WO2020148897A1 - 空気調和機及び制御方法 - Google Patents

空気調和機及び制御方法 Download PDF

Info

Publication number
WO2020148897A1
WO2020148897A1 PCT/JP2019/001506 JP2019001506W WO2020148897A1 WO 2020148897 A1 WO2020148897 A1 WO 2020148897A1 JP 2019001506 W JP2019001506 W JP 2019001506W WO 2020148897 A1 WO2020148897 A1 WO 2020148897A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
value
control unit
wind
Prior art date
Application number
PCT/JP2019/001506
Other languages
English (en)
French (fr)
Inventor
論季 小竹
将敬 鈴木
柳澤 隆行
志賀 彰
優 酒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980087883.5A priority Critical patent/CN113272597B/zh
Priority to EP19910535.4A priority patent/EP3896356B1/en
Priority to PCT/JP2019/001506 priority patent/WO2020148897A1/ja
Priority to JP2020566078A priority patent/JP6910572B2/ja
Publication of WO2020148897A1 publication Critical patent/WO2020148897A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner and a control method.
  • Patent Document 1 discloses a technique for detecting the occurrence of refrigerant leakage in an indoor unit of an air conditioner. The technique described in Patent Document 1 uses the result of the detection for controlling the blowing direction and the blowing amount by the indoor unit.
  • a gas alarm device for example, a gas stove
  • a gas alarm device is installed in the room.
  • a gas alarm for so-called "city gas” is usually provided on the ceiling of the room. This is because the specific gravity of city gas is smaller than the specific gravity of air.
  • a so-called "propane gas” gas alarm is usually provided at a position near the floor surface of the wall surface in the room. This is because the specific gravity of propane gas is larger than the specific gravity of air.
  • the gas alarm device detects the occurrence of gas leakage. As a result, the gas alarm device outputs an alarm.
  • the timing of gas leak detection by the gas alarm device was delayed with respect to the timing of gas leak occurrence, depending on the speed and distance at which the leaked gas rises or falls.
  • the output timing of the alarm by the gas alarm device is delayed.
  • the gas alarm device merely outputs an alarm, and the user is required to perform a work (for example, a work to open a window) corresponding to the gas leak.
  • the execution timing of the work is also delayed due to the delay of the alarm output timing.
  • the present invention has been made in order to solve the above problems, it is possible to detect the occurrence of gas leakage at an early stage, and to execute the control corresponding to the detected gas leakage.
  • the object is to provide an air conditioner that can be used.
  • the air conditioner of the present invention includes a gas detection processing unit that calculates a concentration value of a detection target gas in an air conditioning target space using a rider, and a blower that controls a blowing direction to the air conditioning target space using the concentration value. And a control unit.
  • the air conditioner of the present invention can detect the occurrence of a gas leak at an early stage and can execute control corresponding to the detected gas leak.
  • 9 is a flowchart showing the operation of the control device for the indoor unit of the air-conditioning apparatus according to Embodiment 2.
  • 9 is a flowchart showing the operation of the control device for the indoor unit of the air-conditioning apparatus according to Embodiment 2.
  • It is explanatory drawing which shows the example of several wind measurement object area
  • It is a block diagram which shows the principal part of the air conditioner which concerns on Embodiment 3.
  • It is a block diagram which shows the principal part of the indoor unit of the air conditioner which concerns on Embodiment 3.
  • FIG. 9 is a flowchart showing the operation of the control device for the indoor unit of the air-conditioning apparatus according to Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3. It is a block diagram which shows the principal part of the other indoor unit of the air conditioner which concerns on Embodiment 3.
  • FIG. 1 is a block diagram showing a main part of the air conditioner according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of the indoor unit of the air-conditioning apparatus according to Embodiment 1.
  • the air conditioner 200 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the air conditioner 200 is composed of an air conditioner. That is, the air conditioner 200 has the indoor unit 1 and the outdoor unit 2.
  • the indoor unit 1 has a heat exchanger (not shown)
  • the outdoor unit 2 has another heat exchanger (not shown), and these heat exchangers have refrigerant pipes (not shown). They are thermally connected to each other by means of the drawing.
  • the outdoor unit 2 also has a compressor (not shown) for the refrigerant.
  • the structures, arrangements, operations, and the like of these members are known, and thus detailed description thereof will be omitted.
  • the air conditioner 200 is operated by a remote controller (hereinafter referred to as “remote control”) 3.
  • the left-right direction with respect to the indoor unit 1 is referred to as the "x direction”.
  • the front-back direction with respect to the indoor unit 1 is called “y direction.”
  • the vertical direction with respect to the indoor unit 1 is referred to as “z direction”.
  • the azimuth direction with respect to the front-rear direction of the indoor unit 1, that is, the azimuth direction with respect to the y direction is simply referred to as “azimuth direction”.
  • the elevation/depression angle direction with respect to the front-back direction of the indoor unit 1, that is, the elevation/depression angle direction with respect to the y direction is simply referred to as “elevation/depression angle direction”.
  • the space S1 to be air-conditioned by the air conditioner 200 is referred to as "air conditioning target space”.
  • the blowing direction [Phi B by the indoor unit 1 for air-conditioning target space S1 the air blowing direction [Phi B relative azimuthal direction of theta B is sometimes referred to as "first blowing direction”.
  • the blowing direction ⁇ B with respect to the elevation/depression angle direction may be referred to as a “second blowing direction”.
  • the indoor unit 1 includes an airflow direction plate (hereinafter, referred to as a “first airflow direction plate”) 11 having a variable mounting angle with respect to an azimuth direction, and a wind direction plate having a variable mounting angle with respect to an elevation/depression angle direction (hereinafter, referred to as “first 2), and a fan (hereinafter referred to as a “blower fan”) 13 for blowing air into the air conditioning target space S1.
  • the indoor unit 1 also includes a drive motor 14 for the first wind direction plate 11, a drive motor 15 for the second wind direction plate 12, and a drive motor 16 for the blower fan 13.
  • the blower direction control unit 21 controls the first blower direction ⁇ B by controlling the attachment angle of the first wind direction plate 11, more specifically, by controlling the rotational position of the rotor in the drive motor 14. Is. Further, the air flow direction control unit 21 controls the second air flow direction ⁇ B by controlling the mounting angle of the second air flow direction plate 12, more specifically, by controlling the rotational position of the rotor in the drive motor 15. To do.
  • the blown air volume control unit 22 controls the rotation number of the blower fan 13, and more specifically, controls the rotation number of the rotor of the drive motor 16, so that the blown air volume of the indoor unit 1 with respect to the air conditioning target space S1. It controls V B.
  • the mounting angle of the first wind direction plate 11, the mounting angle of the second wind direction plate 12, the rotation speed of the blower fan 13, the operation of the compressor, etc. are controlled according to the operation input to the remote controller 3 by the user.
  • air conditioning for example, cooling or heating
  • blowing control the control of the blowing directions ⁇ B and ⁇ B by the blowing direction control unit 21 and the control of the blowing air amount V B by the blowing air amount control unit 22 are collectively referred to as “blowing control”. Further, the air blowing control for realizing air conditioning in the air conditioning target space S1 is referred to as "air conditioning air conditioning control”.
  • air flow direction control unit 21 and the air flow rate control unit 22 constitute a main part of the air flow control unit 23.
  • the indoor unit 1 has a rider 17.
  • the lidar 17 is configured by, for example, a pulse modulation type lidar or a CW (Continuous Wave) type lidar. Since the structure and operation principle of each type of lidar are known, detailed description is omitted.
  • the output port O of the laser light L from the lidar 17 is provided, for example, on the front surface of the indoor unit 1.
  • the lidar 17 has a variable output direction D of the laser light L (hereinafter referred to as “line of sight”) D.
  • the lidar 17 outputs the laser light L to the air conditioning target space S1 so that the intensity (hereinafter, referred to as “reception intensity”) PREC of the received signal with respect to the distance Z in the line-of-sight direction D (hereinafter, referred to as “distance- Strength characteristic”).
  • the reception intensity P REC corresponds to the peak value of the power spectrum obtained by FFT (Fast Fourier Transform) with respect to the time-axis waveform of the reception signal, for example. That is, the reception intensity P REC corresponds to the intensity of the reception signal at the peak frequency. Since the method of acquiring the distance-strength characteristic by the lidar of each method is publicly known, detailed description is omitted.
  • the rider 17 scans the inside of the air conditioning target space S1 in a raster scan manner to acquire the distance-intensity characteristics in each of the plurality of line-of-sight directions D.
  • the rider 17 outputs information indicating the distance-strength characteristic in each of the plurality of line-of-sight directions D (hereinafter referred to as “distance-strength characteristic information”) to the first gas concentration calculator 24.
  • the distance-strength characteristic information includes angle values ⁇ and ⁇ indicating the line-of-sight direction D corresponding to each distance-strength characteristic.
  • is an angle value with respect to the azimuth direction
  • is an angle value with respect to the elevation/depression angle direction.
  • the lidar 17 has a plurality of optical oscillators (not shown) corresponding to wavelengths ⁇ different from each other.
  • the lidar 17 has a variable wavelength optical oscillator (not shown).
  • the lidar 17 can switch the wavelength ⁇ of the output laser light L.
  • the lidar 17 is capable of outputting laser light (hereinafter referred to as “first wavelength light”) L OFF having a predetermined wavelength (hereinafter referred to as “first wavelength”) ⁇ OFF , Further, it is possible to output laser light (hereinafter referred to as “second wavelength light”) L ON having another predetermined wavelength (hereinafter referred to as “second wavelength”) ⁇ ON .
  • the lidar 17 has a distance-intensity characteristic (hereinafter, referred to as “first reception intensity”) PREC OFF indicating reception intensity by the first wavelength light L OFF with respect to the distance Z in each of the plurality of line-of-sight directions D.
  • first reception intensity a distance-intensity characteristic
  • second reception intensity the reception intensity
  • 2 distance-strength characteristic The distance-strength characteristic information includes the first distance-strength characteristic and the second distance-strength characteristic in each of the plurality of line-of-sight directions D.
  • the first gas concentration calculation unit 24 uses the distance-intensity characteristic information output by the rider 17 for a plurality of regions (hereinafter referred to as “first gas detection target regions”) A1 in the air conditioning target space S1.
  • a concentration value (hereinafter, referred to as “first concentration value”) N1 of a predetermined gas (hereinafter, referred to as “detection target gas”) in each is calculated.
  • the plurality of first gas detection target areas A1 are at least a part of the air conditioning target space S1 (hereinafter referred to as “gas detection target space”) S2 in the x direction, the y direction, and the z direction. It is divided into predetermined intervals.
  • the gas detection target space S2 is usually set to a space corresponding to substantially the entire air conditioning target space S1.
  • the detection target gas is, for example, city gas or propane gas.
  • the first gas concentration calculation unit 24 is information indicating the distribution of the first concentration value N1 in the air conditioning target space S1 (more specifically, the gas detection target space S2) (hereinafter referred to as “first gas concentration distribution information”). Is output to the second gas concentration calculation unit 25.
  • the second gas concentration calculation unit 25 spatially determines the first concentration value N1 calculated by the first gas concentration calculation unit 24 using the first gas concentration distribution information output by the first gas concentration calculation unit 24. It is an average. More specifically, the second gas concentration calculator 25 averages the calculated first concentration value N1 for each predetermined distance range (for example, 60 cm) with respect to the x direction, the y direction, and the z direction. Is.
  • the second gas concentration calculation unit 25 may be one that calculates a moving average. Thereby, the 2nd gas concentration calculation part 25 is one or more area
  • each of the second gas detection target areas A2 is formed by spatially merging the corresponding first gas detection target areas A1 of the plurality of first gas detection target areas A1.
  • each first gas detection target area A1 is set to a value (for example, several centimeters) according to the spatial resolution of the lidar 17, for example.
  • the size of each second gas detection target area A2 is larger than the size of each first gas detection target area A1.
  • the size of each second gas detection target area A2 is, for example, a value according to the size of a general gas device (for example, a gas stove) or the size of a gas device (for example, a gas stove) installed in the air conditioning target space S1. (For example, 60 centimeters).
  • concentration value N1 and the second concentration value N2 may be collectively referred to simply as “concentration value”. Further, this density value may be attached with a symbol "N".
  • the process in which the first gas concentration calculation unit 24 calculates the first concentration value N1 and the process in which the second gas concentration calculation unit 25 calculates the second concentration value N2 are collectively referred to as “gas detection process”. That is, the gas detection process is a process of detecting the detection target gas in the air conditioning target space S1 (more specifically, the gas detection target space S2).
  • the first gas concentration calculation unit 24 and the second gas concentration calculation unit 25 constitute a main part of the gas detection processing unit 26.
  • FIGS. 3 to 5 a specific example of the first distance-strength characteristic, a specific example of the second distance-strength characteristic, and a method of calculating the first concentration value N1 by the first gas concentration calculating unit 24 will be described.
  • a specific example and a specific example of a method of calculating the second concentration value N2 by the second gas concentration calculation unit 25 will be described.
  • the gas to be detected has a so-called “absorption line”.
  • the second wavelength ⁇ ON is set to a value corresponding to the absorption line of the detection target gas.
  • the second wavelength ⁇ ON is set to 2 ⁇ m.
  • the detection target gas is propane gas
  • the second wavelength ⁇ ON is set to a value within the range of 3.2 to 3.4 micrometers.
  • the first wavelength ⁇ OFF is set to a value that avoids the absorption line of the detection target gas.
  • the first wavelength ⁇ OFF is set to 1550 nanometers.
  • the second reception intensity P REC ON is the second in the distance section ⁇ Z. 1 Received intensity is smaller than PREC OFF .
  • the concentration value n of the gas to be detected in the distance section region A3 corresponding to the distance section ⁇ Z is a value corresponding to the ratio of the first reception intensity P REC OFF and the second reception intensity P REC ON in the distance section ⁇ Z.
  • FIG. 3 shows an example of the first distance-strength characteristic and an example of the second distance-strength characteristic.
  • the characteristic line I shows an example of the distance-intensity characteristic by the first wavelength light L OFF , that is, an example of the first distance-intensity characteristic.
  • a characteristic line II shows an example of the distance-intensity characteristic by the second wavelength light L ON , that is, an example of the second distance-intensity characteristic.
  • i indicates the range bin number
  • R(i) indicates the range bin
  • Z(i) indicates the distance value corresponding to each range bin.
  • ⁇ Z(i) indicates a distance section between the distance value Z(i) and the distance value Z(i+1).
  • the second reception intensity P REC ON is equivalent to the first reception intensity P REC OFF . Therefore, it is considered that the gas to be detected does not exist in the distance section region A3 corresponding to these distance sections ⁇ Z(1) to ⁇ Z(3).
  • the second reception intensity P REC ON is smaller than the first reception intensity P REC OFF . Therefore, it is considered that the gas to be detected exists in the distance section region A3 corresponding to these distance sections ⁇ Z(4) to ⁇ Z(9).
  • the first gas concentration calculation unit 24 uses the following formula (1) to calculate the differential absorption amount of the detection target gas in the distance section region A3 corresponding to each distance section ⁇ Z(i) (that is, the optical absorption of the detection target gas). Thickness) ⁇ is calculated.
  • P REC OFF (Z(i)) indicates the first reception intensity P REC OFF corresponding to the distance value Z(i).
  • P REC OFF (Z(i+1)) indicates the first reception intensity P REC OFF corresponding to the distance value Z(i+1).
  • P REC ON (Z(i)) indicates the second reception intensity P REC ON corresponding to the distance value Z(i).
  • P REC ON (Z(i+1)) indicates the second reception intensity P REC ON corresponding to the distance value Z(i+1).
  • the first gas concentration calculation unit 24 calculates the concentration value n(i) of the detection target gas in the distance section region A3 corresponding to each distance section ⁇ Z(i) by the following equation (2).
  • the unit of the concentration value n(i) is [ppm].
  • ⁇ Z represents the distance resolution of the rider 17.
  • ⁇ Z is represented by the following equation (3).
  • k OFF indicates the absorption coefficient of the first wavelength light L OFF by the gas to be detected. The value of k OFF is determined according to the type of gas to be detected and the value of the first wavelength ⁇ OFF .
  • k ON represents the absorption coefficient of the second wavelength light L ON by the gas to be detected. The value of k ON is determined according to the type of gas to be detected and the value of the second wavelength ⁇ ON .
  • the unit of the absorption coefficients k OFF and k ON is [/ppm/m].
  • the first gas concentration calculator 24 stores in advance information indicating the distance resolution ⁇ Z and information indicating the absorption coefficients k OFF and k ON .
  • the first gas concentration calculation unit 24 uses the previously stored information in the calculation of the above formula (2).
  • the x coordinate value in the air conditioning target space S1 of the point corresponding to each distance value Z(i) is expressed by the following equation (4).
  • the y coordinate value in the air conditioning target space S1 at the point is represented by the following equation (5).
  • the z coordinate value in the air conditioning target space S1 at the point is represented by the following equation (6).
  • the first gas concentration calculation unit 24 determines that the distance section regions A3 corresponding to the individual distance sections ⁇ Z(i) are the plurality of first gas detection target areas A1 based on the equations (4) to (6). It is determined which one of the first gas detection target areas A1 corresponds to.
  • the first gas concentration calculator 24 sets the concentration value n(i) in each of the distance section regions A3 to the corresponding first concentration value N1 in the corresponding first gas detection target region A1 based on the result of the determination.
  • the rider 17 scans the air conditioning target space S1 in a raster scan manner.
  • the first gas concentration calculator 24 calculates the concentration value n(i) in the distance section region A3 corresponding to each distance section ⁇ Z(i) for each of the plurality of line-of-sight directions D. Then, the first gas concentration calculation unit 24 sets each of these concentration values (i) to the first concentration value N1 in the corresponding first gas detection target area A1.
  • each circle indicates the first concentration value N1 in the corresponding first gas detection target area A1. That is, the darker the color of the circle, the larger the first concentration value N1 in the corresponding first gas detection target area A1.
  • the first gas concentration calculation unit 24 outputs information indicating the distribution of the first concentration value N1 in the gas detection target space S2, that is, first gas concentration distribution information to the second gas concentration calculation unit 25.
  • the second gas concentration calculation unit 25 uses the first gas concentration distribution information output by the first gas concentration calculation unit 24 to spatially calculate the first concentration value N1 calculated by the first gas concentration calculation unit 24. Average. More specifically, the second gas concentration calculation unit 25 averages the calculated first concentration value N1 for each predetermined distance range (for example, 60 cm) in the x direction, the y direction, and the z direction. As a result, the second gas concentration calculator 25 calculates the second concentration value N2 in each of the one or more second gas detection target areas A2. As described above, each second gas detection target area A2 is formed by spatially merging the corresponding first gas detection target areas A1 of the plurality of first gas detection target areas A1.
  • FIG. 5 shows the second concentration value N2 in each of the plurality of second gas detection target areas A2 when a plurality of (more specifically, 12) second gas detection target areas A2 are set. Shows an example of. In the figure, each sphere shows the second concentration value N2 in the corresponding second gas detection target area A2. That is, the darker the color of the sphere, the larger the second concentration value N2 in the corresponding second gas detection target area A2.
  • the second gas concentration calculation unit 25 is information indicating the distribution of the second concentration value N2 in the air conditioning target space S1 (more specifically, the gas detection target space S2) (hereinafter referred to as “second gas concentration distribution information”). Is output to the blower control unit 23.
  • the blower control unit 23 uses the output second gas concentration distribution information to guide the detection target gas in the air conditioning target space S1 to a predetermined region (hereinafter referred to as “gas guide target region”) A4.
  • the blower control (hereinafter referred to as "gas guide blower control”) is executed.
  • gas guide blower control hereinafter, with reference to FIGS. 6 and 7, a specific example of the gas guide blow control will be described.
  • the air blowing control unit 23 compares the second concentration value N2 in each second gas detection target area A2 with a predetermined threshold value Nth. As a result, the blow control unit 23 determines whether or not to execute the gas guide blow control.
  • the air blowing control unit 23 needs to execute the gas guiding air blowing control. Is determined.
  • the air blow control unit 23 determines that execution of the gas guide air blow control is unnecessary. ..
  • the threshold value Nth is set for each type of gas to be detected in consideration of the influence of the gas to be detected on the human body.
  • the air blow control unit 23 executes the gas guide air blow control as follows.
  • the air blowing control unit 23 causes the wind direction value in the azimuth direction (hereinafter, referred to as “first wind direction value”) in each of the plurality of areas (hereinafter, referred to as “unit area”) A5 in the air conditioning target space S1.
  • wind direction wind speed model a wind direction value with respect to the elevation/depression angle direction (hereinafter sometimes referred to as “second wind direction value”) ⁇ M , and a model of wind speed value V M (hereinafter referred to as “wind direction wind speed model”) M, and A table (hereinafter, referred to as “wind direction wind speed model table”) T showing a correspondence relationship between the wind directions ⁇ B and ⁇ B and the air flow amount V B for realizing the wind direction wind speed model M is stored in advance. More specifically, the air flow control unit 23 stores in advance a plurality of wind direction wind speed model tables T corresponding to a plurality of wind direction wind speed models M.
  • the plurality of unit areas A5 are formed by dividing the air conditioning target space S1 at predetermined intervals in the x direction, the y direction, and the z direction.
  • FIG. 6 shows an example of a portion corresponding to a predetermined x coordinate value in one wind direction wind speed model M among the plurality of wind direction wind speed models M.
  • each of a plurality of white arrows indicates the wind vector D M in the corresponding unit area A5. That is, the wind vector D M has a direction corresponding to the wind direction values ⁇ M and ⁇ M , and has a magnitude corresponding to the wind speed value V M.
  • the linear arrow indicates the air conditioning target space S1 in the case where the blower control unit 23 executes blower control by the blower directions ⁇ B , ⁇ B and the blower air amount V B corresponding to the one wind direction wind speed model M.
  • An example of the air flow F1 generated inside is shown.
  • a gas device (more specifically, a stove base and a gas stove mounted on the stove base) E1 is installed in the air conditioning target space S1, and the gas device E1 is installed at the installation position.
  • the second concentration value N2 in the corresponding second gas detection target area A2 is equal to or more than the threshold value Nth.
  • the blow control unit 23 determines that the updraft is generated in the unit area A5 corresponding to the installation position of the gas device E1 and the unit area A5 arranged above the unit area A5 among the plurality of wind direction wind speed models M.
  • the generated wind direction and wind speed model M is selected. That is, the wind direction wind speed model M shown in FIG. 6 is selected.
  • the air blowing control unit 23 executes air blowing control based on the air blowing directions ⁇ B and ⁇ B and the air blowing amount V B corresponding to the selected wind direction wind speed model M.
  • the detection target gas (G in the figure) in the air conditioning target space S1 rises and is guided to a region including the ceiling portion in the air conditioning target space S1. That is, the blow control is the gas guide blow control, and the region including the ceiling is set as the gas guide target region A4.
  • the blower control unit 23 and the gas detection processing unit 26 form a main part of the control device 100.
  • the first airflow direction plate 11, the second airflow direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, and the control device 100 constitute a main part of the indoor unit 1.
  • the indoor unit 1 and the outdoor unit 2 form a main part of the air conditioner 200.
  • the control device 100 has a processor 41 and a memory 42.
  • a program corresponding to the functions of the blow control unit 23 and the gas detection processing unit 26 is stored in the non-volatile memory of the memory 42.
  • the processor 41 loads the stored program into a volatile memory of the memory 42 and executes the loaded program. As a result, the functions of the blow control unit 23 and the gas detection processing unit 26 are realized.
  • the control device 100 has a processing circuit 43.
  • the functions of the blow control unit 23 and the gas detection processing unit 26 are realized by the dedicated processing circuit 43.
  • control device 100 has a processor 41, a memory 42, and a processing circuit 43 (not shown).
  • processor 41 some of the functions of the blow control unit 23 and the gas detection processing unit 26 are realized by the processor 41 and the memory 42, and the remaining functions are realized by the dedicated processing circuit 43.
  • the processor 41 is configured by, for example, at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, and a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the volatile memory of the memory 42 is composed of, for example, a RAM (Random Access Memory).
  • the non-volatile memory of the memory 42 is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically DirtyErallyEmableEmlyEmableEm eryErableErableEmableEmReady-OlymableRead-Ory). It is configured by at least one of (Hard Disk Drive).
  • the processing circuit 43 may be, for example, an ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field-Integrated Gate Array), or FPGA (Field-Integrated Gate Array) or SoC-Soc (Soc) (Soc)-Soc (S) At least one of the above.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Integrated Gate Array
  • FPGA Field-Integrated Gate Array
  • SoC-Soc Soc
  • Soc Soc-Soc
  • control device 100 Next, with reference to the flowchart of FIG. 9, the operation of the control device 100 will be described focusing on the gas detection processing and the gas guide air blow control.
  • the rider 17 When the ventilation control unit 23 is performing the air conditioning ventilation control, the rider 17 repeatedly scans the air conditioning target space S1.
  • the lidar 17 acquires the distance-intensity characteristics in each of the plurality of line-of-sight directions D in each scan.
  • the gas detection processing unit 26 executes the process of step ST1 when, for example, each scanning by the lidar 17 is completed.
  • step ST1 the gas detection processing unit 26 executes gas detection processing. That is, the first gas concentration calculation unit 24 calculates the first concentration value N1 in each first gas detection target region A1, and the second gas concentration calculation unit 25 calculates the second concentration value N1 in each second gas detection target region A2. The density value N2 is calculated. Since the specific example of the gas detection process is as described above, the repetitive description will be omitted.
  • the gas detection processing unit 26 outputs the second gas concentration distribution information to the blower control unit 23.
  • step ST2 the blowing control unit 23 uses the second gas concentration distribution information output by the gas detection processing unit 26 to determine whether it is necessary to perform the gas guidance blowing control. Since the specific example of the determination method by the blower control unit 23 is as described above, the repetitive description will be omitted.
  • step ST3 the air blow control unit 23 stops the air conditioning air blow control and performs the gas guide air blow control. To start. Since the specific example of the gas guide air blowing control is as described above, the repetitive description will be omitted.
  • the scan by the rider 17, the gas detection processing by the gas detection processing unit 26, and the necessity of execution of the gas guide air blowing control by the air blowing control unit 23 are repeatedly executed. It may be something that is done.
  • the blower control unit 23 determines that the number of the second gas detection target areas A2 having the second concentration value N2 equal to or greater than the threshold value Nth is predetermined when the determination result of whether or not the gas guide blower control is performed is “NO”. When the number is less than the number, the gas guide air blowing control is ended. At this time, the air blowing control unit 23 may restart the air conditioning air blowing control stopped at the timing of step ST2 “YES”.
  • the air conditioner 200 executes the gas detection process using the rider 17.
  • the lidar 17 for the gas detection processing, it is possible to detect the detection target gas in the area near the installation position of the indoor unit 1 at an early stage, and to detect the detection target gas in the area distant from the installation position. Can also be detected early.
  • the air conditioner 200 detects the high-concentration detection target gas by the gas detection process (more specifically, the number of the second gas detection target regions A2 having the second concentration value N2 equal to or higher than the threshold value Nth). Is determined to be equal to or more than a predetermined number), the gas guide air blowing control is executed.
  • the gas induction target area A4 is set to, for example, an area including a ceiling portion in the air conditioning target space S1. Usually, it is unlikely that there is a person in the area. Therefore, the detection-target gas can be guided to a region in the air-conditioning target space S1 that avoids a person, by the gas-guided air blowing control. Further, when the gas to be detected is city gas, there is a high probability that a gas alarm device is provided on the ceiling. Therefore, an early warning output by the gas alarm device can be realized by the gas guide air blowing control.
  • the detection target gas is not limited to city gas or propane gas.
  • the gas to be detected may be Freon (more specifically, HFC).
  • the second wavelength ⁇ ON may be set to a value within the range of 3000 to 3100 nanometers.
  • the detection target gas may be carbon dioxide.
  • the second wavelength ⁇ ON may be set to 1.6 ⁇ m and the threshold value Nth may be set to 5000 ppm.
  • the lidar 17 may be capable of switching the wavelength ⁇ of the output laser light L in three or more steps. Accordingly, the gas detection processing unit 26 may calculate the concentration value N of each of a plurality of types of detection target gases having different absorption lines.
  • the rider 17 not only the detection target gas in the area located below the installation position of the indoor unit 1 can be detected, but also in the area located above the installation position. It is also possible to detect the gas to be detected. Accordingly, when the detection target gas is the city gas and the propane gas, it is possible to realize the detection of each of the city gas and the propane gas.
  • a different wind direction wind speed model M may be selected for each type of gas to be detected. This is because the wind velocity value V M (that is, the detection) required to guide the detection target gas depends on the viscosity of the detection target gas, the weight of the molecules contained in the detection target gas, and the size of the molecules contained in the detection target gas. This is because the blast air volume V B ) required for inducing the target gas may be different.
  • At least a part of the plurality of wind direction wind speed models M may use a learned model by so-called “machine learning”.
  • the gas detection processing unit 26 may not have the second gas concentration calculation unit 25.
  • the gas detection processing unit 26 may output the first gas concentration distribution information to the ventilation control unit 23.
  • the blower control unit 23 uses the first concentration value N1 instead of the second concentration value N2 to determine whether or not to execute the gas guide blower control, and to execute the gas guide blower control. Is also good.
  • the concentration value N and the threshold value Nth that is, from the viewpoint of stabilizing the detection of the gas to be detected, it is more preferable to use the second concentration value N2.
  • a model (hereinafter referred to as “wind direction model”) M′ of wind direction values ⁇ M and ⁇ M in each of the plurality of unit areas A5, and this.
  • a table (hereinafter, referred to as “wind direction model table”) T′ indicating a correspondence with the blowing directions ⁇ B and ⁇ B for realizing the wind direction model M′ may be stored in advance.
  • the air blowing directions ⁇ B and ⁇ B in the gas guiding air blowing control are set to values according to the selected wind direction model M′, while the air blowing air amount V B in the gas guiding air blowing control is the air conditioning air blowing control. It may be set to a value similar to the blown air volume V B in .
  • the method of controlling the air flow rate V B by the air flow rate control unit 22 is not limited to the method of controlling the rotation speed of the rotor of the drive motor 16.
  • the indoor unit 1 may include a damper (not shown) for adjusting the air volume.
  • the blown air volume control unit 22 may control the blown air volume V B by controlling the damper, that is, by changing the duct resistance curve.
  • the air conditioner 200 may be any device for air conditioning and is not limited to an air conditioner.
  • the air conditioner 200 may be configured by a fan, a blower, or an air duct device.
  • an air conditioning system including a plurality of air conditioners 200 may be configured for one air conditioning target space S1.
  • the plurality of air conditioners 200 may cooperate with each other to realize the gas guide air blowing control by the selected wind direction wind speed model M. This makes it possible to realize the gas guide air blow control by the complicated wind direction and wind speed model M. Further, the gas to be detected, which is guided to the region including the ceiling by the ascending airflow, can be retained in the region. As a result, the induced detection target gas can be prevented from falling in the air conditioning target space S1.
  • the air conditioner 200 uses the rider 17 and the gas detection processing unit 26 that calculates the concentration value N of the detection target gas in the air conditioning target space S1 and the concentration value N. And a blowing control unit 23 that controls the blowing directions ⁇ B and ⁇ B with respect to the air conditioning target space S1.
  • the detection target gas in the air conditioning target space S1 (more specifically, the gas detection target space S2) can be detected at an early stage.
  • the gas to be detected can be guided to a predetermined region in the air conditioning target space S1 by the gas guiding blast control.
  • the gas detection processing unit 26 spatially averages the first gas concentration calculation unit 24 that calculates the first concentration value N1 in each of the plurality of first gas detection target regions A1 and the first concentration value N1.
  • the second gas concentration calculation unit 25 that calculates the second concentration value N2 in each of the one or more second gas detection target regions A2, and the blower control unit 23 includes the second concentration value N2. Is used to control the blowing directions ⁇ B and ⁇ B.
  • the second density value N2 it is possible to stabilize the comparison between the density value N and the threshold value Nth as compared with the case where the first density value N1 is used. That is, the detection of the detection target gas can be stabilized.
  • the air blowing control unit 23 uses the density value N to control the air blowing directions ⁇ B and ⁇ B and the air blowing amount V B for the air conditioning target space S1.
  • Blowing direction [Phi B by including in addition to the controlled object the blowing air volume V B to theta B, it is possible to improve the accuracy of induction by air blow control gas induction.
  • the gas detection processing unit 26 spatially averages the first gas concentration calculation unit 24 that calculates the first concentration value N1 in each of the plurality of first gas detection target regions A1 and the first concentration value N1.
  • the second gas concentration calculation unit 25 that calculates the second concentration value N2 in each of the one or more second gas detection target regions A2, and the blower control unit 23 includes the second concentration value N2. Is used to control the blowing directions ⁇ B and ⁇ B and the blowing air amount V B.
  • the second density value N2 it is possible to stabilize the comparison between the density value N and the threshold value Nth as compared with the case where the first density value N1 is used. That is, the detection of the detection target gas can be stabilized.
  • each first gas detection target area A1 is set to a value according to the spatial resolution of the lidar 17, and the size of each second gas detection target area A2 depends on the size of the gas equipment. It is set to a value. Thereby, for example, when the detection target gas is city gas or propane gas, the size of each second gas detection target area A2 can be set to an appropriate size.
  • the blower control unit 23 guides the detection target gas to the gas guidance target area A4 in the air conditioning target space S1 by controlling the blowing directions ⁇ B and ⁇ B. Thereby, for example, the detection target gas can be guided to a region including the ceiling portion in the air conditioning target space S1.
  • the blower control unit 23 guides the detection target gas to the gas guide target area A4 in the air conditioning target space S1 by controlling the blower directions ⁇ B and ⁇ B and the blower air volume V B. Thereby, for example, the detection target gas can be guided to a region including the ceiling portion in the air conditioning target space S1.
  • the blower control unit 23 sets the region including the ceiling portion in the air conditioning target space S1 as the gas guidance target region A4. Thereby, the detection target gas can be guided to the region. As a result, for example, when the gas to be detected is city gas, early warning output by the gas alarm device can be realized.
  • the wavelength ⁇ of the laser light L output by the lidar 17 is switchable, and the gas detection processing unit 26 calculates the concentration value N of each of a plurality of types of detection target gases.
  • the control method according to the first embodiment is a control method for the air conditioner 200, in which the gas detection processing unit 26 uses the rider 17 to determine the concentration value N of the detection target gas in the air conditioning target space S1. After the calculation, the air blowing control unit 23 uses the concentration value N to control the air blowing directions ⁇ B and ⁇ B with respect to the air conditioning target space S1. As a result, the same effects as the above effects of the air conditioner 200 can be obtained.
  • FIG. 10 is a block diagram showing a main part of the air conditioner according to the second embodiment.
  • FIG. 11 is a block diagram which shows the principal part of the indoor unit of the air conditioner which concerns on Embodiment 2.
  • the air conditioner 200a according to the second embodiment will be described with reference to FIGS. 10 and 11.
  • the rider 17 acquires the distance-intensity characteristics in each of the plurality of line-of-sight directions D by scanning the inside of the air conditioning target space S1.
  • the rider 17 scans the line-of-sight direction at a point (hereinafter, referred to as “wind measurement target point”) Pr corresponding to at least one distance value Z in each of the plurality of line-of-sight directions D by the scanning.
  • the wind velocity value (hereinafter, referred to as “line-of-sight direction wind velocity value”) Vr for D is acquired. Since the method of obtaining the line-of-sight wind speed value Vr by each type of rider is known, detailed description thereof will be omitted.
  • the rider 17 outputs information including the angle values ⁇ , ⁇ and the gaze direction wind velocity value Vr (hereinafter referred to as “gaze direction wind velocity information”) to the wind measurement processing unit 29.
  • the wind measurement processing unit 29 uses the line-of-sight direction wind speed information output by the rider 17 to determine the azimuth angle in each of the N areas (hereinafter, referred to as “wind measurement target area”) A6 in the air conditioning target space S1.
  • the wind direction value (that is, the first wind direction value) ⁇ L for the direction
  • the wind direction value (that is, the second wind direction value) ⁇ L for the elevation/depression angle direction
  • the wind speed value V L are calculated.
  • Each of the N wind measurement target areas A6 is, for example, an area surrounded by the corresponding M wind measurement target points Pr of the plurality of wind measurement target points Pr.
  • N is an arbitrary integer of 2 or more
  • M is an arbitrary integer of 3 or more.
  • the wind direction value calculation unit 27 that calculates the wind direction values ⁇ L and ⁇ L and the wind speed value calculation unit 28 that calculates the wind speed value V L constitute a main part of the wind measurement processing unit 29.
  • the process of calculating the wind direction values ⁇ L and ⁇ L by the wind direction value calculating unit 27 and the process of calculating the wind speed value V L by the wind speed value calculating unit 28 are collectively referred to as “wind measurement process”.
  • _n may be attached to each code related to the nth wind measurement target area A6 of the N wind measurement target areas A6 (1 ⁇ n ⁇ N).
  • _n_m may be attached to each code related to the m-th wind measurement target point Pr of the M wind measurement target points Pr corresponding to the n-th wind measurement target area A6 (1 ⁇ m ⁇ . M).
  • the lidar 17 is provided with laser light in each of the line-of-sight direction D_1_1 corresponding to the angle values ⁇ _1_1, ⁇ _1_1, the line-of-sight direction D_1_2 corresponding to the angle values ⁇ _1_2 and ⁇ _1_2, and the line-of-sight direction D_1_3 corresponding to the angle values ⁇ _1_3 and ⁇ _1_3.
  • L is output.
  • the three gaze direction wind velocity values Vr_1_1, Vr_1_2, Vr_1_3 at the three wind measurement target points Pr_1_1, Pr_1_2, Pr_1_3 are acquired.
  • the gaze direction wind velocity value Vr at each wind measurement target point Pr is expressed by the following equation (7).
  • Vu is a wind speed value in the x direction at the corresponding wind measurement target point Pr.
  • Vv is a wind speed value in the y direction at the corresponding wind measurement target point Pr.
  • Vw is a wind speed value in the z direction at the corresponding wind measurement target point Pr.
  • Vr Vu ⁇ sin ⁇ cos ⁇ +Vv ⁇ cos ⁇ cos ⁇ +Vw ⁇ sin ⁇ (7)
  • the wind measurement processing unit 29 calculates the wind velocity values Vu_1, Vv_1, Vw_1 in the first wind measurement target area A6_1 by solving this simultaneous equation.
  • the first wind measurement target area A6_1 is an area surrounded by three wind measurement target points Pr_1_1, Pr_1_2, Pr_1_3.
  • the wind direction value calculation unit 27 calculates the wind direction value ⁇ L in the first wind measurement target area A6_1 by the following formula (8) using the wind speed values Vu_1 and Vv_1 calculated by the above formula (7). To do. Further, the wind direction value calculation unit 27 uses the wind speed values Vu_1, Vv_1, Vw_1 calculated by the above equation (7) and by the following equation (9), the wind direction value ⁇ L in the first wind measurement target area A6_1. To calculate. Further, the wind speed value calculation unit 28 uses the wind speed values Vu_1, Vv_1, Vw_1 calculated by the above expression (7) and by the following expression (10), the wind speed value V L in the first wind measurement target area A6_1. To calculate.
  • the wind direction value calculation unit 27 considers that the wind direction and the wind speed in each individual wind measurement target area A6 are uniform, and determines the wind direction values ⁇ L , ⁇ L and the wind speed value V in each individual wind measurement target area A6. L is calculated. Therefore, it is preferable to set the size of each wind measurement target area A6 to a value that is small enough to consider that the wind direction and wind speed in each wind measurement target area A6 are uniform.
  • the difference value between each two angle values ⁇ _n of the M angle values ⁇ _n_1 to ⁇ _n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target area A6_n. .. Further, the difference value between each two angle values ⁇ _n of the M angle values ⁇ _n_1 to ⁇ _n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target area A6_n. ..
  • the blast control unit 23a executes air conditioning blast control and gas guidance blast control.
  • a selected wind direction wind speed model M of the plurality of wind direction wind speed models M is used for the gas guide air flow control.
  • the selected wind direction wind speed model M will be referred to as a “selected wind direction wind speed model”.
  • the wind direction wind speed model table T indicating the selected wind direction wind speed model M is referred to as a “selected wind direction wind speed model table”.
  • the air flow control unit 23a uses the wind direction values ⁇ L , ⁇ L and the wind speed value V L calculated by the wind measurement processing unit 29, and the air flow directions ⁇ B , ⁇ B, and B shown by the selected wind direction wind speed model table T. against blowing air volume V B, and has a function of blowing direction ⁇ B, ⁇ B and fix the blowing air volume V B (i.e. corrected) in the blower control gas conducting.
  • the air flow direction control unit 21a corrects the first air flow direction ⁇ B
  • the air flow direction control unit 21a controls the second air flow direction ⁇ B
  • the air flow amount control unit 22a corrects the air flow amount V B.
  • Control is generically called "correction control”.
  • a specific example of the correction control is as follows.
  • the blowing direction control unit 21a includes a first wind direction value [Phi L in each wind measurement target region A6, the difference value [Phi E between the first wind direction value [Phi M in the corresponding unit region A5 in selective Wind model M calculate.
  • N difference values ⁇ E corresponding to the N wind measurement target areas A6 on a one-to-one basis are calculated.
  • blowing direction control unit 21a a second wind direction values in individual wind measurement target region A6 theta L, the difference value theta E and the second wind direction value theta M in the corresponding unit region A5 in selective Wind model M calculate.
  • N difference values ⁇ E corresponding to the N wind measurement target areas A6 on a one-to-one basis are calculated.
  • blowing air volume control unit 22a calculates the wind velocity value V L in the individual wind measurement target region A6, the difference value V E of the wind speed V M at the corresponding unit area A5 in selective Wind model M. As a result, N difference values V E corresponding to the N wind measurement target areas A6 on a one-to-one basis are calculated.
  • the air blowing direction control section 21a At least one of the difference values of the N difference values [Phi E (hereinafter referred to as "comparative difference value”.) Compare [Phi E with a predetermined threshold Faith.
  • the comparison difference value ⁇ E is, for example, the largest difference value ⁇ E of the N difference values ⁇ E.
  • the air flow direction control unit 21a calculates an RMS (Root Mean Square) error ⁇ RMSE based on the N difference values ⁇ E and compares the calculated RMS error ⁇ RMSE with a predetermined threshold value ⁇ th.
  • the air blowing direction control unit 21a determines that the first air blowing direction ⁇ B needs to be corrected. On the other hand, when the comparison difference value ⁇ E or the RMS error ⁇ RMSE is less than the threshold value ⁇ th, the air blowing direction control unit 21a determines that the correction of the first air blowing direction ⁇ B is unnecessary.
  • the blowing direction control section 21a at least one of the difference values of the N difference values theta E (hereinafter referred to as "comparative difference value”.)
  • the theta E with a predetermined threshold value .theta.TH.
  • the comparison difference value ⁇ E is, for example, the largest difference value ⁇ E of the N difference values ⁇ E.
  • the air flow direction control unit 21a calculates an RMS error ⁇ RMSE based on the N difference values ⁇ E and compares the calculated RMS error ⁇ RMSE with a predetermined threshold value ⁇ th.
  • the air blowing direction control unit 21a determines that the second air blowing direction ⁇ B needs to be corrected. On the other hand, when the comparison difference value ⁇ E or the RMS error ⁇ RMSE is less than the threshold ⁇ th, the air blowing direction control unit 21a determines that the second air blowing direction ⁇ B does not need to be corrected.
  • blowing air volume control section 22a at least one of the difference values of the N difference values V E (hereinafter referred to as "comparative difference value”.) Compare V E with a predetermined threshold Vth.
  • the comparison difference value V E is, for example, the largest difference value V E among the N difference values V E.
  • the blown air volume control unit 22a calculates the RMS error V RMSE based on the N difference values V E and compares the calculated RMS error V RMSE with a predetermined threshold value Vth.
  • the comparison difference value V E or the RMS error V RMSE is equal to or larger than the threshold value Vth
  • the air flow rate control unit 22a determines that the air flow rate V B needs to be corrected.
  • the comparison difference value V E or the RMS error V RMSE is less than the threshold value Vth, the air flow rate control unit 22a determines that the air flow rate V B does not need to be corrected.
  • the blowing direction control unit 21a determines at least one difference value (hereinafter, referred to as “correction difference value”) of the N difference values ⁇ E. .) Calculate a correction value ⁇ C according to ⁇ E.
  • the correction difference value ⁇ E is, for example, the largest difference value ⁇ E of the N difference values ⁇ E.
  • Airflow direction control unit 21a on the basis of the correction value [Phi C which is the calculated, the first blowing direction [Phi B indicated by selecting Wind model table T, modifying the first blowing direction [Phi B in blast control gas conducting To do.
  • the blowing direction control unit 21a determines that at least one difference value (hereinafter, “correction difference value”) of the N difference values ⁇ E.
  • the correction value ⁇ C according to ⁇ E is calculated.
  • the correction difference value ⁇ E is, for example, the largest difference value ⁇ E of the N difference values ⁇ E.
  • Airflow direction control unit 21a based on the correction value theta C which is the calculated, the second blowing direction theta B indicated by selecting Wind model table T, correct the second blowing direction theta B in blast control gas conducting To do.
  • the blast air volume control unit 22a determines at least one difference value (hereinafter referred to as “correction difference value”) of the N difference values V E. .) Calculate a correction value V C according to V E.
  • the correction difference value V E is, for example, the largest difference value V E of the N difference values V E.
  • Blowing air volume control unit 22a based on the correction value V C, which is the calculated, relative to the blowing air volume V B indicated selection Wind model table T, corrects the blowing air volume V B of the air blow control gas induction.
  • Respect wind direction and wind speed of the air-conditioning target space S1, the installation situation of furniture within the air-conditioning target space S1, the target value (i.e. ⁇ M, ⁇ M, V M ) measured values for (i.e. ⁇ L, ⁇ L, An error of V L ) may occur.
  • the air blow control unit 23a executes the correction control to reduce the error. As a result, it is possible to improve the accuracy of the guidance by controlling the ventilation for gas guidance.
  • the rider 17 may scan the air conditioning target space S1 a plurality of times during the execution of the gas guide air blowing control, and the wind measurement processing and the correction control may be performed a plurality of times. As a result, the above error can be gradually reduced. That is, the correction control may be based on so-called “feedback control”.
  • the blower control unit 23a, the gas detection processing unit 26, and the wind measurement processing unit 29 constitute a main part of the control device 100a.
  • the first airflow direction plate 11, the second airflow direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, and the control device 100a constitute a main part of the indoor unit 1a.
  • the indoor unit 1a and the outdoor unit 2 form a main part of the air conditioner 200a.
  • the hardware configuration of the main part of the control device 100a is the same as that described in Embodiment 1 with reference to FIG. 8, illustration and description thereof will be omitted. That is, the functions of the blower control unit 23a, the gas detection processing unit 26, and the wind measurement processing unit 29 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be one.
  • control device 100a Next, the operation of the control device 100a will be described with reference to the flowchart of FIG. 14, the same steps as those shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • steps ST1 to ST3 are executed. Since the processing contents of steps ST1 to ST3 are the same as those described with reference to FIG. 9 in the first embodiment, the repetitive description will be omitted.
  • step ST3 After the gas guide air blowing control is started in step ST3, the rider 17 repeatedly scans the air conditioning target space S1. As shown in FIG. 14B, the wind measurement process and the correction control are repeatedly executed according to the scanning by the rider 17 until the gas guiding air blowing control is completed.
  • step ST11 the wind measurement processing unit 29 executes the wind measurement processing. Since the specific example of the wind measurement process is as described above, the description thereof will be omitted.
  • the wind measurement processing in step ST11 the wind direction values ⁇ L , ⁇ L and the wind speed value V L in each of the N wind measurement target areas A6 are calculated.
  • step ST12 the air flow direction control unit 21a determines whether or not the first air flow direction ⁇ B needs to be corrected using the N first air flow direction values ⁇ L calculated by the wind measurement process of step ST11. To do. Further, at step ST13, the blowing direction control unit 21a uses the second wind direction value theta L of N calculated by the wind measurement process in step ST11, determines the necessity of the second blowing direction theta B fixes To do. Further, at step ST14, the blowing air volume control unit 22a using N wind speed V L calculated by the wind measurement process in step ST11, determines whether it is necessary to blow air volume V B of modifications. Since the specific examples of these determination methods are as described above, the description thereof will be omitted.
  • step ST15 the airflow direction control unit 21a indicates the first airflow direction model speed table T selected in step ST3. relative airflow direction [Phi B, modifying the first blowing direction [Phi B in blast control gas conducting.
  • step ST12 “NO” the process of step ST15 is skipped.
  • step ST13 “YES” When it is determined that the correction of the second air flow direction ⁇ B is necessary (step ST13 “YES”), the air flow direction control unit 21a indicates the selected air flow direction wind speed model table T in step ST3 in step ST16.
  • the second air blowing direction ⁇ B in the gas guiding air blowing control is corrected with respect to the second air blowing direction ⁇ B.
  • step ST13 “NO” when it is determined that the correction of the second blowing direction ⁇ B is not necessary (step ST13 “NO”), the process of step ST16 is skipped.
  • step ST17 the air flow rate control unit 22a determines the air flow rate indicated by the selected airflow direction airspeed model table T in step ST3.
  • the blast air volume V B in the gas guidance blast control is corrected with respect to V B.
  • step ST14 “NO” the process of step ST17 is skipped.
  • the blow control unit 23a executes correction control during execution of the gas guide blow control. Since the specific example of the correction control is as described above, the repetitive description will be omitted.
  • the lidar 17 is capable of outputting the first wavelength light L OFF and also capable of outputting the second wavelength light L ON . It is preferable to use the first wavelength light L OFF to acquire the gaze direction wind velocity value Vr. If the second wavelength light L ON is used to acquire the gaze direction wind speed value Vr, when the detection target gas exists in the air conditioning target space S1, the second wavelength light L ON is absorbed by the detection target gas. However, it may be difficult to obtain the gaze direction wind speed value Vr. On the other hand, by using the first wavelength light L OFF to acquire the gaze direction wind velocity value Vr, the gaze direction wind velocity value Vr can be acquired regardless of the presence or absence of the detection target gas in the air conditioning target space S1. it can.
  • the air flow direction control unit 21a may compare the average value of the N difference values ⁇ E with a predetermined threshold ⁇ th instead of the RMS error ⁇ RMSE .
  • the air flow direction control unit 21a may compare the average value of the N difference values ⁇ E with a predetermined threshold value ⁇ th instead of the RMS error ⁇ RMSE .
  • the blown air volume control unit 22a may compare the average value of the N difference values V E with a predetermined threshold value Vth instead of the RMS error V RMSE .
  • the correction control may target only the blowing directions ⁇ B and ⁇ B. That is, the blown air volume V B may be excluded from the correction control target. In this case, it is not necessary to calculate the wind speed value V L in the wind measurement process. Further, the processes of steps ST14 and ST17 shown in FIG. 14B are unnecessary. However, from the viewpoint of improving the accuracy of induction by air blow control gas induction, it is more preferable to include the blowing air volume V B to be corrected control.
  • the correction control may target only the first blowing direction ⁇ B. That is, the second blowing direction ⁇ B and the blowing air amount V B may be excluded from the correction control targets.
  • the term of Vw ⁇ sin ⁇ in the above equation (7) is unnecessary.
  • the blower control unit 23a uses the second gas concentration distribution information output by the second gas concentration calculation unit 25 to determine the region where the high concentration detection target gas exists (that is, the second concentration value N2 equal to or higher than the threshold value Nth).
  • a region corresponding to the second gas detection target region A2) having the above may be set as the wind measurement target region A6.
  • the correction control based on the wind direction values ⁇ L and ⁇ L and the wind speed value V L in the region where the high concentration gas to be detected is present can be executed.
  • the rider 17 may be composed of a pulse Doppler rider.
  • the rider 17 outputs the laser light L in one line-of-sight direction D
  • the line-of-sight wind speed value Vr at each of the plurality of wind measurement target points Pr arranged along the line-of-sight direction D is acquired. can do. Therefore, as shown in FIG. 15, a plurality of wind measurement target areas A6 arranged along the line-of-sight direction D can be set at one time.
  • the air conditioner 200a can employ various modifications similar to those described in the first embodiment.
  • the air conditioner 200a includes the wind measurement processing unit 29 that calculates the wind direction values ⁇ L and ⁇ L in the air conditioning target space S1 by using the rider 17, and the blower control unit 23a. Controls the blowing directions ⁇ B and ⁇ B using the concentration value N and the wind direction values ⁇ L and ⁇ L. By performing the correction control for the blowing directions ⁇ B and ⁇ B , it is possible to improve the accuracy of the guidance by the gas guiding blast control.
  • the air conditioner 200a includes a wind measurement processing unit 29 that calculates the wind direction values ⁇ L , ⁇ L and the wind speed value V L in the air conditioning target space S1 by using the rider 17, and the air blowing control unit 23a is configured to measure the concentration.
  • the air blowing control unit 23a is configured to measure the concentration.
  • the blowing directions ⁇ B and ⁇ B and the blowing air amount V B are controlled.
  • FIG. 16 is a block diagram showing a main part of the air conditioner according to the third embodiment.
  • FIG. 17 is a block diagram showing the main parts of the indoor unit of the air-conditioning apparatus according to Embodiment 3. With reference to Drawing 16 and Drawing 17, air harmony machine 200b of Embodiment 3 is explained.
  • the rider 17 acquires the distance-intensity characteristics in each of the plurality of line-of-sight directions D by scanning the inside of the air conditioning target space S1.
  • the lidar 17 generates so-called “intensity image” and “distance image” by the scanning.
  • Each pixel in the intensity image indicates the intensity value of the received signal obtained by outputting the laser light L in the line-of-sight direction D corresponding to the pixel.
  • Each pixel in the distance image indicates a distance value obtained by outputting the laser light L in the line-of-sight direction D corresponding to the pixel.
  • the rider 17 outputs image information indicating the generated intensity image (hereinafter referred to as “intensity image information”) and image information indicating the generated distance image (hereinafter referred to as “distance image information”). ..
  • intensity image information image information indicating the generated intensity image
  • distance image information image information indicating the generated distance image
  • the images generated by the lidar 17 may be collectively referred to as “rider image”.
  • the human detection processing unit 30 uses the intensity image information and the distance image information output by the rider 17 to perform processing for detecting a person in the air conditioning target space S1 (hereinafter referred to as “human detection processing”). is there.
  • human detection processing uses the intensity image information and the distance image information output by the rider 17 to perform processing for detecting a person in the air conditioning target space S1 (hereinafter referred to as “human detection processing”). is there.
  • human detection processing uses the intensity image information and the distance image information output by the rider 17 to perform processing for detecting a person in the air conditioning target space S1 (hereinafter referred to as “human detection processing”). is there.
  • human detection processing A specific example of the human detection process is as follows.
  • the human detection processing unit 30 extracts a pixel group corresponding to an object (so-called “hard target”) in a lidar image by performing threshold processing on the intensity image.
  • the intensity value of each pixel included in the pixel group corresponding to the hard target is about 10 4 times larger than the intensity values of other pixels. Therefore, the pixel group corresponding to the hard target in the lidar image can be extracted by performing the threshold processing on the intensity image.
  • the human detection processing unit 30 determines whether or not the extracted pixel group corresponds to a human by performing pattern matching processing on the intensity image or the distance image.
  • the position of the person in the air conditioning target space S1 can be detected.
  • the position of the person in the air conditioning target space S1 can be detected.
  • the position of the person in the x direction and the z direction can be detected, and the position of the person in the y direction can be detected. That is, the position of the person can be detected with high accuracy.
  • the person detection processing unit 30 outputs information indicating the result of the person detection processing (hereinafter referred to as “detection result information”) to the air blowing control unit 23.
  • the air blow control unit 23 uses the detection result information output by the human detection processing unit 30 for the gas guide air blow control. More specifically, the blower control unit 23 uses the output detection result information for selecting the wind direction wind speed model M.
  • the person detection processing unit 30 selects the wind direction and wind speed model M such that air is blown to the person's feet.
  • the person (H in the figure) is controlled by air blowing based on the wind direction wind speed model table (that is, the selected wind direction wind speed model table) T corresponding to the selected wind direction wind speed model (that is, the selected wind direction wind speed table) M.
  • An airflow F2 including an ascending airflow along the body is generated.
  • the rising gas can guide the gas to be detected (G in the figure) to the region including the ceiling.
  • the blowing control based on the selected wind direction wind speed model table T causes the one shown in FIG. 18 as shown in FIG. An air flow F2 similar to that is generated, and an air flow F1 similar to that shown in FIG. 7 is also generated.
  • the detection target gas G in the figure
  • the blower control unit 23, the gas detection processing unit 26, and the human detection processing unit 30 constitute a main part of the control device 100b.
  • the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, and the control device 100b constitute a main part of the indoor unit 1b.
  • the indoor unit 1b and the outdoor unit 2 form a main part of the air conditioner 200b.
  • the functions of the blower control unit 23, the gas detection processing unit 26, and the human detection processing unit 30 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be one.
  • control device 100b will be described focusing on the gas detection process, the person detection process, and the gas guide blow control. 20, the same steps as those shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST2 the human detection processing unit 30 executes the human detection process in step ST4. Since the specific example of the person detection process is as described above, the description thereof will be omitted.
  • the person detection processing unit 30 outputs the detection result information to the blower control unit 23.
  • step ST3 the blow control unit 23 starts the gas guide blow control.
  • the air blowing control unit 23 uses the detection result information output by the human detection processing unit 30 to select the wind direction wind speed model M. Since the specific example of the gas guide air blowing control is as described above, the repetitive description will be omitted.
  • the person detection method in the person detection process using the lidar image is not limited to the above specific example.
  • Various known detection methods can be used for the person detection process.
  • control device 100b may have the same wind measurement processing unit 29 and blow control unit 23a as those described in the second embodiment.
  • the processing of steps ST11 to ST17 similar to that shown in FIG. 14B may be executed.
  • the indoor unit 1b may be provided with the infrared camera 18.
  • the infrared camera 18 images the inside of the air conditioning target space S1.
  • the infrared camera 18 outputs image information (hereinafter referred to as “infrared image information”) indicating the captured image (so-called “infrared image”) to the air blowing control unit 23 or the air blowing control unit 23a.
  • the blower control unit 23 or the blower control unit 23a may use an infrared image for the person detection process instead of the rider image. Normally, the time taken by the infrared camera 18 to take an image is shorter than the time taken by the lidar 17 to scan. Therefore, by using the infrared image instead of the lidar image, it is possible to speed up the human detection process.
  • the blower control unit 23 or the blower control unit 23a may use an infrared image in addition to the rider image for the human detection process.
  • the gas detection processing unit 26 uses the detection result information from the human detection processing unit 30 to determine the region corresponding to the position of the person in the air conditioning target space S1 as the target region of the gas detection process (that is, the first region). It may be set in the gas detection target area A1 and the second gas detection target area A2). Thereby, the density value N in the area corresponding to the position of the person can be calculated.
  • the wind measurement processing unit 29 uses the detection result information from the human detection processing unit 30 to correspond to the position of the person in the air conditioning target space S1.
  • the area to be set may be set as the area to be subjected to the wind measurement processing (that is, the wind measurement target area A6).
  • the wind direction values ⁇ L , ⁇ L and the wind speed value V L in the area corresponding to the position of the person can be calculated.
  • an area within a predetermined range for example, a radius of 1 meter
  • a predetermined range for example, a radius of 1 meter
  • the air conditioner 200b can employ various modifications similar to those described in the first and second embodiments.
  • the ventilation control for gas guidance may be directed to only the ventilation directions ⁇ B and ⁇ B.
  • the wind measurement process may target only the wind direction values ⁇ L and ⁇ L.
  • the correction control may target only the blowing directions ⁇ B and ⁇ B.
  • the air conditioner 200b of the third embodiment includes the person detection processing unit 30 that executes the process of detecting a person in the air conditioning target space S1, and the air blowing control units 23 and 23a include the person detection processing unit.
  • the detection result obtained by 30 is used for controlling the blowing directions ⁇ B and ⁇ B.
  • the detection result information for the gas guidance air blow control (more specifically, the selection of the wind direction/wind velocity model M)
  • an airflow according to the presence or absence of a person and the position in the air conditioning target space S1 is introduced into the air conditioning target space S1. Can be generated.
  • the air conditioner 200b includes a person detection processing unit 30 that performs a process of detecting a person in the air conditioning target space S1, and the air blowing control units 23 and 23a send the detection result of the person detection processing unit 30 to the air blowing direction ⁇ . It is used to control B , ⁇ B and the blast air volume V B.
  • the detection result information for the gas guidance air blow control (more specifically, the selection of the wind direction/wind velocity model M)
  • an airflow according to the presence or absence of a person and the position in the air conditioning target space S1 is introduced into the air conditioning target space S1. Can be generated.
  • FIG. 26 is a block diagram showing a main part of the air conditioner according to the fourth embodiment.
  • FIG. 27 is a block diagram showing the main parts of the indoor unit of the air-conditioning apparatus according to Embodiment 4.
  • the air conditioner 200c according to Embodiment 4 will be described with reference to FIGS. 26 and 27.
  • FIG. 26 the same blocks as the blocks shown in FIG. Also, in FIG. 27, the same blocks as the blocks shown in FIG.
  • the air conditioning target space S1 is provided with an air cleaning or ventilation device (hereinafter referred to as “external device”) E2.
  • the external device E2 is, for example, an air purifier, a ventilation fan, or an automatic opening/closing window.
  • the external device E2 may be managed by a server device (not shown) that can communicate with the external device E2.
  • the indoor unit 1c has a communication device 19 that can communicate with the external device E2 or the server device.
  • the communication device 19 includes, for example, a transmitter and a receiver for wireless communication.
  • the external device information includes information indicating the installation position of the external device E2 in the air conditioning target space S1 (hereinafter referred to as “external device installation position information”).
  • the external device information acquisition unit 31 uses the communication device 19 to acquire external device information stored in the external device E2 or the server device.
  • the external device information acquisition unit 31 outputs the acquired external device information to the blower control unit 23.
  • the air blow control unit 23 uses the external device information output by the air blow control unit 23 for the gas guide air blow control. More specifically, the blower control unit 23 uses the output external device information for setting the gas guidance target area A4 and selecting the wind direction wind speed model M.
  • the air blow control unit 23 sets the region corresponding to the coordinate values (x1, y1, z1), that is, the region corresponding to the installation position of the external device E2, as the gas guidance target region A4.
  • the blow control unit 23 calculates a vector D F having a start point corresponding to the coordinate values (x2, y2, z2) and an end point corresponding to the coordinate values (x1, y1, z1) ( See FIG. 28).
  • the airflow control unit 23 selects the wind direction wind speed model M in which the airflow F3 including the airflow corresponding to the calculated vector D F is generated.
  • the detection target gas is detected in the area corresponding to the installation position of the external device E2. Is induced.
  • the induced gas to be detected is removed or absorbed by the external device E2 for air cleaning.
  • the induced detection target gas is discharged to the outside of the air conditioning target space S1 by the external device E2 for ventilation.
  • the blower control unit 23, the gas detection processing unit 26, and the external device information acquisition unit 31 constitute a main part of the control device 100c.
  • the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19 and the control device 100c constitute a main part of the indoor unit 1c.
  • the indoor unit 1c and the outdoor unit 2 form a main part of the air conditioner 200c.
  • the functions of the blower control unit 23, the gas detection processing unit 26, and the external device information acquisition unit 31 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be one.
  • control device 100c the operation of the control device 100c will be described focusing on the gas detection process and the gas guide air blowing control. 29, the same steps as those shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST2 the external device information acquisition unit 31 acquires the external device information in step ST5.
  • the external device information acquisition unit 31 outputs the acquired external device information to the blower control unit 23.
  • step ST3 the blow control unit 23 starts the gas guide blow control.
  • the blower control unit 23 uses the external device information output by the external device information acquisition unit 31 for setting the gas guidance target area A4 and selecting the wind direction wind speed model M. Since the specific example of the gas guide air blowing control is as described above, the repetitive description will be omitted.
  • control device 100c may have the same wind measurement processing unit 29 and blow control unit 23a as those described in the second embodiment.
  • the processing of steps ST11 to ST17 similar to that shown in FIG. 14B may be executed.
  • the air conditioner 200c can employ various modifications similar to those described in the first and second embodiments.
  • the air conditioner 200c includes the external device information acquisition unit 31 that acquires information indicating the installation position of the external device E2 for air cleaning or ventilation in the air conditioning target space S1.
  • the air blowing control units 23 and 23a use the information acquired by the external device information acquisition unit 31 to set the region corresponding to the installation position of the external device E2 as the gas guidance target region A4.
  • the removal or absorption of the gas to be detected by the external device E2 for air cleaning or the discharge of the gas to be detected by the external device E2 for ventilation can be promoted.
  • the concentration of the detection target gas in the air conditioning target space S1 can be reduced.
  • FIG. 31 is a block diagram showing a main part of the air conditioner according to the fifth embodiment.
  • FIG. 32 is a block diagram showing the main parts of the indoor unit of the air-conditioning apparatus according to Embodiment 5.
  • An air conditioner 200d of the fifth embodiment will be described with reference to FIGS. 31 and 32.
  • the indoor unit 1d has a function of discharging the air in the air conditioning target space S1 to the outside of the air conditioning target space S1 using a dedicated exhaust port. Alternatively, the indoor unit 1d discharges the air in the air conditioning target space S1 to the outside of the air conditioning target space S1 and uses the air outside the air conditioning target space S1 by using the dedicated intake and exhaust ports. It has the function of supplying inside. Alternatively, the indoor unit 1d has a function of discharging the air in the air conditioning target space S1 to the outside of the air conditioning target space S1 by using the outdoor unit 2.
  • the indoor unit 1d uses the outdoor unit 2 to discharge the air in the air conditioning target space S1 to the outside of the air conditioning target space S1, and to move the air outside the air conditioning target space S1 into the air conditioning target space S1. It has the function of supplying.
  • these functions are collectively referred to as "ventilation function". That is, the air conditioner 200d is composed of a model air conditioner having a ventilation function.
  • the indoor unit information storage unit 32 stores information about the indoor unit 1d (hereinafter referred to as “indoor unit information").
  • the indoor unit information includes information indicating the installation position of the indoor unit 1d in the air conditioning target space S1 (hereinafter referred to as “indoor unit installation position information").
  • the blower control unit 23 acquires the indoor unit information stored in the indoor unit information storage unit 32, and uses the acquired indoor unit information for the gas guide blow control. More specifically, the blower control unit 23 uses the acquired indoor unit information for setting the gas guidance target area A4 and selecting the wind direction wind speed model M.
  • the blower control unit 23 sets the area corresponding to the installation position of the indoor unit 1d as the gas guidance target area A4 based on the indoor unit installation position information. Next, the air blow control unit 23 generates the air flow F4 that can guide the detection target gas in the air conditioning target space S1 to the set gas guidance target area A4 based on the second gas concentration distribution information.
  • the wind direction wind speed model M is selected (see FIG. 33).
  • the detection target gas is detected in the area corresponding to the installation position of the indoor unit 1d. Is induced.
  • the induced detection target gas is discharged to the outside of the air conditioning target space S1 by the ventilation function of the air conditioner 200d.
  • the ventilation function in the example shown in FIG. 33 uses the outdoor unit 2 to discharge the air in the air conditioning target space S1 to the outside of the air conditioning target space S1, and to perform the air conditioning of the air outside the air conditioning target space S1. It is supplied into the target space S1.
  • an arrow ⁇ indicates exhaust by the outdoor unit 2
  • an arrow ⁇ indicates intake by the outdoor unit 2.
  • the blower control unit 23, the gas detection processing unit 26, and the indoor unit information storage unit 32 constitute a main part of the control device 100d.
  • the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17 and the control device 100d constitute a main part of the indoor unit 1d.
  • the indoor unit 1d and the outdoor unit 2 form a main part of the air conditioner 200d.
  • the functions of the blower control unit 23 and the gas detection processing unit 26 may be realized by the processor 41 and the memory 42, or may be realized by the dedicated processing circuit 43. .. Further, the function of the indoor unit information storage unit 32 may be realized by a non-volatile memory of the memory 42.
  • control device 100d The operation of the control device 100d is similar to that described with reference to FIG. 9 in the first embodiment, and therefore illustration and description thereof will be omitted.
  • the blower control unit 23 acquires the indoor unit information stored in the indoor unit information storage unit 32 and uses the acquired indoor unit information as the gas. It is used for setting the guidance target area A4 and selecting the wind direction wind speed model M.
  • control device 100d may have the same wind measurement processing unit 29 and blow control unit 23a as those described in the second embodiment.
  • the processing of steps ST11 to ST17 similar to that shown in FIG. 14B may be executed.
  • the air conditioner 200d can employ various modifications similar to those described in the first and second embodiments.
  • the air conditioner 200d of the fifth embodiment includes the indoor unit 1d and the outdoor unit 2 and has a ventilation function, and the air blow control units 23 and 23a include the air conditioning target space S1.
  • the area corresponding to the installation position of the indoor unit 1d in is set as the gas guidance target area A4. Due to the ventilation function of the air conditioner 200d, the detection target gas in the air conditioning target space S1 can be discharged to the outside of the air conditioning target space S1. As a result, the concentration of the detection target gas in the air conditioning target space S1 can be reduced.
  • FIG. 35 is a block diagram showing a main part of the air conditioner according to the sixth embodiment.
  • FIG. 36 is a block diagram which shows the principal part of the indoor unit of the air conditioner which concerns on Embodiment 6.
  • the air conditioner 200e of the sixth embodiment will be described with reference to FIGS. 35 and 36.
  • FIG. 35 the same blocks as the blocks shown in FIG.
  • FIG. 36 the same blocks as the blocks shown in FIG.
  • the indoor unit 1 has a communication device 19.
  • the communication device 19 is capable of communicating with a server device (not shown).
  • the communication device 19 includes, for example, a transmitter and a receiver for wireless communication.
  • the spatial structure information is stored in the server device.
  • the spatial structure information is composed of, for example, 3D-CAD (3-Dimensional Computer-Aided Design) data of the room.
  • the spatial structure information includes information indicating the evacuation route ER in the air conditioning target space S1 (hereinafter referred to as “evacuation route information").
  • the evacuation route information includes information indicating the position of the exit EO in the air conditioning target space S1 (hereinafter referred to as “exit position information”).
  • the evacuation route information acquisition unit 33 uses the communication device 19 to acquire the spatial structure information stored in the server device.
  • the evacuation route information acquisition unit 33 outputs the acquired space structure information to the blower control unit 23.
  • the air blow control unit 23 uses the spatial structure information output by the evacuation route information acquisition unit 33 for air blow control for gas guidance. More specifically, the blower control unit 23 uses the output spatial structure information for setting the gas guidance target area A4 and selecting the wind direction wind speed model M.
  • the air blowing control unit 23 sets the region in the air conditioning target space S1 that avoids the evacuation route ER as the gas guidance target region A4 based on the evacuation route information. Further, the blower control unit 23 can guide the detection target gas in the air conditioning target space S1 to the gas guidance target area A4 based on the second gas concentration distribution information, and A vector D F that can be confined in the gas guiding target area A4 is calculated. The blower control unit 23 selects the wind direction wind speed model M corresponding to the airflow F5 that can realize the vector D F by forming a so-called “air curtain” based on the spatial structure information.
  • the blower control unit 23 sets, as the gas guidance target area A4, an area including an end portion (hereinafter, referred to as “right end portion”) on the side where the x coordinate value is small in the air conditioning target space S1 based on the evacuation route information. To do.
  • a region corresponding to the installation position of the gas device E1 becomes a region in which a high-concentration detection target gas (G in the figure) exists due to the occurrence of gas leakage by the gas device E1. It is assumed that It is assumed that the coordinate value indicating the area is (x2, y2, z2). Further, it is assumed that the coordinate value indicating the position of the exit EO is (x3, y3, z3) based on the exit position information.
  • the blow control unit 23 calculates a vector D F having a start point corresponding to the coordinate values (x3, y3, z3) and an end point corresponding to the coordinate values (x2, y2, z2) ( See Figure 37B). Next, the blow control unit 23 selects the wind direction wind speed model M corresponding to the airflow F5 that can form the air curtain for realizing the vector D F.
  • the detection target gas is detected at the right end portion in the air conditioning target space S1. Induced (see Figure 37B). Further, the guided gas to be detected is confined in the gas guide target area A4 by the air curtain.
  • the communication device 19 transmits the evacuation route information to the remote controller 3 or a portable information terminal (not shown) owned by the user U.
  • the remote controller 3 or the mobile information terminal displays an image showing that a gas leak has occurred, an image showing the evacuation route ER, and the like.
  • the user U can visually recognize the displayed image and evacuate to the outside of the air conditioning target space S1 through an appropriate route (see FIG. 37C).
  • the blower control unit 23, the gas detection processing unit 26, and the evacuation route information acquisition unit 33 constitute a main part of the control device 100e.
  • the first airflow direction plate 11, the second airflow direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19 and the control device 100e constitute a main part of the indoor unit 1e.
  • the indoor unit 1e and the outdoor unit 2 form a main part of the air conditioner 200e.
  • the functions of the blower control unit 23, the gas detection processing unit 26, and the evacuation route information acquisition unit 33 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be one.
  • step ST6 the evacuation route information acquisition unit 33 acquires the spatial structure information.
  • the evacuation route information acquisition unit 33 outputs the acquired space structure information to the blower control unit 23.
  • step ST3 the blow control unit 23 starts the gas guide blow control.
  • the blower control unit 23 uses the spatial state information output by the evacuation route information acquisition unit 33 for setting the gas guidance target area A4 and selecting the wind direction wind speed model M.
  • control device 100e may have the same wind measurement processing unit 29 and blow control unit 23a as those described in the second embodiment.
  • the processing of steps ST11 to ST17 similar to that shown in FIG. 14B may be executed.
  • control device 100e may have the same person detection processing unit 30 as that described in the third embodiment (not shown).
  • the blower control unit 23 sets the gas guidance target area A4 and the wind direction wind speed model based on the detection result information output by the human detection processing unit 30 in addition to the spatial structure information output by the evacuation route information acquisition unit 33. It may be used for selection of M. For example, it is assumed that a person exists in the area avoiding the evacuation route ER. In this case, the control device 100e may set an area in which the person is avoided in the area in which the evacuation route ER is avoided as the gas guidance target area A4.
  • the air conditioner 200e can employ various modifications similar to those described in the first and second embodiments.
  • the air conditioner 200e of the sixth embodiment includes the evacuation route information acquisition unit 33 that acquires the information indicating the evacuation route ER in the air conditioning target space S1, and the blower control units 23 and 23a use the evacuation route.
  • the evacuation route information acquisition unit 33 that acquires the information indicating the evacuation route ER in the air conditioning target space S1, and the blower control units 23 and 23a use the evacuation route.
  • the area avoiding the evacuation route ER is set as the gas guidance target area A4. This can prevent the gas to be detected from staying in the evacuation route.
  • the air conditioner 200e includes a person detection processing unit 30 that performs a process of detecting a person in the air conditioning target space S1, and the air blowing control units 23 and 23a use the person detection processing unit 30 based on the detection result by the person detection processing unit 30.
  • the area where the above is avoided is set as the gas guide target area A4. Thereby, for example, when there is a person in the area avoiding the evacuation route ER, the area avoiding the person can be set as the gas guidance target area A4.
  • the invention of the present application is capable of freely combining the respective embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
  • the air conditioner and control method of the present invention can be used, for example, in a home or commercial air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機(200)は、ライダ(17)を用いて、空気調和対象空間(S1)における検知対象ガスの濃度値(N)を算出するガス検知処理部(26)と、濃度値(N)を用いて、空気調和対象空間(S1)に対する送風方向(ΦB,ΘB)を制御する送風制御部(23)と、を備える。

Description

空気調和機及び制御方法
 本発明は、空気調和機及び制御方法に関する。
 従来、空気調和用の種々の機器が開発されている。より具体的には、エアコンディショナ(以下「エアコン」という。)、扇風機、送風機及びエアダクト装置などが開発されている。以下、これらの機器を総称して「空気調和機」という。また、従来、空気調和機に関する種々の技術が開発されている。例えば、特許文献1には、エアコンの室内機における冷媒漏れの発生を検知する技術が開示されている。特許文献1記載の技術は、当該検知の結果を室内機による送風方向及び送風風量の制御に用いるものである。
国際公開第2017/013715号
 一般に、建物の室内にガス機器(例えばガスコンロ)が設けられている場合、当該室内にガス警報器が設けられている。例えば、いわゆる「都市ガス」用のガス警報器は、通常、当該室内の天井部に設けられている。これは、都市ガスの比重が空気の比重よりも小さいためである。他方、いわゆる「プロパンガス」用のガス警報器は、通常、当該室内の壁面部のうちの床面部に対する近傍の位置に設けられている。これは、プロパンガスの比重が空気の比重よりも大きいためである。
 ガス機器によるガス漏れが発生した場合、当該漏れたガスが室内にて上昇又は下降する。当該上昇したガス又は当該下降したガスがガス警報器に到達することにより、ガス警報器がガス漏れの発生を検知する。これにより、ガス警報器が警報を出力する。
 ここで、当該洩れたガスが上昇又は下降する速度及び距離などに応じて、ガス漏れの発生タイミングに対して、ガス警報器によるガス漏れの検知タイミングが遅れる問題があった。この結果、ガス警報器による警報の出力タイミングが遅れる問題があった。また、ガス警報器は単に警報を出力するものに過ぎず、ガス漏れに対応する作業(例えば窓を開ける作業)の実行がユーザに求められる。警報の出力タイミングが遅れることにより、当該作業の実行タイミングも遅れるという問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、ガス漏れの発生を早期に検知することができ、かつ、当該検知されたガス漏れに対応する制御を実行することができる空気調和機を提供することを目的とする。
 本発明の空気調和機は、ライダを用いて、空気調和対象空間における検知対象ガスの濃度値を算出するガス検知処理部と、濃度値を用いて、空気調和対象空間に対する送風方向を制御する送風制御部と、を備えるものである。
 本発明の空気調和機は、ガス漏れの発生を早期に検知することができ、かつ、当該検知されたガス漏れに対応する制御を実行することができる。
実施の形態1に係る空気調和機の要部を示すブロック図である。 実施の形態1に係る空気調和機の室内機の要部を示すブロック図である。 第1距離-強度特性の例及び第2距離-強度特性の例を示す説明図である。 ガス検知対象空間における第1濃度値の分布の例を示す説明図である。 ガス検知対象空間における第2濃度値の分布の例を示す説明図である。 風向風速モデルの例を示す説明図である。 ガス誘導用送風制御の例を示す説明図である。 実施の形態1に係る空気調和機の室内機の制御装置のハードウェア構成を示す説明図である。 実施の形態1に係る空気調和機の室内機の制御装置の他のハードウェア構成を示す説明図である。 実施の形態1に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 実施の形態2に係る空気調和機の要部を示すブロック図である。 実施の形態2に係る空気調和機の室内機の要部を示すブロック図である。 第1の風計測対象領域の例を示す説明図である。 第Nの風計測対象領域の例を示す説明図である。 実施の形態2に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 実施の形態2に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 複数個の風計測対象領域の例を示す説明図である。 実施の形態3に係る空気調和機の要部を示すブロック図である。 実施の形態3に係る空気調和機の室内機の要部を示すブロック図である。 ガス誘導用送風制御の他の例を示す説明図である。 ガス誘導用送風制御の他の例を示す説明図である。 実施の形態3に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 実施の形態3に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態3に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態3に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態3に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態3に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態4に係る空気調和機の要部を示すブロック図である。 実施の形態4に係る空気調和機の室内機の要部を示すブロック図である。 ガス誘導用送風制御の他の例を示す説明図である。 実施の形態4に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 実施の形態4に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態5に係る空気調和機の要部を示すブロック図である。 実施の形態5に係る空気調和機の室内機の要部を示すブロック図である。 ガス誘導用送風制御の他の例を示す説明図である。 実施の形態5に係る空気調和機の他の室内機の要部を示すブロック図である。 実施の形態6に係る空気調和機の要部を示すブロック図である。 実施の形態6に係る空気調和機の室内機の要部を示すブロック図である。 ガス誘導用送風制御の他の例を示す説明図である。 ガス誘導用送風制御の他の例を示す説明図である。 ガス誘導用送風制御の他の例を示す説明図である。 実施の形態6に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。 実施の形態6に係る空気調和機の他の室内機の要部を示すブロック図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る空気調和機の要部を示すブロック図である。図2は、実施の形態1に係る空気調和機の室内機の要部を示すブロック図である。図1及び図2を参照して、実施の形態1の空気調和機200について説明する。
 図1に示す如く、空気調和機200はエアコンにより構成されている。すなわち、空気調和機200は室内機1及び室外機2を有している。室内機1は熱交換器(不図示)を有しており、かつ、室外機2は他の熱交換器(不図示)を有しており、かつ、これらの熱交換器は冷媒管(不図示)により互いに熱的に接続されている。また、室外機2は冷媒用の圧縮機(不図示)等を有している。これらの部材の構造、配置及び動作などは公知であるため、詳細な説明は省略する。また、空気調和機200は、リモートコントローラ(以下「リモコン」という。)3により操作されるものである。
 以下、室内機1に対する左右方向を「x方向」という。また、室内機1に対する前後方向を「y方向」という。また、室内機1に対する上下方向を「z方向」という。また、室内機1の前後方向に対する方位角方向、すなわちy方向に対する方位角方向を単に「方位角方向」という。また、室内機1の前後方向に対する仰俯角方向、すなわちy方向に対する仰俯角方向を単に「仰俯角方向」という。
 また、空気調和機200による空気調和の対象となる空間S1を「空気調和対象空間」という。また、室内機1による空気調和対象空間S1に対する送風方向Φ,Θのうちの方位角方向に対する送風方向Φを「第1送風方向」ということがある。また、仰俯角方向に対する送風方向Θを「第2送風方向」ということがある。
 図2に示す如く、室内機1は、方位角方向に対する取付け角度が可変な風向板(以下「第1風向板」という。)11、仰俯角方向に対する取付け角度が可変な風向板(以下「第2風向板」という。)12、及び空気調和対象空間S1に対する送風用のファン(以下「送風ファン」という。)13を有している。また、室内機1は、第1風向板11用の駆動モータ14、第2風向板12用の駆動モータ15、及び送風ファン13用の駆動モータ16を有している。
 送風方向制御部21は、第1風向板11の取付け角度を制御することにより、より具体的には駆動モータ14におけるロータの回転位置を制御することにより、第1送風方向Φを制御するものである。また、送風方向制御部21は、第2風向板12の取付け角度を制御することにより、より具体的には駆動モータ15におけるロータの回転位置を制御することにより、第2送風方向Θを制御するものである。
 送風風量制御部22は、送風ファン13の回転数を制御することにより、より具体的には駆動モータ16におけるロータの回転数を制御することにより、室内機1による空気調和対象空間S1に対する送風風量Vを制御するものである。
 ユーザによるリモコン3に対する操作入力に応じて、第1風向板11の取付け角度、第2風向板12の取付け角度、送風ファン13の回転数、及び圧縮機の動作などが制御される。これらの制御により、空気調和対象空間S1内の空気調和(例えば冷房又は暖房)が実現される。
 以下、送風方向制御部21による送風方向Φ,Θの制御及び送風風量制御部22による送風風量Vの制御を総称して「送風制御」という。また、空気調和対象空間S1内の空気調和を実現するための送風制御を「空気調和用送風制御」という。送風方向制御部21及び送風風量制御部22により、送風制御部23の要部が構成されている。
 室内機1は、ライダ17を有している。ライダ17は、例えば、パルス変調方式のライダ又はCW(Continuous Wave)方式のライダにより構成されている。各方式のライダの構造及び動作原理などは公知であるため、詳細な説明は省略する。
 ライダ17によるレーザ光Lの出力口Oは、例えば、室内機1の前面部に設けられている。ライダ17は、レーザ光Lの出力方向(以下「視線方向」という。)Dが可変なものである。ライダ17は、空気調和対象空間S1にレーザ光Lを出力することにより、視線方向Dにおける、距離Zに対する受信信号の強度(以下「受信強度」という。)PRECを示す特性(以下「距離-強度特性」という。)を取得するものである。受信強度PRECは、例えば、受信信号の時間軸波形に対するFFT(Fast Fourier Transform)により得られたパワースペクトルのピーク値に対応するものである。すなわち、受信強度PRECは、ピーク周波数における受信信号の強度に対応するものである。各方式のライダによる距離-強度特性の取得方法は公知であるため、詳細な説明は省略する。
 ライダ17は、空気調和対象空間S1内をラスタースキャン状に走査することにより、複数個の視線方向Dの各々における距離-強度特性を取得する。ライダ17は、複数個の視線方向Dの各々における距離-強度特性を示す情報(以下「距離-強度特性情報」という。)を第1ガス濃度算出部24に出力する。なお、距離-強度特性情報は、個々の距離-強度特性に対応する視線方向Dを示す角度値φ,θを含むものである。φは方位角方向に対する角度値であり、θは仰俯角方向に対する角度値である。
 ここで、ライダ17は、互いに異なる波長λに対応する複数個の光発振器(不図示)を有している。または、ライダ17は、波長可変型の光発振器(不図示)を有している。これにより、ライダ17は、出力されるレーザ光Lの波長λを切替え自在なものである。より具体的には、ライダ17は、所定の波長(以下「第1波長」という。)λOFFを有するレーザ光(以下「第1波長光」という。)LOFFを出力自在なものであり、かつ、他の所定の波長(以下「第2波長」という。)λONを有するレーザ光(以下「第2波長光」という。)LONを出力自在なものである。
 ライダ17は、複数個の視線方向Dの各々における、距離Zに対する第1波長光LOFFによる受信強度(以下「第1受信強度」という。)PREC OFFを示す距離-強度特性(以下「第1距離-強度特性」という。)を取得するとともに、距離Zに対する第2波長光LONによる受信強度(以下「第2受信強度」という。)PREC ONを示す距離-強度特性(以下「第2距離-強度特性」という。)を取得する。距離-強度特性情報は、複数個の視線方向Dの各々における、第1距離-強度特性及び第2距離-強度特性を含むものである。
 第1ガス濃度算出部24は、ライダ17により出力された距離-強度特性情報を用いて、空気調和対象空間S1内の複数個の領域(以下「第1ガス検知対象領域」という。)A1の各々における、所定のガス(以下「検知対象ガス」という。)の濃度値(以下「第1濃度値」という。)N1を算出するものである。ここで、複数個の第1ガス検知対象領域A1は、空気調和対象空間S1のうちの少なくとも一部の空間(以下「ガス検知対象空間」という。)S2をx方向、y方向及びz方向に所定間隔に分割してなるものである。
 ガス検知対象空間S2は、通常、空気調和対象空間S1の略全体に対応する空間に設定されている。検知対象ガスは、例えば、都市ガス又はプロパンガスである。第1ガス濃度算出部24は、空気調和対象空間S1(より具体的にはガス検知対象空間S2)における第1濃度値N1の分布を示す情報(以下「第1ガス濃度分布情報」という。)を第2ガス濃度算出部25に出力するものである。
 第2ガス濃度算出部25は、第1ガス濃度算出部24により出力された第1ガス濃度分布情報を用いて、第1ガス濃度算出部24により算出された第1濃度値N1を空間的に平均化するものである。より具体的には、第2ガス濃度算出部25は、当該算出された第1濃度値N1をx方向、y方向及びz方向に対する所定の距離範囲(例えば60センチメートル)毎に平均化するものである。なお、第2ガス濃度算出部25は、移動平均を求めるものであっても良い。これにより、第2ガス濃度算出部25は、空気調和対象空間S1(より具体的にはガス検知対象空間S2)内の1個以上の領域(以下「第2ガス検知対象領域」という。)A2の各々における、検知対象ガスの濃度値(以下「第2濃度値」という。)N2を算出するものである。すなわち、個々の第2ガス検知対象領域A2は、複数個の第1ガス検知対象領域A1のうちの対応する第1ガス検知対象領域A1を空間的にマージしてなるものである。
 個々の第1ガス検知対象領域A1のサイズは、例えば、ライダ17の空間分解能に応じた値(例えば数センチメートル)に設定されている。これに対して、個々の第2ガス検知対象領域A2のサイズは、個々の第1ガス検知対象領域A1のサイズよりも大きいものである。個々の第2ガス検知対象領域A2のサイズは、例えば、一般的なガス機器(例えばガスコンロ)のサイズ、又は空気調和対象空間S1内に設置されたガス機器(例えばガスコンロ)のサイズに応じた値(例えば60センチメートル)に設定されている。
 以下、第1濃度値N1及び第2濃度値N2を総称して単に「濃度値」ということがある。また、この濃度値に「N」の符号を付すことがある。
 また、第1ガス濃度算出部24が第1濃度値N1を算出する処理及び第2ガス濃度算出部25が第2濃度値N2を算出する処理を総称して「ガス検知処理」という。すなわち、ガス検知処理は、空気調和対象空間S1(より具体的にはガス検知対象空間S2)内の検知対象ガスを検知する処理である。第1ガス濃度算出部24及び第2ガス濃度算出部25により、ガス検知処理部26の要部が構成されている。
 ここで、図3~図5を参照して、第1距離-強度特性の具体例、第2距離-強度特性の具体例、第1ガス濃度算出部24による第1濃度値N1の算出方法の具体例、及び第2ガス濃度算出部25による第2濃度値N2の算出方法の具体例について説明する。
 検知対象ガスは、いわゆる「吸収線」を有している。第2波長λONは、検知対象ガスの吸収線に対応する値に設定されている。例えば、検知対象ガスが都市ガスである場合、第2波長λONは2マイクロメートルに設定されている。または、例えば、検知対象ガスがプロパンガスである場合、第2波長λONは3.2~3.4マイクロメートルの範囲内の値に設定されている。他方、第1波長λOFFは、検知対象ガスの吸収線を回避した値に設定されている。例えば、第1波長λOFFは、1550ナノメートルに設定されている。
 このため、視線方向Dにおける距離区間ΔZに対応する領域(以下「距離区間領域」という。)A3に検知対象ガスが存在する場合、当該距離区間ΔZにおいては、第2受信強度PREC ONが第1受信強度PREC OFFよりも小さくなる。また、当該距離区間ΔZに対応する距離区間領域A3における検知対象ガスの濃度値nは、当該距離区間ΔZにおける第1受信強度PREC OFFと第2受信強度PREC ONとの比に応じた値となる。
 図3は、第1距離-強度特性の例及び第2距離-強度特性の例を示している。特性線Iは、第1波長光LOFFによる距離-強度特性の例、すなわち第1距離-強度特性の例を示している。特性線IIは、第2波長光LONによる距離-強度特性の例、すなわち第2距離-強度特性の例を示している。図中、iはレンジビン番号を示しており、R(i)はレンジビンを示しており、Z(i)は各レンジビンに対応する距離値を示している。また、ΔZ(i)は距離値Z(i)と距離値Z(i+1)間の距離区間を示している。
 図3に示す如く、距離区間ΔZ(1)~ΔZ(3)においては、第2受信強度PREC ONが第1受信強度PREC OFFと同等である。このため、これらの距離区間ΔZ(1)~ΔZ(3)に対応する距離区間領域A3には、検知対象ガスが存在しないと考えられる。他方、距離区間ΔZ(4)~ΔZ(9)においては、第2受信強度PREC ONが第1受信強度PREC OFFよりも小さい。このため、これらの距離区間ΔZ(4)~ΔZ(9)に対応する距離区間領域A3には、検知対象ガスが存在すると考えられる。
 まず、第1ガス濃度算出部24は、以下の式(1)により、個々の距離区間ΔZ(i)に対応する距離区間領域A3における、検知対象ガスによる差分吸収量(すなわち検知対象ガスの光学的厚さ)Δτを算出する。

Figure JPOXMLDOC01-appb-I000001
 PREC OFF(Z(i))は、距離値Z(i)に対応する第1受信強度PREC OFFを示している。PREC OFF(Z(i+1))は、距離値Z(i+1)に対応する第1受信強度PREC OFFを示している。PREC ON(Z(i))は、距離値Z(i)に対応する第2受信強度PREC ONを示している。PREC ON(Z(i+1))は、距離値Z(i+1)に対応する第2受信強度PREC ONを示している。これらの値は、ライダ17により出力された距離-強度特性情報に含まれている。
 次いで、第1ガス濃度算出部24は、以下の式(2)により、個々の距離区間ΔZ(i)に対応する距離区間領域A3における、検知対象ガスの濃度値n(i)を算出する。なお、濃度値n(i)の単位は[ppm]である。

Figure JPOXMLDOC01-appb-I000002
 δZは、ライダ17の距離分解能を示している。δZは、以下の式(3)により表されるものである。また、kOFFは、検知対象ガスによる第1波長光LOFFの吸収係数を示している。kOFFの値は、検知対象ガスの種類及び第1波長λOFFの値に応じて定まるものである。また、kONは、検知対象ガスによる第2波長光LONの吸収係数を示している。kONの値は、検知対象ガスの種類及び第2波長λONの値に応じて定まるものである。なお、吸収係数kOFF,kONの単位は[/ppm/m]である。
 δZ=Z(i+1)-Z(i) (3)
 第1ガス濃度算出部24には、距離分解能δZを示す情報及び吸収係数kOFF,kONを示す情報が予め記憶されている。第1ガス濃度算出部24は、当該予め記憶されている情報を上記式(2)の計算に用いる。
 ここで、個々の距離値Z(i)に対応する地点の空気調和対象空間S1におけるx座標値は、以下の式(4)により表される。また、当該地点の空気調和対象空間S1におけるy座標値は、以下の式(5)により表される。また、当該地点の空気調和対象空間S1におけるz座標値は、以下の式(6)により表される。
 x=Z(i)×sinφ      (4)
 y=Z(i)×sinθ×cosφ (5)
 z=Z(i)×cosφ×cosθ (6)
 第1ガス濃度算出部24は、上記式(4)~上記式(6)に基づき、個々の距離区間ΔZ(i)に対応する距離区間領域A3が、複数個の第1ガス検知対象領域A1のうちのいずれの第1ガス検知対象領域A1に対応するものであるのかを判定する。第1ガス濃度算出部24は、当該判定の結果に基づき、個々の距離区間領域A3における濃度値n(i)を、対応する第1ガス検知対象領域A1における第1濃度値N1に設定する。
 上記のとおり、ライダ17は、空気調和対象空間S1内をラスタースキャン状に走査する。第1ガス濃度算出部24は、複数個の視線方向Dの各々について、個々の距離区間ΔZ(i)に対応する距離区間領域A3における濃度値n(i)を算出する。そして、第1ガス濃度算出部24は、これらの濃度値(i)の各々を、対応する第1ガス検知対象領域A1における第1濃度値N1に設定する。
 これにより、図4に示す如く、複数個の第1ガス検知対象領域A1の各々における第1濃度値N1が算出される。図中、個々の丸印は、対応する第1ガス検知対象領域A1における第1濃度値N1を示している。すなわち、当該丸印の色が濃いほど、対応する第1ガス検知対象領域A1における第1濃度値N1が大きいことを示している。第1ガス濃度算出部24は、ガス検知対象空間S2における第1濃度値N1の分布を示す情報、すなわち第1ガス濃度分布情報を第2ガス濃度算出部25に出力する。
 次いで、第2ガス濃度算出部25は、第1ガス濃度算出部24により出力された第1ガス濃度分布情報を用いて、第1ガス濃度算出部24により算出された第1濃度値N1を空間的に平均化する。より具体的には、第2ガス濃度算出部25は、当該算出された第1濃度値N1をx方向、y方向及びz方向に対する所定の距離範囲(例えば60センチメートル)毎に平均化する。これにより、第2ガス濃度算出部25は、1個以上の第2ガス検知対象領域A2の各々における第2濃度値N2を算出する。上記のとおり、個々の第2ガス検知対象領域A2は、複数個の第1ガス検知対象領域A1のうちの対応する第1ガス検知対象領域A1を空間的にマージしてなるものである。
 図5は、複数個(より具体的には12個)の第2ガス検知対象領域A2が設定されている場合における、当該複数個の第2ガス検知対象領域A2の各々における第2濃度値N2の例を示している。図中、個々の球体は、対応する第2ガス検知対象領域A2における第2濃度値N2を示している。すなわち、当該球体の色が濃いほど、対応する第2ガス検知対象領域A2における第2濃度値N2が大きいことを示している。
 第2ガス濃度算出部25は、空気調和対象空間S1(より具体的にはガス検知対象空間S2)における第2濃度値N2の分布を示す情報(以下「第2ガス濃度分布情報」という。)を送風制御部23に出力する。送風制御部23は、当該出力された第2ガス濃度分布情報を用いて、空気調和対象空間S1内の検知対象ガスを所定の領域(以下「ガス誘導対象領域」という。)A4に誘導するための送風制御(以下「ガス誘導用送風制御」という。)を実行する。以下、図6及び図7を参照して、ガス誘導用送風制御の具体例について説明する。
 まず、送風制御部23は、個々の第2ガス検知対象領域A2における第2濃度値N2を所定の閾値Nthと比較する。これにより、送風制御部23は、ガス誘導用送風制御の実行の要否を判定する。
 例えば、閾値Nth以上の第2濃度値N2を有する第2ガス検知対象領域A2の個数が所定個(例えば1個)以上である場合、送風制御部23は、ガス誘導用送風制御の実行が要であると判定する。他方、閾値Nth以上の第2濃度値N2を有する第2ガス検知対象領域A2の個数が所定個未満である場合、送風制御部23は、ガス誘導用送風制御の実行が不要であると判定する。閾値Nthは、検知対象ガスの種類毎に、検知対象ガスが人体に与える影響などを考慮して設定されたものである。
 送風制御部23は、ガス誘導用送風制御の実行が要であると判定された場合、以下のようにガス誘導用送風制御を実行する。
 すなわち、送風制御部23には、空気調和対象空間S1内の複数個の領域(以下「単位領域」という。)A5の各々における、方位角方向に対する風向値(以下「第1風向値」ということがある。)Φ、仰俯角方向に対する風向値(以下「第2風向値」ということがある。)Θ、及び風速値Vのモデル(以下「風向風速モデル」という。)Mと、この風向風速モデルMを実現するための送風方向Φ,Θ及び送風風量Vとの対応関係を示すテーブル(以下「風向風速モデルテーブル」という。)Tが予め記憶されている。より具体的には、送風制御部23には、複数個の風向風速モデルMに対応する複数個の風向風速モデルテーブルTが予め記憶されている。複数個の単位領域A5は、空気調和対象空間S1をx方向、y方向及びz方向に所定間隔に分割してなるものである。
 図6は、複数個の風向風速モデルMのうちの1個の風向風速モデルMにおける、所定のx座標値に対応する部分の例を示している。図中、複数個の白抜きの矢印の各々は、対応する単位領域A5における風ベクトルDを示している。すなわち、風ベクトルDは、風向値Φ,Θに対応する向きを有し、かつ、風速値Vに対応する大きさを有するものである。また、線状の矢印は、当該1個の風向風速モデルMに対応する送風方向Φ,Θ及び送風風量Vによる送風制御を送風制御部23が実行した場合における、空気調和対象空間S1内に発生する気流F1の例を示している。
 例えば、図7に示す如く、空気調和対象空間S1内にガス機器(より具体的にはコンロ台及び当該コンロ台に載置されたガスコンロ)E1が設置されており、ガス機器E1の設置位置に対応する第2ガス検知対象領域A2における第2濃度値N2が閾値Nth以上であるものとする。この場合、送風制御部23は、複数個の風向風速モデルMのうち、ガス機器E1の設置位置に対応する単位領域A5及び当該単位領域A5に対する上方に配置された単位領域A5にて上昇気流が発生する風向風速モデルMを選択する。すなわち、図6に示す風向風速モデルMを選択する。
 送風制御部23は、当該選択された風向風速モデルMに対応する送風方向Φ,Θ及び送風風量Vによる送風制御を実行する。当該送風制御により、空気調和対象空間S1内の検知対象ガス(図中G)が上昇して、空気調和対象空間S1内の天井部を含む領域に誘導される。すなわち、当該送風制御がガス誘導用送風制御であり、当該天井部を含む領域がガス誘導対象領域A4に設定されている。
 送風制御部23及びガス検知処理部26により、制御装置100の要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17及び制御装置100により、室内機1の要部が構成されている。室内機1及び室外機2により、空気調和機200の要部が構成されている。
 次に、図8を参照して、制御装置100の要部のハードウェア構成について説明する。
 図8Aに示す如く、制御装置100はプロセッサ41及びメモリ42を有している。メモリ42のうちの不揮発性メモリには、送風制御部23及びガス検知処理部26の機能に対応するプログラムが記憶されている。プロセッサ41は、当該記憶されているプログラムをメモリ42のうちの揮発性メモリにロードして、当該ロードされたプログラムを実行する。これにより、送風制御部23及びガス検知処理部26の機能が実現される。
 または、図8Bに示す如く、制御装置100は処理回路43を有している。この場合、送風制御部23及びガス検知処理部26の機能が専用の処理回路43により実現される。
 または、制御装置100はプロセッサ41、メモリ42及び処理回路43を有している(不図示)。この場合、送風制御部23及びガス検知処理部26の機能のうちの一部の機能がプロセッサ41及びメモリ42により実現されて、残余の機能が専用の処理回路43により実現される。
 プロセッサ41は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)のうちの少なくとも一つにより構成されている。
 メモリ42のうちの揮発性メモリは、例えば、RAM(Random Access Memory)により構成されている。メモリ42のうちの不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)のうちの少なくとも一つにより構成されている。
 処理回路43は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)のうちの少なくとも一つにより構成されている。
 次に、図9のフローチャートを参照して、制御装置100の動作について、ガス検知処理及びガス誘導用送風制御を中心に説明する。
 送風制御部23が空気調和用送風制御を実行しているとき、ライダ17は、空気調和対象空間S1内を繰り返し走査する。ライダ17は、各回の走査において、複数個の視線方向Dの各々における距離-強度特性を取得する。ガス検知処理部26は、例えば、ライダ17による各回の走査が終了したとき、ステップST1の処理を実行する。
 まず、ステップST1にて、ガス検知処理部26がガス検知処理を実行する。すなわち、第1ガス濃度算出部24が個々の第1ガス検知対象領域A1における第1濃度値N1を算出して、第2ガス濃度算出部25が個々の第2ガス検知対象領域A2における第2濃度値N2を算出する。ガス検知処理の具体例は上記のとおりであるため、再度の説明は省略する。ガス検知処理部26は、第2ガス濃度分布情報を送風制御部23に出力する。
 次いで、ステップST2にて、送風制御部23は、ガス検知処理部26により出力された第2ガス濃度分布情報を用いて、ガス誘導用送風制御の実行の要否を判定する。送風制御部23による判定方法の具体例は上記のとおりであるため、再度の説明は省略する。
 ガス誘導用送風制御の実行が要であると判定された場合(ステップST2“YES”)、ステップST3にて、送風制御部23は、空気調和用送風制御を停止して、ガス誘導用送風制御を開始する。ガス誘導用送風制御の具体例は上記のとおりであるため、再度の説明は省略する。
 ステップST3にてガス誘導用送風制御が開始された後、ライダ17による走査、ガス検知処理部26によるガス検知処理、及び送風制御部23によるガス誘導用送風制御の実行要否の判定が繰り返し実行されるものであっても良い。送風制御部23は、ガス誘導用送風制御の実行要否の判定結果が「否」になったとき、すなわち閾値Nth以上の第2濃度値N2を有する第2ガス検知対象領域A2の個数が所定個未満になったとき、ガス誘導用送風制御を終了する。このとき、送風制御部23は、ステップST2“YES”のタイミングにて停止された空気調和用送風制御を再開するものであっても良い。
 このように、空気調和機200は、ライダ17を用いたガス検知処理を実行する。ガス検知処理にライダ17を用いることにより、室内機1の設置位置に対する近傍の領域における検知対象ガスを早期に検知することができるのはもちろんのこと、当該設置位置に対する遠方の領域における検知対象ガスも早期に検知することができる。
 また、空気調和機200は、ガス検知処理により高濃度の検知対象ガスが検知された場合(より具体的には、閾値Nth以上の第2濃度値N2を有する第2ガス検知対象領域A2の個数が所定個以上であると判定された場合)、ガス誘導用送風制御を実行する。ガス誘導対象領域A4は、例えば、空気調和対象空間S1内の天井部を含む領域に設定されている。通常、当該領域内に人がいる蓋然性は低い。したがって、かかるガス誘導用送風制御により、空気調和対象空間S1内の人を回避した領域に検知対象ガスを誘導することができる。また、検知対象ガスが都市ガスである場合、天井部にガス警報器が設けられている蓋然性が高い。したがって、かかるガス誘導用送風制御により、ガス警報器による早期の警報出力を実現することができる。
 なお、検知対象ガスは都市ガス又はプロパンガスに限定されるものではない。例えば、検知対象ガスはフロン(より具体的にはHFC)であっても良い。この場合、第2波長λONが3000~3100ナノメートルの範囲内の値に設定されているものであっても良い。または、例えば、検知対象ガスは二酸化炭素であっても良い。この場合、第2波長λONが1.6マイクロメートルに設定されており、かつ、閾値Nthが5000ppmに設定されているものであっても良い。
 また、ライダ17は、出力されるレーザ光Lの波長λを3段階以上に切替え自在なものであっても良い。これにより、ガス検知処理部26は、互いに異なる吸収線を有する複数種類の検知対象ガスの各々の濃度値Nを算出するものであっても良い。
 ここで、ライダ17を用いることにより、室内機1の設置位置よりも下方に位置する領内における検知対象ガスを検知することができるのはもちろんのこと、当該設置位置よりも上方に位置する領域における検知対象ガスを検知することもできる。これにより、検知対象ガスが都市ガス及びプロパンガスである場合、都市ガス及びプロパンガスの各々の検知を実現することができる。
 また、ガス誘導用送風制御においては、検知対象ガスの種類毎に異なる風向風速モデルMが選択されるものであっても良い。これは、検知対象ガスが有する粘性、検知対象ガスに含まれる分子の重さ、及び検知対象ガスに含まれる分子のサイズなどに応じて、検知対象ガスの誘導に要する風速値V(すなわち検知対象ガスの誘導に要する送風風量V)などが異なり得るためである。
 また、複数個の風向風速モデルMのうちの少なくとも一部の風向風速モデルMは、いわゆる「機械学習」による学習済みモデルを用いたものであっても良い。
 また、ガス検知処理部26は、第2ガス濃度算出部25を有しないものであっても良い。この場合、ガス検知処理部26は、第1ガス濃度分布情報を送風制御部23に出力するものであっても良い。送風制御部23は、第2濃度値N2に代えて第1濃度値N1を用いて、ガス誘導用送風制御の実行の要否を判定するとともに、ガス誘導用送風制御を実行するものであっても良い。ただし、濃度値Nと閾値Nthとの比較を安定させる観点から、すなわち検知対象ガスの検知を安定させる観点から、第2濃度値N2を用いるのがより好適である。
 また、送風制御部23には、風向風速モデルテーブルTに代えて、複数個の単位領域A5の各々における風向値Φ,Θのモデル(以下「風向モデル」という。)M’と、この風向モデルM’を実現するための送風方向Φ,Θとの対応関係を示すテーブル(以下「風向モデルテーブル」という。)T’が予め記憶されているものであっても良い。この場合、ガス誘導用送風制御における送風方向Φ,Θが選択された風向モデルM’に応じた値に設定される一方、ガス誘導用送風制御における送風風量Vは空気調和用送風制御における送風風量Vと同様の値に設定されるものであっても良い。ただし、ガス誘導用送風制御による誘導の精度を向上する観点から、風向風速モデルテーブルTを用いるのがより好適である。
 また、送風風量制御部22による送風風量Vの制御方法は、駆動モータ16におけるロータの回転数を制御する方法に限定されるものではない。例えば、室内機1は、風量調節用のダンパ(不図示)を有するものであっても良い。送風風量制御部22は、当該ダンパを制御することにより、すなわちダクト抵抗曲線を変化させることにより、送風風量Vを制御するものであっても良い。
 また、空気調和機200は空気調和用の機器であれば良く、エアコンに限定されるものではない。例えば、空気調和機200は、扇風機、送風機又はエアダクト装置により構成されているものであっても良い。
 また、1個の空気調和対象空間S1に対して、複数台の空気調和機200による空気調和システムが構成されているものであっても良い。この場合、当該複数台の空気調和機200が連携することにより、選択された風向風速モデルMによるガス誘導用送風制御が実現されるものであっても良い。これにより、複雑な風向風速モデルMによるガス誘導用送風制御を実現することができる。また、上昇気流により天井部を含む領域に誘導された検知対象ガスを当該領域内に滞留させることができる。この結果、当該誘導された検知対象ガスが空気調和対象空間S1内にて下降するのを防ぐことができる。
 以上のように、実施の形態1の空気調和機200は、ライダ17を用いて、空気調和対象空間S1における検知対象ガスの濃度値Nを算出するガス検知処理部26と、濃度値Nを用いて、空気調和対象空間S1に対する送風方向Φ,Θを制御する送風制御部23と、を備える。ライダ17を用いることにより、空気調和対象空間S1(より具体的にはガス検知対象空間S2)内の検知対象ガスを早期に検知することができる。また、ガス誘導用送風制御により、検知対象ガスを空気調和対象空間S1内の所定の領域に誘導することができる。
 また、ガス検知処理部26は、複数個の第1ガス検知対象領域A1の各々における第1濃度値N1を算出する第1ガス濃度算出部24と、第1濃度値N1を空間的に平均化することにより、1個以上の第2ガス検知対象領域A2の各々における第2濃度値N2を算出する第2ガス濃度算出部25と、を有し、送風制御部23は、第2濃度値N2を送風方向Φ,Θの制御に用いる。第2濃度値N2を用いることにより、第1濃度値N1を用いる場合に比して、濃度値Nと閾値Nthとの比較を安定させることができる。すなわち、検知対象ガスの検知を安定させることができる。
 また、送風制御部23は、濃度値Nを用いて、送風方向Φ,Θ及び空気調和対象空間S1に対する送風風量Vを制御する。送風方向Φ,Θに加えて送風風量Vを制御対象に含めることにより、ガス誘導用送風制御による誘導の精度を向上することができる。
 また、ガス検知処理部26は、複数個の第1ガス検知対象領域A1の各々における第1濃度値N1を算出する第1ガス濃度算出部24と、第1濃度値N1を空間的に平均化することにより、1個以上の第2ガス検知対象領域A2の各々における第2濃度値N2を算出する第2ガス濃度算出部25と、を有し、送風制御部23は、第2濃度値N2を送風方向Φ,Θ及び送風風量Vの制御に用いる。第2濃度値N2を用いることにより、第1濃度値N1を用いる場合に比して、濃度値Nと閾値Nthとの比較を安定させることができる。すなわち、検知対象ガスの検知を安定させることができる。
 また、個々の第1ガス検知対象領域A1のサイズは、ライダ17の空間分解能に応じた値に設定されており、個々の第2ガス検知対象領域A2のサイズは、ガス機器のサイズに応じた値に設定されている。これにより、例えば、検知対象ガスが都市ガス又はプロパンガスである場合において、個々の第2ガス検知対象領域A2のサイズを適切なサイズに設定することができる。
 また、送風制御部23は、送風方向Φ,Θを制御することにより、検知対象ガスを空気調和対象空間S1におけるガス誘導対象領域A4に誘導する。これにより、例えば、空気調和対象空間S1内の天井部を含む領域に検知対象ガスを誘導することができる。
 また、送風制御部23は、送風方向Φ,Θ及び送風風量Vを制御することにより、検知対象ガスを空気調和対象空間S1におけるガス誘導対象領域A4に誘導する。これにより、例えば、空気調和対象空間S1内の天井部を含む領域に検知対象ガスを誘導することができる。
 また、送風制御部23は、空気調和対象空間S1における天井部を含む領域をガス誘導対象領域A4に設定する。これにより、当該領域に検知対象ガスを誘導することができる。この結果、例えば、検知対象ガスが都市ガスである場合、ガス警報器による早期の警報出力を実現することができる。
 また、ライダ17により出力されるレーザ光Lの波長λが切替え自在であり、ガス検知処理部26は、複数種類の検知対象ガスの各々の濃度値Nを算出する。複数個の光発振器を有するライダ17、又は波長可変型の光発振器を有するライダ17を用いることにより、複数種類の検知対象ガスの各々を検知することができる。
 また、実施の形態1に係る制御方法は、空気調和機200の制御方法であって、ガス検知処理部26が、ライダ17を用いて、空気調和対象空間S1における検知対象ガスの濃度値Nを算出して、送風制御部23が、濃度値Nを用いて、空気調和対象空間S1に対する送風方向Φ,Θを制御する。これにより、空気調和機200による上記効果と同様の効果を得ることができる。
実施の形態2.
 図10は、実施の形態2に係る空気調和機の要部を示すブロック図である。図11は、実施の形態2に係る空気調和機の室内機の要部を示すブロック図である。図10及び図11を参照して、実施の形態2の空気調和機200aについて説明する。
 なお、図10において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図11において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 実施の形態1にて説明したとおり、ライダ17は、空気調和対象空間S1内を走査することにより、複数個の視線方向Dの各々における距離-強度特性を取得するものである。これに加えて、ライダ17は、当該走査により、複数個の視線方向Dの各々における、少なくとも1個の距離値Zに対応する地点(以下「風計測対象地点」という。)Prにおける、視線方向Dに対する風速値(以下「視線方向風速値」という。)Vrを取得するものである。各方式のライダによる視線方向風速値Vrの取得方法は公知であるため、詳細な説明は省略する。ライダ17は、角度値θ,φ及び視線方向風速値Vrを含む情報(以下「視線方向風速情報」という。)を風計測処理部29に出力するものである。
 風計測処理部29は、ライダ17により出力された視線方向風速情報を用いて、空気調和対象空間S1内のN個の領域(以下「風計測対象領域」という。)A6の各々における、方位角方向に対する風向値(すなわち第1風向値)Φ、仰俯角方向に対する風向値(すなわち第2風向値)Θ、及び風速値Vを算出するものである。N個の風計測対象領域A6の各々は、例えば、複数個の風計測対象地点Prのうちの対応するM個の風計測対象地点Prにより囲まれた領域である。ここで、Nは2以上の任意の整数であり、Mは3以上の任意の整数である。
 すなわち、風向値Φ,Θを算出する風向値算出部27、及び風速値Vを算出する風速値算出部28により、風計測処理部29の要部が構成されている。以下、風向値算出部27が風向値Φ,Θを算出する処理及び風速値算出部28が風速値Vを算出する処理を総称して「風計測処理」という。
 ここで、図12及び図13を参照して、風計測処理部29による風計測処理の具体例について説明する。以下、N個の風計測対象領域A6のうちの第nの風計測対象領域A6に係る各符号に「_n」を付すことがある(1≦n≦N)。また、第nの風計測対象領域A6に対応するM個の風計測対象地点Prのうちの第mの風計測対象地点Prに係る各符号に「_n_m」を付すことがある(1≦m≦M)。
 図12に示す如く、角度値φ_1_1,θ_1_1に対応する視線方向D_1_1、角度値φ_1_2,θ_1_2に対応する視線方向D_1_2、及び角度値φ_1_3,θ_1_3に対応する視線方向D_1_3の各々にライダ17がレーザ光Lを出力したものとする。これにより、3個の風計測対象地点Pr_1_1,Pr_1_2,Pr_1_3における3個の視線方向風速値Vr_1_1,Vr_1_2,Vr_1_3がそれぞれ取得される。
 ここで、個々の風計測対象地点Prにおける視線方向風速値Vrは、以下の式(7)により表される。Vuは、対応する風計測対象地点Prにおけるx方向に対する風速値である。Vvは、対応する風計測対象地点Prにおけるy方向に対する風速値である。Vwは、対応する風計測対象地点Prにおけるz方向に対する風速値である。
 Vr=Vu×sinφ×cosθ
   +Vv×cosφ×cosθ
   +Vw×sinθ      (7)
 角度値φ_1_1,φ_1_2,φ_1_3,θ_1_1,θ_1_2,θ_1_3、及び視線方向風速値Vr_1_1,Vr_1_2,Vr_1_3を上記式(7)に代入することにより、3個の変数Vu,Vv,Vwを含む三元連立方程式が得られる。風計測処理部29は、この三元連立方程式を解くことにより、第1の風計測対象領域A6_1における風速値Vu_1,Vv_1,Vw_1を算出する。図12に示す如く、第1の風計測対象領域A6_1は、3個の風計測対象地点Pr_1_1,Pr_1_2,Pr_1_3により囲まれた領域である。
 次いで、風向値算出部27は、上記式(7)により算出された風速値Vu_1,Vv_1を用いて、以下の式(8)により、第1の風計測対象領域A6_1における風向値Φを算出する。また、風向値算出部27は、上記式(7)により算出された風速値Vu_1,Vv_1,Vw_1を用いて、以下の式(9)により、第1の風計測対象領域A6_1における風向値Θを算出する。また、風速値算出部28は、上記式(7)により算出された風速値Vu_1,Vv_1,Vw_1を用いて、以下の式(10)により、第1の風計測対象領域A6_1における風速値Vを算出する。
 Φ=atan(Vu/Vv)         (8)
 Θ=atan{Vw/√(Vu+Vv)} (9)
 V=√(Vu+Vv+Vw)      (10)
 以下、ライダ17が空気調和対象空間S1内を走査しながら、上記と同様の処理が繰り返し実行される。最終的に、第Nの風計測対象領域A6_Nにおける風向値Φ,Θ及び風速値Vが算出される(図13参照)。
 すなわち、風向値算出部27は、個々の風計測対象領域A6内の風向及び風速が一様であるものとみなして、個々の風計測対象領域A6における風向値Φ,Θ及び風速値Vを算出するものである。したがって、個々の風計測対象領域A6のサイズは、個々の風計測対象領域A6内の風向及び風速が一様であるとみなすことができる程度に小さい値に設定するのが好適である。
 例えば、M個の角度値φ_n_1~φ_n_Mのうちの各2個の角度値φ_n間の差分値は、第nの風計測対象領域A6_nのサイズに応じた値(例えば2度)に設定されている。また、M個の角度値θ_n_1~θ_n_Mのうちの各2個の角度値θ_n間の差分値は、第nの風計測対象領域A6_nのサイズに応じた値(例えば2度)に設定されている。
 送風制御部23aは、空気調和用送風制御及びガス誘導用送風制御を実行するものである。実施の形態1にて説明したとおり、ガス誘導用送風制御には、複数個の風向風速モデルMのうちの選択された風向風速モデルMが用いられる。以下、当該選択された風向風速モデルMを「選択風向風速モデル」という。また、当該選択された風向風速モデルMを示す風向風速モデルテーブルTを「選択風向風速モデルテーブル」という。
 ここで、送風制御部23aは、風計測処理部29により算出された風向値Φ,Θ及び風速値Vを用いて、選択風向風速モデルテーブルTが示す送風方向Φ,Θ及び送風風量Vに対して、ガス誘導用送風制御における送風方向Φ,Θ及び送風風量Vを修正(すなわち補正)する機能を有している。以下、送風方向制御部21aが第1送風方向Φを修正する制御、送風方向制御部21aが第2送風方向Θを修正する制御、及び送風風量制御部22aが送風風量Vを修正する制御を総称して「補正制御」という。補正制御の具体例は以下のとおりである。
 まず、送風方向制御部21aは、個々の風計測対象領域A6における第1風向値Φと、選択風向風速モデルMにおける対応する単位領域A5における第1風向値Φとの差分値Φを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Φが算出される。
 また、送風方向制御部21aは、個々の風計測対象領域A6における第2風向値Θと、選択風向風速モデルMにおける対応する単位領域A5における第2風向値Θとの差分値Θを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Θが算出される。
 また、送風風量制御部22aは、個々の風計測対象領域A6における風速値Vと、選択風向風速モデルMにおける対応する単位領域A5における風速値Vとの差分値Vを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Vが算出される。
 次いで、送風方向制御部21aは、N個の差分値Φのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Φを所定の閾値Φthと比較する。比較用差分値Φは、例えば、N個の差分値Φのうちの最も大きい差分値Φである。または、送風方向制御部21aは、N個の差分値ΦによるRMS(Root Mean Square)誤差ΦRMSEを算出して、当該算出されたRMS誤差ΦRMSEを所定の閾値Φthと比較する。比較用差分値Φ又はRMS誤差ΦRMSEが閾値Φth以上である場合、送風方向制御部21aは、第1送風方向Φの修正が要であると判定する。他方、比較用差分値Φ又はRMS誤差ΦRMSEが閾値Φth未満である場合、送風方向制御部21aは、第1送風方向Φの修正が不要であると判定する。
 また、送風方向制御部21aは、N個の差分値Θのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Θを所定の閾値Θthと比較する。比較用差分値Θは、例えば、N個の差分値Θのうちの最も大きい差分値Θである。または、送風方向制御部21aは、N個の差分値ΘによるRMS誤差ΘRMSEを算出して、当該算出されたRMS誤差ΘRMSEを所定の閾値Θthと比較する。比較用差分値Θ又はRMS誤差ΘRMSEが閾値Θth以上である場合、送風方向制御部21aは、第2送風方向Θの修正が要であると判定する。他方、比較用差分値Θ又はRMS誤差ΘRMSEが閾値Θth未満である場合、送風方向制御部21aは、第2送風方向Θの修正が不要であると判定する。
 また、送風風量制御部22aは、N個の差分値Vのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Vを所定の閾値Vthと比較する。比較用差分値Vは、例えば、N個の差分値Vのうちの最も大きい差分値Vである。または、送風風量制御部22aは、N個の差分値VによるRMS誤差VRMSEを算出して、当該算出されたRMS誤差VRMSEを所定の閾値Vthと比較する。比較用差分値V又はRMS誤差VRMSEが閾値Vth以上である場合、送風風量制御部22aは、送風風量Vの修正が要であると判定する。他方、比較用差分値V又はRMS誤差VRMSEが閾値Vth未満である場合、送風風量制御部22aは、送風風量Vの修正が不要であると判定する。
 第1送風方向Φの修正が要であると判定された場合、送風方向制御部21aは、N個の差分値Φのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Φに応じた補正値Φを算出する。補正用差分値Φは、例えば、N個の差分値Φのうちの最も大きい差分値Φである。送風方向制御部21aは、当該算出された補正値Φに基づき、選択風向風速モデルテーブルTが示す第1送風方向Φに対して、ガス誘導用送風制御における第1送風方向Φを修正する。
 また、第2送風方向Θの修正が要であると判定された場合、送風方向制御部21aは、N個の差分値Θのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Θに応じた補正値Θを算出する。補正用差分値Θは、例えば、N個の差分値Θのうちの最も大きい差分値Θである。送風方向制御部21aは、当該算出された補正値Θに基づき、選択風向風速モデルテーブルTが示す第2送風方向Θに対して、ガス誘導用送風制御における第2送風方向Θを修正する。
 また、送風風量Vの修正が要であると判定された場合、送風風量制御部22aは、N個の差分値Vのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Vに応じた補正値Vを算出する。補正用差分値Vは、例えば、N個の差分値Vのうちの最も大きい差分値Vである。送風風量制御部22aは、当該算出された補正値Vに基づき、選択風向風速モデルテーブルTが示す送風風量Vに対して、ガス誘導用送風制御における送風風量Vを修正する。
 空気調和対象空間S1内の風向及び風速に関して、空気調和対象空間S1内の家具等の設置状況により、目標値(すなわちΦ,Θ,V)に対する計測値(すなわちΦ,Θ,V)の誤差が生ずることがある。このとき、送風制御部23aが補正制御を実行することにより、かかる誤差を小さくすることができる。この結果、ガス誘導用送風制御による誘導の精度を向上することができる。
 なお、ガス誘導用送風制御の実行中に、ライダ17が空気調和対象空間S1内を複数回走査して、風計測処理及び補正制御が複数回実行されるものであっても良い。これにより、上記誤差を次第に小さくすることができる。すなわち、補正制御は、いわゆる「フィードバック制御」によるものであっても良い。
 送風制御部23a、ガス検知処理部26及び風計測処理部29により、制御装置100aの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17及び制御装置100aにより、室内機1aの要部が構成されている。室内機1a及び室外機2により、空気調和機200aの要部が構成されている。
 制御装置100aの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23a、ガス検知処理部26及び風計測処理部29の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。
 次に、図14のフローチャートを参照して、制御装置100aの動作について、ガス検知処理、ガス誘導用送風制御、風計測処理及び補正制御を中心に説明する。なお、図14において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、図14Aに示す如く、ステップST1~ST3の処理が実行される。ステップST1~ST3の処理内容は、実施の形態1にて図9を参照して説明したものと同様であるため、再度の説明は省略する。
 ステップST3にてガス誘導用送風制御が開始された後、ライダ17は空気調和対象空間S1内を繰り返し走査する。図14Bに示す如く、ガス誘導用送風制御が終了するまで、ライダ17による走査に応じて、風計測処理及び補正制御が繰り返し実行される。
 すなわち、ステップST11にて、風計測処理部29が風計測処理を実行する。風計測処理の具体例は上記のとおりであるため、再度の説明は省略する。ステップST11の風計測処理により、N個の風計測対象領域A6の各々における風向値Φ,Θ及び風速値Vが算出される。
 次いで、ステップST12にて、送風方向制御部21aは、ステップST11の風計測処理により算出されたN個の第1風向値Φを用いて、第1送風方向Φの修正の要否を判定する。また、ステップST13にて、送風方向制御部21aは、ステップST11の風計測処理により算出されたN個の第2風向値Θを用いて、第2送風方向Θの修正の要否を判定する。また、ステップST14にて、送風風量制御部22aは、ステップST11の風計測処理により算出されたN個の風速値Vを用いて、送風風量Vの修正の要否を判定する。これらの判定方法の具体例は上記のとおりであるため、再度の説明は省略する。
 第1送風方向Φの修正が要であると判定された場合(ステップST12“YES”)、ステップST15にて、送風方向制御部21aは、ステップST3における選択風向風速モデルテーブルTが示す第1送風方向Φに対して、ガス誘導用送風制御における第1送風方向Φを修正する。他方、第1送風方向Φの修正が不要であると判定された場合(ステップST12“NO”)、ステップST15の処理はスキップされる。
 また、第2送風方向Θの修正が要であると判定された場合(ステップST13“YES”)、ステップST16にて、送風方向制御部21aは、ステップST3における選択風向風速モデルテーブルTが示す第2送風方向Θに対して、ガス誘導用送風制御における第2送風方向Θを修正する。他方、第2送風方向Θの修正が不要であると判定された場合(ステップST13“NO”)、ステップST16の処理はスキップされる。
 また、送風風量Vの修正が要であると判定された場合(ステップST14“YES”)、ステップST17にて、送風風量制御部22aは、ステップST3における選択風向風速モデルテーブルTが示す送風風量Vに対して、ガス誘導用送風制御における送風風量Vを修正する。他方、送風風量Vの修正が不要であると判定された場合(ステップST14“NO”)、ステップST17の処理はスキップされる。
 すなわち、ステップST15~ST17にて、送風制御部23aは、ガス誘導用送風制御の実行中に補正制御を実行する。補正制御の具体例は上記のとおりであるため、再度の説明は省略する。
 なお、実施の形態1にて説明したとおり、ライダ17は、第1波長光LOFFを出力自在なものであり、かつ、第2波長光LONを出力自在なものである。視線方向風速値Vrの取得には、第1波長光LOFFを用いるのが好適である。仮に、視線方向風速値Vrの取得に第2波長光LONを用いた場合、空気調和対象空間S1内に検知対象ガスが存在するとき、第2波長光LONが検知対象ガスにより吸収されて、視線方向風速値Vrの取得が困難となる可能性がある。これに対して、視線方向風速値Vrの取得に第1波長光LOFFを用いることにより、空気調和対象空間S1内の検知対象ガスの有無にかかわらず、視線方向風速値Vrを取得することができる。
 また、送風方向制御部21aは、RMS誤差ΦRMSEに代えて、N個の差分値Φの平均値を所定の閾値Φthと比較するものであっても良い。送風方向制御部21aは、RMS誤差ΘRMSEに代えて、N個の差分値Θの平均値を所定の閾値Θthと比較するものであっても良い。送風風量制御部22aは、RMS誤差VRMSEに代えて、N個の差分値Vの平均値を所定の閾値Vthと比較するものであっても良い。
 また、補正制御は、送風方向Φ,Θのみを対象とするものであっても良い。すなわち、送風風量Vは、補正制御の対象から除外されたものであっても良い。この場合、風計測処理における風速値Vの算出は不要である。また、図14Bに示すステップST14,ST17の処理は不要である。ただし、ガス誘導用送風制御による誘導の精度を向上する観点から、送風風量Vを補正制御の対象に含めるのがより好適である。
 また、補正制御は、第1送風方向Φのみを対象とするものであっても良い。すなわち、第2送風方向Θ及び送風風量Vは、補正制御の対象から除外されたものであっても良い。この場合、上記式(7)におけるVw×sinθの項は不要である。これにより、上記式(7)における変数の個数が2個になるため(すなわちVu及びVv)、個々の風計測対象領域A6に対応する風計測対象地点Prの個数はM=2であっても良い。ただし、ガス誘導用送風制御による誘導の精度を向上する観点から、第2送風方向Θ及び送風風量Vを補正制御の対象に含めるのがより好適である。
 また、送風制御部23aは、第2ガス濃度算出部25により出力された第2ガス濃度分布情報を用いて、高濃度の検知対象ガスが存在する領域(すなわち閾値Nth以上の第2濃度値N2を有する第2ガス検知対象領域A2に対応する領域)を風計測対象領域A6に設定するものであっても良い。これにより、高濃度の検知対象ガスが存在する領域における風向値Φ,Θ及び風速値Vに基づく補正制御を実行することができる。
 また、ライダ17は、パルス式のドップラーライダにより構成されているものであっても良い。これにより、ライダ17が1個の視線方向Dにレーザ光Lを出力したとき、この視線方向Dに沿うように配列された複数個の風計測対象地点Prの各々における視線方向風速値Vrを取得することができる。したがって、図15に示す如く、この視線方向Dに沿うように配列された複数個の風計測対象領域A6を一度に設定することができる。
 そのほか、空気調和機200aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態2の空気調和機200aは、ライダ17を用いて、空気調和対象空間S1における風向値Φ,Θを算出する風計測処理部29を備え、送風制御部23aは、濃度値N及び風向値Φ,Θを用いて、送風方向Φ,Θを制御する。送風方向Φ,Θを対象とする補正制御により、ガス誘導用送風制御による誘導の精度を向上することができる。
 また、空気調和機200aは、ライダ17を用いて、空気調和対象空間S1における風向値Φ,Θ及び風速値Vを算出する風計測処理部29を備え、送風制御部23aは、濃度値N並びに風向値Φ,Θ及び風速値Vを用いて、送風方向Φ,Θ及び送風風量Vを制御する。送風方向Φ,Θ及び送風風量Vを対象とする補正制御により、ガス誘導用送風制御による誘導の精度を更に向上することができる。
実施の形態3.
 図16は、実施の形態3に係る空気調和機の要部を示すブロック図である。図17は、実施の形態3に係る空気調和機の室内機の要部を示すブロック図である。図16及び図17を参照して、実施の形態3の空気調和機200bについて説明する。
 なお、図16において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図17において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 実施の形態1にて説明したとおり、ライダ17は、空気調和対象空間S1内を走査することにより、複数個の視線方向Dの各々における距離-強度特性を取得するものである。これに加えて、ライダ17は、当該走査により、いわゆる「強度画像」及び「距離画像」を生成するものである。強度画像における各画素は、当該画素に対応する視線方向Dにレーザ光Lを出力することにより得られた受信信号の強度値を示すものである。距離画像における各画素は、当該画素に対応する視線方向Dにレーザ光Lを出力することにより得られた距離値を示すものである。ライダ17は、当該生成された強度画像を示す画像情報(以下「強度画像情報」という。)、及び当該生成された距離画像を示す画像情報(以下「距離画像情報」)を出力するものである。以下、ライダ17により生成される画像を総称して「ライダ画像」ということがある。
 人検知処理部30は、ライダ17により出力された強度画像情報及び距離画像情報を用いて、空気調和対象空間S1における人を検知する処理(以下「人検知処理」という。)を実行するものである。人検知処理の具体例は以下の通りである。
 まず、人検知処理部30は、強度画像に対する閾値処理を実行することにより、ライダ画像における物体(いわゆる「ハードターゲット」)に対応する画素群を抽出する。通常、ハードターゲットに対応する画素群に含まれる個々の画素の強度値は、他の画素の強度値に対して10倍程度大きいものである。このため、強度画像に対する閾値処理を実行することにより、ライダ画像におけるハードターゲットに対応する画素群を抽出することができる。次いで、人検知処理部30は、強度画像又は距離画像に対するパターンマッチング処理を実行することにより、当該抽出された画素群が人に対応するものであるか否かを判定する。
 これにより、空気調和対象空間S1内に人がいるか否かを判定することができる。また、空気調和対象空間S1内に人がいる場合、空気調和対象空間S1における当該人の位置を検知することができる。特に、強度画像に加えて距離画像を用いることにより、x方向及びz方向に対する当該人の位置を検知することができるのはもちろんのこと、y方向に対する当該人の位置を検知することができる。すなわち、当該人の位置を高精度に検知することができる。
 人検知処理部30は、人検知処理の結果を示す情報(以下「検知結果情報」という。)を送風制御部23に出力する。送風制御部23は、人検知処理部30により出力された検知結果情報をガス誘導用送風制御に用いるものである。より具体的には、送風制御部23は、当該出力された検知結果情報を風向風速モデルMの選択に用いるものである。
 例えば、空気調和対象空間S1内に人がいる場合、人検知処理部30は、当該人の足元に対する送風が実現されるような風向風速モデルMを選択する。当該選択された風向風速モデル(すなわち選択風向風速テーブル)Mに対応する風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく送風制御により、図18に示す如く、当該人(図中H)の体に沿う上昇気流を含む気流F2が発生する。この上昇気流により、検知対象ガス(図中G)を天井部を含む領域に誘導することができる。
 なお、当該人(図中H)の位置が室内機1bとガス機器E1間の位置である場合、当該選択風向風速モデルテーブルTに基づく送風制御により、図19に示す如く、図18に示すものと同様の気流F2が発生するとともに、図7に示すものと同様の気流F1も発生する。これにより、図7に示す例と同様に、かつ、図18に示す例と同様に、検知対象ガス(図中G)を天井部を含む領域に誘導することができる。
 送風制御部23、ガス検知処理部26及び人検知処理部30により、制御装置100bの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17及び制御装置100bにより、室内機1bの要部が構成されている。室内機1b及び室外機2により、空気調和機200bの要部が構成されている。
 制御装置100bの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23、ガス検知処理部26及び人検知処理部30の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。
 次に、図20のフローチャートを参照して、制御装置100bの動作について、ガス検知処理、人検知処理及びガス誘導用送風制御を中心に説明する。なお、図20において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1,ST2の処理が実行される。ガス誘導用送風制御の実行が要であると判定された場合(ステップST2“YES”)、ステップST4にて、人検知処理部30が人検知処理を実行する。人検知処理の具体例は上記のとおりであるため、再度の説明は省略する。人検知処理部30は、検知結果情報を送風制御部23に出力する。
 次いで、ステップST3にて、送風制御部23がガス誘導用送風制御を開始する。このとき、送風制御部23は、人検知処理部30により出力された検知結果情報を風向風速モデルMの選択に用いる。ガス誘導用送風制御の具体例は上記のとおりであるため、再度の説明は省略する。
 なお、ライダ画像を用いた人検知処理における人の検知方法は、上記の具体例に限定されるものではない。当該人検知処理には、公知の種々の検知方法を用いることができる。
 また、図21に示す如く、制御装置100bは、実施の形態2にて説明したものと同様の風計測処理部29及び送風制御部23aを有するものであっても良い。この場合、図20に示すステップST3の処理が実行された後、図14Bに示すものと同様のステップST11~ST17の処理が実行されるものであっても良い。
 また、図22又は図23に示す如く、室内機1bに赤外線カメラ18が設けられているものであっても良い。赤外線カメラ18は、空気調和対象空間S1内を撮像するものである。赤外線カメラ18は、当該撮像された画像(いわゆる「赤外画像」)を示す画像情報(以下「赤外画像情報」という。)を送風制御部23又は送風制御部23aに出力する。送風制御部23又は送風制御部23aは、ライダ画像に代えて赤外画像を人検知処理に用いるものであっても良い。通常、赤外線カメラ18による撮像にかかる時間は、ライダ17による走査にかかる時間に比して短い。このため、ライダ画像に代えて赤外画像を用いることにより、人検知処理の高速化を図ることができる。
 ただし、ライダ画像に代えて赤外画像を人検知処理に用いる場合、x方向及びz方向に対する人の位置は検知することができるものの、y方向に対する人の位置を検知することは不可能又は困難である。そこで、図24又は図25に示す如く、送風制御部23又は送風制御部23aは、ライダ画像に加えて赤外画像を人検知処理に用いるものであっても良い。人検知処理に用いる画像の種類を増やすことにより、人検知処理の精度を更に向上することができる。
 また、ガス検知処理部26は、人検知処理部30による検知結果情報を用いて、空気調和対象空間S1内の人の位置に対応する領域を、ガス検知処理の対象となる領域(すなわち第1ガス検知対象領域A1及び第2ガス検知対象領域A2)に設定するものであっても良い。これにより、当該人の位置に対応する領域における濃度値Nを算出することができる。
 また、制御装置100bが風計測処理部29を有するものである場合、風計測処理部29は、人検知処理部30による検知結果情報を用いて、空気調和対象空間S1内の人の位置に対応する領域を、風計測処理の対象となる領域(すなわち風計測対象領域A6)に設定するものであっても良い。これにより、当該人の位置に対応する領域における風向値Φ,Θ及び風速値Vを算出することができる。なお、空気調和対象空間S1内に複数人の人がいる場合、例えば、各人の位置を中心とする所定範囲(例えば半径1メートルの範囲)内の領域が風計測処理の対象に設定されるものであっても良い。
 そのほか、空気調和機200bは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。例えば、ガス誘導用送風制御は、送風方向Φ,Θのみを対象とするものであっても良い。この場合、風計測処理は、風向値Φ,Θのみを対象とするものであっても良い。また、補正制御は、送風方向Φ,Θのみを対象とするものであっても良い。
 以上のように、実施の形態3の空気調和機200bは、空気調和対象空間S1における人を検知する処理を実行する人検知処理部30を備え、送風制御部23,23aは、人検知処理部30による検知結果を送風方向Φ,Θの制御に用いる。検知結果情報をガス誘導用送風制御(より具体的には風向風速モデルMの選択)に用いることにより、空気調和対象空間S1における人の有無及び位置に応じた気流を空気調和対象空間S1内に発生させることができる。
 また、空気調和機200bは、空気調和対象空間S1における人を検知する処理を実行する人検知処理部30を備え、送風制御部23,23aは、人検知処理部30による検知結果を送風方向Φ,Θ及び送風風量Vの制御に用いる。検知結果情報をガス誘導用送風制御(より具体的には風向風速モデルMの選択)に用いることにより、空気調和対象空間S1における人の有無及び位置に応じた気流を空気調和対象空間S1内に発生させることができる。
実施の形態4.
 図26は、実施の形態4に係る空気調和機の要部を示すブロック図である。図27は、実施の形態4に係る空気調和機の室内機の要部を示すブロック図である。図26及び図27を参照して、実施の形態4の空気調和機200cについて説明する。
 なお、図26において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図27において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 空気調和対象空間S1には、空気清浄用又は換気用の機器(以下「外部機器」という。)E2が設けられている。外部機器E2は、例えば、空気清浄機、換気扇又は自動開閉窓により構成されている。外部機器E2は、外部機器E2と通信自在なサーバ装置(不図示)により管理されているものであっても良い。室内機1cは、外部機器E2又はサーバ装置と通信自在な通信装置19を有している。通信装置19は、例えば、無線通信用の送信機及び受信機により構成されている。
 外部機器E2又はサーバ装置には、外部機器E2に関する情報(以下「外部機器情報」という。)が記憶されている。外部機器情報は、空気調和対象空間S1における外部機器E2の設置位置を示す情報(以下「外部機器設置位置情報」という。)を含むものである。
 外部機器情報取得部31は、通信装置19を用いて、外部機器E2又はサーバ装置に記憶されている外部機器情報を取得するものである。外部機器情報取得部31は、当該取得された外部機器情報を送風制御部23に出力するものである。
 送風制御部23は、送風制御部23により出力された外部機器情報をガス誘導用送風制御に用いるものである。より具体的には、送風制御部23は、当該出力された外部機器情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いるものである。
 例えば、外部機器設置位置情報に基づき、外部機器E2の設置位置を示す座標値が(x1,y1,z1)であるものとする。この場合、送風制御部23は、座標値(x1,y1,z1)に対応する領域、すなわち外部機器E2の設置位置に対応する領域をガス誘導対象領域A4に設定する。
 また、第2ガス濃度分布情報に基づき、高濃度の検知対象ガスが存在する領域を示す座標値が(x2,y2,z2)であるものとする。また、当該領域は、ガス機器E1の設置位置に対応する領域であるものとする。この場合、送風制御部23は、座標値(x2,y2,z2)に対応する始点を有し、かつ、座標値(x1,y1,z1)に対応する終点を有するベクトルDを算出する(図28参照)。送風制御部23は、当該算出されたベクトルDに対応する気流を含む気流F3が生成される風向風速モデルMを選択する。
 当該選択された風向風速モデル(すなわち選択風向風速モデル)Mを示す風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく送風制御により、外部機器E2の設置位置に対応する領域に検知対象ガスが誘導される。当該誘導された検知対象ガスは、空気清浄用の外部機器E2により除去又は吸収される。または、当該誘導された検知対象ガスは、換気用の外部機器E2により空気調和対象空間S1外に排出される。
 送風制御部23、ガス検知処理部26及び外部機器情報取得部31により、制御装置100cの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19及び制御装置100cにより、室内機1cの要部が構成されている。室内機1c及び室外機2により、空気調和機200cの要部が構成されている。
 制御装置100cの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23、ガス検知処理部26及び外部機器情報取得部31の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。
 次に、図29のフローチャートを参照して、制御装置100cの動作について、ガス検知処理及びガス誘導用送風制御を中心に説明する。なお、図29において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1,ST2の処理が実行される。ガス誘導用送風制御の実行が要であると判定された場合(ステップST2“YES”)、ステップST5にて、外部機器情報取得部31が外部機器情報を取得する。外部機器情報取得部31は、当該取得された外部機器情報を送風制御部23に出力する。
 次いで、ステップST3にて、送風制御部23がガス誘導用送風制御を開始する。このとき、送風制御部23は、外部機器情報取得部31により出力された外部機器情報を、ガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いる。ガス誘導用送風制御の具体例は上記のとおりであるため、再度の説明は省略する。
 なお、図30に示す如く、制御装置100cは、実施の形態2にて説明したものと同様の風計測処理部29及び送風制御部23aを有するものであっても良い。この場合、図29に示すステップST3の処理が実行された後、図14Bに示すものと同様のステップST11~ST17の処理が実行されるものであっても良い。
 そのほか、空気調和機200cは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態4の空気調和機200cは、空気調和対象空間S1における空気清浄用又は換気用の外部機器E2の設置位置を示す情報を取得する外部機器情報取得部31を備え、送風制御部23,23aは、外部機器情報取得部31により取得された情報を用いて、外部機器E2の設置位置に対応する領域をガス誘導対象領域A4に設定する。これにより、空気清浄用の外部機器E2による検知対象ガスの除去若しくは吸収、又は換気用の外部機器E2による検知対象ガスの排出を促進することができる。これにより、空気調和対象空間S1内の検知対象ガスの濃度を低下させることができる。
実施の形態5.
 図31は、実施の形態5に係る空気調和機の要部を示すブロック図である。図32は、実施の形態5に係る空気調和機の室内機の要部を示すブロック図である。図31及び図32を参照して、実施の形態5の空気調和機200dについて説明する。
 なお、図31において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図32において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 室内機1dは、専用の排気口を用いて、空気調和対象空間S1内の空気を空気調和対象空間S1外に排出する機能を有している。または、室内機1dは、専用の吸排気口を用いて、空気調和対象空間S1内の空気を空気調和対象空間S1外に排出するとともに、空気調和対象空間S1外の空気を空気調和対象空間S1内に供給する機能を有している。または、室内機1dは、室外機2を用いて、空気調和対象空間S1内の空気を空気調和対象空間S1外に排出する機能を有している。または、室内機1dは、室外機2を用いて、空気調和対象空間S1内の空気を空気調和対象空間S1外に排出するとともに、空気調和対象空間S1外の空気を空気調和対象空間S1内に供給する機能を有している。以下、これらの機能を総称して「換気機能」という。すなわち、空気調和機200dは、換気機能を有する型式のエアコンにより構成されている。
 室内機情報記憶部32には、室内機1dに関する情報(以下「室内機情報」という。)が記憶されている。室内機情報は、空気調和対象空間S1における室内機1dの設置位置を示す情報(以下「室内機設置位置情報」という。)を含むものである。
 送風制御部23は、室内機情報記憶部32に記憶されている室内機情報を取得して、当該取得された室内機情報をガス誘導用送風制御に用いるものである。より具体的には、送風制御部23は、当該取得された室内機情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いるものである。
 すなわち、送風制御部23は、室内機設置位置情報に基づき、室内機1dの設置位置に対応する領域をガス誘導対象領域A4に設定する。次いで、送風制御部23は、第2ガス濃度分布情報に基づき、空気調和対象空間S1内の検知対象ガスを当該設定されたガス誘導対象領域A4に誘導することができる気流F4を発生させるための風向風速モデルMを選択する(図33参照)。
 当該選択された風向風速モデル(すなわち選択風向風速モデル)Mを示す風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく送風制御により、室内機1dの設置位置に対応する領域に検知対象ガスが誘導される。当該誘導された検知対象ガスは、空気調和機200dが有する換気機能により、空気調和対象空間S1外に排出される。
 なお、図33に示す例における換気機能は、室外機2を用いて、空気調和対象空間S1内の空気を空気調和対象空間S1外に排出するとともに、空気調和対象空間S1外の空気を空気調和対象空間S1内に供給するものである。図中、矢印αは室外機2による排気を示しており、矢印βは室外機2による吸気を示している。
 送風制御部23、ガス検知処理部26及び室内機情報記憶部32により、制御装置100dの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17及び制御装置100dにより、室内機1dの要部が構成されている。室内機1d及び室外機2により、空気調和機200dの要部が構成されている。
 制御装置100dの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23及びガス検知処理部26の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。また、室内機情報記憶部32の機能は、メモリ42のうちの不揮発性メモリにより実現されるものであっても良い。
 制御装置100dの動作は、実施の形態1にて図9を参照して説明したものと同様であるため、図示及び説明を省略する。ただし、送風制御部23は、ガス誘導用送風制御を開始するとき(ステップST3)、室内機情報記憶部32に記憶されている室内機情報を取得して、当該取得された室内機情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いる。
 なお、図34に示す如く、制御装置100dは、実施の形態2にて説明したものと同様の風計測処理部29及び送風制御部23aを有するものであっても良い。この場合、ステップST3の処理が実行された後、図14Bに示すものと同様のステップST11~ST17の処理が実行されるものであっても良い。
 そのほか、空気調和機200dは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態5の空気調和機200dは、室内機1d及び室外機2により構成されており、かつ、換気機能を有し、送風制御部23,23aは、空気調和対象空間S1における室内機1dの設置位置に対応する領域をガス誘導対象領域A4に設定する。空気調和機200dが有する換気機能により、空気調和対象空間S1内の検知対象ガスを空気調和対象空間S1外に排出することができる。この結果、空気調和対象空間S1内の検知対象ガスの濃度を低下させることができる。
実施の形態6.
 図35は、実施の形態6に係る空気調和機の要部を示すブロック図である。図36は、実施の形態6に係る空気調和機の室内機の要部を示すブロック図である。図35及び図36を参照して、実施の形態6の空気調和機200eについて説明する。
 なお、図35において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図36において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 室内機1は、通信装置19を有している。通信装置19は、サーバ装置(不図示)と通信自在なものである。通信装置19は、例えば、無線通信用の送信機及び受信機により構成されている。
 サーバ装置には、空気調和対象空間S1に対応する部屋の構造を示す情報(以下「空間構造情報」という。)が記憶されている。空間構造情報は、例えば、当該部屋の3D-CAD(3-Dimensional Computer-Aided Design)データにより構成されている。また、空間構造情報は、空気調和対象空間S1における避難経路ERを示す情報(以下「避難経路情報」という。)を含むものである。避難経路情報は、空気調和対象空間S1における出口EOの位置を示す情報(以下「出口位置情報」という。)を含むものである。
 避難経路情報取得部33は、通信装置19を用いて、サーバ装置に記憶されている空間構造情報を取得するものである。避難経路情報取得部33は、当該取得された空間構造情報を送風制御部23に出力するものである。
 送風制御部23は、避難経路情報取得部33により出力された空間構造情報をガス誘導用送風制御に用いるものである。より具体的には、送風制御部23は、当該出力された空間構造情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いるものである。
 すなわち、送風制御部23は、避難経路情報に基づき、空気調和対象空間S1における避難経路ERを回避した領域をガス誘導対象領域A4に設定する。また、送風制御部23は、第2ガス濃度分布情報に基づき、空気調和対象空間S1内の検知対象ガスをガス誘導対象領域A4に誘導することができ、かつ、当該誘導された検知対象ガスをガス誘導対象領域A4内に閉じ込めることができるベクトルDを算出する。送風制御部23は、空間構造情報に基づき、いわゆる「エアカーテン」を形成することによりベクトルDを実現することができる気流F5に対応する風向風速モデルMを選択する。
 例えば、図37に示す如く、空気調和対象空間S1におけるx座標値が大きい側の端部(以下「左端部」という。)に避難経路ERが配置されているものとする。この場合、送風制御部23は、避難経路情報に基づき、空気調和対象空間S1におけるx座標値が小さい側の端部(以下「右端部」という。)を含む領域をガス誘導対象領域A4に設定する。
 ここで、図37Aに示す如く、ガス機器E1によるガス漏れが発生することにより、ガス機器E1の設置位置に対応する領域が、高濃度の検知対象ガス(図中G)が存在する領域になったものとする。当該領域を示す座標値が(x2,y2,z2)であるものとする。また、出口位置情報に基づき、出口EOの位置を示す座標値が(x3,y3,z3)であるものとする。
 この場合、送風制御部23は、座標値(x3,y3,z3)に対応する始点を有し、かつ、座標値(x2,y2,z2)に対応する終点を有するベクトルDを算出する(図37B参照)。次いで、送風制御部23は、ベクトルDを実現するためのエアカーテンを形成することができる気流F5に対応する風向風速モデルMを選択する。
 当該選択された風向風速モデル(すなわち選択風向風速モデル)Mを示す風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく送風制御により、空気調和対象空間S1内の右端部に検知対象ガスが誘導される(図37B参照)。また、エアカーテンにより、当該誘導された検知対象ガスがガス誘導対象領域A4内に閉じ込められる。
 このとき、通信装置19は、避難経路情報をリモコン3又はユーザUが所持している携帯情報端末(不図示)に送信する。リモコン3又は携帯情報端末は、ガス漏れが発生していることを示す画像、及び避難経路ERを示す画像などを表示する。ユーザUは、当該表示された画像を視認して、適切な経路により空気調和対象空間S1外に避難することができる(図37C参照)。
 送風制御部23、ガス検知処理部26及び避難経路情報取得部33により、制御装置100eの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19及び制御装置100eにより、室内機1eの要部が構成されている。室内機1e及び室外機2により、空気調和機200eの要部が構成されている。
 制御装置100eの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23、ガス検知処理部26及び避難経路情報取得部33の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。
 次に、図38のフローチャートを参照して、制御装置100eの動作について、ガス検知処理及びガス誘導用送風制御を中心に説明する。なお、図38において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1,ST2の処理が実行される。ガス誘導用送風制御の実行が要であると判定された場合(ステップST2“YES”)、次いで、ステップST6にて、避難経路情報取得部33が空間構造情報を取得する。避難経路情報取得部33は、当該取得された空間構造情報を送風制御部23に出力する。
 次いで、ステップST3にて、送風制御部23がガス誘導用送風制御を開始する。このとき、送風制御部23は、避難経路情報取得部33により出力された空間状態情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いる。
 なお、図39に示す如く、制御装置100eは、実施の形態2にて説明したものと同様の風計測処理部29及び送風制御部23aを有するものであっても良い。この場合、図38に示すステップST3の処理が実行された後、図14Bに示すものと同様のステップST11~ST17の処理が実行されるものであっても良い。
 また、制御装置100eは、実施の形態3にて説明したものと同様の人検知処理部30を有するものであっても良い(不図示)。この場合、送風制御部23は、避難経路情報取得部33により出力された空間構造情報に加えて、人検知処理部30により出力された検知結果情報をガス誘導対象領域A4の設定及び風向風速モデルMの選択に用いるものであっても良い。例えば、避難経路ERを回避した領域内に人が存在しているものとする。この場合、制御装置100eは、避難経路ERを回避した領域のうちの当該人を回避した領域をガス誘導対象領域A4に設定するものであっても良い。
 そのほか、空気調和機200eは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態6の空気調和機200eは、空気調和対象空間S1における避難経路ERを示す情報を取得する避難経路情報取得部33を備え、送風制御部23,23aは、避難経路情報取得部33により取得された情報を用いて、避難経路ERを回避した領域をガス誘導対象領域A4に設定する。これにより、検知対象ガスが避難経路に滞留するのを回避することができる。
 また、空気調和機200eは、空気調和対象空間S1における人を検知する処理を実行する人検知処理部30を備え、送風制御部23,23aは、人検知処理部30による検知結果に基づき、人を回避した領域をガス誘導対象領域A4に設定する。これにより、例えば、避難経路ERを回避した領域内に人がいる場合、当該人を回避した領域をガス誘導対象領域A4に設定することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明の空気調和機及び制御方法は、例えば、家庭用又は業務用のエアコンに用いることができる。
 1,1a,1b,1c,1d,1e 室内機、2 室外機、3 リモコン、11 第1風向板、12 第2風向板、13 送風ファン、14 駆動モータ、15 駆動モータ、16 駆動モータ、17 ライダ、18 赤外線カメラ、19 通信装置、21,21a 送風方向制御部、22,22a 送風風量制御部、23,23a 送風制御部、24 第1ガス濃度算出部、25 第2ガス濃度算出部、26 ガス検知処理部、27 風向値算出部、28 風速値算出部、29 風計測処理部、30 人検知処理部、31 外部機器情報取得部、32 室内機情報記憶部、33 避難経路情報取得部、41 プロセッサ、42 メモリ、43 処理回路、100,100a,100b,100c,100d,100e 制御装置、200,200a,200b,200c,200d,200e 空気調和機。

Claims (18)

  1.  ライダを用いて、空気調和対象空間における検知対象ガスの濃度値を算出するガス検知処理部と、
     前記濃度値を用いて、前記空気調和対象空間に対する送風方向を制御する送風制御部と、
     を備える空気調和機。
  2.  前記ライダを用いて、前記空気調和対象空間における風向値を算出する風計測処理部を備え、
     前記送風制御部は、前記濃度値及び前記風向値を用いて、前記送風方向を制御する
     ことを特徴とする請求項1記載の空気調和機。
  3.  前記ガス検知処理部は、複数個の第1ガス検知対象領域の各々における第1濃度値を算出する第1ガス濃度算出部と、前記第1濃度値を空間的に平均化することにより、1個以上の第2ガス検知対象領域の各々における第2濃度値を算出する第2ガス濃度算出部と、を有し、
     前記送風制御部は、前記第2濃度値を前記送風方向の制御に用いる
     ことを特徴とする請求項1又は請求項2記載の空気調和機。
  4.  前記送風制御部は、前記濃度値を用いて、前記送風方向及び前記空気調和対象空間に対する送風風量を制御することを特徴とする請求項1記載の空気調和機。
  5.  前記ライダを用いて、前記空気調和対象空間における風向値及び風速値を算出する風計測処理部を備え、
     前記送風制御部は、前記濃度値並びに前記風向値及び前記風速値を用いて、前記送風方向及び前記送風風量を制御する
     ことを特徴とする請求項4記載の空気調和機。
  6.  前記ガス検知処理部は、複数個の第1ガス検知対象領域の各々における第1濃度値を算出する第1ガス濃度算出部と、前記第1濃度値を空間的に平均化することにより、1個以上の第2ガス検知対象領域の各々における第2濃度値を算出する第2ガス濃度算出部と、を有し、
     前記送風制御部は、前記第2濃度値を前記送風方向及び前記送風風量の制御に用いる
     ことを特徴とする請求項4又は請求項5記載の空気調和機。
  7.  個々の前記第1ガス検知対象領域のサイズは、前記ライダの空間分解能に応じた値に設定されており、
     個々の前記第2ガス検知対象領域のサイズは、ガス機器のサイズに応じた値に設定されている
     ことを特徴とする請求項3又は請求項6記載の空気調和機。
  8.  前記送風制御部は、前記送風方向を制御することにより、前記検知対象ガスを前記空気調和対象空間におけるガス誘導対象領域に誘導することを特徴とする請求項1から請求項3のうちのいずれか1項記載の空気調和機。
  9.  前記送風制御部は、前記送風方向及び前記送風風量を制御することにより、前記検知対象ガスを前記空気調和対象空間におけるガス誘導対象領域に誘導することを特徴とする請求項4から請求項6のうちのいずれか1項記載の空気調和機。
  10.  前記空気調和対象空間における人を検知する処理を実行する人検知処理部を備え、
     前記送風制御部は、前記人検知処理部による検知結果を前記送風方向の制御に用いる
     ことを特徴とする請求項8記載の空気調和機。
  11.  前記空気調和対象空間における人を検知する処理を実行する人検知処理部を備え、
     前記送風制御部は、前記人検知処理部による検知結果を前記送風方向及び前記送風風量の制御に用いる
     ことを特徴とする請求項9記載の空気調和機。
  12.  前記送風制御部は、前記空気調和対象空間における天井部を含む領域を前記ガス誘導対象領域に設定することを特徴とする請求項8又は請求項9記載の空気調和機。
  13.  前記空気調和対象空間における空気清浄用又は換気用の外部機器の設置位置を示す情報を取得する外部機器情報取得部を備え、
     前記送風制御部は、前記外部機器情報取得部により取得された情報を用いて、前記外部機器の設置位置に対応する領域を前記ガス誘導対象領域に設定する
     ことを特徴とする請求項8又は請求項9記載の空気調和機。
  14.  当該空気調和機は、室内機及び室外機により構成されており、かつ、換気機能を有し、
     前記送風制御部は、前記空気調和対象空間における前記室内機の設置位置に対応する領域を前記ガス誘導対象領域に設定する
     ことを特徴とする請求項8又は請求項9記載の空気調和機。
  15.  前記空気調和対象空間における避難経路を示す情報を取得する避難経路情報取得部を備え、
     前記送風制御部は、前記避難経路情報取得部により取得された情報を用いて、前記避難経路を回避した領域を前記ガス誘導対象領域に設定する
     ことを特徴とする請求項8又は請求項9記載の空気調和機。
  16.  前記空気調和対象空間における人を検知する処理を実行する人検知処理部を備え、
     前記送風制御部は、前記人検知処理部による検知結果に基づき、前記人を回避した領域を前記ガス誘導対象領域に設定する
     ことを特徴とする請求項8又は請求項9記載の空気調和機。
  17.  前記ライダにより出力されるレーザ光の波長が切替え自在であり、
     前記ガス検知処理部は、複数種類の前記検知対象ガスの各々の前記濃度値を算出する
     ことを特徴とする請求項1から請求項16のうちのいずれか1項記載の空気調和機。
  18.  空気調和機の制御方法であって、
     ガス検知処理部が、ライダを用いて、空気調和対象空間における検知対象ガスの濃度値を算出して、
     送風制御部が、前記濃度値を用いて、前記空気調和対象空間に対する送風方向を制御する
     ことを特徴とする制御方法。
PCT/JP2019/001506 2019-01-18 2019-01-18 空気調和機及び制御方法 WO2020148897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980087883.5A CN113272597B (zh) 2019-01-18 2019-01-18 空调机和控制方法
EP19910535.4A EP3896356B1 (en) 2019-01-18 2019-01-18 Air conditioner and control method
PCT/JP2019/001506 WO2020148897A1 (ja) 2019-01-18 2019-01-18 空気調和機及び制御方法
JP2020566078A JP6910572B2 (ja) 2019-01-18 2019-01-18 空気調和機及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001506 WO2020148897A1 (ja) 2019-01-18 2019-01-18 空気調和機及び制御方法

Publications (1)

Publication Number Publication Date
WO2020148897A1 true WO2020148897A1 (ja) 2020-07-23

Family

ID=71614166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001506 WO2020148897A1 (ja) 2019-01-18 2019-01-18 空気調和機及び制御方法

Country Status (4)

Country Link
EP (1) EP3896356B1 (ja)
JP (1) JP6910572B2 (ja)
CN (1) CN113272597B (ja)
WO (1) WO2020148897A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990660A (zh) * 2024-04-02 2024-05-07 长春理工大学 一种基于光学遥感方式的气体含量测量装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909768A (zh) * 2022-04-08 2022-08-16 北京小米移动软件有限公司 空调控制方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
JP2012122950A (ja) * 2010-12-10 2012-06-28 Chiba Univ Ledライダー装置
WO2017013715A1 (ja) 2015-07-17 2017-01-26 三菱電機株式会社 空気調和装置の室内機、及びその室内機を備えた空気調和装置
WO2017183104A1 (ja) * 2016-04-19 2017-10-26 三菱電機株式会社 空気調和機
JP2017198536A (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 波長制御器及び差分吸収ライダ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016177A1 (ja) * 2008-08-07 2010-02-11 パナソニック株式会社 集塵装置
JP2011002166A (ja) * 2009-06-19 2011-01-06 Panasonic Corp 空気清浄システム
JP2011080621A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
CN106574898B (zh) * 2014-10-31 2019-07-12 松下知识产权经营株式会社 粒子检测传感器
JP2016109414A (ja) * 2014-11-28 2016-06-20 パナソニックIpマネジメント株式会社 除塵装置および除塵方法
JP6643633B2 (ja) * 2015-07-08 2020-02-12 パナソニックIpマネジメント株式会社 吸気装置および吸気方法
CN106338105B (zh) * 2015-07-08 2020-04-10 松下知识产权经营株式会社 吸气装置以及吸气方法
US9644857B1 (en) * 2015-12-01 2017-05-09 Nasser Ashgriz Virtual thermostat for a zonal temperature control
US10746426B2 (en) * 2015-12-08 2020-08-18 Carrier Corporation Agent detection system assisted by a building subsystem
WO2017109847A1 (ja) * 2015-12-22 2017-06-29 三菱電機株式会社 空気調和装置
JP6641457B2 (ja) * 2016-03-28 2020-02-05 三菱電機株式会社 空気調和機の室内機
US10775061B2 (en) * 2016-04-05 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105674514A (zh) * 2016-04-06 2016-06-15 珠海格力电器股份有限公司 空调器的控制方法和装置
KR20180080415A (ko) * 2017-01-03 2018-07-12 코웨이 주식회사 환기장치
CN107062520A (zh) * 2017-01-24 2017-08-18 深圳企管加企业服务有限公司 空调物联网监控方法及系统
US10030885B1 (en) * 2017-06-12 2018-07-24 Chengfu Yu Smart register device and method
CN107225933B (zh) * 2017-06-13 2020-04-07 奇瑞汽车股份有限公司 改善汽车内空气质量的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
JP2012122950A (ja) * 2010-12-10 2012-06-28 Chiba Univ Ledライダー装置
WO2017013715A1 (ja) 2015-07-17 2017-01-26 三菱電機株式会社 空気調和装置の室内機、及びその室内機を備えた空気調和装置
WO2017183104A1 (ja) * 2016-04-19 2017-10-26 三菱電機株式会社 空気調和機
JP2017198536A (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 波長制御器及び差分吸収ライダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896356A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990660A (zh) * 2024-04-02 2024-05-07 长春理工大学 一种基于光学遥感方式的气体含量测量装置及方法

Also Published As

Publication number Publication date
JP6910572B2 (ja) 2021-07-28
EP3896356B1 (en) 2023-01-04
JPWO2020148897A1 (ja) 2021-03-11
CN113272597A (zh) 2021-08-17
EP3896356A4 (en) 2022-01-05
CN113272597B (zh) 2023-04-04
EP3896356A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2019024826A1 (zh) 壁挂式空调室内机及其控制方法
WO2020148897A1 (ja) 空気調和機及び制御方法
JP6501973B2 (ja) 空気調和システム
EP1985936A1 (en) Air Conditioner and Control Method thereof
JP6719660B2 (ja) 空気調和装置
JP2015190666A (ja) 空気調和機の室内機及びこれを用いた空気調和機
US10088191B2 (en) Occupancy based control of air conditioning system
US20140044558A1 (en) Air blower and control method thereof
JP5289118B2 (ja) 空気調和機
JP2012052680A (ja) 空気調和機
CN113195980B (zh) 空气调节机以及控制方法
CN112696785A (zh) 空调器控制方法、控制系统和空调器
WO2021065808A1 (ja) 空気循環装置
WO2021104317A1 (zh) 用于检测空气洁净度的机器人和用于检测空气洁净度的方法
WO2021005736A1 (ja) 空気調和機、粒子除去システム及び制御方法
JP2018155440A (ja) 空調機システム
WO2022054126A1 (ja) 空調システム
WO2021084647A1 (ja) 空調システム及び制御装置
JP6701447B2 (ja) 空気調和機の室内機
JP6692134B2 (ja) 空気調和機
WO2021176553A1 (ja) 人検知装置、人検知システム、設備機器システム、人検知方法及びプログラム
JP7433023B2 (ja) 空気調和システム
WO2018193534A1 (ja) 空調室内機
JP2020143825A (ja) 送風システム
US20230204210A1 (en) System and method to detect flame rod/sensor malfunction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019910535

Country of ref document: EP

Effective date: 20210716