている。光モジュール1900は、光処理回路1903と、光処理回路1903に接続された電気光変換素子1904と、下部基板1913とが、筐体1901の底部に配置されている。下部基板1913上には、下部グランド1908が形成され、下部グランド1908上には、高周波基板1907が形成されている。高周波基板1907上には、電気光変換素子1904に接続された4本の高周波伝送線路1905が形成され、マイクロストリップ線路を構成している。筐体1901には、1つの光ポート1902及び4つの電気ポート1906が設けられ、光ポート1902は光処理回路1903に接続され、4つの電気ポート1906は、それぞれ高周波伝送線路1905と接続されている。
 また、光モジュール1900は、高周波伝送線路1905の上部にカバーブロックとなる蓋1909が設けられている。筐体1901は、蓋1909と、高周波基板1907及び高周波基板1907上の高周波伝送線路1905との間に一定のスペースを維持できる高さに形成される。蓋1909は接地されている。グランドへの接続は、筐体1901を導電性の部品とした上で、下部グランド1908と電気的に接続する。
 [第17の実施形態]
 本発明の第17の実施形態は、第1から第14の実施形態、及び第16の実施形態の筐体の材料を、導電性の材料(例えば銅タングステン)に替えて、セラミック及び樹脂等の非導電性物質とすることもできる。ただし、カバーブロック及びグランド電極を下部グランドと電気的に接続する必要がある。

Claims (13)

  1.  光ポートと、
     前記光ポートに光学的に接続された光処理回路と、
     前記光処理回路に光学的に接続された電気光変換素子と、
     前記電気光変換素子に接続された2以上の高周波伝送線路と、
     前記高周波伝送線路に接続された電気ポートと
     を少なくとも一組備える光モジュールであって、
     前記高周波伝送線路上に、前記高周波伝送線路の少なくとも一部を覆うように設けられ、接地された導電性のカバーブロックを備えることを特徴とする光モジュール。
  2.  光信号送信モジュールを構成する前記一組の光モジュールと、光信号受信モジュールを構成する前記一組の光モジュールとが並列に配置されることを特徴とする請求項1に記載の光モジュール。
  3.  光信号送信モジュールを構成する前記一組の光モジュールが並列に配置されることを特徴とする請求項1に記載の光モジュール。
  4.  光信号受信モジュールを構成する前記一組の光モジュールが並列に配置されることを特徴とする請求項1に記載の光モジュール。
  5.  前記光信号送信モジュールの光処理回路及び電気光変換素子と、前記光信号受信モジュールの光処理回路及び電気光変換素子とが1チップに集積されていることを特徴とする請求項1に記載の光モジュール。
  6.  前記電気光変換素子と、前記高周波伝送線路との間に、ICドライバが挿入されることを特徴とする請求項1乃至5のいずれか1項に記載の光モジュール。
  7.  前記2以上の高周波伝送線路の隣り合う高周波伝送線路の間に、グランド電極が挿入されることを特徴とする請求項1乃至6のいずれか1項に記載の光モジュール。
  8.  前記光信号送信モジュールを構成する一組の光モジュールの前記高周波伝送線路と、前記光信号受信モジュールを構成する一組の光モジュールの前記高周波伝送線路との間に、グランド電極が挿入されることを特徴とする請求項2に記載の光モジュール。
  9.  前記導電性のカバーブロックは、前記ICドライバと前記電気光変換素子との接続部分まで覆うことを特徴とする請求項6に記載の光モジュール。
  10.  前記導電性のカバーブロックは、前記グランド電極により支持され、前記導電性のカバーブロックは前記高周波伝送線路と所望の間隔を持って支持されることを特徴とする請求項7または8に記載の光モジュール。
  11.  前記カバーブロックには、溝が形成され、前記溝は、前記高周波伝送線路を覆うように配置されることを特徴とする請求項1乃至10のいずれか1項に記載の光モジュール。
  12.  前記カバーブロックは、位置合わせ用の開口を備え、
     前記カバーブロックを支持するスペーサは、周辺に位置合わせ用のマーカを備え、
     前記マーカが、前記位置合わせ用の開口と一致するように前記カバーブロックの位置合わせを行うことを特徴とする請求項1乃至11のいずれか1項に記載の光モジュール。
  13.  前記カバーブロックと前記電気ポートのグランドとが電気的に接続されていることを特徴とする請求項1乃至12のいずれか1項に記載の光モジュール。
PCT/JP2016/003487 2015-07-28 2016-07-27 光モジュール WO2017017955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680044607.7A CN107851962B (zh) 2015-07-28 2016-07-27 光模块
CA2993930A CA2993930C (en) 2015-07-28 2016-07-27 Optical module
JP2017531019A JP6511141B2 (ja) 2015-07-28 2016-07-27 光スイッチ
EP16830060.6A EP3331110B1 (en) 2015-07-28 2016-07-27 Optical module
US15/744,193 US10277271B2 (en) 2015-07-28 2016-07-27 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-148945 2015-07-28
JP2015148945 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017017955A1 true WO2017017955A1 (ja) 2017-02-02

