WO2015029678A1 - 空気調和装置および冷媒漏洩検知方法 - Google Patents

空気調和装置および冷媒漏洩検知方法 Download PDF

Info

Publication number
WO2015029678A1
WO2015029678A1 PCT/JP2014/069972 JP2014069972W WO2015029678A1 WO 2015029678 A1 WO2015029678 A1 WO 2015029678A1 JP 2014069972 W JP2014069972 W JP 2014069972W WO 2015029678 A1 WO2015029678 A1 WO 2015029678A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor
temperature sensor
pipe
air
Prior art date
Application number
PCT/JP2014/069972
Other languages
English (en)
French (fr)
Inventor
康巨 鈴木
隆雄 駒井
前田 晃
雅史 冨田
将広 高村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14840930.3A priority Critical patent/EP3040654B1/en
Priority to AU2014313328A priority patent/AU2014313328B2/en
Priority to MX2016002486A priority patent/MX2016002486A/es
Priority to US14/891,975 priority patent/US10539358B2/en
Priority to CN201420484518.2U priority patent/CN204100499U/zh
Priority to CN201410424347.9A priority patent/CN104422087A/zh
Publication of WO2015029678A1 publication Critical patent/WO2015029678A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • the present invention relates to an air conditioner and a refrigerant leak detection method, in particular, an air conditioner that executes a refrigeration cycle using a refrigerant having a low global warming potential, and a refrigerant leak detection method in the air conditioner.
  • HFC refrigerant such as R410A
  • R410A which is nonflammable
  • ODP ozone depletion coefficient
  • GWP ozone depletion coefficient
  • HC refrigerants such as R290 (C 3 H 8 ; propane) and R 1270 (C 3 H 6 ; propylene) which are natural refrigerants, but unlike R410A which is nonflammable. Because of its high flammability level, caution must be exercised against refrigerant leakage.
  • a low GWP refrigerant candidate there is, for example, R32 (CH 2 F 2 ; difluoromethane) having a lower GWP than R410A as an HFC refrigerant having no carbon double bond in the composition.
  • Similar refrigerant candidates include halogenated hydrocarbons which are a kind of HFC refrigerant as in R32 and have a carbon double bond in the composition. Examples of such a halogenated hydrocarbon include HFO-1234yf (CF 3 CF ⁇ CH 2 ; tetrafluoropropene) and HFO-1234ze (CF 3 —CH ⁇ CHF).
  • an HFC refrigerant having a carbon double bond is changed to an olefin (unsaturated hydrocarbon having a carbon double bond). It is often expressed as “HFO” using “O” (called olefin).
  • Such low GWP HFC refrigerants are not as flammable as HC refrigerants such as natural refrigerant R290 (C 3 H 8 ; propane), but different from non-flammable R410A, It has flammability of a slight burn level. Therefore, it is necessary to pay attention to refrigerant leakage as in the case of R290. Henceforth, the refrigerant
  • the refrigerant concentration in the room may increase and reach the flammable concentration while the operation is stopped (while the indoor fan is not rotating).
  • the leak rate is low, so a flammable concentration is not formed, but the joint of the pipe is caused by external force Rapid leakage, such as when broken or when the flare joint comes off, can create a flammable concentration due to the high leakage rate.
  • Rapid leakage such as when broken or when the flare joint comes off, can create a flammable concentration due to the high leakage rate.
  • the airflow in the room is agitated, the leaked refrigerant is diffused, and the refrigerant concentration does not increase to form a combustible concentration.
  • liquid refrigerant may accumulate in the refrigerant circuit.
  • a temperature sensor is placed under the header of the indoor heat exchanger and compressed.
  • a split type air conditioner including a refrigerant leakage determination unit that determines that the refrigerant has leaked when the refrigerant temperature detected by the temperature sensor drops below a predetermined speed while the machine is stopped (for example, , See Patent Document 1).
  • the split-type air conditioner disclosed in Patent Document 1 has a temperature sensor disposed at a specific position of the refrigerant circuit, and the temperature sensor causes a sudden temperature drop due to evaporation of the liquid refrigerant at the position where the temperature sensor is disposed.
  • the temperature sensor causes a sudden temperature drop due to evaporation of the liquid refrigerant at the position where the temperature sensor is disposed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner and a refrigerant leakage detection method capable of detecting refrigerant leakage quickly and reliably.
  • An air conditioner includes an outdoor unit including at least a compressor and an outdoor pipe, an indoor unit including at least an indoor heat exchanger, an indoor fan, and an indoor pipe, the outdoor pipe, and the indoor pipe.
  • the extension pipe to be connected, the first temperature sensor disposed below the joint connecting the indoor heat exchanger and the indoor pipe, and the first temperature sensor detected while the indoor fan was stopped
  • a control unit that determines whether or not a refrigerant having a higher specific gravity than room air leaks from the joint due to a change in temperature.
  • the first temperature sensor is disposed below the joint portion connecting the heat exchanger and the indoor piping in which the refrigerant may leak in the casing of the indoor unit. For this reason, if a refrigerant having a higher specific gravity than room air leaks from the joint, an atmosphere (leakage) caused by heat of vaporization (heat removal) when the leaked refrigerant (hereinafter referred to as “leakage refrigerant”) undergoes adiabatic expansion.
  • the first temperature sensor can directly detect a temperature drop of the refrigerant itself (which may include ambient air). Therefore, the refrigerant leakage can be detected quickly and accurately at the initial stage of the refrigerant leakage occurrence (when the cumulative leakage amount is relatively small) without being affected by the heat capacity of the piping or the like.
  • the refrigerant circuit figure which shows typically the structure of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention.
  • the front view which shows the external appearance of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention.
  • transmits and shows a part of internal structure of the indoor unit shown in FIG.
  • Sectional drawing of planar view which shows an example of the installation form of the temperature sensor in the indoor unit shown in FIG.
  • FIG. 6 is a top view of an indoor unit schematically showing a part of members for explaining an air-conditioning apparatus according to Embodiment 4 of the present invention.
  • the side view of the indoor unit which shows typically a part of member explaining the air conditioning apparatus which concerns on Embodiment 4 of this invention, seeing through.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a configuration of a refrigerant circuit
  • FIG. 2 is an external view of an indoor unit
  • FIG. 3 is a front view showing a part of the internal configuration of the indoor unit in a transparent manner
  • FIG. 4 is a side view showing a part of the internal configuration of the indoor unit in a transparent manner.
  • each figure is shown typically and this invention is not limited to the form shown in figure.
  • an air conditioner 100 includes an indoor unit (same as a load side unit) 101 installed indoors, an outdoor unit (same as a heat source side unit) 102 installed outside (not shown), and an indoor unit 101. And an extension pipe 10a, 10b connecting the outdoor unit 102 and the outdoor unit 102. Moreover, the control part 1 is arrange
  • the outdoor unit 102 includes a compressor 3 that compresses and discharges the refrigerant, and a refrigerant flow path switching valve (hereinafter, “four-way valve”) that changes the flow direction of the refrigerant in the refrigerant circuit between the cooling operation and the heating operation. 4), an outdoor heat exchanger 5 that is a heat source side heat exchanger that performs heat exchange between the outside air and the refrigerant, an electronically controlled expansion valve that can change the opening degree and depressurize the high-pressure refrigerant to a low pressure, etc.
  • a refrigerant flow path switching valve hereinafter, “four-way valve”
  • a decompression device (hereinafter referred to as an expansion valve) 6 that is an expansion means is disposed, and these are connected by an outdoor pipe (same as the heat source side refrigerant pipe) 8.
  • An outdoor fan 5 f that supplies (blows) outside air to the outdoor heat exchanger 5 is installed to face the outdoor heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the outdoor heat exchanger 5 is generated.
  • a propeller fan is used as the outdoor air blowing fan 5f, and the outdoor heat exchanger 5 is in the form of sucking outside air through the outdoor heat exchanger 5, and the outdoor heat exchanger 5 is downstream of the air flow generated by the outdoor air blowing fan 5f.
  • the outdoor pipe 8 is an outdoor pipe 8a that connects the gas side (cooling operation) extension pipe connection valve 13a and the four-way valve 4, a suction pipe 11 that connects the four-way valve 4 and the compressor 3, and the compressor 3 and four-way valve. 4, the discharge pipe 12 connecting the four-way valve, the outdoor pipe 8c connecting the four-way valve 4 and the outdoor heat exchanger 5, the outdoor pipe 8d connecting the outdoor heat exchanger 5 and the expansion valve 6, the expansion valve 6 and the liquid side (during cooling operation) ) And the outdoor pipe 8b connecting the extension pipe connection valve 13b.
  • a gas-side extension pipe connection valve 13a is provided at a connection portion of the outdoor pipe 8 with the gas-side extension pipe 10a, while a liquid-side extension pipe connection is provided at a connection portion with the liquid-side extension pipe 10b.
  • a valve 13b is arranged.
  • the extension pipe connection valve 13a on the gas side is a two-way valve that can be switched between open and closed, and a flare joint 16a is attached to one end thereof.
  • the extension pipe connection valve 13b on the liquid side is a three-way valve that can be switched between open and closed, and is a service port 14b that is used for evacuation (before the refrigerant is supplied to the air conditioner 100).
  • a flare joint 16b is attached.
  • a range in the outdoor pipe 8 that connects the compressor 3 to the four-way valve 4 inlet on the discharge side of the compressor 3 is referred to as a discharge pipe 12 and is referred to as a suction side of the compressor 3.
  • the range connecting the four-way valve 4 to the compressor 3 is referred to as a suction pipe 11.
  • the discharge pipe 12 can be used at any time during the cooling operation (operation for supplying the low-temperature and low-pressure refrigerant to the indoor heat exchanger 7) or the heating operation (operation for supplying the high-temperature and high-pressure refrigerant to the indoor heat exchanger 7).
  • the low-temperature and low-pressure refrigerant flowing through the suction pipe 11 may be a gas refrigerant or a two-phase state.
  • the suction pipe 11 is provided with a service port 14a with a low-pressure side flare joint
  • the discharge pipe 12 is provided with a service port 14c with a high-pressure side flare joint.
  • a pressure gauge is installed during a trial run at the time of installation or repair. Used to connect and measure operating pressure.
  • the flare joints (not shown) of the service ports 14a and 14c are cut off with a male screw. When the outdoor unit 102 is shipped (including when the air conditioner 100 is shipped), the male screw has a flare nut. (Not shown) is attached.
  • the indoor unit 101 is provided with an indoor heat exchanger 7 that is a use-side heat exchanger that exchanges heat between indoor air and refrigerant, and indoor pipes (same as use-side refrigerant pipes) 9a and 9b.
  • indoor pipes 9a and 9b The configuration of the indoor pipes 9a and 9b will be described in detail separately.
  • a flare joint 15a for connecting the gas-side extension pipe 10a is provided at a connection portion between the indoor pipe 9a and the gas-side extension pipe 10a, while the liquid-side extension pipe 10b of the indoor pipe 9b is connected to the gas-side extension pipe 10a.
  • the flare joint 15b for connecting the extension pipe 10b on the liquid side is disposed at the connecting portion.
  • the flare joints 15a and 15b are cut off with a male screw.
  • a female screw that is screwed into the male screw is processed.
  • a flare nut (not shown) is attached.
  • the indoor air blower fan 7f is installed facing the indoor heat exchanger 7, and the air flow which passes the indoor heat exchanger 7 is produced
  • Both ends of the gas side extension pipe 10a are detachably attached to a flare joint 16a attached to the gas side extension pipe connection valve 13a of the outdoor unit 102 and a flare joint 15a attached to the indoor pipe 9a of the indoor unit 101, respectively.
  • both ends of the liquid side extension pipe 10b are connected to a flare joint 16b attached to the liquid side extension pipe connection valve 13b of the outdoor unit 102 and a flare joint 15b attached to the indoor pipe 9b of the indoor unit 101.
  • the outdoor pipe 8 and the indoor pipes 9a and 9b are connected by the extension pipes 10a and 10b to form a refrigerant circuit, and a compression heat pump cycle in which the refrigerant compressed by the compressor 3 is circulated is configured.
  • a solid line arrow indicates the flow direction of the refrigerant during the cooling operation.
  • the four-way valve 4 is switched to a refrigerant circuit as indicated by a solid line, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the outdoor heat exchanger 5 through the four-way valve 4.
  • the outdoor heat exchanger 5 acts as a condenser. That is, when the air flow generated by the rotation of the outdoor fan 5f passes through the outdoor heat exchanger 5, the outdoor air passing therethrough exchanges heat with the refrigerant flowing through the outdoor heat exchanger 5, and the heat of condensation of the refrigerant Is added to the outdoor air.
  • the refrigerant is condensed in the outdoor heat exchanger 5 to become a liquid refrigerant.
  • the liquid refrigerant flows into the expansion valve 6, adiabatically expands in the expansion valve 6, and becomes a low-pressure low-temperature two-phase refrigerant.
  • the low-pressure and low-temperature two-phase refrigerant is supplied to the indoor unit 101 via the liquid-side extension pipe 10 b and the indoor pipe 9 b and flows into the indoor heat exchanger 7.
  • This indoor heat exchanger 7 acts as an evaporator. That is, when the flow of indoor air generated by the rotation of the indoor blower fan 7f passes through the indoor heat exchanger 7, the indoor air passing therethrough exchanges heat with the refrigerant flowing through the indoor heat exchanger 7, so that the refrigerant becomes room air. It evaporates by taking the heat of evaporation (warm heat) from it, and becomes a low-temperature low-pressure gas refrigerant or two-phase refrigerant state.
  • the passing indoor air takes the cold from the refrigerant and is cooled to cool the room.
  • the refrigerant that has evaporated in the indoor heat exchanger 7 to become a low-temperature and low-pressure gas refrigerant or a two-phase refrigerant is supplied to the outdoor unit 102 via the gas-side indoor pipe 9a and the extension pipe 10a, and It is sucked into the compressor 3 via the valve 4. Then, it is compressed again into a high-temperature and high-pressure gas refrigerant in the compressor 3. This cycle is repeated in the cooling operation.
  • the dotted line arrows indicate the flow direction of the refrigerant during the heating operation. If the four-way valve 4 is switched to a refrigerant circuit as indicated by the dotted line, the refrigerant flows in the opposite direction to that during the cooling operation, and first flows into the indoor heat exchanger 7, and this indoor heat exchanger 7 is connected to the condenser, and The outdoor heat exchanger 5 is caused to act as an evaporator, and the indoor air passing through the indoor heat exchanger 7 is heated by condensing heat (warm heat) to be in a heating operation.
  • the refrigerant flowing through the refrigerant circuit has a smaller GWP than the R410A, which is an HFC refrigerant widely used in air conditioners at present, and has a relatively low impact on global warming.
  • R32 CH 2 F 2 ; difluoromethane
  • Refrigerant is shipped in a state in which a certain amount is enclosed in the outdoor unit 102 in advance, and when the air conditioner 100 is installed, if shortage occurs due to the length of the extension pipes 10a and 10b, additional filling is performed in the field work. Is done. Further, the refrigerant may be shipped without being enclosed in the outdoor unit 102, and the entire amount of the refrigerant may be filled (enclosed) in the field work.
  • the refrigerant is not limited to R32, and is a kind of HFC refrigerant as described above, which is slightly flammable like R32, but is a halogenated hydrocarbon having a carbon double bond in the composition.
  • HFO refrigerants such as HFO-1234yf (CF 3 CF ⁇ CH 2 ; tetrafluoropropene) and HFO-1234ze (CF 3 —CH ⁇ CHF), which have a smaller GWP than the R32 refrigerant, may be used.
  • R290 having a strong retardant may be; (propylene C 3 H 6) HC refrigerant such as (C 3 H 8 propane) and R1270.
  • coolant which mixed 2 or more types of these refrigerant
  • the indoor unit 101 includes an indoor heat exchanger 7 and an indoor fan that are housed in a housing 110 having a housing front surface 111, a housing top surface 114, a housing back surface 115, and a housing bottom surface 116. 7f (see FIG. 1).
  • a suction port 112 is formed in the lower part of the front surface 111 of the casing, and an outlet 113 is formed in the upper part of the front surface 111 of the casing.
  • An operation display unit 2 is provided on the front surface 111 of the housing. The operation display unit 2 performs operations such as switching between cooling and heating, switching the air volume of the indoor fan 7f, etc., in addition to operation and stop of the air conditioning apparatus 100, and displays the operation state and the like.
  • size and shape of the suction inlet 112 and the blower outlet 113 are not limited to what is illustrated,
  • the blower outlet 113 is formed ranging over the housing
  • the conditioned air becomes cool air during the cooling operation, warm air during the heating operation, and dry air during the drying operation.
  • the inside of the housing 110 is divided into upper and lower parts by a partition plate 20 in which a communication opening 21 is formed, and the lower space is located at a position facing the suction port 112.
  • An indoor blower fan 7 f is disposed near the body back surface 115. Further, the indoor heat exchanger 7 is inclined so that the upper end is close to the housing back surface 115 and the lower end is close to the housing front surface 111 in the upper space, and is projected within a range projected vertically below the indoor heat exchanger 7.
  • the communication opening 21 of the partition plate 20 is located. That is, the indoor blower fan 7 f sucks indoor air in the lower space from the suction port 112 and supplies the indoor air to the indoor heat exchanger 7 in the upper space via the communication opening 21.
  • the indoor air heat-exchanged in the indoor heat exchanger 7 turns into "conditioned air", and it blows off indoors from the blower outlet 113.
  • FIG. As described above, the indoor blower fan 7f is driven by a motor (induction motor or DC brushless motor) that is not a brush type, so that there is no spark that may be an ignition source during operation. .
  • FIG. 5 explains the air-conditioning apparatus according to Embodiment 1 of the present invention, and is a front view schematically showing an enlarged part of the joining state between the indoor heat exchanger and the indoor piping. .
  • the indoor heat exchanger 7 is formed of a plurality of heat radiating plates (same as fins) 70 spaced apart from each other and a plurality of heat transfer tubes 71 penetrating the heat radiating plates 70.
  • the heat transfer tube 71 includes a plurality of U-shaped tubes (hereinafter referred to as “hairpins”) 72 having a long straight tube portion, and an arcuate U vent 73 having a short straight tube portion that allows the plurality of hairpins 72 to communicate with each other. It consists of and. At this time, the hairpin 72 and the U vent 73 are connected by a joint portion (hereinafter referred to as a “brazing portion W” and indicated by a black circle in the drawing).
  • the number of heat transfer tubes 71 is not limited and may be one or more. Further, the number of hairpins 72 constituting the heat transfer tube 71 is not limited.
  • a cylindrical header main pipe 91a is connected to the indoor pipe 9a on the gas side, a plurality of header branch pipes 92a are connected to the header main pipe 91a, and a heat transfer pipe 71 (same as the hairpin 72) is connected to the header branch pipe 92a.
  • One end 71a is connected.
  • a plurality of indoor refrigerant branch pipes 92b are connected to the liquid (two-phase) side indoor pipe 9b and are branched into a plurality of branches.
  • the other end 71b of the heat transfer tube 71 (same as the hairpin 72) is connected to the header branch tube 92a.
  • connection between the header main pipe 91a and the header branch pipe 92a, the connection between the header branch pipe 92a and the end 71a, the connection between the indoor pipe 9b and the indoor refrigerant branch pipe 92b, and the indoor refrigerant branch pipe 92b and the end 71b. are connected at a brazing portion W (indicated by black circles in the figure).
  • the brazing portion W is shown as the joining portion, but the present invention is not limited to this, and any joining means may be used.
  • a first leaked refrigerant receiver 94 is disposed opposite to the header main pipe 91a, etc., parallel to the header main pipe 91a, etc., and vertically below the header main pipe 91a, etc. Attached).
  • the first leaked refrigerant receiver 94 is a gutter that covers a vertically lower portion of the position of the brazing part W, and a first leaked refrigerant reservoir 93 is formed at the lower end.
  • the first leaked refrigerant receiver 94 is configured to receive the leaked refrigerant and flow it into the first leaked refrigerant reservoir 93 when the refrigerant (having a higher specific gravity than the indoor air) leaks from the position of the brazing part W.
  • the shape of the first leakage refrigerant receiver 94 is not limited, and may be a deep shape in which a cutout or a through hole through which the hairpin 72 passes is formed with a rectangular cross section or a circular arc shape. It may be a relatively shallow bottom whose side edge is in contact with or close to the lower surface of 72.
  • the first leakage refrigerant reservoir 93 is for temporarily storing the refrigerant flowing along the first leakage refrigerant receiver 94, and the amount of the accumulation is not limited. Therefore, the first leaked refrigerant reservoir portion 93 is regarded as the first leaked refrigerant reservoir portion 93 by closing the lower end of the first leaked refrigerant receiver 94 without providing the first leaked refrigerant reservoir portion 93 specially. Also good. Although the indoor pipe 9a and the indoor pipe 9b penetrate the first leaked refrigerant reservoir 93, the indoor pipe 9a and the indoor pipe 9b are bent to bypass the first leaked refrigerant reservoir 93, and the indoor pipe 9a and the indoor pipe 9b are bypassed. The pipe 9b may be prevented from penetrating the first leaked refrigerant reservoir 93.
  • a second leakage refrigerant receiver 95 is disposed vertically below the flare joint 15a and the flare joint 15b.
  • the second leaking refrigerant receiver 95 is a box that covers a certain range vertically below the flare joint 15a and the flare joint 15b, and refrigerant (having a higher specific gravity than room air) leaks from the flare joint 15a or the flare joint 15b. In this case, the refrigerant is received and a certain amount is accumulated.
  • extension pipe 10a and the extension pipe 10b penetrate the second leaked refrigerant receiver 95, but the extension pipe 10a and the extension pipe 10b are bent to bypass the second leaked refrigerant receiver 95, thereby extending the extension pipe 10a and the extension pipe 10b. May not pass through the second leaked refrigerant receiver 95.
  • a temperature sensor On the suction side of the indoor fan 7f (between the suction port 112 and the indoor fan 7f), a temperature sensor (hereinafter referred to as “suction temperature sensor”) that measures the temperature of the intake air (same as indoor air) during operation. S1 is arranged.
  • the indoor heat exchanger 7 measures the temperature of the refrigerant flowing into the indoor heat exchanger 7 during the cooling operation, and measures the temperature of the refrigerant flowing out of the indoor heat exchanger 7 during the heating operation.
  • Temperature sensor (hereinafter referred to as “liquid pipe sensor”) S2 and a temperature sensor (hereinafter referred to as “two-phase pipe sensor”) that is located at the approximate center of the indoor heat exchanger 7 and measures the evaporation temperature or condensation temperature of the refrigerant. ) S3 is arranged.
  • the temperatures detected by the suction temperature sensor S1, the liquid pipe sensor S2, and the two-phase pipe sensor S3 are respectively input to the control unit 1 and used for operation control of the compressor 3 and the like.
  • first temperature sensor a temperature sensor (hereinafter referred to as “first temperature sensor”) S4 is installed in the first leaked refrigerant receiver 94 (more precisely, the first leaked refrigerant reservoir 93), and a temperature sensor (hereinafter referred to as “first leaky refrigerant reservoir 93”). S5) (referred to as “second temperature sensor”) is installed. That is, since there is a possibility that the refrigerant leaks from the joint portion by the brazing portion W due to external force such as aging or earthquake, if the refrigerant leaks, the first leaking refrigerant receiver 94 is more than the indoor air The first temperature sensor S4 detects the temperature drop of the atmosphere cooled by heat removal due to the heat of vaporization of the leaked refrigerant.
  • the first leakage refrigerant reservoir 93 that accumulates a certain amount is provided and the first temperature sensor S4 is provided here, the temperature drop of the ambient temperature (ambient air) due to the heat of vaporization of the leakage refrigerant can be accelerated. It is possible to detect the refrigerant leakage early and reliably.
  • the first leakage refrigerant receiver 94 may be omitted and only the first temperature sensor S4 may be installed on the upper side of the partition plate 20.
  • the first temperature sensor S4 is installed at a position close to the divider plate 20 in order to stop on the divider plate 20. By doing so, it is possible to detect the temperature drop of the surrounding air due to the heat of vaporization of the refrigerant leakage.
  • coolant may also leak by the external force of aged deterioration, an earthquake, etc. also in the junction part by the flare joints 15a and 15b, the refrigerant
  • the second leaked refrigerant receiver 95 that receives and accumulates the second temperature sensor S5
