WO2016151641A1 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
WO2016151641A1
WO2016151641A1 PCT/JP2015/001749 JP2015001749W WO2016151641A1 WO 2016151641 A1 WO2016151641 A1 WO 2016151641A1 JP 2015001749 W JP2015001749 W JP 2015001749W WO 2016151641 A1 WO2016151641 A1 WO 2016151641A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor unit
temperature
piping chamber
chamber
Prior art date
Application number
PCT/JP2015/001749
Other languages
English (en)
French (fr)
Inventor
牧野 浩招
幸治 山口
田澤 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/001749 priority Critical patent/WO2016151641A1/ja
Priority to AU2016237157A priority patent/AU2016237157B2/en
Priority to PCT/JP2016/059560 priority patent/WO2016153021A1/ja
Priority to US15/536,207 priority patent/US10274219B2/en
Priority to EP16768924.9A priority patent/EP3276284B1/en
Priority to JP2017508453A priority patent/JP6233546B2/ja
Publication of WO2016151641A1 publication Critical patent/WO2016151641A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an indoor unit of an air conditioner that can detect refrigerant leakage.
  • HFC refrigerant R410A has been mainly used as the refrigerant filled in the refrigerant circuit in the air conditioner. Unlike the conventional HCFC refrigerant such as R22, this R410A has the property that the ozone depletion coefficient ODP is zero and does not destroy the ozone layer, but has a high global warming potential GWP. Therefore, as part of the prevention of global warming, there is a movement to change from an HFC refrigerant having a high GWP such as R410A to an HFC refrigerant having a low GWP.
  • HFO refrigerants these are referred to as HFO refrigerants, and have a carbon double bond in the composition such as R32 (CH2F2; difluoromethane) and R125 (CHF2-CF3; pentafluoroethane) constituting R410A. Shall be distinguished from no HFC refrigerant.
  • Such a low GWP HFO refrigerant may be used as a single refrigerant, but is likely to be used as a mixed refrigerant with other HFC refrigerants typified by R32.
  • these HFO refrigerants or mixed refrigerants of HFO refrigerants and HFC refrigerants are not as flammable as HC refrigerants such as R290 (C3H8; propane), they are slightly inflammable unlike R410A, which is nonflammable. Have. Therefore, it is necessary to pay attention to the leakage of the refrigerant.
  • the refrigerant having flammability including the slight flammability to the strong flammability is referred to as a flammable refrigerant.
  • R32 Since R32 exhibits a slight flammability as a single refrigerant, that is, a flammable refrigerant, a mixed refrigerant of the HFO refrigerant and R32 also becomes a flammable refrigerant.
  • R410A in which R125 is mixed with R125 is nonflammable due to the characteristics of R125.
  • a location where liquid refrigerant may accumulate in the refrigerant circuit such as a lower part of a header of an indoor unit-side heat exchanger or a liquid reservoir such as a receiver
  • the control unit determines that the refrigerant is leaking (for example, see Patent Document 1).
  • JP 2000-081258 A (paragraphs 0052 to 0071, FIGS. 1 to 4)
  • the surface temperature of the liquid refrigerant reservoir in the refrigerant circuit is detected by the temperature sensor as the refrigerant temperature, and the presence or absence of refrigerant leakage is determined from the change speed of the detected temperature.
  • the control unit determines that the refrigerant leakage is occurring.
  • the temperature change is slow or abrupt in the first half of the elapsed 20 minutes from the start of leakage.
  • the temperature change occurs after 40 minutes. Therefore, even if the refrigerant leakage is detected according to the determination criterion (a), it takes 10 minutes at the earliest.
  • the refrigerant temperature in the portion where liquid refrigerant in the refrigerant circuit may accumulate including immediately after startup
  • the (component surface temperature) often changes in temperature due to vaporization of the liquid refrigerant accumulated therein.
  • refrigerant leakage is detected based on the determination criterion (a) described above where the temperature change rate to be determined is slow, it is a temperature change in the normal operation of the air conditioner and refrigerant leakage occurs. In spite of this, there is a risk of misdetection that it is judged that the refrigerant has leaked.
  • the predetermined time in which the slow temperature decrease continues in the criterion (a) may be made shorter than 10 minutes.
  • the shorter the predetermined time is, the higher the risk of erroneous detection for determining that the refrigerant leaks despite the temperature change in the normal operation as described above.
  • the rapid temperature change as in the criterion (b) does not occur so much during the normal operation of the air conditioner, and the refrigerant leaks due to such temperature change. If it is determined, false detection is unlikely to occur. However, as described above, such a rapid temperature change occurs after 40 minutes or more from the start of the refrigerant leakage, and the determination based on (b) detects the refrigerant leakage early. There is a problem that you can not.
  • the present invention has been made to solve the above-described problems, and it can be detected at an early stage from the occurrence of refrigerant leakage that the refrigerant has leaked, and the refrigerant has not leaked.
  • An object of the present invention is to provide an air conditioner indoor unit that is excellent in safety and reliability, and can prevent erroneous detection that it is determined that refrigerant leakage has occurred.
  • An indoor unit of an air conditioner is an indoor unit of an air conditioner that is installed in a room to be air-conditioned and has a housing in which an inlet and an outlet are formed.
  • a blower fan that generates an air flow to the outlet, a heat exchanger that forms part of a refrigerant circuit filled with a refrigerant and through which the airflow generated by the blower fan passes, and is provided in the housing, A heat exchanger chamber in which the blower fan and the heat exchanger are disposed, and a part of the refrigerant circuit, a communication pipe connected to the heat exchanger, and a part of the refrigerant circuit;
  • An external connection pipe to be taken into the room from the outside of the room, a pipe chamber provided in the housing and separated from the heat exchanger chamber, and a connection portion between the communication pipe and the external connection pipe is located;
  • a temperature sensor installed in the piping chamber for measuring the temperature T of the piping chamber.
  • the control device can detect rapid refrigerant leakage early based on the temperature T of the piping chamber measured by the temperature sensor installed in the piping chamber, and can prevent erroneous detection. It is possible to provide an air conditioner indoor unit that is excellent in reliability and reliability.
  • FIG. 1 It is an external appearance perspective view of the indoor unit of the air conditioner in Embodiment 1 of this invention. It is a disassembled perspective view of the indoor unit of the air conditioner shown in FIG. It is a longitudinal cross-sectional view of the indoor unit of the air conditioner shown in FIG. It is a schematic diagram explaining the heat exchanger of the indoor unit of the air conditioner shown in FIG. It is the schematic diagram which looked at the state which removed the front side part of the indoor unit of the air conditioner shown in FIG. 1 from the front. It is a control flowchart of the indoor unit of the air conditioner shown in FIG. It is a control flowchart of the modification 1 of the indoor unit of the air conditioner shown in FIG. It is a control flowchart of the modification 2 of the indoor unit of the air conditioner shown in FIG.
  • FIG. Embodiment 1 of the present invention will be described below with reference to the drawings.
  • 1 is an external perspective view of an indoor unit 100 for an air conditioner according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view thereof.
  • FIG. 3 is a longitudinal sectional view of the indoor unit 100 of the air conditioner shown in FIG.
  • the air conditioner indoor unit 100 according to the first embodiment will be simply referred to as an indoor unit 100 hereinafter.
  • This indoor unit 100 constitutes an air conditioner together with an outdoor unit (not shown) installed outdoors.
  • the indoor unit 100 and an outdoor unit are connected via an external connection pipe 20 including a liquid pipe and a gas pipe, and a refrigerant circuit filled with a refrigerant is formed.
  • a vapor compression refrigeration cycle operates in this refrigerant circuit.
  • a mixed refrigerant of HFO-1234yf which is a kind of HFO refrigerant
  • R32 which is a kind of HFC refrigerant
  • Both HFO-1234yf and R32 have a slightly flammable level, and this mixed refrigerant is a flammable refrigerant.
  • this indoor unit 100 has a rectangular parallelepiped appearance as a whole, and is a floor-standing type that is placed on the floor surface of a room to be air-conditioned and fixed to the rear wall surface. It should be noted that a cleaning tool for cleaning the floor surface is spaced between the floor surface and the lower surface of the indoor unit 100 (for example, about 100 mm), and the indoor unit 100 is lifted from the floor surface on the rear wall surface. It can also be fixed. Further, an installation table may be placed on the floor, and the indoor unit 100 may be placed on the installation table.
  • the indoor unit 100 is provided with a heat exchanger chamber 1 and a piping chamber 2 inside a housing 5.
  • a heat exchanger 3 and a blower fan 4 that circulates room air through the heat exchanger 3 are arranged in the heat exchanger chamber 1 located on the left side when viewed from the front.
  • the heat exchanger 3 is one component of the refrigerant circuit, and the refrigerant flows inside the indoor unit 100 during operation.
  • an electrical component unit 9 in which an electrical board including a control device 10 that controls the operation of the indoor unit 100 is housed is arranged at the top.
  • two connecting pipes 11 each having a gas pipe and a liquid pipe connected to the heat exchanger 3 are arranged.
  • the communication pipe 11 is also a component of the refrigerant circuit, and the refrigerant flows through the interior of the indoor unit 100 during operation.
  • the housing 5 is attached to the front casing 7 so as to be openable and closable so as to cover the rear casing 6 positioned behind, the front casing 7 fixed to the front side of the rear casing 6, and the front opening of the front casing 7.
  • It consists of a front design panel 8.
  • the front design panel 8 is rotatable up and down with respect to the front casing 7 with its lower end portion as a rotation center, and is opened by tilting toward the front side.
  • the front design panel 8 may be opened and closed by rotating in the left-right direction with either one of the left and right end portions as the rotation center.
  • the indoor unit 100 is disposed in a room to be air-conditioned such that the rear casing 6 is located on the wall surface side and the front casing 7 faces the room widely.
  • the indoor air is sucked from the lower part of the housing 5, passed through the heat exchanger 3, and the indoor air (conditioned air) exchanged with the refrigerant flowing in the heat exchanger 3 at that time is converted into the housing 5. It blows out from the upper part of the water and returns it to the room.
  • a suction port 12 serving as an inlet for indoor air sucked into the housing 5 is formed in the lower front portion of the housing 5.
  • a suction grill 14 integrally formed with the front design panel 8 is installed in the suction port 12.
  • the suction grill 14 is provided with a plurality of rectangular plates inclined upward from the upstream side to the downstream side of the air flow with a predetermined gap in the vertical direction. It becomes a passage for indoor air into which gaps between a plurality of rectangular plates flow, and the rectangular plates are inclined so that the inside of the housing 5 is difficult to see and the design of the appearance is not impaired. .
  • the blower outlet 13 which blows off the conditioned air after heat exchange is formed from the front end front part of the housing 5 to the front upper part.
  • the air outlet 13 is formed to open at the top of the front casing 7.
  • the blower outlet 13 includes an up / down wind direction plate 16 and a left / right wind direction plate (not shown) that can adjust the direction of the blown air flow, a drive motor 17 that rotates these wind direction plates, and a stabilizer of the blower fan 4.
  • a blowing unit 15 having 18 is arranged.
  • the blowing unit 15 is fixed to the back side casing 6. As shown in FIG. 1, the air outlet 13 is closed by the vertical air direction plate 16 of the air outlet unit 15 when the indoor unit 100 is stopped, and when it is in operation, the vertical air direction plate 16 is shown in FIG. 3. Is rotated and opened.
  • An air filter 21 is attached to the front side of the front casing 7.
  • the air filter 21 is installed at a position downstream of the suction port 14 and upstream of the heat exchanger 3 in the air flow generated by the rotation of the blower fan 4.
  • guide grooves 22 that allow the air filter 21 to slide are formed on both the left and right sides of the air filter 21. The user can easily remove the air filter 21 from the front casing 7 or mount it again by opening the front design panel 8 and sliding the air filter 21 along the guide grooves 22. Therefore, the user can easily clean the air filter 21.
  • the inside of the housing 5 is partitioned into a heat exchanger chamber 1 and a piping chamber 2 by a partition plate 23 in the left-right direction.
  • the partition plate 23 is in charge of a resin plate-like member integrally formed with the housing 5 at a position below the heat exchanger 3, and on the upper side of the heat exchanger 3, A metal plate member fixed to the metal side plate is in charge.
  • the heat exchanger 3 includes a front side heat exchanger 3a and a back side heat exchanger 3b, and is configured so as to exhibit an upward V shape in a side view.
  • FIG. 4 is a schematic diagram for explaining the heat exchanger 3.
  • the heat exchanger 3 includes a plurality of thin and thin metal plates 31 arranged in parallel in the left-right direction, and metal heat transfer tubes forming a plurality of rows in the longitudinal direction of the fins 31 while passing through the fins 31 in the left-right direction. 32.
  • the fins 31 are made of aluminum
  • the heat transfer tubes 32 are made of an oxygen-free copper tube having high corrosion resistance.
  • the heat transfer tube 32 includes a hairpin tube 32a having an elongated U shape in the left-right direction, and a short U-shaped U bend 32b that connects one opening of the hairpin tube 32a and the other opening of the other hairpin tube 32a. Become.
  • the U bend 32b is brazed to the hairpin tube 32a.
  • a series of refrigerant flow paths are formed in the heat exchanger 3.
  • the refrigerant flows through the heat transfer tube 32.
  • the connection piping 11 to which the other of the external connection piping 20 connected to the outdoor unit is connected to both ends of the heat transfer tube 32 by brazing.
  • the U-bend pipe 32 b and the communication pipe 11 pass through the partition plate 23 and are located in the pipe chamber 2.
  • a blower fan 4 is installed at a position upstream of the heat exchanger 3 in the air flow.
  • the blower fan 4 is an elongated cylindrical cross-flow fan, and is installed laterally behind the upper part of the front heat exchanger 3a so that the rotation axis direction coincides with the left-right direction.
  • an air passage is formed in which an air flow from the inlet 12 to the outlet 13 is generated by the rotation of the blower fan 4.
  • the blowout side of the air passage is formed by a stabilizer 18 provided in the blowout unit 15 and a curved rear guider 6 a integrally formed on the front surface of the rear side casing 6.
  • the communication pipe 11 is composed of a gas pipe and a liquid pipe, and is connected to an outdoor outdoor unit (not shown), and is connected to an external connection pipe taken into the room (air-conditioning target) from outside the room where the indoor unit 100 is installed. 20 will be connected to each other.
  • the external connection pipe 20 is also a component of the refrigerant circuit. The refrigerant flows through the interior of the indoor unit 100 during operation.
  • the communication pipe 11 and the external connection pipe 20 are connected to each other between gas pipes and liquid pipes.
  • gas refrigerant flows through the gas pipe, and liquid refrigerant or gas-liquid two-phase refrigerant flows through the liquid pipe. Since the volume flow rate of the gas refrigerant is large, the pipe diameter (inner diameter) is larger in the gas pipe.
  • the heat exchanger 3, the communication pipe 11, and the external connection pipe 20 all form part of a refrigerant circuit filled with refrigerant, and the refrigerant circulating through the refrigerant circuit flows when the indoor unit 100 is operated.
  • connection part G between the communication pipe 11 and the external connection pipe 20 is located below the electrical unit 9 in the vertical direction in the pipe chamber 2. Both pipes are flared at the position of the connecting portion G.
  • a flare joint union (hereinafter referred to as a flare joint union) is brazed and fixed to the connecting portion 11a which is the tip of the connecting pipe 11.
  • the trumpet-like flare part is formed in the pipe end surface, and the flare nut is attached so that the circumference
  • connection part G between the communication pipe 11 and the external connection pipe 20 the flare joint union of one connection part 7a and the flare nut of the other connection part 20a are screw-coupled.
  • the flare joint union is a male thread and the flare nut is a female thread.
  • the external connection pipe 20 can be inserted into the piping chamber 2 from any of the back surface, the side surface, and the bottom surface of the piping chamber 2 by cutting out a part of the rear casing 6. Further, when the external connection pipe 20 is routed from the left side of the indoor unit 100, it passes from the back of the pipe chamber 2 through a pipe passage (not shown) formed in a concave shape on the back side of the back casing 6. It can enter the piping chamber 2. Therefore, a space in which a part of the external connection pipe 20 can enter is secured in advance in the lower part of the piping chamber 2 (below the electrical unit 9).
  • a drain pan 19 that receives condensed water adhering to the heat exchanger 3 during cooling operation is located below the heat exchanger 3.
  • the drain pan 19 is a groove-like container having an inverted trapezoidal cross section and having an upper surface open, and is installed with the upper surface opening extending in the left-right direction toward the heat exchanger 3 side.
  • the drain pan 19 receives the dew condensation water dripped through the heat exchanger 3 by gravity at its upper surface opening.
  • the drain water received by the drain pan 19 is drained outdoors through a drain hose (not shown) connected to the drain pan 19.
  • the drain pan 19 also needs to receive dew condensation water dripping from the heat transfer tubes 32 respectively located at the left and right ends of the heat exchanger 3. Therefore, the drain pan 19 must be open on the left side below the U-shaped folded portion of the hairpin tube 32a and on the right side below the U bend 32b.
  • a notch for allowing the drain pan 19 to pass through is formed in the partition plate 23, and the right end of the drain pan 19 passes through the notch. That is, it passes through the partition plate 23 and enters the piping chamber 2. Thereby, the drain pan 19 is also opened below the U bend 32. In this way, a part of the drain pan 19 enters not only the heat exchanger chamber 1 but also the piping chamber 2. Therefore, the heat exchanger chamber 1 and the piping chamber 2 are not completely separated by the partition plate 23, but air can be circulated through the upper surface opening of the drain pan 19. In this way, the heat exchanger chamber 1 and the piping chamber 2 are partially in communication so that air can be circulated.
  • a U bend cover 33 is installed in front of the U bend 32b of the front heat exchanger 3a (see FIG. 2).
  • the U-bend cover 33 has a function of receiving the condensed water that comes into contact with the U-bend 32b located below and scatters when the condensed water adhering to the U-bend 32b falls, and guides it to the drain pan 19. Then, it fixes to the U bend 32b of some front side heat exchangers 3a with a clip.
  • the front casing 7 covers the front of the piping chamber 2 so that the interior of the piping chamber 2 is not exposed when the user opens the front design panel 8 for cleaning the air filter 21.
  • a piping chamber cover 7a is integrally formed.
  • the back room cover 7a covers the front side of the electrical unit 9 and the connecting portion G between the connection pipe 11 and the external connection pipe 20 so that they are not visible or touched by the user. And design properties are ensured.
  • the control device 10 controls the operation of the indoor unit 100 based on an operation signal from a remote controller by a user, detection signals of various sensors, a predetermined program, or the like.
  • the control device 10 communicates with the outdoor unit to drive the compressor installed in the outdoor unit and circulates the refrigerant in the refrigerant circuit. Operate the refrigeration cycle.
  • the compressor is also a component of the refrigerant circuit.
  • FIG. 3 while rotating the up-and-down air direction board 16 of the blowing unit 15, the blower outlet 4 closed by the up-and-down air direction board 16 at the time of a stop is opened, and the ventilation fan 4 is rotationally driven.
  • the room air is sucked into the housing 5 from the suction port 112 at the bottom of the housing 5 by the rotation of the blower fan 4 and passes through the air filter 21 and the heat exchanger 3 in order. Since dust contained in the room air is captured by the air filter 21 when passing through the air filter 21, the dust is introduced to the heat exchanger 3 located on the downstream side of the air filter 21 in the air flow generated by the blower fan 4. Dust is removed from the indoor air to be removed, and dust is prevented from adhering to the heat exchanger 3.
  • the indoor air passes through the heat exchanger 3, it exchanges heat with the refrigerant flowing in the heat transfer pipe 32 of the heat exchanger 3, and in the cooling operation, the amount of heat of the indoor air is taken away as the heat of evaporation of the refrigerant. If it is a heating operation, the heat of condensation of the refrigerant is given to the room air to warm it up, and each becomes conditioned air.
  • the air flow that has become conditioned air after passing through the heat exchanger 3 then crosses the blower fan 4 that is a cross flow fan, proceeds to the downstream side of the blower fan 4, and is blown out from the blower outlet 13 into the room. The At that time, the blowing direction of the blown air flow is adjusted by the upper and lower wind direction plates 16 and the left and right wind direction plates (not shown) of the blowing unit 15.
  • the angles of the up and down wind direction plates 16 and the left and right wind direction plates are determined and controlled by the control device 10 in accordance with a user request or a predetermined automatic wind direction adjustment program. Similarly, the control device 10 controls the rotational speed of the blower fan 4 according to a user request or a predetermined automatic wind speed adjustment program.
  • the indoor unit 100 has such a basic configuration and function, but as described above, a combustible refrigerant is used as the refrigerant in the refrigerant circuit. If the refrigerant leaks in the indoor unit 100, it is also described in Patent Document 1 in the background art described above, but the leak is a slow leak such as a so-called slow leak from the pinhole of the heat transfer tube 32.
  • the leakage speed When the weight per unit time of the refrigerant to be performed (hereinafter referred to as the leakage speed) is small, when the indoor unit 100 is stopped (the state in which the blower fan 4 is not rotating), the leakage refrigerant gas heavier than air is, for example, the housing 5. Even if it flows into the room through the lower suction port 12, it diffuses naturally and does not stay.
  • natural diffusion means that the refrigerant moves from the high concentration region to the low concentration region (hereinafter referred to as natural diffusion).
  • the indoor outflow speed the weight per unit time of the leaked refrigerant gas flowing out from the indoor unit 100 into the room. Therefore, there is a low possibility that the refrigerant gas concentration in the room rises to the flammable range without the leaked refrigerant flowing out.
  • the indoor air is disturbed by the influence of the air flow generated by the blower fan 4, and the leaked refrigerant gas is forcibly diffused accordingly, so that the concentration of the refrigerant gas also rises to the combustible region.
  • the leakage of the refrigerant means that the refrigerant in the refrigerant circuit leaks out of the refrigerant circuit.
  • the refrigerant leaks rapidly rather than the slow leak as described above.
  • the rapid refrigerant leakage may occur, for example, when the flare connection is disconnected at the connection portion G.
  • the size of the trumpet-shaped flare formed on the end face of the pipe is too small, that is, the outer diameter of the trumpet-shaped flare is small, or the flare nut 2 is tightened too much.
  • the flare portion of the external connection pipe 20 is pushed out of the flare nut or the flare portion is cut by the pressure of the refrigerant in the refrigerant circuit higher than the atmospheric pressure. Can happen.
  • the external connection pipe 20 comes off from the connection part G, that is, the flare connection is
  • the refrigerant leaks and the refrigerant leaks so rapidly as to be incomparable with the leak from the pinhole of the heat transfer tube 32, that is, the refrigerant leaks at a high leak rate.
  • the leakage rate is about 0.1 kg / min.
  • the leakage rate is about 1.25 kg / min, which is 10 times larger.
  • the pressure of the piping chamber 2 is increased by the leaked refrigerant gas that is vaporized when such a rapid refrigerant leakage occurs, so that the leaked refrigerant gas is pushed out to the right end of the piping chamber 2.
  • the portion passes through the upper surface opening of the drain pan 19 into which the unit enters, and proceeds to the heat exchanger chamber 1 and flows out from the suction port 12 below the housing 5 into the room.
  • the flammable range of the refrigerant gas concentration (vs. air) is 6.2 to 12.3 vol% for HFO1234yf, and 14.2 to 29.3 vol% for R32.
  • these mixed refrigerants are used. Therefore, the lower limit of the flammable concentration range is larger than 6.2 vol% and the upper limit is smaller than 29.3 vol% in accordance with the mixing ratio.
  • the connecting part G which may cause the flare connection to break and rapid refrigerant leakage, is located in the piping chamber 2 as described above. Therefore, in the indoor unit 100, the temperature sensor 24 is installed as a temperature detection means for measuring the temperature T of the piping chamber 2.
  • a thermistor is used as the temperature sensor 24.
  • FIG. 5 is a schematic view of the indoor unit 100 with the front casing 7, the air filter 21, the front design panel 8, and the U bend cover 33 removed, as viewed from the front.
  • the temperature sensor 24 is installed so as to measure the temperature of the gas phase in the internal space of the piping chamber 2, and the temperature of the gas phase is handled as the temperature T of the piping chamber 2.
  • the surface temperature of the wall surface to be detected may be detected, and the detected value may be handled as the temperature T of the piping chamber 2.
  • the temperature sensor 24 includes a signal line 24a that transmits a detection signal (current in this case). And since the signal line 24a is connected to the electrical board accommodated in the electrical component unit 9, the control device 10 grasps the detected value (measured value) of the temperature sensor 24 via the signal line 24a. It becomes. That is, the detection value of the temperature sensor 24 is input to the control device 10.
  • the indoor unit 100 of the first embodiment is characterized in that the temperature sensor 24 for measuring the temperature T of the piping chamber 2 is installed.
  • the controller 10 detects refrigerant leakage based on the temperature T), that is, determines whether or not refrigerant leakage has occurred. This will be described in detail below.
  • the temperature of the leaked refrigerant gas immediately after being vaporized in the piping chamber 2 is a value close to the boiling point of the refrigerant under the atmospheric pressure, and thus is considerably low.
  • the boiling point under atmospheric pressure is about ⁇ 50 ° C. Therefore, the temperature of the leaked refrigerant gas vaporized in the piping chamber 2 is Immediately after vaporization, the temperature is close to -50 ° C.
  • the space in the piping chamber 2 changes to a space rich in low-temperature leaked refrigerant gas.
  • the temperature of the gas phase inside 2 suddenly drops from a temperature close to room temperature before leakage.
  • the partition plate 23 and the housing 5 are deprived of the heat of evaporation by vaporization of the leaked refrigerant, or directly cooled by the vaporized leaked refrigerant gas, so that the surface temperature of the wall surface facing the pipe chamber 2 can also be reduced. Similar to the gas phase in the chamber 2, it is drastically reduced compared to before the leakage.
  • a temperature sensor 24 that measures the temperature T of the piping chamber 2 is installed in the piping chamber 2, and the control device 10 uses the detected value of the temperature sensor 24 to make the rapid refrigerant. The occurrence of leakage is detected.
  • the control device 10 determines that refrigerant leakage has occurred in the piping chamber 2 based on the detection value of the temperature sensor 24.
  • the temperature T of the piping chamber 2 is very low compared to the room temperature of the room in which the indoor unit 100 is installed due to the low-temperature leaked refrigerant gas that has vaporized immediately after the leakage.
  • the temperature T of the piping chamber 2 it is determined whether or not refrigerant leakage has occurred.
  • FIG. 6 is a control flowchart in which the control device 10 determines whether or not refrigerant leakage has occurred based on the temperature T of the piping chamber 2 that is a detection value of the temperature sensor 24. This determination control flow is the same whether the indoor unit 100 is in operation or is stopped. Even when the indoor unit 100 is stopped, the control device 10 grasps the temperature T of the piping chamber 2 and performs this control flow.
  • step S ⁇ b> 1 the control device 10 determines whether the temperature T of the piping chamber 2, which is a detection value of the temperature sensor 24, is equal to or lower than a predetermined determination reference temperature Tj.
  • Tj ⁇ 0. If T> Tj (determination in step S1 is NO), this step S1 is repeated. If T ⁇ Tj (determination in step S1 is YES), then in step S2, the state of T ⁇ Tj It is determined whether or not the time H is equal to or longer than a predetermined determination reference time Hj. If T> Tj is satisfied in a time less than Hj (NO in step S2), the process returns to the determination in step S1. Since Tj ⁇ 0, T ⁇ 0 when T ⁇ Tj, and the absolute value of T is larger than the absolute value of Tj.
  • step S2 If it is determined in this step S2 that the state of T ⁇ Tj has continued for at least Hj time, that is, if H ⁇ Hj (determination in step S2 is YES), the control device 10 causes the refrigerant to leak into the piping chamber 2. Judge that it has occurred. When rapid refrigerant leakage occurs in the piping chamber 2, the pressure in the piping chamber 2 becomes higher than atmospheric pressure due to the rapidly vaporized refrigerant gas. As described above, the drain pan 19 passes through the partition plate 23 and straddles the heat exchanger chamber 1 and the piping chamber 2, and the heat exchanger chamber 1 and the piping through the opening on the upper surface of the drain pan 19. Since it communicates with the chamber 2, part of the leaked refrigerant gas in the piping chamber 2 flows out to the heat exchanger chamber 1 through the upper surface opening of the drain pan 19 so as to be pushed out of the piping chamber 2.
  • control device 10 When it is determined from the determination result of step S2 that the refrigerant has leaked (that is, YES is determined in step S2), control device 10 subsequently determines whether or not indoor unit 100 is in operation in step S3. Determine whether. If it is stopped here (determination in step S3 is NO), as the next step S4, the up-and-down air direction plate 16 of the blowout unit 15 is immediately rotated in the direction as shown in FIG. At the same time, the blower fan 4 is rotated as step S5. At this time, the rotation speed of the blower fan 4 is set to the set maximum rotation speed.
  • step S3 determines whether the indoor unit 100 is in operation (determination in step S3 is YES) or not the air outlet 13 is already open and the blower fan 4 is rotating, but the control device 10 immediately performs the refrigeration circuit as step S6.
  • step S7 the rotation speed of the blower fan 4 is changed (increased) to the set maximum rotation speed. When the blower fan 4 is rotating at the maximum rotation speed, the rotation speed is continued.
  • the control device 10 immediately issues an alarm in step S8 to inform the user that the flammable refrigerant is leaking rapidly in the room and to promote ventilation of the room. .
  • the user knows that the refrigerant has leaked by the alarm, and ventilates the room in which the indoor unit 100 is installed, such as opening a window or door or turning a ventilation fan. Also contact the service provider.
  • the alarm performs both a thing that works on the user's hearing such as sounding a buzzer or warning with an artificial voice, and a thing that works on the user's vision such as blinking the LED light in front of the housing 5.
  • the leakage refrigerant gas in the piping chamber 2 is caused by the suction action of the blower fan 4 to the drain pan 19 whose right end protrudes into the piping chamber 2. It is guided to the heat exchanger chamber 1 through the upper surface opening, merges with the air flow from the suction port 12 to the blowout port 13 generated by the blower fan 4, and blown out from the blowout port 13 into the room forcibly. It will be widely diffused indoors. Therefore, it is possible to prevent a gas phase having a flammable concentration of the leakage refrigerant from being formed around the indoor unit 100, and safety is maintained.
  • the control device 10 may detect the leakage of the refrigerant and immediately rotate the blower fan 4 at the maximum number of rotations, the refrigerant gas leaked before the start of the rotation of the blower fan 4 together with the indoor air. Also, the air can be blown out from the air inlet 12 through the air inlet 13 and forcibly diffused into the room.
  • the electrical unit 9 is disposed in the piping chamber 2, since the electrical unit 9 stores the electrical board in a metal hermetic container, for example, a spark due to a short circuit of the electrical board becomes an ignition source. There is no such thing.
  • steps S1 and S2 will be specifically described.
  • step S1 if it is determined that T ⁇ Tj in step S1, it is not determined that the refrigerant has leaked immediately, and subsequent step S2 It is determined whether or not the state of T ⁇ Tj continues for the determination reference time Hj, and this determination is YES as a condition for determining that the refrigerant is leaking.
  • the judgment reference time Hj 3 seconds.
  • the control device 10 detects the temperature T of the piping chamber 2 (inside the piping chamber 2) that is the detection value of the temperature sensor 24. Gas phase temperature or surface temperature of the wall surface facing the piping chamber 2 such as the housing 5 or the partition plate 23), and if the temperature T is below -30 ° C for 3 seconds, the piping It is determined that rapid refrigerant leakage has occurred in the chamber 2.
  • the space in the piping chamber 2 immediately becomes rich in the leaked refrigerant gas, so that it does not take 20 seconds.
  • the temperature T of the piping chamber 2 becomes equal to or lower than the determination reference temperature Tj. Since the determination reference time Hj for preventing erroneous detection is also as short as several seconds, the control device 10 detects the occurrence of refrigerant leakage in a short time of several tens of seconds that takes less than one minute from the occurrence of refrigerant leakage. It becomes possible to do. For this reason, the indoor unit 100 is highly safe.
  • Step S1 only a simple determination is made as to whether or not the temperature T of the piping chamber is equal to or lower than the determination reference temperature Tj (Tj ⁇ 0), and the state of T ⁇ Tj continues for the determination reference time Hj.
  • the judgment reference temperature Tj is set to a low temperature that cannot be indicated unless refrigerant leakage has occurred, it is possible to prevent erroneous detection that may determine that refrigerant leakage has occurred even though refrigerant has not leaked. Is done. For this reason, it is possible to detect the refrigerant leakage with high reliability, and the indoor unit 100 is highly reliable.
  • FIG. 7 is a control flowchart of Modification 1 different from the control flowchart of FIG.
  • step S12 the control device 10 determines whether the average value Ta of the temperatures T of the piping chamber 2 during the determination reference time Hm is equal to or lower than the determination reference temperature Tj (where Tj ⁇ 0), and Ta> If Tj (determination in S12 is NO), the process is repeated from step S11. If Ta ⁇ Tj (determination in S12 is YES), it is determined that refrigerant leakage has occurred. The subsequent flow is the same as in FIG. Even in this case, erroneous determination due to an accidental or sudden detection signal error of the temperature sensor 24 can be prevented, and the determination is highly reliable. Since Tj ⁇ 0, Ta ⁇ 0 when Ta ⁇ Tj, and the absolute value of Ta is larger than the absolute value of Tj.
  • the control device 10 grasps the rate of decrease in the temperature T of the piping chamber 2 and uses this speed. Thus, it is possible to adopt a control flow for determining the occurrence of refrigerant leakage.
  • FIG. 8 is a control flowchart of Modification 2 using the change rate V of the temperature T of the piping chamber 2.
  • step S22 the control device 10 determines whether the change speed V (° C./second) calculated in step S21 is equal to or lower than a predetermined determination reference speed Vj.
  • Vj ⁇ 0
  • the temperature change indicates a temperature drop. If V> Vj (NO in S22), the process is repeated from step S21. If V ⁇ Vj (YES in S22), it is determined that refrigerant leakage has occurred. The subsequent flow is the same as in FIG. Even when the indoor unit 100 is stopped, the control device 10 inputs the temperature T of the piping chamber 2 and grasps the change speed V to perform the above control flow. Since Vj ⁇ 0, V ⁇ 0 when V ⁇ Vj, and the absolute value of V is larger than the absolute value of Vj.
  • the change in the temperature T of the piping chamber 2 is the room temperature of the room in which the indoor unit 100 is installed regardless of whether the indoor unit 100 is operating or stopped. Linked to change. Since the room temperature changes in conjunction with the outside air temperature when the vehicle is stopped, the room temperature changes slowly, for example, by 2 ° C. in one hour. During operation, even if rapid cooling or powerful cooling operation is started, the decrease in room temperature is at most about 1 ° C./minute.
  • the determination reference speed Vj is a change speed that is not exhibited unless refrigerant leakage has occurred. Therefore, there is an erroneous detection that determines that refrigerant leakage has occurred even though refrigerant has not leaked. Can be prevented.
  • FIG. 9 is a control flowchart of Modification 3 that similarly uses the change rate V of the temperature T of the piping chamber 2.
  • the control apparatus 10 calculates and memorize
  • step S33 the control device 10 determines whether or not the change speed average value Va during the determination reference time Hn is equal to or lower than the determination reference temperature Vj (where Vj ⁇ 0), and Va> Tj (determination of S33). Is NO), it repeats from step S31, and if Va ⁇ Vj (determination of S33 is YES), it is determined that refrigerant leakage has occurred.
  • the subsequent control is the same as in FIG. Even in this case, erroneous determination due to an accidental or sudden detection signal error of the temperature sensor 24 can be prevented, and the determination is highly reliable. Since Vj ⁇ 0, Va ⁇ 0 when Va ⁇ Vj, and the absolute value of Va is larger than the absolute value of Vj.
  • this indoor unit is used for a rapid refrigerant leak that may cause a gas phase in the flammable concentration range of the leaked refrigerant gas to be formed in the room, such as disconnection of the connection portion G in the piping chamber 2.
  • a temperature sensor 24 that measures the temperature T of the piping chamber 2 is installed in the piping chamber 2, and the control device 10 causes the refrigerant to leak based on the temperature T of the piping chamber 2 that is a detection value of the temperature sensor 24. Judgment was made as to whether or not it occurred.
  • the temperature T of the piping chamber 2 means whether the temperature T of the piping chamber 2 (which may be a temperature average value Ta for a predetermined time) is equal to or lower than the determination reference temperature Tj (Tj ⁇ 0). Or whether the change rate V of the temperature T of the piping chamber 2 (which may be the change rate average value Va for a predetermined time) is equal to or less than the determination reference speed Vj (Vj ⁇ 0).
  • Tj the temperature average value Va for a predetermined time
  • Vj the change rate average value Va for a predetermined time
  • the temperature T of the piping chamber 2 measured by the temperature sensor 24 is preferably the temperature of the gas phase in the piping chamber 2, but the component located in the piping chamber 2 or the component facing the piping chamber 2. May be the surface temperature.
  • the indoor unit 100 measures the temperature of the place where the rapid refrigerant leakage occurs, and detects that the refrigerant leaks from the temperature that changes at a time due to the refrigerant leakage. Therefore, the leakage of the refrigerant can be detected in a short time from the occurrence. Further, the determination until it is determined that the refrigerant has leaked is simple, and the temperature to be determined (the temperature T of the piping chamber 2) when the refrigerant leak does not occur and when it occurs. Therefore, it is possible to prevent the refrigerant from being erroneously determined that the refrigerant has leaked even though the indoor unit 100 is operating or stopped, even though the refrigerant is not leaking. Therefore, this indoor unit 100 is excellent in safety and reliability.
  • a temperature sensor 24 that measures the temperature T of the piping chamber 2 (here, the temperature of the gas phase in the piping chamber 2) is measured in the vertical direction. It is installed at a position below the electrical unit 9 and close to the electrical unit 9. Since the leaked refrigerant gas is heavier than air, there is also an idea that it is better to arrange the leaked refrigerant gas, for example, below the connection portion G or as low as possible in the piping chamber 2.
  • the temperature sensor 24 is disposed near the electrical unit 9 as shown in FIG.
  • the suction port 12 is arranged at the lower part of the housing 5, the blower outlet 13 is arranged at the upper part, the heat exchanger 3 is upstream of the air flow generated by the blower fan 4, and the blower fan is downstream.
  • the present invention is not limited to this configuration, and the heat exchanger chamber 1 is formed with an air passage through which an air flow from the inlet 12 to the outlet 13 generated by the blower fan 4 flows.
  • the present invention can be applied to any indoor unit provided with a piping chamber 2 provided at a distance from each other and in which a connection portion G between the communication pipe 11 and the external connection pipe 20 is disposed. it can.
  • the structure may be such that the air outlet 13 is positioned below the air inlet 12, or the indoor air is sucked in from the central air inlet 12 in the vertical direction of the housing 5 and both above and below the air inlet 12.
  • the configuration may be such that the conditioned air is blown out from the air outlet 13 located at the same time or from only one of them depending on whether it is a cooling operation or a heating operation.
  • the heat exchanger 3 may be located on the downstream side and the blower fan 4 on the upstream side with respect to the air flow generated by the blower fan 4.
  • the form of the heat exchanger 3 is not limited to the upward V-shape in a side view, and may be any of an I-shape, an L-order shape, and a J-shape.
  • the blower fan 4 is not limited to the cross flow fan, and a propeller fan or a turbo fan may be used.
  • the connection part G between the communication pipe 11 and the external connection pipe 20 is not limited to the wall-mounted type installed on the upper wall surface of the room or the ceiling-mounted type installed on the ceiling.
  • the present invention is applicable to any indoor unit including the piping chamber 2 to be arranged.
  • indoor units installed on the upper part of the wall or on the ceiling even if leaked refrigerant gas flows out from the outlet or suction port of the indoor unit, it leaks from a higher position in the room, so that the leaked refrigerant gas heavier than air Diffused when descending to the floor.
  • the present invention can be most effective in a floor-standing indoor unit.
  • coolant of HFO1234yf which exhibits flammability as a refrigerant
  • the control device 10 can detect early that a rapid refrigerant leakage has occurred by applying the present invention. Can know in a short time from the occurrence that the refrigerant is leaking. For this reason, it is possible to avoid useless operations such as cooling and not warming due to a shortage of refrigerant, and it is possible to immediately contact a service provider and realize early repair.
  • FIG. 10 is an external perspective view of the indoor unit 200 and corresponds to FIG. 1 of the first embodiment.
  • the indoor unit 200 includes a vent 25 that is formed in the housing 5 and allows air to flow between the indoor space of the room in which the indoor unit 200 is installed and the piping chamber 2. This is different from the indoor unit 100 of the first embodiment in configuration.
  • FIG. 11 corresponds to FIG. 5 of the first embodiment, but is a schematic view when the front casing 7 and the like of the indoor unit 200 according to the second embodiment are removed as viewed from the front.
  • the vent 25 is provided on the right side surface of the front casing 7, but for ease of explanation, the vent 25 is illustrated at a corresponding position in FIG. 11 for convenience.
  • the vent 25 is formed by penetrating a part of the right side surface of the housing 5 (here, the front casing 7) in the left-right direction, and has an elongated oval or rectangular hole with the longitudinal direction as the longitudinal direction. A plurality are arranged side by side in a state of being close to each other in the vertical direction. For this reason, in this indoor unit 200, the indoor space of the installed room and the piping chamber 2 communicate with each other through the vent 25, and air can flow between the two through the vent 25.
  • the vent 25 is formed at a position facing the temperature sensor 24 of the housing 5.
  • the temperature sensor 24 that measures the temperature T of the piping chamber 2 and the vent hole 25 face each other.
  • the temperature sensor 24 and the vent hole 25 face each other in the left-right direction.
  • the temperature sensor 24 is disposed at a position close to the vent hole 25.
  • the distance between the opening on the piping chamber 2 side of the vent hole 25 and the temperature sensor 24 is about 10 mm in the left-right direction facing each other.
  • the suction of the rotating blower fan 4 causes the inside of the piping chamber 2.
  • the air passes through the top opening of the drain pan 19 straddling the heat exchanger chamber 1 and the piping chamber 2, crosses into the heat exchanger chamber 1, and joins the main air flow that flows from the inlet 12 to the outlet 13. Pass through the heat exchanger 3.
  • indoor air flows from the indoor space outside the housing 5 into the piping chamber 2 through the vent hole 25 so as to compensate for the air drawn into the heat exchanger chamber 1 from the piping chamber 2 and flowing out.
  • the flow rate is considerably smaller than the main air flow separately from the main air flow flowing from the suction port 12 to the air outlet 13 due to the rotation of the blower fan 4, but the ventilation flow is reduced.
  • a series of air flows that flows in from the port 25 and flows out to the heat exchanger chamber 1 through the piping chamber 2 and the upper surface opening of the drain pan 19.
  • new indoor air flows into the piping chamber 2 in this way.
  • the temperature sensor 24 can detect the temperature of new indoor air flowing from the vent 25.
  • the air temperature is basically equivalent to the temperature of the indoor air sucked from the suction port 12 and can be regarded as the suction air temperature of the main air flow, and can be said to be a temperature indicating the current room temperature Tr.
  • the temperature sensor 24 can measure the current room temperature Tr during operation.
  • the temperature sensor 24 is used for detecting that a rapid refrigerant leak has occurred in the piping chamber 2, and also for cooling operation and heating operation. During normal operation, it is also used to measure the current room temperature Tr.
  • the temperature sensor 24 is used in combination with the temperature detection means for measuring the temperature T of the piping chamber 2 and the temperature detection means for measuring the current room temperature Tr in order to detect rapid refrigerant leakage occurring in the piping chamber 2. It is. This is a feature of the second embodiment.
  • T Tr if the operation is performed in a state where no refrigerant leaks.
  • the control device 10 uses the measured value of the temperature sensor 24 installed in the piping chamber 2 to determine whether or not refrigerant leakage has occurred regardless of whether the indoor unit 200 is operating or stopped. This is taken as the temperature T and also taken as the current room temperature Tr during operation of the indoor unit 200.
  • the control device 10 uses the input from the temperature sensor 24 as the temperature T of the piping chamber 2, and based on that, executes the control flow of any of FIGS.
  • the input from the temperature sensor 24 is also taken as the current room temperature Tr and compared with the set temperature Ts, and the comparison result (for example, both of them) Based on the temperature difference Ts ⁇ Tr), the number of rotations of the compressor and the outdoor blower fan provided in the outdoor unit and the number of revolutions of the blower fan 4 of the indoor unit 200 are controlled.
  • the amount of refrigerant circulating in the refrigerant circuit and the amount of heat exchange in the heat exchanger 3 are adjusted to perform a fine and energy-saving operation and provide a comfortable space for the user.
  • the installation position of the temperature sensor 24 may be anywhere in the piping chamber 2 as long as it is for the determination of the occurrence of refrigerant leakage, but in this second embodiment, the temperature sensor 24 is installed. Is also used as the current room temperature Tr detection means during the operation of the indoor unit 200, it is necessary to arrange it in the middle of the air flow path from the vent 25 to the heat exchanger chamber 1.
  • the partition plate 23 is cooled or warmed by the heat exchanger 3 during operation by the conditioned air. Has been cooled or warmed, and the current current room temperature may not be measured due to the cold heat of the partition plate 23. Therefore, like the indoor unit 200, the temperature sensor 24 may be disposed at a position close to the vent 25, preferably facing the vent 25.
  • the vent 25 is formed at a position below the electrical unit 9 and close to the electrical unit 9 in the vertical direction, but from the vent 25 to the right side of the drain pan 19. Any other position may be used as long as the air flow path reaching the end can be secured.
  • the temperature sensor 24 is positioned below the electrical unit 9 in the vertical direction and close to the electrical unit 9. Installed in position.
  • the air vent 25 is formed at the position as described above because it is located at a position facing the temperature sensor 24 in the left-right direction.
  • the air vent 25 is formed on the side surface of the housing 5. However, if the air flow path to the right end of the drain pan 19 entering the piping chamber 2 can be formed, the housing 5 is formed. You may make it form in the back, front, and upper surface of.
  • the temperature detection means for measuring the temperature T of the piping chamber 2 used for the control flow in which the control device 10 determines whether or not refrigerant leakage has occurred and the control device 10 during the normal operation of the indoor unit 200 Since the temperature sensor 24 is also used as the temperature detection means for measuring the current room temperature Tr used for the operation control of the air conditioner, the signal line of the temperature detection means is reduced and the structure of the indoor unit 200 is simplified. This contributes to resource saving and improvement in workability of the connection work of the external connection pipe 20.
  • the partition plate 23 is notched and the right end of the drain pan 19 enters the piping chamber 2 from the heat exchanger chamber 1, and therefore passes through the upper surface opening of the drain pan 19 straddling the partition plate 23.
  • the piping chamber 2 and the heat exchanger chamber 1 can partially circulate air.
  • the drain pan 19 does not enter the piping chamber 2 and is contained only in the heat exchanger chamber 1, a flow hole partially passing through the piping chamber 2 and the heat exchanger chamber 1 is provided. What is necessary is just to form in the partition plate 23 so that the air
  • FIG. 12 is a schematic view of the state in which the front casing 7 and the like of the indoor unit 300 according to the third embodiment are removed from the front, corresponding to FIG. 11 of the second embodiment.
  • the vent hole 25 is provided on the right side surface of the front casing 7 as in the second embodiment, for convenience of explanation, the vent hole 25 is also illustrated at a corresponding position in FIG.
  • the indoor unit 300 includes a temperature sensor 24 that detects the temperature T of the piping chamber 2 that is used by the control device 10 to detect that the refrigerant is rapidly leaking in the piping chamber 2, and the control device 10
  • the configuration differs from the indoor unit 200 of the second embodiment in that a room temperature sensor 26 that detects the current room temperature Tr to be compared with the set temperature Ts for operation control during operation is separately provided.
  • the room temperature sensor 26 uses a thermistor and is connected to an electrical board in the electrical component unit 9 through a signal line 26a.
  • the room temperature sensor 26 is disposed in the piping chamber 2 so as to face the vent 25 of the housing 5 in the left-right direction.
  • a temperature sensor 24 is also installed in the piping chamber 2.
  • the room temperature sensor 26 may be arranged not in the piping chamber 2 but in a place separated from the piping chamber 2 to detect the current room temperature Tr.
  • the control device 10 performs the operation control during the normal operation based on the detection value of the room temperature sensor 26, and based on the detection value of the temperature sensor 24, any of the control devices 10 shown in FIGS. Execute the control flow.
  • the third embodiment has an advantage that a thermistor having characteristics suitable for each purpose of use can be selected and used.
  • the temperature sensor 24 needs to detect a low temperature close to ⁇ 50 ° C. as described in the first embodiment. Therefore, for example, a standard thermistor having a general operating temperature range can be used for the room temperature sensor 26, and a thermistor excellent in measurement in a low temperature environment can be used for the temperature sensor 24.
  • FIG. 4 a fourth embodiment of the present invention will be described with reference to the drawings.
  • the basic configuration of an air conditioner indoor unit 400 (hereinafter referred to as indoor unit 400) according to Embodiment 4 is the same as that of indoor unit 100 of Embodiment 1, and the same components are denoted by the same reference numerals. Detailed description will be omitted.
  • the external perspective view of the indoor unit 400 is the same as that of the indoor unit 100
  • FIG. FIG. 13 is a schematic view of the state in which the front casing 7 and the like of the indoor unit 400 according to the fourth embodiment are removed from the front, corresponding to FIG. 5 of the first embodiment.
  • the indoor unit 400 includes a temperature sensor that detects a temperature T of the piping chamber 2 that is used by the control device 10 to detect rapid refrigerant leakage in the piping chamber 2.
  • 24 is characterized in that a refrigerant sensor 27 for detecting the refrigerant is installed.
  • the refrigerant sensor 27 uses a semiconductor gas sensor that detects a change in the resistance value generated when the metal oxide semiconductor comes into contact with the refrigerant gas as the refrigerant gas concentration in the air. It is connected to the electrical board in the electrical unit 9.
  • the temperature sensor 24 is a pipe that rapidly changes due to evaporation of the leaked refrigerant when the refrigerant leaks rapidly in the pipe chamber 2 due to, for example, the flare connection of the connecting portion G being removed.
  • the temperature T of the chamber 2 is captured.
  • the control device 10 Based on the temperature T of the piping chamber 2, the control device 10 performs one of the control flows shown in FIGS. 6 to 9 and detects that a rapid refrigerant leak has occurred.
  • rapid refrigerant leakage such as disconnection of the connection portion G
  • leakage such as from a pinhole generated in the heat transfer pipe 32 or the communication pipe 11 of the heat exchanger 3. Slow leaks with a low speed, so-called slow leaks, can also occur.
  • the refrigerant gas concentration is unlikely to rise to the flammable range without stagnation of the refrigerant that has flowed out. That is, the possibility that a gas phase having a flammable concentration of the leaking refrigerant is formed in the room is low.
  • a pinhole is formed in the U bend 32 b, and a refrigerant slow leak occurs, and a part of the leaked refrigerant gas passes through the drain pan 19 to the heat exchanger chamber 1 and is a suction port below the housing 5. Even if the refrigerant flows out of the room 12, similarly, the indoor outflow speed of the refrigerant is smaller than the natural diffusion speed in the room, so that it is unlikely that a combustible gas phase of the leaked refrigerant is formed in the room.
  • the refrigerant leaks even if it is a slow leak, if the refrigerant leaks, it will eventually become a situation where the refrigerant in the refrigerant circuit becomes insufficient, and the capability decline that does not cool or warm during operation becomes obvious. If it becomes so, driving efficiency will also deteriorate and power consumption will increase. For this reason, even if the user has a slow leak, the user wants to recognize the leakage of the refrigerant at an early stage and take appropriate measures.
  • the appropriate measure here is to contact a service provider to repair the leaked portion and to make the refrigerant charge amount in the refrigerant circuit appropriate.
  • the control device 10 can detect the slow leak of the refrigerant and notify the user before the user feels that the cooling or heating is not effective.
  • the refrigerant leak is a slow leak with a low leak rate such as a pinhole of the heat transfer tube 32
  • the temperature T of the piping chamber 2 rapidly decreases as in the case of a rapid refrigerant leak due to a flare disconnection. The phenomenon does not appear. Therefore, it is difficult to detect the slow leak of the refrigerant based on the temperature T of the piping chamber 2 measured by the temperature sensor 24. Therefore, in the indoor unit 400, the refrigerant sensor 27 is also installed in the piping chamber 2 so that the slow leak of the refrigerant can be detected.
  • the control device 10 takes in the refrigerant gas concentration C measured by the refrigerant sensor 27 regardless of whether the indoor unit 400 is in operation or is stopped, and whether or not the latest refrigerant gas concentration C taken in is greater than or equal to a predetermined determination reference concentration Cj. If it is determined that C ⁇ Cj, it is determined that the refrigerant has leaked, and a warning is given to the user. The alarm is the same as in the first embodiment. If the state of C ⁇ Cj continues for a predetermined time (for example, 3 seconds), it may be determined that the refrigerant has leaked.
  • a predetermined time for example, 3 seconds
  • the refrigerant sensor 27 uses a semiconductor gas sensor, but it may be of another detection type such as an infrared type. Further, although the refrigerant gas concentration C cannot be measured, a system that can detect the presence or absence of the refrigerant gas may be used. In this system, a signal that the refrigerant sensor 27 detects the presence of the refrigerant gas. Is received by the control device 10, it is determined that a refrigerant leak has occurred, and an alarm is issued.
  • an oxygen concentration meter can be used as the refrigerant sensor 27.
  • the control device 10 determines that the oxygen concentration measured by the oxygen concentration meter is equal to or lower than a predetermined criterion oxygen concentration. For example, it may be determined that a refrigerant leak has occurred and an alarm may be issued. In either case, if such a situation continues for a predetermined time (for example, 3 seconds), it may be determined that refrigerant leakage has occurred.
  • the refrigerant sensor 27 is disposed in the piping chamber 2, even if a slow leak of the refrigerant occurs in the heat exchanger chamber 1, the leaked refrigerant gas is guided to the piping chamber 2 through the drain pan 19. It can detect with the refrigerant
  • the refrigerant sensor 27 is preferably disposed in the lower part of the piping chamber 2. Further, in order to quickly detect the slow leak of the refrigerant generated in the heat exchanger chamber 1, the refrigerant sensor 27 is preferably disposed near the drain pan 19. For this reason, the lower part of the piping chamber 2 referred to here is lower than the upper surface height of the drain pan 19. In the indoor unit 400, the refrigerant sensor 27 is fixed on the bottom surface of the piping chamber 2 at a position where the right end of the drain pan 19 and the left end of the refrigerant sensor 27 substantially coincide with each other in the left-right direction.
  • the piping chamber such as disconnection of the connecting portion G based on the temperature T of the piping chamber 2 measured by the temperature sensor 24 arranged in the piping chamber 2.
  • 2 is a refrigerant sensor arranged in the piping chamber 2 against a slow leak of refrigerant such as a leak from a pinhole formed in the heat transfer pipe 32 or the communication pipe 11. 27 can be detected early.
  • the indoor unit 400 of Embodiment 4 is excellent in safety, can be prevented from being operated in a state where the refrigerant in the refrigerant circuit is insufficient, and can suppress an increase in power consumption.
  • a vent hole 25 (see FIG. 10) is formed in the vicinity of the temperature sensor 24 of the housing 5, and the temperature sensor 24 is used for detecting rapid refrigerant leakage occurring in the piping chamber 2.
  • the temperature sensor 24 may be used to measure the current room temperature Tr.
  • the control device 10 may determine that rapid refrigerant leakage has occurred.
  • an oxygen-free copper tube having high corrosion resistance is used as a material for the heat transfer tube 32 of the heat exchanger 3 so that pinholes are hardly formed in the heat transfer tube 32.
  • an oxygen-free copper pipe is installed in the heat transfer pipe 32 of the heat exchanger 3 so as to avoid the occurrence of a slow leak of the refrigerant as much as possible and improve safety. It is desirable to use it.
  • FIG. 5 a fifth embodiment of the present invention will be described with reference to the drawings.
  • the basic configuration of an indoor unit 500 of an air conditioner according to Embodiment 5 (hereinafter referred to as indoor unit 500) is the same as that of indoor unit 100 of Embodiment 1, and the same components are denoted by the same reference numerals. Detailed description will be omitted.
  • the external perspective view of the indoor unit 500 is the same as that of the indoor unit 100, and reference is made to FIG. 14 corresponds to FIG. 5 of the first embodiment, and is a schematic view of the state where the indoor unit 500 front casing 7 and the like according to the fifth embodiment are removed as viewed from the front.
  • the indoor unit 500 includes a temperature sensor 24 that measures the temperature T of the piping chamber 2 in the piping chamber 2, and a refrigerant sensor 27 that detects the refrigerant includes a heat exchanger chamber. 1 is a feature.
  • the installation location of the refrigerant sensor 27 is different from the fourth embodiment in which the refrigerant sensor 27 is installed in the piping chamber 2.
  • the refrigerant sensor 27 is located in the air path through which the main air flow from the inlet 12 to the outlet 13 generated by the blower fan 4 flows.
  • the suction port 12 is formed in the lower part of the housing 5, specifically, the refrigerant sensor 27 is fixed on the bottom surface of the heat exchanger chamber 1 on the back side of the suction port 12 of the heat exchanger chamber 1. ing.
  • the refrigerant sensor 27 faces the suction port 12 in the front-rear direction.
  • the refrigerant sensor 27 is the lower part of the heat exchanger chamber 1 in the air passage through which the main air flow from the inlet 12 to the outlet 13 flows.
  • the refrigerant sensor 27 may be installed on either the upstream side or the downstream side of the air filter 21, but when the user attaches / detaches the air filter 21 for cleaning, the air filter 21 does not interfere with the attaching / detaching work. It is desirable to be on the downstream side.
  • a signal line of the refrigerant sensor 27 enters the piping chamber 2 from a notch formed in the partition plate 23 and passes to the electrical unit 9 in order to pass the drain pan 19.
  • the indoor unit 500 is configured such that the connection portion G is disconnected based on the temperature T of the piping chamber 2 measured by the temperature sensor 24 disposed in the piping chamber 2.
  • a rapid refrigerant leakage occurring in the refrigerant is quickly detected, and a refrigerant slow leak such as a leak from a pinhole of the heat transfer pipe 32 or the communication pipe 11 is detected by the refrigerant sensor 27. This is the same as the indoor unit 400.
  • the indoor air sucked from the suction port 12 passes through the refrigerant sensor 27.
  • the control device 10 detects a rapid refrigerant leakage that occurs in the piping chamber 2 as shown in the first embodiment, the leakage refrigerant gas is forced to be leaked as shown in step S5 or step S7 in the control flowcharts of FIGS.
  • the blower fan 4 is rotated at the maximum rotational speed. The air flow generated during the rotation also passes through the refrigerant sensor 27 installed in the air passage.
  • FIG. 15 is a control flowchart after step S8 of the indoor unit 500.
  • the flow before step S8 is the same as that in any of FIGS. 6 to 9, and steps S3 to S8 are common.
  • the control device 10 performs a heat exchanger chamber in the air passage as step S51. It is determined whether or not the refrigerant gas concentration C measured by the refrigerant sensor 27 installed in the lower part of 1 is equal to or less than a predetermined determination reference concentration Ck.
  • the determination reference concentration Ck is set to a value equal to or smaller than the determination reference concentration Cj (described in the fourth embodiment) used when detecting the slow leak of the refrigerant. That is, Ck ⁇ Cj.
  • step S51 determines whether C> Ck (determination in step S51 is NO). If C> Ck (determination in step S51 is NO), this step S51 is repeated. If C ⁇ Ck (determination in step S51 is YES), then in step S52, the state of C ⁇ Ck It is determined whether the time Hh is equal to or longer than a predetermined determination reference time Hk. If C> Ck is satisfied in a time less than Hj (NO in step S52), the process returns to the determination in step S51.
  • step S52 If it is determined in step S52 that the state of C ⁇ Ck has been continued for at least Hk time, that is, if H ⁇ Hj (determination in step S2 is YES), the control device 10 sufficiently diffuses the leaked refrigerant gas.
  • step S53 the rotation of the blower fan 4 is stopped or the number of rotations is reduced, assuming that there is no possibility that a combustible gas phase of the refrigerant is formed in the room. Decreasing the number of rotations means, for example, changing the maximum number of rotations to the minimum number of rotations.
  • the air flow path through which the air flow from the inlet 12 to the outlet 13 flows It can be installed anywhere. The operation of the refrigeration cycle is stopped, and the indoor air containing the leaked refrigerant gas sucked from the suction port 12 is not heat-exchanged by the heat exchanger 3.
  • the refrigerant sensor 27 is also used for detecting a refrigerant slow leak such as a leak from a pinhole of the heat transfer tube 32 regardless of whether it is in operation or stopped. is there.
  • a refrigerant slow leak such as a leak from a pinhole of the heat transfer tube 32 regardless of whether it is in operation or stopped. is there.
  • the installation position of the refrigerant sensor 27 in this indoor unit 500 is the lower part of the heat exchanger chamber 1 in the air passage through which the air flow from the inlet 12 to the outlet 13 flows, but the refrigerant slow leak from the pinhole is Since the frequency that occurs in the heat transfer tube 32 of the heat exchanger 3 is high, the lower part of the heat exchanger 3 needs to be lower than the heat exchanger 3 at least in the vertical direction.
  • the refrigerant sensor 27 may be of a type in which the refrigerant gas concentration cannot be measured, but the presence or absence of the refrigerant gas can be detected. In this case, the refrigerant sensor 27 is detected in step S51. What is necessary is just to determine whether presence is detected. When an oxygen concentration meter is used as the refrigerant sensor 27, it may be determined in step S51 whether or not the oxygen concentration measured by the oxygen concentration meter is equal to or lower than a predetermined determination reference concentration.
  • a temperature sensor 24 for measuring the temperature T of the piping chamber 2 is installed in the piping chamber 2, and at the lower part of the heat exchanger chamber 1 in the air passage through which the air flow generated by the blower fan 4 flows. Since the refrigerant sensor 27 is arranged, in addition to the operational effects of the fourth embodiment, the blower fan 4 rotating at the maximum rotational speed to forcibly diffuse the leaked refrigerant gas after detecting rapid refrigerant leakage. It is possible to determine whether or not the rotation of the engine may be stopped or the number of rotations may be reduced based on the detection result of the refrigerant sensor 27 with respect to the indoor air sucked from the suction port 12.
  • the predetermined time (for example, 5 minutes) is the maximum of the blower fan 4 regardless of the detection result of the refrigerant sensor 27. You may make it improve safety
  • security by continuing the rotation by rotation speed and implementing the control flow from step S51 after the progress of the time.
  • the vent 25 (see FIG. 10) is formed in the vicinity of the temperature sensor 24 of the housing 5, and the rapid refrigerant leakage that occurs in the piping chamber 2 is caused by the temperature sensor 24.
  • the temperature sensor 24 may be used to measure the current room temperature Tr during normal operation of the indoor unit 500.
  • the control device 10 may determine that rapid refrigerant leakage has occurred.
  • the indoor unit 500 is configured to include the suction port 12 at the lower portion of the housing 5 and the blower outlet 13 above the suction port 12. However, the indoor unit 500 has a configuration in which the blower outlet 13 is positioned below the suction port 12. If there is, the refrigerant sensor 27 may be installed at a position facing the air outlet 13. It suffices if the position is lower than the heat exchanger 3 in the heat exchanger chamber 1 in the air passage extending from the suction port 12 to the outlet 13.
  • the piping chamber 2 and the heat exchanger chamber 1 do not need to be clearly separated by the partition plate 23.
  • the heat exchanger chamber 1 is a range in which the heat exchanger 3 and the blower fan 4 are arranged and an air passage through which an air flow from the suction port 12 to the blowout port 13 generated by the rotation of the blower fan 4 flows is formed.
  • the range in which the connecting portion G between the communication pipe 11 and the external connection pipe 20 is located across the air passage is the pipe chamber 2.
  • the refrigerant filled in the refrigerant circuit flows into the room to form a gas phase in the flammable concentration range, and ignites when there is an ignition source there.
  • an excellent effect can be exhibited particularly from the viewpoint of safety.
  • the refrigerant used in the refrigerant circuit is an incombustible refrigerant (for example, R410A) that does not ignite even if it flows into the room, the user can quickly know that the refrigerant has leaked.
  • the present invention is effective even when applied not only to the combustible refrigerant but also to the incombustible refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒の漏洩が生じていることを冷媒の漏洩の発生から早期の段階で検知できる安全性および信頼性に優れた空気調和機の室内機の提供を目的として、筺体(5)内で熱交換器室(1)と隔てて設けられ、熱交換器(3)に接続する連絡配管(11)と室外機に接続する外部接続配管(20)との接続部(G)が位置する配管室(2)と、配管室(2)に設置され、配管室(2)の温度Tを測定する温度センサ(24)と、温度センサ(24)が測定する配管室(2)の温度Tに基づいて冷媒の漏洩が生じているか否かを判断する制御装置(10)と、を備えるものである。

Description

空気調和機の室内機
 この発明は、冷媒の漏洩の検知できる空気調和機の室内機に関するものである。
 これまで空気調和機には、冷媒回路に充填される冷媒としてHFC冷媒のR410Aが主として用いられていた。このR410Aは、従来のR22のようなHCFC冷媒と異なり、オゾン層破壊係数ODPがゼロであってオゾン層を破壊することはないが、地球温暖化係数GWPが高いという性質を有している。そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低いHFC冷媒へと変更する動きが出てきている。
 そのような低GWPのHFC冷媒としては、例えば、組成中に炭素の二重結合を有するハロゲン化炭化水素があり、代表的なものとして、HFO-1234yf(CF3CF=CH2;テトラフルオロプロパン)やHFO-1234ze(CF3-CH=CHF)、HFO-1123(CF2=CHF)がある。これらはHFC冷媒の一種ではあるが、炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれることから、オレフィンのOを使って、HFOと表現されることが多い。そこで本明細書においては、これらをHFO冷媒と称して、R410Aを構成するR32(CH2F2;ジフルオロメタン)やR125(CHF2-CF3;ペンタフルオロエタン)のように組成中に炭素の二重結合を持たないHFC冷媒と区別するものとする。
 このような低GWPのHFO冷媒は、単一冷媒として使用される場合もあり得るが、R32に代表されるような他のHFC冷媒との複数種の混合冷媒として用いられる可能性が高い。これらHFO冷媒もしくはHFO冷媒とHFC冷媒との混合冷媒は、R290(C3H8;プロパン)のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性を有している。そのため、冷媒漏洩に対する注意が必要であり、これ以降、微燃性から強燃性まで含めて可燃性を有する冷媒のことを可燃性冷媒と称する。R32は単体冷媒としてはHFO冷媒と同じように微燃性を呈する、すなわち可燃性冷媒であるので、HFO冷媒とR32との混合冷媒も可燃性冷媒となる。なお、R32にR125が混合されたR410AはR125の特性により不燃性である。
 このような可燃性冷媒は、室内に漏洩した場合、漏洩冷媒が拡散することなく滞留すれば、そこに可燃濃度の気相が形成される可能性があり、もしこの可燃濃度の気相に何らかの着火源が存在していれば、冷媒に引火する恐れがある。そのような室内における漏洩冷媒への引火という事態の発生を回避するためには、空気調和機としてまずは、冷媒の漏洩を検知することが必要となってくる。
 従来、空気調和機における冷媒の漏洩を検知する手段としては、例えば室内機側熱交換器のヘッダー下部やレシーバ等の液溜まり部のように、冷媒回路内で液冷媒が溜まる可能性がある箇所に配置された温度センサが検出する冷媒温度が、所定速度を超えて下降したときに、制御部が、冷媒が漏洩していると判断するものがある(例えば、特許文献1参照)。
特開2000-081258号公報(0052~0071段落、図1~4)
 しかしながら、特許文献1に示される検知手段では、冷媒温度として冷媒回路内の液冷媒溜まり部の表面温度を温度センサで検出し、その検出温度の変化速度から冷媒漏洩の有無を判断しているため、当該特許文献1の0065段落にも記載されているように、冷媒漏洩の発生からその冷媒漏洩が生じていると制御部が判断するまでに時間がかかるという問題がある。
 特許文献1の0065段落の記載によれば、特許文献1における空気調和機の冷媒漏洩の検知手段は、図4に示される冷媒漏洩時の温度変化測定グラフ(実験結果)を参考として、上記の温度センサの検出温度が、以下の2つの変化現象のいずれかを示したときに、冷媒漏洩が生じていると判断するようになっている。
(a)グラフ前半部分(漏洩開始から経過20分まで)が示すような、0.5℃/分程度の緩慢な温度低下が所定時間(例えば10~20分間)だけ起こったとき。
(b)グラフ後半部分(経過40分以降)で示すような、5℃/分以上の急激な温度低下が発生したとき。
 このように、変化速度を判定する温度として、冷媒回路の構成部品の表面温度を冷媒温度として用いているため、温度変化が漏洩開始から経過20分までの前半部分では緩慢であったり、急激な温度変化が発生するのは経過40分以降であったりとなっている。そのため、上記の(a)の判定基準に従って冷媒漏洩を検知するとしても、早くとも10分はかかってしまうことになる。
 また、冷媒回路の圧縮機が稼働して回路内に冷媒を循環させている当該空気調和機の運転中には、起動直後を含め、冷媒回路内の液冷媒が溜まる可能性ある部分の冷媒温度(部品表面温度)は、そこに溜まっていた液冷媒の気化により温度変化が生じる場合が多い。そのため、判定する温度変化速度が緩慢である上記の(a)の判定基準に基づき冷媒漏洩を検知する場合には、当該空気調和機の正常な運転作用における温度変化であって冷媒漏洩が発生していないにもかかわらず、冷媒の漏洩が生じていると判断してしまう誤検知の恐れがある。
 制御部が、冷媒の漏洩が生じていると判断するまので時間を短縮するために、上記(a)の判定基準における、緩慢な温度低下が続く所定時間を10分よりももっと短くすることが考えられるが、そのように所定時間を短くすればするほど、上記のような正常な運転作用における温度変化であるのに冷媒漏洩が生じていると判断する誤検知のリスクが増すことになる。
 一方で、上記(b)の判定基準のような急激な温度変化は、当該空気調和機の正常な運転作用においてはあまり生じることがなく、このような温度変化を捉えて冷媒漏洩が生じていると判断するのであれば誤検知は起き難い。しかし、上記のとおり、このような急激な温度変化は、冷媒の漏洩が始まってから40分以上も経ってから起こるものであり、上記(b)に基づく判断は、冷媒の漏洩を早期に検知することができない、という問題がある。
 この発明は、上記のような課題を解決するためになされたもので、冷媒の漏洩が生じていることを冷媒の漏洩の発生から早期の段階で検知できるとともに、冷媒が漏洩していないのに冷媒漏洩が生じていると判断してしまう誤検知を防止できる安全性および信頼性に優れた空気調和機の室内機を提供することを目的とする。
 この発明に係る空気調和機の室内機は、吸込口と吹出口が形成された筺体を有し空調対象となる部屋に設置される空気調和機の室内機であって、前記吸込口から前記吹出口に至る空気流を生成する送風ファンと、冷媒が充填された冷媒回路の一部を成し、前記送風ファンが生成する空気流が通過する熱交換器と、前記筺体内に設けられ、前記送風ファンと前記熱交換器とが配置される熱交換器室と、前記冷媒回路の一部を成し、前記熱交換器に接続される連絡配管と、前記冷媒回路の一部を成し、前記部屋の外から前記部屋に取り入れられる外部接続配管と、前記筺体内で前記熱交換器室と隔てて設けられ、前記連絡配管と前記外部接続配管との接続部が位置する配管室と、前記配管室に設置され、前記配管室の温度Tを測定する温度センサと、前記温度センサが測定する前記配管室の温度Tに基づいて前記冷媒の漏洩が生じているか否かを判断する制御装置と、を備えたものである。
 この発明によれば、制御装置が、配管室に設置された温度センサの測定する配管室の温度Tに基づいて急速な冷媒漏洩を早期に検知できるとともに、誤検知することを防止できるので、安全性と信頼性に優れた空気調和機の室内機を提供することができる。
この発明の実施の形態1における空気調和機の室内機の外観斜視図である。 図1に示す空気調和機の室内機の分解斜視図である。 図1に示す空気調和機の室内機の縦断面図である。 図1に示す空気調和機の室内機の熱交換器を説明する模式図である。 図1に示す空気調和機の室内機の前側部分を取り外した状態を正面から見た模式図である。 図1に示す空気調和機の室内機の制御フローチャートである。 図1に示す空気調和機の室内機の変形例1の制御フローチャートである。 図1に示す空気調和機の室内機の変形例2の制御フローチャートである。 図1に示す空気調和機の室内機の変形例3の制御フローチャートである。 この発明の実施の形態2における空気調和機の室内機の外観斜視図である。 図10に示す空気調和機の室内機の前側部分を取り外した状態を正面から見た模式図である。 この発明の実施の形態3における空気調和機の室内機の前側部分を取り外した状態を正面から見た模式図である。 この発明の実施の形態4における空気調和機の室内機の前側部分を取り外した状態を正面から見た模式図である。 この発明の実施の形態5における空気調和機の室内機の前側部分を取り外した状態を正面から見た模式図である。 図14に示す空気調和機の室内機の制御フローチャートである。
実施の形態1.
 以下、この発明の実施の形態1について、図面を参照しながら説明する。図1は、この発明の実施の形態1に係る空気調和機の室内機100の外観斜視図、図2はその分解斜視図である。また図3は、図1に示す空気調和機の室内機100の縦断面図であるが、模式化している。なお、この実施の形態1における空気調和機の室内機100を以降、単に室内機100と称するものとする。この室内機100は屋外に設置される室外機(図示なし)とともに空気調和機を構成する。
 室内機100と図示しない室外機とは液管とガス管から成る外部接続配管20を介して接続され、冷媒が充填された冷媒回路が形成されている。当該空気調和機の運転中は、この冷媒回路で蒸気圧縮式冷凍サイクルが動作する。この冷媒回路内の冷媒として、ここでは上述したHFO冷媒の一種であるHFO-1234yfとHFC冷媒の一種であるR32との混合冷媒が用いられている。HFO-1234yfもR32もともに微燃レベルの可燃性を有しており、この混合冷媒は可燃性冷媒である。
 図1に示すように、この室内機100は全体として直方体形状の外観をなし、空調する部屋の床面上に置かれて後方の壁面に取り付け固定される床置き形である。なお、床面を清掃する清掃用具が床面と当該室内機100下面との間に入れる程度(例えば100mmくらい)の間隔を空けて、室内機100を床面から浮かせた状態で後方の壁面に取り付け固定することも可能である。また、床面上に設置台を置き、その設置台に室内機100を載置するようにしてもよい。
 図1~3に示すように室内機100は、筺体5の内部に熱交換器室1と配管室2とが設けられている。正面視で左側に位置する熱交換器室1には、熱交換器3とその熱交換器3に室内空気を流通させる送風ファン4が配置されている。この熱交換器3は冷媒回路の一構成要素であり、室内機100の運転中には内部を冷媒が流れる。
 右側に位置する配管室2では、上部にこの室内機100を運転制御する制御装置10を含む電装基板が収納された電気品ユニット9が配置されている。また、配管室2にはそれぞれが熱交換器3に接続されているガス管と液管から成る2本の連絡配管11が配置されている。連絡配管11も冷媒回路の一構成要素であり、室内機100の運転中には内部を冷媒が流れる。
 筺体5は、後方に位置する背面側ケーシング6と、その背面側ケーシング6の前側に固定される前側ケーシング7と、前側ケーシング7の前面開口部を覆うように前側ケーシング7に開閉可能に取り付けられる正面意匠パネル8とから構成されている。図2に示すように、正面意匠パネル8は、前側ケーシング7に対して、その下端部を回動中心として上下方向に回動自在であり、手前側へと傾くことで開いた状態となる。なお、正面意匠パネル8は、左右端部のどちらか一方を回動中心として左右方向に回動させて開閉自在としてもよい。
 この室内機100は、空調対象となる部屋において、背面側ケーシング6が壁面側に位置し、前側ケーシング7が室内に広く面するように配置される。そして運転中には、筺体5の下部から室内空気を吸い込んで、熱交換器3を通過させ、その際に熱交換器3内を流れる冷媒と熱交換した室内空気(調和空気)を、筺体5の上部から吹き出し、室内へと返流させるものである。
 筺体5の前面下部には、筺体5内部へ吸い込まれる室内空気の入口となる吸込口12が形成されている。吸込口12には、正面意匠パネル8に一体成形されている吸込グリル14が設置される。吸込グリル14は、空気流の上流側から下流側に向かって上方へと傾斜している複数の矩形状板が、上下方向に所定の間隙を設けて配置されている。複数の矩形状板の間隙が流入する室内空気の通り道となるとともに、矩形状板が傾斜していることにより、筺体5の内部を見えにくくし外観の意匠性が損なわれないようになっている。
 そして筺体5の上端前側部分から前面上部にかけて、熱交換後の調和空気を吹き出す吹出口13が形成されている。吹出口13は前側ケーシング7の上部に開口して形成される。吹出口13には、吹き出される空気流の向きを調整可能とする上下風向板16や左右風向板(図示せず)、およびそれら風向板を回動させる駆動モータ17、また送風ファン4のスタビライザ18を備えた吹出ユニット15が配置されている。吹出ユニット15は、背面側ケーシング6に固定されている。吹出口13は、図1に示すように、室内機100が停止中のときは、吹出ユニット15の上下風向板16により閉じられ、運転中のときには、図3に示すように、上下風向板16が回動して開口される。
 前側ケーシング7の前面側にはエアフィルタ21が取り付けられている。エアフィルタ21は、送風ファン4の回転によって生成される空気流において吸込口14の下流側で、熱交換器3の上流側となる位置に設置される。前側ケーシング7にはエアフィルタ21のスライド移動可能にするガイド溝22が、エアフィルタ21の左右両側にそれぞれ形成されている。ユーザは、正面意匠パネル8を開いて、これらガイド溝22に沿ってエアフィルタ21をスライド移動させることで、簡単にエアフィルタ21を前側ケーシング7から取り外したり再び装着したりすることができる。そのため、ユーザはエアフィルタ21の清掃が容易に行える。
 筺体5の内部は左右方向に、仕切板23によって熱交換器室1と配管室2とに仕切られている。仕切板23は、熱交換器3より下方となる位置では、筺体5に一体成形された樹脂製の板状部材が担当し、熱交換器3から上側では、熱交換器3の左右方向端面の金属製側板に固定されている金属製の板状部材が担当している。
 仕切板23の左側に位置する熱交換器室1には、熱交換器3と送風ファン4が配置されている。図3に示すように、熱交換器3は、前側熱交換器3aと背面側熱交換器3bとを備え、それらが側面視で上向きのV字形状を呈するようにして構成されている。図4は、熱交換器3を説明するための模式図である。熱交換器3は、左右方向に並列する複数枚の細長い金属製薄板であるフィン31と、これらフィン31を左右方向に貫通しながら、フィン31の長手方向に複数列を成す金属製の伝熱管32とから構成されている。ここでは、フィン31はアルミニウム製であり、伝熱管32は耐腐食性の高い無酸素銅管で構成されている。
 伝熱管32は、左右方向に細長いU字状を呈するヘアピン管32aと、ヘアピン管32aの一方の開口と別のヘアピン管32aの他方の開口とを接続する短いU字状のUベンド32bとから成る。Uベンド32bは、ヘアピン管32aにろう付けされる。これにより、熱交換器3内に冷媒の一連の流路が形成される。室内機100の運転中は、伝熱管32を冷媒が流れる。そして、伝熱管32の両端部にはそれぞれ、室外機に一方を接続されている外部接続配管20の他方が接続される連絡配管11がろう付けにより接続される。ただし、Uベンド管32bおよび連絡配管11は、仕切板23を通過して配管室2に位置している。
 熱交換器室1では、空気流において熱交換器3の上流側となる位置に送風ファン4が設置されている。ここで送風ファン4は、細長い円筒状のクロスフローファンが用いられており、前側熱交換器3aの上部後方に、回転軸方向を左右方向に一致させて横向きに設置されている。熱交換器室1には、送風ファン4の回転により吸込口12から吹出口13に至る空気流が流れる風路が形成されている。その風路の吹出側は、吹出ユニット15が備えるスタビライザ18と、背面側ケーシング6の前面に一体成形されている曲面状のリアガイダ6aによって形成される。
 一方、仕切板23の右側に位置する配管室2では、上部に位置する電気品ユニット9より下側に連絡配管11の先端部が位置するように、熱交換器3から連絡配管11が導かれている。連絡配管11はガス管と液管とから成り、図示しない屋外の室外機に一方を接続され当該室内機100が設置されている部屋の外からその部屋(空調対象)に取り入れられた外部接続配管20の他方にそれぞれ接続されることとなる。外部接続配管20も冷媒回路を冷媒回路の一構成要素であり、室内機100の運転中には内部を冷媒が流れる。
 連絡配管11と外部接続配管20はガス管同士、液管同士がそれぞれ接続される。冷房運転、暖房運転どちらであっても、ガス管にはガス冷媒が流れ、液管には液冷媒もしくは気液二相状態の冷媒が流れる。ガス冷媒の体積流量が大きいため、管径(内径)はガス管の方が大きい。熱交換器3、連絡配管11、外部接続配管20はいずれも、冷媒が充填された冷媒回路の一部を成しており、室内機100の運転時には冷媒回路を循環する冷媒が流れる。
 図2に示されるように、連絡配管11と外部接続配管20との接続部Gは、配管室2内で上下方向に電気品ユニット9より下に位置する。両配管は接続部Gの位置でフレア接続されている。連絡配管11の先端となる接続部11aにはフレア継手のユニオン(以降、フレア継手ユニオンと称す)がろう付固定されている。そして、外部接続配管20の室内機100側の先端となる接続部20aでは、配管端面にラッパ状のフレア部が形成され、そのフレア部の周囲を囲えるようにフレアナットが取り付けられている。
 連絡配管11と外部接続配管20との接続部Gでは、一方の接続部7aのフレア継手ユニオンと他方の接続部20aのフレアナットとがネジ結合される。フレア継手ユニオンが雄ねじでフレアナットが雌ねじでの結合である。このネジ結合により、接続部11aのフレア継手ユニオンの先端面と接続部7aの配管フレア部の内面が密着し、停止時を含め大気圧よりも圧力が高い冷媒回路内の冷媒をシールする。
 外部接続配管20は、背面ケーシング6の一部を切り抜くことで、配管室2の背面、側面、底面のいずれからでも配管室2内に入り込めるようになっている。また、当該室内機100の左側方から外部接続配管20が取り回される場合には、背面ケーシング6の裏側に凹状に形成されている配管通路(図示せず)を通して、配管室2の背面から配管室2内に入り込める。そのため、配管室2の下部(電気品ユニット9の下方)には、予め外部接続配管20の一部が入り込めるスペースが確保されている。
 熱交換器室1には、冷房運転時に熱交換器3に付着する結露水を受けるドレンパン19が、熱交換器3の下方に位置している。ドレンパン19は断面が逆台形形状で上面が開口している溝状の容器で、上面開口を熱交換器3側に向けて左右方向に延伸して設置されている。ドレンパン19は、重力により熱交換器3を伝って滴下された結露水を、その上面開口で受け取る。ドレンパン19が受け取ったドレン水は、ドレンパン19に接続する図示しないドレンホースを通って屋外に排水される。
 冷房運転時の結露水は、熱交換器3のフィン31だけでなく伝熱管32にも付着する。そのため、ドレンパン19は、熱交換器3の左右両端部にそれぞれ位置する伝熱管32から滴下する結露水も受ける必要がある。そのため、左側ではヘアピン管32aのU字状の折り返し部の下方においても、右側ではUベンド32bの下方においても、ドレンパン19は開口していないとならない。
 上述のとおり、Uベンド32bは配管室2に位置しているため、仕切板23にドレンパン19を通過させるための切り欠きが形成されており、ドレンパン19の右側端部は、その切り欠きを通過し、すなわち仕切板23を通過して配管室2内に進入している。これによりドレンパン19はUベンド32の下方においても開口している。このようにドレンパン19は、熱交換器室1だけでなく配管室2にも一部が入り込んでいる。そのため、熱交換器室1と配管室2とは、仕切板23により完全に隔てられているのではなく、ドレンパン19の上面開口を通して空気の流通が可能である。このように、熱交換器室1と配管室2とは部分的に通じていて空気の流通が可能となっている。
 また、前側熱交換器3aのUベンド32bの前方にはUベンドカバー33が設置されている(図2参照)。Uベンドカバー33は、Uベンド32bに付着した結露水が落下する際に、より下方にあるUベンド32bと接触し飛散する結露水を受け止めて、ドレンパン19に導く機能を有しており、ここでは、前側熱交換器3aの一部のUベンド32bにクリップで固定されている。
 なお、ユーザがエアフィルタ21の清掃のために、正面意匠パネル8を開いたときに、配管室2の内部が露出することがないように、前側ケーシング7には、配管室2の前方を覆う配管室カバー7aが一体成形されている。この背面室カバー7aにより電気品ユニット9や連絡配管11と外部接続配管20との接続部G等の前面側が覆い隠されるので、それらがユーザによって視認されることも、触れられることもなく、安全性と意匠性が確保される。
 次に、この室内機100の基本的な動作について説明する。ユーザによるリモコンからの操作信号や各種センサの検知信号、または予め定められたプログラム等に基づいて制御装置10がこの室内機100の運転を制御する。ユーザによりリモコンから冷房運転もしくは暖房運転の開始が指示されると、制御装置10は、室外機と通信して室外機に設置されている圧縮機を駆動させ、冷媒回路内に冷媒を循環させて冷凍サイクルを動作させる。圧縮機も冷媒回路の一構成要素である。そして、図3に示すように、吹出ユニット15の上下風向板16を回動して、停止時に上下風向板16によって閉ざされていた吹出口13を開口させるとともに、送風ファン4を回転駆動させる。
 送風ファン4の回転により室内空気が筺体5下部の吸込口112から筺体5内部に吸い込まれ、エアフィルタ21および熱交換器3を順に通過する。エアフィルタ21を通過する際に室内空気中に含まれる塵埃がエアフィルタ21によって捕捉されるため、送風ファン4が生成する空気流においてエアフィルタ21の下流側に位置する熱交換器3へと導かれる室内空気は塵埃が除去されており、熱交換器3に塵埃が付着することが防止される。
 室内空気は熱交換器3を通過する際に熱交換器3の伝熱管32内を流れる冷媒と熱交換し、冷房運転であれば室内空気の熱量が冷媒の蒸発熱として奪われることで冷やされ、暖房運転であれば冷媒の凝縮熱が室内空気に付与されることで暖められ、それぞれ調和空気となる。熱交換器3を通過して調和空気となった空気流は、その後、クロスフローファンである送風ファン4を横断し、送風ファン4の下流側へと進み、吹出口13から室内へと吹き出される。その際、吹き出される空気流は、吹出ユニット15の上下風向板16や左右風向板(図示せず)によって、吹き出し方向が調整される。
 上下風向板16や左右風向板の角度は、ユーザのリクエストもしくは予め決められた自動風向調整プログラムに従って制御装置10が決定し回動制御する。また、制御装置10は、送風ファン4の回転数についても同様に、ユーザのリクエストもしくは予め決められた自動風速調整プログラムに従って制御する。
 室内機100はこのような基本的な構成と機能を有しているが、上述の通り、冷媒回路内の冷媒として可燃性冷媒を使用している。もしこの室内機100において冷媒の漏洩が生じた場合に、上記した背景技術における特許文献1にも記載されるが、伝熱管32のピンホールからのような緩慢な漏洩、いわゆるスローリークで、漏洩する冷媒の単位時間当たりの重量(以降、漏洩速度)が小さいときでは、室内機100の停止時(送風ファン4が回転していない状態)に、空気よりも重い漏洩冷媒ガスが、たとえ筺体5下部の吸込口12を通って室内へ流出しても、自然に拡散していき、滞留しない。ここで自然に拡散するとは、高濃度域から低濃度領域へと冷媒が移動していくことである(以降、自然拡散と称する)。
 ピンホールからの漏洩のようなスローリークでは、室内機100から室内へと流出する漏洩冷媒ガスの単位時間当たりの重量(以降、室内流出速度)が、室内にて自然拡散する冷媒の単位時間当たりの重量(以降、自然拡散速度)に比べて小さいため、流出した漏洩冷媒が滞留することなく、室内で冷媒ガス濃度が可燃範囲まで上昇する可能性は低い。
 また運転時では、送風ファン4が生成する空気流の影響で室内の空気が撹乱されており、それに伴って漏洩冷媒ガスが強制的に拡散されるので、やはり冷媒ガスの濃度は可燃域まで上がる可能性は低い。このように、伝熱管32のピンホールからのような緩慢な漏洩な場合には、停止時であっても運転時であっても、可燃濃度の気相が形成される可能性は低く、漏洩冷媒に引火する事態は起こり難い。なおここで、冷媒の漏洩とは、冷媒回路内の冷媒が冷媒回路外へと漏れることをいう。
 よって、漏洩冷媒への引火を危惧する状況としては、上記のようなスローリークではなく、急速な冷媒漏洩となる。急速な冷媒の漏洩は、たとえば接続部Gにおいてフレア接続が外れることによって発生する可能性がある。外部接続配管20の接続部20aにおいて、配管端面に形成されるラッパ形状のフレア部の大きさが小さ過ぎる、すなわちフレア部のラッパ形状の外径が小さい場合や、フレアナット2を締め込み過ぎてフレア部が減肉化されてしまった場合には、大気圧より高い冷媒回路内の冷媒の圧力によって、外部接続配管20のフレア部がフレアナットから押し出されたり、フレア部が切断されたりする事態が起こり得る。
 そうなると、外部接続配管20の接続部20aのフレアナットだけが連絡配管11の接続部11aのフレア継手ユニオンに締結されたままの状態で、外部接続配管20が接続部Gから抜け、すなわちフレア接続が外れてしまって、伝熱管32のピンホールからの漏洩とは比較にならないほど急速な冷媒漏洩、すなわち漏洩速度が大きい冷媒の漏洩が発生する。例えばピンホールからの冷媒漏洩では漏洩速度が0.1kg/分程度であるが、フレア接続外れによる冷媒漏洩では漏洩速度は、1.25kg/分程度となり、10倍以上大きくなる。
 特に室内機100の停止時では、このような急速な冷媒の漏洩が生じると気化した漏洩冷媒ガスにより配管室2の圧力が上昇し、漏洩冷媒ガスは押し出されるように、配管室2に右側端部が進入するドレンパン19の上面開口を通って熱交換器室1へ進み、筺体5下部の吸込口12から室内へと流出する。このとき、漏洩冷媒ガスの室内流出速度が自然拡散速度よりも大きいと、漏洩冷媒ガスの自然拡散が追い付かずに、漏洩冷媒ガスが室内機100の周辺で滞留し可燃濃度の気相が形成される恐れが生じる。
 なお、冷媒ガス濃度(対空気)の可燃範囲は、HFO1234yfで6.2~12.3vol%、R32で14.4~29.3vol%であり、ここでは、これらの混合冷媒を使用しているので、混合比に応じて可燃濃度の範囲は、下限が6.2vol%より大きく上限が29.3vol%よりも小さくなる。
 フレア接続が外れて急速な冷媒の漏洩が生じる可能性がある接続部Gは、上述のとおり配管室2内に位置している。そこで、この室内機100では、この配管室2の温度Tを測定する温度検出手段として温度センサ24を設置している。ここでは、温度センサ24としてサーミスタを使用している。
 図5は、この室内機100の前側ケーシング7とエアフィルタ21および正面意匠パネル8、Uベンドカバー33を取り外した状態を正面から見た模式図である。ここでは、温度センサ24は配管室2の内部空間の気相の温度を測定するように設置されていて、この気相の温度を配管室2の温度Tとして取り扱っているが、温度センサ24を筺体5の配管室2に面する内壁面に接するように固定、もしくは熱交換器3よりも下側に位置している仕切板23の配管室2に面する壁面に接するように固定し、接触する壁面の表面温度を検出して、その検出値を配管室2の温度Tとして取り扱うようにしてもよい。
 温度センサ24は検出信号(ここでは電流)を伝える信号線24aを備えている。そして、その信号線24aが電気品ユニット9に収納されている電装基板に接続されているので、信号線24aを介して、制御装置10が温度センサ24の検出値(測定値)を把握することとなる。すなわち、温度センサ24の検出値は制御装置10に入力される。
 このように実施の形態1の室内機100は、配管室2の温度Tを測定する温度センサ24を設置している点を特徴としているが、さらに、この温度センサ24の測定値(配管室2の温度T)に基づいて制御装置10が冷媒漏洩を検知する、すなわち冷媒の漏洩が生じているか否かを判断することを特徴としている。以下に詳細に説明する。
 配管室2内に位置する接続部Gでフレア接続外れが生じて外部接続配管20が接続部Gから抜けると、抜けた外部接続配管20からも、連絡配管11の方からも、冷媒回路内の大気圧よりも高い圧力の冷媒が、大気圧下の配管室2に勢いよく放出される。配管室2に放出された漏洩冷媒は圧力が一気に低下するため、漏洩後直ちに気化する。そうなると、配管室2内の空間はすぐに冷媒ガスがリッチな(冷媒ガスの割合が高い)状態となる。配管室2の圧力は漏洩冷媒の気化に伴って大気圧より高い圧力に上昇する。
 配管室2内で気化した直後の漏洩冷媒ガスの温度は、その冷媒の大気圧下における沸点に近しい値となるため、かなりの低温となる。例えば、冷媒が重量比でHFO1234yf:R32=4:6の混合冷媒であれば、大気圧下での沸点は約-50℃であるので、配管室2内で気化した漏洩冷媒ガスの温度は、気化直後は-50℃に近しい温度を呈することになる。
 接続部Gのフレア接続外れが発生し配管室2内に冷媒が放出されると、配管室2内の空間は一気に低温な漏洩冷媒ガスがリッチな空間へと変化することとなるため、配管室2内部の気相の温度は、漏洩前の室温に近しい温度から急激に低下することになる。また仕切板23や筺体5は、漏洩冷媒の気化に蒸発熱を奪われたり、気化した漏洩冷媒ガスに直接冷やされたりすることで、それらの配管室2に面する壁面の表面温度も、配管室2の気相と同様に、漏洩前と比べて急激に低下することになる。
 このように接続部Gのフレア接続外れによる冷媒漏洩が発生すると、配管室2の温度Tは急激に低下することになる。そのため、この室内機100では、配管室2内に配管室2の温度Tを測定する温度センサ24を設置しており、この温度センサ24の検出値を用いることで、制御装置10が急速な冷媒漏洩の発生を検知するようにしている。
 ここで、この制御装置10が温度センサ24の検出値に基づき、配管室2で冷媒漏洩が生じていると判断する方法について説明する。上述のとおり漏洩後直ちに気化した低温な漏洩冷媒ガスにより、配管室2の温度Tがこの室内機100が設置されている部屋の室温と比べて非常に低くなるので、制御装置10が、温度センサ24の検出値そのもの、すなわち配管室2の温度Tに基づき、冷媒漏洩の発生有無を判断するようになっている。
 図6は、制御装置10が温度センサ24の検出値である配管室2の温度Tに基づいて、冷媒漏洩の発生有無を判断する制御フローチャートである。この判断制御フローは、室内機100が運転中であっても停止中であっても同じである。室内機100が停止中であっても、制御装置10は配管室2の温度Tを把握してこの制御フローを行うようになっている。
 図6に示すように、ステップS1にて、制御装置10は温度センサ24の検出値である配管室2の温度Tが予め定められた判定基準温度Tj以下であるか否かを判定する。ここでTj<0である。そして、T>Tj(ステップS1の判定がNO)であればこのステップS1を繰り返し、T≦Tj(ステップS1の判定がYES)となれば、続いてステップS2にて、そのT≦Tjの状態である時間Hが予め定められた判定基準時間Hj以上かどうかを判定する。Hjに満たない時間でT>Tjとなるよう(ステップS2の判定がNO)であれば、ステップS1の判定へ戻る。なお、Tj<0であるので、T<TjのときにT<0であり、Tの絶対値はTjの絶対値よりも大きいことになる。
 このステップS2で、T≦Tjの状態が少なくともHj時間は継続されたと判定した場合、すなわちH≧Hj(ステップS2の判定がYES)であれば、制御装置10は配管室2に冷媒の漏洩が生じていると判断する。 配管室2に急速な冷媒の漏洩が生じると、急激に気化した冷媒ガスにより配管室2内の圧力は大気圧よりも高めとなる。そして、上述したようにドレンパン19が仕切板23を通過して熱交換器室1と配管室2とに跨がっており、このドレンパン19の上面の開口を介して熱交換器室1と配管室2とは通じているので、配管室2の漏洩冷媒ガスの一部は配管室2から押し出されるようにドレンパン19の上面開口を伝って熱交換器室1へと流出する。
 制御装置10は、ステップS2の判定結果から冷媒の漏洩が生じていると判断する(すなわち、ステップS2にてYESと判定する)と、続いてステップS3にて、室内機100が運転中か否かを判定する。ここで停止中(ステップS3の判定がNO)であれば、続くステップS4として、直ちに吹出ユニット15の上下風向板16を例えば図3に示すような向きに回動させて吹出口13を開口させるとともに、ステップS5として送風ファン4を回転させる。このとき送風ファン4の回転数は、設定されている最大の回転数とする。
 一方、室内機100が運転中(ステップS3の判定がYES)であれば、すでに吹出口13は開口状態で、送風ファン4は回転しているが、制御装置10は、ステップS6として直ちに冷凍回路の圧縮機を停めて冷凍サイクルの動作を停止させるとともに、ステップS7として送風ファン4の回転数を設定されている最大の回転数に変化(増加)させる。送風ファン4が最大回転数で回転していた場合には、その回転数を継続させる。
 運転中であっても停止中であっても、同時に制御装置10はステップS8として直ちに警報を発して、ユーザに室内で可燃性冷媒が急速に漏洩していることを知らせ、部屋の換気を促す。ユーザは、警報によって冷媒の漏洩が生じていることを知ることとなって、窓やドアを開けたり、換気扇を回したりするなど、室内機100の設置されている部屋の換気を行う。また、サービス業者に連絡をする。警報は、ブザーを鳴らす、もしくは人工的な音声で警告するなどユーザの聴覚に働きかけるものと、筺体5の正面でLEDライトを点滅させるなどユーザの視覚に働きかけるものとの両方を行う。
 ステップS5もしくはステップS7で送風ファン4を最大回転数で回転させるので、配管室2内の漏洩冷媒ガスは、送風ファン4の吸引作用により、右側端部が配管室2に突き出ているドレンパン19の上面開口を通って熱交換器室1へと導かれ、送風ファン4が生成する吸込口12から吹出口13へ至る空気流に合流して、吹出口13から室内へと吹き出され、強制的に室内に広く拡散されることになる。よって、室内機100の周辺に漏洩冷媒の可燃濃度の気相が形成されることを防止でき、安全が維持される。
 室内機100が停止中のときでは、接続部Gの接続外れによる急速な冷媒漏洩の発生からステップS5による送風ファン4の回転開始までの間に、漏洩冷媒ガスが筺体5下部の吸込口12から流出することもあるが、制御装置10が、冷媒の漏洩を検知してすぐに送風ファン4を最大回転数で回転させるので、室内空気ともども送風ファン4の回転開始前までに流出した漏洩冷媒ガスも吸込口12から吸い込み吹出口13から吹き出して、室内へ強制的に拡散させることができる。
 なお、一時的に筺体5の内部(例えば配管室2内)では、漏洩冷媒の可燃濃度となる気相が形成される可能性はあるが、筺体5の内部には着火源となるものが存在しないので、漏洩冷媒に引火する恐れはない。配管室2には電気品ユニット9が配置されているが、電気品ユニット9は金属製の密閉容器内に電装基板を収納しているので、例えば電装基板の短絡による火花が着火源となるようなこともない。
 ここで、ステップS1およびS2について具体的に説明すれば、例えば冷媒として重量比でHFO1234yf:R32=4:6の混合冷媒を用いていれば、大気圧下での冷媒の沸点が-50℃であるので、ここでは判定基準温度Tj=-30℃としている。また、ノイズ等による温度センサ24の偶発的、突発的な検出信号エラーによる誤検知を防ぐために、ステップS1でT≦Tjとなったら直ちに冷媒の漏洩が生じていると判断しないで、続くステップS2にてT≦Tjの状態が判定基準時間Hj継続されるか否かを判定し、この判定がYESであることを冷媒の漏洩が生じていると判断する条件としている。ここでは判定基準時間Hj=3秒としている。
 すなわち、室内機100が冷房運転や暖房運転を運転中であっても、停止中であっても、制御装置10は、温度センサ24の検出値である配管室2の温度T(配管室2内の気相の温度、または筺体5もしくは仕切板23等の配管室2に面する壁面の表面温度)を入力し、この温度Tが-30℃以下である状態が3秒間続いていれば、配管室2に急速な冷媒の漏洩が発生していると判断するのである。
 配管室2に位置する接続部Gのフレア接続外れで発生するような急速な冷媒漏洩では、すぐに配管室2内の空間は漏洩冷媒ガスがリッチな状態となるので、20秒もかからないような短時間で配管室2の温度Tが判定基準温度Tj以下となる。そして、誤検知防止のための判定基準時間Hjも数秒レベルの短さであるので、制御装置10は、冷媒漏洩の発生から1分もかからない数十秒レベルの短時間で冷媒漏洩の発生を検知することが可能となる。このためこの室内機100は安全性の高いものとなる。
 またステップS1では、配管室の温度Tが判定基準温度Tj(Tj<0)以下であるか否かという単純な判定を行うだけであるとともに、T≦Tjの状態が判定基準時間Hj継続した場合に冷媒の漏洩が発生していると判断するようにして、ノイズ等による温度センサ24の偶発的、突発的な検出信号エラーによる誤判定を防止している。さらに、判定基準温度Tjは、冷媒漏洩が生じていなければ示すことがないような低い温度としているので、冷媒が漏洩していないのに冷媒漏洩が生じていると判断してしまう誤検知が防止される。このため、冷媒漏洩の発生に関して信頼度の高い検知ができ、この室内機100は信頼性の高いものとなる。
 なお、温度センサ24の偶発的、突発的な検出信号エラーによる誤判定を防止のために、上記とは異なる制御フローも考えられる。ここで、判断制御フローの変形例を紹介する。図7は図6の制御フローチャートとは異なる変形例1の制御フローチャートである。ここでは、図6のステップS1およびステップS2に変えて、制御装置10が、まずステップS11として、温度センサ24の検出値を用いて、現在もしくは現在より少し前の時間(例えば0.1秒前)から予め定められた判定基準時間Hm(例えばHm=2秒)前までの配管室2の温度Tの平均値Taを算出する。なお、この温度平均値Taについて、制御装置10は最新のHm間の平均値Taに常時更新していくものとする。
 そして、制御装置10は続くステップS12にて、この判定基準時間Hm間における配管室2の温度Tの平均値Taが判定基準温度Tj(ただしTj<0)以下か否かを判定し、Ta>Tj(S12の判定がNO)であればステップS11から繰り返し、Ta≦Tj(S12の判定がYES)であれば、冷媒漏洩が発生していると判断する。以降のフローは、図6と同じである。この場合でも温度センサ24の偶発的、突発的な検出信号エラーによる誤判定を防止でき、信頼度の高い判断となる。なお、Tj<0であるので、Ta<TjのときにTa<0であり、Taの絶対値はTjの絶対値よりも大きいことになる。
 また、上記したとおり、配管室2に急速な冷媒に漏洩が生じると、急激に気化した漏洩冷媒ガスにより、配管室2の温度Tは、漏洩が生じる以前の室温に近しい温度から急激に低下することになる。そこで、これまでの判断制御フローのように配管室2の温度Tを直接判定材料として使用せずに、制御装置10が、配管室2の温度Tの低下速度を把握し、この速度を利用して冷媒漏洩の発生を判断するような制御フローを採用することも可能である。
  図8は、配管室2の温度Tの変化速度Vを利用する変形例2の制御フローチャートである。ここでは、図6のステップS1およびS2に変えて、制御装置10は、ステップS21として、温度センサ24からの配管室2の温度Tを取り込んでこれを記憶するとともに、すでに記憶されている過去の配管室2の温度Tpに対する変化量(ΔT=T-Tp)に基づき配管室2の温度Tの変化速度V(℃/秒)を算出する。
 そして、制御装置10は続くステップS22にて、ステップS21で算出した変化速度V(℃/秒)が、予め定められた判定基準速度Vj以下であるか否かを判定する。ここで、Vj<0であり、温度変化が温度低下を示すものとなっている。そして、V>Vj(S22の判定がNO)であればステップS21から繰り返し、V≦Vj(S22の判定がYES)となれば、冷媒漏洩が発生していると判断するのである。以降のフローは、図6と同じである。なお、室内機100が停止中であっても、制御装置10は配管室2の温度Tを入力し変化速度Vを把握して上記の制御フローを行うようになっている。なお、Vj<0であるので、V<VjのときにV<0であり、Vの絶対値はVjの絶対値よりも大きいことになる。
 配管室2で急速な冷媒の漏洩が発生していなければ、配管室2の温度Tの変化は、室内機100の運転中、停止中に関わらず室内機100が設置されている部屋の室温の変化に連動する。停止中であれば室温は外気温に連動して変化するので、例えば1時間で2℃低下するというような緩やかな変化となる。また運転中では、仮に急速冷房やパワフル冷房運転を開始したとしても、室温の低下はせいぜい1℃/分程度である。
 配管室2にフレア接続外れによる冷媒漏洩が発生すれば、先に述べたとおり、配管室2の温度Tは、秒レベルで室温から大気圧下の冷媒の沸点に近しい温度まで低下することになるので、その温度変化は、急速な冷媒漏洩が生じていない状態での配管室2の温度変化と比べて、けた違いの変化速度を呈することになる。そのため、判定基準速度Vjは、1℃/分程度の室温低下を冷媒漏が洩発生していると誤検知しないような値、例えばVj=-1℃/秒、に設定すればよい。このように判定基準速度Vjは、冷媒漏洩が生じていなければ呈することがないような変化速度としているので、冷媒が漏洩していないのに冷媒漏洩が生じていると判断してしまう誤検知が防止できる。
 次に、図9は同じく配管室2の温度Tの変化速度Vを利用する変形例3の制御フローチャートである。ここでは、制御装置10がまずステップS31として、ステップS21と同様に配管室2の温度Tの変化速度Vを算出し記憶する。そして、続くステップS32にて、予め定められた判定基準時間Hn(例えばHn=1秒)分の変化速度Vの平均値Vaを算出する。なお、この変化速度平均値Vaについて、制御装置10は最新のHn間の平均値Vaに常時更新していくものとする。
 そして、制御装置10は続くステップS33にて、この判定基準時間Hn間における変化速度平均値Vaが判定基準温度Vj(ただしVj<0)以下か否かを判定し、Va>Tj(S33の判定がNO)であればステップS31から繰り返し、Va≦Vj(S33の判定がYES)であれば、冷媒漏洩が発生したと判断する。以降の制御は、図6と同じである。この場合でも、温度センサ24の偶発的、突発的な検出信号エラーによる誤判定を防止でき、信頼度の高い判断となる。なお、Vj<0であるので、Va<VjのときにVa<0であり、Vaの絶対値はVjの絶対値よりも大きいことになる。
 以上のように、配管室2での接続部Gの接続外れのような、室内に漏洩冷媒ガスの可燃濃度範囲の気相が形成される恐れがある急速な冷媒漏洩に対して、この室内機100では、配管室2に放出される漏洩冷媒の急激な気化により配管室2の温度Tが一気に低下する点に着目し、これを冷媒の漏洩が生じていることの早期検知に利用することとした。そのため、配管室2の温度Tを測定する温度センサ24を配管室2に設置し、この温度センサ24の検出値である配管室2の温度Tに基づいて、制御装置10が、冷媒の漏洩が生じているか否かを判断するようにした。
 ここで、配管室2の温度Tに基づいて、とは、配管室2の温度T(定められた時間分の温度平均値Taでもよい)が判定基準温度Tj(Tj<0)以下か否かであったり、配管室2の温度Tの変化速度V(定められた時間分の変化速度平均値Vaでもよい)が判定基準速度Vj(Vj<0)以下か否かであったりと、温度センサ24が測定する配管室2の温度Tを、冷媒の漏洩が生じているか否か判定に用いることを意味している。また、温度センサ24が測定する配管室2の温度Tは、配管室2内の気相の温度であることが望ましいが、配管室2内に位置する部品や配管室2に面している部品の表面温度であってもよい。
 このように、この室内機100は、急速な冷媒の漏洩が生じている場所の温度を測定して、冷媒漏洩によって一気に変化するその温度から、冷媒の漏洩が発生していることを検知しているので、冷媒の漏洩をその発生から短時間で検知することができる。また、冷媒の漏洩が発生していると判断するまでの判定が単純であり、かつ冷媒漏洩が生じていない場合と生じている場合とでは、判定対象となる温度(配管室2の温度T)の違いが顕著であるため、室内機100が運転中であっても停止中であっても、冷媒が漏洩していないのに冷媒漏洩が生じていると誤判断してしまうことを防止できる。よって、この室内機100は、安全性および信頼性に優れる。
 なお、図3に示すようにこの室内機100では、配管室2の温度Tを測定する(ここでは、配管室2内の気相の温度を測定している)温度センサ24を、上下方向において電気品ユニット9より下で電気品ユニット9に近い位置に設置している。漏洩冷媒ガスは空気よりも重い性質があるのだから、例えば接続部Gよりも下とか、なるべく配管室2の下部に配置する方がよいという考え方もある。
 しかし、接続部Gの接続外れによる冷媒漏洩が生じれば、連絡配管11からも外部接続配管20からも勢いよく冷媒が噴出し、それらが一気に気化するわけであるから、配管室2の空間は短時間で漏洩冷媒ガスが満ちているのに近しい状態となる。そのため、配管室2内の温度センサ24の配置がどこであっても、早期の検知が可能となる。この室内機100では、信号線24aをなるべく短くその取り回しを簡素化するために、図3に示すように電気品ユニット9の近くに温度センサ24を配置している。
 これまで室内機100として、筺体5の下部に吸込口12、上部に吹出口13を配置し、送風ファン4の生成する空気流に対して上流側に熱交換器3を、下流側に送風ファン4を配置する構成で説明してきたが、この構成に限るものではなく、送風ファン4によって生成される吸込口12から吹出口13に至る空気流が流れる風路が形成される熱交換器室1と隔てて設けられ、連絡配管11と外部接続配管20との接続部Gが配置される配管室2を備える室内機であれば、本発明の適用が可能であり、同様な効果を奏することができる。
 例えば、吹出口13が吸込口12よりも下方に位置する構成でもあってもよいし、筺体5の上下方向の中央の吸込口12から室内空気を吸い込んでその吸込口12の上方と下方の両方に位置する吹出口13から同時に、もしくは冷房運転か暖房運転かに応じてどちらか一方のみから調和空気を吹き出す構成でもよい。
 また、送風ファン4の生成する空気流に対して、熱交換器3が下流側に、送風ファン4が上流側に位置する構成でもよい。熱交換器3の形態も側面視で上向きV字形状に限らず、下向きであっても、I字形状、L次形状、J字形状のいずれかであってもよい。そして、送風ファン4も、クロスフローファンに限らず、プロペラファンやターボファンを用いていてもよい。
 なお、室内機100は床置き形であったが、部屋の壁面上部に設置する壁掛け形や天井に設置する天井設置形であっても、連絡配管11と外部接続配管20との接続部Gが配置される配管室2を備える室内機であれば本発明は適用可能である。ただし、壁面上部や天井に設置される室内機では、漏洩冷媒ガスが室内機の吹出口や吸込口から流出したとしても、室内の高い位置からの流出となるので、空気より重い漏洩冷媒ガスが床面へと下降する際に拡散される。このため、漏洩冷媒ガスが室内の特定の場所で滞留し難く、床置き形に比べて冷媒の可燃濃度の気相が形成される可能性は低い。したがって、本発明は、床置き形の室内機において最も効果を発揮できるものである。
 なお室内機100の熱交換器3には、冷媒として可燃性を呈するHFO1234yfとHFC32の混合冷媒が流れるようになっているが、先に述べたとおり、本発明は、微燃レベルを含め可燃性冷媒全般に対して安全性の観点で特に有効である。しかし、不燃性の冷媒を用いる空気調和機の室内機であっても、本発明を適用することで制御装置10は、急速な冷媒漏洩が生じていることを早期に検知できるので、それによってユーザは冷媒が漏洩していることをその発生から短時間で知ることができる。そのため、冷媒不足による冷えない、暖まらないといった無駄な運転を回避でき、またすぐにサービス業者に連絡を取って、早期の修理が実現できるという効果が得られる。
実施の形態2.
 続いて、この発明の実施の形態2について図面を参照しながら説明する。実施の形態2に係る空気調和機の室内機200(以降、室内機200と称する)の基本的な構成は、実施の形態1の室内機100と同じであり、同一部品には同一符号を付して、詳細な説明は省略する。図10は室内機200の外観斜視図で、実施の形態1の図1に対応している。図10に示すように、この室内機200は、筺体5に形成され、当該室内機200が設置される部屋の室内空間と配管室2との空気の流通を可能とする通気口25を備えている点で、実施の形態1の室内機100と構成上相違している。
 図11は、実施の形態1の図5に対応するが、この実施の形態2に係る室内機200の前側ケーシング7等を取り外した状態を正面から見た模式図である。図10に示すように通気口25は前側ケーシング7の右側面に設けられているものだが、説明をわかり易くするために、図11においても便宜上、相当する位置に通気口25を図示する。
 通気口25は、筺体5(ここでは前側ケーシング7)の右側面の一部を左右方向に貫通して形成されており、前後方向を長手方向とする細長い長丸形状もしくは矩形状の穴が、上下方向に互いに近づいた状態で複数並んで形成されている。このため、この室内機200は設置された部屋の室内空間と配管室2とはこの通気口25を介して通じており、通気口25を介して両者間は空気の流通が可能である。
 そして、通気口25は、筺体5の温度センサ24を臨む位置に形成されている。言い換えれば、配管室2の温度Tを測定する温度センサ24と通気口25とは対向している。ここでは、温度センサ24と通気口25とは左右方向に対向している。また、温度センサ24は通気口25に近い位置に配置される。ここでは、互いが対向している左右方向において、通気口25の配管室2側の開口と温度センサ24間の距離は10mm程度となっている。
 このように、配管室2に通じる通気口25が筺体5に開口しているので、室内機200が冷房運転もしくは暖房運転を開始すると、回転する送風ファン4の吸引作用により、配管室2内の空気が、熱交換器室1と配管室2とを跨いでいるドレンパン19の上面開口を通って熱交換器室1に渡り、吸込口12から吹出口13へと流れるメインの空気流に合流して熱交換器3を通過する。と同時に、配管室2から熱交換器室1に引き込まれて流出した空気を補うように、筺体5の外の室内空間から室内空気が通気口25を通って配管室2に流入する。
 こうして室内機200の運転中は、送風ファン4の回転により、吸込口12から吹出口13に流れるメインの空気流とは別に、流量はそのメインの空気流に比べてかなり少量ではあるが、通気口25から流入し配管室2とドレンパン19の上面開口を通って熱交換器室1へ流出する一連の空気流が流れる。室内機200の運転中は常に、このように新しい室内空気が配管室2へと流れ込んでいる。
 配管室2内の通気口25の近くには温度センサ24が位置しているので、温度センサ24は、通気口25から流入する新しい室内空気の温度を検出することができる。その空気温度は、基本的に吸込口12から吸い込まれる室内空気の温度と同等であり、メインの空気流の吸込空気温度とみなすことができるので、現在の室温Trを指している温度と言える。このように温度センサ24は、運転中には現在の室温Trを測定することができるのである。
 そこでこの室内機200では、温度センサ24を、実施の形態1で説明したように、配管室2に急速な冷媒の漏洩が発生していることを検知するために用いるとともに、冷房運転や暖房運転といった通常の運転中には、現在の室温Trを測定するためにも使用している。すなわち、配管室2に生じる急速な冷媒漏洩を検知するために配管室2の温度Tを測定する温度検知手段と、現在の室温Trを測定する温度検知手段とを、温度センサ24で兼用しているのである。この点が実施の形態2の特徴である。
 なお、冷媒の漏洩が発生していない状態での運転中であれば、T=Trである。制御装置10は、配管室2に設置した温度センサ24の測定値を、室内機200の運転中、停止中に関わらず、冷媒の漏洩が生じているか否かの判定に使用する配管室2の温度Tとして捉えるとともに、室内機200の運転中は、現在の室温Trとしても捉えるのである。
 このため、制御装置10は、温度センサ24からの入力を配管室2の温度Tとしてそれに基づいて、実施の形態1で説明した図6~図9のいずれかの制御フローを実施して冷媒漏洩の発生が生じているか否かを判定するとともに、運転中では、温度センサ24のからの入力を現在の室温Trとしても捉えて、それと設定温度Tsと比較して、その比較結果(例えば両者の温度差Ts-Tr)に基づいて、室外機に備わる圧縮機や室外送風ファンの回転数、室内機200の送風ファン4の回転数を制御する。そうして、冷媒回路内の冷媒循環量および熱交換器3における熱交換量を調整して、きめ細やかで省エネルギーな運転を行い、ユーザに快適空間を提供できるようになる。
 温度センサ24の設置位置は、実施の形態1で述べたとおり、冷媒漏洩発生の判定のためであれば配管室2の内部のどこであってもよいが、この実施の形態2では、温度センサ24を室内機200の運転中には現在の室温Trの検出手段としても利用しているので、通気口25から熱交換器室1に至る空気流の流路の途中に配置する必要がある。
 しかし、熱交換器室1近い側、すなわち左右方向に仕切板23に近い位置に温度センサを設置すると、運転中は熱交換器3で冷やされた、もしくは暖められた調和空気によって、仕切板23が冷やされたり暖められたりしており、その仕切板23の冷熱の影響を受けて、正確な現在の室温が測定されない恐れがある。そのため、この室内機200のように、通気口25に近い位置に、望ましくは通気口25と対向させて温度センサ24を配置するのがよい。
 また、図11に示すようにこの室内機200では通気口25を、上下方向において電気品ユニット9より下で電気品ユニット9に近い位置に形成しているが、通気口25からドレンパン19の右側端部に至る空気流路が確保できる高さ位置であれば、他の位置であってもよい。この室内機200では、温度センサ24の信号線24aをなるべく短くして信号線24aの取り回しを簡素化するために、温度センサ24を上下方向において電気品ユニット9より下で電気品ユニット9に近い位置に設置している。通気口25は、温度センサ24と左右方向に対向する位置としているので、上記のような位置に形成されている。
 なお、室内機200では、通気口25を筺体5の側面に形成しているが、配管室2に入り込んでいるドレンパン19の右側端部までの空気流路が形成できる位置であれば、筺体5の背面や正面、上面に形成するようにしてもよい。
 この室内機200では、配管室2で急速な冷媒の漏洩が発生すると、通気口25から漏洩冷媒ガスが放出されることになる。しかし、制御装置10が冷媒の漏洩を検知すると直ちに送風ファン4を最大回転数で回転させるので、通気口25から室内に流出した漏洩冷媒ガスも、室内空気といっしょ吸込口12から吸い込まれて吹出口13から吹き出され、室内へと広く拡散される。
 実施の形態2では、制御装置10が冷媒漏洩の発生有無の判断制御フローに用いる配管室2の温度Tを測定するための温度検出手段と、制御装置10が室内機200の通常運転中に当該空気調和機の運転制御に用いる現在の室温Trを測定するための温度検出手段とを、温度センサ24で兼用しているので、温度検出手段の信号線を減らして室内機200の構造を簡素化でき、省資源化や外部接続配管20の接続作業の作業性向上に貢献できる。
 この室内機200では、仕切板23を切り欠いてドレンパン19の右側端部が熱交換器室1から配管室2へと入り込んでいるため、仕切板23を跨いでいるドレンパン19の上面開口を通って、配管室2と熱交換器室1とが部分的に空気の流通ができるようになっている。しかし、ドレンパン19が配管室2に進入しておらず熱交換器室1内だけに収まっているような構成であれば、配管室2と熱交換器室1とを部分的に通ずる流通孔を仕切板23に形成して両者間で空気の流通ができるようにすればよい。このときその流通孔は、配管室2からの空気流が、熱交換器3の上流側で吸込口12から吹出口13へと流れるメインの空気流と合流できるような位置に形成する必要がある。
実施の形態3.
 次に、この発明の実施の形態3について図面を参照しながら説明する。実施の形態3に係る空気調和機の室内機300(以降、室内機300と称する)の基本的な構成は、実施の形態1の室内機100、実施の形態2の室内機200と同じであり、同一部品には同一符号を付して、詳細な説明は省略する。室内機300の外観斜視図は室内機200と同じであり、図6を参照するものとする。 図12は、実施の形態2の図11に対応して、この実施の形態3に係る室内機300の前側ケーシング7等を取り外した状態を正面から見た模式図である。通気口25は実施の形態2同様に前側ケーシング7の右側面に設けられているが、説明をわかり易くするために、図12においても便宜上、相当する位置に通気口25を図示する。
 この室内機300は、制御装置10が配管室2で急速な冷媒の漏洩が発生していることを検知するために使用する配管室2の温度Tを検出する温度センサ24と、制御装置10が運転中に運転制御のために設定温度Tsと比較する現在の室温Trを検出する室温センサ26とを、別個に備えている点で、実施の形態2の室内機200と構成上相違している。ここで、室温センサ26は温度センサ24と同様に、サーミスタが使用されており、信号線26aを介して電気品ユニット9内の電装基板に接続されている。
 室内機300では、室温センサ26は左右方向に筺体5の通気口25と対向するように配管室2内に配置されている。温度センサ24も配管室2内に設置されている。なお、室温センサ26は、配管室2内ではなく配管室2とは隔離した場所に配置して現在の室温Trを検出するようにしてもよい。いずれの場合でも、制御装置10は、室温センサ26の検出値に基づいて通常運転中の運転制御を行い、温度センサ24の検出値に基づいて実施の形態1の図6~図9に示すいずれかの制御フローを実施する。
 実施の形態3は、温度センサ24と室温センサ26とを別々に設置するので、それぞれの使用目的に適した特性を有するサーミスタを選択して用いることができるという利点がある。温度センサ24は、配管室2に急速な冷媒の漏洩が生じる場合には、実施の形態1で説明したように、-50℃に近いような低温を検出する必要がある。そのため、例えば、室温センサ26には一般的な動作温度範囲を有する標準サーミスタを用い、温度センサ24には低温環境下での測定に優れたサーミスタを用いるというようなことができる。
実施の形態4.
 次に、この発明の実施の形態4について図面を参照しながら説明する。実施の形態4に係る空気調和機の室内機400(以降、室内機400と称する)の基本的な構成は、実施の形態1の室内機100と同じであり、同一部品には同一符号を付して、詳細な説明は省略する。室内機400の外観斜視図は室内機100と同じであり、図1を参照するものとする。図13は、実施の形態1の図5に対応して、この実施の形態4に係る室内機400の前側ケーシング7等を取り外した状態を正面から見た模式図である。
 この室内機400は、図13に示すように、配管室2内に、制御装置10が配管室2に生じる急速な冷媒漏洩を検知するために使用する配管室2の温度Tを検出する温度センサ24に加えて、冷媒を検知する冷媒センサ27が設置されている点が特徴である。ここでは、冷媒センサ27は、金属酸化物半導体が冷媒ガスと接触したときに発生する抵抗値の変化を空気中の冷媒ガス濃度として検出する半導体式ガスセンサが使用されており、図示しない信号線で電気品ユニット9内の電装基板に接続されている。
 温度センサ24は、実施の形態1と同様に、例えば接続部Gのフレア接続外れにより、配管室2に急速な冷媒の漏洩が生じるときに、漏洩した冷媒が気化することにより急激に変化する配管室2の温度Tを捉える。そしてその配管室2の温度Tに基づいて、制御装置10が、図6~図9のいずれかの制御フローを実施して急速な冷媒の漏洩が生じていることを検知する。ところで、空気調和機の室内機においては、接続部Gの接続外れのような急速な冷媒漏洩とは異なり、熱交換器3の伝熱管32や連絡配管11に生じたピンホールからのような漏洩速度の小さい緩慢な漏洩、いわゆるスローリークの発生も起こり得る。
 このような冷媒のスローリークは前述のとおり、漏洩冷媒ガスの一部がドレンパン19等で滞留せずに筺体5下部の吸込口12を通って室内へ流出したとしても、その室内流出速度が室内での自然拡散速度よりも小さいので、流出した冷媒が滞留することなく、冷媒ガス濃度が可燃範囲まで上昇する可能性は低い。すなわち、室内に漏洩冷媒の可燃濃度の気相が形成される可能性が低いのである。
 また、配管室2で、例えばUベンド32bにピンホールができて冷媒のスローリークが発生し、一部の漏洩冷媒ガスがドレンパン19を伝って熱交換器室1に渡り筺体5下部の吸込口12から室内へ流出したとしても、同様に、冷媒の室内流出速度が室内での自然拡散速度よりも小さいため、室内に漏洩冷媒の可燃濃度の気相が形成される可能性は低い。
 しかし、スローリークであるとしても冷媒漏洩が生じていれば、いずれは冷媒回路内の冷媒が不足する状況となって、運転時に冷えないもしくは暖まらないという能力低下が顕在化する。そうなれば合わせて運転効率も悪化し、消費電力が増加する。このため、ユーザはスローリークであっても、その冷媒の漏洩を早期に認識し、しかるべき対策を講じたい。ここでしかるべき対策とは、サービス業者に連絡して、漏洩箇所を補修し冷媒回路の冷媒充填量を適量にしてもらうことである。
 そのため、ユーザが冷房や暖房の効きが悪いと感じる以前に、制御装置10が冷媒のスローリークを検知し、ユーザに報知できることが望ましい。しかし、冷媒の漏洩が伝熱管32のピンホールのような漏洩速度の小さいスローリークであると、フレア接続外れによる急速な冷媒の漏洩の場合のように、配管室2の温度Tの急激な低下現象は現れない。そのため、温度センサ24が測定する配管室2の温度Tに基づいて冷媒のスローリークを検知することは難しい。そこで、冷媒のスローリークも検知できるように、この室内機400では、配管室2に冷媒センサ27も設置しているのである。
 制御装置10は、室内機400が運転中でも停止中であっても、冷媒センサ27が測定する冷媒ガス濃度Cを取り込み、取り込んだ最新の冷媒ガス濃度Cが予め定めた判定基準濃度Cj以上か否かの判定を繰り返し、C≧Cjとなれば、冷媒の漏洩が発生していると判断し、警報により、ユーザに報知するものである。警報は実施の形態1と同様である。C≧Cjの状態が予め定められた時間(例えば3秒)継続したら、冷媒の漏洩が発生していると判断するようにしてもよい。
 冷媒センサ27は、ここでは半導体式ガスセンサを使用しているが、赤外線式など他の検知方式のものであってもよい。また、冷媒ガス濃度Cの測定はできないが、冷媒ガスの有無は検知できる方式のものであってもよく、この方式の場合では、冷媒センサ27から冷媒ガスの存在を検知しているとの信号を制御装置10が受信したならば、冷媒漏洩が発生していると判断し、警報を発する。
 また、冷媒センサ27として酸素濃度計を用いることもできる。漏洩冷媒ガスの存在により配管室2の酸素濃度が低下することを利用して、制御装置10が、酸素濃度計が測定する酸素濃度が予め定められたた判定基準酸素濃度以下であると判定すれば、冷媒漏洩が発生していると判断し警報を発するようにしてもよい。どちらの場合でも、予め定められた時間(例えば3秒)そのような状況が継続したら、冷媒漏洩が発生していると判断するようにしてもよい。
 冷媒センサ27は配管室2に配置しているが、冷媒のスローリークが熱交換器室1で生じたとしても、漏洩冷媒ガスはドレンパン19を伝って配管室2に導かれるので、配管室2に設置した冷媒センサ27によって検知できる。冷媒のスローリークは上述のとおり、室内の室内機400周辺に冷媒の可燃濃度の気相が形成される可能性は低いので、接続部Gのフレア接続外れのような急速な冷媒漏洩のときのように、秒レベルの早さで漏洩を検知する必要はないと言える。
 冷媒ガスは空気よりも重いので、冷媒センサ27は配管室2の下部に配置するのがよい。また、熱交換器室1で生じた冷媒のスローリークを早く検知するためには、冷媒センサ27は、ドレンパン19の近くに配置するのがよい。そのため、ここでいう配管室2の下部とは、ドレンパン19の上面高さよりも下側ということになる。この室内機400では、左右方向にはドレンパン19の右端と冷媒センサ27の左端が鉛直線上にほぼ一致するような位置で、配管室2の底面上に冷媒センサ27を固定している。
 この実施の形態4では、実施の形態1で示したように、配管室2に配置された温度センサ24の測定する配管室2の温度Tに基づいて接続部Gの接続外れのような配管室2に生じる急速な冷媒の漏洩を素早く検知できるとともに、伝熱管32や連絡配管11にできたピンホールからの漏洩のような冷媒のスローリークに対しても、配管室2に配置された冷媒センサ27によって早期に検知することができる。このため、実施の形態4の室内機400は、安全性に優れるとともに、冷媒回路内の冷媒が不足した状態で運転されることを防止でき、電力消費の増加を抑えることができる。
 なお、実施の形態2と同様に、筺体5の温度センサ24近傍に通気口25(図10参照)を形成して、温度センサ24を配管室2に生じる急速な冷媒漏洩の検知のために用いるとともに、室内機400の通常の運転時には、温度センサ24を現在の室温Trの測定に使用するようにしてもよい。
 また、配管室2に生じる急速な冷媒漏洩の検知にあたって、温度センサ24の測定する配管室2の温度Tに基づく判定(図6~図9のいずれか)と、配管室2の冷媒センサ27の測定結果に基づく判定との両方が満たされたときに、制御装置10が急速な冷媒の漏洩が発生していると判断するようにしてもよい。
 なお、熱交換器3の伝熱管32の素材として、耐腐食性の高い無酸素銅管を使用して、伝熱管32にピンホールができにくいようにしている。特に冷媒回路内に可燃性冷媒を充填する空気調和機では、冷媒のスローリークの発生も極力回避し安全性を高めることができるように、熱交換器3の伝熱管32に無酸素銅管を用いることが望ましい。
実施の形態5.
 次に、この発明の実施の形態5について図面を参照しながら説明する。実施の形態5に係る空気調和機の室内機500(以降、室内機500と称する)の基本的な構成は、実施の形態1の室内機100と同じであり、同一部品には同一符号を付して、詳細な説明は省略する。室内機500の外観斜視図は室内機100と同じであり、図1を参照するものとする。図14は、実施の形態1の図5に対応して、この実施の形態5に係る室内機500前側ケーシング7等を取り外した状態を正面から見た模式図である。
 この室内機500は、図14に示すように、配管室2の温度Tを測定する温度センサ24が配管室2に配置されることに加えて、冷媒を検知する冷媒センサ27が熱交換器室1に設置されている点が特徴である。冷媒センサ27が配管室2に設置されていた実施の形態4とは、冷媒センサ27の設置箇所が異なっている。
 室内機500では、冷媒センサ27が、送風ファン4によって生成される吸込口12から吹出口13に至るメインの空気流が流れる風路内に位置している。筺体5の下部に吸込口12が形成されているが、具体的には、この冷媒センサ27は、熱交換器室1の吸込口12の背面側で熱交換器室1の底面上に固定されている。冷媒センサ27は前後方向に吸込口12に面している。冷媒センサ27は、吸込口12から吹出口13に至るメインの空気流が流れる風路内で熱交換器室1の下部ということになる。
 冷媒センサ27の設置位置は、エアフィルタ21の上流側でも下流側でもどちらでもよいが、ユーザが清掃のためにエアフィルタ21を着脱する際に、着脱作業の障害とならないように、エアフィルタ21の下流側とするのが望ましい。図示しない冷媒センサ27の信号線は、ドレンパン19を通過させるために仕切板23に形成されている切り欠きから配管室2に入って、電気品ユニット9まで取り回されている。
 この室内機500は、実施の形態1で示したように、配管室2に配置された温度センサ24が測定する配管室2の温度Tに基づいて接続部Gの接続外れのような配管室2に生じる急速な冷媒漏洩を素早く検知するとともに、伝熱管32や連絡配管11のピンホールからの漏洩のような冷媒のスローリークに対しては、冷媒センサ27によって検知する点で実施の形態4の室内機400と同様である。
 しかし、室内機500は、送風ファン4の回転中は、吸込口12から吸い込まれた室内空気が冷媒センサ27を通過することになる。制御装置10が、実施の形態1に示すように配管室2に生じる急速な冷媒漏洩を検知すると、図6~図9の制御フローチャートにおけるステップS5もしくはステップS7が示すとおり、漏洩冷媒ガスを強制的に室内に広く拡散させるために送風ファン4を最大回転数で回転させる。この回転中に生成される空気流もやはり風路中に設置される冷媒センサ27を通過することになる。
 そこで、この室内機500では、ステップS5もしくはステップS7に基づいて最大回転数で送風ファン4が回転しているときに、冷媒センサ27の検出値を利用するものとする。図15は、この室内機500のステップS8より後の制御フローチャートである。ステップS8以前のフローは図6~図9のいずれかと同様であり、ステップS3~S8はいずれも共通である。
 ステップS5もしくはステップS7に基づいて送風ファン4が漏洩冷媒ガスを強制的に拡散させるべく最大回転数で回転している状態で、制御装置10は、ステップS51として、風路内で熱交換器室1の下部に設置されている冷媒センサ27が測定する冷媒ガス濃度Cが予め定められた判定基準濃度Ck以下であるか否かを判定する。なお、この判定基準濃度Ckは、冷媒のスローリークを検知するときに用いる判定基準濃度Cj(実施の形態4にて説明)と等しいか小さい値とする。すなわちCk≦Cjである。
 そして、C>Ck(ステップS51の判定がNO)であればこのステップS51を繰り返し、C≦Ck(ステップS51の判定がYES)となれば、続いてステップS52にて、そのC≦Ckの状態である時間Hhが予め定められた判定基準時間Hk以上かどうかを判定する。Hjに満たない時間でC>Ckとなるよう(ステップS52の判定がNO)であれば、ステップS51の判定へ戻る。
 このステップS52で、C≦Ckの状態が少なくともHk時間は継続されたと判定した場合、すなわちH≧Hj(ステップS2の判定がYES)であれば、制御装置10は漏洩冷媒ガスが十分に拡散し、室内に冷媒の可燃濃度の気相が形成される恐れはないとして、ステップS53にて送風ファン4の回転を停止、もしくは回転数を減少させる。回転数を減少させるとは、例えば最大回転数を最小回転数に変更するというようなことである。
 ここで冷媒センサ27が検出する冷媒ガス濃度Cを、上記のステップS51およびS52の判定に使用するだけであれば、冷媒センサ27を、吸込口12から吹出口13に至る空気流が流れる風路内のどこに設置してもよい。冷凍サイクルは動作を停止しており、吸込口12から吸い込まれた漏洩冷媒ガスを含む室内空気が熱交換器3で熱交換されることもない。
 しかし、この冷媒センサ27は、実施の形態4と同様に、運転中、停止中に関わらず、伝熱管32のピンホールからの漏洩のような冷媒のスローリークの検知にも使用されるものである。スローリークした冷媒を少しでも早く、また精度良く検知するためには、冷媒ガスが空気よりも重い性質を利用して、風路内の上下方向になるべく下側に位置させるのがよい。
 この室内機500における冷媒センサ27の設置位置は、吸込口12から吹出口13に至る空気流が流れる風路内で熱交換器室1の下部であるが、ピンホールからの冷媒スローリークは、熱交換器3の伝熱管32で生じる頻度が高いことから、その下部とは、少なくとも上下方向に熱交換器3よりも下側である必要がある。
 ただし、ドレンパン19の上面開口上に位置させると、送風ファン4が生成する空気流が冷媒センサ27を通過しないので、上記のS51の判定が困難となる。また、ドレンパン19の下面に固定させると、停止中にスローリークしている冷媒ガスがドレンパン19の下面側に回り込んでこないため、冷媒スローリークの検知が困難となる。そのため、冷媒センサ27は上下方向にドレンパン19に近接させて設置しない方がよい。上下方向にドレンパン19と冷媒センサ27が重なる場合には、両者間に30mm以上の間隙を設けるのが良い。
 実施の形態4と同様に、冷媒センサ27は、冷媒ガス濃度が測定できないが冷媒ガスの有無は検知できる方式のものであってもよく、この場合には、ステップS51で冷媒センサ27が冷媒の存在を検知しているか否かを判定すればよい。また、冷媒センサ27として酸素濃度計を用いる場合では、ステップS51にて、酸素濃度計が測定する酸素濃度が予め定めた判定基準濃度以下であるか否かを判定すればよい。
 この実施の形態5では、配管室2に配管室2の温度Tを測定する温度センサ24を設置するとともに、送風ファン4が生成する空気流が流れる風路内で熱交換器室1の下部に冷媒センサ27を配置したので、実施の形態4の作用効果に加えて、急速な冷媒漏洩を検知した後で漏洩冷媒ガスを強制的に拡散させるために最大回転数で回転している送風ファン4の回転を停止、もしくは回転数を減少させてもよいかどうかを、吸込口12から吸い込まれる室内空気に対する冷媒センサ27の検知結果に基づいて判定を行うことできる。
 この判定結果により送風ファン4の回転を停止もしくは回転数を減少させることになれば、安全を確保しつつ、必要のない送風ファン4の回転を回避させることができ、無駄な電力消費を防ぐことができる。これは実施の形態5の特有の効果である。
 なお、ステップS5もしくはステップS7によって、最大回転数での送風ファン4の回転を始めたら、予め定められた時間(例えば5分)は、冷媒センサ27の検知結果に関係なく、送風ファン4の最大回転数での回転を継続させ、その時間の経過後から、ステップS51からの制御フローを実施するようにして、より安全性を高めるようにしてもよい。 
 この実施の形態5においても、実施の形態2と同様に、筺体5の温度センサ24近傍に通気口25(図10参照)を形成して、温度センサ24を配管室2に生じる急速な冷媒漏洩の検知のために用いるとともに、室内機500の通常の運転時には、温度センサ24を現在の室温Trの測定に使用するようにしてもよい。
 また、配管室2に生じる急速な冷媒漏洩の検知にあたって、温度センサ24の測定する配管室2の温度Tに基づく判定(図6~図9のいずれか)と、熱交換器室1の冷媒センサ27の測定結果に基づく判定との両方が満たされたときに、制御装置10が急速な冷媒漏洩が発生していると判断するようにしてもよい。
 この室内機500は、筺体5の下部に吸込口12を、吸込口12よりも上方に吹出口13を備える構成であるが、吸込口12よりも吹出口13が下方に位置するような構成であれば、その吹出口13に面するような位置に冷媒センサ27を設置すればよい。あくまで、吸込口12から吹出口13に至る風路内で、熱交換器室1の熱交換器3よりも下側となる位置であればよい。
 なお、実施の形態1~5のいずれにおいても、配管室2と熱交換器室1とは仕切板23で明確に隔てる必要はない。熱交換器3や送風ファン4が配置され、送風ファン4の回転により生成される吸込口12から吹出口13に至る空気流が流れる風路が形成されている範囲が熱交換器室1であり、その風路に隔たって連絡配管11と外部接続配管20との接続部Gが位置している範囲が配管室2である。
 ここまで実施の形態1~5により説明した本発明は、冷媒回路に充填される冷媒が、室内に流出して可燃濃度範囲の気相が形成され、そこに着火源が存在すれば引火する恐れのある微燃レベルを含む可燃性のものに対して、特に安全性の観点で優れた効果を発揮できる。しかし、冷媒回路に使用する冷媒が、室内に流出しても引火する恐れのない不燃性冷媒(例えばR410A)であっても、冷媒の漏洩が発生していることをユーザが早期に知ることは、仮に冷房運転であれば冷えない、もしくは冷えにくい、という冷媒回路内の冷媒量不足状態での運転を回避でき、またすぐにサービス業者へ連絡し、早期の修理が実現できることとなる。そうであるので、本発明は可燃性冷媒に限らず不燃性冷媒を使用する場合に適用しても有効である。
 1 熱交換器室、2 配管室、3 熱交換器、4 送風ファン、5 筺体、10 制御装置、11 連絡配管、12 吸込口、13 吹出口、19 ドレンパン、20 外部接続配管、21 エアフィルタ、23 仕切板、24 温度センサ、25 通気口、27 冷媒センサ、31 フィン、32 伝熱管、100 室内機、200 室内機、300 室内機、400 室内機、500 室内機。

Claims (9)

  1. 吸込口と吹出口が形成された筺体を有し空調対象となる部屋に設置される空気調和機の室内機であって、
    前記吸込口から前記吹出口に至る空気流を生成する送風ファンと、
    冷媒が充填された冷媒回路の一部を成し、前記送風ファンが生成する空気流が通過する熱交換器と、
    前記筺体内に設けられ、前記送風ファンと前記熱交換器とが配置される熱交換器室と、
    前記冷媒回路の一部を成し、前記熱交換器に接続される連絡配管と、
    前記冷媒回路の一部を成し、前記部屋の外から前記部屋に取り入れられる外部接続配管と、
    前記筺体内で前記熱交換器室と隔てて設けられ、前記連絡配管と前記外部接続配管との接続部が位置する配管室と、
    前記配管室に設置され、前記配管室の温度Tを測定する温度センサと、
    前記温度センサが測定する前記配管室の温度Tに基づいて前記冷媒の漏洩が生じているか否かを判断する制御装置と、
    を備えた空気調和機の室内機。
  2. 前記制御装置が、前記温度センサが測定する配管室の温度Tが予め定められた判定基準温度Tj以下となる状態が、予め定められた判定基準時間Hj継続したときに、前記冷媒の漏洩が生じていると判断する請求項1に記載の空気調和機の室内機。
  3. 前記制御装置が、前記温度センサが測定する配管室の温度Tの予め定められた判定基準時間Hm分の平均値Taが、予め定められた判定基準温度Tj以下であるときに、前記冷媒の漏洩が生じていると判断する請求項1に記載の空気調和機の室内機。
  4. 前記制御装置が、前記温度センサが測定する配管室の温度Tの変化速度V、もしくは予め定められた判定基準時間Hn分の前記変化速度Vの平均値Vaが、予め定められた判定基準速度Vj(ただしVj<0)以下であるときに、前記冷媒の漏洩が生じていると判断する請求項1に記載の空気調和機の室内機。
  5. 前記筺体の前記配管室に面する位置に前記温度センサと対向するように形成され、前記部屋の室内空間と前記配管室との空気の流通を可能とする通気口を備えた請求項1~4のいずれかに記載の空気調和機の室内機。
  6. 前記配管室の下部に設置され、前記冷媒を検知する冷媒センサを備えた請求項1~5のいずれかに記載の空気調和機の室内機。
  7. 前記熱交換器室の下部に設置され、前記冷媒を検知する冷媒センサを備えた請求項1~5のいずれかに記載の空気調和機の室内機。
  8. 前記制御装置が、前記冷媒の漏洩が生じていると判断すると前記送風ファンを回転させる制御を行い、該制御の後で、前記冷媒センサの検知結果に応じて、前記送風ファンの回転を停止させる、もしくは回転数を減少させる制御を行う請求項7に記載の空気調和機の室内機。
  9. 前記熱交換器は、当該室内機の運転中に前記冷媒が流れる伝熱管を備え、
    前記伝熱管が無酸素銅管から成る請求項1~8のいずれかに記載の空気調和機の室内機。
PCT/JP2015/001749 2015-03-26 2015-03-26 空気調和機の室内機 WO2016151641A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/001749 WO2016151641A1 (ja) 2015-03-26 2015-03-26 空気調和機の室内機
AU2016237157A AU2016237157B2 (en) 2015-03-26 2016-03-25 Indoor unit for air-conditioning apparatus
PCT/JP2016/059560 WO2016153021A1 (ja) 2015-03-26 2016-03-25 空気調和機の室内機
US15/536,207 US10274219B2 (en) 2015-03-26 2016-03-25 Indoor unit for air-conditioning apparatus
EP16768924.9A EP3276284B1 (en) 2015-03-26 2016-03-25 Indoor unit of air conditioner
JP2017508453A JP6233546B2 (ja) 2015-03-26 2016-03-25 空気調和機の室内機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001749 WO2016151641A1 (ja) 2015-03-26 2015-03-26 空気調和機の室内機

Publications (1)

Publication Number Publication Date
WO2016151641A1 true WO2016151641A1 (ja) 2016-09-29

Family

ID=56978086

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/001749 WO2016151641A1 (ja) 2015-03-26 2015-03-26 空気調和機の室内機
PCT/JP2016/059560 WO2016153021A1 (ja) 2015-03-26 2016-03-25 空気調和機の室内機

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059560 WO2016153021A1 (ja) 2015-03-26 2016-03-25 空気調和機の室内機

Country Status (5)

Country Link
US (1) US10274219B2 (ja)
EP (1) EP3276284B1 (ja)
JP (1) JP6233546B2 (ja)
AU (1) AU2016237157B2 (ja)
WO (2) WO2016151641A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132292A (ja) * 2017-02-14 2018-08-23 ダイキン工業株式会社 冷凍装置
JP2019203620A (ja) * 2018-05-22 2019-11-28 三菱電機株式会社 冷凍サイクル装置
WO2019234902A1 (ja) * 2018-06-08 2019-12-12 三菱電機株式会社 空気調和装置の室内機及び空気調和装置
US10551081B1 (en) * 2017-07-17 2020-02-04 John Miller-Russell Air conditioner with safety device
CN111801533A (zh) * 2018-02-20 2020-10-20 三菱电机株式会社 空调机的室内机以及具备该室内机的空调机
JP2021139581A (ja) * 2020-03-06 2021-09-16 ダイキン工業株式会社 床置き型空調室内機
JP2021139601A (ja) * 2020-03-09 2021-09-16 株式会社Nttファシリティーズ 空調装置
JP2022175207A (ja) * 2021-05-13 2022-11-25 日立ジョンソンコントロールズ空調株式会社 空気調和機

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
WO2017006462A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和機
WO2017175300A1 (ja) * 2016-04-05 2017-10-12 三菱電機株式会社 空気調和装置
US10816227B2 (en) * 2016-07-25 2020-10-27 Mitsubishi Electric Corporation Outdoor unit for an air-conditioning apparatus having L-shaped heat exchanger and placement plate for same
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置
US10859299B2 (en) * 2016-11-16 2020-12-08 Mitsubishi Electric Corporation Air-conditioning apparatus and refrigerant leakage detection method
JP7105538B2 (ja) * 2017-01-16 2022-07-25 ダイキン工業株式会社 空気調和装置の室内ユニット
WO2018187450A1 (en) * 2017-04-06 2018-10-11 Carrier Corporation Moderate-to-low global warming potential value refrigerant leak detection
US11573149B2 (en) * 2017-12-01 2023-02-07 Johnson Controls Tyco IP Holdings LLP Systems and methods for refrigerant leak management based on acoustic leak detection
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge
KR102517270B1 (ko) * 2018-01-02 2023-04-03 삼성전자주식회사 전자 장치 및 그의 제어방법
JP7241469B2 (ja) * 2018-05-23 2023-03-17 三菱電機株式会社 ショーケース
CN112368558A (zh) * 2018-07-06 2021-02-12 开利公司 用于易燃气体检测的方法和系统
US20210207830A1 (en) * 2018-09-10 2021-07-08 Carrier Corporation Gas monitoring apparatus and method
US11976829B2 (en) * 2019-01-09 2024-05-07 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6653455B1 (ja) * 2019-02-20 2020-02-26 パナソニックIpマネジメント株式会社 室内ユニット
KR20200107002A (ko) * 2019-03-05 2020-09-16 삼성전자주식회사 공기조화기
AU2019432579B2 (en) * 2019-03-06 2022-12-08 Mitsubishi Electric Corporation Indoor unit of air conditioning apparatus
US11662109B2 (en) 2019-06-05 2023-05-30 Carrier Corporation Enclosure for gas detector
JP6978696B2 (ja) * 2019-09-30 2021-12-08 ダイキン工業株式会社 空調換気システム
EP4023950A4 (en) * 2019-10-31 2022-11-09 GD Midea Air-Conditioning Equipment Co., Ltd. MOBILE AIR CONDITIONING
CN111076340B (zh) * 2019-12-23 2021-11-19 深圳市中长成科技有限公司 一种有限空间作业双管通风装置及其工作方法
EP3875861B1 (en) * 2020-03-06 2023-05-17 Daikin Industries, Ltd. Air-conditioner, air-conditioning system, and method for monitoring air-conditioner
CN111397086B (zh) * 2020-03-25 2021-06-04 珠海格力电器股份有限公司 空调系统的冷媒检测方法和装置、空调器、存储介质
JP7477376B2 (ja) * 2020-06-09 2024-05-01 日立建機株式会社 作業機械
CN112032935A (zh) * 2020-08-24 2020-12-04 Tcl空调器(中山)有限公司 一种空调器缺氟保护的控制方法、空调器及存储介质
JP6974779B1 (ja) * 2020-09-30 2021-12-01 ダイキン工業株式会社 空気調和装置
CN112460688A (zh) * 2020-11-30 2021-03-09 佛山市顺德区美的电子科技有限公司 制氧装置及其控制方法、空调室内机以及存储介质
CN112815478A (zh) * 2020-12-31 2021-05-18 青岛海尔空调电子有限公司 空调系统的缺氟量确定方法及空调系统
US20220397289A1 (en) * 2021-06-13 2022-12-15 Stephen G. Ehrman Cylindrical Air Conditioner and Conical Evaporator Coil
US20230020905A1 (en) * 2021-07-14 2023-01-19 Carrier Corporation Methods of reducing the occurance of false positives in gas detectors
TWI783712B (zh) * 2021-10-06 2022-11-11 緯創資通股份有限公司 空氣調節裝置及生物照護系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142004A (ja) * 1997-11-05 1999-05-28 Daikin Ind Ltd 冷凍装置
JP2002147981A (ja) * 2000-11-07 2002-05-22 Kobe Steel Ltd 伝熱管及びフィンチューブ型熱交換器
JP2003090654A (ja) * 2001-09-19 2003-03-28 Toshiba Corp 冷蔵庫
JP2010210098A (ja) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd 冷凍装置及び冷凍装置の冷媒漏洩検知方法
WO2013038599A1 (ja) * 2011-09-14 2013-03-21 パナソニック株式会社 空気調和機
JP2014224612A (ja) * 2011-09-16 2014-12-04 パナソニック株式会社 空気調和機
WO2015029678A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (ja) 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
TW299019U (en) * 1995-03-07 1997-02-21 Tokyo Shibaura Electric Co Indoor units of airconditioner
JPH08327195A (ja) 1995-05-29 1996-12-13 Sanyo Electric Co Ltd 冷凍装置
JP3610812B2 (ja) 1998-07-01 2005-01-19 ダイキン工業株式会社 冷凍装置および冷媒漏洩検出方法
JP2001289534A (ja) * 2000-04-07 2001-10-19 Toyota Autom Loom Works Ltd 空調用ユニット
EP1321723B1 (en) * 2000-09-26 2013-11-06 Daikin Industries, Ltd. Air conditioner
JP3744330B2 (ja) 2000-09-26 2006-02-08 ダイキン工業株式会社 空気調和機の室内機
JP4396286B2 (ja) * 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
EP2629026B1 (en) 2010-10-14 2020-09-23 Mitsubishi Electric Corporation Outdoor unit and air conditioning device
JP5665937B1 (ja) * 2013-09-13 2015-02-04 三菱電機株式会社 冷凍サイクル装置
JP5812081B2 (ja) * 2013-11-12 2015-11-11 ダイキン工業株式会社 室内機
JP6375639B2 (ja) * 2014-02-21 2018-08-22 ダイキン工業株式会社 空気調和装置
EP3159633B1 (en) * 2014-06-19 2019-08-28 Mitsubishi Electric Corporation Indoor unit for air-conditioning device, and air-conditioning device provided with said indoor unit
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142004A (ja) * 1997-11-05 1999-05-28 Daikin Ind Ltd 冷凍装置
JP2002147981A (ja) * 2000-11-07 2002-05-22 Kobe Steel Ltd 伝熱管及びフィンチューブ型熱交換器
JP2003090654A (ja) * 2001-09-19 2003-03-28 Toshiba Corp 冷蔵庫
JP2010210098A (ja) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd 冷凍装置及び冷凍装置の冷媒漏洩検知方法
WO2013038599A1 (ja) * 2011-09-14 2013-03-21 パナソニック株式会社 空気調和機
JP2014224612A (ja) * 2011-09-16 2014-12-04 パナソニック株式会社 空気調和機
WO2015029678A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132292A (ja) * 2017-02-14 2018-08-23 ダイキン工業株式会社 冷凍装置
WO2018151178A1 (ja) * 2017-02-14 2018-08-23 ダイキン工業株式会社 冷凍装置
CN110291349A (zh) * 2017-02-14 2019-09-27 大金工业株式会社 冷冻装置
CN110291349B (zh) * 2017-02-14 2021-05-18 大金工业株式会社 冷冻装置
US10551081B1 (en) * 2017-07-17 2020-02-04 John Miller-Russell Air conditioner with safety device
CN111801533A (zh) * 2018-02-20 2020-10-20 三菱电机株式会社 空调机的室内机以及具备该室内机的空调机
JP2019203620A (ja) * 2018-05-22 2019-11-28 三菱電機株式会社 冷凍サイクル装置
WO2019225031A1 (ja) * 2018-05-22 2019-11-28 三菱電機株式会社 冷凍サイクル装置
JPWO2019234902A1 (ja) * 2018-06-08 2021-01-14 三菱電機株式会社 空気調和装置の室内機及び空気調和装置
WO2019234902A1 (ja) * 2018-06-08 2019-12-12 三菱電機株式会社 空気調和装置の室内機及び空気調和装置
JP2021139581A (ja) * 2020-03-06 2021-09-16 ダイキン工業株式会社 床置き型空調室内機
JP7396935B2 (ja) 2020-03-06 2023-12-12 ダイキン工業株式会社 床置き型空調室内機
JP2021139601A (ja) * 2020-03-09 2021-09-16 株式会社Nttファシリティーズ 空調装置
JP7424870B2 (ja) 2020-03-09 2024-01-30 株式会社Nttファシリティーズ 空調装置
JP2022175207A (ja) * 2021-05-13 2022-11-25 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP7209040B2 (ja) 2021-05-13 2023-01-19 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
US10274219B2 (en) 2019-04-30
US20170370605A1 (en) 2017-12-28
EP3276284A4 (en) 2018-06-20
AU2016237157B2 (en) 2018-08-09
JP6233546B2 (ja) 2017-11-22
EP3276284B1 (en) 2019-08-07
WO2016153021A1 (ja) 2016-09-29
EP3276284A1 (en) 2018-01-31
AU2016237157A1 (en) 2017-07-13
JPWO2016153021A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6233546B2 (ja) 空気調和機の室内機
JP5818849B2 (ja) 空気調和装置および冷媒漏洩検知方法
EP3264000B1 (en) Indoor unit for air conditioner
JP5665937B1 (ja) 冷凍サイクル装置
US10724766B2 (en) Refrigeration cycle apparatus
JP6099608B2 (ja) ヒートポンプ装置
WO2016079801A1 (ja) 空気調和装置
US20170198936A1 (en) Indoor unit of air-conditioning apparatus and air-conditioning apparatus including the indoor unit
WO2015190144A1 (ja) ヒートポンプ装置
JP2016029322A (ja) 空気調和装置
WO2019156107A1 (ja) 冷媒検知装置、及び空気調和機
JP6584649B2 (ja) 空気調和機
JP2016027291A (ja) 空気調和装置
JP6272149B2 (ja) 空気調和装置
WO2020179007A1 (ja) 空気調和機の室内機
JPWO2017090104A1 (ja) 空気調和機の床置き型室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP