WO2017013715A1 - 空気調和装置の室内機、及びその室内機を備えた空気調和装置 - Google Patents
空気調和装置の室内機、及びその室内機を備えた空気調和装置 Download PDFInfo
- Publication number
- WO2017013715A1 WO2017013715A1 PCT/JP2015/070579 JP2015070579W WO2017013715A1 WO 2017013715 A1 WO2017013715 A1 WO 2017013715A1 JP 2015070579 W JP2015070579 W JP 2015070579W WO 2017013715 A1 WO2017013715 A1 WO 2017013715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- refrigerant
- indoor unit
- indoor
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0003—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
Definitions
- the present invention relates to an indoor unit of an air conditioner and an air conditioner including the indoor unit, and more particularly to an indoor unit of an air conditioner that executes predetermined control when refrigerant leakage occurs from the air conditioner. And an air conditioner equipped with the indoor unit.
- a combustible refrigerant such as R32 may be used as the refrigerant sealed in the refrigerant circuit of the air conditioner. If the combustible refrigerant leaks into the room in a state where the airflow in the air-conditioning target space (for example, the room) is weak, the refrigerant may stay in the room without diffusing into the room. As a result, a flammable refrigerant may accumulate in the room, and a flammable region may be formed.
- a conventional air conditioner uses a temperature sensor to grasp the position of a heat source in an air-conditioned space, blows air toward a place without a heat source, and sends a leaked refrigerant toward a place without a heat source.
- What has been proposed has been proposed (see, for example, Patent Document 1).
- a conventional air conditioner has been proposed that includes a mechanism for discharging the refrigerant outside the room when refrigerant leakage occurs (see, for example, Patent Document 2).
- the refrigerant leaked from the air conditioner is blown to a place where there is a low temperature ignition device such as a gas stove or stove, and a combustible region is formed where the ignition device is located. May end up. For this reason, when the ignition device is turned on, the refrigerant in the combustible region may be ignited.
- a low temperature ignition device such as a gas stove or stove
- the present invention has been made to solve the above-described problems, and includes an indoor unit of an air conditioner that can more reliably suppress the formation of a combustible region, and an air conditioner including the indoor unit. It is intended to provide.
- An indoor unit of an air conditioner according to the present invention is provided in a housing formed with a suction port, a blower outlet, and an air passage extending from the suction port to the blower outlet, and is blown out from the blower outlet.
- a plate-like air direction adjusting member that changes the direction of the air to be supplied, an indoor heat exchanger provided in the air passage of the housing, and an indoor fan provided in the air passage of the housing and supplying air to the indoor heat exchanger
- a refrigerant leakage detection sensor that is provided in the air passage of the housing and detects refrigerant leakage, and rotates the wind direction adjusting member when it is determined that there is refrigerant leakage based on the detection result of the refrigerant leakage detection sensor.
- a control device for operating the blower.
- the air direction adjusting member is moved and the indoor fan is operated.
- the formation of the combustible region can be suppressed.
- FIG. 1 It is a figure which shows an example of the refrigerant circuit structure of the air conditioning apparatus 200 which concerns on embodiment of this invention.
- FIG. 1 It is explanatory drawing of the state remove
- FIG. 1 is a diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus 200 according to the present embodiment. With reference to FIG. 1, the structure of the air conditioning apparatus 200 etc. are demonstrated.
- the indoor unit 100 of the air conditioner 200 according to the present embodiment is provided with an improvement that can more reliably suppress the formation of the combustible region.
- the air conditioner 200 includes, for example, an indoor unit 100 installed in an air-conditioning target space (such as a room, a room in a building, a warehouse), and an outdoor unit 150 installed outside the air-conditioning target space, for example. It is what has. And the air conditioning apparatus 200 has the refrigerant circuit C comprised by connecting the indoor unit 100 and the outdoor unit 150 with refrigerant
- the air conditioner 200 functions as a compressor 10 that compresses a refrigerant, a flow path switching valve 11 that is used to switch between cooling and heating, a condenser (radiator) during cooling, and an evaporator during heating. It has an outdoor heat exchanger 16 that functions, a throttling device 13 that decompresses the refrigerant, and an indoor heat exchanger 3 that functions as an evaporator during cooling and functions as a condenser during heating.
- the outdoor heat exchanger 16 is provided with an outdoor blower 16A used to promote heat exchange between air and the refrigerant.
- the compressor 10 includes, for example, a compression mechanism section in which a compression chamber for compressing a refrigerant is formed, an electric motor that drives the compression mechanism section, and the like.
- the electric motor includes, for example, a stator around which a coil is wound, a rotor connected to a fan through a shaft, and the like.
- the refrigerant used in the air conditioner 200 will be described.
- R32 refrigerant or the like is used as the refrigerant sealed in the refrigerant circuit C.
- R32 refrigerant is flammable and heavier than air.
- coolant enclosed with the refrigerant circuit C is not limited to R32 refrigerant
- FIG. 2 is a front view of the indoor unit 100 of the air conditioning apparatus 200 according to the present embodiment.
- FIG. 3 is an explanatory diagram of an outer structure and an inner structure of the indoor unit 100 of the air-conditioning apparatus 200 according to the present embodiment.
- FIG. 3 it is the figure which looked at the external structure and internal structure of the indoor unit 100 from the side. A configuration and the like of the indoor unit 100 will be described with reference to FIGS.
- the indoor unit 100 includes a housing 1 that forms an outer shell, an indoor blower 2 provided in the housing 1, and a housing 1 that functions as a condenser or an evaporator.
- the indoor heat exchanger 3 is provided.
- the indoor unit 100 is also in operation with an electrical component box 18 provided with a refrigerant leakage detection sensor 6 that is used to detect refrigerant leaking into the housing 1, a control device 7 that controls various devices, and the like. And a display panel unit 8 for displaying the presence or the like.
- the housing 1 has, for example, a rectangular parallelepiped outer shape, and has an air passage R1 through which air flows.
- the housing 1 is formed with an air outlet 1A used for releasing air and an inlet 1B used for taking air.
- an inlet 1B, an indoor fan 2, an indoor heat exchanger 3, and an outlet 1A are located from the downstream side in the air flow direction.
- the suction port 1B is provided with a grill portion 1B1 extending in parallel with the horizontal direction. Insertion of fingers into the suction port 1B can be prevented by the grill portion 1B1.
- a rotatable louver 30 and a vane 31 are provided at the air outlet 1A.
- louver 30 By providing the louver 30, the direction of the air discharged by the action of the indoor blower 2 can be adjusted to the left and right.
- vane 31 By providing the vane 31, the direction of the air discharged by the action of the indoor blower 2 can be adjusted up and down.
- the configurations of the louver 30 and the vane 31 will be described in detail with reference to FIGS.
- the housing 1 supports a front panel 1C that constitutes a part of the front surface of the indoor unit 100, a bottom surface portion 1D that supports its own weight, a back surface portion 1E that is described in the vertical direction, and a lower end side of the indoor heat exchanger 3. It has support part 1F and upper surface part 1G which constitutes the upper surface of indoor unit 100.
- the front panel 1C has a design surface of the indoor unit 100 on the front surface (front surface) side.
- a suction port 1B is formed below the front panel 1C.
- a blower outlet 1A is formed on the upper side of the front panel 1C.
- the display panel part 8 is arrange
- the bottom surface portion 1D is provided with a leg portion or the like whose bottom surface is placed on the floor surface of the air conditioning target space.
- a refrigerant leakage detection sensor 6 is disposed above the bottom surface portion 1D.
- the back surface portion 1 ⁇ / b> E is provided on the back side of the indoor heat exchanger 3. The distance between the back surface portion 1E and the indoor heat exchanger 3 becomes closer to the upper end of the indoor heat exchanger 3.
- Support part 1F is arranged on the back side of front panel 1C. Moreover, the support part 1F is arrange
- the upper surface portion 1G is provided so as to be orthogonal to the back surface portion 1E.
- the upper end side of the indoor heat exchanger 3 is located on the rear end side of the upper surface portion 1G, and the air outlet 1A is located on the front end side of the upper surface portion 1G.
- the indoor blower 2 includes, for example, a fan and a motor that drives the fan.
- the indoor blower 2 takes air into the housing 1 and discharges air outside the housing 1.
- the indoor blower 2 is disposed on the upstream side of the indoor heat exchanger 3.
- the indoor blower 2 is disposed at the lower part of the indoor heat exchanger 3.
- the indoor heat exchanger 3 is inclined so that the lower side comes to the front side rather than the upper side.
- the indoor heat exchanger 3 can be composed of, for example, a fin and tube heat exchanger.
- the indoor heat exchanger 3 is connected to the outdoor heat exchanger 16 provided in the outdoor unit 150 via a refrigerant pipe.
- An air outlet 1 ⁇ / b> A is located in front of the indoor heat exchanger 3. More specifically, the upper end side of the front surface of the indoor heat exchanger 3 and the portion where the air outlet 1A of the housing 1 is formed face each other.
- the refrigerant leakage detection sensor 6 is used to detect the refrigerant staying on the lower side in the housing 1 when the refrigerant leaks into the housing 1.
- the refrigerant leakage detection sensor 6 is provided in the middle of the air path R1.
- the refrigerant leakage detection sensor 6 is disposed in the lower part in the housing 1.
- the refrigerant leakage detection sensor 6 is disposed at a position where the height position from the floor surface is within 10 cm, for example.
- the portion located in the housing 1 is damaged, and when refrigerant leakage occurs, most of the flammable refrigerant is heavier than air. It moves below the position of the exchanger 3.
- the refrigerant leakage detection sensor 6 can detect the refrigerant that has moved to the lower side.
- various types such as an oxygen concentration type and a combustible gas detection type can be adopted, for example.
- the electrical component box 18 is provided with a control device 7 that executes various controls.
- the control device 7 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detection sensor 6. And the control apparatus 7 controls the indoor air blower 2, the louver 30, vane 31, etc. based on this determination result.
- the configuration of the control device 7 will be described in detail with reference to FIG.
- the display panel unit 8 is disposed on the upper part of the housing 1, for example.
- the display panel unit 8 is provided with a display unit that can display information such as cooling operation, heating operation, and set temperature.
- the display panel unit 8 is also provided with an operation unit for inputting the operation details of the indoor unit 100.
- FIG. 3 is an explanatory diagram of an outer structure and an inner structure of the indoor unit 100 of the air-conditioning apparatus 200 according to the present embodiment.
- FIG. 4 is an explanatory diagram of a louver 30 that is a wind direction adjusting member and a vane 31 that is a wind direction adjusting member provided at the air outlet 1A of the indoor unit 100 of the air conditioner 200 according to the present embodiment.
- FIG. 5 is an explanatory diagram of a state in which the louver 30 is removed from the indoor unit 100 illustrated in FIG. 4. The configuration and the like of the louver 30 and the vane 31 that are wind direction adjusting members will be described with reference to FIGS.
- a plurality of louvers 30 are provided at the air outlet 1A.
- the number of louvers 30 is not limited to plural, and may be single.
- Louver 30 is attached to opening edge L of blower outlet 1A.
- the opening edge L is configured in a rectangular shape.
- the opening edge L includes a side edge L1 and a side edge L2 that face each other, and an upper edge L3 and a lower edge L4 that face each other.
- the side edge L1 and the side edge L2, and the upper edge L3 and the lower edge L4 are orthogonal to each other.
- louver 30 One end of the louver 30 is rotatably connected to the side edge L1, and the other end of the louver 30 is rotatably connected to the side edge L2.
- a vane 31 is disposed on the rear side of the louver 30. That is, the vane 31 is disposed upstream of the louver 30 in the air flow direction.
- the indoor unit 100 can change the direction of the louver 30 in the vertical direction by the action of a louver actuator (not shown) whose operation is controlled by the control device 7.
- a plurality of vanes 31 are also provided at the outlet 1A.
- the number of vanes 31 is not limited to plural, and may be singular.
- the vane 31 is attached to the upper edge L3 and the lower edge L4 of the opening edge L of the air outlet 1A. Specifically, the upper end portion of the vane 31 is rotatably connected to the upper edge portion L3, and the lower end portion of the vane 31 is rotatably connected to the lower edge portion L4.
- a louver 30 is positioned on the front side of the vane 31 so as to face the vane 31.
- the indoor unit 100 can change the direction of the vane 31 in the left-right direction by the action of a vane actuator (not shown) controlled by the control device 7.
- FIG. 7 is an explanatory diagram of the configuration of the control device 7 of the indoor unit 100 of the air-conditioning apparatus 200 according to the present embodiment.
- coolant leakage detection sensor 6, the functional block of the control apparatus 7, and the actuator etc. which are controlled by the control apparatus 7 are demonstrated.
- the control device 7 controls the leakage determination unit 7A from which the detection result of the refrigerant leakage detection sensor 6 is output, the louver control unit 7B that controls the louver actuator RA that operates the louver 30, and the vane actuator VA that operates the vane 31.
- a vane control unit 7C that controls the motor of the indoor blower 2, and a rotor rotation number control unit 7E that controls an electric motor provided in the compressor 10.
- the leakage determination unit 7A determines whether or not refrigerant leakage has occurred based on the output (for example, voltage) from the refrigerant leakage detection sensor 6. When the refrigerant leakage detection sensor 6 detects refrigerant leakage, the leakage determination unit 7A determines that there is refrigerant leakage. Leakage determination unit 7A determines that refrigerant leakage has occurred, for example, when the output from refrigerant leakage detection sensor 6 has changed to be in a first range set in advance. Note that the leakage determination unit 7A operates whether the user turns on or off the indoor unit 100. That is, regardless of whether the indoor unit 100 is ON or OFF, the indoor unit 100 determines refrigerant leakage.
- the louver control unit 7B controls the louver actuator RA based on the determination result of the leakage determination unit 7A.
- the louver control unit 7B controls the louver actuator RA so that the louver 30 performs a swing operation, whether or not the indoor unit 100 is ON.
- the swing operation refers to an operation in which the direction of the louver 30 is alternately changed to a first direction (right) and a second direction (left) that is opposite to the first direction.
- the louver actuator RA can be composed of a drive component such as a motor, for example.
- the vane control unit 7C controls the vane actuator VA based on the determination result of the leakage determination unit 7A.
- the vane control unit 7C controls the vane actuator VA according to the angle of the vane 31 regardless of whether the indoor unit 100 is ON.
- the vane actuator VA By controlling the vane actuator VA, the vane 31 is rotated and the angle of the vane 31 is changed. For example, when the angle of the vane 31 is directed downward, the angle of the vane 31 may be parallel to the horizontal, or the angle of the vane 31 may be upward. .
- the vane actuator VA can be configured by a driving component such as a motor, for example, similarly to the louver actuator RA.
- the fan rotation speed control unit 7D increases the fan rotation speed of the indoor blower 2 when it is determined that there is a refrigerant leak while the indoor unit 100 is in operation (the indoor blower 2 is in operation).
- the fan rotation speed control unit 7D may control the indoor fan 2 to increase from the fan rotation speed at the time of the current operation, or control the maximum fan rotation speed in the air conditioning operation. May be.
- the fan rotation number control unit 7D sets the fan rotation number of the indoor blower 2 as the fan rotation number exceeding the maximum fan rotation number in the air conditioning operation. Also good. This is because there is no problem even if the user's comfort in the air-conditioning target space is sacrificed to some extent because refrigerant leakage occurs to some degree of urgency.
- the fan rotation speed control unit 7D operates the indoor fan 2 even when it is determined that there is a refrigerant leak while the indoor unit 100 is stopped (the indoor fan 2 is stopped).
- the fan speed of the indoor blower 2 may be controlled to be the maximum fan speed in the air conditioning operation, or the fan speed exceeding the maximum fan speed in the air conditioning operation may be implemented. Also good.
- the louver control unit 7B, the vane control unit 7C, and the fan rotation speed control unit 7D can control the actuators and the like to more reliably diffuse the refrigerant that has leaked into the air-conditioning target space. Therefore, it is possible to prevent the combustible concentration of refrigerant from staying in the air-conditioning target space and forming a combustible region.
- the rotor rotation speed control unit 7E stops the compressor 10 when the compressor 10 is operating when the leakage determination unit 7A determines that there is refrigerant leakage.
- the indoor heat exchanger 3 or the like is damaged and refrigerant leakage occurs, if the compressor 10 continues operation, the refrigerant leakage amount increases. Therefore, when it is determined that there is refrigerant leakage, the compressor 10 is stopped to suppress the refrigerant leakage amount. Therefore, the rotor rotation speed control unit 7E controls the electric motor of the compressor 10 and stops the compressor 10 when the leakage determination unit 7A determines that there is refrigerant leakage.
- the indoor unit 100 of the air conditioning apparatus 200 includes a housing 1 in which an inlet 1B, an outlet 1A, and an air passage R1 extending from the inlet 1B to the outlet 1A are formed.
- a plate-like air direction adjusting member (louver 30 and vane 31) that is provided at the air outlet 1A and changes the direction of the air blown from the air outlet 1A, and the indoor heat exchanger 3 that is provided in the air path R1 of the housing 1.
- An indoor fan 2 that is provided in the air path R1 of the housing 1 and supplies air to the indoor heat exchanger 3, and a refrigerant leak detection sensor 6 that is provided in the air path R1 of the housing 1 and detects refrigerant leakage; And a control device 7 that moves the wind direction adjusting member and operates the indoor blower 2 when it is determined that there is a refrigerant leak based on the detection result of the refrigerant leak detection sensor 6.
- the indoor unit 100 of the air-conditioning apparatus 200 forms a combustible region in the air-conditioning target space without including a mechanism for discharging the refrigerant leaked into the air-conditioning target space to the outside of the air-conditioning target space (for example, outdoors). It can be suppressed. Thereby, the indoor unit 100 of the air conditioning apparatus 200 according to the present embodiment can suppress an increase in manufacturing cost.
- control part 5 is performing the determination of a refrigerant
- the direction of the wind direction adjusting member (louver 30 and vane 31) is changed to the first direction and the first direction.
- a swing operation that alternates in a second direction that is opposite to the direction of 1 is executed.
- the leaked refrigerant can be more reliably diffused, and it is possible to suppress the accumulation of the combustible concentration in the air-conditioning target space and the formation of the combustible region.
- the indoor unit 100 performs a swing operation, and thus can supply air to the air-conditioning target space by avoiding the obstacle. It is possible to suppress the formation of a combustible region in the air-conditioning target space.
- the wind direction adjusting member is parallel to the vertical direction, the first wind direction plate (louver 30) whose direction changes to the horizontal direction, and parallel to the horizontal direction.
- a second wind direction plate (vane 31) that is attached to a position opposed to the first wind direction plate (louver 30) and whose direction changes in the vertical direction, and the control device 7 determines that there is refrigerant leakage
- a swing operation is performed in which the direction of the first wind direction plate (louver 30) is alternately changed to right and left, and when the direction of the second wind direction plate (vane 31) is the lower side, the second wind direction plate ( The vane 31) is rotated upward.
- the control device 7 determines that there is a refrigerant leak, not only the swing operation is performed on the first wind direction plate (louver 30) but also the second wind direction plate (vane 31) is rotated. Although the aspect which performs is demonstrated, it is not limited to it.
- the control device 7 may be configured to move only the first wind direction plate and not move the second wind direction plate. Also by this, it is possible to avoid the refrigerant being unevenly distributed in the air-conditioning target space. Further, when it is determined that there is refrigerant leakage, the control device 7 may be configured to move only the second wind direction plate and not move the first wind direction plate.
- control device 7 may provide lugs for the swing operation of the first wind direction plate and the rotation operation of the second wind direction plate. That is, after the swing operation of the first wind direction plate is executed, the rotation operation of the second wind direction plate may be executed.
- the control device 7 of the indoor unit 100 of the air conditioner 200 determines the speed of the swing operation of the wind direction adjusting member (louver 30 and vane 31) based on the fan rotation speed of the indoor blower 2. It is what. When the air blown out from the air outlet 1A passes through the louver 30 and the vane 31, a pressure loss of air occurs. Therefore, the control device 7 reduces the speed of the swing operation of the air direction adjusting member when the fan rotation speed of the indoor blower 2 is large. Moreover, the control apparatus 7 raises the speed of the swing operation
- the control device 7 has a higher speed of the swing operation of the wind direction adjusting member when the fan rotation number of the indoor blower 2 is smaller than the speed of the swing operation of the wind direction adjusting member when the fan rotation number of the indoor blower 2 is large.
- the indoor blower 2 is controlled so that it becomes. Thereby, it can suppress that the pressure loss of the air which blows off from the blower outlet 1A increases. Therefore, air can be discharged from the air outlet 1A to the air-conditioning target space with higher efficiency, and the refrigerant in the air-conditioning target space can be more reliably diffused.
- the control device 7 of the indoor unit 100 of the air conditioning apparatus 200 determines that there is a refrigerant leakage, the fan rotational speed is larger than the maximum value of the fan rotational speed of the indoor blower 2 in the air conditioning operation.
- the indoor blower 2 is operated.
- refrigerant leakage occurs, there is an urgency because the possibility of ignition of the refrigerant increases, so that the fan rotation of the indoor blower 2 can be performed even if the comfort of the user in the air-conditioned space is somewhat sacrificed. Increase the number.
- coolant of the air-conditioning object space can be diffused more reliably.
- the housing 1 is a floor-standing type in which a bottom surface portion 1D serving as a placement surface is formed, a suction port 1B is formed in the lower portion, and a blowout port 1A is formed in the upper part, and the refrigerant leak detection sensor 6 is arranged in the lower part in the housing 1.
- Inflammable refrigerants such as R32 refrigerant may be heavier than air. When the refrigerant leaks, the refrigerant comes down. Thus, the refrigerant that has come down can be reliably detected by the refrigerant leakage detection sensor 6.
- the air conditioner 200 includes an indoor unit 100 and an outdoor unit 150 connected to the indoor unit 100 via a refrigerant pipe, and circulates between the indoor unit 100 and the outdoor unit 150.
- the refrigerant is a combustible refrigerant. That is, since the air conditioner 200 includes the indoor unit 100, the refrigerant leaked into the air-conditioning target space can be more reliably diffused, and a combustible concentration of refrigerant stays in the air-conditioning target space, thereby forming a combustible region. It can be suppressed.
- 1 casing 1A outlet, 1B inlet, 1B1 grill section, 1C front panel, 1D bottom section, 1E back section, 1F support section, 1G top section, 2 indoor fan, 3 indoor heat exchanger, 6 refrigerant leakage detection Sensor, 7 control device, 7A leakage judgment unit, 7B louver control unit, 7C vane control unit, 7D fan rotation speed control unit, 7E rotor rotation speed control unit, 8 display panel unit, 10 compressor, 11 flow path switching valve, 13 throttle device, 16 outdoor heat exchanger, 16A outdoor fan, 18 electrical box, 30 louver, 31 vane, 100 indoor unit, 150 outdoor unit, 200 air conditioner, C refrigerant circuit, L opening edge, L1 side Edge, L2 side edge, L3 upper edge, L4 lower edge, R1 airway, RA louver actuator, VA base Down actuator.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
図1は、本実施の形態に係る空気調和装置200の冷媒回路構成の一例を示す図である。図1を参照して、空気調和装置200の構成等について説明する。
本実施の形態に係る空気調和装置200の室内機100は、より確実に可燃領域の形成を抑制することができる改良が加えられたものである。
空気調和装置200は、図1に示すように、たとえば空調対象空間(室内、ビルの一室、倉庫等)に設置される室内機100と、たとえば空調対象空間外に設置される室外機150とを有しているものである。そして、空気調和装置200は、室内機100と室外機150とが冷媒配管で接続されて構成された冷媒回路Cを有している。
室内機100は、図2に示すように、外郭等を構成する筐体1と、筐体1内に設けられた室内送風機2と、筐体1内に設けられ、凝縮器又は蒸発器として機能する室内熱交換器3とを備えている。
また、室内機100は、筐体1に漏洩する冷媒を検知するのに利用される冷媒漏洩検知センサ6と、各種機器を制御する制御装置7が設けられた電気品箱18と、運転中であること等を表示する表示パネル部8とを備えている。
筐体1は、たとえば直方体形状の外郭を有するものであり、内部に空気が流れる風路R1が形成されているものである。筐体1は、空気を放出するのに利用される吹出口1A及び空気を取り込むのに利用される吸込口1Bが形成されている。筐体1には、空気流れ方向の下流側から、吸込口1B、室内送風機2、室内熱交換器3及び吹出口1Aが位置している。吸込口1Bには、水平方向に平行に延びるグリル部1B1が設けられている。グリル部1B1により吸込口1Bに手指を挿入する等を防止することができる。
また、吹出口1Aには、回転自在のルーバー30及びベーン31が設けられている。ルーバー30が設けられていることにより、室内送風機2の作用で放出される空気の方向を左右に調節することができる。ベーン31が設けられていることにより、室内送風機2の作用で放出される空気の方向を上下に調節することができる。ルーバー30及びベーン31の構成については、図4~図6で詳しく説明する。
室内送風機2は、たとえば、ファン及びこのファンを駆動するモーター等で構成されるものであり、筐体1内に空気を取り込み、筐体1外に空気を放出するものである。室内送風機2は、室内熱交換器3の上流側に配置されている。また、室内送風機2は、室内熱交換器3の下部に配置されている。
室内熱交換器3は、上側よりも下側の方が前面側にくるように傾斜配置されている。室内熱交換器3は、たとえば、フィンアンドチューブ熱交換器等で構成することができる。室内熱交換器3は、室外機150に設けられた室外熱交換器16に冷媒配管を介して接続されている。室内熱交換器3の正面には、吹出口1Aが位置している。より詳細には、室内熱交換器3の前面の上端側と、筐体1の吹出口1Aの形成部分とは、対向している。
冷媒漏洩検知センサ6は、筐体1内に冷媒が漏洩したときにおいて、筐体1内の下側に滞留する冷媒を検知するのに利用されるものである。冷媒漏洩検知センサ6は、風路R1の途中に設けられている。冷媒漏洩検知センサ6は、筐体1内の下部に配置されている。冷媒漏洩検知センサ6は、たとえば、床面からの高さ位置が10cm以内になる位置に配置される。
室内熱交換器3に接続された冷媒配管のうち筐体1内に位置している部分が損傷等することで、冷媒漏洩が発生した場合に、可燃性冷媒の多くは空気より重いので室内熱交換器3の位置よりも下側に移動する。冷媒漏洩検知センサ6は、この下側に移動してきた冷媒を検知することができる。冷媒漏洩検知センサ6は、たとえば、酸素濃度式、可燃性ガス検知式等の各種の方式のものを採用することができる。
電気品箱18には、各種の制御を実行する制御装置7等が設けられている。制御装置7は、冷媒漏洩検知センサ6の検知結果に基づいて冷媒漏洩が発生しているか否かを判定するものである。そして、制御装置7は、この判定結果に基づいて、室内送風機2、ルーバー30及びベーン31等を制御する。制御装置7の構成については、図7で詳しく説明する。
表示パネル部8は、たとえば、筐体1の上部に配置されているものである。表示パネル部8には、たとえば、冷房運転、暖房運転、設定温度等の情報を表示することができる表示部が設けられている。なお、表示パネル部8には、室内機100の運転内容を入力する操作部等も設けられている。
図3は、本実施の形態に係る空気調和装置200の室内機100の外郭構造及び内部構造の説明図である。図4は、本実施の形態に係る空気調和装置200の室内機100の吹出口1Aに設けられた風向調整部材であるルーバー30及び風向調整部材であるベーン31の説明図である。図5は、図4に示す室内機100からルーバー30を除いた状態の説明図である。図3~図5を参照して風向調整部材であるルーバー30及びベーン31の構成等について説明する。
図7は、本実施の形態に係る空気調和装置200の室内機100の制御装置7の構成等の説明図である。図7を参照して、冷媒漏洩検知センサ6、制御装置7の機能ブロック、及び、制御装置7によって制御されるアクチュエータ等について説明する。