  • the refrigerant leaking from the flare joint 15a or the flare joint 15b (having a higher specific gravity than room air) descends and stays on the casing bottom surface 116 of the casing 110, a second leaking refrigerant receiver 95 is provided.
  • the second temperature sensor S5 may be installed at a position close to the housing bottom surface 116. Furthermore, since the refrigerant leaking from the flare joint 15a or the flare joint 15b (having a higher specific gravity than the indoor air) is vaporized, the temperature of the air in the lower range from the partition plate 20 of the housing 110 is lowered. The two-leakage refrigerant receiver 95 and the second temperature sensor S5 are removed, and the temperature detection by the suction temperature sensor S1 is performed during operation and during operation stop so that the function of the second temperature sensor S5 is added to the suction temperature sensor S1. (It is the same as adding the function of the suction temperature sensor S1 to the second temperature sensor S5).
  • FIG. 6A and 6B illustrate the air-conditioning apparatus according to Embodiment 1 of the present invention, and show an example of an installation form of a temperature sensor.
  • FIG. 6A is a sectional view in plan view
  • FIG. 6B is a front view.
  • 1st temperature sensor S4 is installed in the indoor piping 9b through the holder 80 inferior in heat conductivity. That is, the holder 80 includes a pipe gripping portion 81 having a C-shaped cross section for gripping the indoor pipe 9b, a sensor gripping portion 83 having a C-shaped cross section for gripping the first temperature sensor S4, a pipe gripping portion 81, and a sensor gripping portion.
  • the holder 80 is made of a material having a low heat transfer coefficient, for example, a synthetic resin, and the cross-sectional area of the arm portion 82 is small.
  • the first leaking refrigerant pool having a U-shaped cross section or the first leaked refrigerant pool part 93 having a planar or curved shape is used. It may be installed in the section 93.
  • the liquid pipe sensor S2 is directly installed on the outer surface of the indoor pipe 9b, and directly detects the outer surface temperature of the indoor pipe 9b.
  • control unit 1 controls the refrigeration cycle (the compressor 3, the expansion valve 6 and the like) based on the values detected by the suction temperature sensor S1, the liquid pipe sensor S2, and the two-phase pipe sensor S3.
  • the positions where the liquid pipe sensor S2 and the two-phase pipe sensor S3 are installed are not limited to the illustrated positions.
  • FIG. 7 is a flowchart illustrating a refrigerant leak detection method according to Embodiment 2 of the present invention.
  • the refrigerant leakage detection method is a method of detecting refrigerant leakage in the air conditioner 100 (Embodiment 1).
  • symbol is attached
  • the first temperature sensor S4 and the second temperature sensor S5 detect the temperature only when the operation is stopped (while the indoor fan 7f does not rotate) (Step 1).
  • the first temperature sensor S4 and the second temperature sensor S5 detect the temperature at a constant time interval, and the detected amount of change in the temperature of either the first temperature sensor S4 or the second temperature sensor S5 is a constant threshold (for example When the difference between the previous detection value and the current detection value is 5 ° C.) or when the degree of change in the detected temperature falls below a certain threshold (for example, 5 ° C./min), the control unit 1 sets the refrigerant Is determined to be leaking (Step 3).
  • Step 4 the control unit 1 of the air conditioner 100 determines that the refrigerant is leaking during the operation stop.
  • the control unit 1 starts the rotation of the indoor blower fan 7f to stir the indoor air (Step 4).
  • notification means operation display unit 2 or sound generation means not shown
  • Step 5 execution of Step 5 may be omitted.
  • FIG. 8 is an experimental result showing temperature detection characteristics for explaining the refrigerant leakage detection method according to Embodiment 2 of the present invention. That is, FIG. 8 shows the temperature (° C.) detected by the second temperature sensor S5 and the suction temperature sensor S1 when the refrigerant R32 is leaked from the flare joint 15a at a leak rate of 150 g / min.
  • the vertical axis shows the time (minutes) from the start of leakage on the horizontal axis. That is, the refrigerant leaking from the flare joint 15a rapidly adiabatically expands and takes away heat from the surroundings, and has a specific gravity heavier than that of the room air, so it descends and flows into the second leaking refrigerant receiver 95.
  • the ambient temperature particularly the ambient temperature of the second leaked refrigerant receiver 95
  • the temperature detected by the second temperature sensor S5 immediately decreases immediately after the start of leakage.
  • the temperature detected by the suction temperature sensor S1 is not as high as the second temperature sensor S5
  • the refrigerant leakage detection method in the air conditioner 100 has the following significant operational effects.
  • the detection sensitivity may become slow due to the heat capacity (thermal inertia) of a member such as a pipe. Absent.
  • the leaked refrigerant (which may include air cooled by heat removal due to adiabatic expansion of the leaked refrigerant) is more reliable. In addition, it reaches around the first temperature sensor S4 and the second temperature sensor S5.
  • the first leaked refrigerant receiver 94 and the second leaked refrigerant receiver 95 are provided, and the first temperature sensor S4 and the second temperature sensor S5 are provided respectively.
  • the present invention is not limited to this.
  • the first temperature sensor S4 may be omitted by forming an opening communicating with the second leaked refrigerant receiver 95 in both the first leaked refrigerant receiver 94 and the partition plate 20. At this time, if the upper edge of the second leaked refrigerant receiver 95 is in contact with or close to the partition plate 20, the flow of the leaked refrigerant around the second temperature sensor S5 is further promoted.
  • FIG. 9 is a side view of the indoor unit for explaining the air-conditioning apparatus according to Embodiment 3 of the present invention and schematically showing a part of the members transparently.
  • symbol is attached
  • the third leaking refrigerant receiver 96 of the indoor unit 201 included in the air conditioning apparatus 200 has a funnel shape and an inverted truncated cone shape with a bottom removed.
  • the suction temperature sensor S1 is disposed below the third leaked refrigerant receiver 96, and the second temperature sensor S5 is not provided in the third leaked refrigerant receiver 96 as in the first embodiment. Except this point, the air conditioner 200 is the same as the air conditioner 100 (Embodiment 1).
  • the refrigerant leak detection method in the air conditioning apparatus 200 is in accordance with the second embodiment, and the second temperature sensor S5 in the second embodiment is read as the suction temperature sensor S1. Therefore, since the number of parts is reduced by the amount that the second temperature sensor S5 is not provided, the manufacturing cost of the air conditioning apparatus 200 is low.
  • the 1st temperature sensor S4 is installed in the 1st leaking refrigerant receiver 94 above, this invention is not limited to this, For example, both the 1st leaking refrigerant receiver 94 and the partition plate 20 are used.
  • the opening of the first temperature sensor S4 may be omitted by forming an opening communicating with the third leaking refrigerant receiver 96 (at this time, the upper edge of the third leaking refrigerant receiver 96 abuts against the partition plate 20). Or if they are close, the flow of the leaked refrigerant around the suction temperature sensor S1 is further promoted).
  • FIG. 10A and 10B illustrate an air-conditioning apparatus according to Embodiment 4 of the present invention.
  • FIG. 10A is a top view of an indoor unit schematically showing a part of the members
  • FIG. 10B [FIG. 4] is a side view of an indoor unit schematically showing a part of members through.
  • symbol is attached
  • the indoor unit 301 of the air conditioner 300 is a ceiling type installed in a suspended state from the ceiling (not shown) of the room, and includes the indoor heat exchanger 7 and the indoor air blower inside.
  • a housing 310 is provided for housing the fan 7f.
  • a suction port 312 is formed near the housing rear surface 315 of the housing bottom surface 316 of the housing 310, and an air outlet 313 is provided on the housing front surface 311.
  • the indoor blower fan 7f is disposed at a position near the housing back surface 315, and the indoor heat exchanger 7 is disposed in an inclined state toward the corners of the housing front surface 311 and the housing top surface 314.
  • indoor piping 9a, 9b is connected to the indoor heat exchanger 7 at a position near the housing right end surface 318. Since the form of this connection is the same as that of the first embodiment (the brazing portion W, see FIG. 5), the description thereof is omitted. Moreover, the 4th leaking refrigerant
  • a receiver 97 is provided (imaginary lines obtained by projecting the positions of all brazing portions W and the positions of the flare joints 15a and 15b vertically downward intersect the fourth leaked refrigerant receiver 97).
  • the fourth leaking refrigerant receiver 97 has a U-shaped cross section (including one whose opening side is wider than the bottom side) or a circular arc shape, and is an eaves having an open upper end and closed at the lower end. Furthermore, a temperature sensor (hereinafter referred to as “third temperature sensor”) S6 is installed at a position near the lower end of the fourth leaked refrigerant receiver 97.
  • the refrigerant leak detection method in the air conditioning apparatus 300 is based on Embodiment 2, Comprising: 1st temperature sensor S4 and 2nd temperature sensor S5 in Embodiment 2 are read as 3rd temperature sensor S6. Therefore, similar to the first and second embodiments, it is possible to detect at an early stage that the refrigerant has leaked.
  • connection part (brazing part W) of indoor heat exchanger 7 and indoor piping 9a, 9b and the position of flare joints 15a, 15b are separated (when separated in the horizontal direction), respectively.
  • a leakage refrigerant receiver and a temperature sensor may be installed at the position.
  • FIG. 11A and 11B illustrate an air-conditioning apparatus according to Embodiment 5 of the present invention.
  • FIG. 11A is a bottom view in plan view
  • FIG. 11B is a cross-sectional view in side view.
  • symbol is attached
  • the indoor unit 401 of the air conditioner 400 is a ceiling cassette type installed in a state of being embedded in the ceiling (not shown) of the room, and includes the indoor heat exchanger 7 and the indoor air blower inside.
  • a housing 410 is provided for housing the fan 7f.
  • the casing 410 is a box having a square section with chamfered corners, and a decorative grill 420 is detachably installed on the open bottom 416 of the casing.
  • the decorative grill 420 has a suction port 422 formed at the center, and has four outlets 423 formed around the suction port 422.
  • the indoor air blower fan 7f is installed in the center of the housing
  • the indoor air sucked in by 7f is heat-exchanged in the indoor heat exchanger 7, and blown out from the outside of the indoor heat exchanger 7 into the room (not shown) via the blowout port 423.
  • Flare joints 15a and 15b are arranged at one of the four corners of the housing 410, and the indoor heat exchanger 7 and the indoor pipes 9a and 9b are connected at the corner. Since the form of this connection is the same as that of the first embodiment (the brazing portion W, see FIG. 5), the description thereof is omitted. Then, as in the fourth embodiment, the position below the connection portion (the brazing portion W, see FIG. 5) between the indoor heat exchanger 7 and the indoor pipes 9a and 9b, and the vertically below the flare joints 15a and 15b.
  • the fourth leaked refrigerant receiver 97 is provided (the imaginary line obtained by projecting the positions of all brazing portions W and the positions of the flare joints 15a and 15b vertically downwards intersects the fourth leaked refrigerant receiver 97). ).
  • the fourth leaking refrigerant receiver 97 is a box having an open top surface and has a bottom surface parallel to the casing top surface 414, and a third temperature sensor S 6 is installed near the bottom surface in the fourth leaking refrigerant receiver 97. ing. Therefore, the air conditioning apparatus 400 has the same effects as the air conditioning apparatus 100 (Embodiment 1 and Embodiment 2), as with the air conditioning apparatus 200 (Embodiment 3).
  • the floor-standing type (Embodiments 1 and 3), the ceiling-suspended type (Embodiment 4), and the ceiling cassette type (Embodiment 5) have been described as executing the second embodiment.
  • the second embodiment can be executed, and the same effects can be obtained.
  • the air conditioners 100 to 400 have been described above, the present invention is not limited to this, and may be a refrigeration cycle apparatus including a hot water heater or the like, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和装置100の室内機101は、室内配管9aがロー付け部Wで接続されたヘッダー主管91aとヘッダー枝管92aとを具備し、ヘッダー枝管92aが室内熱交換器7を構成する伝熱管71の一方の端部71aにロー付け部Wで接合され、室内配管9aにロー付け部Wで室内冷媒枝管92bが接続され、室内冷媒枝管92bに伝熱管71の他方の端部71bが接続され、該ロー付け部Wの下方に第1漏洩冷媒受け94が設けられて、第1漏洩冷媒受け94内に第1温度センサーS4が配置されている。室内配管9a、9bと延長配管10a、10bとを接続するフレアー継手15a、15bの下方に第2漏洩冷媒受け95が設けられ、第2漏洩冷媒受け95内に第2温度センサーS5が配置されている。

Description

空気調和装置および冷媒漏洩検知方法
 本発明は空気調和装置および冷媒漏洩検知方法、特に、地球温暖化係数が低い冷媒を使用した冷凍サイクルを実行する空気調和装置および該空気調和装置における冷媒漏洩検知方法である。
 従来、空気調和装置が実行する冷凍サイクルの冷媒として、不燃性であるR410Aのような「HFC冷媒」が用いられている。このR410Aは、従来のR22のような「HCFC冷媒」と異なり、オゾン層破壊係数(以下「ODP」と称す)がゼロであって、オゾン層を破壊することはないが、地球温暖化係数(以下「GWP」と称す)が高いという性質を有している。
 そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低い冷媒へと変更する検討が進められている。
 そのような低GWPの冷媒候補として、自然冷媒であるR290(C;プロパン)やR1270(C;プロピレン)のようなHC冷媒があるが、不燃性であるR410Aとは異なり、強燃レベルの可燃性を有しており、そのため、冷媒漏洩に対する注意が必要である。
 また、そのような低GWPの冷媒候補として、組成中に炭素の二重結合を持たないHFC冷媒として、例えば、R410AよりもGWPが低いR32(CH;ジフルオロメタン)がある。
 また、同じような冷媒候補として、R32と同様にHFC冷媒の一種であって、組成中に炭素の二重結合を有するハロゲン化炭化水素がある。かかるハロゲン化炭化水素として、例えば、HFO-1234yf(CFCF=CH;テトラフルオロプロペン)やHFO-1234ze(CF-CH=CHF)がある。なお、R32のように組成中に炭素の二重結合を持たないHFC冷媒と区別するために、炭素の二重結合を持つHFC冷媒を、オレフィン(炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれる)の「O」を使って、「HFO」と表現されることが多い。
 このような低GWPのHFC冷媒(HFO冷媒含む)は、自然冷媒であるR290(C;プロパン)のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性を有している。そのため、R290と同様に冷媒漏洩に対する注意が必要である。これより以降、微燃レベルであっても可燃性を有する冷媒のことを「可燃性冷媒」と称する。
 可燃性冷媒が室内居住空間へ漏洩した場合、運転停止中(室内送風ファンが回転していない間)に室内の冷媒濃度が上昇し、可燃濃度に達する可能性がある。すなわち、熱交換器にピンホールが形成された場合やフレアー継手に緩みが生じた場合等のような緩慢な漏洩では、漏洩速度が小さいため可燃濃度を形成しないが、外力によって配管の接合部が折損した場合やフレアー継手が外れた場合などの急速な漏洩では、漏洩速度が大きいため可燃濃度を形成する可能性がある。なお、空気調和装置の運転中には、冷媒が漏洩したとしても、室内の気流が撹拌されており、漏洩冷媒は拡散され、冷媒濃度が上昇し可燃濃度を形成することはない。
 そのため、室内への急速な冷媒漏洩を検知するために、冷媒回路の中で液冷媒が溜まる可能性があるところ、具体的には室内熱交換器のヘッダーの下部に温度センサーを配置し、圧縮機の停止中、上記温度センサーが検知した冷媒温度が所定速度を超えて低下した時に、冷媒が漏洩したことを判断する冷媒漏洩判断部を備えたスプリット形空気調和装置が開示されている(例えば、特許文献1参照)。
特開2000-81258号公報(第3頁、図2)
 しかしながら、特許文献1に開示されたスプリット形空気調和装置は、冷媒回路の特定位置に温度センサーを配置し、温度センサーが配置された位置における液冷媒の蒸発による急激な温度低下を、温度センサーが検知した場合に、冷媒漏洩が発生していると判断するものであるため、以下の問題があった。
 (a)停止中の冷媒回路中の冷媒分布は必ずしも一定ではないことから、温度センサーが配置された位置に必ず液冷媒が溜まっているわけではない。このため、液冷媒が存在しない場合には、冷媒漏洩は発生しても、冷媒漏洩の発生を検知することが困難になる。
 (b)また、冷媒漏洩の発生後に、温度センサーが配置された位置に液冷媒が移動し、当該液冷媒が蒸発することによって、急激な温度低下が検知されるとしても、液冷媒の移動に時間を要するため、冷媒漏洩の発生を迅速に検知することができない。
 (c)また、温度センサーが配置された位置に液冷媒が溜まっていた状態で、冷媒漏洩が発生したとしても、あるいは、冷媒漏洩が発生した後で、温度センサーが配置された位置に液冷媒が移動したとしても、液冷媒の溜まり量または移動してきた量が少ない場合には、温度低下量(抜熱量)が小さいため、冷媒漏洩を検知することができないおそれがある。
 (d)さらに、温度センサーが冷媒回路を形成する配管または配管に形成した液溜まり部に設置されるため、液冷媒に急激な温度低下が生じても、配管または液溜まり部の有する熱容量(熱慣性)によって、温度センサーの検知する温度の変化が緩和されるため、冷媒漏洩の発生を迅速に検知することができない、あるいは、冷媒漏洩そのものを検知することができないおそれがある。
 本発明は、上記のような問題を解決するためになされたものであって、冷媒漏洩を迅速かつ確実に検知することができる空気調和装置および冷媒漏洩検知方法を提供することを目的とする。
 本発明に係る空気調和装置は、少なくとも圧縮機および室外配管を具備する室外機と、少なくとも室内熱交換器、室内送風ファンおよび室内配管を具備する室内機と、前記室外配管と前記室内配管とを接続する延長配管と、前記室内熱交換器と前記室内配管とを接続する接合部の下方に配置された第1温度センサーと、前記室内送風ファンが停止中に、前記第1温度センサーが検知した温度の変化によって、室内空気よりも比重が重い冷媒が前記接合部から漏洩しているか否かを判断する制御部と、を有することを特徴とする。
 本発明によれば、第1温度センサーが、室内機の筐体内で冷媒が漏洩する可能性のある熱交換器と室内配管とを接続する接合部の下方に配置されている。このため、仮に、室内空気よりも比重が重い冷媒が接合部から漏洩した場合、かかる漏洩した冷媒(以下「漏洩冷媒」と称す)が断熱膨張する際の気化熱(抜熱)による雰囲気(漏洩冷媒自体、但し、周囲の空気を含む場合がある)の温度低下を、第1温度センサーは直接的に検知することができる。よって、配管等の熱容量に影響されることなく、冷媒漏洩の発生初期(累積漏洩量が比較的少ない時点)において迅速に、冷媒の漏洩を正確に検知することができる。
本発明の実施の形態1に係る空気調和装置の冷媒回路の構成を模式的に示す冷媒回路図。 本発明の実施の形態1に係る空気調和装置の室内機の外観を示す正面図。 図2に示す室内機の内部構成の一部を透過して示す正面図。 図2に示す室内機の内部構成の一部を透過して示す側面図。 図2に示す室内機における室内熱交換器と室内配管との接合状況を一部を拡大して模式的に示す正面図。 図2に示す室内機における温度センサーの設置形態の一例を示す平面視の断面図。 図2に示す室内機における温度センサーの設置形態の一例を示す正面図。 本発明の実施の形態2に係る冷媒漏洩検知方法を説明するフローチャート。 本発明の実施の形態2に係る冷媒漏洩検知方法を説明する温度検知特性を示す実験結果。 本発明の実施の形態3に係る空気調和装置を説明する一部の部材を透視して模式的に示す室内機の側面図。 本発明の実施の形態4に係る空気調和装置を説明する一部の部材を透視して模式的に示す室内機の上面図。 本発明の実施の形態4に係る空気調和装置を説明する一部の部材を透視して模式的に示す室内機の側面図。 本発明の実施の形態5に係る空気調和装置を説明する平面視の下面図。 本発明の実施の形態5に係る空気調和装置を説明する側面視の断面図。
 [実施の形態1]
 図1~図4は、本発明の実施の形態1に係る空気調和装置を説明するものであって、図1は冷媒回路の構成を模式的に示す冷媒回路図、図2は室内機の外観を示す正面図、図3は室内機の内部構成の一部を透過して示す正面図、図4は室内機の内部構成の一部を透過して示す側面図である。なお、各図は模式的に示すものであって、本発明は図示された形態に限定されるものではない。
 図1において、空気調和装置100は、室内に設置される室内機(負荷側ユニットに同じ)101と、室外(図示しない)に据え付けられる室外機(熱源側ユニットに同じ)102と、室内機101と室外機102とを連結する延長配管10a、10bと、から構成されるセパレート形である。
 また、室内機101に制御部1が配置され、制御部1は、以下に説明するように、各機器を制御すると共に、冷媒が漏洩したか否かの判断をする。
 (室外機の冷媒回路)
 室外機102には、冷媒を圧縮して吐出する圧縮機3と、冷房運転中と暖房運転中とで冷媒回路内の冷媒の流れ方向を変更する冷媒流路切換弁(以降、「四方弁」と呼ぶ)4と、外気と冷媒との熱交換を行う熱源側熱交換器である室外熱交換器5と、開度が変更可能で、高圧の冷媒を低圧に減圧する電子制御式膨張弁等の膨張手段である減圧装置(以降、膨張弁と呼ぶ)6とが配置され、これらが室外配管(熱源側冷媒配管に同じ)8によって連結されている。
 また、室外熱交換器5に外気を供給する(吹き付ける)室外送風ファン5fが、室外熱交換器5に対向して設置されている。室外送風ファン5fを回転させることで、室外熱交換器5を通過する空気流を生成する。室外機102では、室外送風ファン5fとしてプロペラファンを用いており、室外熱交換器5を通過して外気を吸い込む形態で、室外熱交換器5は室外送風ファン5fが生成する空気流の下流側に配置されている。
 (室外配管)
 室外配管8とは、ガス側(冷房運転中)の延長配管接続バルブ13aと四方弁4とをつなぐ室外配管8a、四方弁4と圧縮機3とをつなぐ吸入配管11、圧縮機3と四方弁4とをつなぐ吐出配管12、四方弁4と室外熱交換器5とをつなぐ室外配管8c、室外熱交換器5と膨張弁6とをつなぐ室外配管8d、膨張弁6と液側(冷房運転中)の延長配管接続バルブ13bをつなぐ室外配管8bとを指し、これらを総称している。
 (延長配管接続バルブ)
 室外配管8のガス側の延長配管10aとの接続部には、ガス側の延長配管接続バルブ13aが設けられ、一方、液側の延長配管10bとの接続部には、液側の延長配管接続バルブ13bが配置されている。
 ガス側の延長配管接続バルブ13aは開放および閉止の切り替えが可能な二方弁であって、その一端にフレアー継手16aが取り付けられている。
 また、液側の延長配管接続バルブ13bは開放および閉止の切り替えが可能な三方弁であって、真空引きの際(空気調和装置100に冷媒を供給する前作業の際)に使用するサービス口14bおよびフレアー継手16bが取り付けられている。
 そして、延長配管接続バルブ13a、13b(サービス口14bも含む)に取り付けられたフレアー継手16a、16bの室外配管8側には雄ネジが加工されている。そして、室外機102の出荷時(空気調和装置100の出荷時を含む)には、前記雄ネジに螺合する雌ネジが加工されたフレアナット(図示しない)が被着されている。
 (サービス口)
 なお、以下の説明の便宜のため、室外配管8のなかで、圧縮機3の吐出側で圧縮機3から四方弁4入口までを接続する範囲を吐出配管12と呼び、圧縮機3の吸入側で四方弁4から圧縮機3までを接続する範囲を吸入配管11と呼ぶ。そうすると、冷房運転中(室内熱交換器7に低温低圧な冷媒を供給する運転)あるいは暖房運転中(室内熱交換器7に高温高圧な冷媒を供給する運転)の何れの時でも、吐出配管12には常に圧縮機3で圧縮された高温高圧なガス冷媒が流れ、吸入配管11には、蒸発作用を経た低温低圧な冷媒が流れる。
 吸入配管11を流れる低温低圧な冷媒は、ガス冷媒の時もあれば、二相状態の時もある。吸入配管11には低圧側のフレアー継手付きのサービス口14a、吐出配管12には高圧側のフレアー継手付きのサービス口14cが配置されており、据え付け時や修理時の試運転の際に圧力計を接続して、運転圧力を計測するために使用される。
 なお、サービス口14a、14cのフレアー継手(図示しない)には雄ネジが切ってあって、室外機102の出荷時(空気調和装置100の出荷時を含む)には、前記雄ネジにフレアナット(図示しない)が被着されている。
 (室内機の冷媒回路)
 室内機101には室内空気と冷媒との熱交換を行う利用側熱交換器である室内熱交換器7が配置され、室内熱交換器7に室内配管(利用側冷媒配管に同じ)9a、9bが接続されている(室内配管9a、9bの構成については別途詳細に説明する)。
 そして、室内配管9aのガス側の延長配管10aとの接続部には、ガス側の延長配管10aを接続するためのフレアー継手15aが設けられ、一方、室内配管9bの液側の延長配管10bとの接続部には、液側の延長配管10bを接続するためのフレアー継手15bが配置されている。
 そして、フレアー継手15a、15bには雄ネジが切ってあって、室内機101の出荷時(空気調和装置100の出荷時を含む)には、前記雄ネジに螺合する雌ネジが加工されたフレアナット(図示しない)が被着されている。
 また、室内熱交換器7に対向して室内送風ファン7fが設置され、室内送風ファン7fの回転により室内熱交換器7を通過する空気流を生成する。なお、室内送風ファン7fは、ブラシ式ではないモータ(誘導モータまたはDCブラシレスモータ)にて駆動されているので、運転中に着火源となる可能性のある火花が出ない。また、室内送風ファン7fは、室内機101の形態によって、クロスフローファンを使用したり、ターボファンを採用したり様々である。また、その位置も、室内送風ファン7fが生成する空気流において室内熱交換器7の下流側の場合もあれば、上流側の場合もある。
 (空気調和装置の冷媒回路)
 ガス側の延長配管10aの両端は、室外機102のガス側の延長配管接続バルブ13aに取り付けられたフレアー継手16aと室内機101の室内配管9aに取り付けられたフレアー継手15aとにそれぞれ着脱自在に接続され、一方、液側の延長配管10bの両端は、室外機102の液側の延長配管接続バルブ13bに取り付けられたフレアー継手16bと室内機101の室内配管9bに取り付けられたフレアー継手15bとにそれぞれ着脱自在に接続される。
 すなわち、室外配管8と室内配管9a、9bとが延長配管10a、10bによって接続されることによって冷媒回路が形成され、圧縮機3によって圧縮された冷媒を循環させる圧縮式ヒートポンプサイクルが構成される。
 (冷房運転中の冷媒流れ)
 図1において、実線矢印は冷房運転中の冷媒の流れ方向を示している。冷房運転では、四方弁4が実線で示すような冷媒回路に切り替えられ、圧縮機3から吐出された高温高圧のガス冷媒は四方弁4を経てまず室外熱交換器5へと流入する。
 室外熱交換器5は凝縮器として作用する。すなわち、室外送風ファン5fの回転により生成される空気流が室外熱交換器5を通過する際に、通過する室外空気と室外熱交換器5を流れる冷媒とが熱交換して、冷媒の凝縮熱が室外空気に付与される。こうして冷媒は室外熱交換器5で凝縮して液冷媒となる。
 次に、液冷媒は膨張弁6に流入し、膨張弁6において断熱膨張して低圧低温の二相冷媒となる。
 続いて低圧低温の二相冷媒は、液側の延長配管10bおよび室内配管9bを経由して室内機101に供給され、室内熱交換器7に流入する。この室内熱交換器7が蒸発器として作用する。すなわち、室内送風ファン7fの回転で生じる室内空気の流れが室内熱交換器7を通過する際に、通過する室内空気と室内熱交換器7を流れる冷媒とが熱交換して、冷媒が室内空気から蒸発熱(温熱)を奪って蒸発し、低温低圧なガス冷媒もしくは二相冷媒の状態になる。一方、通過する室内空気は冷媒から冷熱を奪って冷却され、室内を冷房する。
 さらに、室内熱交換器7において蒸発して低温低圧なガス冷媒もしくは二相冷媒の状態になった冷媒は、ガス側の室内配管9aおよび延長配管10aを経由して室外機102に供給され、四方弁4を経由して圧縮機3に吸入される。そして、圧縮機3において再び高温高圧のガス冷媒に圧縮される。冷房運転ではこのサイクルが繰り返される。
 (暖房運転中の冷媒流れ)
 図1において、点線矢印は暖房運転中の冷媒の流れ方向を示している。四方弁4を点線で示すような冷媒回路に切り替えれば、冷媒は冷房運転中と逆方向に流れ、まず室内熱交換器7に流入するようになり、この室内熱交換器7を凝縮器、そして室外熱交換器5を蒸発器として作用させ、室内熱交換器7を通過する室内空気に凝縮熱(温熱)を与えて暖め、暖房運転となる。
 (冷媒)
 空気調和装置100では、冷媒回路を流れる冷媒として、現在広く空気調和装置で使用されているHFC冷媒であるR410AよりもGWPが小さく、比較的地球温暖化への影響が少ないが、微燃性を有するHFC冷媒であるR32(CH;ジフルオロメタン)を用いている。冷媒は、一定量をあらかじめ室外機102内に封入した状態で出荷され、空気調和装置100を設置する際、延長配管10a、10bの長さによって不足が生じる場合には、現地作業にて追加充填される。また、冷媒を室外機102内に封入しない状態で出荷し、冷媒の全量を現地作業において充填(封入)するようにしてもよい。
 なお、冷媒はこのR32に限定されるものではなく、R32同様に微燃性を有する、先に説明した、HFC冷媒の一種であるが、組成中に炭素の二重結合を有するハロゲン化炭化水素であり、GWPがR32冷媒よりも更に小さい例えばHFO-1234yf(CFCF=CH;テトラフルオロプロペン)やHFO-1234ze(CF-CH=CHF)等のHFO冷媒であってもよい。
 また、強燃性を有するR290(C;プロパン)やR1270(C;プロピレン)等のHC冷媒であってもよい。また、これら冷媒の二種以上を混合した混合冷媒であってもよい。
 (室内機の構成)
 図2において、室内機101は、筐体正面111、筐体天面114、筐体背面115および筐体底面116を具備する筐体110の内部に収納された室内熱交換器7および室内送風ファン7f(図1参照)を有している。筐体正面111の下部に吸込口112が形成され、筐体正面111の上部に吹出口113が形成されている。また、筐体正面111には、操作表示部2が設けられている。操作表示部2は、空気調和装置100の運転、停止の他、冷房と暖房との切り替えや、室内送風ファン7fの風量の切り替え等の操作を行い、また、運転状態等を表示する。
 なお、吸込口112および吹出口113の大きさや形状は、図示するものに限定するものではなく、例えば、吹出口113を、筐体正面111の上部から筐体天面114に跨がって形成してもよい。また、調和空気は、冷房運転中は冷風に、暖房運転中は温風に、さらに、乾燥(ドライ)運転中は乾燥風になる。
 図3および図4において、筐体110の内部は、連通開口部21が形成されている仕切り板20によって、上下に分割され、下側の空間には、吸込口112に対向する位置で、筐体背面115の近くに室内送風ファン7fが配置されている。
 また、室内熱交換器7は、上側の空間で、上端が筐体背面115に近く、下端が筐体正面111に近くなるように傾斜し、室内熱交換器7の鉛直下方に投影した範囲に、仕切り板20の連通開口部21が位置している。
 すなわち、室内送風ファン7fは、室内空気を下側の空間の室内空気を吸込口112から吸い込み、連通開口部21を経由して上側の空間の室内熱交換器7に供給する。そして、室内熱交換器7において熱交換した室内空気は「調和空気」になって、吹出口113より室内へ吹き出される。
 なお、前記のように、室内送風ファン7fは、ブラシ式ではないモータ(誘導モータまたはDCブラシレスモータ)にて駆動されているので、運転中に着火源となる可能性のある火花が出ない。
 (室内熱交換器と室内配管との接合)
 図5は、本発明の実施の形態1に係る空気調和装置を説明するものであって、室内熱交換器と室内配管との接合状況を一部を拡大して模式的に示す正面図である。なお、各図は模式的に示すものであって、本発明は図示された形態に限定されるものではない。
 図5において、室内熱交換器7は、互いに間隔を空けて配置された複数枚の放熱板(フィンに同じ)70と、放熱板70を貫通する複数の伝熱管71とから形成されている。
 伝熱管71は、長い直管部を具備する複数のU字状管(以下「ヘアピン」と称す)72と、複数のヘアピン72同士を連通する短い直管部を具備する円弧状のUベント73とから構成されている。このとき、ヘアピン72とUベント73とは、接合部(以下「ロー付け部W」と称し、図中、黒丸にて示す)によって接続されている。なお、伝熱管71の本数は限定するものではなく、1本でも複数本であってもよい。また、伝熱管71を構成するヘアピン72の本数も限定するものではない。
 ガス側の室内配管9aには、円筒状のヘッダー主管91aが接続され、ヘッダー主管91aに複数のヘッダー枝管92aが接続されて、ヘッダー枝管92aには、伝熱管71(ヘアピン72に同じ)の一方の端部71aが接続されている。
 また、液(二相)側の室内配管9bには、複数の室内冷媒枝管92bが接続され、複数に枝分かれしている。そして、ヘッダー枝管92aには、伝熱管71(ヘアピン72に同じ)の他方の端部71bが接続されている。
 このとき、ヘッダー主管91aとヘッダー枝管92aとの接続、ヘッダー枝管92aと端部71aとの接続、室内配管9bと室内冷媒枝管92bとの接続、および室内冷媒枝管92bと端部71bは、いずれもロー付け部W(図中、黒丸にて示す)において接続されている。なお、以上は、接合部としてロー付け部Wを示しているが、本発明はこれに限定するものではなく、何れの接合手段であってもよい。
 (第1漏洩冷媒受け)
 図3~5において、ヘッダー主管91a等に対向して、ヘッダー主管91a等と平行で、ヘッダー主管91a等よりも鉛直下方に、第1漏洩冷媒受け94が配置されている(図中、斜線を付している)。
 第1漏洩冷媒受け94は、ロー付け部Wの位置の鉛直下方を覆う樋であって、下端に第1漏洩冷媒溜まり部93が形成されている。したがって、第1漏洩冷媒受け94は、前記ロー付け部Wの位置から冷媒(室内空気よりも比重が重い)が洩れた際、該漏洩冷媒を受け止めて第1漏洩冷媒溜まり部93に流し込むためのものである。
 なお、第1漏洩冷媒受け94の形状は限定するものではなく、断面矩形状や断面円弧状で、ヘアピン72が通過する切り欠きまたは貫通孔が形成された深いものであってもよいし、ヘアピン72の下面に側縁が当接または近接する比較的底の浅いものであってもよい。
 第1漏洩冷媒溜まり部93は、第1漏洩冷媒受け94に沿って流れ込んだ冷媒を一時的に溜めるためのものであり、その溜まり量は限定するものではない。したがって、第1漏洩冷媒溜まり部93を特別に設けることなく、第1漏洩冷媒受け94の下端を塞いて、第1漏洩冷媒受け94の下端に近い範囲を第1漏洩冷媒溜まり部93とみなしてもよい。
 なお、室内配管9aおよび室内配管9bは第1漏洩冷媒溜まり部93を貫通しているが、室内配管9aおよび室内配管9bを曲げて第1漏洩冷媒溜まり部93を迂回させ、室内配管9aおよび室内配管9bが第1漏洩冷媒溜まり部93を貫通しないようにしてもよい。
 (第2漏洩冷媒受け)
 フレアー継手15aおよびフレアー継手15bの鉛直下方に、第2漏洩冷媒受け95が配置されている。第2漏洩冷媒受け95は、フレアー継手15aおよびフレアー継手15bの鉛直下方の一定の範囲を覆う箱体であって、フレアー継手15aまたはフレアー継手15bから冷媒(室内空気よりも比重が重い)が洩れた際、該冷媒を受け止めて、一定の量を溜めるものである。
 なお、延長配管10aおよび延長配管10bは第2漏洩冷媒受け95を貫通しているが、延長配管10aおよび延長配管10bを曲げて第2漏洩冷媒受け95を迂回させ、延長配管10aおよび延長配管10bが第2漏洩冷媒受け95を貫通しないようにしてもよい。
 (温度センサー)
 室内送風ファン7fの吸い込み側(吸込口112と室内送風ファン7fとの間)には、運転中に、吸い込み空気(室内空気に同じ)の温度を計測する温度センサー(以下「吸い込み温度センサー」と称す)S1が配置されている。
 また、室内熱交換器7には、冷房運転中には、室内熱交換器7に流入する冷媒の温度を測定し、暖房運転中には、室内熱交換器7から流出する冷媒の温度を測定する温度センサー(以下「液管センサー」と称す)S2と、室内熱交換器7の略中央に位置し、冷媒の蒸発温度あるいは凝縮温度を測定する温度センサー(以下「二相管センサー」と称す)S3とが配置されている。
 そして、吸い込み温度センサーS1、液管センサーS2および二相管センサーS3が検知した温度は、それぞれ制御部1に入力され、圧縮機3等の運転制御に使用される。
 さらに、第1漏洩冷媒受け94(正確には第1漏洩冷媒溜まり部93)に温度センサー(以下「第1温度センサー」と称す)S4が設置され、第2漏洩冷媒受け95に温度センサー(以下「第2温度センサー」と称す)S5が設置されている。
 すなわち、ロー付け部Wによる接合部からは、経年劣化や地震等の外力によって、冷媒が漏洩するおそれがあるため、仮に、冷媒漏洩が発生した場合、第1漏洩冷媒受け94は、室内空気よりも比重が重い漏洩冷媒を受け止め、第1温度センサーS4は、漏洩冷媒の気化熱による抜熱によって冷却される雰囲気の温度低下を検知する。
 このとき、一定の量を溜める第1漏洩冷媒溜まり部93を設け、ここに第1温度センサーS4を設けているから、漏洩冷媒の気化熱による雰囲気温度(周囲の空気)の温度低下を早期に検知することができ、冷媒漏洩を早期に、かつ確実に発見することが可能になっている。
 なお、本発明は、第1漏洩冷媒受け94の設置を省略して、仕切り板20の上側に第1温度センサーS4を設置するだけであってもよい。すなわち、ピンホール等から漏洩冷媒は下降して、第1漏洩冷媒受け94を設けない場合には、仕切り板20の上に停留するため、仕切り板20に近い位置に第1温度センサーS4を設置しておけば、冷媒漏洩の気化熱による周囲の空気の温度低下を検知することができる。
 また、フレアー継手15a、15bによる接合部も、経年劣化や地震等の外力によって、冷媒が漏洩するおそれがあるため、フレアー継手15aまたはフレアー継手15bから漏洩した冷媒(室内空気よりも比重が重い)を受け止めて溜める第2漏洩冷媒受け95を設け、ここに第2温度センサーS5を設けることによって、冷媒漏洩を早期に、かつ確実に検知することが可能になっている。
 なお、フレアー継手15aまたはフレアー継手15bからの漏洩冷媒(室内空気よりも比重が重い)は下降して、筐体110の筐体底面116の上に停留するため、第2漏洩冷媒受け95を設けないで、筐体底面116に近い位置に第2温度センサーS5を設置してもよい。
 さらに、フレアー継手15aまたはフレアー継手15bからの漏洩冷媒(室内空気よりも比重が重い)が気化することによって、筐体110の仕切り板20から下の範囲の空気の温度が低下することから、第2漏洩冷媒受け95および第2温度センサーS5を撤去して、吸い込み温度センサーS1による検温を運転中および運転停止中に実施して、吸い込み温度センサーS1に第2温度センサーS5の機能を付加するようにしてもよい(第2温度センサーS5に吸い込み温度センサーS1の機能を付加することに同じ)。
 図6Aおよび図6Bは本発明の実施の形態1に係る空気調和装置を説明するものであって、温度センサーの設置形態の一例を示すものであって、図6Aは平面視の断面図、図6Bは正面図である。
 図6Aおよび図6Bにおいて、第1温度センサーS4は、熱伝導性能の劣るホルダー80を介して室内配管9bに設置されている。すなわち、ホルダー80は、室内配管9bを把持する断面C字状の配管掴み部81と、第1温度センサーS4を把持する断面C字状のセンサー掴み部83と、配管掴み部81とセンサー掴み部83とを連結する腕部82とを具備している。そして、ホルダー80は、熱伝達率が低い材料、例えば、合成樹脂等によって形成され、腕部82の断面積が小さくなっている。なお、室内配管9bを把持する断面C字状の配管掴み部81に代えて、断面U字状で第1漏洩冷媒溜まり部93を把持するものや、平面状または曲面状で第1漏洩冷媒溜まり部93に設置されるものであってもよい。
 図6Bにおいて、液管センサーS2は室内配管9bの外面に直接設置され、室内配管9bの外面温度を直接検知している。
 (冷凍サイクルの制御)
 そして、制御部1は、吸い込み温度センサーS1、液管センサーS2および二相管センサーS3が検知した値に基づいて、冷凍サイクル(圧縮機3や膨張弁6等)を制御する。
 なお、液管センサーS2および二相管センサーS3が設置される位置は、図示する位置に限定するものではない。
 [実施の形態2]
 図7は、本発明の実施の形態2に係る冷媒漏洩検知方法を説明するフローチャートである。
 図7において、当該冷媒漏洩検知方法は、空気調和装置100(実施の形態1)において、冷媒の漏洩を検知する方法である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 空気調和装置100の運転中(室内送風ファン7fが回転中)に、冷媒漏洩が発生した場合、吹き出される調和空気によって、室内の空気は撹拌されるため、室内(図示しない)に漏洩冷媒の濃度が高い範囲が形成されることはない。一方、空気調和装置100の停止中(室内送風ファン7fが回転しない間)に、冷媒漏洩が発生した場合、室内に漏洩冷媒の濃度が高い範囲が形成されるおそれがある。
 このため、空気調和装置100は、運転停止中(室内送風ファン7fが回転しない間)に限って(Step1)、第1温度センサーS4および第2温度センサーS5が温度を検知する(Step2)。そして、第1温度センサーS4および第2温度センサーS5は一定の時間間隔で検温し、第1温度センサーS4または第2温度センサーS5の一方でも、検知した温度の変化量が一定の閾値(例えば、前回の検知値と今回の検知値との差が5℃)、あるいは、検知した温度の変化の度合いが一定の閾値(例えば、5℃/分)を超えて下降した際、制御部1は冷媒が漏洩していると判断する(Step3)。
 (冷媒漏洩を検知した後の動作)
 空気調和装置100の制御部1は、運転停止中に冷媒が漏洩していると判断した場合、室内送風ファン7fの回転を開始して、室内の空気を撹拌する(Step4)。
 また、室内機101の本体に設けられた報知手段(操作表示部2または図示しない音声発生手段等)によって、例えば、「冷媒が洩れています、窓を開けてください」等を報知する(Step5)。
 なお、Step5の実行を省略してもよい。
 (作用効果)
 図8は、本発明の実施の形態2に係る冷媒漏洩検知方法を説明する温度検知特性を示す実験結果である。すなわち、図8は、空気調和装置100において、フレアー継手15aから毎分150gの漏洩速度で、冷媒R32を漏洩した際の、第2温度センサーS5および吸い込み温度センサーS1が検知した温度(℃)を縦軸に、漏洩開始からの時間(分)を横軸に表示したものである。
 すなわち、フレアー継手15aから漏洩冷媒は、急速に断熱膨張して、周囲から温熱を奪いながら、室内空気よりも比重が重いため、下降して第2漏洩冷媒受け95に流入する。このため、周囲、特に第2漏洩冷媒受け95の雰囲気温度は急速に下降するため、漏洩開始直後に第2温度センサーS5の検知した温度は急速に下降している。
 一方、吸い込み温度センサーS1が検知した温度も、第2温度センサーS5ほどではないものの、漏洩開始直後に急速に下降している。これは、第2漏洩冷媒受け95に流入する前の漏洩冷媒の断熱膨張、あるいは第2漏洩冷媒受け95に流入しなかった漏洩冷媒の断熱膨張によって、筐体110の下範囲の温度が低下したことによる。
 以上の実験結果からも明らかなように、空気調和装置100における冷媒漏洩検知方法は以下のような顕著な作用効果を奏する。
 (i)冷媒漏洩が生じるおそれがある位置における雰囲気温度(冷媒温度または空気温度)を直接検知して、検知した温度の変化(下降)状態によって、冷媒が漏洩していると判断するから、正確で迅速な判断が可能になる。
 (ii)すなわち、運転停止中における冷媒回路中の冷媒の分布状態や、冷媒漏洩の発生後における冷媒回路中の冷媒の移動状態等に、左右されないから、前記特許文献1に開示されたスプリット形空気調和装置における問題が解消している。
 (iii)また、漏洩冷媒の蒸発に伴う抜熱によって直接冷却される雰囲気温度を検知しているため、配管等の部材の有する熱容量(熱慣性)によって、検知感度が緩慢になるようなことがない。
 (iv)また、第1漏洩冷媒受け94および第2漏洩冷媒受け95を設置しているから、漏洩冷媒(漏洩冷媒の断熱膨張による抜熱によって冷却された空気を含む場合がある)がより確実に、第1温度センサーS4および第2温度センサーS5の周囲に到達している。
 (v)なお、第2温度センサーS5を撤去して、吸い込み温度センサーS1によって、冷媒漏洩を検知するようにすれば、部品点数が減少し、製造コストが安価になる。
 (vi)さらに、運転停止中に冷媒が漏洩していると判断した場合、室内送風ファン7fの回転を開始して、室内の空気を撹拌するから、室内における漏洩冷媒の濃度の濃い範囲の形成が抑えられる。また、冷媒が漏洩している旨を報知手段によって報知することによって、ユーザーに換気等を促すから、室内における漏洩冷媒の濃度の濃い範囲の形成が抑えられる。
 なお、以上は、第1漏洩冷媒受け94および第2漏洩冷媒受け95を設け、それぞれに第1温度センサーS4および第2温度センサーS5を設置しているが、本発明はこれに限定するものではなく、例えば、第1漏洩冷媒受け94および仕切り板20の両方に第2漏洩冷媒受け95に連通する開口部を形成することによって、第1温度センサーS4の設置を省略してもよい。このとき、第2漏洩冷媒受け95の上縁を仕切り板20に当接または近接させておけば、第2温度センサーS5の周囲への漏洩冷媒の流れ込みがより促進される。
 [実施の形態3]
 図9は、本発明の実施の形態3に係る空気調和装置を説明するものであって、一部の部材を透視して模式的に示す室内機の側面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 図9において、空気調和装置200が具備する室内機201の第3漏洩冷媒受け96は、漏斗状であって、底が抜けた逆円錐台形状を呈している。そして、第3漏洩冷媒受け96の下方に吸い込み温度センサーS1が配置され、第3漏洩冷媒受け96内には、実施の形態1のように第2温度センサーS5が設けられていない。この点を除くと、空気調和装置200は空気調和装置100(実施の形態1)に同じである。
 すなわち、フレアー継手15aまたはフレアー継手15bから冷媒(室内空気よりも比重が重い)が洩れた際、該冷媒は第3漏洩冷媒受け96に案内され、吸い込み温度センサーS1の周囲に流れ込むことから、運転停止中も検温を継続している吸い込み温度センサーS1の検知する温度の変化に基づいて、冷媒が漏洩したことを判断している。すなわち、空気調和装置200における冷媒漏洩検知方法は、実施の形態2に準じるものであって、実施の形態2における第2温度センサーS5を吸い込み温度センサーS1と読み替える。
 したがって、第2温度センサーS5を設けない分だけ部品点数が減少するから、空気調和装置200は、製造コストが安価になっている。
 なお、以上は、第1漏洩冷媒受け94に第1温度センサーS4を設置しているが、本発明はこれに限定するものではなく、例えば、第1漏洩冷媒受け94および仕切り板20の両方に第3漏洩冷媒受け96に連通する開口部を形成することによって、第1温度センサーS4の設置を省略してもよい(このとき、第3漏洩冷媒受け96の上縁を仕切り板20に当接または近接させておけば、吸い込み温度センサーS1の周囲への漏洩冷媒の流れ込みがより促進される)。
 [実施の形態4]
 図10Aおよび図10Bは、本発明の実施の形態4に係る空気調和装置を説明するものであって、図10Aは一部の部材を透視して模式的に示す室内機の上面図、図10Bは一部の部材を透視して模式的に示す室内機の側面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 図10Aおよび図10Bにおいて、空気調和装置300の室内機301は、部屋の天井(図示しない)から吊り下げた状態に設置される天吊り形であって、内部に室内熱交換器7および室内送風ファン7fを収納する筐体310を有している。
 そして、筐体310の筐体底面316の筐体背面315寄りに吸込口312が形成され、筐体正面311に吹出口313が設けられている。
 室内送風ファン7fは筐体背面315寄りの位置に配置され、室内熱交換器7は筐体正面311と筐体天面314との隅寄りに向かって、傾斜した状態で配置されている。
 なお、筐体右端面318寄りの位置において、室内熱交換器7に室内配管9a、9bが接続されている。かかる接続の形態は実施の形態1に同じ(ロー付け部W、図5参照)であるから、説明を省略する。
 また、室内熱交換器7と室内配管9a、9bとの接続部(ロー付け部W、図5参照)の位置の鉛直下方、およびフレアー継手15aおよびフレアー継手15bの鉛直下方を覆う第4漏洩冷媒受け97が、設けられている(全てのロー付け部Wの位置およびフレアー継手15a、15bの位置を鉛直下方に投影した仮想線は、第4漏洩冷媒受け97と交差する)。第4漏洩冷媒受け97は、断面コ字状(開口側が底側よりも広いものを含む)または円弧状であって、上端が開口した樋であり、下端が塞がれている。
 さらに、第4漏洩冷媒受け97の下端に近い位置に、温度センサー(以下「第3温度センサー」と称す)S6が設置されている。
 すなわち、ロー付け部Wの何れかの位置や、フレアー継手15aまたはフレアー継手15bから冷媒が漏洩した場合、漏洩冷媒は第4漏洩冷媒受け97によって受け止められ、第3温度センサーS6の周囲の雰囲気温度が急速に変化することになる。そして、空気調和装置300における冷媒漏洩検知方法は、実施の形態2に準じるものであって、実施の形態2における第1温度センサーS4および第2温度センサーS5を第3温度センサーS6と読み替える。
 したがって実施の形態1および実施の形態2と同様に、冷媒が洩れたことを早期に検知することができる。
 なお、室内熱交換器7と室内配管9a、9bとの接続部(ロー付け部W)の位置とフレアー継手15a、15bの位置とが離れている場合(水平方向で離れている場合)、それぞれの位置に漏洩冷媒受けおよび温度センサーを設置するようにしてもよい。
 [実施の形態5]
 図11Aおよび図11Bは本発明の実施の形態5に係る空気調和装置を説明するものであって、図11Aは平面視の下面図、図11Bは側面視の断面図である。なお、実施の形態3と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 図11Aおよび図11Bにおいて、空気調和装置400の室内機401は、部屋の天井(図示しない)に埋め込まれた状態に設置される天井カセット形であって、内部に室内熱交換器7および室内送風ファン7fを収納する筐体410を有している。
 そして、筐体410は、角部が面取りされた断面正方形の函体であって、開口した筐体底面416に化粧グリル420が着脱自在に設置されている。化粧グリル420は、中央部に吸込口422が形成され、吸込口422の周囲の4個所に、吹出口423が形成されている。また、筐体天面414の中央に室内送風ファン7fが設置され、室内送風ファン7fを包囲するようにロ字状の室内熱交換器7が配置されているから、吸込口422から室内送風ファン7fによって吸込された室内空気は、室内熱交換器7において熱交換され、室内熱交換器7の外側から吹出口423を経由して室内(図示しない)に吹き出される。
 筐体410の4隅のうちの1つの隅部に、フレアー継手15a、15bが配置され、当該隅部において、室内熱交換器7と室内配管9a、9bとが接続されている。かかる接続の形態は実施の形態1に同じ(ロー付け部W、図5参照)であるから、説明を省略する。
 そして、実施の形態4と同様に、室内熱交換器7と室内配管9a、9bとの接続部(ロー付け部W、図5参照)の位置の鉛直下方、およびフレアー継手15a、15bの鉛直下方を覆う第4漏洩冷媒受け97が、設けられている(全てのロー付け部Wの位置およびフレアー継手15a、15bの位置を鉛直下方に投影した仮想線は、第4漏洩冷媒受け97と交差する)。第4漏洩冷媒受け97は、天面が開口した箱体で、筐体天面414と平行な底面を具備し、第4漏洩冷媒受け97内の底面の近くに第3温度センサーS6が設置されている。
 したがって、空気調和装置400は空気調和装置200(実施の形態3)と同じように、空気調和装置100(実施の形態1および実施の形態2)と同様の作用効果を奏する。
 以上、実施の形態2を実行するものとして床置き形(実施の形態1、3)、天吊り形(実施の形態4)および天井カセット形(実施の形態5)を説明したが、壁掛け形の空気調和装置の室内機においても、同様に、実施の形態2を実行することができ、同様の作用効果が得られる。
 また、以上は、空気調和装置100~400について説明しているが、本発明はこれに限定するものではなく、例えば、給湯器等を含む冷凍サイクル装置であってもよい。
 1 制御部、2 操作表示部、3 圧縮機、4 四方弁、5 室外熱交換器、5f 室外送風ファン、6 膨張弁、7 室内熱交換器、7f 室内送風ファン、8 室外配管、8a 室外配管、8b 室外配管、8c 室外配管、8d 室外配管、9a 室内配管、9b 室内配管、10a 延長配管、10b 延長配管、11 吸入配管、12 吐出配管、13a 延長配管接続バルブ、13b 延長配管接続バルブ、14a サービス口、14b サービス口、14c サービス口、15a フレアー継手、15b フレアー継手、16a フレアー継手、16b フレアー継手、20 仕切り板、21 連通開口部、70 放熱板、71 伝熱管、71a 端部、71b 端部、72 ヘアピン、73 Uベント、80 ホルダー、81 配管掴み部、82 腕部、83 センサー掴み部、91a ヘッダー主管、92a ヘッダー枝管、92b 室内冷媒枝管、93 第1漏洩冷媒溜まり部、94 第1漏洩冷媒受け、95 第2漏洩冷媒受け、96 第3漏洩冷媒受け、97 第4漏洩冷媒受け、100 空気調和装置、101 室内機、102 室外機、110 筐体、111 筐体正面、112 吸込口、113 吹出口、114 筐体天面、115 筐体背面、116 筐体底面、200 空気調和装置、201 室内機、300 空気調和装置、301 室内機、310 筐体、311 筐体正面、312 吸込口、313 吹出口、314 筐体天面、315 筐体背面、316 筐体底面、318 筐体右端面、400 空気調和装置、401 室内機、410 筐体、414 筐体天面、416 筐体底面、420 化粧グリル、422 吸込口、423 吹出口、S1 吸い込み温度センサー、S2 液管センサー、S3 二相管センサー、S4 第1温度センサー、S5 第2温度センサー、S6 第3温度センサー、W ロー付け部。

Claims (10)

  1.  少なくとも圧縮機および室外配管を具備する室外機と、
     少なくとも室内熱交換器、室内送風ファンおよび室内配管を具備する室内機と、
     前記室外配管と前記室内配管とを接続する延長配管と、
     前記室内熱交換器と前記室内配管とを接続する接合部の下方に配置された第1温度センサーと、
     前記室内送風ファンが停止中に、前記第1温度センサーが検知した温度の変化によって、室内空気よりも比重が重い冷媒が前記接合部から漏洩しているか否かを判断する制御部と、を有することを特徴とする空気調和装置。
  2.  前記接合部の下方に第1漏洩冷媒受けが設けられ、該第1漏洩冷媒受け内に前記第1温度センサーが配置されていることを特徴とする請求項1記載の空気調和装置。
  3.  少なくとも圧縮機および室外配管を具備する室外機と、
     少なくとも室内熱交換器、室内送風ファンおよび室内配管を具備する室内機と、
     前記室外配管と前記室内配管とを接続する延長配管と、
     前記室内熱交換器と前記延長配管とを接続する継手部の下方に配置された第2温度センサーと、
     前記室内送風ファンが停止中に、前記第2温度センサーが検知した温度の変化によって、室内空気よりも比重が重い冷媒が前記継手部から漏洩していると判断する制御部と、を有することを特徴とする空気調和装置。
  4.  前記継手部の下方に第2漏洩冷媒受けが設けられ、該第2漏洩冷媒受け内に前記第2温度センサーが配置されていることを特徴とする請求項3記載の空気調和装置。
  5.  前記継手部の下方に漏斗状の第3漏洩冷媒受けが設けられ、
     該第3漏洩冷媒受けの下方に前記第2温度センサーが配置され、
     前記第2温度センサーは、前記室内送風ファンが運転中に、吸い込み空気温度を検知することを特徴とする請求項3記載の空気調和装置。
  6.  前記冷媒が、HFC冷媒であるR32(CH;ジフルオロメタン)、HFO-1234yf(CFCF=CH;テトラフルオロプロペン)あるいはHFO-1234ze(CF-CH=CHF)であることを特徴とする請求項1~5の何れか一項に記載の空気調和装置。
  7.  請求項1記載の空気調和装置における冷媒漏洩検知方法であって、
     前記室内送風ファンの停止中に、前記第1温度センサーが温度を検知するステップと、
     前記第1温度センサーが検知した温度の変化量が一定の閾値を超えて下降した際、前記制御部は冷媒が漏洩していると判断するステップと、
     前記制御部は、冷媒が漏洩していると判断した場合、前記室内送風ファンを回転するステップと、を有することを特徴とする冷媒漏洩検知方法。
  8.  請求項3記載の空気調和装置における冷媒漏洩検知方法であって、
     前記室内送風ファンの停止中に、前記第1温度センサーおよび前記第2温度センサーがそれぞれ温度を検知するステップと、
     前記第1温度センサーまたは前記第2温度センサーが検知した温度の一方の変化量が一定の閾値を超えて下降した際、前記制御部は冷媒が漏洩していると判断するステップと、
     前記制御部は、冷媒が漏洩していると判断した場合、前記室内送風ファンを回転するステップと、を有することを特徴とする冷媒漏洩検知方法。
  9.  前記制御部は、冷媒が漏洩していると判断した場合、冷媒が漏洩している旨を報知するステップと、を有することを特徴とする請求項7または8記載の冷媒漏洩検知方法。
  10.  少なくとも圧縮機および室外配管を具備する室外機と、
     少なくとも室内熱交換器、室内送風ファンおよび室内配管を具備する室内機と、
     前記室外配管と前記室内配管とを接続する延長配管と、
    前記室内熱交換器と前記延長配管とを接続する継手部と、
     室内空気の温度を測定する吸い込み温度センサーと、
     前記室内送風ファンが停止中に、前記吸い込み温度センサーが検知した温度の変化によって、室内空気よりも比重が重い冷媒が前記継手部から漏洩していると判断する制御部と、を有することを特徴とする空気調和装置。
PCT/JP2014/069972 2013-08-26 2014-07-29 空気調和装置および冷媒漏洩検知方法 WO2015029678A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14840930.3A EP3040654B1 (en) 2013-08-26 2014-07-29 Air conditioning device and refrigerant leak detection method
AU2014313328A AU2014313328B2 (en) 2013-08-26 2014-07-29 Air-conditioning apparatus and refrigerant leakage detection method
MX2016002486A MX2016002486A (es) 2013-08-26 2014-07-29 Aparato de aire acondicionado y metodo de deteccion de fuga de refrigerante.
US14/891,975 US10539358B2 (en) 2013-08-26 2014-07-29 Air-conditioning apparatus and refrigerant leakage detection method
CN201420484518.2U CN204100499U (zh) 2013-08-26 2014-08-26 空调装置
CN201410424347.9A CN104422087A (zh) 2013-08-26 2014-08-26 空调装置以及制冷剂泄漏检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174790 2013-08-26
JP2013174790A JP5818849B2 (ja) 2013-08-26 2013-08-26 空気調和装置および冷媒漏洩検知方法

Publications (1)

Publication Number Publication Date
WO2015029678A1 true WO2015029678A1 (ja) 2015-03-05

Family

ID=52586252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069972 WO2015029678A1 (ja) 2013-08-26 2014-07-29 空気調和装置および冷媒漏洩検知方法

Country Status (7)

Country Link
US (1) US10539358B2 (ja)
EP (1) EP3040654B1 (ja)
JP (1) JP5818849B2 (ja)
CN (1) CN104422087A (ja)
AU (1) AU2014313328B2 (ja)
MX (1) MX2016002486A (ja)
WO (1) WO2015029678A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160123645A1 (en) * 2014-10-29 2016-05-05 Lg Electronics Inc. Air conditioner and method of controlling the same
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
WO2017013715A1 (ja) * 2015-07-17 2017-01-26 三菱電機株式会社 空気調和装置の室内機、及びその室内機を備えた空気調和装置
WO2018216052A1 (ja) * 2017-05-22 2018-11-29 三菱電機株式会社 冷凍サイクル装置のユニット装置
EP3396277A4 (en) * 2015-12-21 2018-12-12 Mitsubishi Electric Corporation Refrigeration cycle device
EP3517857A1 (en) * 2015-04-03 2019-07-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle system
JP2020134033A (ja) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 室内ユニット

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892199B2 (ja) * 2014-06-27 2016-03-23 ダイキン工業株式会社 空調室内機
US10408484B2 (en) * 2015-03-31 2019-09-10 Daikin Industries, Ltd. Air-conditioning apparatus with a refrigerant leak sensor in an indoor unit
JP6135705B2 (ja) * 2015-04-06 2017-05-31 ダイキン工業株式会社 利用側空調装置
CN104949266B (zh) * 2015-06-04 2017-11-10 广东美的制冷设备有限公司 空调器和空调器的冷媒泄露检测方法
JP2017040381A (ja) * 2015-08-17 2017-02-23 ダイキン工業株式会社 空調室内機
WO2017081735A1 (ja) * 2015-11-09 2017-05-18 三菱電機株式会社 冷凍サイクル装置及び冷媒漏洩検知方法
CN105485856B (zh) * 2015-12-31 2019-04-02 广东美的制冷设备有限公司 空调系统及空调系统制热状态下的异常检测方法
EP3699505B1 (en) * 2016-04-05 2021-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
CN207570109U (zh) * 2016-05-12 2018-07-03 三菱电机株式会社 制冷剂泄漏检测机构
WO2017199342A1 (ja) * 2016-05-17 2017-11-23 三菱電機株式会社 冷凍サイクル装置
JP6827279B2 (ja) 2016-07-15 2021-02-10 日立ジョンソンコントロールズ空調株式会社 冷暖切替ユニット及びそれを備える空気調和機
WO2018092197A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法
CN106840524A (zh) * 2016-12-29 2017-06-13 大连葆光节能空调设备厂 一种溴化锂热泵机房漏水监控系统
JP6555293B2 (ja) * 2017-03-31 2019-08-07 ダイキン工業株式会社 冷凍装置の室内ユニット
EP3607250B1 (en) * 2017-04-06 2024-03-27 Carrier Corporation Moderate-to-low global warming potential value refrigerant leak detection
CN107289599B (zh) * 2017-08-10 2020-03-17 四川长虹电器股份有限公司 一种检测空调冷媒泄露量的装置和方法
EP3667204B1 (en) * 2017-08-10 2021-10-20 Mitsubishi Electric Corporation Refrigeration cycle device
KR102323029B1 (ko) * 2017-08-18 2021-11-05 주식회사 엘지에너지솔루션 자이로센서 및 수분감지센서를 이용한 배터리팩 내 누액 감지 장치 및 감지 방법
EP3505842B1 (en) * 2017-12-26 2023-01-25 Trane International Inc. Retrofitting r-410a hvac products to handle flammable refrigerants
DE112018006844B4 (de) * 2018-01-12 2023-10-19 Mitsubishi Electric Corporation Klimaanlage
CN108760161B (zh) * 2018-05-17 2023-08-18 南京百灵汽车电气机械有限公司 一种蒸发器模拟实用检测壳体
CN110736183B (zh) * 2018-07-18 2021-04-27 奥克斯空调股份有限公司 一种空调冷媒泄露的检测方法及装置
CN110940051B (zh) * 2018-09-25 2021-03-12 奥克斯空调股份有限公司 一种空调冷媒泄漏检测方法及使用该方法的空调
WO2020144769A1 (ja) * 2019-01-09 2020-07-16 三菱電機株式会社 空気調和装置
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US11585575B2 (en) 2020-07-08 2023-02-21 Rheem Manufacturing Company Dual-circuit heating, ventilation, air conditioning, and refrigeration systems and associated methods
US12013135B2 (en) 2020-08-06 2024-06-18 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a flame sensor
US12092352B2 (en) 2020-08-06 2024-09-17 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a pressure sensor
US12104809B2 (en) 2021-04-26 2024-10-01 Therm-O-Disc, Incorporated Robust gas sensor for harsh environments
US12117191B2 (en) 2022-06-24 2024-10-15 Trane International Inc. Climate control system with improved leak detector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH11142004A (ja) * 1997-11-05 1999-05-28 Daikin Ind Ltd 冷凍装置
JP2000081258A (ja) 1998-07-01 2000-03-21 Daikin Ind Ltd 冷凍装置および冷媒漏洩検出方法
JP2000146393A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 冷凍装置
JP2000258000A (ja) * 1999-03-02 2000-09-22 Daikin Ind Ltd 空気調和装置
JP2002103952A (ja) * 2000-10-03 2002-04-09 Denso Corp 車両用空調制御装置
JP2002228281A (ja) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd 空気調和機
JP2004286255A (ja) * 2003-03-19 2004-10-14 Gac Corp 制御盤用空気調和装置
JP2010078285A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2013113555A (ja) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856288A (en) * 1983-07-18 1989-08-15 Weber Robert C Refrigerant alert and automatic recharging device
US4745765A (en) * 1987-05-11 1988-05-24 General Motors Corporation Low refrigerant charge detecting device
US4843835A (en) * 1988-09-27 1989-07-04 Amana Refrigeration, Inc. Refrigerator drain funnel
US5152152A (en) * 1992-02-10 1992-10-06 Thermo King Corporation Method of determining refrigerant charge
JPH10122711A (ja) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 冷凍サイクル制御装置
US6330802B1 (en) * 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
JP4588233B2 (ja) * 2000-07-25 2010-11-24 富士フイルム株式会社 製膜設備
WO2002027245A1 (fr) * 2000-09-26 2002-04-04 Daikin Industries, Ltd. Climatiseur
US20050086952A1 (en) * 2001-09-19 2005-04-28 Hikaru Nonaka Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
CN2502190Y (zh) * 2001-10-13 2002-07-24 中国科学技术大学 四季节能冷暖空调热水装置
JP3999961B2 (ja) * 2001-11-01 2007-10-31 株式会社東芝 冷蔵庫
US6772519B2 (en) * 2002-10-28 2004-08-10 Ico Flexible hose system for installing residential and commercial facility air conditioning system
CN1755341A (zh) * 2004-09-29 2006-04-05 乐金电子(天津)电器有限公司 空调器的冷媒泄漏检测装置及其方法
JP3786133B1 (ja) 2005-03-03 2006-06-14 ダイキン工業株式会社 空気調和装置
GB2428896A (en) * 2005-07-26 2007-02-07 Trox Detecting a leak in a cooling system
US7597137B2 (en) * 2007-02-28 2009-10-06 Colmac Coil Manufacturing, Inc. Heat exchanger system
JP5186951B2 (ja) * 2008-02-29 2013-04-24 ダイキン工業株式会社 空気調和装置
JP5040975B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 漏洩診断装置
KR20100056204A (ko) * 2008-11-19 2010-05-27 삼성전자주식회사 멀티형 공기조화기 및 그 냉매 누설 진단방법
CN202133061U (zh) * 2008-11-26 2012-02-01 德尔福技术有限公司 制冷剂泄漏探测系统及其制冷剂传感器组件
US20110112814A1 (en) * 2009-11-11 2011-05-12 Emerson Retail Services, Inc. Refrigerant leak detection system and method
US20120272672A1 (en) * 2010-02-10 2012-11-01 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2011135946A1 (ja) * 2010-04-28 2011-11-03 ダイキン工業株式会社 熱交換装置及びこれに用いる連絡管
JP5838660B2 (ja) * 2011-08-29 2016-01-06 株式会社ノーリツ ヒートポンプ給湯装置
US8931509B2 (en) * 2011-10-07 2015-01-13 Trane International Inc. Pressure correcting distributor for heating and cooling systems
US9052130B2 (en) * 2012-01-13 2015-06-09 Manitowoc Foodservice Companies, Llc Low refrigerant volume condenser for hydrocarbon refrigerant and ice making machine using same
EP2812640B1 (en) * 2012-02-10 2018-08-08 Carrier Corporation Method for detection of loss of refrigerant
CN204100499U (zh) 2013-08-26 2015-01-14 三菱电机株式会社 空调装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH11142004A (ja) * 1997-11-05 1999-05-28 Daikin Ind Ltd 冷凍装置
JP2000081258A (ja) 1998-07-01 2000-03-21 Daikin Ind Ltd 冷凍装置および冷媒漏洩検出方法
JP2000146393A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 冷凍装置
JP2000258000A (ja) * 1999-03-02 2000-09-22 Daikin Ind Ltd 空気調和装置
JP2002103952A (ja) * 2000-10-03 2002-04-09 Denso Corp 車両用空調制御装置
JP2002228281A (ja) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd 空気調和機
JP2004286255A (ja) * 2003-03-19 2004-10-14 Gac Corp 制御盤用空気調和装置
JP2010078285A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2013113555A (ja) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040654A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160123645A1 (en) * 2014-10-29 2016-05-05 Lg Electronics Inc. Air conditioner and method of controlling the same
EP3276284A4 (en) * 2015-03-26 2018-06-20 Mitsubishi Electric Corporation Indoor unit of air conditioner
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
WO2016153021A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
JPWO2016153021A1 (ja) * 2015-03-26 2017-06-22 三菱電機株式会社 空気調和機の室内機
EP3517857A1 (en) * 2015-04-03 2019-07-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle system
WO2017013715A1 (ja) * 2015-07-17 2017-01-26 三菱電機株式会社 空気調和装置の室内機、及びその室内機を備えた空気調和装置
EP3150943B1 (en) * 2015-07-17 2019-03-27 Mitsubishi Electric Corporation Air conditioning apparatus including indoor unit and outdoor unit
JPWO2017013715A1 (ja) * 2015-07-17 2018-02-01 三菱電機株式会社 空気調和装置
EP3396277A4 (en) * 2015-12-21 2018-12-12 Mitsubishi Electric Corporation Refrigeration cycle device
WO2018216052A1 (ja) * 2017-05-22 2018-11-29 三菱電機株式会社 冷凍サイクル装置のユニット装置
JPWO2018216052A1 (ja) * 2017-05-22 2019-12-19 三菱電機株式会社 冷凍サイクル装置のユニット装置
JP2020134033A (ja) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 室内ユニット

Also Published As

Publication number Publication date
EP3040654B1 (en) 2021-06-02
EP3040654A1 (en) 2016-07-06
AU2014313328A1 (en) 2016-02-04
US20160091241A1 (en) 2016-03-31
US10539358B2 (en) 2020-01-21
CN104422087A (zh) 2015-03-18
EP3040654A4 (en) 2017-03-29
AU2014313328B2 (en) 2017-03-09
JP2015042930A (ja) 2015-03-05
MX2016002486A (es) 2016-05-31
JP5818849B2 (ja) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5818849B2 (ja) 空気調和装置および冷媒漏洩検知方法
JP6779355B2 (ja) 空気調和装置の冷媒量設定方法
JP5665937B1 (ja) 冷凍サイクル装置
US10724766B2 (en) Refrigeration cycle apparatus
JP6099608B2 (ja) ヒートポンプ装置
CN110226071B (zh) 空调装置
CN108351139B (zh) 冷冻循环装置以及制冷剂泄漏检测方法
JP6223324B2 (ja) 冷媒漏洩検知装置及び冷凍サイクル装置
JP6272149B2 (ja) 空気調和装置
WO2012137260A1 (ja) 冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891975

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014840930

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014840930

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014313328

Country of ref document: AU

Date of ref document: 20140729

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002486

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE