WO2016004663A1 - Oled像素结构 - Google Patents

Oled像素结构 Download PDF

Info

Publication number
WO2016004663A1
WO2016004663A1 PCT/CN2014/084335 CN2014084335W WO2016004663A1 WO 2016004663 A1 WO2016004663 A1 WO 2016004663A1 CN 2014084335 W CN2014084335 W CN 2014084335W WO 2016004663 A1 WO2016004663 A1 WO 2016004663A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting layer
blue
light emitting
transport layer
Prior art date
Application number
PCT/CN2014/084335
Other languages
English (en)
French (fr)
Inventor
刘亚伟
王宜凡
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/426,975 priority Critical patent/US9634278B2/en
Publication of WO2016004663A1 publication Critical patent/WO2016004663A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/893Deposition in pores, molding, with subsequent removal of mold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/952Display

Definitions

  • the present invention relates to the field of fabrication of organic electroluminescent display devices, and more particularly to an OLED pixel structure. Background technique
  • the flat display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the existing flat display devices mainly include a liquid crystal display (LCD) and an organic light emitting display (OLED).
  • Organic electroluminescent devices have the advantages of high backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, wide temperature range, simple structure and simple process. , is considered to be the next generation of flat panel display emerging application technology.
  • the organic electroluminescent device is classified into a small molecule organic electroluminescent device (OLED) and a polymer electroluminescent device (PLED), and organic electroluminescence due to the difference in molecular weight
  • OLED organic electroluminescent device
  • PLED polymer electroluminescent device
  • the process of the device is also very different.
  • the OLED is mainly prepared by thermal evaporation
  • the PLED is prepared by spin coating or inkjet printing.
  • the OLED generally includes: a substrate, an ITO transparent anode disposed on the substrate, a hole injection layer (; HIL;) disposed on the ITO transparent anode, and a hole transport layer HTL disposed on the hole injection layer; A light-emitting layer (EML;) on the hole transport layer, an electron transport layer (ETL;) placed on the light-emitting layer, an electron injection layer (EIL) placed on the electron transport layer, and a cathode placed on the electron injection layer.
  • the luminescent layer usually employs a host/guest doping system.
  • NCs Semiconductor nanocrystals
  • QDs quantum dots Due to the excitation of external energy (photoluminescence, electroluminescence, cathodoluminescence, etc.), electrons transition from the ground state to the excited state. Electrons and holes in an excited state may form excitons. The electrons recombine with the holes and eventually relax to the ground state. Excess energy is released through the recombination and relaxation processes, possibly radiating a composite photon.
  • Quantum Dots Light Emitting Diodes have important commercial applications and have attracted strong research interest in the last decade.
  • QD-LEDs are relative to organic light emitting diodes (Organic Light Emitting Diodes, OLEDs) have many advantages: (1) The linewidth of quantum dot luminescence is between 20-30 nm, and the FWHM is narrower than that of organic luminescence >50 nm, which plays a key role in the color purity of realistic images. (2) Inorganic materials exhibit better thermal stability relative to organic materials. When the device is at high brightness or high current density, Joule heat is the main cause of device degradation. Due to the excellent thermal stability, inorganic material based devices will exhibit a long service life.
  • is the internal quantum efficiency, ie the luminescence quantum yield (PL) QY)
  • is the probability of radiation transition
  • ⁇ ⁇ is the efficiency of outcoupling.
  • the limit of organic fluorescent dye ⁇ ⁇ is 25%, where the ratio of singlet to triplet is 1:3, only singlet excitons The recombination leads to luminescence.
  • the organic phosphorescent material is ⁇ greater than 25%. It is worth mentioning that the organic phosphorescent material causes degradation of the matrix material.
  • the ⁇ of the planar light-emitting device is about 20%, The outcoupling efficiency is improved by the microcavity structure. For QD-LEDs, ⁇ can reach 100%, and when the electron and hole energy levels are suitable, r( r can also reach 100%.
  • Quantum dot light-emitting diodes can be classified into organic-inorganic hybrid devices and all-inorganic devices.
  • the former can achieve high brightness and can be made flexibly, and the latter has advantages in terms of device stability.
  • One is RGB three primary colors, which is represented by Samsung.
  • RGB three primary colors which is represented by Samsung.
  • This technology is only suitable for organic small molecular materials that are easy to sublimate.
  • the advantage is that the process is simple and mature, and the process is simple. However, due to the need for high-precision mask and precise alignment when preparing high-resolution display, low productivity and high efficiency are caused. cost.
  • the other is white light + RGB filter technology, represented by LG.
  • An object of the present invention is to provide an OLED pixel structure, which can significantly improve the lifetime and stability of an OLED having the pixel structure compared with a conventional OLED. Improve light extraction efficiency and reduce energy consumption.
  • the present invention provides an OLED pixel structure, including: red, green, and blue sub-pixels, the red sub-pixel has a red light-emitting layer, the green sub-pixel has a green light-emitting layer, and the blue sub-pixel has The blue light emitting layer, the material of the blue light emitting layer includes inorganic quantum dots, the blue light emitting layer emits white light, and the blue subpixel is provided with a blue light filter.
  • the inorganic quantum dots are white light quantum dots, or the inorganic quantum dots are a combination of red light quantum dots, green light quantum dots and blue light quantum dots, or the inorganic quantum dots are a combination of blue quantum dots and yellow light quantum dots.
  • the white light quantum dots are ll-VI quantum dots such as CdSe, CdS, CdTe, CdMnS, ZnSe, or ZnMnSe, and the blue quantum dots are ZnCdS, CdSe/ZnS, or nano SiN 4 , and the green light quantum dots are CdSe. /ZnS, or ZnSe: Cu 2+ , the red light quantum dot is CdSe/CdS/ZnS, and the yellow light quantum dot is CdSe/CdS/ZnS, or ZnS: Mn 2+ .
  • the blue light emitting layer is prepared by mixing inorganic quantum dot particles with a surface coating agent and a solvent, coating and volatilizing to remove the solvent to obtain inorganic quantum dots, and the surface coating agent comprises stearic acid and zinc trioxide.
  • the surface coating agent comprises stearic acid and zinc trioxide.
  • the solvent is chloroform, toluene, chlorobenzene or methanol.
  • the preparation process of the blue light emitting layer is: mixing an organic host material with inorganic quantum dot particles and a solvent, coating and volatilizing to remove a solvent to obtain an inorganic quantum dot; the organic host material is TCTA or TRZ; the solvent is chloroform , toluene, chlorobenzene or methanol.
  • the red light emitting layer is formed of a red organic light emitting material, which is Ir(piq) 3
  • the green light emitting layer is formed of a green organic light emitting material, which is Ir(ppy) 3 .
  • the red, green, and blue sub-pixels are respectively disposed on the substrate and covered by the cover layer, and the material of the substrate and the cover layer is glass or flexible
  • the material, at least one of the substrate and the cover layer is transparent; and a blue light filter is disposed under the cover layer corresponding to the blue sub-pixel.
  • the red sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and a red on the hole transport layer a light emitting layer, an electron transport layer on the red light emitting layer, and a cathode on the electron transport layer;
  • the green subpixel includes: an anode on the substrate, a thin film transistor on the anode, and an empty space on the thin film transistor a hole injection layer, a hole transport layer on the hole injection layer, a green light-emitting layer on the hole transport layer, an electron transport layer on the green light-emitting layer, and a cathode on the electron transport layer;
  • the blue sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and blue light emission on the hole transport layer Layer, located in blue An electron transport layer on the
  • the red light emitting layer and the green light emitting layer are formed by vacuum evaporation, and are formed after forming a blue light emitting layer.
  • a white sub-pixel having a white light emitting layer, the material of the white light emitting layer comprising inorganic quantum dots, the white light emitting layer emitting white light.
  • the white light emitting layer and the blue light emitting layer are made of the same material and the same process. Further comprising a substrate and a cover layer sealedly connected to the substrate, wherein the red, green, blue and white sub-pixels are respectively disposed on the substrate and covered by the cover layer, and the material of the substrate and the cover layer is glass or The flexible material, at least one of the substrate and the cover layer is transparent; and a blue light filter is disposed under the cover layer corresponding to the blue sub-pixel.
  • the red sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and a red on the hole transport layer a light emitting layer, an electron transport layer on the red light emitting layer, and a cathode on the electron transport layer;
  • the green subpixel includes: an anode on the substrate, a thin film transistor on the anode, and an empty space on the thin film transistor a hole injection layer, a hole transport layer on the hole injection layer, a green light-emitting layer on the hole transport layer, an electron transport layer on the green light-emitting layer, and a cathode on the electron transport layer;
  • the blue sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and blue light emission on the hole transport layer a layer, an electron transport layer on the blue
  • the red light emitting layer and the green light emitting layer are formed by vacuum evaporation, and are formed after forming a blue light and white light emitting layer.
  • the present invention also provides an OLED pixel structure, including: red, green, and blue sub-pixels, the red sub-pixel has a red light-emitting layer, the green sub-pixel has a green light-emitting layer, and the blue sub-pixel has a blue light-emitting layer.
  • the material of the blue light emitting layer includes inorganic quantum dots, the blue light emitting layer emits white light, and the blue sub-pixel is provided with a blue light filter;
  • the inorganic quantum dots are white light quantum dots, or the inorganic quantum dots are red light quantum dots, green a combination of a photo quantum dot and a blue quantum dot, or the inorganic quantum dot is a combination of a blue quantum dot and a yellow quantum dot;
  • the white light quantum dots are ll-VI quantum dots such as CdSe, CdS, CdTe, CdMnS, ZnSe, or ZnMnSe, and the blue quantum dots are ZnCdS, CdSe/ZnS, or nano SiN 4 , and the green light quantum dots are CdSe. /ZnS, or ZnSe: Cu 2+ , the red light quantum dot is CdSe/CdS/ZnS, and the yellow light quantum dot is CdSe/CdS/ZnS, or ZnS: Mn 2+ ;
  • the blue light emitting layer is prepared by mixing inorganic quantum dot particles with a surface coating agent and a solvent, coating and volatilizing to remove the solvent to obtain inorganic quantum dots, and the surface coating agent comprises stearic acid and zinc trioxide.
  • a phosphine, or polymethyl methacrylate the solvent is chloroform, toluene, chlorobenzene or methanol;
  • the preparation process of the blue light emitting layer is: mixing an organic host material with inorganic quantum dot particles and a solvent, coating and volatilizing to remove the solvent to obtain an inorganic quantum dot; the organic host material is
  • the solvent is chloroform, toluene, chlorobenzene or methanol;
  • the red light emitting layer is formed of a red organic light emitting material, which is Ir(piq) 3
  • the green light emitting layer is formed of a green organic light emitting material, which is Ir(ppy) 3 ;
  • a substrate and a cover layer sealedly connected to the substrate, wherein the red, green, and blue sub-pixels are respectively disposed on the substrate and covered by the cover layer, and the material of the substrate and the cover layer is glass or flexible Material, at least one of the substrate and the cover layer is transparent; a blue light filter is disposed under the cover layer corresponding to the blue sub-pixel;
  • the red sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and a red on the hole transport layer a light emitting layer, an electron transport layer on the red light emitting layer, and a cathode on the electron transport layer;
  • the green subpixel includes: an anode on the substrate, a thin film transistor on the anode, and an empty space on the thin film transistor a hole injection layer, a hole transport layer on the hole injection layer, a green light-emitting layer on the hole transport layer, an electron transport layer on the green light-emitting layer, and a cathode on the electron transport layer;
  • the blue sub-pixel includes: an anode on the substrate, a thin film transistor on the anode, a hole injection layer on the thin film transistor, a hole transport layer on the hole injection layer, and blue light emission on the hole transport layer a layer, an electron transport layer on the blue
  • the red light emitting layer and the green light emitting layer are formed by vacuum evaporation, and are formed after forming a blue light emitting layer.
  • the OLED pixel structure of the present invention is adopted by a blue sub-pixel
  • the "inorganic quantum dot + blue light filter” approach significantly improves the stability and lifetime of OLED devices.
  • the light-emitting efficiency of the OLED device is improved and the energy consumption is reduced.
  • FIG. 1 is a schematic structural view of a first embodiment of an OLED pixel structure according to the present invention
  • FIG. 2 is a schematic plan view showing a first embodiment of an OLED pixel structure according to the present invention
  • FIG. 3 is a schematic view of the pixel structure shown in FIG. 2 when used for a display panel;
  • FIG. 4 is a schematic structural view of a TFT driving circuit of the pixel structure shown in FIG. 2;
  • FIG. 5 is a schematic structural view of a second embodiment of an OLED pixel structure according to the present invention.
  • FIG. 6 is a schematic plan view showing a second embodiment of an OLED pixel structure according to the present invention.
  • FIG. 7 is a schematic view of the pixel structure shown in FIG. 6 for a display panel
  • FIG. 8 is a schematic structural view of a TFT driving circuit of the pixel structure shown in FIG. 6;
  • FIG. 9 is a schematic structural view of a third embodiment of an OLED pixel structure according to the present invention.
  • FIG. 10 is a schematic plan view showing a third embodiment of the OLED pixel structure of the present invention. detailed description
  • the present invention provides an OLED pixel structure, including: red, green, and blue sub-pixels 11, 22, 33, and red sub-pixels.
  • 11 has a red light emitting layer 61
  • the green sub-pixel 22 has a green light emitting layer 62
  • the blue sub-pixel 33 has a blue light emitting layer 63
  • the material of the blue light emitting layer 63 includes inorganic quantum dots
  • the blue light emitting layer 63 emits white light.
  • a blue color filter 12 is provided corresponding to the blue sub-pixel 33.
  • the inorganic quantum dots may be white light quantum dots, or a combination of red light quantum dots, green light quantum dots and blue light quantum dots, or a combination of blue quantum dots and yellow light quantum dots, or other possible combinations.
  • the white light quantum dots are CdSe, CdS, CdTe, CdMnS, ZnSe, or ZnMnSe, etc.
  • the II ⁇ VI family of quantum dots the blue quantum dots are ZnCdS, CdSe/ZnS, or nano SiN 4
  • the green light quantum dots are CdSe/ZnS, or ZnSe: Cu 2+
  • the red light quantum dots are CdSe/CdS /ZnS
  • the yellow light quantum dot is CdSe/CdS/ZnS, or ZnS: Mn 2+ .
  • the blue light emitting layer 63 is prepared by mixing inorganic quantum dot particles with a surface coating agent and a solvent, coating and volatilizing to remove the solvent to obtain inorganic quantum dots, and the surface coating agent includes stearic acid and oxidation.
  • Zinc phosphine, or polymethyl methacrylate; the solvent may be chloroform, toluene, chlorobenzene or methanol.
  • the preparation process of the blue light emitting layer 63 may also be: mixing an organic host material with inorganic quantum dot particles and a solvent, coating and volatilizing to remove the solvent to obtain inorganic quantum dots, and the solvent may be chloroform, toluene, chlorobenzene or Methanol.
  • the organic host material is TCTA (4,4',4"-tris(carbazol-9-yl)triphenylamine) or TRZ (2,4,6-tris(9H-carbazol-9-yl)-1 , 3,5-triazine).
  • the structure is as follows:
  • the structure is as follows:
  • Both the organic host material and the surface coating agent have an effect of preventing agglomeration and oxidation of inorganic quantum dots. Because inorganic quantum dots are nanoparticles, zero-dimensional materials have large surface activity and are prone to agglomeration, leading to oxidation and quenching of fluorescence.
  • the red light emitting layer 61 is formed of a red organic light emitting material, the red light emitting material is Ir(piq) 3 , and the green light emitting layer 62 is formed of a green organic light emitting material, the green organic light emitting layer The material is Ir(ppy) 3 .
  • the structure of the Ir ppy) 3 is:
  • the red light emitting layer (61) and the green light emitting layer (62) are formed by vacuum evaporation, and are formed after the blue light emitting layer (63) is formed.
  • the red sub-pixel 11 and the green sub-pixel 22 are self-primed by an organic material, and the blue sub-pixel 33 emits white light, and after being filtered by the corresponding blue light filter 12, blue light is emitted.
  • the OLED pixel structure of the present invention further includes a substrate 1 and a cover layer 9 sealedly connected to the substrate.
  • the red, green and blue sub-pixels 11, 22, 33 are respectively disposed on the substrate 1 and are covered by the cover layer 9. Covering, the material of the substrate 1 and the cover layer 9 is glass or a flexible material, at least one of the substrate 1 and the cover layer 9 is transparent; and the blue layer is correspondingly disposed under the cover layer 9 corresponding to the blue sub-pixel 33 Filter 12.
  • the blue color filter 12 can be a blue filter used in the production line of the existing liquid crystal panel.
  • the red sub-pixel 11 includes: an anode 2 on the substrate 1, a thin film transistor 3 on the anode 2, a hole injection layer 4 on the thin film transistor 3, and a hole transport layer 5 on the hole injection layer 4. a red light emitting layer 61 on the hole transport layer 5, an electron transport layer 7 on the red light emitting layer 61, and a cathode 8 on the electron transport layer 7;
  • the green subpixel 22 includes: on the substrate 1 Upper anode 2, thin film transistor 3 on anode 2, hole injection layer 4 on thin film transistor 3, hole transport layer 5 on hole injection layer 4, green light on hole transport layer 5 a light-emitting layer 62, an electron transport layer 7 on the green light-emitting layer 62, and a cathode 8 on the electron transport layer 7;
  • the blue sub-pixel 33 includes: an anode 2 on the substrate 1, and an anode 2 a thin film transistor 3, a hole injection layer 4 on the thin film transistor 3, a hole transport layer 5 on the hole injection layer 4, and a blue light
  • the material of the electron transport layer 7 is octahydroxyquinoline aluminum, and the material of the hole transport layer 5 is polytriphenylamine.
  • the material of the hole injection layer 4 layer is PEDOT (polyethylenedioxythiophene).
  • the substrate 1 and the cover layer 9 are bonded together by a sealant 10 to seal and protect the internal electronic components.
  • FIG. 2 and FIG. 3 are schematic structural diagrams of an OLED pixel structure for displaying a panel according to a first embodiment of the present invention.
  • the red sub-pixel 11, the green sub-pixel 22, and the blue sub-pixel 33 are driven by the TFT transistor 3, respectively.
  • a second embodiment of the present invention is different from the first embodiment in that the pixel structure further includes a white sub-pixel 44 having a white light emitting layer 64.
  • the material of the white light emitting layer 64 includes inorganic quantum dots, and the white light emitting layer 64 emits white light.
  • the white light emitting layer 64 and the blue light emitting layer 63 are made of the same material and the same process.
  • the white sub-pixels 44 are disposed on the substrate 1 together with the red, green, and blue sub-pixels 11, 22, 33, and are covered by the cover layer 9; the white sub-pixels 44 include: located on the substrate 1 The anode 2, the thin film transistor 3 on the anode 2, the hole injection layer 4 on the thin film transistor 3, the hole transport layer 5 on the hole injection layer 4, and the white light-emitting layer 64 on the hole transport layer 5. An electron transport layer 7 on the white light emitting layer 64 and a cathode 8 on the electron transport layer 7.
  • FIG. 6 and FIG. 7, are schematic structural diagrams of an OLED pixel structure for displaying a panel according to a second embodiment of the present invention.
  • the red sub-pixel 11, the green sub-pixel 22, the blue sub-pixel 33, and the white sub-pixel 44 are driven by the TFT transistor 3, respectively.
  • FIG. 9 is a schematic diagram of a OLED pixel structure according to a third embodiment of the present invention.
  • the second embodiment is different from the second embodiment in that the red sub-pixel 11, the green sub-pixel 22, the blue sub-pixel 33, and the white sub-pixel 44 are arranged. In two lines.
  • FIG. 10 which is a schematic structural diagram of an OLED pixel structure used for a display panel according to a third embodiment of the present invention.
  • the OLED pixel structure of the present invention uses the "inorganic quantum dot + blue light filter" by the blue sub-pixel to significantly improve the stability and lifetime of the OLED device.
  • the light-emitting efficiency of the OLED device is improved and the energy consumption is reduced.

Abstract

一种OLED像素结构,其包括:红色、绿色、及蓝色子像素(11、22、33),红色子像素(11)具有红光发光层(61),绿色子像素(22)具有绿光发光层(62),蓝色子像素(33)具有蓝光发光层(63),所述蓝光发光层(63)的材料包括无机量子点,所述蓝光发光层发射白光,对应蓝色子像素设有蓝光滤光片(12)。通过蓝色子像素采用"无机量子点+蓝光滤光片"的方式,使OLED器件的稳定性和寿命都得到显著提高。所述OLED像素结构还可以增加一白色子像素(44),所述白色子像素具有白光发光层(64),所述白光发光层(64)的材料包括无机量子点,通过增加白色子像素,提高了OLED器件的出光效率,降低了能耗。

Description

OLED像素结构
技术领域
本发明涉及有机电致发光显示器件制作领域, 尤其涉及一种 OLED像 素结构。 背景技术
平面显示器件具有机身薄、 省电、 无辐射等众多优点, 得到了广泛的 应用。 现有的平面显示器件主要包括液晶显示器件 (Liquid Crystal Display, LCD) 及有机电致发光显示器件 (Organic Light Emitting Display, OLED)。
有机电致发光器件由于同时具备自发光, 不需背光源、 对比度高、 厚 度薄、 视角广、 反应速度快、 可用于挠曲性面板、 使用温度范围广、 构造 及制程较简单等优异之特性, 被认为是下一代的平面显示器新兴应用技术。 从使用的有机电致发光材料的分子量来看, 有机电致发光器件分为小分子 有机电致发光器件 (OLED)和高分子电致发光器件 (PLED), 由于分子量的 不同, 有机电致发光器件的制程也有很大的区别, OLED 主要通过热蒸镀 方式制备, PLED通过旋涂或者喷墨打印方式制备。
OLED通常包括: 基板、 置于基板上的 ITO 透明阳极、 置于 ITO 透明 阳极上的空穴注入层 (; HIL;)、 置于空穴注入层上的空穴传输层 HTL;)、 置于 空穴传输层上的发光层 (EML;)、 置于发光层上的电子传输层 (ETL;)、 置于电 子传输层上的电子注入层 (EIL) 以及置于电子注入层上的阴极。为了提高效 率, 发光层通常采用主 /客体摻杂系统。
半导体纳米晶 (semiconductor nanocrystals, 縮写 NCs), 是指尺寸为 1-100 nm的半导体纳米晶粒。 由于半导体纳米晶的尺寸小于其体材料的激 子波尔半径, 表现出强的量子限域效应, 准连续的能带演变为类似于分子 的分立能级结构, 呈现出新的材料性^, 因此也称为量子点 (quantum dots, 縮写 QDs)。由于外部能量的激发(光致发光,电致发光, 阴极射线发光等), 电子从基态跃迁到激发态。 处于激发态的电子和空穴可能会形成激子。 电 子与空穴发生复合, 最终弛豫到基态。 多余的能量通过复合和弛豫过程释 放, 可能辐射复合发出光子。
量子点发光二极管 (Quantum Dots Light Emitting Diodes, QD-LEDs) 具有重要的商业应用的价值, 在最近十年引起人们强烈的研究兴趣。 事实 上, QD-LEDs 相对于有机发光二极管 (Organic Light Emitting Diodes, OLEDs) 有很多的优势: (1 ) 量子点发光的线宽在 20-30 nm 之间, 相对 于有机发光 >50 nm 的发光, FWHM 要窄, 这对于现实画面的色纯度起关 键的作用。 (2) 无机材料相对于有机材料表现出更好的热稳定性。 当器件 处于高亮度或高电流密度下, 焦耳热是使器件退化的主要原因。 由于优异 的热稳定性, 基于无机材料的器件将表现出长的使用寿命。 (3) 由于红绿 蓝三基色有机材料的寿命不同, OLEDs 显示器的颜色将随时间变化。然而, 用同一种材料合成不同尺寸的量子点, 由于量子限域效应, 可以实现三基 色的发光。 同一种材料可以表现出相似的退化寿命。 (4) QD-LEDs 可以实 现红外光的发射, 而有机材料的发光波长一般小于 1 微米。 (5) 对于量子 点没有自旋统计的限制, 其外量子效率 (external quantum efficiency, EQE) 有可能达到 100%。 QD-LED 的 EQE 可以表示为: r(Ext =rirΙΝΤ *η*ηουτ 。 其中 llr是电子和空穴形成激子的几率, ηΐΝΤ是内量子效率, 即发光量子产 率 (PL QY) , η 是辐射跃迁的几率, ηουτ是外耦合的效率。 有机荧光染料 ηΓ 的限制是 25%, 其中单重态与三重态的形成比例是 1 :3, 只有单重态激 子的复合导致发光。 然而, 由于自旋轨道耦合, 有机磷光材料的 ! ^大于 25%。值得一提的是有机磷光材料导致了母体材料的退化。平面发光器件的 ηουτ 大约在 20%左右, 可以通过微腔结构提高外耦合效率。 对于 QD-LEDs,其 ηΐΝτ 可以达到 100%,同时当电子和空穴能级适合时,其 r(r也 可以达到 100%。
量子点发光二极管 (QD-LEDs) 可以分为有机-无机杂化器件与全无机 器件。 前者可以达到高的亮度、 可以柔性制作, 后者在器件的稳定性方面 具有优势。 OLED的彩色化有两种常见的技术路线, 一种是 RGB三基色发 光, 以三星公司为代表。 该技术只适用于容易升华的有机小分子材料, 其 优点是工艺简单成熟, 搡作简便. 但由于在制备高分辨率显示屏时需要高 精度掩膜及精确的对位, 导致低产能、 高成本。 另一种是白光 +RGB滤光片 技术, 以 LG公司为代表。 由于可利用 LCD成熟的 CF技术, 不需要掩膜 对位, 极大地简化了蒸镀过程, 因而能降低生产成本, 可用于制备大尺寸 高分辨 OLED。 但是, 由于滤光片吸收了大部分的光能, 只有约 30%的光 能透过, 所以需要高性能的白光材料, 否则器件的效率较低, 一般也是用 于小分子的 OLED显示屏。 发明内容
本发明的目的在于提供一种 OLED 像素结构, 使具有该像素结构的 OLED与传统的 OLED相比, 在寿命和稳定性上都得到显著提高, 同时能 够提高出光效率, 降低能耗。
为实现上述目的, 本发明提供一种 OLED像素结构, 包括: 红色、 绿 色及蓝色子像素, 所述红色子像素具有红光发光层, 绿色子像素具有绿光 发光层, 蓝色子像素具有蓝光发光层, 蓝光发光层的材料包括无机量子点, 所述蓝光发光层发射白光, 对应蓝色子像素设有蓝光滤光片。
所述无机量子点为白光量子点, 或所述无机量子点为红光量子点、 绿 光量子点与蓝光量子点的组合, 或所述无机量子点为蓝光量子点与黄光量 子点的组合。
所述白光量子点为 CdSe、 CdS、 CdTe、 CdMnS、 ZnSe、 或 ZnMnSe等 l l ~VI族量子点, 所述蓝光量子点为 ZnCdS、 CdSe/ZnS, 或纳米 SiN4, 所述 绿光量子点为 CdSe/ZnS、或 ZnSe: Cu2+,所述红光量子点为 CdSe/CdS/ZnS, 所述黄光量子点为 CdSe/CdS/ZnS、 或 ZnS : Mn2+
所述蓝光发光层的制作工艺为: 将无机量子点颗粒与表面包覆剂及溶 剂混合, 涂覆并挥发去除溶剂后得到无机量子点, 所述表面包覆剂包括硬 脂酸、 氧化三锌基膦、 或聚甲基丙烯酸甲酯; 所述溶剂是氯仿、 甲苯、 氯 苯或甲醇。
所述蓝光发光层的制作工艺为: 将有机主体材料与无机量子点颗粒及 溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点; 所述有机主体材料为 TCTA或 TRZ; 所述溶剂是氯仿、 甲苯、 氯苯或甲醇。
所述红光发光层由红光有机发光材料形成, 其为 Ir(piq)3, 所述绿光发 光层由绿光有机发光材料形成, 其为 Ir(ppy)3
还包括基板、 及密封连接于基板上的覆盖层, 所述红色、 绿色、 及蓝 色子像素分别设于基板上, 且为覆盖层所覆盖, 所述基板与覆盖层的材料 为玻璃或柔性材料, 所述基板与覆盖层中至少一个是透光的; 在对应蓝色 子像素的覆盖层下方对应设有蓝光滤光片。
所述红色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输层、 位于 空穴传输层上的红光发光层、 位于红光发光层上的电子传输层、 及位于电 子传输层上的阴极; 所述绿色子像素包括: 位于基板上的阳极、 位于阳极 上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的 空穴传输层、 位于空穴传输层上的绿光发光层、 位于绿光发光层上的电子 传输层、 及位于电子传输层上的阴极; 所述蓝色子像素包括: 位于基板上 的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位 于空穴注入层上的空穴传输层、 位于空穴传输层上的蓝光发光层、 位于蓝 光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子传输层 材料为八羟基喹啉铝, 所述空穴传输层材料为聚三苯胺, 所述空穴注入层 材料为 PEDOT。
所述红光发光层与绿光发光层采用真空蒸镀的方法制成, 且在形成蓝 光发光层后形成。
还包括白色子像素, 所述白色子像素具有白光发光层, 所述白光发光 层的材料包括无机量子点, 所述白光发光层发射白光。
所述白光发光层与蓝光发光层采用相同的材料与相同的工艺制成。 还包括基板、 及密封连接于基板上的覆盖层, 所述红色、 绿色、 蓝色 及白色子像素分别设于基板上, 且为覆盖层所覆盖, 所述基板与覆盖层的 材料为玻璃或柔性材料, 所述基板与覆盖层中至少一个是透光的; 在对应 蓝色子像素的覆盖层下方对应设有蓝光滤光片。
所述红色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输层、 位于 空穴传输层上的红光发光层、 位于红光发光层上的电子传输层、 及位于电 子传输层上的阴极; 所述绿色子像素包括: 位于基板上的阳极、 位于阳极 上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的 空穴传输层、 位于空穴传输层上的绿光发光层、 位于绿光发光层上的电子 传输层、 及位于电子传输层上的阴极; 所述蓝色子像素包括: 位于基板上 的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位 于空穴注入层上的空穴传输层、 位于空穴传输层上的蓝光发光层、 位于蓝 光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述白色子像素 包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上 的空穴注入层、 位于空穴注入层上的空穴传输层、 位于空穴传输层上的白 光发光层、 位于白光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子传输层材料为八羟基喹啉铝, 所述空穴传输层材料为聚三苯胺, 所述空穴注入层材料为 PEDOT。
所述红光发光层与绿光发光层采用真空蒸镀的方法制成, 且在形成蓝 光与白光发光层后形成。
本发明还提供一种 OLED像素结构, 包括: 红色、 绿色及蓝色子像素, 所述红色子像素具有红光发光层, 绿色子像素具有绿光发光层, 蓝色子像 素具有蓝光发光层, 蓝光发光层的材料包括无机量子点, 所述蓝光发光层 发射白光, 对应蓝色子像素设有蓝光滤光片;
所述无机量子点为白光量子点, 或所述无机量子点为红光量子点、 绿 光量子点与蓝光量子点的组合, 或所述无机量子点为蓝光量子点与黄光量 子点的组合;
所述白光量子点为 CdSe、 CdS、 CdTe、 CdMnS、 ZnSe、 或 ZnMnSe等 l l ~VI族量子点, 所述蓝光量子点为 ZnCdS、 CdSe/ZnS, 或纳米 SiN4, 所述 绿光量子点为 CdSe/ZnS、或 ZnSe: Cu2+,所述红光量子点为 CdSe/CdS/ZnS, 所述黄光量子点为 CdSe/CdS/ZnS、 或 ZnS : Mn2+;
所述蓝光发光层的制作工艺为: 将无机量子点颗粒与表面包覆剂及溶 剂混合, 涂覆并挥发去除溶剂后得到无机量子点, 所述表面包覆剂包括硬 脂酸、 氧化三锌基膦、 或聚甲基丙烯酸甲酯; 所述溶剂是氯仿、 甲苯、 氯 苯或甲醇;
所述蓝光发光层的制作工艺为: 将有机主体材料与无机量子点颗粒及 溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点; 所述有机主体材料为
TCTA或 TRZ; 所述溶剂是氯仿、 甲苯、 氯苯或甲醇;
所述红光发光层由红光有机发光材料形成, 其为 Ir(piq)3, 所述绿光发 光层由绿光有机发光材料形成, 其为 Ir(ppy)3 ;
还包括基板、 及密封连接于基板上的覆盖层, 所述红色、 绿色、 及蓝 色子像素分别设于基板上, 且为覆盖层所覆盖, 所述基板与覆盖层的材料 为玻璃或柔性材料, 所述基板与覆盖层中至少一个是透光的; 在对应蓝色 子像素的覆盖层下方对应设有蓝光滤光片;
所述红色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输层、 位于 空穴传输层上的红光发光层、 位于红光发光层上的电子传输层、 及位于电 子传输层上的阴极; 所述绿色子像素包括: 位于基板上的阳极、 位于阳极 上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的 空穴传输层、 位于空穴传输层上的绿光发光层、 位于绿光发光层上的电子 传输层、 及位于电子传输层上的阴极; 所述蓝色子像素包括: 位于基板上 的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位 于空穴注入层上的空穴传输层、 位于空穴传输层上的蓝光发光层、 位于蓝 光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子传输层 材料为八羟基喹啉铝, 所述空穴传输层材料为聚三苯胺, 所述空穴注入层 材料为 PEDOT;
所述红光发光层与绿光发光层采用真空蒸镀的方法制成, 且在形成蓝 光发光层后形成。
本发明的有益效果: 本发明的 OLED像素结构, 通过蓝色子像素采用 "无机量子点 +蓝光滤光片 "的方式, 使 OLED器件的稳定性和寿命都得到 显著提高。 通过增加白色子像素, 提高了 OLED器件的出光效率, 降低了 能耗。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有 关本发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对 本发明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为本发明 OLED像素结构第一实施例的结构示意图;
图 2为本发明 OLED像素结构第一实施例的平面示意图;
图 3为图 2所示的像素结构用于显示面板时的示意图;
图 4为图 2所示的像素结构的 TFT驱动电路结构示意图;
图 5为本发明 OLED像素结构第二实施例的结构示意图;
图 6为本发明 OLED像素结构第二实施例的平面示意图;
图 7为图 6所示的像素结构用于显示面板时的示意图;
图 8为图 6所示的像素结构的 TFT驱动电路结构示意图;
图 9为本发明 OLED像素结构第三实施例的结构示意图;
图 10为本发明 OLED像素结构第三实施例的平面示意图。 具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 1-2, 为本发明的第一实施例, 在该实施例中, 本发明提供一 种 OLED像素结构, 包括: 红色、 绿色及蓝色子像素 11、 22、 33, 红色子 像素 11具有红光发光层 61, 绿色子像素 22具有绿光发光层 62, 蓝色子像 素 33具有蓝光发光层 63, 蓝光发光层 63的材料包括无机量子点, 所述蓝 光发光层 63发射白光, 对应蓝色子像素 33设有蓝光滤光片 12。
所述无机量子点可以为白光量子点, 或红光量子点、 绿光量子点与蓝 光量子点的组合, 或蓝光量子点与黄光量子点的组合, 也可以是其它可能 的组合。
所述白光量子点为 CdSe、 CdS、 CdTe、 CdMnS、 ZnSe、 或 ZnMnSe等 II ~VI族量子点, 所述蓝光量子点为 ZnCdS、 CdSe/ZnS, 或纳米 SiN4, 所述 绿光量子点为 CdSe/ZnS、或 ZnSe: Cu2+,所述红光量子点为 CdSe/CdS/ZnS, 所述黄光量子点为 CdSe/CdS/ZnS、 或 ZnS : Mn2+
所述蓝光发光层 63的制作工艺为: 将无机量子点颗粒与表面包覆剂及 溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点, 所述表面包覆剂包括 硬脂酸、 氧化三锌基膦、 或聚甲基丙烯酸甲酯; 所述溶剂可以是氯仿、 甲 苯、 氯苯或甲醇。
所述蓝光发光层 63的制作工艺也可以为: 将有机主体材料与无机量子 点颗粒及溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点, 所述溶剂可 以是氯仿、 甲苯、 氯苯或甲醇。
所述有机主体材料为 TCTA(4,4',4"-三 (咔唑 -9-基)三苯胺)或 TRZ(2,4,6- 三 (9H-咔唑 -9-基) -1,3,5-三嗪)。
的结构如下:
结构如下:
Figure imgf000009_0001
所述有机主体材料及表面包覆剂都具有一个作用, 即防止无机量子点 团聚与氧化。 因为无机量子点是纳米颗粒, 零維材料, 表面活性大, 容易 发生团聚, 导致氧化并使荧光淬灭。
所述红光发光层 61由红光有机发光材料形成, 所述红光有机发光材料 为 Ir(piq)3, 所述绿光发光层 62由绿光有机发光材料形成, 所述绿光有机发 光材料为 Ir(ppy)3
所述 Ir(piq)3的结构为:
Figure imgf000010_0001
所述 Ir ppy)3的结构为:
Figure imgf000010_0002
所述红光发光层 (61 ) 与绿光发光层 (62) 采用真空蒸镀的方法制成, 且在形成蓝光发光层 (63 ) 后形成。
由上述可知, 所述红色子像素 11 与绿色子像素 22是采用有机材料自 主发光, 而蓝色子像素 33 发白光, 并经过对应的蓝光滤光片 12滤光后, 发出蓝光。
本发明的 OLED像素结构还包括基板 1、 及密封连接于基板上的覆盖 层 9, 所述红色、 绿色及蓝色子像素 11、 22、 33分别设于基板 1上, 且为 覆盖层 9所覆盖, 所述基板 1 与覆盖层 9的材料为玻璃或柔性材料, 所述 基板 1与覆盖层 9中至少一个是透光的; 在对应蓝色子像素 33的覆盖层 9 下方对应设有蓝光滤光片 12。所述蓝光滤光片 12可采用现有液晶面板生产 线上使用的蓝色滤光片。
所述红色子像素 11 包括: 位于基板 1上的阳极 2、 位于阳极 2上的薄 膜晶体管 3、 位于薄膜晶体管 3上的空穴注入层 4、 位于空穴注入层 4上的 空穴传输层 5、 位于空穴传输层 5上的红光发光层 61、 位于红光发光层 61 上的电子传输层 7、 及位于电子传输层 7上的阴极 8 ; 所述绿色子像素 22 包括: 位于基板 1上的阳极 2、 位于阳极 2上的薄膜晶体管 3、 位于薄膜晶 体管 3上的空穴注入层 4、 位于空穴注入层 4上的空穴传输层 5、 位于空穴 传输层 5上的绿光发光层 62、 位于绿光发光层 62上的电子传输层 7、 及位 于电子传输层 7上的阴极 8 ; 所述蓝色子像素 33包括: 位于基板 1上的阳 极 2、 位于阳极 2上的薄膜晶体管 3、位于薄膜晶体管 3上的空穴注入层 4、 位于空穴注入层 4上的空穴传输层 5、 位于空穴传输层 5上的蓝光发光层 63、 位于蓝光发光层 63上的电子传输层 7、 及位于电子传输层 7上的阴极 所述电子传输层 7材料为八羟基喹啉铝, 所述空穴传输层 5材料为聚 三苯胺, 所述空穴注入层 4层材料为 PEDOT (聚乙撑二氧噻吩)。
所述基板 1与覆盖层 9通过密封胶 10粘结在一起, 以密封与保护内部 电子器件。
请参阅图 2 与图 3, 其为本发明第一实施例的 OLED像素结构用于显 示面板时的结构示意图。 如图 4所示, 所述红色子像素 11、 绿色子像素 22 及蓝色子像素 33分别通过 TFT晶体管 3驱动。
请参阅图 5, 为本发明的第二实施例, 与第一实施例相比, 其不同之处 在于, 该像素结构还包括一白色子像素 44, 所述白色子像素 44具有白光发 光层 64, 所述白光发光层 64的材料包括无机量子点, 所述白光发光层 64 发射白光。
所述白光发光层 64与蓝光发光层 63采用相同的材料与相同的工艺制 成。
所述白色子像素 44 与所述红色、 绿色及蓝色子像素 11、 22、 33一起 设于基板 1上, 且为覆盖层 9所覆盖; 所述白色子像素 44包括: 位于基板 1上的阳极 2、 位于阳极 2上的薄膜晶体管 3、 位于薄膜晶体管 3上的空穴 注入层 4、 位于空穴注入层 4上的空穴传输层 5、 位于空穴传输层 5上的白 光发光层 64、 位于白光发光层 64上的电子传输层 7、 及位于电子传输层 7 上的阴极 8。
请参阅图 6 与图 7, 其为本发明第二实施例的 OLED像素结构用于显 示面板时的结构示意图。如图 8所示, 所述红色子像素 11、 绿色子像素 22、 蓝色子像素 33及白色子像素 44分别通过 TFT晶体管 3驱动。
请参阅图 9, 其为本发明第三实施例的 OLED像素结构的示意图, 其 与第二实施例不同的是红色子像素 11、 绿色子像素 22、 蓝色子像素 33 及 白色子像素 44排列成两行。 请参阅图 10, 其为本发明第三实施例的 OLED 像素结构用于显示面板时的结构示意图。
综上所述, 本发明的 OLED像素结构, 通过蓝色子像素采用 "无机量 子点 +蓝光滤光片 "的方式,使 OLED器件的稳定性和寿命都得到显著提高。 通过增加白色子像素, 提高了 OLED器件的出光效率, 降低了能耗。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种 OLED像素结构, 包括: 红色、 绿色及蓝色子像素, 所述红色 子像素具有红光发光层, 绿色子像素具有绿光发光层, 蓝色子像素具有蓝 光发光层, 蓝光发光层的材料包括无机量子点, 所述蓝光发光层发射白光, 对应蓝色子像素设有蓝光滤光片。
2、 如权利要求 1所述的 OLED像素结构, 其中, 所述无机量子点为白 光量子点, 或所述无机量子点为红光量子点、 绿光量子点与蓝光量子点的 组合, 或所述无机量子点为蓝光量子点与黄光量子点的组合。
3、 如权利要求 2所述的 OLED像素结构, 其中, 所述白光量子点为
CdSe、 CdS、 CdTe、 CdMnS、 ZnSe、 或 ZnMnSe等 I I ~VI族量子点, 所述蓝 光量子点为 ZnCdS、 CdSe/ZnS,或纳米 SiN4,所述绿光量子点为 CdSe/ZnS、 或 ZnSe : Cu2+, 所述红光量子点为 CdSe/CdS/ZnS, 所述黄光量子点为 CdSe/CdS/ZnS、 或 ZnS : Mn2+
4、 如权利要求 1所述的 OLED像素结构, 其中, 所述蓝光发光层的制 作工艺为: 将无机量子点颗粒与表面包覆剂及溶剂混合, 涂覆并挥发去除 溶剂后得到无机量子点, 所述表面包覆剂包括硬脂酸、 氧化三锌基膦、 或 聚甲基丙烯酸甲酯; 所述溶剂是氯仿、 甲苯、 氯苯或甲醇。
5、 如权利要求 1所述的 OLED像素结构, 其中, 所述蓝光发光层的制 作工艺为: 将有机主体材料与无机量子点颗粒及溶剂混合, 涂覆并挥发去 除溶剂后得到无机量子点; 所述有机主体材料为 TCTA或 TRZ; 所述溶剂 是氯仿、 甲苯、 氯苯或甲醇。
6、 如权利要求 1所述的 OLED像素结构, 其中, 所述红光发光层由红 光有机发光材料形成, 其为 Ir(piq)3, 所述绿光发光层由绿光有机发光材料 形成, 其为 Ir(ppy)3
7、 如权利要求 1所述的 OLED像素结构, 还包括基板、 及密封连接于 基板上的覆盖层, 所述红色、 绿色、 及蓝色子像素分别设于基板上, 且为 覆盖层所覆盖, 所述基板与覆盖层的材料为玻璃或柔性材料, 所述基板与 覆盖层中至少一个是透光的; 在对应蓝色子像素的覆盖层下方对应设有蓝 光滤光片。
8、如权利要求 7所述的 OLED像素结构,其中,所述红色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴 注入层、 位于空穴注入层上的空穴传输层、 位于空穴传输层上的红光发光 层、 位于红光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述 绿色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄 膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输层、 位于空穴传 输层上的绿光发光层、 位于绿光发光层上的电子传输层、 及位于电子传输 层上的阴极; 所述蓝色子像素包括: 位于基板上的阳极、 位于阳极上的薄 膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传 输层、 位于空穴传输层上的蓝光发光层、 位于蓝光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子传输层材料为八羟基喹啉铝, 所述 空穴传输层材料为聚三苯胺, 所述空穴注入层材料为 PEDOT。
9、 如权利要求 1所述的 OLED像素结构, 其中, 所述红光发光层与绿 光发光层采用真空蒸镀的方法制成, 且在形成蓝光发光层后形成。
10、 如权利要求 1所述的 OLED像素结构, 还包括白色子像素, 所述 白色子像素具有白光发光层, 所述白光发光层的材料包括无机量子点, 所 述白光发光层发射白光。
11、 如权利要求 10所述的 OLED像素结构, 其中, 所述白光发光层与 蓝光发光层采用相同的材料与相同的工艺制成。
12、 如权利要求 10所述的 OLED像素结构, 其中, 还包括基板、 及密 封连接于基板上的覆盖层, 所述红色、 绿色、 蓝色及白色子像素分别设于 基板上, 且为覆盖层所覆盖, 所述基板与覆盖层的材料为玻璃或柔性材料, 所述基板与覆盖层中至少一个是透光的; 在对应蓝色子像素的覆盖层下方 对应设有蓝光滤光片。
13、 如权利要求 12所述的 OLED像素结构, 其中, 所述红色子像素包 括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的 空穴注入层、 位于空穴注入层上的空穴传输层、 位于空穴传输层上的红光 发光层、 位于红光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述绿色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位 于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输层、 位于空 穴传输层上的绿光发光层、 位于绿光发光层上的电子传输层、 及位于电子 传输层上的阴极; 所述蓝色子像素包括: 位于基板上的阳极、 位于阳极上 的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空 穴传输层、 位于空穴传输层上的蓝光发光层、 位于蓝光发光层上的电子传 输层、 及位于电子传输层上的阴极; 所述白色子像素包括: 位于基板上的 阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于 空穴注入层上的空穴传输层、 位于空穴传输层上的白光发光层、 位于白光 发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子传输层材 料为八羟基喹啉铝, 所述空穴传输层材料为聚三苯胺, 所述空穴注入层材 料为 PEDOT。
14、 如权利要求 10所述的 OLED像素结构, 其中, 所述红光发光层与 绿光发光层采用真空蒸镀的方法制成, 且在形成蓝光与白光发光层后形成。
15、 一种 OLED像素结构, 包括: 红色、 绿色及蓝色子像素, 所述红 色子像素具有红光发光层, 绿色子像素具有绿光发光层, 蓝色子像素具有 蓝光发光层, 蓝光发光层的材料包括无机量子点, 所述蓝光发光层发射白 光, 对应蓝色子像素设有蓝光滤光片;
其中, 所述无机量子点为白光量子点, 或所述无机量子点为红光量子 点、 绿光量子点与蓝光量子点的组合, 或所述无机量子点为蓝光量子点与 黄光量子点的组合;
其中,所述白光量子点为 CdSe、 CdS、 CdTe、 CdMnS、 ZnSe、或 ZnMnSe 等 l l ~VI族量子点, 所述蓝光量子点为 ZnCdS、 CdSe/ZnS, 或纳米 SiN4, 所 述绿光量子点为 CdSe/ZnS、 或 ZnSe: Cu2+, 所述红光量子点为 CdSe/CdS/ZnS, 所述黄光量子点为 CdSe/CdS/ZnS、 或 ZnS : Mn2+;
其中, 所述蓝光发光层的制作工艺为: 将无机量子点颗粒与表面包覆 剂及溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点, 所述表面包覆剂 包括硬脂酸、 氧化三锌基膦、 或聚甲基丙烯酸甲酯; 所述溶剂是氯仿、 甲 苯、 氯苯或甲醇;
其中, 所述蓝光发光层的制作工艺为: 将有机主体材料与无机量子点 颗粒及溶剂混合, 涂覆并挥发去除溶剂后得到无机量子点; 所述有机主体 材料为 TCTA或 TRZ; 所述溶剂是氯仿、 甲苯、 氯苯或甲醇;
其中, 所述红光发光层由红光有机发光材料形成, 其为 Ir(piq)3, 所述 绿光发光层由绿光有机发光材料形成, 其为 Ir(ppy)3 ;
所述的 OLED像素结构, 还包括基板、 及密封连接于基板上的覆盖层, 所述红色、 绿色、 及蓝色子像素分别设于基板上, 且为覆盖层所覆盖, 所 述基板与覆盖层的材料为玻璃或柔性材料, 所述基板与覆盖层中至少一个 是透光的; 在对应蓝色子像素的覆盖层下方对应设有蓝光滤光片;
其中, 所述红色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜 晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注入层上的空穴传输 层、 位于空穴传输层上的红光发光层、 位于红光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述绿色子像素包括: 位于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注入层、 位于空穴注 入层上的空穴传输层、 位于空穴传输层上的绿光发光层、 位于绿光发光层 上的电子传输层、 及位于电子传输层上的阴极; 所述蓝色子像素包括: 位 于基板上的阳极、 位于阳极上的薄膜晶体管、 位于薄膜晶体管上的空穴注 入层、 位于空穴注入层上的空穴传输层、 位于空穴传输层上的蓝光发光层、 位于蓝光发光层上的电子传输层、 及位于电子传输层上的阴极; 所述电子 传输层材料为八羟基喹啉铝, 所述空穴传输层材料为聚三苯胺, 所述空穴 注入层材料为 PEDOT;
其中, 所述红光发光层与绿光发光层采用真空蒸镀的方法制成, 且在 形成蓝光发光层后形成。
PCT/CN2014/084335 2014-07-09 2014-08-14 Oled像素结构 WO2016004663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/426,975 US9634278B2 (en) 2014-07-09 2014-08-14 OLED pixel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410326557.4 2014-07-09
CN201410326557.4A CN104037205A (zh) 2014-07-09 2014-07-09 Oled像素结构

Publications (1)

Publication Number Publication Date
WO2016004663A1 true WO2016004663A1 (zh) 2016-01-14

Family

ID=51467911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084335 WO2016004663A1 (zh) 2014-07-09 2014-08-14 Oled像素结构

Country Status (3)

Country Link
US (1) US9634278B2 (zh)
CN (1) CN104037205A (zh)
WO (1) WO2016004663A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN104253247A (zh) * 2014-10-13 2014-12-31 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN104299982A (zh) * 2014-10-20 2015-01-21 深圳市华星光电技术有限公司 彩色显示器件
CN104393013B (zh) * 2014-10-20 2017-06-27 深圳市华星光电技术有限公司 彩色显示器件
CN104362255B (zh) * 2014-10-21 2018-07-10 深圳市华星光电技术有限公司 白光oled器件结构
WO2016091218A1 (zh) * 2014-12-11 2016-06-16 广州华睿光电材料有限公司 一种显示器件及其制备方法
WO2016098954A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 유기전계발광표시장치
CN105530051A (zh) * 2015-12-31 2016-04-27 固安翌光科技有限公司 用于可见光通信的oled光源结构及其光通信系统
CN105785643A (zh) * 2016-02-01 2016-07-20 京东方科技集团股份有限公司 一种液晶显示面板、oled显示面板和显示装置
CN105932039B (zh) * 2016-06-01 2019-02-19 深圳市华星光电技术有限公司 Oled显示装置
CN106356463B (zh) * 2016-10-11 2017-12-29 深圳市华星光电技术有限公司 Qled显示装置的制作方法
CN107275514B (zh) * 2017-06-15 2018-12-18 京东方科技集团股份有限公司 一种oled器件及其制备方法、显示装置
CN109950271B (zh) * 2017-12-20 2022-03-25 上海和辉光电股份有限公司 一种显示器
JP7395487B2 (ja) 2018-02-22 2023-12-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 半電導性ナノ粒子
WO2019180877A1 (ja) * 2018-03-22 2019-09-26 シャープ株式会社 発光素子および表示装置
CO2018004107A1 (es) 2018-04-17 2019-10-21 The Frenchie Group S A S Mecanismo trasero de protección antirrobo con apertura magnética y sistema de tirantes autoajustables para objetos destinados a guardar elementos como por ejemplo maletines, mochilas o maletas.
CN109616504A (zh) * 2018-12-12 2019-04-12 惠科股份有限公司 显示面板
WO2020174604A1 (ja) * 2019-02-27 2020-09-03 シャープ株式会社 発光素子およびそれを用いた表示装置
KR20220061183A (ko) 2019-09-13 2022-05-12 메르크 파텐트 게엠베하 반도체 나노입자
CN110767737B (zh) * 2019-11-13 2022-05-13 清华大学 一种全色有机电致发光装置
US11804182B2 (en) * 2020-01-27 2023-10-31 Sharp Kabushiki Kaisha Display device with pixel structure capable of extracting light from quantum-dot light-emitting layer and organic light-emitting layer of pixel structure
KR20220050282A (ko) * 2020-10-15 2022-04-25 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN112687726B (zh) * 2020-12-25 2022-09-20 深圳扑浪创新科技有限公司 一种量子点显示面板及其制备方法、显示装置
KR20220100136A (ko) * 2021-01-07 2022-07-15 삼성디스플레이 주식회사 발광 소자, 이의 제조방법 및 이를 포함하는 표시 장치
CN112951894A (zh) * 2021-03-09 2021-06-11 昆山龙腾光电股份有限公司 Oled显示面板及其制作方法
CN113708220B (zh) * 2021-07-27 2023-05-16 南京邮电大学 一种量子点微激光器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774560B1 (en) * 2000-09-19 2004-08-10 The Regents Of The University Of California Material system for tailorable white light emission and method for making thereof
CN101207150A (zh) * 2006-12-22 2008-06-25 Lg.菲利浦Lcd株式会社 有机发光二极管显示器件及其制造方法
WO2008106075A1 (en) * 2007-02-28 2008-09-04 Eastman Kodak Company Electro-luminescent device with improved efficiency
US7851987B2 (en) * 2007-03-30 2010-12-14 Eastman Kodak Company Color electro-luminescent display with improved efficiency
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN103346266A (zh) * 2013-06-21 2013-10-09 深圳市华星光电技术有限公司 一种发光器件、显示面板及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438119C (zh) * 2003-12-15 2008-11-26 乐金显示有限公司 双面板型有机电致发光器件及其制造方法
JP5772085B2 (ja) * 2011-03-09 2015-09-02 セイコーエプソン株式会社 発光素子、発光装置、表示装置および電子機器
CN203250739U (zh) * 2013-04-23 2013-10-23 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774560B1 (en) * 2000-09-19 2004-08-10 The Regents Of The University Of California Material system for tailorable white light emission and method for making thereof
CN101207150A (zh) * 2006-12-22 2008-06-25 Lg.菲利浦Lcd株式会社 有机发光二极管显示器件及其制造方法
WO2008106075A1 (en) * 2007-02-28 2008-09-04 Eastman Kodak Company Electro-luminescent device with improved efficiency
US7851987B2 (en) * 2007-03-30 2010-12-14 Eastman Kodak Company Color electro-luminescent display with improved efficiency
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN103346266A (zh) * 2013-06-21 2013-10-09 深圳市华星光电技术有限公司 一种发光器件、显示面板及其制造方法

Also Published As

Publication number Publication date
US9634278B2 (en) 2017-04-25
CN104037205A (zh) 2014-09-10
US20160248029A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2016004663A1 (zh) Oled像素结构
WO2016004662A1 (zh) Oled像素结构
US9276046B2 (en) Color display device structure
US9660209B2 (en) Method for manufacturing OLED device and OLED device manufactured therewith
US9660210B2 (en) Method for manufacturing OLED device and OLED device manufactured therewith
US20140374696A1 (en) Light-emitting element, display panel and manufacturing method thereof
US20140374697A1 (en) Light-emitting element, display panel and manufacturing method thereof
US9768404B1 (en) Quantum dot spacing for high efficiency quantum dot LED displays
Kim et al. Performance of light-emitting-diode based on quantum dots
WO2017012326A1 (zh) 有机电致发光显示面板及制备方法、显示装置
US20150228697A1 (en) Organic light emitting diode (oled) device and a method of fabricating the same
KR102399447B1 (ko) 양자점과 이를 포함하는 양자점 발광다이오드 및 양자점 발광 표시장치
WO2016115775A1 (zh) Oled彩色显示器件
US9966417B2 (en) Color display device
CN108666349A (zh) 彩色滤光基板及其制作方法与woled显示器
TW201703308A (zh) 電子元件中之半導體性粒子
Lee et al. All-solution-processed high-brightness hybrid white quantum-dot light-emitting devices utilizing polymer modified quantum dots
KR20180035279A (ko) 백색광 양자점 발광 소자 및 이의 제조 방법
CN106449704A (zh) Oled显示装置
US9461101B2 (en) Color display device
Yin et al. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer
US20230329098A1 (en) Material for forming blue light-emitting layer, light-emitting device, light-emitting substrate, and light-emitting apparatus
CN109713144B (zh) 发光二极管和电致发光显示装置
Tang et al. Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter
Chen et al. Novel scattering and color converting substrates for simple-structured white organic light-emitting diodes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14426975

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897085

Country of ref document: EP

Kind code of ref document: A1