WO2017014156A1 - オイルシール構造、および、過給機 - Google Patents

オイルシール構造、および、過給機 Download PDF

Info

Publication number
WO2017014156A1
WO2017014156A1 PCT/JP2016/070885 JP2016070885W WO2017014156A1 WO 2017014156 A1 WO2017014156 A1 WO 2017014156A1 JP 2016070885 W JP2016070885 W JP 2016070885W WO 2017014156 A1 WO2017014156 A1 WO 2017014156A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
oil
insertion hole
bearing
seal structure
Prior art date
Application number
PCT/JP2016/070885
Other languages
English (en)
French (fr)
Inventor
貴久 豊田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201680041623.0A priority Critical patent/CN107849972B/zh
Priority to JP2017529861A priority patent/JP6586996B2/ja
Priority to DE112016003288.9T priority patent/DE112016003288T5/de
Publication of WO2017014156A1 publication Critical patent/WO2017014156A1/ja
Priority to US15/869,195 priority patent/US10294995B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/162Special parts or details relating to lubrication or cooling of the sealing itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping

Definitions

  • This disclosure relates to an oil seal structure that suppresses leakage of lubricating oil that lubricates a bearing portion, and a supercharger.
  • a turbocharger in which a shaft having a turbine impeller provided at one end and a compressor impeller provided at the other end is rotatably supported by a bearing housing is known.
  • a supercharger is connected to the engine, the turbine impeller is rotated by exhaust gas discharged from the engine, and the compressor impeller is rotated through the shaft by the rotation of the turbine impeller.
  • the supercharger compresses air and sends it to the engine as the compressor impeller rotates.
  • Patent Document 1 describes a configuration in which a rolling bearing is disposed in an accommodation hole formed in a bearing housing.
  • An oil seal portion is provided between the accommodation hole and the compressor impeller.
  • the oil seal portion is formed with a through hole through which the shaft is inserted.
  • a seal ring is provided on the inner surface of the through hole.
  • the oil seal portion has a facing surface that faces the accommodation hole. This opposing surface is recessed toward the compressor impeller side, forms a space for receiving the lubricating oil flowing out from the accommodation hole, and guides this lubricating oil to the oil discharge port formed vertically below.
  • the oil outlet discharges the lubricating oil from the inside of the bearing housing to the outside.
  • An object of the present disclosure is to provide an oil seal structure and a supercharger that can improve sealing performance.
  • an oil seal structure Comprising: The bearing part of the shaft accommodated in the accommodation hole formed in the housing, It faces the axial direction of a shaft with respect to a bearing part, and this shaft And an opposing member having a main body portion including an opposing surface through which an insertion hole is inserted.
  • the opposing member is formed on the opposing surface and is recessed in a direction away from the bearing portion, and at least a part of the opposing member is a bearing portion.
  • the gist is that the portion where the insertion hole opens on the facing surface protrudes to the bearing portion side from the deepest deepest portion of the oil groove.
  • the oil groove may be formed continuously from the insertion hole to the outside in the radial direction of the shaft.
  • the portion of the wall portion that forms the oil groove that is continuous with the insertion hole may include a taper portion that is inclined in a direction away from the bearing portion as it extends radially outward.
  • the taper portion may extend from the innermost diameter portion located radially inward of the shaft continuous with the insertion hole toward the outer side in the radial direction.
  • the oil seal structure is formed inside the main body, extends to the outer side in the radial direction of the shaft from the insertion hole, and surrounds the annular scroll channel that communicates with the insertion hole, and the scroll channel from the outer side in the radial direction of the shaft.
  • an inclined surface that inclines in a direction away from the bearing portion toward the radially inner side of the shaft, and is formed continuously from the inclined surface to the radially inner side of the shaft, and protrudes from the inside of the main body portion toward the bearing portion side.
  • the opposing member may be a seal plate that suppresses leakage of lubricating oil from the accommodation hole toward the impeller provided on the shaft.
  • the second aspect of the present disclosure is a supercharger, and the gist thereof includes the oil seal structure according to the first aspect.
  • FIG. 1 is a schematic sectional view of a supercharger.
  • FIG. 2 is a diagram in which a portion surrounded by a dashed line in FIG. 1 is extracted.
  • FIG. 3 is a diagram in which a portion surrounded by a two-dot chain line in FIG. 2 is extracted.
  • FIG. 4 is an explanatory diagram for explaining a modification.
  • FIG. 1 is a schematic sectional view of the supercharger C.
  • the arrow L shown in FIG. 1 will be described as a direction indicating the left side of the supercharger C
  • the arrow R will be described as a direction indicating the right side of the supercharger C.
  • the supercharger C includes a supercharger main body 1.
  • the turbocharger body 1 includes a bearing housing 2 (housing), a turbine housing 4 connected to the left side of the bearing housing 2 by a fastening mechanism 3, and a compressor housing 7 connected to the right side of the bearing housing 2 by fastening bolts 6. It is equipped with. These are integrated.
  • the supercharger C includes an electric motor 5 provided between the bearing housing 2 and the compressor housing 7.
  • the electric motor 5 includes components such as a motor rotor, a stator coil, and a housing, for example.
  • FIG. 1 shows a simplified internal structure of the electric motor 5.
  • the bearing housing 2 has an outer peripheral surface in the vicinity of the turbine housing 4.
  • the outer peripheral surface is provided with a protrusion 2a.
  • the protrusion 2 a protrudes in the radial direction of the bearing housing 2.
  • the turbine housing 4 has an outer peripheral surface in the vicinity of the bearing housing 2.
  • a protrusion 4a is provided on the outer peripheral surface.
  • the protrusion 4 a protrudes in the radial direction of the turbine housing 4.
  • the bearing housing 2 and the turbine housing 4 are fixed to each other by fastening the protrusions 2 a and 4 a by the fastening mechanism 3.
  • the fastening mechanism 3 includes a G coupling that holds the protrusions 2a and 4a.
  • the bearing housing 2 has an accommodation hole 2b.
  • the accommodation hole 2b penetrates the bearing housing 2 in the left-right direction of the supercharger C.
  • a rolling bearing (bearing portion) 8 is provided in the accommodation hole 2b.
  • the rolling bearing 8 supports the shaft 9 rotatably.
  • a turbine impeller 10 is fixed to the left end portion of the shaft 9.
  • the turbine impeller 10 is rotatably accommodated in the turbine housing 4.
  • a compressor impeller 11 is fixed to the right end portion of the shaft 9.
  • the compressor impeller 11 is rotatably accommodated in the compressor housing 7.
  • An air inlet 12 is formed in the compressor housing 7.
  • the intake port 12 opens to the right side of the supercharger C and is connected to an air cleaner (not shown). Further, in a state where the electric motor 5 and the compressor housing 7 are connected by the fastening bolt 6, a diffuser flow path 13 that boosts air is formed by the opposing surfaces of the electric motor 5 and the compressor housing 7.
  • the diffuser flow path 13 is formed in an annular shape from the radially inner side to the outer side of the shaft 9. Further, the diffuser flow path 13 communicates with the intake port 12 via the compressor impeller 11 on the radially inner side.
  • the compressor housing 7 is provided with a compressor scroll passage 14.
  • the compressor scroll channel 14 is formed in an annular shape, and is located on the radially outer side of the shaft 9 with respect to the diffuser channel 13.
  • the compressor scroll passage 14 communicates with an intake port (not shown) of the engine and also communicates with the diffuser passage 13. Therefore, when the compressor impeller 11 rotates, air is taken into the compressor housing 7 from the intake port 12. The sucked air is accelerated by the action of centrifugal force in the process of flowing between the blades of the compressor impeller 11, and is boosted by the diffuser flow path 13 and the compressor scroll flow path 14 and guided to the intake port of the engine.
  • a discharge port 15 is formed in the turbine housing 4.
  • the discharge port 15 opens to the left side of the supercharger C and is connected to an exhaust gas purification device (not shown).
  • the turbine housing 4 includes a flow path 16 and an annular turbine scroll flow path 17 located on the radially outer side of the turbine impeller 10 with respect to the flow path 16.
  • the turbine scroll passage 17 communicates with a gas inlet (not shown) through which exhaust gas from an engine exhaust manifold (not shown) is guided, and also communicates with the passage 16. Therefore, the exhaust gas is guided from the gas inlet (not shown) to the turbine scroll passage 17 and then to the discharge port 15 via the passage 16 and the turbine impeller 10. The exhaust gas rotates the turbine impeller 10 in this distribution process.
  • Rotational force of the turbine impeller 10 is transmitted to the compressor impeller 11 through the shaft 9.
  • the rotational force of the compressor impeller 11 boosts air and guides it to the intake port of the engine.
  • the electric motor 5 rotates the shaft 9 in an auxiliary manner when the rotational force of the turbine impeller 10 is insufficient, and generates electric power with the rotation of the shaft 9 when the rotational force by the turbine impeller 10 is sufficiently supplied.
  • FIG. 2 is a diagram in which a portion surrounded by a dashed line in FIG. 1 is extracted.
  • the supercharger C has an oil seal structure O.
  • the bearing housing 2 is provided with a supply path 2c.
  • the supply path 2c supplies lubricating oil from the outside of the bearing housing 2 to the accommodation hole 2b.
  • the vibration absorbing member 20 is accommodated in the accommodation hole 2b.
  • the vibration absorbing member 20 has a cylindrical member body 20a.
  • At least one damper portion 21 is formed on the outer peripheral surface of the member main body 20a. In the radial direction of the shaft 9, the damper portion 21 is positioned outside the rolling bearing 8, holds lubricating oil between the inner wall 2 d of the accommodation hole 2 b and absorbs vibration of the shaft 9.
  • the damper portion 21 includes annular protrusions 21a to 21d that protrude outward in the radial direction of the member main body 20a.
  • a total of four annular protrusions 21a to 21d are provided, two on each end of the member body 20a in the axial direction of the shaft 9 (hereinafter simply referred to as the axial direction).
  • the upper side is generally coincident with the vertical upper side and the lower side is substantially coincident with the vertical lower side.
  • an oil drain port 2 e is formed at a portion located vertically below the accommodation hole 2 b. The oil discharge port 2 e discharges the lubricating oil from the inside of the bearing housing 2 to the outside of the bearing housing 2.
  • the bearing housing 2 is provided with an oil drain hole 2f.
  • the oil drain hole 2f penetrates from the oil drain port 2e side to the accommodation hole 2b.
  • the oil drain hole 2f discharges the lubricating oil from the accommodation hole 2b and guides it to the oil drain port 2e.
  • oil drain holes 2f are formed on both ends of the accommodation hole 2b.
  • the opening 2g of the oil drain hole 2f is located on the side of the accommodation hole 2b and faces the damper portion 21.
  • One of the two oil drain holes 2f is located between the annular protrusions 21a and 21b.
  • the other of the two oil drain holes 2f is located between the annular protrusions 21c and 21d.
  • Each of the two oil drain holes 2f extends from the opening 2g toward the oil drain port 2e.
  • the supply path 2 c is branched in the bearing housing 2.
  • One of the branched supply paths 2c opens between the annular protrusion 21a and the annular protrusion 21b on the inner wall 2d of the accommodation hole 2b.
  • the other side of the branched supply path 2c opens between the annular protrusion 21c and the annular protrusion 21d on the inner wall 2d.
  • the main body 20a has two oil guide passages 22 formed therein.
  • One oil guide path 22 is open between the annular protrusion 21a and the annular protrusion 21b on the outer peripheral surface of the member main body 20a.
  • the other oil guide path 22 is opened between the annular protrusion 21c and the annular protrusion 21d on the outer peripheral surface of the member main body 20a.
  • Any oil guide path 22 communicates with the space in the main body 20a and guides the lubricating oil to the rolling bearing 8 accommodated in the main body 20a.
  • the rolling bearings 8 are accommodated one by one at both ends in the axial direction of the shaft 9 inside the member main body 20a.
  • the two rolling bearings 8 are spaced apart in the axial direction.
  • Each rolling bearing 8 has an outer ring 8a and an inner ring 8b having a smaller diameter than the outer ring 8a.
  • each rolling bearing 8 includes a plurality of balls 8c provided between the outer ring 8a and the inner ring 8b and arranged in the circumferential direction of the outer ring 8a (inner ring 8b). The plurality of balls 8c are held by a cage 8d.
  • the outer ring 8 a is held by the vibration absorbing member 20, and the inner ring 8 b rotates integrally with the shaft 9. At this time, by rolling the ball 8c, the frictional resistance between the outer ring 8a and the inner ring 8b is suppressed, and the outer ring 8a and the inner ring 8b can be relatively rotated. In this way, the rolling bearing 8 receives the radial load of the shaft 9.
  • a regulating portion 23 is arranged between the two inner rings 8b inside the vibration absorbing member 20.
  • the restricting portion 23 is a cylindrical (annular) member.
  • the shaft 9 is inserted through the restricting portion 23. Furthermore, both ends of the restricting portion 23 in the axial direction of the shaft 9 are in contact with the respective inner rings 8b.
  • the restricting portion 23 restricts the two inner rings 8b from approaching each other while rotating integrally with the inner ring 8b.
  • Each guide portion 20 c is formed on the inner peripheral surface 20 b of the vibration absorbing member 20.
  • Each guide portion 20 c is formed in an annular shape and protrudes radially inward of the vibration absorbing member 20.
  • the two rolling bearings 8 are fitted from both ends of the member main body 20a into the member main body 20a until they abut against the guide portion 20c. Further, each oil guide passage 22 opens toward the rolling bearing 8 through the corresponding guide portion 20d.
  • a discharge hole 20d is provided between the two guide portions 20c in the member main body 20a.
  • a part of the lubricating oil is supplied to the rolling bearing 8 from the oil guide path 22, rebounds upon hitting the ball 8c and the like, and is discharged from the member main body 20a to the accommodation hole 2b through the discharge hole 20d.
  • the bearing housing 2 has a counter hole 2h. It is formed at a position facing the opposing hole 2h and the discharge hole 20d. The opposing hole 2h penetrates from the accommodation hole 2b to the oil drain port 2e, and guides the lubricating oil in the accommodation hole 2b to the oil drain port 2e.
  • a seal plate (opposing member) 24 is provided on the right side (the electric motor 5 and the compressor impeller 11 side) in FIG.
  • a recess 2i is formed on the compressor impeller 11 side of the accommodation hole 2b.
  • the recessed part 2i is recessed on the left side in FIG.
  • a seal plate 24 is attached to the recess 2 i by a fastening member 25.
  • the seal plate 24 includes a main body portion 24a provided with an insertion hole 24b penetrating in the axial direction of the shaft 9.
  • An annular seal scroll channel 24c (scroll channel) is formed inside the main body 24a.
  • the space on the rolling bearing 8 side in the seal scroll flow path 24c extends to the inside in the radial direction of the shaft 9 and communicates with the insertion hole 24b.
  • the right wall surface in FIG. 2 in the seal scroll channel 24c is an inclined surface 24d.
  • the inclined surface 24d surrounds the seal scroll channel 24c from the outside in the radial direction. Further, the inclined surface 24d is inclined in the direction toward the right side (compressor impeller 11 side) toward the radially inner side.
  • the return portion 24e is formed continuously from the inclined surface 24d to the inside of the shaft 9 in the radial direction.
  • the return portion 24e is formed in an annular shape that protrudes from the inclined surface 24d toward the rolling bearing 8 inside the main body portion 24a.
  • the return portion 24e and the inclined surface 24d face each other in the radial direction of the shaft 9.
  • the inner peripheral surface of the return portion 24e forms the insertion hole 24b described above.
  • the seal scroll passage 24c and the insertion hole 24b communicate with each other at a position closer to the rolling bearing 8 than the return portion 24e.
  • the lower side of the seal scroll flow path 24c opens toward the oil discharge port 2e.
  • the inclined surface 24d has the seal scroll channel 24c recessed on the right side in FIG. In other words, the inclined surface 24 d protrudes the seal scroll channel 24 c toward the compressor impeller 11. Thereby, a large volume of the seal scroll channel 24c can be secured.
  • the shaft 9 is inserted into the insertion hole 24 b of the seal plate 24.
  • An interposition part 26 is disposed between the shaft 9 and the insertion hole 24b.
  • the interposition part 26 is formed in a cylindrical shape (annular), is fixed to the shaft 9, and rotates integrally with the shaft 9.
  • Two annular grooves 26 a and 26 b are formed in the interposition part 26. It is located on the radially inner side of the annular grooves 26a, 26b and the return portion 24e.
  • Two seal rings 27a and 27b are press-fitted at positions facing the annular grooves 26a and 26b on the inner peripheral surface of the insertion hole 24b.
  • the outer peripheral surfaces of the seal rings 27a and 27b are in contact with the inner peripheral surface of the insertion hole 24b, and a part of each of the seal rings 27a and 27b on the radially inner side is inserted into the annular grooves 26a and 26b.
  • the main body 24a includes a facing surface 24f that faces the rolling bearing 8 (accommodating hole 2b) in the axial direction of the shaft 9.
  • An insertion hole 24b of the shaft 9 is opened in the facing surface 24f.
  • An oil groove 28 is provided on the facing surface 24f.
  • the oil groove 28 is recessed in the direction away from the rolling bearing 8 in the axial direction of the shaft 9.
  • the oil groove 28 faces the rolling bearing 8, and a part thereof extends continuously outward in the radial direction of the shaft 9.
  • the part of the main body 24a located on the side of the rolling bearing 8 relative to the seal scroll flow path 24c functions as a partition wall 24g that divides the oil drain space for draining the lubricating oil flowing out to the seal plate 24 into two parts.
  • the rolling bearing 8 side is referred to as a first oil drain space Sa
  • the compressor impeller 11 side that is, the seal scroll channel 24c
  • Sb second oil drain space
  • the lubricating oil flowing to the compressor impeller 11 side first flows out into the oil groove 28 (first drain oil space Sa).
  • first drain oil space Sa As shown in FIG. 2, the upper side of the first oil drain space Sa is closed by an inner wall that forms the first oil drain space Sa.
  • the lower side of the first oil drain space Sa is opened. Therefore, the lubricating oil guided to the first oil drain space Sa is discharged from the lower side of the first oil drain space Sa.
  • a part of the lubricating oil in the first oil drain space Sa flows out to the second oil drain space Sb through the gap between the insertion hole 24b and the interposition part 26 in the radial direction.
  • the lubricating oil travels around the interposition part 26 and scatters due to the centrifugal force, flows along the inner wall of the seal scroll channel 24c in the circumferential direction, and flows downward in FIG.
  • a part of the lubricating oil is directed radially outward by the centrifugal force when scattered, and flows downward along the inclined surface 24d when it hits a portion of the inclined surface 24d located below the shaft 9 in the vertical direction. Further, when a part of the lubricating oil hits a portion of the inclined surface 24d positioned above the shaft 9 in the vertical direction, a part of the lubricating oil flows downward and flows downward along the outer periphery of the return portion 24e. .
  • the inclined surface 24d and the return portion 24e it is possible to suppress the entry of the lubricating oil to the seal rings 27a and 27b.
  • the upper side of the second oil drain space Sb is closed by an inner wall that forms the second oil drain space Sb.
  • the lower side of the second oil drain space Sb is opened. Therefore, the lubricating oil guided to the second oil drain space Sb is discharged from the lower side of the second oil drain space Sb.
  • the oil discharge port 2 e guides the lubricating oil guided downward from the first oil discharge space Sa and the second oil discharge space Sb to the outside of the bearing housing 2.
  • the seal plate 24 suppresses leakage of lubricating oil from the accommodation hole 2b to the compressor impeller 11.
  • the oil will exceed the limit of the oil discharge capacity of the second oil discharge space Sb, and the lubricant will move toward the seal rings 27a and 27b. May enter. Therefore, the oil seal structure O is provided with a structure for suppressing the outflow of the lubricating oil from the first oil discharge space Sa to the second oil discharge space Sb.
  • FIG. 3 is a diagram in which a portion surrounded by a two-dot chain line in FIG. 2 is extracted.
  • a protruding portion 28 a is provided on the radially inner side of the oil groove 28.
  • the protruding portion 28a is formed at a portion where the insertion hole 24b opens on the facing surface 24f.
  • the protrusion part 28a is toward the rolling bearing 8 side rather than the deepest part 28b which is a site
  • the protruding portion 28a is approximately coincident with the bottom surface of the recess 2i of the bearing housing 2 in the axial position.
  • a taper portion 28d is formed in a portion (that is, the protruding portion 28a) continuous with the insertion hole 24b in the wall portion 28c forming the oil groove 28.
  • the taper portion 28d is inclined in a direction away from the rolling bearing 8 as it goes outward in the radial direction.
  • the taper portion 28d extends outward in the radial direction from the innermost diameter portion 28e located on the innermost radial direction continuous to the insertion hole 24b.
  • the protruding portion 28 a When the protruding portion 28 a is provided in the oil groove 28, the lubricating oil that has flowed into the oil groove 28 is guided from the protruding portion 28 a toward the deepest portion 28 b of the oil groove 28. Thereby, the oil amount which goes to the clearance CL between the insertion hole 24b and the interposition part 26 can be reduced. Furthermore, by providing the protruding portion 28a, it is possible to ensure a long axial length L of the portion where the insertion hole 24b and the interposition portion 26 are opposed to each other in the radial direction.
  • the frictional resistance until the lubricating oil has completely passed through the gap CL is increased (that is, the pressure loss is increased), and the gap between the first oil drain space Sa and the second oil drain space Sb is reduced.
  • the amount of oil flowing through CL can be suppressed. Therefore, the leakage of the lubricating oil from the gap CL to the second drain oil space Sb can be suppressed.
  • the oil groove 28 is continuously formed from the insertion hole 24b to the radially outer side of the shaft 9.
  • the oil groove 28 may not be continuous from the insertion hole 24b to the radially outer side of the shaft 9. That is, as in the modification shown in FIG. 4, the oil groove 38 is formed to be spaced radially outward from the insertion hole 24b, and the portion X radially inward of the protrusion 38a is more than the protrusion 38a. Alternatively, it may protrude toward the rolling bearing 8.
  • the oil groove 28 continuously from the insertion hole 24b to the outer side in the radial direction of the shaft 9, the lubricating oil toward the insertion hole 24b can be easily guided along the oil groove 28, and the sealing performance can be improved. .
  • a tapered portion 28d is provided.
  • the tapered portion 28d may be omitted.
  • the axial flow of the lubricating oil flowing out from the rolling bearing 8 can be directed radially outward along the tapered portion 28d, and the sealing performance can be further improved. it can.
  • the tapered portion 28d extends from the innermost diameter portion 28e toward the radially outer side.
  • the tapered portion 28d may extend from a position separated from the innermost diameter portion 28e on the radially outer side than the innermost diameter portion 28e.
  • the lubricating oil that has been directed slightly outward in the radial direction from the insertion hole 24b is moved radially outward along the tapered portion 28d. It can be made to face, and the sealing performance can be further improved.
  • the seal plate 24 is a counter member.
  • the facing member is not limited to the seal plate 24 described above. That is, another member may have a main body portion 24a that is opposed to the rolling bearing 8 in the axial direction of the shaft 9 and includes a facing surface in which the insertion hole 24b through which the shaft 9 is inserted is opened.
  • a rolling bearing 8 is provided as a bearing portion.
  • the bearing portion may be another bearing that rotatably supports the shaft 9.
  • the supercharger C includes the electric motor 5.
  • the electric motor 5 may be omitted depending on the specifications of the supercharger.
  • the supercharger C is easily increased in the axial direction of the shaft 9 by the amount of the electric motor 5.
  • the sealing performance can be improved as described above even when the space for securing the first oil drain space Sa and the second oil drain space Sb is limited.
  • the oil seal structure O is disposed on the compressor impeller 11 side of the accommodation hole 2b in the supercharger C.
  • the oil seal structure O may be disposed on the turbine impeller 10 side of the accommodation hole 2b.
  • the apparatus which provides the oil seal structure O is not limited to the supercharger C, and may be another rotating machine having a bearing portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Rolling Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 オイルシール構造は、ハウジングに形成された収容孔に収容される、シャフト(9)の軸受部(8)と、軸受部(8)に対してシャフト(9)の軸方向に対向し、且つ、シャフト(9)が挿通される挿通孔(24b)が開口する対向面を含む本体部を有する対向部材(24)と、を備える。対向部材(24)は、対向面に形成され、軸受部から離隔する方向に窪むとともに、少なくとも一部が軸受部と対向する油溝(28)を備え、対向面において、挿通孔が開口する部位は、油溝のうち最も深い最深部(28b)よりも、軸受部側に突出している。

Description

オイルシール構造、および、過給機
 本開示は、軸受部を潤滑した潤滑油の漏出を抑えるオイルシール構造、および、過給機に関する。
 従来、一端にタービンインペラが設けられ他端にコンプレッサインペラが設けられたシャフトが、ベアリングハウジングに回転自在に支持された過給機が知られている。こうした過給機をエンジンに接続し、エンジンから排出される排気ガスによってタービンインペラを回転させるとともに、このタービンインペラの回転によって、シャフトを介してコンプレッサインペラを回転させる。こうして、過給機は、コンプレッサインペラの回転に伴い空気を圧縮してエンジンに送出する。
 特許文献1には、ベアリングハウジングに形成された収容孔に転がり軸受が配設された構成が記載されている。この収容孔とコンプレッサインペラの間には、オイルシール部が設けられている。オイルシール部には、シャフトが挿通される貫通孔が形成されている。この貫通孔の内面には、シールリングが設けられている。また、オイルシール部は、収容孔に対向する対向面を有する。この対向面は、コンプレッサインペラ側に窪んでおり、収容孔から流出する潤滑油を受け止める空間を形成し、この潤滑油を鉛直下側に形成された排油口へ導く。排油口はベアリングハウジングの内部から外部へ潤滑油を排出する。
特開2012-36855号公報
 上記のように、収容孔から流出した潤滑油の多くは、収容孔とオイルシール部の間の空間から排油口を介して排出される。しかしながら、潤滑油の一部は、オイルシール部の貫通孔を通って、コンプレッサインペラ側へ漏出する。シールリングを設けることで潤滑油の漏出を抑えられるものの、さらなるシール性を向上する技術の開発が希求されている。
 本開示の目的は、シール性を向上することが可能なオイルシール構造、および、過給機を提供することである。
 本開示の第1の態様はオイルシール構造であって、ハウジングに形成された収容孔に収容される、シャフトの軸受部と、軸受部に対してシャフトの軸方向に対向し、且つ、該シャフトが挿通される挿通孔が開口する対向面を含む本体部を有する対向部材と、を備え、対向部材は、対向面に形成され、軸受部から離隔する方向に窪むとともに、少なくとも一部が軸受部と対向する油溝を備え、対向面において、挿通孔が開口する部位は、油溝のうち最も深い最深部よりも、軸受部側に突出していることを要旨とする。
 油溝は、挿通孔からシャフトの径方向外側へ連続して形成されてもよい。
 油溝を形成する壁部のうち挿通孔と連続する部分は、径方向外側に向かうにつれ、軸受部から離隔する向きに傾斜するテーパ部を含んでもよい。
 テーパ部は、挿通孔に連続する最もシャフトの径方向内側に位置する最内径部から径方向外側に向かって延伸してもよい。
 オイルシール構造は、本体部の内部に形成され、挿通孔よりもシャフトの径方向外側に延伸するとともに、挿通孔と連通する環状のスクロール流路と、スクロール流路をシャフトの径方向外側から囲繞するとともに、シャフトの径方向内側ほど軸受部から離隔する向きに傾斜する傾斜面と、傾斜面からシャフトの径方向内側に連続して形成され、本体部の内部を軸受部側に向かって突出するとともに、内周側に挿通孔が形成される環状の返し部と、をさらに備えてもよい。
 対向部材は、収容孔から、シャフトに設けられるインペラ側への潤滑油の漏出を抑制するシールプレートであってもよい。
 本開示の第2の態様は過給機であって、第1の態様に係るオイルシール構造を備えることを要旨とする。
 本開示によれば、シール性を向上することが可能となる。
図1は、過給機の概略断面図である。 図2は、図1において一点鎖線で囲まれた部分を抽出した図である。 図3は、図2において二点鎖線で囲まれた部分を抽出した図である。 図4は、変形例を説明するための説明図である。
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、本開示の理解を容易とするための例示にすぎず、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。
 図1は、過給機Cの概略断面図である。以下では、図1に示す矢印Lを過給機Cの左側を示す方向とし、矢印Rを過給機Cの右側を示す方向として説明する。図1に示すように、過給機Cは、過給機本体1を備える。過給機本体1は、ベアリングハウジング2(ハウジング)と、締結機構3によってベアリングハウジング2の左側に連結されるタービンハウジング4と、締結ボルト6によってベアリングハウジング2の右側に連結されるコンプレッサハウジング7と、を備えている。これらは、一体化されている。なお、過給機Cは、ベアリングハウジング2とコンプレッサハウジング7と間に設けられる電動機5を備えている。電動機5は、例えば、モータロータ、ステータコイル、ハウジングなどの構成部品を含む。図1は、電動機5の内部構造を簡略化して示している。
 ベアリングハウジング2は、タービンハウジング4の近傍に外周面を有する。この外周面には突起2aが設けられている。突起2aは、ベアリングハウジング2の径方向に突出している。また、タービンハウジング4は、ベアリングハウジング2の近傍に外周面を有する。この外周面には突起4aが設けられている。突起4aは、タービンハウジング4の径方向に突出している。ベアリングハウジング2とタービンハウジング4は、突起2a、4aを締結機構3によって締結することで、互いに固定される。例えば、締結機構3は、突起2a、4aを挟持するGカップリングで構成される。
 ベアリングハウジング2には収容孔2bが形成されている。収容孔2bは、過給機Cの左右方向にベアリングハウジング2を貫通している。収容孔2bには転がり軸受(軸受部)8が設けられる。転がり軸受8は、シャフト9を回転自在に支持する。シャフト9の左端部にはタービンインペラ10が固定されている。タービンインペラ10は、タービンハウジング4内に回転自在に収容されている。また、シャフト9の右端部にはコンプレッサインペラ11が固定されている。コンプレッサインペラ11は、コンプレッサハウジング7内に回転自在に収容されている。
 コンプレッサハウジング7には吸気口12が形成されている。吸気口12は、過給機Cの右側に開口し、エアクリーナ(図示せず)に接続される。また、締結ボルト6によって電動機5とコンプレッサハウジング7が連結された状態では、これらの電動機5とコンプレッサハウジング7の互いの対向面によって、空気を昇圧するディフューザ流路13が形成される。ディフューザ流路13は、シャフト9の径方向内側から外側に向けて環状に形成されている。また、ディフューザ流路13は、上記の径方向内側において、コンプレッサインペラ11を介して吸気口12に連通している。
 コンプレッサハウジング7にはコンプレッサスクロール流路14が設けられている。コンプレッサスクロール流路14は環状に形成され、ディフューザ流路13よりもシャフト9の径方向外側に位置している。コンプレッサスクロール流路14は、エンジンの吸気口(図示せず)に連通し、且つ、ディフューザ流路13にも連通している。したがって、コンプレッサインペラ11が回転すると、吸気口12からコンプレッサハウジング7内に空気が吸気される。当該吸気された空気は、コンプレッサインペラ11の翼間を流通する過程において遠心力の作用により増速され、ディフューザ流路13およびコンプレッサスクロール流路14で昇圧されてエンジンの吸気口に導かれる。
 タービンハウジング4には吐出口15が形成されている。吐出口15は、過給機Cの左側に開口し、排気ガス浄化装置(図示せず)に接続される。また、タービンハウジング4は、流路16と、この流路16よりもタービンインペラ10の径方向外側に位置する環状のタービンスクロール流路17とを有する。タービンスクロール流路17は、エンジンの排気マニホールド(図示せず)からの排気ガスが導かれるガス流入口(図示せず)に連通し、且つ、流路16にも連通している。したがって、排気ガスは、ガス流入口(図示せず)からタービンスクロール流路17に導かれ、その後、流路16およびタービンインペラ10を介して吐出口15に導かれる。排気ガスは、この流通過程においてタービンインペラ10を回転させる。
 タービンインペラ10の回転力は、シャフト9を介してコンプレッサインペラ11に伝達される。コンプレッサインペラ11の回転力は、上記のとおりに、空気を昇圧し、エンジンの吸気口に導く。なお、電動機5は、タービンインペラ10の回転力が不足するときに補助的にシャフト9を回転させ、タービンインペラ10による回転力が十分に供給されるときにシャフト9の回転に伴って発電する。
 図2は、図1において一点鎖線で囲まれた部分を抽出した図である。図2に示すように、過給機Cは、オイルシール構造Oを有している。ベアリングハウジング2には供給路2cが設けられている。供給路2cは、ベアリングハウジング2の外部から収容孔2bに潤滑油を供給する。収容孔2bには、振動吸収部材20が収容される。振動吸収部材20は、円筒形状の部材本体20aを有する。部材本体20aの外周面には少なくとも1つのダンパ部21が形成されている。シャフト9の径方向において、ダンパ部21は、転がり軸受8よりも外側に位置し、収容孔2bの内壁2dとの間に潤滑油を保持してシャフト9の振動を吸収する。
 また、ダンパ部21は、部材本体20aの径方向外側に向かって突出する環状突起21a~21dを含んでいる。環状突起21a~21dは、シャフト9の軸方向(以下、単に軸方向と称す)における部材本体20aの両端側のそれぞれに2つずつ、合計4つ設けられている。
 また、図2中、上側が鉛直上側、下側が鉛直下側に大凡一致している。ベアリングハウジング2において、収容孔2bよりも鉛直下側に位置する部分には、排油口2eが形成されている。排油口2eは、ベアリングハウジング2の内部からベアリングハウジング2の外部に潤滑油を排出する。
 ベアリングハウジング2には排油孔2fが設けられている。排油孔2fは、排油口2e側から収容孔2bまで貫通している。排油孔2fは、収容孔2bから潤滑油を排出して排油口2eに導く。本実施形態では、排油孔2fが収容孔2bの両端側にそれぞれ形成されている。排油孔2fの開口部2gは、収容孔2b側に位置し、ダンパ部21に対向している。
 2つの排油孔2fのうちの一方は、環状突起21a、21bの間に位置している。2つの排油孔2fのうちの他方は、環状突起21c、21dの間に位置している。2つの排油孔2fは、それぞれ、開口部2gから排油口2eに向かって延伸している。
 供給路2cは、ベアリングハウジング2内で分岐している。分岐した供給路2cの一方は、収容孔2bの内壁2dにおける環状突起21aと環状突起21bとの間に開口している。分岐した供給路2cの他方は、内壁2dにおける環状突起21cと環状突起21dとの間に開口している。本体20aはその内部に形成された2本の導油路22を有する。一方の導油路22は、部材本体20aの外周面における環状突起21aと環状突起21bとの間に開口している。他方の導油路22は、部材本体20aの外周面における環状突起21cと環状突起21dとの間に開口している。何れの導油路22も本体20a内の空間に連通し、本体20a内に収容された転がり軸受8に潤滑油を導く。
 転がり軸受8は、部材本体20aの内部におけるシャフト9の軸方向の両端側のそれぞれに1つずつ収容されている。2つの転がり軸受8は、軸方向に離隔して配置される。各転がり軸受8は、外輪8aと、外輪8aよりも小径の内輪8bとを有する。更に、各転がり軸受8は、外輪8aと内輪8bの間に設けられ、外輪8a(内輪8b)の周方向に並んだ複数のボール8cを有する。複数のボール8cは、保持器8dによって保持されている。
 外輪8aは、振動吸収部材20に保持され、内輪8bはシャフト9と一体回転する。このとき、ボール8cが転がることで、外輪8aおよび内輪8bとの摩擦抵抗を抑え、外輪8aと内輪8bの相対回転が可能となっている。こうして、転がり軸受8は、シャフト9のラジアル荷重を受ける。
 振動吸収部材20の内部における2つの内輪8bの間には、規制部23が配されている。規制部23は筒状(環状)部材である。規制部23にはシャフト9が挿通される。さらに、シャフト9の軸方向における規制部23の両端は、それぞれの内輪8bに当接している。規制部23は、内輪8bと一体に回転しつつ、2つの内輪8bが互いに接近することを規制している。
 振動吸収部材20の内周面20bには2つのガイド部20cが形成されている。各ガイド部20cは環状に形成され、振動吸収部材20の径方向内側に突出している。2つの転がり軸受8は、部材本体20aの両端側のそれぞれから、部材本体20aの内部に、ガイド部20cに突き当たるまで嵌め込まれている。また、各導油路22は、対応するガイド部20dを貫通して転がり軸受8に向かって開口する。
 部材本体20aにおける2つのガイド部20cの間には排出孔20dが設けられている。潤滑油の一部は、導油路22から転がり軸受8に給油され、ボール8cなどに当たって跳ね返り、排出孔20dを介して、部材本体20a内から収容孔2bに排出される。ベアリングハウジング2には対向孔2hが形成されている。対向孔2h、排出孔20dと対向する位置に形成されている。対向孔2hは、収容孔2bから排油口2e側まで貫通しており、収容孔2b内の潤滑油を排油口2eに導く。
 収容孔2bに対して、図2中、右側(電動機5およびコンプレッサインペラ11側)には、シールプレート(対向部材)24が設けられている。ベアリングハウジング2には、収容孔2bのコンプレッサインペラ11側に、窪み部2iが形成されている。窪み部2iは、図2において左側に窪んでいる。この窪み部2iに、シールプレート24が締結部材25によって取り付けられる。
 シールプレート24は、シャフト9の軸方向に貫通する挿通孔24bが設けられた本体部24aを含む。本体部24aの内部には、環状のシールスクロール流路24c(スクロール流路)が形成される。シールスクロール流路24cにおける転がり軸受8側の空間は、シャフト9の径方向内側に延伸して、挿通孔24bに連通している。シールスクロール流路24cにおける図2中、右側の壁面は傾斜面24dとなっている。傾斜面24dは、シールスクロール流路24cを径方向外側から囲んでいる。また、傾斜面24dは、径方向内側ほど右側(コンプレッサインペラ11側)に向かう向きに傾斜する。
 返し部24eは、傾斜面24dからシャフト9の径方向内側に連続して形成されている。返し部24eは、本体部24aの内部を転がり軸受8側に向かって傾斜面24dから突出する環状に形成されている。返し部24eと傾斜面24dはシャフト9の径方向に対向している。返し部24eの内周面は上述の挿通孔24bを形成する。そして、シールスクロール流路24cと挿通孔24bは、返し部24eよりも転がり軸受8側の位置で互いに連通している。
 図2に示すように、シールスクロール流路24cの下側は、排油口2eに向かって開口している。このように、傾斜面24dは、シールスクロール流路24cを図2中の右側に窪ませている。換言すれば、傾斜面24dは、シールスクロール流路24cをコンプレッサインペラ11に向けて突出させている。これにより、シールスクロール流路24cの容積を大きく確保することができる。
 挿通孔24bからシールスクロール流路24cに流出した潤滑油のうち、返し部24eよりも鉛直上側の傾斜面24dに飛散した一部は、傾斜面24dを伝って径方向内側に流れる。この潤滑油は、その後、返し部24eの外周面に沿って流れる。したがって、挿通孔24bを迂回させて排油口2eに潤滑油を導くことができ、シール性を向上させることができる。
 また、シールプレート24の挿通孔24bには、シャフト9が挿通される。シャフト9と挿通孔24bとの間には介在部26が配設される。介在部26は筒状(環状)に形成され、シャフト9に固定され、シャフト9と一体回転する。介在部26には2つの環状溝26a、26bが形成されている。環状溝26a、26b、返し部24eの径方向内側に位置する。
 挿通孔24bの内周面において環状溝26a、26bと対向する位置に、2つのシールリング27a、27bが圧入されている。シールリング27a、27bそれぞれの外周面は、挿通孔24bの内周面に接触しており、シールリング27a、27bそれぞれの径方向内側の一部が、環状溝26a、26bに挿入される。
 本体部24aは、転がり軸受8(収容孔2b)に対してシャフト9の軸方向に対向する対向面24fを含んでいる。対向面24fには、シャフト9の挿通孔24bが開口している。また、対向面24fには、油溝28が設けられている。油溝28は、シャフト9の軸方向のうち転がり軸受8から離隔する方向に窪んでいる。また、油溝28は、転がり軸受8と対向し、且つ、その一部がシャフト9の径方向外側へ連続して延伸している。
 本体部24aにおいてシールスクロール流路24cよりも転がり軸受8側に位置する部位は、シールプレート24側に流出する潤滑油を排油する排油空間を2つに仕切る仕切壁24gとして機能する。本実施形態では、仕切壁24gで仕切られる空間のうち、転がり軸受8側を第1排油空間Sa、コンプレッサインペラ11側(すなわち、シールスクロール流路24c)を第2排油空間Sbと称す。
 潤滑油の一部は、ダンパ部21や転がり軸受8を流通し、その後、収容孔2bの軸方向の両端から流出する。コンプレッサインペラ11側に流れる潤滑油は、まず、油溝28(第1排油空間Sa)に流出する。図2に示すように、第1排油空間Saの上側は、第1排油空間Saを形成する内壁によって閉じられている。一方、第1排油空間Saの下側は開放されている。従って、第1排油空間Saに導かれた潤滑油は、第1排油空間Saの下側から排出される。
 また、第1排油空間Saにおける潤滑油の一部は、径方向における挿通孔24bと介在部26との隙間を通って、第2排油空間Sbに流出する。第2排油空間Sbでは、潤滑油が介在部26に連れ回って遠心力により飛散し、シールスクロール流路24cの内壁を周方向に伝って、図2中の下側に流れる。
 潤滑油の一部は、飛散した時の遠心力によって径方向外側に向かい、鉛直方向においてシャフト9よりも下側に位置する傾斜面24dの部位に当たると、傾斜面24dに沿って下方に流れる。また、潤滑油の一部が、鉛直方向においてシャフト9よりも上側に位置する傾斜面24dの部位に当たると、当該潤滑油の一部は下方に流れ、返し部24eの外周に沿って下方に流れる。このように、傾斜面24dおよび返し部24eを設けることで、シールリング27a、27b側への潤滑油の進入を抑制できる。
 第1排油空間Saと同様に、第2排油空間Sbの上側は、当該第2排油空間Sbを形成する内壁によって閉じている。一方、第2排油空間Sbの下側は開放されている。従って、第2排油空間Sbに導かれた潤滑油は、第2排油空間Sbの下側から排出される。そして、排油口2eは、第1排油空間Saおよび第2排油空間Sbから下側に導かれる潤滑油をベアリングハウジング2の外部に導く。
 このように、シールプレート24は、収容孔2bからコンプレッサインペラ11への潤滑油の漏出を抑制する。しかし、第1排油空間Saから第2排油空間Sbへの潤滑油の流出が多いと、第2排油空間Sbの排油能力の限界を超えて、シールリング27a、27b側へ潤滑油が進入してしまうおそれがある。そこで、オイルシール構造Oでは、第1排油空間Saから第2排油空間Sbへの潤滑油の流出を抑えるための構造が設けられている。
 図3は、図2において二点鎖線で囲まれた部分を抽出した図である。図3に示すように、油溝28において径方向内側には突出部28aが設けられている。突出部28aは、対向面24fにおいて挿通孔24bが開口する部位に形成される。そして、突出部28aは、油溝28において、図3中の右側(転がり軸受8から軸方向に離隔する側)に深くなっている部位である最深部28bよりも、転がり軸受8側に向かって突出している。ここでは、突出部28aは、ベアリングハウジング2の窪み部2iの底面と、軸方向の位置が大凡一致している。
 また、油溝28を形成する壁部28cにおいて挿通孔24bと連続する部分(すなわち、突出部28a)には、テーパ部28dが形成されている。テーパ部28dは、径方向外側に向かうにつれ、転がり軸受8から離隔する向きに傾斜している。テーパ部28dは、挿通孔24bに連続する最も径方向内側に位置する最内径部28eから径方向外側に向かって延伸する。
 油溝28に突出部28aを設けると、油溝28に流出した潤滑油が突出部28aから、油溝28の最深部28bに向かって導かれる。これにより、挿通孔24bと介在部26との隙間CLに向かう油量を低減することができる。さらに、突出部28aを設けることで、挿通孔24bと介在部26とが径方向に対向する部分の軸方向の長さLを、長く確保することができる。その結果、潤滑油が隙間CLを流通し切るまでの摩擦抵抗を大きくし(すなわち圧力損失を大きくし)、第1排油空間Saと第2排油空間Sbとの圧力差に対して、隙間CLを流通する油量を抑えることができる。そのため、隙間CLから第2排油空間Sbへの潤滑油の漏出を抑制することができる。
 本実施形態では、油溝28は、挿通孔24bからシャフト9の径方向外側へ連続して形成されている。しかしながら、油溝28は、挿通孔24bからシャフト9の径方向外側へ連続せずともよい。すなわち、図4に示す変形例のように、油溝38が、挿通孔24bから径方向外側に離隔して形成されるとともに、突出部38aよりも径方向内側の部位Xが、突出部38aよりも転がり軸受8側に突出していてもよい。ただし、油溝28を挿通孔24bからシャフト9の径方向外側へ連続して形成することで、挿通孔24bに向かう潤滑油を油溝28に沿って導き易く、シール性の向上が可能となる。
 本実施形態では、テーパ部28dが設けられている。しかしながら、テーパ部28dを省略してもよい。ただし、テーパ部28dを設けることで、転がり軸受8から流出した潤滑油の軸方向の流れを、テーパ部28dに沿わせて径方向外側に向かわせることができ、シール性を一層向上することができる。
 本実施形態では、テーパ部28dが、最内径部28eから径方向外側に向かって延伸している。しかしながら、テーパ部28dは、最内径部28eよりも径方向外側において最内径部28eから離隔した位置を起点に延伸してもよい。ただし、テーパ部28dが、最内径部28eから径方向外側に向かって延伸することで、挿通孔24bより僅かでも径方向外側に向かった潤滑油を、テーパ部28dに沿わせて径方向外側に向かわせることができ、さらなるシール性向上を図ることができる。
 本実施形態では、シールプレート24が対向部材である。しかしながら、対向部材は上述のシールプレート24に限られない。即ち、他の部材が、転がり軸受8に対してシャフト9の軸方向に対向し、且つ、シャフト9が挿通される挿通孔24bが開口する対向面を含む本体部24aを有してもよい。
 本実施形態では、軸受部として転がり軸受8が設けられている。しかしながら、軸受部は、シャフト9を回転可能に支持する他の軸受であってもよい。
 本実施形態では、過給機Cが電動機5を備えている。しなしながら、過給機の仕様に応じて、電動機5は省略されてもよい。ただし、電動機5を備える場合、電動機5の分だけ過給機Cがシャフト9の軸方向に大きくなり易い。さらなる大型化を回避するため、第1排油空間Saや第2排油空間Sbを確保する空間が限られる場合でも、上記のようにシール性を向上することができる。
 本実施形態では、オイルシール構造Oが、過給機Cにおいて収容孔2bのコンプレッサインペラ11側に配設されている。しかしながら、オイルシール構造Oは、収容孔2bのタービンインペラ10側に配設されてもよい。また、オイルシール構造Oを設ける装置は、過給機Cに限らず、軸受部を有する他の回転機械であってもよい。
 本開示はかかる実施形態に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得る。それらは、当然に本開示の技術的範囲に属する。

Claims (7)

  1.  ハウジングに形成された収容孔に収容される、シャフトの軸受部と、
     前記軸受部に対して前記シャフトの軸方向に対向し、且つ、該シャフトが挿通される挿通孔が開口する対向面を含む本体部を有する対向部材と、
    を備え、
     前記対向部材は、
     前記対向面に形成され、前記軸受部から離隔する方向に窪むとともに、少なくとも一部が前記軸受部と対向する油溝を備え、
     前記対向面において、前記挿通孔が開口する部位は、前記油溝のうち最も深い最深部よりも、前記軸受部側に突出していることを特徴とするオイルシール構造。
  2.  前記油溝は、前記挿通孔から前記シャフトの径方向外側へ連続して形成されることを特徴とする請求項1に記載のオイルシール構造。
  3.  前記油溝を形成する壁部のうち前記挿通孔と連続する部分は、前記径方向外側に向かうにつれ、前記軸受部から離隔する向きに傾斜するテーパ部を含むことを特徴とする請求項2に記載のオイルシール構造。
  4.  前記テーパ部は、前記挿通孔に連続する最も前記シャフトの径方向内側に位置する最内径部から該径方向外側に向かって延伸することを特徴とする請求項3に記載のオイルシール構造。
  5.  前記本体部の内部に形成され、前記挿通孔よりも前記シャフトの径方向外側に延伸するとともに、該挿通孔と連通する環状のスクロール流路と、
     前記スクロール流路を前記シャフトの径方向外側から囲繞するとともに、該シャフトの径方向内側ほど前記軸受部から離隔する向きに傾斜する傾斜面と、
     前記傾斜面から前記シャフトの径方向内側に連続して形成され、前記本体部の内部を前記軸受部側に向かって突出するとともに、内周側に前記挿通孔が形成される環状の返し部と、
    をさらに備えることを特徴とする請求項1から4のいずれか1項に記載のオイルシール構造。
  6.  前記対向部材は、前記収容孔から、前記シャフトに設けられるインペラ側への潤滑油の漏出を抑制するシールプレートであることを特徴とする請求項1から5のいずれか1項に記載のオイルシール構造。
  7.  前記請求項1から6のいずれか1項に記載のオイルシール構造を備えることを特徴とする過給機。
PCT/JP2016/070885 2015-07-22 2016-07-14 オイルシール構造、および、過給機 WO2017014156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680041623.0A CN107849972B (zh) 2015-07-22 2016-07-14 油封构造及增压器
JP2017529861A JP6586996B2 (ja) 2015-07-22 2016-07-14 オイルシール構造、および、過給機
DE112016003288.9T DE112016003288T5 (de) 2015-07-22 2016-07-14 Öldichtungsstruktur und turbolader
US15/869,195 US10294995B2 (en) 2015-07-22 2018-01-12 Oil seal structure and turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015144744 2015-07-22
JP2015-144744 2015-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/869,195 Continuation US10294995B2 (en) 2015-07-22 2018-01-12 Oil seal structure and turbocharger

Publications (1)

Publication Number Publication Date
WO2017014156A1 true WO2017014156A1 (ja) 2017-01-26

Family

ID=57833921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070885 WO2017014156A1 (ja) 2015-07-22 2016-07-14 オイルシール構造、および、過給機

Country Status (5)

Country Link
US (1) US10294995B2 (ja)
JP (1) JP6586996B2 (ja)
CN (1) CN107849972B (ja)
DE (1) DE112016003288T5 (ja)
WO (1) WO2017014156A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202687A1 (de) * 2017-02-20 2018-08-23 BMTS Technology GmbH & Co. KG Lagergehäuse und ein Abgasturoblader mit einem solchen Gehäuse
CN108087323A (zh) * 2017-12-27 2018-05-29 安徽虎渡科达流体机械有限公司 一种离心鼓风机油封装置
JP6923086B2 (ja) * 2018-07-26 2021-08-18 株式会社Ihi 軸受構造
US11371521B2 (en) * 2019-04-10 2022-06-28 Borgwarner Inc. High temperature face seal
JP7311029B2 (ja) * 2020-03-24 2023-07-19 株式会社Ihi 過給機
FR3110631B1 (fr) * 2020-05-25 2022-07-01 Poclain Hydraulics Ind Lubrification améliorée pour étanchéité de machine tournante.
US11655721B2 (en) 2020-10-29 2023-05-23 Borgwarner Inc. Turbocharger including a sealing assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043137U (ja) * 1983-09-01 1985-03-27 石川島播磨重工業株式会社 過給機軸受の給油装置
JPH0565829A (ja) * 1991-09-05 1993-03-19 Hitachi Ltd 過給機
JP2000213541A (ja) * 1999-01-25 2000-08-02 Mitsubishi Motors Corp 潤滑油供給構造
JP2012036855A (ja) * 2010-08-09 2012-02-23 Ihi Corp 転がり軸受を用いたターボチャージャ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787122U (ja) * 1980-11-19 1982-05-29
JPS63186934U (ja) * 1987-05-22 1988-11-30
US6220829B1 (en) * 1998-10-05 2001-04-24 Glenn F. Thompson Turbocharger rotor with low-cost ball bearing
US9222366B2 (en) 2010-08-24 2015-12-29 Borgwarner Inc. Exhaust-gas turbocharger
JP2014051897A (ja) 2012-09-05 2014-03-20 Ihi Corp 過給機
JP6248479B2 (ja) 2013-08-30 2017-12-20 株式会社Ihi ロータ軸支持構造及び過給機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043137U (ja) * 1983-09-01 1985-03-27 石川島播磨重工業株式会社 過給機軸受の給油装置
JPH0565829A (ja) * 1991-09-05 1993-03-19 Hitachi Ltd 過給機
JP2000213541A (ja) * 1999-01-25 2000-08-02 Mitsubishi Motors Corp 潤滑油供給構造
JP2012036855A (ja) * 2010-08-09 2012-02-23 Ihi Corp 転がり軸受を用いたターボチャージャ

Also Published As

Publication number Publication date
JP6586996B2 (ja) 2019-10-09
US20180135698A1 (en) 2018-05-17
DE112016003288T5 (de) 2018-04-05
CN107849972A (zh) 2018-03-27
CN107849972B (zh) 2020-03-06
US10294995B2 (en) 2019-05-21
JPWO2017014156A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6586996B2 (ja) オイルシール構造、および、過給機
JP5522113B2 (ja) ターボチャージャ
WO2015186524A1 (ja) 軸受構造、および、過給機
CN109882284B (zh) 涡轮增压器
CN108138844B (zh) 轴承构造以及增压器
CN108350932B (zh) 轴承构造以及增压器
WO2017057482A1 (ja) 遠心圧縮機
JP6601499B2 (ja) 軸受構造、および、過給機
US10557377B2 (en) Turbocharger
CN107850120B (zh) 轴承结构以及增压器
US10400824B2 (en) Oil seal structure and turbocharger
CN112154261A (zh) 轴承构造以及增压器
WO2018061651A1 (ja) シール機構、回転機械
CN109923292B (zh) 轴承构造及增压器
JP6102866B2 (ja) 圧縮機
WO2017026293A1 (ja) 軸受構造、および、過給機
JP6769559B2 (ja) 過給機
CN112041573B (zh) 轴承及增压器
CN115698481A (zh) 导油器及增压器
JP2024147712A (ja) 冷媒圧縮用スクロール圧縮機、及びオイル濃縮並びに分配方法
JP2020051393A (ja) 排気ターボ過給機の軸受の構造
JP2020139433A (ja) 回転機械
JP2016113934A (ja) ターボチャージャ用軸受機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529861

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003288

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827716

Country of ref document: EP

Kind code of ref document: A1