Family

ID=57884216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003487 WO2017017955A1 (ja) 2015-07-28 2016-07-27 光モジュール

Country Status (6)

Country Link
US (1) US10277271B2 (ja)
EP (1) EP3331110B1 (ja)
JP (1) JP6511141B2 (ja)
CN (1) CN107851962B (ja)
CA (1) CA2993930C (ja)
WO (1) WO2017017955A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211538A (ja) * 2018-05-31 2019-12-12 富士通オプティカルコンポーネンツ株式会社 光デバイス、これを用いた光モジュール、及び光デバイスの試験方法
JP2020027846A (ja) * 2018-08-10 2020-02-20 富士通株式会社 光送信器
WO2021053764A1 (ja) * 2019-09-18 2021-03-25 日本電信電話株式会社 光モジュール用パッケージ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9536758B1 (en) 2016-05-26 2017-01-03 Anand Deo Time-varying frequency powered semiconductor substrate heat source
US11152232B2 (en) 2016-05-26 2021-10-19 Anand Deo Frequency and phase controlled transducers and sensing
CA3028361C (en) * 2016-06-20 2021-01-12 Nippon Telegraph And Telephone Corporation Optical receiver
DE102018101198A1 (de) * 2018-01-19 2019-07-25 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines gehäusedeckels für ein laserbauelement und gehäusedeckel für ein laserbauelement sowie laserbauelement
WO2020010247A1 (en) * 2018-07-03 2020-01-09 Deo Anand Planar transmission line resonator frequency control of localized transducers
US10895374B2 (en) 2018-08-08 2021-01-19 Lite-On Opto Technology (Changzhou) Co., Ltd. Light source device
CN208723309U (zh) * 2018-08-08 2019-04-09 光宝光电(常州)有限公司 光源装置
WO2023064873A1 (en) 2021-10-13 2023-04-20 Deo Anand Conformable polymer for frequency-selectable heating locations
EP4224249A1 (en) * 2022-02-04 2023-08-09 ETH Zurich Electrooptic or optoelectric integrated circuit enabling a bias-tee and method for fabricating the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088616A (ja) * 1994-06-21 1996-01-12 Sony Corp 高周波伝送線路及び平面アンテナ並びに高周波回路
JP2001185741A (ja) * 1999-10-12 2001-07-06 Furukawa Electric Co Ltd:The 光モジュール
JP2002185408A (ja) * 2000-12-11 2002-06-28 Mitsubishi Electric Corp 光送受信器
JP2006073935A (ja) * 2004-09-06 2006-03-16 Mitsubishi Electric Corp 半導体パッケージ
JP2009010149A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 接続端子及びこれを用いたパッケージ並びに電子装置
US20100098427A1 (en) * 2008-09-29 2010-04-22 Finisar Corporation Emi shroud for a plastic receive optical subassembly
JP2012033615A (ja) * 2010-07-29 2012-02-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2014036100A (ja) * 2012-08-08 2014-02-24 Furukawa Electric Co Ltd:The 光モジュール
JP2014165292A (ja) * 2013-02-25 2014-09-08 Hitachi Ltd 発光素子及びその製造方法並びに光送受信器
JP2014179455A (ja) * 2013-03-14 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> 多チャネルレーザアレイ光源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185852B2 (ja) 1996-03-12 2001-07-11 日本電信電話株式会社 光受信器およびそれを用いた光ネットワーク
JP4159778B2 (ja) * 2001-12-27 2008-10-01 三菱電機株式会社 Icパッケージ、光送信器及び光受信器
JP3738755B2 (ja) * 2002-08-01 2006-01-25 日本電気株式会社 チップ部品を備える電子装置
JP2005244038A (ja) * 2004-02-27 2005-09-08 Fujitsu Ltd 光送受信モジュール
JP4774391B2 (ja) 2007-08-24 2011-09-14 株式会社日立製作所 光伝送システムおよび信号速度変換装置
JP4913093B2 (ja) * 2008-04-18 2012-04-11 日本オプネクスト株式会社 光通信モジュールおよび光学結合部被覆部材
US8439578B2 (en) * 2009-09-08 2013-05-14 Vi Systems Gmbh Opto-electronic assembly for high speed transmission
JP5947731B2 (ja) 2013-02-07 2016-07-06 日本電信電話株式会社 多チャネルレーザアレイ光源

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088616A (ja) * 1994-06-21 1996-01-12 Sony Corp 高周波伝送線路及び平面アンテナ並びに高周波回路
JP2001185741A (ja) * 1999-10-12 2001-07-06 Furukawa Electric Co Ltd:The 光モジュール
JP2002185408A (ja) * 2000-12-11 2002-06-28 Mitsubishi Electric Corp 光送受信器
JP2006073935A (ja) * 2004-09-06 2006-03-16 Mitsubishi Electric Corp 半導体パッケージ
JP2009010149A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 接続端子及びこれを用いたパッケージ並びに電子装置
US20100098427A1 (en) * 2008-09-29 2010-04-22 Finisar Corporation Emi shroud for a plastic receive optical subassembly
JP2012033615A (ja) * 2010-07-29 2012-02-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2014036100A (ja) * 2012-08-08 2014-02-24 Furukawa Electric Co Ltd:The 光モジュール
JP2014165292A (ja) * 2013-02-25 2014-09-08 Hitachi Ltd 発光素子及びその製造方法並びに光送受信器
JP2014179455A (ja) * 2013-03-14 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> 多チャネルレーザアレイ光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331110A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211538A (ja) * 2018-05-31 2019-12-12 富士通オプティカルコンポーネンツ株式会社 光デバイス、これを用いた光モジュール、及び光デバイスの試験方法
JP7192255B2 (ja) 2018-05-31 2022-12-20 富士通オプティカルコンポーネンツ株式会社 光デバイス、これを用いた光モジュール、及び光デバイスの試験方法
US11658738B2 (en) 2018-05-31 2023-05-23 Fujitsu Optical Components Limited Optical device, optical module using the same, and optical device testing method
JP2020027846A (ja) * 2018-08-10 2020-02-20 富士通株式会社 光送信器
JP7059865B2 (ja) 2018-08-10 2022-04-26 富士通株式会社 光送信器
WO2021053764A1 (ja) * 2019-09-18 2021-03-25 日本電信電話株式会社 光モジュール用パッケージ
JPWO2021053764A1 (ja) * 2019-09-18 2021-03-25
JP7303457B2 (ja) 2019-09-18 2023-07-05 日本電信電話株式会社 光モジュール用パッケージ

Also Published As

Publication number Publication date
CA2993930A1 (en) 2017-02-02
US20180198483A1 (en) 2018-07-12
US10277271B2 (en) 2019-04-30
EP3331110B1 (en) 2020-01-15
JPWO2017017955A1 (ja) 2017-11-16
CN107851962B (zh) 2020-05-01
CN107851962A (zh) 2018-03-27
JP6511141B2 (ja) 2019-05-15
EP3331110A4 (en) 2019-02-20
CA2993930C (en) 2020-07-07
EP3331110A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2017017955A1 (ja) 光モジュール
CN112925069B (zh) 集成光收发器、紧凑型光引擎以及多通道光引擎
EP3276401B1 (en) High-frequency transmission line and optical circuit
US9306334B2 (en) High speed plug connector having improved high frequency performance
CN101794929B (zh) 一种提升传输带宽的装置
JP6890966B2 (ja) 光モジュール及び光伝送装置
JP2014523715A (ja) 電気的分離および誘電体伝送媒体を用いるehf通信
CN107978884A (zh) 可插拔收发器组件和具有其的通信系统
US8410874B2 (en) Vertical quasi-CPWG transmission lines
US10310199B2 (en) Optical module and transmission equipment
CN102236136A (zh) 光电转换模组
CN112904496A (zh) 一种硅光集成模块
CN110085572A (zh) 用于光接收器模块的封装部
US20080240717A1 (en) Optical transmitter/receiver module
US12085753B2 (en) Optical module
CN213780447U (zh) 一种光模块内光电芯片的封装结构
CN212543788U (zh) 一种光模块
JP3966164B2 (ja) 半導体装置
US20120153132A1 (en) Element carrier and light receiving module
JP6740206B2 (ja) 光受信器
JP2004129053A (ja) Dcブロック回路および通信装置
US20230156932A1 (en) Optical Communication Element
CN112379491B (zh) 一种光模块内光电芯片的封装结构
WO2023112165A1 (ja) 受光素子
CN108352905A (zh) 传输装置、传输方法以及传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531019

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2993930

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830060

Country of ref document: EP