本実施の形態に係る空気調和装置200の室内機100は、吸込口1Bと吹出口1Aと吸込口1Bから吹出口1Aに至る風路R1とが形成された筐体1と、筐体1の吹出口1Aに設けられ、吹出口1Aから吹き出される空気の方向を変える板状の風向調整部材(ルーバー30及びベーン31)と、筐体1の風路R1に設けられた室内熱交換器3と、筐体1の風路R1に設けられ、室内熱交換器3に空気を供給する室内送風機2と、筐体1の風路R1に設けられ、冷媒漏洩を検知する冷媒漏洩検知センサ6と、冷媒漏洩検知センサ6の検知結果に基づいて冷媒漏洩があると判定した場合に、風向調整部材を動かすとともに室内送風機2を運転する制御装置7と、を備えたものである。これにより、空調対象空間に漏洩した冷媒をより確実に拡散することができ、空調対象空間に可燃濃度の冷媒が滞留し、可燃領域が形成されることを抑制することができる。
なお、R32冷媒等のように可燃性冷媒は空気より重い場合がある。冷媒が漏洩すると冷媒が床面に降りてきて、冷媒が空調対象空間の下部に滞留することになる。このため、上記構成を有していると、空調対象空間のうちの下側の空間に偏在してしまうことを回避することができる。
また、制御装置7は、冷媒漏洩があると判定した場合に、第2の風向板だけを動かし、第1の風向板を動かさない態様であってもよい。これによっても、空調対象空間のうちの下側の空間に冷媒が偏在してしまうことを回避することができる。
さらに、制御装置7は、第1の風向板のスイング動作と、第2の風向板の回動動作にラグを設けてもよい。つまり、第1の風向板のスイング動作を実行してから、第2の風向板の回動動作を実行するようにしてもよい。
吹出口1Aから吹き出される空気がルーバー30及びベーン31を通過する際には、空気の圧力損失が生じる。そこで、制御装置7は、室内送風機2のファン回転数が大きい場合に、風向調整部材のスイング動作の速度を落とす。また、制御装置7は、室内送風機2のファン回転数が小さい場合に、風向調整材のスイング動作の速度を上げる。すなわち、制御装置7は、室内送風機2のファン回転数が大きい場合における風向調整部材のスイング動作の速度よりも、室内送風機2のファン回転数が小さい場合における風向調整部材のスイング動作の速度が大きくなるように、室内送風機2を制御する。
これにより、吹出口1Aから吹き出される空気の圧力損失が増大することを抑制することができる。したがって、より高効率に空調対象空間に吹出口1Aから空気を放出させることができ、より確実に空調対象空間の冷媒を拡散させることができる。
Claims (7)
- 吸込口と吹出口と前記吸込口から前記吹出口に至る風路とが形成された筐体と、
前記筐体の前記吹出口に設けられ、前記吹出口から吹き出される空気の方向を変える板状の風向調整部材と、
前記筐体の前記風路に設けられた室内熱交換器と、
前記筐体の前記風路に設けられ、前記室内熱交換器に空気を供給する室内送風機と、
前記筐体の前記風路に設けられ、冷媒漏洩を検知する冷媒漏洩検知センサと、
前記冷媒漏洩検知センサの検知結果に基づいて冷媒漏洩があると判定した場合に、前記風向調整部材を回動するとともに前記室内送風機を運転する制御装置と、
を備えた
空気調和装置の室内機。 - 前記制御装置は、
冷媒漏洩があると判定した場合に、
前記風向調整部材の向きを、第1の方向及び前記第1の方向の反対である第2の方向に交互に変えるスイング動作を実行する
請求項1に記載の空気調和装置の室内機。 - 前記風向調整部材は、
上下方向に平行であり、向きが左右方向に変わる第1の風向板と、
左右方向に平行であり、前記第1の風向板の対向位置に付設され、向きが上下方向に変わる第2の風向板とを備え、
前記制御装置は、
冷媒漏洩があると判定した場合に、
前記第1の風向板の向きを、左右に交互に変えるスイング動作を実行し、
前記第2の風向板の向きが下側であると、前記第2の風向板を上側に回動する
請求項1に記載の空気調和装置の室内機。 - 前記制御装置は、
前記室内送風機のファン回転数に基づいて、前記風向調整部材の前記スイング動作の速度を決定している
請求項2又は3に記載の空気調和装置の室内機。 - 前記制御装置は、
冷媒漏洩があると判定した場合に、
空調運転における前記室内送風機のファン回転数の最大値よりも大きいファン回転数で、前記室内送風機を運転する
請求項1~4のいずれか一項に記載の空気調和装置の室内機。 - 前記筐体は、
載置面となる底面部が形成された床置き型であり、
前記吸込口が下部に形成され、前記吹出口が上部に形成され、
前記冷媒漏洩検知センサは、
前記筐体内の下部に配置されている
請求項1~5のいずれか一項に記載の空気調和装置の室内機。 - 請求項1~6のいずれか一項に記載の空気調和装置の室内機と、
前記室内機に冷媒配管を介して接続された室外機と、を備え、
前記室内機と前記室外機との間を循環する冷媒が、可燃性冷媒である
空気調和装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15876401.9A EP3150943B1 (en) | 2015-07-17 | 2015-07-17 | Air conditioning apparatus including indoor unit and outdoor unit |
PCT/JP2015/070579 WO2017013715A1 (ja) | 2015-07-17 | 2015-07-17 | 空気調和装置の室内機、及びその室内機を備えた空気調和装置 |
JP2017529188A JP6463478B2 (ja) | 2015-07-17 | 2015-07-17 | 空気調和装置 |
CN201610439314.0A CN106352400B (zh) | 2015-07-17 | 2016-06-17 | 空调装置 |
CN201620598860.4U CN205825233U (zh) | 2015-07-17 | 2016-06-17 | 空调装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/070579 WO2017013715A1 (ja) | 2015-07-17 | 2015-07-17 | 空気調和装置の室内機、及びその室内機を備えた空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013715A1 true WO2017013715A1 (ja) | 2017-01-26 |
Family
ID=57835300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070579 WO2017013715A1 (ja) | 2015-07-17 | 2015-07-17 | 空気調和装置の室内機、及びその室内機を備えた空気調和装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3150943B1 (ja) |
JP (1) | JP6463478B2 (ja) |
CN (2) | CN106352400B (ja) |
WO (1) | WO2017013715A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018179445A (ja) * | 2017-04-18 | 2018-11-15 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機の室内機 |
WO2019016959A1 (ja) * | 2017-07-21 | 2019-01-24 | 三菱電機株式会社 | 空気調和機 |
CN110319498A (zh) * | 2018-03-30 | 2019-10-11 | 珠海格力电器股份有限公司 | 空调室内机 |
WO2020148897A1 (ja) | 2019-01-18 | 2020-07-23 | 三菱電機株式会社 | 空気調和機及び制御方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3150943B1 (en) * | 2015-07-17 | 2019-03-27 | Mitsubishi Electric Corporation | Air conditioning apparatus including indoor unit and outdoor unit |
EP3699505B1 (en) * | 2016-04-05 | 2021-08-25 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
US20200056799A1 (en) * | 2017-04-24 | 2020-02-20 | Mitsubishi Electric Corporation | Refrigerant detection device and indoor unit of air-conditioning apparatus |
JP6658687B2 (ja) * | 2017-07-10 | 2020-03-04 | ダイキン工業株式会社 | 冷媒検知センサを有する空気調和装置の室内ユニット |
JP6739664B2 (ja) * | 2017-10-26 | 2020-08-12 | 三菱電機株式会社 | 冷凍空調装置及び制御装置 |
US11662109B2 (en) | 2019-06-05 | 2023-05-30 | Carrier Corporation | Enclosure for gas detector |
CN110186117A (zh) * | 2019-06-28 | 2019-08-30 | 广东美的制冷设备有限公司 | 落地式空调室内机、空调器和空调器的控制方法 |
CN112797486B (zh) * | 2020-12-28 | 2022-04-19 | 珠海格力电器股份有限公司 | 一种空调室内机、控制方法和空调器 |
EP4286752A4 (en) * | 2021-02-08 | 2024-07-10 | Gd Midea Air Conditioning Equipment Co Ltd | AIR CONDITIONING DEVICE |
US12123605B2 (en) | 2021-08-19 | 2024-10-22 | Tyco Fire & Security Gmbh | Sensor system for leak detection and management in heating, ventilating, and air conditioning (HVAC) systems |
JP2024002610A (ja) * | 2022-06-24 | 2024-01-11 | パナソニックIpマネジメント株式会社 | 空気調和機 |
US20240059124A1 (en) * | 2022-08-17 | 2024-02-22 | B/E Aerospace, Inc. | Systems and methods for mitigating leaking flammable refrigerants |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06323604A (ja) * | 1993-05-11 | 1994-11-25 | Mitsubishi Electric Corp | 空気調和機の風向制御装置 |
JPH0861702A (ja) * | 1994-08-18 | 1996-03-08 | Matsushita Electric Ind Co Ltd | 一体型空気調和機 |
JPH10103742A (ja) * | 1996-09-12 | 1998-04-21 | Samsung Electron Co Ltd | 空気調和機の吐出気流制御装置およびその方法 |
JPH10132368A (ja) * | 1996-10-31 | 1998-05-22 | Mitsubishi Heavy Ind Ltd | 空気調和機 |
JPH11173713A (ja) * | 1997-12-05 | 1999-07-02 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2001208392A (ja) * | 2000-01-31 | 2001-08-03 | Matsushita Electric Ind Co Ltd | ヒートポンプ装置 |
JP2001336841A (ja) | 2000-05-30 | 2001-12-07 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2005009857A (ja) * | 1998-07-01 | 2005-01-13 | Daikin Ind Ltd | 冷凍装置および冷媒漏洩検出方法 |
JP2012013348A (ja) | 2010-07-02 | 2012-01-19 | Panasonic Corp | 空気調和機 |
WO2013038704A1 (ja) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | 空気調和機 |
WO2015029678A1 (ja) * | 2013-08-26 | 2015-03-05 | 三菱電機株式会社 | 空気調和装置および冷媒漏洩検知方法 |
JP2015094566A (ja) * | 2013-11-14 | 2015-05-18 | ダイキン工業株式会社 | 空気調和機の室内機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3291407B2 (ja) * | 1995-01-31 | 2002-06-10 | 三洋電機株式会社 | 冷房装置 |
CN104596172B (zh) * | 2010-03-12 | 2017-04-12 | 三菱电机株式会社 | 冷冻空调装置 |
JP5673612B2 (ja) * | 2012-06-27 | 2015-02-18 | 三菱電機株式会社 | 冷凍サイクル装置 |
CN203147922U (zh) * | 2013-04-12 | 2013-08-21 | 海尔集团公司 | 可燃制冷剂空调器 |
JP5812081B2 (ja) * | 2013-11-12 | 2015-11-11 | ダイキン工業株式会社 | 室内機 |
EP3150943B1 (en) * | 2015-07-17 | 2019-03-27 | Mitsubishi Electric Corporation | Air conditioning apparatus including indoor unit and outdoor unit |
-
2015
- 2015-07-17 EP EP15876401.9A patent/EP3150943B1/en active Active
- 2015-07-17 JP JP2017529188A patent/JP6463478B2/ja active Active
- 2015-07-17 WO PCT/JP2015/070579 patent/WO2017013715A1/ja active Application Filing
-
2016
- 2016-06-17 CN CN201610439314.0A patent/CN106352400B/zh active Active
- 2016-06-17 CN CN201620598860.4U patent/CN205825233U/zh not_active Withdrawn - After Issue
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06323604A (ja) * | 1993-05-11 | 1994-11-25 | Mitsubishi Electric Corp | 空気調和機の風向制御装置 |
JPH0861702A (ja) * | 1994-08-18 | 1996-03-08 | Matsushita Electric Ind Co Ltd | 一体型空気調和機 |
JPH10103742A (ja) * | 1996-09-12 | 1998-04-21 | Samsung Electron Co Ltd | 空気調和機の吐出気流制御装置およびその方法 |
JPH10132368A (ja) * | 1996-10-31 | 1998-05-22 | Mitsubishi Heavy Ind Ltd | 空気調和機 |
JPH11173713A (ja) * | 1997-12-05 | 1999-07-02 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2005009857A (ja) * | 1998-07-01 | 2005-01-13 | Daikin Ind Ltd | 冷凍装置および冷媒漏洩検出方法 |
JP2001208392A (ja) * | 2000-01-31 | 2001-08-03 | Matsushita Electric Ind Co Ltd | ヒートポンプ装置 |
JP2001336841A (ja) | 2000-05-30 | 2001-12-07 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2012013348A (ja) | 2010-07-02 | 2012-01-19 | Panasonic Corp | 空気調和機 |
WO2013038704A1 (ja) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | 空気調和機 |
WO2015029678A1 (ja) * | 2013-08-26 | 2015-03-05 | 三菱電機株式会社 | 空気調和装置および冷媒漏洩検知方法 |
JP2015094566A (ja) * | 2013-11-14 | 2015-05-18 | ダイキン工業株式会社 | 空気調和機の室内機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3150943A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018179445A (ja) * | 2017-04-18 | 2018-11-15 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機の室内機 |
WO2019016959A1 (ja) * | 2017-07-21 | 2019-01-24 | 三菱電機株式会社 | 空気調和機 |
JP6529685B1 (ja) * | 2017-07-21 | 2019-06-12 | 三菱電機株式会社 | 空気調和機 |
US11339987B2 (en) | 2017-07-21 | 2022-05-24 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN110319498A (zh) * | 2018-03-30 | 2019-10-11 | 珠海格力电器股份有限公司 | 空调室内机 |
WO2020148897A1 (ja) | 2019-01-18 | 2020-07-23 | 三菱電機株式会社 | 空気調和機及び制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017013715A1 (ja) | 2018-02-01 |
CN205825233U (zh) | 2016-12-21 |
EP3150943B1 (en) | 2019-03-27 |
CN106352400B (zh) | 2019-07-16 |
EP3150943A4 (en) | 2017-07-19 |
JP6463478B2 (ja) | 2019-02-06 |
CN106352400A (zh) | 2017-01-25 |
EP3150943A1 (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6463478B2 (ja) | 空気調和装置 | |
JP6375639B2 (ja) | 空気調和装置 | |
WO2017006462A1 (ja) | 空気調和機 | |
JP5678952B2 (ja) | 空気調和機 | |
JP6734624B2 (ja) | 空気調和装置の室内ユニット | |
CN107278256B (zh) | 空调的室内机 | |
EP3187791B1 (en) | Indoor unit for air conditioning device | |
JP2004012060A (ja) | 空気調和機の室内ユニット及び空気調和機 | |
JP6641457B2 (ja) | 空気調和機の室内機 | |
JP6089564B2 (ja) | 空気調和機 | |
JP2012184886A (ja) | 空気調和機 | |
US20190154276A1 (en) | Indoor unit for air-conditioning apparatus | |
JP2017040381A (ja) | 空調室内機 | |
JP4610601B2 (ja) | 天吊形空気調和機 | |
JP6592884B2 (ja) | 空気調和装置の室内ユニット | |
KR20180068641A (ko) | 공기조화기의 실내기 | |
JP2016099034A (ja) | 空気調和装置、空気調和装置の調整方法及び空気調和設備の製造方法 | |
JP6098789B2 (ja) | 空気調和機 | |
JP5999339B2 (ja) | 空気調和機 | |
JP7374324B2 (ja) | 室内機 | |
KR100274988B1 (ko) | 공기조화기용 실내기 | |
JP2024038968A (ja) | 防爆型エアコン及び防爆型エアコンシステム | |
JP2022081022A (ja) | 空気調和装置 | |
JP2004316957A (ja) | 空気調和機 | |
KR20240155721A (ko) | 공기 조화기 및 그 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015876401 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015876401 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876401 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017529188 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |