WO2017012326A1 - 有机电致发光显示面板及制备方法、显示装置 - Google Patents

有机电致发光显示面板及制备方法、显示装置 Download PDF

Info

Publication number
WO2017012326A1
WO2017012326A1 PCT/CN2016/072293 CN2016072293W WO2017012326A1 WO 2017012326 A1 WO2017012326 A1 WO 2017012326A1 CN 2016072293 W CN2016072293 W CN 2016072293W WO 2017012326 A1 WO2017012326 A1 WO 2017012326A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
layer
quantum
display panel
Prior art date
Application number
PCT/CN2016/072293
Other languages
English (en)
French (fr)
Inventor
许显斌
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/300,153 priority Critical patent/US10205129B2/en
Publication of WO2017012326A1 publication Critical patent/WO2017012326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/236Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers using printing techniques, e.g. applying the etch liquid using an ink jet printer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • Quantum dot materials refer to materials with quantum scale effects in all three dimensions, that is, the feature size of the material is comparable to the De Broglie wavelength, coherence wavelength, and exciton Bohr radius of electrons.
  • the electrons are confined to the nanospace, electrons. Transport is limited, the electron mean free path is short, and the locality and coherence of electrons are enhanced.
  • the quasi-continuous energy band evolves into a discrete energy level structure.
  • This special energy level structure allows quantum dots to have photoluminescence and electroluminescence properties.
  • the corresponding luminescence spectrum can be prepared by controlling the structure, material and particle size of the quantum dots.
  • Light emitted by a CdSe quantum dot can cover all visible light spectra from red to purple, and only needs to control preparation parameters such as structure, material and particle size.
  • the light emitted by the quantum dots has characteristics of high brightness, high color purity, and narrow half-width (FWHM to 30 nm).
  • OLED Organic Light-Emitting Diode
  • OLED has the advantages of self-luminescence, fast response, wide viewing angle, high brightness, colorful color, thinness and lightness compared with liquid crystal display, and is considered as the next generation display technology.
  • the organic electroluminescent layer since only part of the light emitted by the organic electroluminescent layer passes through the color film layer, the organic electroluminescent layer has low light utilization efficiency and large power consumption.
  • the object of the present invention is to solve the problems of low light utilization rate and large power consumption emitted by the organic electroluminescent layer in the organic electroluminescent display panel and the display device in the prior art.
  • the technical solution adopted to solve the technical problem of the present invention is an organic electroluminescence display panel comprising an array substrate and a color filter substrate disposed on the cartridge; and disposed on a side of the array substrate adjacent to the color filter substrate
  • An organic light emitting unit, the array substrate is configured to control light emission of the organic light emitting unit; and the array substrate and the The color filter substrate forms a plurality of pixel units arranged in a matrix; each pixel unit includes a plurality of sub-pixels; wherein, the wavelength of light emitted by the organic electroluminescent display panel in the organic light emitting unit is smaller than a color of the sub-pixel
  • a quantum material layer capable of producing a scale effect that converts a portion of light incident from the organic light-emitting unit into light that coincides with a color of the corresponding sub-pixel.
  • the quantum material layer is disposed on a side of the array substrate adjacent to the color filter substrate.
  • the color filter substrate further includes a color film layer; or the array substrate further includes a color film layer disposed above the quantum material layer.
  • the organic light emitting unit comprises a white light source and a blue light source.
  • the organic light emitting unit is a white light source
  • the color filter substrate includes a sub-pixel color film layer corresponding to the red sub-pixel, the blue sub-pixel, the green sub-pixel, and the yellow sub-pixel, respectively;
  • the quantum material layer includes sub-pixel quantum material layers respectively corresponding to the red sub-pixel, the green sub-pixel, and the yellow sub-pixel.
  • the color filter substrate includes a sub-pixel color film layer corresponding to the red sub-pixel, the green sub-pixel, and the yellow sub-pixel, respectively;
  • the quantum material layer includes a sub-pixel quantum material layer corresponding to the red sub-pixel, the green sub-pixel, the yellow sub-pixel, and the white sub-pixel, respectively.
  • the quantum material layer comprises quantum dots, quantum rods and/or quantum plates.
  • the quantum dots, quantum rods and quantum plates each comprise a core material, a ligand and a shell material, wherein the core material comprises CdS, CdSe, CdTe, PbSe, CuInS, InP or carbon nanomaterial.
  • Another object of the present invention is to provide a method of fabricating the above electroluminescent display panel, comprising the steps of:
  • the array substrate having the organic light-emitting layer and the color filter substrate having the quantum material layer are paired.
  • the step of preparing the quantum material layer on the color filter substrate comprises mixing the quantum material with a negative photoresist and forming a quantum material layer by a patterning process or an inkjet printing method.
  • Another object of the present invention is to provide a method of fabricating the above electroluminescent display panel, comprising the steps of:
  • the array substrate having the organic light-emitting layer and the quantum material layer and the color filter substrate are paired.
  • Another object of the present invention is to provide a method of fabricating the above electroluminescent display panel, comprising the steps of:
  • a color film layer is prepared on the quantum material layer.
  • the step of preparing a quantum material layer on the organic light-emitting layer comprises mixing the quantum material with a negative photoresist and forming a pattern by a patterning process or an inkjet printing method The step of forming a layer of quantum material.
  • the step of preparing a color film layer on the quantum material layer comprises the step of preparing a color film layer by a low temperature color film method.
  • the organic electroluminescence display panel of the present invention, the preparation method thereof, and the display device are provided with a quantum material layer capable of generating a scale effect on a side of the color filter substrate close to the array substrate or on a side of the array substrate close to the color filter substrate.
  • the photoluminescence characteristic of the quantum material layer converts the light portion incident from the organic light-emitting unit into light corresponding to the color of the corresponding sub-pixel, thereby improving the utilization ratio of the emitted light of the organic light-emitting unit, improving the brightness, and reducing The power consumption.
  • FIG. 1 is a schematic structural view of a top emission type organic electroluminescence display panel in which an organic light emitting unit emits white light according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a top emission type organic electroluminescence display panel prepared by the first method in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a top emission type organic electroluminescence display panel prepared by the third method in Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of a spectrum of white light emitted by a top emission type organic electroluminescence display panel in which an organic light emitting unit emits white light;
  • FIG. 6 is a spectral diagram of light emitted by a top emission type organic electroluminescence display panel in which an organic light emitting unit emits white light and has red light-excited quantum dots;
  • FIG. 7 is a schematic diagram of a spectrum of light emitted by a top emission type organic electroluminescence display panel in which an organic light emitting unit emits white light and has green light-excited quantum dots;
  • the sub-pixel region further includes a quantum material layer disposed on a side of the color filter substrate adjacent to the array substrate or disposed on a side of the array substrate adjacent to the color filter substrate;
  • the quantum material layer is capable of converting a portion of light incident from the organic light emitting unit into light that is consistent with a color of the corresponding sub-pixel.
  • the quantum material layer and the sub-pixel color film layer of the corresponding color need not be disposed corresponding to the sub-pixel region;
  • the quantum material layer does not need to be disposed corresponding to the sub-pixel region, but needs to be set correspondingly.
  • Color sub-pixel color film layer when the color of the light emitted by the organic light emitting unit is consistent with the color of the sub-pixel, the quantum material layer and the sub-pixel color film layer of the corresponding color need not be disposed corresponding to the sub-pixel region;
  • the function of the above sub-pixel color film layer includes filtering the mottle color to improve the color purity, blocking the high energy light ( ⁇ 490 nm) in the ambient light to excite the quantum dot layer, and avoiding non-autonomous light emission.
  • the color filter substrate is disposed on the cover glass 102
  • the array substrate is disposed on the substrate glass 101 .
  • the three sub-pixels are respectively displayed from left to right, and are respectively a red sub-pixel 1002 and a green sub-pixel 1003.
  • the blue sub-pixels 1001 form three pixel units.
  • the pixel unit can also adopt a combination of sub-pixels of other colors in the prior art.
  • the array backplane 103 includes a gate electrode, a gate insulating layer, an active layer, a source/drain electrode, a passivation layer, and a flat layer (not shown in FIG. 1), and may of course also include an etch barrier.
  • Each of the thin film transistors 104 corresponds to one sub-pixel.
  • the thin film transistor 104a corresponds to the blue sub-pixel 1001
  • the thin film transistor 104b corresponds to the red sub-pixel 1002
  • the thin film transistor 104c corresponds to the green sub-pixel 1003.
  • the thin film transistor 104 is connected to the anode electrode 105, and the anode electrode 105 is in one-to-one correspondence with the sub-pixels; the sub-pixels are separated by the pixel defining layer 106; at the anode electrode 105
  • An organic light-emitting layer 107 is disposed on the organic light-emitting layer 107; a cathode electrode 108 corresponding to each sub-pixel is disposed on the cathode electrode 108; and an encapsulation layer 109 composed of an inorganic film, an organic film or a mixed film may be disposed on the cathode electrode 108, and the array substrate and the color film are disposed on the cathode electrode 108.
  • a planarization layer 114 is also formed on the encapsulation layer 109 when the substrate is paired.
  • a black matrix 111 is disposed between each sub-pixel; each sub-pixel color film layer 113 (113a, 113b, 113c) is disposed between the black matrix 111; and the position corresponding to the black matrix 111 is further provided with support for supporting the box
  • the sub-pixel quantum dot layer 112 (112b, 112c) is included between the certain sub-pixel color film layer 113 and the organic light-emitting layer 107.
  • the region corresponding to the red sub-pixel 1002 is provided with a sub-pixel quantum dot layer 112b for converting light having a wavelength smaller than the color of the red sub-pixel 1002 into red light;
  • the organic light emitting unit is a white light source
  • the color film substrate includes sub-pixel color film layers 113 respectively corresponding to the primary color photo sub-pixels;
  • the quantum material layer includes sub-pixel quantum material layers respectively corresponding to the red sub-pixel, the green sub-pixel, and the yellow sub-pixel.
  • the organic light emitting unit is a blue light source
  • the color filter substrate includes a sub-pixel color film layer 113 corresponding to the red sub-pixel, the green sub-pixel, and the yellow sub-pixel, respectively.
  • the quantum material layer includes a sub-pixel quantum material layer corresponding to the red sub-pixel, the green sub-pixel, the yellow sub-pixel, and the white sub-pixel, respectively.
  • the structure of a quantum material may have the same effective size in three dimensions in the nanoscopic domain, for example, a quantum dot or a cube; or the effective size of one dimension is significantly larger than the other two dimensions, such as a quantum rod or a rectangular strip; or a dimension The effective size is significantly smaller than the other two dimensions, for example, a quantum plate or a rectangular parallelepiped plate. It should be noted that even though the effective dimensions of the three dimensions are different, each dimension in the macroscopic aspect satisfies the quantum scale effect.
  • the quantum dots, quantum rods, and quantum plates each comprise a core material, a ligand, and a shell material, wherein the core material comprises CdS, CdSe, CdTe, PbSe, CuInS, InP, or carbon nanomaterials.
  • the ligand and the shell material may be specifically selected according to the application, and will not be further described herein.
  • the above-mentioned top emission structure organic electroluminescence display panel can be prepared on the color film substrate according to the quantum material layer or on the array substrate, and the preparation order of the quantum material layer and the color film layer is prepared by the following three methods.
  • the array backplane 103 (including the thin film transistor 104 and the anode electrode) is formed on the substrate glass 101 to form an array substrate. It should be understood that the method for preparing the array substrate is in the prior art and will not be further described herein.
  • the organic light-emitting layer 107 is formed by vacuum evaporation. Specifically, the organic light-emitting layer 107 of several colors is simultaneously evaporated on all the pixels of the array substrate, so that the organic light-emitting layer 107 emits white light, and then the respective sub-pixels are utilized.
  • the color filter layer filters to achieve the display purpose. This method has a simple manufacturing process and high production yield, and can be applied to a large-sized display.
  • the step of preparing the array substrate may further include preparing a cathode electrode and an encapsulation layer of the organic light-emitting unit (as shown in FIG. 1 ), and these methods belong to the prior art and will not be specifically described herein.
  • a sub-pixel color film layer 113 corresponding to each sub-pixel is formed on the glass cover 102 by a patterning process; as shown in FIG. 2, if the pixel unit is used, the pixel unit includes: a blue sub-pixel 1001, a red sub-pixel 1002, and a green sub-pixel. 1003, yellow sub-pixel 1004, white sub-pixel 1005, the corresponding sub-pixel color film layer 113 is blue color film layer 113a, red color film layer 113b, green color film layer 113c, yellow color film layer 113d, white color film Layer 113e. It should be understood that the foregoing pixel unit may also be a combination of other sub-pixels in the prior art, which is not limited herein.
  • the support 110 is formed by a patterning process.
  • This patterning process requires post-baking (>150 ° C) at a higher temperature, which can cause damage to the quantum dots. Therefore, it is necessary to dry or solidify the pattern formed above, and then prepare a quantum material layer to avoid adverse effects such as agglomeration or luminescence quenching of the quantum material after the above drying or curing.
  • the quantum dot layer 112 is formed by a patterning process. As shown in FIG. 2, the quantum dot layer 112 includes a red quantum dot layer 112b, a green quantum dot layer 112c, a yellow quantum dot layer 112d, and a white quantum dot layer 112e.
  • the mixed layer having the red, green, and yellow excitation light quantum dots can be synchronously prepared.
  • a mixed layer preparation of quantum dots capable of combining excited light into white light can be used alone.
  • a quantum material is mixed with a negative photoresist to form a mixed layer, and a quantum dot layer 112 is prepared by a patterning process;
  • the quantum dot layer 112 can also be formed by ink jet printing.
  • the above steps are described by taking the quantum material layer as a quantum dot layer as an example, but the invention is not limited thereto, and the quantum material layer may also be a quantum rod layer or a quantum plate layer, and the preparation method thereof is consistent with the preparation method of the above quantum dot layer. It will not be specified here.
  • the array substrate having the organic light-emitting layer 107 and the color filter substrate having the quantum dot layer 112 are paired by a matching device.
  • the specific method of the cartridge is not described in detail in the prior art.
  • an organic light emitting layer and a quantum material layer are sequentially prepared on the array substrate; and then the array substrate and the color filter substrate are paired.
  • the method for preparing the above organic electroluminescent display panel includes the following steps:
  • An array back plate 103 (including a thin film transistor 104) is prepared on the substrate glass 101 And the anode electrode) form an array substrate, it should be understood that the preparation of the array substrate is not described in detail in the prior art.
  • the organic light-emitting layer 107 is formed by vacuum evaporation. Specifically, the organic light-emitting layer 107 of several colors is simultaneously evaporated on all the pixels of the array substrate, so that the organic light-emitting layer 107 emits white light, and then the respective sub-pixels are utilized.
  • the color filter layer filters to achieve the display purpose. This method has a simple manufacturing process and high production yield, and can be applied to a large-sized display.
  • sub-pixels of various colors may be separately vaporized for display purposes.
  • organic light-emitting layer 107 can also be prepared by an inkjet printing or laser transfer method, which will not be described again.
  • the quantum dot layer 112 is formed on the organic light-emitting layer 107 by a patterning process.
  • the quantum material is mixed with a negative photoresist, and the quantum dot layer 112 is prepared by a patterning process, and the specific preparation method is the same as that in the embodiment 2; since the material in the organic light-emitting layer 107 is temperature ( ⁇ 100 ° C) and water The oxygen requirement is very high, and the patterning process of the quantum dots needs to be carried out under the premise of ensuring the lifetime of the quantum dots, and at the same time, the organic light-emitting layer 107 is not destroyed, and the above-mentioned quantum materials are mixed with the negative photoresist and passed through a patterning process.
  • the method of preparing the quantum dot layer 112 can ensure low temperature and low water and oxygen requirements, and prevent damage to the organic light-emitting layer 107.
  • the quantum dot layer 112 can also be formed by ink jet printing.
  • the quantum material layer in this embodiment may also be a quantum rod layer or a quantum plate layer.
  • a color film layer 113 corresponding to each sub-pixel is formed on the glass cover 102 by a patterning process; and the support 110 is formed by a patterning process.
  • the above patterning process requires post-baking (>150 ° C) at a higher temperature.
  • the array substrate having the organic light-emitting layer 107 and the quantum dot layer 112 and the color filter substrate are paired by a matching device, and the specific method for the cartridge is not described in detail in the prior art.
  • the organic light-emitting layer 107, the quantum material layer, and the color film layer are sequentially prepared on the array substrate.
  • the embodiment provides a method for preparing the above organic electroluminescent display panel, which includes the following steps:
  • the array backplane 103 (including the thin film transistor 104 and the anode electrode) is formed on the substrate glass 101 to form an array substrate. It should be understood that the preparation of the array substrate is not described in detail in the prior art.
  • the organic light-emitting layer 107 is formed by vacuum evaporation. Specifically, the organic light-emitting layer 107 of several colors is simultaneously evaporated on all the pixels of the array substrate, so that the organic light-emitting layer 107 emits white light, and then the respective sub-pixels are utilized.
  • the color filter layer filters to achieve the display purpose. This method has a simple manufacturing process and high production yield, and can be applied to a large-sized display.
  • sub-pixels of various colors may be separately vaporized for display purposes.
  • organic light-emitting layer 107 can also be prepared by an inkjet printing or laser transfer method, which will not be described again.
  • the quantum dot layer 112 is formed on the organic light-emitting layer 107 by a patterning process.
  • the quantum material is mixed with a negative photoresist, and the quantum dot layer 112 is prepared by a patterning process, and the specific preparation method is the same as that in the embodiment 2; since the material in the organic light-emitting layer 107 is temperature ( ⁇ 100 ° C) and water The oxygen requirement is very high, and the patterning process of the quantum dots needs to be carried out under the premise of ensuring the lifetime of the quantum dots, while ensuring the organic light-emitting layer. 107 is not destroyed, and the above method of mixing the quantum material with the negative photoresist and preparing the quantum dot layer 112 by the patterning process can ensure low temperature and low water and oxygen requirements, and prevent damage to the organic light-emitting layer 107.
  • the quantum dot layer 112 can also be formed by ink jet printing.
  • a color film layer is prepared by a low temperature color film method, and a color film layer is prepared by a low temperature color film method, which is not described in detail in the prior art. Since the color film layer is prepared under low temperature conditions, it does not cause adverse effects such as agglomeration or luminescence quenching of the quantum dot material.
  • the low temperature color film method includes a photolithography step, and the quantum dot layer 112 can absorb ultraviolet light during the ultraviolet exposure process of the color film layer to prevent the organic light emitting layer 107 from being damaged by ultraviolet light.
  • the organic light-emitting layer 107 is prepared by inkjet printing, and the quantum dot layer can also be prepared by inkjet printing, the color film layer can also be prepared by a low temperature color film method or an inkjet printing method.
  • the embodiment provides an organic electroluminescence display device comprising the above organic electroluminescence display panel.
  • the external quantum efficiencies of red and quantum dots excited by blue light are 19% and 22%, respectively.
  • the external quantum efficiency of different color organic electroluminescent layers and different quantum dots will result in different energy conversion efficiencies and lifetimes of the display device.
  • an organic electroluminescence display device in which an organic light-emitting layer emits white light
  • an organic electroluminescence display device Bluetooth-OLED+QD
  • the organic electroluminescent display device (WOLE+QD) of the white organic light emitting layer of the point layer, the energy conversion efficiency and lifetime of RGB three colors in the three structures are shown in Table 2:
  • the spectrum of the white light emitted by the organic electroluminescent display device of the WOLED structure shown in FIG. 5 is referred to as an organic electroluminescent display device having a WOLED+QD structure including a red light-excited quantum dot and a green light-excited quantum dot. Analysis of the spectrum revealed that:
  • the organic electroluminescent display device with red light-excited quantum dots can convert more light of other wavelengths with less wavelength than red light into red light, thereby increasing the light utilization rate and brightness of the organic light-emitting layer. Reduce power consumption.
  • the organic electroluminescent display device having green light-excited quantum dots can convert more light of other wavelengths having a wavelength smaller than green light into green light, thereby increasing the light utilization rate and brightness of the organic light-emitting layer. Reduce power consumption.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device reference may be made to the above embodiments, and the repeated description is omitted.
  • Various modifications and improvements can be made by those skilled in the art without departing from the spirit and scope of the invention. These modifications and improvements are also considered to be within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机电致发光显示基板及制备方法、显示装置,属于显示技术领域,其可解决现有技术中有机电致发光显示面板、显示装置中有机电致发光层发出的光利用率低、功耗大的问题。本发明的有机电致发光显示面板及其制备方法、显示装置,由于在彩膜基板的靠近阵列基板的一侧或者在阵列基板的靠近彩膜基板的一侧设置能够产生尺度效应的量子材料层,该量子材料层能将从有机发光单元入射的光部分转化为与相应的子像素的颜色一致的光,从而提高了有机发光单元发出光的利用率、提高亮度、降低了功耗。

Description

有机电致发光显示面板及制备方法、显示装置 技术领域
本发明属于显示技术领域,具体涉及一种有机电致发光显示基板及制备方法、显示装置。
背景技术
量子点材料是指在三个维度上都出现量子尺度效应的材料,即材料的特征尺寸与电子的德布罗意波长、相干波长及激子波尔半径可比拟,电子局限在纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强,此时原本准连续的能带演变为分立的能级结构。这种特殊的能级结构使得量子点具备光致发光和电致发光特性。可以通过控制量子点的结构、材料和粒径制备相应发光光谱。如CdSe量子点所发射的光可以覆盖从红色到紫色的全部可见光光谱,只需要控制例如结构、材料和粒径等制备参数即可实现。量子点所发射的光具有高亮度、高色纯度、窄半峰宽(FWHM~30nm)等特点。
有机电致发光显示(Organic Light-Emitting Diode,缩写OLED)相对于液晶显示具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。但是由于有机电致发光层发出的光只有部分光通过彩膜层,有机电致发光层的光利用率低,功耗大。
发明内容
本发明的目的是解决现有技术中有机电致发光显示面板、显示装置中有机电致发光层发出的光利用率低、功耗大的问题。
解决本发明技术问题所采用的技术方案是一种有机电致发光显示面板,包括对盒设置的阵列基板和彩膜基板;和设置在所述阵列基板的靠近所述彩膜基板的一侧的有机发光单元,所述阵列基板用于控制所述有机发光单元发光;以及所述阵列基板和所述 彩膜基板形成呈矩阵排列的多个像素单元;每个像素单元包括多个子像素;其中,所述有机电致发光显示面板在所述有机发光单元发出的光的波长小于所述子像素的颜色的波长的子像素区域处还包括能够产生尺度效应的将从所述有机发光单元入射的光部分转化为与相应的所述子像素的颜色一致的光的量子材料层。
优选地,所述量子材料层设置在所述彩膜基板上靠近所述阵列基板的一侧。在这种情况下,所述彩膜基板还包括可以基板以及设置在基板上的彩膜层,以及所述量子材料层设置在所述彩膜层上。
可选择地,所述量子材料层设置在所述阵列基板上靠近所述彩膜基板的一侧。在这种情况下,所述彩膜基板还包括彩膜层;或者所述阵列基板还包括设置在所述量子材料层上方的彩膜层。
优选的,所述子像素包括基色光子像素和白光子像素;所述基色光子像素包括红色子像素、蓝色子像素、绿色子像素、黄色子像素。
优选的,所述有机发光单元包括白光光源、蓝光光源。
优选的,所述有机发光单元为白光光源;
所述彩膜基板包括分别与所述红色子像素、蓝色子像素、绿色子像素、黄色子像素对应的子像素彩膜层;以及
所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素量子材料层。
优选的,所述有机发光单元为蓝光光源;
所述彩膜基板包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素彩膜层;
所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素、白色子像素对应的子像素量子材料层。
优选的,所述量子材料层包括量子点、量子棒和/或量子板。
优选的,所述量子点、量子棒和量子板均包括内核材料、配体和外壳材料,其中,内核材料包括CdS、CdSe、CdTe、PbSe、CuInS、InP或者碳纳米材料。
本发明的另一个目的还包括提供一种上述机电致发光显示面板的制备方法,包括以下步骤:
制备阵列基板;
在所述阵列基板上制备有机发光层;
制备彩膜基板;
在所述彩膜基板上制备量子材料层;
将具有有机发光层的阵列基板和具有量子材料层的彩膜基板进行对盒。
优选的,在所述彩膜基板上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或者喷墨打印法形成量子材料层。
本发明的另一个目的还包括提供一种上述机电致发光显示面板的制备方法,包括以下步骤:
制备阵列基板;
在所述阵列基板上制备有机发光层;
在有机发光层上制备量子材料层;
制备彩膜基板;
将具有有机发光层和量子材料层的阵列基板和彩膜基板进行对盒。
优选的,在有机发光层上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或者喷墨打印法形成量子材料层。
本发明的另一个目的还包括提供一种上述机电致发光显示面板的制备方法,包括以下步骤:
制备阵列基板;
在所述阵列基板上制备有机发光层;
在有机发光层上制备量子材料层;
在量子材料层上制备彩膜层。
优选的,所述在有机发光层上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或者喷墨打印法形 成量子材料层的步骤。
优选的,所述在量子材料层上制备彩膜层的步骤包括采用低温彩膜法制备彩膜层的步骤。
本发明的另一个目的还包括提供一种有机电致发光显示装置,包括上述的有机电致发光显示面板。
本发明的有机电致发光显示面板及其制备方法、显示装置,由于在彩膜基板的靠近阵列基板的一侧或者在阵列基板的靠近彩膜基板的一侧设置能够产生尺度效应的量子材料层;量子材料层的光致发光特性能将从有机发光单元入射的光部分转化为与相应的所述子像素的颜色一致的光,从而提高了有机发光单元发出光的利用率、提高亮度、降低了功耗。
附图说明
图1为本发明实施例1中其中有机发光单元发白光的顶发射型有机电致发光显示面板的结构示意图。
图2为本发明实施例2中由第一种方法制备的顶发射型有机电致发光显示面板的结构示意图。
图3为本发明实施例3中由第二种方法制备的顶发射型有机电致发光显示面板的结构示意图。
图4为本发明实施例4中由第三种方法制备的顶发射型有机电致发光显示面板的结构示意图。
图5为其中有机发光单元发白光的顶发射型有机电致发光显示面板发出的白光的光谱示意图;
图6为其中有机发光单元发白光并且具有红光激发量子点的顶发射型有机电致发光显示面板发出的光的光谱示意图;以及
图7为其中有机发光单元发白光并且具有绿光激发量子点的顶发射型有机电致发光显示面板发出的光的光谱示意图;
其中:
101.基板玻璃;102.盖板玻璃;103.阵列背板;104.薄膜晶体 管;105.阳极电极;106.像素界定层;107.有机发光层;108.阴极电极;109.封装层;110.支撑物;111.黑矩阵;112.量子点层;113.彩膜层;114.平坦化层;
1001.蓝色子像素;1002.红色子像素;1003.绿色子像素;1004.黄色子像素;1005.白色子像素。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1
如图1所示,本实施例提供一种有机电致发光显示面板,包括对盒设置的阵列基板和彩膜基板;和设置在所述阵列基板的靠近所述彩膜基板的一侧的有机发光单元,所述阵列基板用于控制所述有机发光单元发光;以及所述阵列基板和所述彩膜基板形成呈矩阵排列的多个像素单元;每个像素单元包括多个子像素;
其中,所述有机电致发光显示面板在所述有机发光单元发出的光的颜色和所述子像素的颜色不一致且所述有机发光单元发出的光的波长小于所述子像素的颜色的波长的子像素区域处还包括设置在所述彩膜基板上靠近所述阵列基板的一侧或者设置在所述阵列基板上靠近所述彩膜基板的一侧的能够产生尺度效应的量子材料层;
所述量子材料层能将从所述有机发光单元入射的光部分转化为与相应的所述子像素的颜色一致的光。
本发明的有机电致发光显示面板及其制备方法、显示装置,由于在彩膜基板靠近阵列基板的一侧或者在阵列基板靠近彩膜基板的一侧设置能够产生尺度效应的量子材料层;量子材料层基于其自身的光致发光特性能将从有机发光单元入射的光部分转化为与相应的所述子像素的颜色一致的光,从而提高了有机发光单元发出光的利用率、提高亮度、降低了功耗。
应当理解的是,根据有机发光单元发出的光的颜色和对应的子像素的颜色是否一致,可以确定在该子像素对应的区域处是否需要设置量子材料层和/或相应颜色的子像素彩膜层。
例如,所述有机发光单元发出的光的颜色和所述子像素的颜色一致时,对应该子像素区域不需要设置量子材料层和相应颜色的子像素彩膜层;所述有机发光单元发出的光的颜色和所述子像素的颜色不一致,且所述有机发光单元发出的光的波长大于所述子像素的颜色的波长时,对应该子像素区域不需要设置量子材料层,但需要设置相应颜色的子像素彩膜层。
根据有机发光单元发出的光的颜色和每个子像素的颜色及两者波长的大小可以灵活的设置量子材料层和相应颜色的子像素彩膜层。
上述子像素彩膜层的作用包括过滤杂色提高色纯度、阻挡外界环境光中的高能光(<490nm)来激发量子点层,避免非自主发光。
具体地,本发明以顶发射型的有机发光层发白光的显示面板为例来进行说明。应当理解的是,本发明对于底发射型的显示面板也是适用的。
如图1所示,彩膜基板设置于盖板玻璃102上,阵列基板设置于基板玻璃101上,其中,从左到右示出3个子像素,分别为红色子像素1002、绿色子像素1003、蓝色子像素1001,这3个子像素形成一个像素单元。当然像素单元也可以采用现有技术中其它颜色的子像素的组合。
阵列背板103包括栅极电极、栅极绝缘层、有源层、源漏电极、钝化层和平坦层等组成(图1中未示出),当然也可以包含刻蚀阻挡层。每个薄膜晶体管104对应一个子像素,例如,薄膜晶体管104a对应蓝色子像素1001,薄膜晶体管104b对应红色子像素1002,薄膜晶体管104c对应绿色子像素1003。
薄膜晶体管104连接阳极电极105,阳极电极105与子像素一一对应;子像素之间由像素界定层106隔开;在阳极电极105 上设置有机发光层107;有机发光层107上设置有与每个子像素对应的阴极电极108;阴极电极108上可以设置无机薄膜、有机薄膜或混合薄膜组成的封装层109,当阵列基板和彩膜基板对盒时在封装层109上还需形成平坦化层114。
各个子像素之间设有黑矩阵111;黑矩阵111之间设有各子像素彩膜层113(113a,113b,113c);对应黑矩阵111的位置还设有起到对盒支撑作用的支撑物110;某些子像素彩膜层113与有机发光层107之间包括子像素量子点层112(112b,112c)。
在有机发光层107发白光的情况下,对应红色子像素1002的区域设有子像素量子点层112b,用以将白光中波长小于所述红色子像素1002的颜色的光转化为红色光;
对应绿色子像素1003的区域设有子像素量子点层112c,用以将白光中波长小于所述绿色子像素1003的颜色的光转化为绿色光;
而对应蓝色子像素1001的区域不需要设有子像素量子点层,因为白光的光谱中没有波长小于所述蓝色子像素1001的颜色的光。
优选的,所述子像素包括基色光子像素和白光子像素;所述基色光子像素包括红色子像素、蓝色子像素、绿色子像素、黄色子像素。
应当理解的是,形成像素单元的子像素组合可以是:红绿蓝、红绿蓝白、红绿蓝黄、红绿蓝黄白等。
优选的,所述有机发光单元包括白光光源、蓝光光源。应当理解的是,所述有机发光单元也可以为其它颜色的光源,只需要根据上述的规则设置相应的量子材料层和子像素彩膜层113即可。
具体地,当所述有机发光单元为白光光源;
所述彩膜基板包括分别与所述基色光子像素对应的子像素彩膜层113;
所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素量子材料层。
优选的,当所述有机发光单元为蓝光光源;
所述彩膜基板包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素彩膜层113。
所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素、白色子像素对应的子像素量子材料层。
量子材料的结构在纳观域上三个维度的有效尺寸可以相同,例如,为量子点或者正方体;或者一个维度的有效尺寸明显大于其他两个维度,例如为量子棒或者长方体条;或者一个维度的有效尺寸明显小于其他两个维度,例如,为量子板或者长方体板。需要注意的是,即使三个维度的有效尺寸不同,但是在宏观上每个维度都是满足量子尺度效应。
具体地,所述量子材料层包括量子点、量子棒和/或量子板。
所述量子点、量子棒和量子板均包括内核材料、配体和外壳材料,其中,内核材料包括CdS、CdSe、CdTe、PbSe、CuInS、InP或者碳纳米材料。其中,配体和外壳材料可根据应用情况具体选定,在此不再一一赘述。
上述的顶发射结构的有机电致发光显示面板可以按照量子材料层制备在彩膜基板上还是制备在阵列基板上,以及量子材料层与彩膜层的制备先后顺序由以下3种方法来制备。
实施例2
如图2所示,在顶发射型有机电致发光显示面板的第一种制备方法中,在彩膜基板上制备量子材料层,然后将阵列基板与彩膜基板对盒。
具体地,本实施例提供的上述有机电致发光显示面板的制备方法,包括以下步骤:
S1:制备阵列基板;
在基板玻璃101上制备阵列背板103(包括薄膜晶体管104及阳极电极)以形成阵列基板,应当理解的是,阵列基板的制备方法为现有技术范畴,在此不再一一赘述。
S2:在所述阵列基板上制备有机发光层;
本实施例采用真空蒸镀形成有机发光层107,具体地,在阵列基板的所有像素上同时蒸镀上几种颜色的有机发光层107,使得有机发光层107发出白光,然后利用各个子像素的彩膜层滤光来达到显示目的。这种方法的制作工艺简单、生产良率高,可以应用于大尺寸显示。
应当理解的是,也可以采用分别蒸镀出各种颜色的子像素来达到显示的目的。
应当理解的是,还可以采用喷墨打印或激光转印方法制备有机发光层107,在此不再一一赘述。
上述制备阵列基板的步骤还可以包括制备有机发光单元的阴极电极和封装层等(如图1所示),而这些方法属于现有技术范畴,在此不进行具体说明。
S3:制备彩膜基板;
在玻璃盖板102上通过构图工艺形成与每个子像素对应的子像素彩膜层113;如图2所示,若采用的像素单元包括:蓝色子像素1001、红色子像素1002、绿色子像素1003、黄色子像素1004、白色子像素1005,则对应的子像素彩膜层113分别为蓝色彩膜层113a、红色彩膜层113b、绿色彩膜层113c、黄色彩膜层113d、白色彩膜层113e。应当理解的是,上述像素单元也可以为现有技术中其它子像素的组合,在此不作限定。
然后,通过构图工艺形成支撑物110。
该构图工艺需要进行较高温度的后烘(>150℃),这种温度会对量子点造成损伤。因此,需要先将上述形成的图形进行烘干或固化,然后再制备量子材料层,避免上述的后烘干或固化对量子材料产生团聚或者发光淬灭等不良影响。
S4:在所述彩膜基板上制备量子材料层;
通过构图工艺形成量子点层112,如图2所示,量子点层112包括红色量子点层112b、绿色量子点层112c、黄色量子点层112d、白色量子点层112e。
具体制备过程如下:如果由蓝色子像素1001、红色子像素1002、绿色子像素1003形成子像素单元,则可以采用具有红色和绿色激发光量子点的混合层来同步制备对应的红色量子点层112b、绿色量子点层112c;
如果由蓝色子像素1001、红色子像素1002、绿色子像素1003、黄色子像素1004、白色子像素1005形成子像素单元,则可以采用具有红色、绿色、黄色激发光量子点的混合层同步制备对应的红色量子点层112b、绿色量子点层112c、黄色子像素1004;
对于白色子像素1005,可以单独采用能够将激发的光复合为白光的量子点的混合层制备。
本实施例采用将量子材料与负性光刻胶混合形成混合层,并通过构图工艺制备量子点层112;
应当理解的是,也可以采用喷墨打印法形成量子点层112。
上述步骤以量子材料层是量子点层为例进行了说明,但是本发明不限于此,量子材料层还可以为量子棒层或者量子板层,其制备方法与上述量子点层的制备方法一致,在此不再具体说明。
S5:将具有有机发光层的阵列基板和具有量子材料层的彩膜基板进行对盒。
采用对位装置将具有有机发光层107的阵列基板和具有量子点层112的彩膜基板进行对盒,具体对盒方法为现有技术范畴在此不再一一赘述。
实施例3
如图3所示,在顶发射型有机电致发光显示面板的第二种制备方法中,在阵列基板上依次制备有机发光层、量子材料层;然后将阵列基板与彩膜基板对盒。
具体地,本实施例提供的上述有机电致发光显示面板的制备方法,包括以下步骤:
S1:制备阵列基板;
在基板玻璃101上制备阵列背板103(包括薄膜晶体管104 及阳极电极)形成阵列基板,应当理解的是,阵列基板的制备为现有技术范畴在此不再一一赘述。
S2:在所述阵列基板上制备有机发光层;
本实施例采用真空蒸镀形成有机发光层107,具体地,在阵列基板的所有像素上同时蒸镀上几种颜色的有机发光层107,使得有机发光层107发出白光,然后利用各个子像素的彩膜层滤光来达到显示目的。这种方法的制作工艺简单、生产良率高,可以应用于大尺寸显示。
应当理解的是,也可以采用分别蒸镀出各种颜色的子像素来达到显示的目的。
应当理解的是,还可以采用喷墨打印或激光转印方法制备有机发光层107,在此不再一一赘述。
S3:在有机发光层上制备量子材料层;
通过构图工艺在有机发光层107上形成量子点层112。本实施例采用将量子材料与负性光刻胶混合,并通过构图工艺制备量子点层112,具体制备方法同实施例2;由于有机发光层107中的材料对温度(<100℃)和水氧要求非常高,量子点的构图工艺需要在保证量子点本身寿命的前提下进行,同时要保证有机发光层107不被破坏,上述的将量子材料与负性光刻胶混合,并通过构图工艺制备量子点层112的方法就能保证低温和低水氧要求,防止对有机发光层107的破坏。
应当理解的是,也可以采用喷墨打印法形成量子点层112。
与实施例2类似,本实施例中的量子材料层也可以为量子棒层或者量子板层。
S4:制备彩膜基板;
在玻璃盖板102上通过构图工艺形成与每个子像素对应的彩膜层113;以及通过构图工艺形成支撑物110。
上述构图工艺都需要进行较高温度的后烘(>150℃)。
S5:将具有有机发光层和量子材料层的阵列基板和彩膜基板进行对盒。
采用对位装置将具有有机发光层107和量子点层112的阵列基板和彩膜基板进行对盒,具体对盒方法为现有技术范畴在此不再一一赘述。
实施例4
如图4所示,在顶发射型有机电致发光显示面板的第三种制备方法中,在阵列基板上依次制备有机发光层107、量子材料层、彩膜层。
具体地,本实施例提供一种上述有机电致发光显示面板的制备方法,包括以下步骤:
S1:制备阵列基板;
在基板玻璃101上制备阵列背板103(包括薄膜晶体管104及阳极电极)形成阵列基板,应当理解的是,阵列基板的制备为现有技术范畴在此不再一一赘述。
S2:在所述阵列基板上制备有机发光层;
本实施例采用真空蒸镀形成有机发光层107,具体地,在阵列基板的所有像素上同时蒸镀上几种颜色的有机发光层107,使得有机发光层107发出白光,然后利用各个子像素的彩膜层滤光来达到显示目的。这种方法的制作工艺简单、生产良率高,可以应用于大尺寸显示。
应当理解的是,也可以采用分别蒸镀出各种颜色的子像素来达到显示的目的。
应当理解的是,还可以采用喷墨打印或激光转印方法制备有机发光层107,在此不再一一赘述。
S3:在有机发光层上制备量子材料层;
通过构图工艺在有机发光层107上形成量子点层112。本实施例采用将量子材料与负性光刻胶混合,并通过构图工艺制备量子点层112,具体制备方法同实施例2;由于有机发光层107中的材料对温度(<100℃)和水氧要求非常高,量子点的构图工艺需要在保证量子点本身寿命的前提下进行,同时要保证有机发光层 107不被破坏,上述的将量子材料与负性光刻胶混合,并通过构图工艺制备量子点层112的方法就能保证低温和低水氧要求,防止对有机发光层107的破坏。
应当理解的是,也可以采用喷墨打印法形成量子点层112。
与实施例2类似,本实施例中的量子材料层也可以为量子棒层或者量子板层。
S4:在量子材料层上制备彩膜层。
本实施例采用低温彩膜法制备彩膜层,低温彩膜法制备彩膜层为现有技术范畴在此不再一一赘述。由于在低温条件下制备彩膜层,所以不会对量子点材料造成团聚或者发光淬灭等不良影响。
同时,低温彩膜法包括光刻的步骤,量子点层112可以在彩膜层的紫外曝光过程中吸收紫外光,避免有机发光层107受紫外光照射后损伤。
当然应当理解的是,若有机发光层107采用喷墨打印的方法制备,量子点层也可以采用喷墨打印法制备,则彩膜层也可以使用低温彩膜法或喷墨打印法制备。
实施例5
本实施例提供一种有机电致发光显示装置,包括上述的有机电致发光显示面板。
目前有机电致发光显示装置发射的不同颜色的光在发光效率、能量效率和寿命等性能上有非常大的差异,详见表1:
表1有机电致发光显示装置发射的不同颜色的光的性能对比表
Figure PCTCN2016072293-appb-000001
由表1可以看出蓝光的发光效率和寿命相对比较差。
红色量子点和绿色量子点受蓝光激发时的外量子效率分别为19%和22%。不同颜色的有机电致发光层和不同的量子点的外量子效率将导致显示装置的不同的能量转化效率和寿命。
例如,存在三种结构:有机发光层发白光的有机电致发光显示装置(WOLED),具有量子点层的有机发光层发蓝光的有机电致发光显示装置(Blue-OLED+QD),具有量子点层的有机发光层发白光的有机电致发光显示装置(WOLE+QD),这三种结构中RGB三色的能量转化效率和寿命参见表2:
表2WOLED、Blue-OLED+QD和WOLED+QD三种结构中能量效率和寿命对比表
Figure PCTCN2016072293-appb-000002
由表2可知,如果使用Blue-OLED作为背光激发量子点的显示结构,器件的整体功耗与WOLED结构相比增加约5.5倍,红色 和绿色的功耗将增加约20倍;器件的整体寿命与WOLED结构相比降低了约15倍,红色和绿色的寿命更是降低了30和20倍。与此同时,使用WOLED+QD结构与WOLED结构进行比较,器件的整体寿命没有减小,而红色和绿色的能量转换效率却有所增加(功耗降低),因此在实际应用时可以采用具有量子点层的有机发光层发白光的有机电致发光显示装置(WOLED+QD),因为其具有更高的使用寿命以及较低的功耗。
另外,以图5所示WOLED结构的有机电致发光显示装置发出的白光的光谱为参照对含红光激发量子点和含绿光激发量子点的WOLED+QD结构的有机电致发光显示装置的光谱进行分析发现:
由图6可见具有红光激发量子点的有机电致发光显示装置能够将更多白光中波长小于红光的其它波长的光转化为红光,增加了有机发光层的光的利用率、提高亮度、降低了功耗。
由图7可见具有绿光激发量子点的有机电致发光显示装置能够将更多白光中波长小于绿光的其它波长的光转化为绿光,增加了有机发光层的光的利用率、提高亮度、降低了功耗。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述实施例,重复之处不再赘述。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (20)

  1. 一种有机电致发光显示面板,包括对盒设置的阵列基板和彩膜基板;和设置在所述阵列基板的靠近所述彩膜基板的一侧的有机发光单元,所述阵列基板用于控制所述有机发光单元发光;以及所述阵列基板和所述彩膜基板形成呈矩阵排列的多个像素单元;每个像素单元包括多个子像素;
    其中,所述有机电致发光显示面板在所述有机发光单元发出的光的波长小于所述子像素的颜色的波长的子像素区域处还包括能够产生尺度效应的将从所述有机发光单元入射的光部分转化为与相应的所述子像素的颜色一致的光的量子材料层。
  2. 根据权利要求1所述的有机电致发光显示面板,其中,所述量子材料层设置在所述彩膜基板上靠近所述阵列基板的一侧。
  3. 根据权利要求2所述的有机电致发光显示面板,其中所述彩膜基板还包括基板以及设置在基板上的彩膜层,以及所述量子材料层设置在所述彩膜层上。
  4. 根据权利要求1所述的有机电致发光显示面板,其中,所述量子材料层设置在所述阵列基板上靠近所述彩膜基板的一侧。
  5. 根据权利要求4所述的有机电致发光显示面板,其中,所述彩膜基板还包括彩膜层。
  6. 根据权利要求4所述的有机电致发光显示面板,其中,所述阵列基板还包括设置在所述量子材料层上方的彩膜层。
  7. 如权利要求1至6中任意一项所述的有机电致发光显示面板,其中,所述子像素包括基色光子像素和白光子像素;所述基 色光子像素包括红色子像素、蓝色子像素、绿色子像素、黄色子像素。
  8. 如权利要求7所述的有机电致发光显示面板,其中,所述有机发光单元包括白光光源、蓝光光源。
  9. 如权利要求7所述的有机电致发光显示面板,其中,
    所述有机发光单元为白光光源;
    所述彩膜层包括分别与所述红色子像素、蓝色子像素、绿色子像素、黄色子像素对应的子像素彩膜层;以及
    所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素量子材料层。
  10. 如权利要求7所述的有机电致发光显示面板,其中,
    所述有机发光单元为蓝光光源;
    所述彩膜基板包括分别与所述红色子像素、绿色子像素、黄色子像素对应的子像素彩膜层;
    所述量子材料层包括分别与所述红色子像素、绿色子像素、黄色子像素、白色子像素对应的子像素量子材料层。
  11. 如权利要求1至10中任意一项所述的有机电致发光显示面板,其中,
    所述量子材料层包括量子点、量子棒和/或量子板。
  12. 如权利要求11所述的有机电致发光显示面板,其中,
    所述量子点、量子棒和量子板均包括内核材料、配体和外壳材料,其中,内核材料包括CdS、CdSe、CdTe、PbSe、CuInS、InP或者碳纳米材料。
  13. 一种如权利要求1所述的有机电致发光显示面板的制备方 法,包括以下步骤:
    制备阵列基板;
    在所述阵列基板上制备有机发光层;
    制备彩膜基板;
    在所述彩膜基板上制备量子材料层;
    将具有有机发光层的阵列基板和具有量子材料层的彩膜基板进行对盒。
  14. 如权利要求13所述的有机电致发光显示面板的制备方法,其中,在所述彩膜基板上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或者喷墨打印法形成量子材料层。
  15. 一种如权利要求1所述的有机电致发光显示面板的制备方法,包括以下步骤:
    制备阵列基板;
    在所述阵列基板上制备有机发光层;
    在有机发光层上制备量子材料层;
    制备彩膜基板;
    将具有有机发光层和量子材料层的阵列基板和彩膜基板进行对盒。
  16. 如权利要求15所述的有机电致发光显示面板的制备方法,其中,在有机发光层上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或者喷墨打印法形成量子材料层。
  17. 一种如权利要求1所述的有机电致发光显示面板的制备方法,包括以下步骤:
    制备阵列基板;
    在所述阵列基板上制备有机发光层;
    在有机发光层上制备量子材料层;
    在量子材料层上制备彩膜层。
  18. 如权利要求17所述的有机电致发光显示面板的制备方法,其中,所述在有机发光层上制备量子材料层的步骤包括将量子材料与负性光刻胶混合,并通过构图工艺或喷墨打印法形成量子材料层。
  19. 如权利要求12所述的有机电致发光显示面板的制备方法,其中,所述在量子材料层上制备彩膜层的步骤包括采用低温彩膜法制备彩膜层。
  20. 一种有机电致发光显示装置,包括如权利要求1-12任一项所述的有机电致发光显示面板。
PCT/CN2016/072293 2015-07-17 2016-01-27 有机电致发光显示面板及制备方法、显示装置 WO2017012326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/300,153 US10205129B2 (en) 2015-07-17 2016-01-27 Organic light emitting display panel comprising a quantum material layer, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510425528.8 2015-07-17
CN201510425528.8A CN105097878B (zh) 2015-07-17 2015-07-17 有机电致发光显示面板及制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2017012326A1 true WO2017012326A1 (zh) 2017-01-26

Family

ID=54577929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072293 WO2017012326A1 (zh) 2015-07-17 2016-01-27 有机电致发光显示面板及制备方法、显示装置

Country Status (3)

Country Link
US (1) US10205129B2 (zh)
CN (1) CN105097878B (zh)
WO (1) WO2017012326A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097878B (zh) * 2015-07-17 2018-02-13 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置
CN105280686B (zh) * 2015-10-23 2018-09-11 京东方科技集团股份有限公司 一种显示面板及显示装置
CN107403817B (zh) * 2016-05-20 2020-06-23 群创光电股份有限公司 显示装置
US10490534B2 (en) 2016-05-20 2019-11-26 Innolux Corporation Display device with LED pixels
CN105932039B (zh) * 2016-06-01 2019-02-19 深圳市华星光电技术有限公司 Oled显示装置
KR102661846B1 (ko) * 2016-06-29 2024-04-29 삼성디스플레이 주식회사 색변환 패널, 이의 제조 방법 및 이를 포함하는 표시 장치
CN106229418B (zh) * 2016-08-24 2018-04-13 深圳市华星光电技术有限公司 一种电致发光显示器件及显示装置
KR20180040038A (ko) * 2016-10-11 2018-04-19 삼성전자주식회사 양자점 발광 소자 및 이를 포함하는 광학 장치
KR102661442B1 (ko) * 2016-11-02 2024-04-26 삼성디스플레이 주식회사 표시 장치
KR20180051006A (ko) * 2016-11-07 2018-05-16 삼성전자주식회사 Led 패널 및 그 제조 방법
KR20180078390A (ko) * 2016-12-29 2018-07-10 삼성디스플레이 주식회사 색변환 표시판 및 이를 포함하는 표시 장치
US20180269260A1 (en) * 2017-01-29 2018-09-20 Emagin Corporation Quantum dot array on directly patterned amoled displays and method of fabrication
US10636969B2 (en) * 2017-05-01 2020-04-28 Emagin Corporation Apparatus and method of directly patterning high resolution active matrix organic light emitting diodes using high-resolution shadow mask
JP6817145B2 (ja) * 2017-05-29 2021-01-20 エルジー ディスプレイ カンパニー リミテッド 有機電界発光装置および有機電界発光装置の製造方法
US20190041701A1 (en) 2017-08-01 2019-02-07 Innolux Corporation Display device
CN107359187B (zh) * 2017-08-17 2020-07-03 武汉华星光电半导体显示技术有限公司 一种oled像素单元、显示面板及电子设备
KR20190033816A (ko) * 2017-09-22 2019-04-01 삼성전자주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치
KR102523976B1 (ko) 2017-11-21 2023-04-20 삼성전자주식회사 디스플레이 장치
CN107819083A (zh) * 2017-11-30 2018-03-20 京东方科技集团股份有限公司 彩膜基板、其制作方法、显示面板及显示装置
CN111886930B (zh) * 2018-03-28 2023-08-15 夏普株式会社 发光装置、光波长转换装置以及显示装置
CN109192753B (zh) * 2018-07-27 2021-03-02 Tcl华星光电技术有限公司 Oled显示面板及其制备方法
CN110416258B (zh) * 2018-07-27 2021-11-02 广东聚华印刷显示技术有限公司 显示器件及其制作方法
CN112567526A (zh) * 2018-08-29 2021-03-26 华为技术有限公司 一种采用混合型发光二极管的显示屏幕及其制备方法
KR102602673B1 (ko) * 2018-10-12 2023-11-17 삼성디스플레이 주식회사 표시 장치 및 표시 장치 제조 방법
CN109378403A (zh) * 2018-10-17 2019-02-22 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法和显示面板
CN109411522A (zh) * 2018-11-06 2019-03-01 京东方科技集团股份有限公司 一种透明显示面板及其制备方法、显示装置
KR20200084969A (ko) * 2019-01-03 2020-07-14 삼성디스플레이 주식회사 표시패널
CN109755413B (zh) * 2019-01-16 2021-07-06 Tcl华星光电技术有限公司 一种显示面板及其制备方法
KR20200100899A (ko) * 2019-02-18 2020-08-27 삼성디스플레이 주식회사 표시 장치
CN109950416A (zh) * 2019-03-08 2019-06-28 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板及电子设备
CN109950425A (zh) * 2019-03-08 2019-06-28 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板及电子设备
CN110021652A (zh) * 2019-04-03 2019-07-16 深圳市华星光电半导体显示技术有限公司 量子点柔性oled显示装置及制备方法
CN110120404B (zh) * 2019-04-18 2021-04-27 深圳市华星光电半导体显示技术有限公司 双面白光有机发光二极管显示装置及其制造方法
CN110085638B (zh) * 2019-04-18 2021-08-06 深圳市华星光电半导体显示技术有限公司 双面白光有机发光二极管显示装置及其制造方法
CN110246989B (zh) * 2019-05-07 2021-04-30 信利半导体有限公司 一种全彩oled显示器的制作方法
CN110061151A (zh) * 2019-05-17 2019-07-26 京东方科技集团股份有限公司 一种有机发光二极管面板及其制作方法和显示设备
CN110190096A (zh) * 2019-05-27 2019-08-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
KR20210013390A (ko) * 2019-07-24 2021-02-04 삼성디스플레이 주식회사 컬러 필터 패널, 표시 장치 및 이의 제조 방법
CN110611035A (zh) * 2019-08-30 2019-12-24 深圳市华星光电半导体显示技术有限公司 一种量子点oled显示面板
CN110518135A (zh) * 2019-08-30 2019-11-29 深圳市华星光电半导体显示技术有限公司 量子点oled显示面板
CN110854167A (zh) * 2019-10-28 2020-02-28 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法
US10923672B1 (en) 2019-11-06 2021-02-16 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot organic light emitting diode display panel
CN111063709A (zh) * 2019-12-05 2020-04-24 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
KR20210086791A (ko) 2019-12-30 2021-07-09 삼성디스플레이 주식회사 디스플레이 장치
CN111403439A (zh) * 2020-03-20 2020-07-10 京东方科技集团股份有限公司 显示基板及显示面板
CN111244149B (zh) * 2020-03-20 2022-12-02 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN111403462B (zh) * 2020-03-27 2023-08-29 京东方科技集团股份有限公司 显示基板及其制作方法、显示面板和显示装置
CN111584563B (zh) * 2020-05-08 2023-05-09 武汉华星光电半导体显示技术有限公司 一种oled显示面板及显示装置
CN111524463B (zh) * 2020-05-29 2023-04-21 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN112133734B (zh) * 2020-09-29 2022-08-30 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置
CN112802947A (zh) * 2020-12-21 2021-05-14 深圳扑浪创新科技有限公司 一种量子点显示器件及其制备方法
CN113053964B (zh) * 2021-03-09 2023-10-13 云南创视界光电科技有限公司 显示装置、显示面板及其驱动方法
WO2023087250A1 (zh) * 2021-11-19 2023-05-25 京东方科技集团股份有限公司 显示面板和显示装置
WO2023105620A1 (ja) * 2021-12-07 2023-06-15 シャープディスプレイテクノロジー株式会社 表示装置
WO2023105621A1 (ja) * 2021-12-07 2023-06-15 シャープディスプレイテクノロジー株式会社 表示装置
CN114566516A (zh) * 2022-02-28 2022-05-31 厦门天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236435A (zh) * 2013-04-23 2013-08-07 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置
CN103700674A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
CN103730472A (zh) * 2013-12-25 2014-04-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
US20150048348A1 (en) * 2013-08-14 2015-02-19 Ye Xin Technology Consulting Co., Ltd. Display panel
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014707A2 (en) 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
JP5778950B2 (ja) * 2011-03-04 2015-09-16 株式会社Joled 有機el表示装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236435A (zh) * 2013-04-23 2013-08-07 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置
US20150048348A1 (en) * 2013-08-14 2015-02-19 Ye Xin Technology Consulting Co., Ltd. Display panel
CN103730472A (zh) * 2013-12-25 2014-04-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN103700674A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置

Also Published As

Publication number Publication date
CN105097878B (zh) 2018-02-13
CN105097878A (zh) 2015-11-25
US20170179438A1 (en) 2017-06-22
US10205129B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2017012326A1 (zh) 有机电致发光显示面板及制备方法、显示装置
US9276046B2 (en) Color display device structure
WO2020015173A1 (zh) Oled显示器
WO2020030042A1 (zh) Oled显示基板及其制作方法、显示装置
WO2017140047A1 (zh) 发光器件及其制备方法、显示装置
US10692941B2 (en) Organic light emitting diode display
WO2019095452A1 (zh) Oled显示器及其制作方法
WO2016058223A1 (zh) Oled器件的制备方法及其制得的oled器件
US10573850B2 (en) Manufacturing OLED panel by utilizing morphological transformation layer
WO2016058224A1 (zh) Oled器件的制备方法及其制得的oled器件
WO2016004662A1 (zh) Oled像素结构
WO2014201712A1 (zh) 一种发光器件、显示面板及其制造方法
WO2018176546A1 (zh) 量子点发光二极管显示面板及其制备方法、显示装置
KR101649237B1 (ko) 양자점 발광 소자 및 이를 이용한 조명 장치
WO2018232948A1 (zh) Oled显示器及其制作方法
WO2016004663A1 (zh) Oled像素结构
US10439007B2 (en) OLED display panel, method of fabricating the same and display apparatus having the same
US20180197894A1 (en) Pixel structure, manufacturing method and display panel
WO2019019614A1 (zh) 显示面板及其制作方法、显示装置
WO2013073521A1 (ja) 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
WO2016061842A1 (zh) 彩色显示器件
CN110048024B (zh) 显示基板及其制造方法、显示装置
Yin et al. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer
Hu et al. 75‐4: Inkjet‐Printed Quantum Dot Display with Blue OLEDs for Next Generation Display
CN111933673A (zh) 显示面板及其制作方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15300153

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827019

Country of ref document: EP

Kind code of ref document: A1