WO2017183104A1 - 空気調和機 - Google Patents
空気調和機 Download PDFInfo
- Publication number
- WO2017183104A1 WO2017183104A1 PCT/JP2016/062345 JP2016062345W WO2017183104A1 WO 2017183104 A1 WO2017183104 A1 WO 2017183104A1 JP 2016062345 W JP2016062345 W JP 2016062345W WO 2017183104 A1 WO2017183104 A1 WO 2017183104A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- high temperature
- detection means
- wind direction
- temperature object
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
Definitions
- the present invention relates to an air conditioner using a flammable refrigerant, and particularly relates to control when refrigerant leaks.
- HFC refrigerant R410A has been mainly used as the refrigerant filled in the refrigerant circuit in the air conditioner. Unlike the conventional HCFC refrigerant such as R22, this R410A has the property that the ozone depletion coefficient ODP is zero and does not destroy the ozone layer, but has a high global warming potential GWP. Therefore, as part of the prevention of global warming, there is a movement to change from an HFC refrigerant having a high GWP such as R410A to an HFC refrigerant having a low GWP.
- HFO-1234yf CF3CF ⁇ CH2; tetrafluoropropane
- these are a kind of HFC refrigerants unsaturated hydrocarbons having a carbon double bond are called olefins and are often expressed as HFO using O of olefins.
- HFO refrigerants these are referred to as HFO refrigerants, and carbon double bonds are included in the composition, such as R32 (CH2F2; difluoromethane) and R125 (CHF2-CF3; pentafluoroethane) constituting R410A. It shall be distinguished from the HFC refrigerant that does not have it.
- Such a low-GWP HFO refrigerant may be used as a single refrigerant, but is likely to be used as a mixed refrigerant with other HFC refrigerants represented by R32.
- HFO refrigerants, or mixed refrigerants of HFO refrigerants and HFC refrigerants are not as flammable as HC refrigerants such as R290 (C3H8; propane), but unlike non-flammable R410A, they are flammable at a slightly flammable level. have. Therefore, it is necessary to pay attention to the leakage of the refrigerant.
- the refrigerant having flammability including the slight flammability to the strong flammability is referred to as a flammable refrigerant.
- R32 Since R32 exhibits a slight flammability as a single refrigerant, that is, a flammable refrigerant, a mixed refrigerant of the HFO refrigerant and R32 also becomes a flammable refrigerant.
- R410A in which R125 is mixed with R125 is nonflammable due to the characteristics of R125.
- a temperature sensor and a refrigerant leakage determination unit are provided, and when the refrigerant temperature detected by the temperature sensor falls below a predetermined speed, the refrigerant leakage determination unit determines that the refrigerant is leaking, and A leak has been detected. And when the leakage of the refrigerant is detected, the indoor fan is operated so that the wind blows downward to prevent the refrigerant accumulated in the room from diffusing and increasing the concentration to the ignition concentration. Avoids ignition of leaking refrigerant.
- Patent Document 1 when an object that can serve as an ignition source such as a stove is arranged at a position close to an indoor unit of an air conditioner and in which refrigerant is likely to accumulate, for example, a wind blows downward in the room. Even if the accumulated refrigerant is diffused, the refrigerant may accumulate again near what can become an ignition source, and the concentration may increase to the ignition concentration, and there is a possibility that ignition of the leaked refrigerant cannot be avoided.
- an object that can serve as an ignition source such as a stove is arranged at a position close to an indoor unit of an air conditioner and in which refrigerant is likely to accumulate, for example, a wind blows downward in the room. Even if the accumulated refrigerant is diffused, the refrigerant may accumulate again near what can become an ignition source, and the concentration may increase to the ignition concentration, and there is a possibility that ignition of the leaked refrigerant cannot be avoided.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can reliably avoid ignition of a leaked refrigerant when the refrigerant leaks.
- An air conditioner includes a housing provided with a suction port and a blow-out port, a fan disposed in an air path extending from the suction port to the blow-out port inside the housing, and the air flow path
- a control device that controls the left and right wind direction plates, wherein the control device detects the refrigerant by the refrigerant detection means, and detects a temperature equal to or higher than a reference value by the temperature detection means.
- the control device detects the leakage of the refrigerant by the refrigerant detection unit, and detects the high temperature object having a temperature equal to or higher than the reference value by the temperature detection unit, the heading toward the high temperature object.
- the vertical and horizontal wind direction plates are controlled so that the wind blows. Therefore, the refrigerant can be diffused from around a high-temperature object that can be an ignition source, and ignition of the leaked refrigerant can be reliably avoided when the refrigerant leaks.
- FIG. 1 is a schematic diagram showing a refrigerant circuit 10 of an air conditioner 1 according to Embodiment 1 of the present invention.
- the solid line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation
- the broken line arrow indicates the flow of the refrigerant during the heating operation.
- the air conditioner 1 includes an indoor unit 20 and an outdoor unit 30.
- the indoor unit 20 includes an indoor heat exchanger 21 and an indoor fan 22.
- the outdoor unit 30 includes an outdoor heat exchanger 31, an outdoor fan 32, a compressor 33, a four-way switching valve 34, and an expansion valve 35.
- the indoor unit 20 and the outdoor unit 30 are connected via an external connection pipe composed of a gas pipe 11 and a liquid pipe 12, thereby constituting a refrigerant circuit 10 filled with a refrigerant.
- the compressor 33, the four-way switching valve 34, the outdoor heat exchanger 31, the expansion valve 35, and the indoor heat exchanger 21 are sequentially connected by piping, and the refrigerant circulates.
- the vapor compression refrigeration cycle operates in the refrigerant circuit 10.
- a mixed refrigerant of HFO-1234yf which is a kind of HFO refrigerant
- R32 which is a kind of HFC refrigerant
- Both HFO-1234yf and R32 have a slightly flammable level, and this mixed refrigerant is a flammable refrigerant.
- the combustible range of the refrigerant gas concentration of air is 6.2 to 12.3 vol% for HFO1234yf, and 14.4 to 29.3 vol% for R32. Since these mixed refrigerants are used here, mixing is performed. Depending on the ratio, the lower limit of the flammable concentration range is larger than 6.2 vol% and the upper limit is smaller than 29.3 vol%.
- the cooling operation and the heating operation can be switched by switching the route of the four-way switching valve 34.
- the air conditioner 1 performs a cooling operation.
- the air conditioner 1 performs the heating operation.
- FIG. 2 is a schematic diagram showing an installation example of the indoor unit 20 of the air conditioner 1 according to Embodiment 1 of the present invention
- FIG. 3 shows the interior of the air conditioner 1 according to Embodiment 1 of the present invention
- FIG. 4 is a schematic view of a vertical section of the machine 20 as viewed from the side
- FIG. 4 is an enlarged schematic view of the vicinity of the outlet 23b of the indoor unit 20 of the air conditioner 1 according to Embodiment 1 of the present invention.
- the arrow in FIG. 2 indicates the direction in which the wind blows
- the arrow in FIG. 3 indicates the direction in which the up-and-down wind direction plate 25 moves
- the arrow in FIG. The direction of movement is shown.
- the indoor unit 20 is installed on the wall of the room 2, and the high temperature object 3 is installed in the same room 2, that is, the room.
- the high temperature object 3 is an object having a portion where the surface temperature is equal to or higher than a reference value, for example, an object having a portion where the surface temperature is 100 ° C. or higher, such as a stove or a stove.
- the indoor unit 20 includes a housing 23 formed in a horizontally long rectangular parallelepiped shape, and a suction port 23 a for sucking room air is formed on the top surface of the housing 23.
- a blowout port 23b for blowing out conditioned air is formed on the lower surface of the housing 23.
- the housing 23 is not limited to a horizontally long rectangular parallelepiped shape, and there is one opening for sucking indoor air such as the suction port 23a and one opening for blowing conditioned air such as the blowout port 23b. Any shape may be used as long as it is a box shape provided as described above.
- a left and right wind direction plate 24 that moves horizontally or right and left to change the left and right wind directions, and a vertical wind direction plate 25 that moves vertically or vertically and changes the up and down wind directions are provided.
- the indoor fan 22 that generates an air flow by driving a motor (not shown).
- An indoor heat exchanger 21 that generates heat of conditioned air by exchanging heat between the indoor air and the refrigerant is disposed.
- the indoor fan 22 corresponds to the “fan” of the present invention, and the conditioned air corresponds to “blowout air” of the present invention.
- the indoor unit 20 includes a temperature detection unit 26 that detects the temperature distribution in the room, a refrigerant detection unit 27 that detects leakage of the indoor refrigerant, and a distance measurement unit 28 that measures the distance to the object.
- the temperature detection unit 26 is, for example, a sensor that detects a thermal image in the room 2 by arranging a large number of pyroelectric elements that react to an object having a high temperature.
- the refrigerant detection means 27 is, for example, a semiconductor gas sensor that detects a change in resistance value that occurs when a metal oxide-semiconductor is in contact with a refrigerant gas as a refrigerant gas concentration in the air.
- a semiconductor gas sensor for example, a non-dispersive infrared sensor that detects the amount of infrared rays absorbed by the gas, a refrigerant gas concentration cannot be measured, but a detector that can detect the presence or absence of a refrigerant gas, An oxygen concentration meter that measures the indoor oxygen concentration may be used.
- the distance measuring means 28 is, for example, a laser distance meter that can instantaneously measure the distance to the object by reflection of laser light. And the distance of the indoor unit 20 and the high temperature object 3 can be measured by detecting the high temperature object 3 used as a target object with the temperature detection means 26.
- FIG. infrared sensor that acquires a thermal image and calculates a distance to the object from the thermal image may be used.
- the indoor unit 20 includes a control device 29 that controls the left and right wind direction plates 24, the up and down wind direction plates 25, the indoor fan 22, and the like.
- the control device 29 includes, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. Is done.
- the indoor air sucked from the suction port 23a is heat-exchanged with the refrigerant flowing inside the indoor heat exchanger 21 when passing through the indoor heat exchanger 21, and in the cooling operation, the heat is taken away, and the heating operation is performed. If there is, heat is applied and the indoor fan 22 is reached. After that, the conditioned air that has passed through the air passage is blown out from the outlet 23b toward the room.
- FIG. 5 is a flowchart showing an example of control of the indoor unit 20 of the air conditioner 1 according to Embodiment 1 of the present invention.
- the control device 29 detects the presence or absence of the refrigerant by the refrigerant detection means 27, and determines whether or not the refrigerant is leaking into the room (step S1). At this time, the control apparatus 29 determines with the refrigerant
- Step S1 When it is determined that the refrigerant is leaking into the room (Yes in Step S1), the control device 29 determines whether or not the compressor 33 is in operation (Step S2). When it is determined that the compressor 33 is in operation (Yes in Step S2), the control device 29 stops the operation of the compressor 33 (Step S3) and proceeds to Step S4.
- step S2 when it is determined that the compressor 33 is not in operation (No in step S2), the control device 29 proceeds to step S4 without going through step S3.
- the compressor 33 when the compressor 33 is in operation, the refrigerant 33 is further prevented from leaking by stopping the operation of the compressor 33.
- the control device 29 detects the temperature of the room by the temperature detecting means 26 and determines whether or not the high temperature object 3 exists in the room (step S4). At this time, the control device 29 determines that the high-temperature object 3 exists in the room when the temperature detection unit 26 detects an object having a portion whose surface temperature is equal to or higher than the reference value.
- control device 29 measures the distance from the indoor unit 20 to the high temperature object 3 by the distance measuring unit 28 (step S5), and the distance is the reference value. It is determined whether it is within (step S6).
- step S6 When the control device 29 determines that the distance from the indoor unit 20 to the high temperature object 3 is within the reference value (Yes in step S6), the air flow velocity (hereinafter also referred to as a flow velocity) blown out from the blow outlet 23b becomes the maximum flow velocity.
- the number of rotations of the indoor fan 22 is controlled (step S7), and the vertical and horizontal wind direction plates 25 and 24 are controlled so that the wind blows toward the high temperature object 3 (step S8).
- the refrigerant can be diffused from the periphery of the high temperature object 3 that can be an ignition source. It is possible to prevent a combustible gas phase from being formed around the object 3. Therefore, ignition to the leaked refrigerant can be avoided reliably. Further, by controlling the rotation speed of the indoor fan 22 so that the airflow speed blown out from the blowout port 23b becomes the maximum flow velocity, the airflow speed around the high temperature object 3 can be made larger than the combustion speed of the refrigerant. Therefore, ignition to the leaked refrigerant can be avoided more reliably.
- control device 29 determines that the distance from the indoor unit 20 to the high-temperature object 3 is not within the reference value (No in step S6), the indoor fan 22 is set so that the airflow velocity blown from the blowout port 23b becomes the maximum flow velocity.
- the vertical wind direction plate 25 is controlled so that the wind blows downward, and the right and left wind direction plates 24 are set so that the wind blows in a direction different from the high temperature object 3.
- Control step S10. For example, when the high temperature object 3 is arranged on the right side of the indoor unit 20, the wind blows to the left, and when the high temperature object 3 is arranged on the left side of the indoor unit 20, the right side Make the wind blow in the direction.
- the refrigerant collected in the room can be efficiently diffused by controlling the up / down wind direction plate 25 so that the wind blows downward. Further, by controlling the left and right wind direction plates 24 so that the wind blows in a direction different from that of the high temperature object 3, the refrigerant can be diffused in a direction different from that of the high temperature object 3 that can be an ignition source. It is possible to prevent a combustible gas phase from being formed in the vicinity of 3. Therefore, ignition to the leaked refrigerant can be avoided reliably.
- the diffusion of the refrigerant can be promoted by controlling the rotational speed of the indoor fan 22 so that the airflow velocity blown out from the blowout port 23b becomes the maximum flow velocity. Therefore, ignition to the leaked refrigerant can be avoided more reliably.
- step S4 determines that the high-temperature object 3 does not exist in the room (No in step S4), the controller 29 controls the rotational speed of the indoor fan 22 so that the airflow speed blown out from the air outlet 23b becomes the maximum flow speed (step S11), the vertical wind direction plate 25 is controlled so that the wind blows downward (step S12).
- the refrigerant collected in the room can be efficiently diffused by controlling the up / down wind direction plate 25 so that the wind blows downward. Therefore, ignition to the leaked refrigerant can be avoided.
- the diffusion of the refrigerant can be promoted by controlling the rotational speed of the indoor fan 22 so that the airflow velocity blown out from the blowout port 23b becomes the maximum flow velocity. Therefore, ignition to the leaked refrigerant can be avoided reliably.
- the vertical wind direction plate 25 and the left and right wind direction plates 24 can be controlled so that the wind blows toward the high temperature object 3.
- the refrigerant can be diffused from the periphery of the high temperature object 3 and the formation of a combustible gas phase around the high temperature object 3 can be prevented. Therefore, ignition to the leaked refrigerant can be avoided reliably.
- the airflow generated by the indoor fan 22 causes an energy loss due to the influence of the viscosity of the indoor air before reaching the high temperature object 3, and the speed decreases as the distance from the indoor unit 20 increases.
- the energy loss increases and the air velocity decreases.
- the airflow speed around the high temperature object 3 is lower than the combustion speed of the refrigerant, and the certainty of avoiding the ignition of the leaked refrigerant is impaired. In such a case, if the wind blows downward and in a direction different from that of the high-temperature object 3, ignition of the leaked refrigerant can be avoided more reliably.
- the limit distance that can sufficiently diffuse the refrigerant around the high temperature object 3 is used as a reference value.
- the margin is 1 m, for example.
- the control device 29 detects the leakage of the refrigerant with the refrigerant detection unit 27 and has a temperature higher than the reference value with the temperature detection unit 26. If the thing 3 is detected, the up-and-down wind direction board 25 and the left-right wind direction board 24 will be controlled so that a wind may blow toward the high temperature object 3. Therefore, the refrigerant can be diffused from the periphery of the high temperature object 3 that can be an ignition source, and the formation of a combustible gas phase around the high temperature object 3 can be prevented. Can be reliably avoided. Further, by controlling the rotational speed of the indoor fan 22 so that the airflow velocity blown out from the blowout port 23b becomes the maximum flow velocity, it is possible to more reliably avoid the ignition of the leaked refrigerant.
- the temperature detection means 26 and the refrigerant detection means 27 may be activated when the operation is stopped, or may be stopped when the operation is stopped. By activating the temperature detection means 26 and the refrigerant detection means 27 even when the operation is stopped, the state of the room 2 can always be monitored. When the operation is stopped, the temperature detection means 26 and the refrigerant detection means 27 are stopped. , Standby power can be reduced. In addition, the user may arbitrarily select whether to activate the temperature detection unit 26 and the refrigerant detection unit 27.
- Embodiment 2 FIG.
- the second embodiment of the present invention will be described. However, the description of (a part of) the same as that of the first embodiment is omitted, and the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Attached. FIG. 4 is also used in the second embodiment.
- FIG. 6 is a flowchart showing an example of control of the indoor unit 20 of the air conditioner 1 according to Embodiment 2 of the present invention.
- the rotational speed of the indoor fan 22 is controlled so that the airflow speed blown from the air outlet 23b becomes the maximum flow velocity.
- the rotational speed of the indoor fan 22 is controlled so that the airflow speed around the high temperature object 3 is higher than the combustion speed of the refrigerant.
- the distance from the indoor unit 20 to the high temperature object 3 is within the reference value is shorter than the limit distance at which the refrigerant around the high temperature object 3 can be sufficiently diffused, and the air flow velocity becomes the maximum flow velocity.
- the refrigerant around the high temperature object 3 can be sufficiently diffused without increasing the rotational speed of the indoor fan 22.
- the airflow speed is reduced to a required speed, that is, the rotational speed of the indoor fan 22 is reduced to a required value.
- step S13 steps other than step S13 and step S14 are the same as those in FIG.
- the control device 29 determines the distance from the indoor unit 20 to the high temperature object 3 and the refrigerant used. Based on the combustion speed, the airflow speed to be set is calculated, and the airflow speed is set (step S13).
- the refrigerant used in the second embodiment is a mixed refrigerant of HFO1234yf and R32, and the combustion speed of the refrigerant is about 3.1 cm / s. For this reason, a value obtained by adding the energy loss corresponding to the distance from the indoor unit 20 to the high-temperature object 3 to the combustion speed, or further adding a margin is set as the airflow speed. That is, the speed at which the airflow speed around the high temperature object 3 becomes faster than the combustion speed of the refrigerant is set.
- the control device 29 sets the airflow speed (step S13), and controls the rotational speed of the indoor fan 22 so that the airflow speed blown out from the outlet 23b becomes the set airflow speed ( In step S14, the vertical wind direction plate 25 and the left and right wind direction plate 24 are controlled so that the wind blows toward the high temperature object 3 (step S8).
- the air flow speed to be set is calculated based on the distance from the indoor unit 20 to the high temperature object 3 and the combustion speed of the refrigerant used,
- the rotational speed of the indoor fan 22 is controlled so that the airflow speed blown from the opening 23b becomes the set airflow speed. That is, the indoor fan is configured such that the airflow speed blown out from the outlet 23b becomes the maximum flow velocity as in the first embodiment by suppressing the airflow speed to the required speed, that is, the rotational speed of the indoor fan 22 to a required value.
- the rotational speed of 22 is increased, noise and power consumption can be reduced.
- Air conditioner 2 rooms, 3 hot materials, 10 refrigerant circuit, 11 gas piping, 12 liquid piping, 20 indoor units, 21 indoor heat exchanger, 22 indoor fans, 23 housing, 23a inlet, 23b outlet, 24 left and right wind direction plate, 25 up and down wind direction plate, 26 temperature detection means, 27 refrigerant detection means, 28 distance measurement means, 29 control device, 30 outdoor unit, 31 outdoor heat exchanger, 32 outdoor fan, 33 compressor, 34 four way switching Valve, 35 expansion valve.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空気調和機は、吸い込み口および吹き出し口が設けられた筐体と、筐体の内部で吸い込み口から吹き出し口に至る風路内に配置されたファンと、風路内に配置され、ファンによって吸い込み口から吸い込まれた室内空気と冷媒とを熱交換する熱交換器と、吹き出し口に設けられ、吹き出し空気の上下の風向を変更する上下風向板と、吹き出し口に設けられ、吹き出し空気の左右の風向を変更する左右風向板と、室内の温度を検知する温度検知手段と、室内の冷媒を検知する冷媒検知手段と、ファン、上下風向板、および、左右風向板を制御する制御装置と、を備え、制御装置は、冷媒検知手段により冷媒を検知し、かつ、温度検知手段により基準値以上の温度を有する高温物を検知した場合に、高温物に向かって風が吹くように上下風向板および左右風向板を制御するものである。
Description
本発明は、可燃性冷媒を用いた空気調和機に関し、特に冷媒漏洩時の制御に関するものである。
これまで空気調和機には、冷媒回路に充填される冷媒としてHFC冷媒のR410Aが主として用いられていた。このR410Aは、従来のR22のようなHCFC冷媒と異なり、オゾン層破壊係数ODPがゼロであってオゾン層を破壊することはないが、地球温暖化係数GWPが高いという性質を有している。そのため、地球の温暖化防止の一環とし、R410AのようなGWPが高いHFC冷媒から、GWPが低いHFC冷媒へと変更する動きが出てきている。
そのような低GWPのHFC冷媒としては、例えば、組成中に炭素の二重結合を有するハロゲン化炭化水素があり、代表的なものとして、HFO-1234yf(CF3CF=CH2;テトラフルオロプロパン)、HFO-1234ze(CF3-CH=CHF)、HFO-1123(CF2=CHF)などがある。これらはHFC冷媒の一種ではあるが、炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれることから、オレフィンのOを使って、HFOと表現されることが多い。そこで本明細書においては、これらをHFO冷媒と称して、R410Aを構成するR32(CH2F2;ジフルオロメタン)およびR125(CHF2-CF3;ペンタフルオロエタン)のように、組成中に炭素の二重結合を持たないHFC冷媒と区別するものとする。
このような低GWPのHFO冷媒は、単一冷媒として用いられる場合もあり得るが、R32に代表されるような他のHFC冷媒との複数種の混合冷媒として用いられる可能性が高い。これらHFO冷媒、もしくはHFO冷媒とHFC冷媒との混合冷媒は、R290(C3H8;プロパン)のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性を有している。そのため、冷媒漏洩に対する注意が必要であり、これ以降、微燃性から強燃性まで含めて可燃性を有する冷媒のことを可燃性冷媒と称する。R32は単体冷媒としてはHFO冷媒と同じように微燃性を呈する、すなわち可燃性冷媒であるので、HFO冷媒とR32との混合冷媒も可燃性冷媒となる。なお、R32にR125が混合されたR410AはR125の特性により不燃性である。
このような可燃性冷媒は、室内に漏洩した場合、漏洩冷媒が拡散することなく滞留すれば、そこに可燃濃度の気相が形成される可能性があり、もしこの可燃濃度の気相に何らかの着火源となり得るものが存在していれば、冷媒に引火する恐れがある。そのような室内における漏洩冷媒への引火という事態の発生を回避するためには、空気調和機としてまずは、冷媒の漏洩を検知することが必要となってくる。
そこで、従来、冷媒の漏洩を検知する空気調和機が提案されている(例えば、特許文献1参照)。
そこで、従来、冷媒の漏洩を検知する空気調和機が提案されている(例えば、特許文献1参照)。
特許文献1では、温度センサと冷媒漏洩判断部とを備え、温度センサが検知した冷媒温度が所定速度を越えて下降した時に、冷媒漏洩判定部は冷媒が漏洩していると判断し、冷媒の漏洩を検知している。そして、冷媒の漏洩を検知した場合には、室内ファンを運転して下に向かって風が吹くようにすることで、室内に溜まった冷媒を拡散し、着火濃度まで濃度上昇するのを防止し、漏洩冷媒への引火を回避している。
特許文献1は、空気調和機の室内機から近く、冷媒が溜まりやすい位置に、例えばストーブなどの着火源となり得るものが配置されていた場合、下に向かって風が吹くようにして室内に溜まった冷媒を拡散したとしても、再び着火源となり得るものの近くに冷媒が溜まり、着火濃度まで濃度上昇してしまう恐れがあり、漏洩冷媒への引火を回避できない可能性があった。
本発明は、以上のような課題を解決するためになされたもので、冷媒漏洩時において漏洩冷媒への引火を確実に回避することができる空気調和機を提供することを目的としている。
本発明に係る空気調和機は、吸い込み口および吹き出し口が設けられた筐体と、前記筐体の内部で前記吸い込み口から前記吹き出し口に至る風路内に配置されたファンと、前記風路内に配置され、前記ファンによって前記吸い込み口から吸い込まれた室内空気と冷媒とを熱交換する熱交換器と、前記吹き出し口に設けられ、吹き出し空気の上下の風向を変更する上下風向板と、前記吹き出し口に設けられ、前記吹き出し空気の左右の風向を変更する左右風向板と、室内の温度を検知する温度検知手段と、室内の冷媒を検知する冷媒検知手段と、前記ファン、前記上下風向板、および、前記左右風向板を制御する制御装置と、を備え、前記制御装置は、前記冷媒検知手段により冷媒を検知し、かつ、前記温度検知手段により基準値以上の温度を有する高温物を検知した場合に、前記高温物に向かって風が吹くように前記上下風向板および前記左右風向板を制御するものである。
本発明に係る空気調和機によれば、制御装置は、冷媒検知手段により冷媒の漏洩を検知し、かつ、温度検知手段により基準値以上の温度を有する高温物を検知したら、高温物に向かって風が吹くように上下風向板および左右風向板を制御する。そのため、着火源となり得る高温物の周辺から冷媒を拡散することができ、冷媒漏洩時において漏洩冷媒への引火を確実に回避することができる。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機1の冷媒回路10を示した概略図である。なお、図1中の実線の矢印は、冷房運転時の冷媒の流れを示しており、破線の矢印は、暖房運転時の冷媒の流れを示している。
図1に示すように、空気調和機1は、室内機20と、室外機30とを備えている。室内機20は、室内熱交換器21と、室内ファン22とを備えている。室外機30は、室外熱交換器31と、室外ファン32と、圧縮機33と、四方切換弁34と、膨張弁35とを備えている。室内機20と室外機30とは、ガス配管11と液配管12とからなる外部接続配管を介して接続されており、これにより冷媒が充填された冷媒回路10が構成されている。
図1は、本発明の実施の形態1に係る空気調和機1の冷媒回路10を示した概略図である。なお、図1中の実線の矢印は、冷房運転時の冷媒の流れを示しており、破線の矢印は、暖房運転時の冷媒の流れを示している。
図1に示すように、空気調和機1は、室内機20と、室外機30とを備えている。室内機20は、室内熱交換器21と、室内ファン22とを備えている。室外機30は、室外熱交換器31と、室外ファン32と、圧縮機33と、四方切換弁34と、膨張弁35とを備えている。室内機20と室外機30とは、ガス配管11と液配管12とからなる外部接続配管を介して接続されており、これにより冷媒が充填された冷媒回路10が構成されている。
冷媒回路10は、圧縮機33、四方切換弁34、室外熱交換器31、膨張弁35、および、室内熱交換器21が順次配管で接続され、冷媒が循環する。空気調和機1の運転中は、この冷媒回路10で蒸気圧縮式冷凍サイクルが動作する。この冷媒回路10内の冷媒として、ここでは上述したHFO冷媒の一種であるHFO-1234yfとHFC冷媒の一種であるR32との混合冷媒が用いられている。HFO-1234yfもR32もともに微燃レベルの可燃性を有しており、この混合冷媒は可燃性冷媒である。なお、この混合冷媒の重量比は、HFO1234yf:R32=4:6であるとする。
また、対空気の冷媒ガス濃度の可燃範囲は、HFO1234yfで6.2~12.3vol%、R32で14.4~29.3vol%であり、ここではこれらの混合冷媒を用いているので、混合比に応じて可燃濃度の範囲は、下限が6.2vol%より大きく、上限が29.3vol%よりも小さくなる。
空気調和機1では、四方切換弁34の経路を切り換えることにより、冷房運転と暖房運転とを切り換えることができる。図1において実線で示される四方切換弁34の経路の場合、空気調和機1は冷房運転を行う。一方、図1において破線で示される四方切換弁34の経路の場合、空気調和機1は暖房運転を行う。
図2は、本発明の実施の形態1に係る空気調和機1の室内機20の設置例を示す模式図であり、図3は、本発明の実施の形態1に係る空気調和機1の室内機20の縦断面を側面から見た模式図であり、図4は、本発明の実施の形態1に係る空気調和機1の室内機20の吹き出し口23b周辺を拡大した模式図である。なお、図2中の矢印は、風が吹き出す方向を示しており、図3中の矢印は、上下風向板25が移動する方向を示しており、図4中の矢印は、左右風向板24が移動する方向を示している。
なお、以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」など、を適宜用いるが、これは説明のためのものであって、これらの用語は本願発明を限定するものではない。また、本実施の形態1では、空気調和機1の室内機20を正面視した状態において、「上」、「下」、「右」、「左」を使用する。
図2に示すように、室内機20は、部屋2の壁に設置されており、同じ部屋2内、つまり室内には高温物3が設置されている。ここで、高温物3とは、表面温度が基準値以上となる部分を有する物体のことであり、例えばストーブ、コンロなどの表面温度が100℃以上となる部分を有する物体である。
図2~図4に示すように、室内機20は、横長の直方体形状に形成された筐体23を有し、筐体23の天面には室内空気を吸い込むための吸い込み口23aが形成されており、筐体23の下面には空調空気を吹き出すための吹き出し口23bが形成されている。なお、筐体23は、横長の直方体形状に限定されず、吸い込み口23aのような室内空気を吸い込むための開口部と、吹き出し口23bのような空調空気を吹き出すための開口部とが一箇所以上設けられている箱体形状であれば、いかなる形状でもよい。
吹き出し口23bの近傍には、水平または左右に移動し、左右の風向を変更する左右風向板24と、鉛直または上下に移動し、上下の風向を変更する上下風向板25とが設けられている。筐体23の内部で吸い込み口23aから吹き出し口23bに至る風路内には、モータ(図示せず)の駆動によって空気の流れを生じさせる室内ファン22と、室内ファン22によって吸い込み口23aから吸い込まれた室内空気と冷媒とを熱交換して空調空気を生成する室内熱交換器21とが配置されている。
なお、室内ファン22は、本発明の「ファン」に相当し、空調空気は、本発明の「吹き出し空気」に相当する。
室内機20は、室内の温度分布を検知する温度検知手段26と、室内の冷媒の漏洩を検知する冷媒検知手段27と、対象物との距離を測定する距離測定手段28と、を備えている。
温度検知手段26は、例えば、温度の高い物体に反応する焦電素子を多数配列し、部屋2内の熱画像を検知するセンサである。
温度検知手段26は、例えば、温度の高い物体に反応する焦電素子を多数配列し、部屋2内の熱画像を検知するセンサである。
冷媒検知手段27は、例えば、金属酸化物 半導体が冷媒ガスと接触した時に発生する抵抗値の変化を空気中の冷媒ガス濃度として検出する半導体式ガスセンサである。なお、半導体式ガスセンサ以外でもよく、例えば、赤外線がガスによって吸収される量で検知する非分散型赤外線方式のセンサ、冷媒ガス濃度の測定はできないが、冷媒ガスの有無は検知できる方式のもの、室内の酸素濃度を測定する酸素濃度計、などであってもよい。
距離測定手段28は、例えば、レーザー光の反射により対象物との距離を瞬時に測定できるレーザー距離計である。そして、温度検知手段26により対象物となる高温物3を検知することにより、室内機20と高温物3の距離を測定することができる。なお、レーザー距離計以外でもよく、例えば、熱画像を取得し、その熱画像から対象物との距離を算出する赤外線センサ、などであってもよい。
また、室内機20は、左右風向板24、上下風向板25、室内ファン22などを制御する制御装置29を備えている。
制御装置29は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
制御装置29は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
ここで、室内機20内における空気の流れについて簡単に説明する。
吸い込み口23aから吸い込まれた室内空気は、室内熱交換器21を通過する際に室内熱交換器21の内部を流れる冷媒と熱交換され、冷房運転であれば、熱を奪われ、暖房運転であれば、熱を与えられて、室内ファン22に至る。その後、風路を通過した空調空気は、吹き出し口23bから室内に向かって吹き出される。
吸い込み口23aから吸い込まれた室内空気は、室内熱交換器21を通過する際に室内熱交換器21の内部を流れる冷媒と熱交換され、冷房運転であれば、熱を奪われ、暖房運転であれば、熱を与えられて、室内ファン22に至る。その後、風路を通過した空調空気は、吹き出し口23bから室内に向かって吹き出される。
図5は、本発明の実施の形態1に係る空気調和機1の室内機20の制御の一例を示すフローチャートである。
以下、本実施の形態1に係る空気調和機1の室内機20の制御の一例について、図5を用いて説明する。
制御装置29は、冷媒検知手段27により冷媒の有無を検知し、室内に冷媒が漏洩しているかどうかを判定する(ステップS1)。このとき、制御装置29は、冷媒検知手段27により基準値以上の冷媒濃度を検知した場合は、室内に冷媒が漏洩していると判定する。
以下、本実施の形態1に係る空気調和機1の室内機20の制御の一例について、図5を用いて説明する。
制御装置29は、冷媒検知手段27により冷媒の有無を検知し、室内に冷媒が漏洩しているかどうかを判定する(ステップS1)。このとき、制御装置29は、冷媒検知手段27により基準値以上の冷媒濃度を検知した場合は、室内に冷媒が漏洩していると判定する。
制御装置29は、室内に冷媒が漏洩していると判定した場合は(ステップS1のYes)、圧縮機33が運転中であるかどうかを判定する(ステップS2)。
制御装置29は、圧縮機33が運転中であると判定した場合は(ステップS2のYes)、圧縮機33の運転を停止し(ステップS3)、ステップS4へ進む。
制御装置29は、圧縮機33が運転中であると判定した場合は(ステップS2のYes)、圧縮機33の運転を停止し(ステップS3)、ステップS4へ進む。
一方、制御装置29は、圧縮機33が運転中ではないと判定した場合は(ステップS2のNo)、ステップS3を経由せずにステップS4へ進む。
ここで、圧縮機33が運転中である場合は、圧縮機33の運転を停止することで、さらなる冷媒の漏洩を防いでいる。
ここで、圧縮機33が運転中である場合は、圧縮機33の運転を停止することで、さらなる冷媒の漏洩を防いでいる。
制御装置29は、温度検知手段26により室内の温度を検知し、室内に高温物3が存在するかどうかを判定する(ステップS4)。このとき、制御装置29は、温度検知手段26により表面温度が基準値以上となる部分を有する物体を検知した場合は、室内に高温物3が存在していると判定する。
制御装置29は、室内に高温物3が存在すると判定したら(ステップS4のYes)、距離測定手段28により室内機20から高温物3までの距離を測定し(ステップS5)、その距離が基準値以内であるかどうかを判定する(ステップS6)。
制御装置29は、室内機20から高温物3までの距離が基準値以内であると判定したら(ステップS6のYes)、吹き出し口23bから吹き出す気流速度(以下、流速とも称する)が最大流速となるように室内ファン22の回転数を制御し(ステップS7)、高温物3に向かって風が吹くように上下風向板25および左右風向板24を制御する(ステップS8)。
このように、高温物3に向かって風が吹くように上下風向板25および左右風向板24を制御することで、着火源となり得る高温物3の周辺から冷媒を拡散することができ、高温物3の周辺に可燃濃度の気相が形成されるのを防ぐことができる。そのため、漏洩冷媒への引火を確実に回避することができる。また、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御することで、高温物3周辺での気流速度を冷媒の燃焼速度よりも大きくすることができる。そのため、漏洩冷媒への引火をより確実に回避することができる。
一方、制御装置29は、室内機20から高温物3までの距離が基準値以内ではないと判定したら(ステップS6のNo)、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御し(ステップS9)、下に向かって風が吹くように上下風向板25を制御し、かつ、高温物3とは異なる方向に向かって風が吹くように左右風向板24を制御する(ステップS10)。例えば、高温物3が室内機20よりも右側に配置されていた場合は、左方向に向かって風が吹くようにし、高温物3が室内機20よりも左側に配置されていた場合は、右方向に向かって風が吹くようにする。
漏洩冷媒は室内の床面付近に溜まりやすいため、このように、下に向かって風が吹くように上下風向板25を制御することで、室内に溜まった冷媒を効率よく拡散することができる。また、高温物3とは異なる方向に向かって風が吹くように左右風向板24を制御することで、冷媒を着火源となり得る高温物3とは異なる方向に拡散させることができ、高温物3の周辺に可燃濃度の気相が形成されるのを防ぐことができる。そのため、漏洩冷媒への引火を確実に回避することができる。また、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御することで、冷媒の拡散を促進することができる。そのため、漏洩冷媒への引火をより確実に回避することができる。
一方、制御装置29は、室内に高温物3が存在しないと判定したら(ステップS4のNo)、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御し(ステップS11)、下に向かって風が吹くように上下風向板25を制御する(ステップS12)。
漏洩冷媒は室内の床面付近に溜まりやすいため、このように、下に向かって風が吹くように上下風向板25を制御することで、室内に溜まった冷媒を効率よく拡散することができる。そのため、漏洩冷媒への引火を回避することができる。また、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御することで、冷媒の拡散を促進することができる。そのため、漏洩冷媒への引火を確実に回避することができる。
以上より、着火源となり得る高温物3の存在を検知した場合は、高温物3に向かって風が吹くように上下風向板25および左右風向板24を制御することで、着火源となり得る高温物3の周辺から冷媒を拡散することができ、高温物3の周辺に可燃濃度の気相が形成されるのを防ぐことができる。そのため、漏洩冷媒への引火を確実に回避することができる。
しかし、室内ファン22が作り出す気流は、高温物3に到達するまでに室内空気の粘性の影響でエネルギー損失が発生し、室内機20から離れるにつれて速度が低下する。そして、室内機20と高温物3との距離が離れれば離れるほど、このエネルギー損失は大きくなり、気流速度は低下する。その結果、室内機20と高温物3との距離が離れすぎていると、高温物3に向かって風を吹いても、高温物3周辺の冷媒を十分に拡散することができず、冷媒を拡散する効果は低い。また、高温物3周辺での気流速度が冷媒の燃焼速度以下となってしまう可能性もあり、漏洩冷媒への引火回避の確実性が損なわれる。その様な場合には、下に向かって、かつ、高温物3とは異なる方向に向かって風が吹いた方が、漏洩冷媒への引火をより確実に回避することができる。
そこで、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御した時に、高温物3周辺の冷媒を十分に拡散することができる限界の距離を基準値として、室内機20から高温物3までの距離が基準値以内、または基準値からマージンを引いた値以内でない場合は、下に向かって、かつ、高温物3とは異なる方向に向かって風が吹くようにする。なお、上記のマージンは、例えば1mである。
以上より、本実施の形態1に係る空気調和機1によれば、制御装置29は、冷媒検知手段27により冷媒の漏洩を検知し、かつ、温度検知手段26により基準値以上の温度を有する高温物3を検知したら、高温物3に向かって風が吹くように上下風向板25および左右風向板24を制御する。そのため、着火源となり得る高温物3の周辺から冷媒を拡散することができ、高温物3の周辺に可燃濃度の気相が形成されるのを防ぐことができるため、冷媒漏洩時において漏洩冷媒への引火を確実に回避することができる。また、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御することで、漏洩冷媒への引火をより確実に回避することができる。
なお、空気調和機1において、運転停止時も温度検知手段26および冷媒検知手段27を起動するようにしてもよいし、運転停止時はそれらを停止するようにしてもよい。運転停止時も温度検知手段26および冷媒検知手段27を起動させることで、常に部屋2の状態を監視することができるし、運転停止時は温度検知手段26および冷媒検知手段27を停止することで、待機電力を低減することができる。
また、温度検知手段26および冷媒検知手段27を起動させるかどうかをユーザーが任意に選択できるようにしてもよい。
また、温度検知手段26および冷媒検知手段27を起動させるかどうかをユーザーが任意に選択できるようにしてもよい。
実施の形態2.
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。なお、図4は本実施の形態2でも用いる。
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。なお、図4は本実施の形態2でも用いる。
図6は、本発明の実施の形態2に係る空気調和機1の室内機20の制御の一例を示すフローチャートである。
実施の形態1では、室内機20から高温物3までの距離が基準値以内であると判定したら、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御するとしたが、本実施の形態2では、高温物3周辺での気流速度が冷媒の燃焼速度よりも速くなるように室内ファン22の回転数を制御する。
実施の形態1では、室内機20から高温物3までの距離が基準値以内であると判定したら、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を制御するとしたが、本実施の形態2では、高温物3周辺での気流速度が冷媒の燃焼速度よりも速くなるように室内ファン22の回転数を制御する。
つまり、室内機20から高温物3までの距離が基準値以内であるということは、高温物3周辺の冷媒を十分に拡散することができる限界の距離よりも短く、気流速度が最大流速となるまで室内ファン22の回転数を上げなくても、高温物3周辺の冷媒を十分に拡散することができるということである。そのため、本実施の形態2では、気流速度を必要な速度、つまり、室内ファン22の回転数を必要な値に抑えている。
以下、本実施の形態2に係る空気調和機1の室内機20の制御の一例について、図6を用いて説明する。
なお、図6においてステップS13およびステップS14以外は図5と同じであるため、説明を省略する。
制御装置29は、室内機20から高温物3までの距離が基準値以内であると判定したら(ステップS6のYes)、室内機20から高温物3までの距離、および、用いられている冷媒の燃焼速度に基づいて、設定する気流速度を計算し、その気流速度を設定する(ステップS13)。
なお、図6においてステップS13およびステップS14以外は図5と同じであるため、説明を省略する。
制御装置29は、室内機20から高温物3までの距離が基準値以内であると判定したら(ステップS6のYes)、室内機20から高温物3までの距離、および、用いられている冷媒の燃焼速度に基づいて、設定する気流速度を計算し、その気流速度を設定する(ステップS13)。
なお、本実施の形態2で用いられている冷媒はHFO1234yfとR32との混合冷媒であり、その冷媒の燃焼速度は、約3.1cm/sである。そのため、その燃焼速度に、室内機20から高温物3までの距離に応じたエネルギー損失分を加えたもの、またはさらにそれにマージンを加えたものを、気流速度として設定する。つまり、高温物3周辺での気流速度が冷媒の燃焼速度よりも速くなる速度を設定する。
制御装置29は、設定する気流速度を計算したら、その気流速度を設定し(ステップS13)、吹き出し口23bから吹き出す気流速度が設定した気流速度となるように室内ファン22の回転数を制御し(ステップS14)、高温物3に向かって風が吹くように上下風向板25および左右風向板24を制御する(ステップS8)。
以上より、本実施の形態2に係る空気調和機1によれば、室内機20から高温物3までの距離と用いられている冷媒の燃焼速度に基づいて、設定する気流速度を計算し、吹き出し口23bから吹き出す気流速度が設定した気流速度となるように室内ファン22の回転数を制御する。つまり、気流速度を必要な速度、つまり、室内ファン22の回転数を必要な値に抑えることで、実施の形態1のように、吹き出し口23bから吹き出す気流速度が最大流速となるように室内ファン22の回転数を上げる場合に比べ、ノイズおよび消費電力を低減することができる。
1 空気調和機、2 部屋、3 高温物、10 冷媒回路、11 ガス配管、12 液配管、20 室内機、21 室内熱交換器、22 室内ファン、23 筐体、23a 吸い込み口、23b 吹き出し口、24 左右風向板、25 上下風向板、26 温度検知手段、27 冷媒検知手段、28 距離測定手段、29 制御装置、30 室外機、31 室外熱交換器、32 室外ファン、33 圧縮機、34 四方切換弁、35 膨張弁。
Claims (6)
- 吸い込み口および吹き出し口が設けられた筐体と、
前記筐体の内部で前記吸い込み口から前記吹き出し口に至る風路内に配置されたファンと、
前記風路内に配置され、前記ファンによって前記吸い込み口から吸い込まれた室内空気と冷媒とを熱交換する熱交換器と、
前記吹き出し口に設けられ、吹き出し空気の上下の風向を変更する上下風向板と、
前記吹き出し口に設けられ、前記吹き出し空気の左右の風向を変更する左右風向板と、
室内の温度を検知する温度検知手段と、
室内の冷媒を検知する冷媒検知手段と、
前記ファン、前記上下風向板、および、前記左右風向板を制御する制御装置と、を備え、
前記制御装置は、
前記冷媒検知手段により冷媒を検知し、かつ、前記温度検知手段により基準値以上の温度を有する高温物を検知した場合に、
前記高温物に向かって風が吹くように前記上下風向板および前記左右風向板を制御する
空気調和機。 - 前記高温物との距離を測定する距離測定手段を備え、
前記制御装置は、
前記冷媒検知手段により冷媒を検知し、かつ、前記温度検知手段により前記高温物を検知することに加えて、
前記高温物までの距離が基準値以内であれば、
前記高温物に向かって風が吹くように前記上下風向板および前記左右風向板を制御する
請求項1に記載の空気調和機。 - 前記制御装置は、
前記高温物までの距離が基準値外であれば、
下に向かって風が吹くように前記上下風向板を制御し、かつ、前記高温物とは異なる方向に向かって風が吹くように前記左右風向板を制御する
請求項2に記載の空気調和機。 - 前記制御装置は、
前記冷媒検知手段により冷媒を検知したが、前記温度検知手段により前記高温物を検知しなかった場合に、下に向かって風が吹くように前記上下風向板を制御する
請求項1~3のいずれか一項に記載の空気調和機。 - 前記制御装置は、
前記冷媒検知手段により冷媒を検知した場合に、前記吹き出し口から吹き出す気流速度が最大流速となるように前記ファンの回転数を制御する
請求項1~4のいずれか一項に記載の空気調和機。 - 前記制御装置は、
前記高温物までの距離が基準値以内であれば、
冷媒の燃焼速度と前記高温物までの距離とに基づいて前記ファンの回転数を制御する
請求項2に記載の空気調和機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062345 WO2017183104A1 (ja) | 2016-04-19 | 2016-04-19 | 空気調和機 |
JP2018512678A JP6584649B2 (ja) | 2016-04-19 | 2016-04-19 | 空気調和機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062345 WO2017183104A1 (ja) | 2016-04-19 | 2016-04-19 | 空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183104A1 true WO2017183104A1 (ja) | 2017-10-26 |
Family
ID=60116666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062345 WO2017183104A1 (ja) | 2016-04-19 | 2016-04-19 | 空気調和機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6584649B2 (ja) |
WO (1) | WO2017183104A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020085302A (ja) * | 2018-11-21 | 2020-06-04 | 三菱電機株式会社 | 空気調和機、空気調和システム、風向制御方法、及び、プログラム |
WO2020137873A1 (ja) * | 2018-12-28 | 2020-07-02 | ダイキン工業株式会社 | 燃焼式暖房機及び空調システム |
WO2020148897A1 (ja) * | 2019-01-18 | 2020-07-23 | 三菱電機株式会社 | 空気調和機及び制御方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000081258A (ja) * | 1998-07-01 | 2000-03-21 | Daikin Ind Ltd | 冷凍装置および冷媒漏洩検出方法 |
JP2012013348A (ja) * | 2010-07-02 | 2012-01-19 | Panasonic Corp | 空気調和機 |
JP2014035171A (ja) * | 2012-08-10 | 2014-02-24 | Mitsubishi Electric Corp | 空気調和機、空気調和方法及びプログラム |
JP2015094566A (ja) * | 2013-11-14 | 2015-05-18 | ダイキン工業株式会社 | 空気調和機の室内機 |
-
2016
- 2016-04-19 JP JP2018512678A patent/JP6584649B2/ja not_active Expired - Fee Related
- 2016-04-19 WO PCT/JP2016/062345 patent/WO2017183104A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000081258A (ja) * | 1998-07-01 | 2000-03-21 | Daikin Ind Ltd | 冷凍装置および冷媒漏洩検出方法 |
JP2012013348A (ja) * | 2010-07-02 | 2012-01-19 | Panasonic Corp | 空気調和機 |
JP2014035171A (ja) * | 2012-08-10 | 2014-02-24 | Mitsubishi Electric Corp | 空気調和機、空気調和方法及びプログラム |
JP2015094566A (ja) * | 2013-11-14 | 2015-05-18 | ダイキン工業株式会社 | 空気調和機の室内機 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020085302A (ja) * | 2018-11-21 | 2020-06-04 | 三菱電機株式会社 | 空気調和機、空気調和システム、風向制御方法、及び、プログラム |
JP7199207B2 (ja) | 2018-11-21 | 2023-01-05 | 三菱電機株式会社 | 空気調和機、空気調和システム、風向制御方法、及び、プログラム |
WO2020137873A1 (ja) * | 2018-12-28 | 2020-07-02 | ダイキン工業株式会社 | 燃焼式暖房機及び空調システム |
WO2020148897A1 (ja) * | 2019-01-18 | 2020-07-23 | 三菱電機株式会社 | 空気調和機及び制御方法 |
JPWO2020148897A1 (ja) * | 2019-01-18 | 2021-03-11 | 三菱電機株式会社 | 空気調和機及び制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6584649B2 (ja) | 2019-10-02 |
JPWO2017183104A1 (ja) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6431174B2 (ja) | 空気調和装置 | |
US10060645B2 (en) | Indoor unit of air-conditioning apparatus and air-conditioning apparatus including the indoor unit | |
JP6958627B2 (ja) | 空気調和機 | |
JP5818849B2 (ja) | 空気調和装置および冷媒漏洩検知方法 | |
JP6332552B2 (ja) | 空気調和機の室内機 | |
JP6785883B2 (ja) | 空気調和装置 | |
WO2016151641A1 (ja) | 空気調和機の室内機 | |
JP2014035171A (ja) | 空気調和機、空気調和方法及びプログラム | |
JP6065962B1 (ja) | 冷凍サイクル装置 | |
JP2016029322A (ja) | 空気調和装置 | |
JP6584649B2 (ja) | 空気調和機 | |
WO2015152163A1 (ja) | 空気調和装置およびその設置方法 | |
JP6272149B2 (ja) | 空気調和装置 | |
JP7243132B2 (ja) | ヒートポンプ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018512678 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899378 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16899378 Country of ref document: EP Kind code of ref document: A1 |