WO2013073521A1 - 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法 - Google Patents

有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法 Download PDF

Info

Publication number
WO2013073521A1
WO2013073521A1 PCT/JP2012/079362 JP2012079362W WO2013073521A1 WO 2013073521 A1 WO2013073521 A1 WO 2013073521A1 JP 2012079362 W JP2012079362 W JP 2012079362W WO 2013073521 A1 WO2013073521 A1 WO 2013073521A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
layer
light
display device
Prior art date
Application number
PCT/JP2012/079362
Other languages
English (en)
French (fr)
Inventor
悦昌 藤田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013073521A1 publication Critical patent/WO2013073521A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to an organic electroluminescence display device, an electronic apparatus using the same, and a method for manufacturing an organic electroluminescence display device.
  • Organic electroluminescence (hereinafter, also referred to as “organic EL” or “organic LED”) displays are attracting attention because high-quality images can be obtained in terms of self-emission.
  • organic EL displays do not increase in power consumption due to a decrease in aperture ratio associated with higher definition, and are therefore attracting attention in the fields of smartphones and tablet terminals, where higher definition will accelerate in the future. Has been.
  • red, green, and blue pixels are generally formed by separately coating the organic light emitting layer by a mask vapor deposition method using a shadow mask.
  • This conventional pixel forming method not only has problems such as mask processing accuracy, mask alignment accuracy, and mask size enlargement, but also has problems of mask deflection and color mixing due to thermal deformation.
  • a method of combining a white light-emitting organic EL and a color filter is known as a method capable of performing color display without separately coating the organic light-emitting layer.
  • color display is possible only by patterning the color filter, and high definition is easy.
  • white light is separated into red, green, and blue light-emitting components by the color filter, power consumption is reduced. There was a problem of becoming higher.
  • an organic EL display that combines a blue-green organic EL and a wavelength conversion layer that converts the light emitted from the organic EL into red
  • the light emitted from the organic EL is converted into a blue pixel and a green pixel by a color filter. Therefore, there is a trade-off relationship between color purity and luminance in each of the blue pixel and the green pixel. Therefore, in this organic EL display, it has been difficult to realize a high color reproduction range and low power consumption.
  • the present invention has been made in view of the above circumstances, an organic electroluminescence display device capable of full color display, excellent in a wide color reproduction range and viewing angle characteristics, and capable of high definition at low cost, and the use thereof. It is an object of the present invention to provide an electronic device and a method for manufacturing an organic electroluminescence display device.
  • the organic electroluminescence display device of the present invention includes an organic electroluminescence unit in which an organic layer having at least an organic light emitting layer having two light emitting components is sandwiched between a first electrode and a second electrode, and the organic electroluminescence Among the light emitted from the light emitting portion, the blue pixel portion having a blue color filter that mainly transmits light in the blue wavelength region and the light emitted from the organic electroluminescence portion mainly transmits light in the green wavelength region. Of the light emitted from the green pixel portion having the green color filter and the organic electroluminescence portion, absorbs at least one of light in the blue wavelength region and light in the green wavelength region, and emits light in the red wavelength region. And a red pixel portion having a wavelength conversion layer.
  • the organic electroluminescence display device of the present invention further includes a first substrate, the organic electroluminescence portion is provided on the first substrate, and the blue color is provided between the first substrate and the organic electroluminescence portion.
  • a pixel portion, the green pixel portion, and the red pixel portion may be provided.
  • the organic electroluminescence display device of the present invention further includes a first substrate and a second substrate, the organic electroluminescence unit is provided between the first substrate and the second substrate, and the first substrate and the organic substrate.
  • the blue pixel unit, the green pixel unit, and the red pixel unit may be provided between the electroluminescence units.
  • the organic electroluminescence display device of the present invention further includes a first substrate and a second substrate, wherein the organic electroluminescence unit is provided between the first substrate and the second substrate, and the second substrate and the organic substrate.
  • the blue pixel unit, the green pixel unit, and the red pixel unit may be provided between the electroluminescence units.
  • the red pixel portion may further include a red color filter that mainly transmits light in a red wavelength region.
  • the peak wavelength position of the first component is 450 nm to 480 nm
  • the peak wavelength position of the second component is 480 nm to 530 nm.
  • a difference in peak wavelength between the first component and the second component is 20 nm to 80 nm.
  • a peak intensity ratio between the first component and the second component is 7: 3 to 5: 5.
  • the wavelength conversion layer may be a continuous film that extends over a display region.
  • the organic electroluminescence portion has a tandem structure, and one of the first electrode and the second electrode is a reflective electrode, and the first electrode or the second electrode The other of the electrodes may be a light transmissive electrode.
  • the tandem structure of the organic electroluminescence unit may include an organic light emitting layer that emits light in a blue-green wavelength region as the organic light emitting layer.
  • the tandem structure of the organic electroluminescence unit includes a first organic electroluminescence unit having a first organic layer containing the first component as the organic light emitting layer, and the organic light emission.
  • a layer you may have the 2nd organic electroluminescent part which has a 2nd organic layer containing said 2nd component.
  • a partition that reflects or scatters at least light emitted from the organic electroluminescence unit may be provided at a position corresponding to each pixel of the organic electroluminescence unit.
  • a partition that reflects or scatters at least one of light emission from the wavelength conversion layer and light emission from the organic electroluminescence portion may be provided at least around the red pixel portion. Good.
  • the low refractive index having a refractive index lower than the refractive index of the substrate disposed on the light extraction side between at least the substrate disposed on the light extraction side and the wavelength conversion layer A layer may be provided.
  • At least one of the blue pixel portion and the green pixel portion may have a light distribution conversion layer.
  • organic electroluminescence display device of the present invention light emission from the organic electroluminescence part and / or the organic electroluminescence is provided between pixels of a light distribution conversion layer provided in at least one of the blue pixel part and the green pixel part.
  • a partition wall that reflects or scatters scattered light emitted from the portion may be provided.
  • a layer may be provided.
  • the organic electroluminescence display device of the present invention may further include an active element for driving the organic electroluminescence unit.
  • An electronic apparatus includes the organic electroluminescence display device according to the present invention.
  • the method of manufacturing an organic electroluminescence display device of the present invention includes forming a blue color filter on a blue pixel portion on a first substrate and forming a green color filter on a green pixel portion on the first substrate; A step of forming a wavelength conversion layer including a wavelength conversion material on the blue color filter and the green color filter, and a red pixel portion on the first substrate; and the light absorbed by the wavelength conversion material, A step of exposing the wavelength conversion layer formed on the blue color filter and the green color filter, an organic layer having at least an organic light emitting layer including a first electrode and two light emitting components on the wavelength conversion layer; and A step of forming an organic electroluminescence part provided with the second electrode in this order, and an outer peripheral sealing ring on the outer peripheral part of the first substrate; In the environment where the moisture and oxygen concentration are controlled, the first substrate and the second substrate are primarily aligned, and the first substrate and the second substrate are bonded to form an assembly. Removing the assembly to an atmospheric pressure environment in which moisture and oxygen concentrations
  • An organic electroluminescence display device manufacturing method includes a first electrode, an organic layer having at least an organic light-emitting layer including two light-emitting components, and a second electrode in this order on a first substrate.
  • the method of manufacturing an organic electroluminescence display device of the present invention includes forming a blue color filter on a blue pixel portion on a first substrate and forming a green color filter on a green pixel portion on the first substrate; Forming a wavelength conversion layer containing a wavelength conversion material on the blue color filter and the green color filter and a red pixel portion on the first substrate by a transfer method; Forming an electrode, an organic layer having at least an organic light-emitting layer containing a light-emitting component, and an organic electroluminescence part comprising a second electrode in this order, and an outer peripheral seal on the outer peripheral part of the first substrate
  • the step of applying a stopper and the moisture and oxygen concentration are controlled, the first alignment of the first substrate and the second substrate is performed, and the Bonding one substrate and the second substrate to form an assembly; taking the assembly out to an atmospheric pressure environment in which moisture and oxygen concentrations are controlled; and atmospheric pressure in which the moisture and oxygen concentrations are controlled And the step of irradiating the assembly with ultraviolet
  • An organic electroluminescence display device manufacturing method includes a first electrode, an organic layer having at least an organic light-emitting layer including two light-emitting components, and a second electrode in this order on a first substrate. Forming a luminescence part; forming a blue color filter on the blue pixel part on the second substrate; forming a green color filter on the green pixel part on the second substrate; and the blue color filter and the A step of forming a wavelength conversion layer including a wavelength conversion material on a green color filter and a red pixel portion on the second substrate by a transfer method; and the first substrate on which the organic electroluminescence portion is formed.
  • a step of applying a filler to the inside of the outer peripheral sealing agent, and the first substrate and the second substrate or the second substrate are placed in a vacuum chamber. And a step of depressurizing the inside of the vacuum chamber.
  • an organic EL display device capable of full color display, excellent in a wide color reproduction range and viewing angle characteristics, capable of high definition at low cost, and an electronic apparatus using the same.
  • FIG. 11 is a block diagram showing a circuit configuration of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 38 is an external view showing a ceiling light which is an application example of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 38 is an external view showing a lighting stand that is an application example of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 38 is an external view showing a mobile phone as an application example of the organic EL display devices of the first to twelfth embodiments.
  • FIG. 44 is an external view showing a thin television that is an application example of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 38 is an external view showing a portable game machine that is an application example of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 16 is an external view showing a notebook personal computer that is one application example of the organic EL display devices of the first to twelfth embodiments.
  • FIG. 38 is an external view showing a tablet terminal as an application example of the organic EL display device according to the first to twelfth embodiments.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of an organic electroluminescence display device (hereinafter referred to as “organic EL display device”).
  • the organic EL display device 10 is provided on a first substrate 11 and one surface 11 a of the first substrate 11, and an organic electroluminescence device in which an organic layer 14 is sandwiched between a first electrode 12 and a second electrode 13.
  • a luminescence part hereinafter referred to as “organic EL part”
  • a blue pixel part 17 having a blue color filter 16 a green pixel part 19 having a green color filter 18, and a wavelength conversion layer 20 containing a wavelength conversion material.
  • the EL unit 15 and the second substrate (sealing substrate) 23 disposed to face each other are schematically configured.
  • a sealing film 24 that seals the organic EL portion 15 provided on the one surface 11 a of the first substrate 11 is provided.
  • An adhesive layer 25 is provided so as to cover the sealing film 24 provided on the one surface 11 a of the first substrate 11, and the first substrate 11 and the second substrate 23 are bonded via the adhesive layer 25.
  • the blue pixel portion 17 has a wavelength conversion layer 26 containing a wavelength conversion material
  • the green pixel portion 19 has a wavelength conversion layer 27 containing a wavelength conversion material.
  • the red pixel unit 21 has a red color filter 28. Further, between the blue color filter 16 and the green color filter 18, between the green color filter 18 and the red color filter 28, and between the red color filter 28 and the blue color filter 16, a light absorbing layer (low A reflective layer 29 is provided. Further, between the blue color filter 16 and the wavelength conversion layer 26, between the green color filter 18 and the wavelength conversion layer 27, and between the red color filter 28 and the wavelength conversion layer 20, the refractive index of the first substrate 11. A low refractive index layer 30 having a low refractive index is provided.
  • the first electrode 12 is provided on one surface 11 a side of the first substrate 11, and includes a reflective electrode 31 and a transparent electrode 32 provided on the reflective electrode 31.
  • the organic layer 14 is sequentially stacked from the first electrode 12 side toward the second electrode 13 side, and the hole injection layer 33, the hole transport layer 34, the organic light emitting layer 35, the electron transport layer 36, and the electron injection layer 37 are stacked. It is composed of
  • a polarizing plate 38 is laminated on the other surface 11 b of the first substrate 11.
  • the organic EL display device 10 light emission in the blue-green wavelength region from the organic EL unit 15 is used as an excitation light source, and light emission in the blue-green wavelength region from the organic EL unit 15 is directly used in the blue pixel unit 17.
  • Blue light emission is realized by passing the light emission in the blue-green wavelength region through the blue color filter 16 that mainly transmits light in the blue wavelength region.
  • the green pixel unit 19 realizes green light emission by passing the blue-green wavelength region light emission from the organic EL unit 15 through the green color filter 18 that mainly transmits light in the green wavelength region. ing.
  • the wavelength conversion layer 20 that absorbs at least one of the light in the blue wavelength region and the light in the green wavelength region from the organic EL portion 15 and emits light in the red wavelength region is passed.
  • red light emission is realized.
  • by realizing light emission of the three primary colors in each pixel portion it is possible to realize full color display by the organic EL display device 10.
  • the wavelength conversion material included in the wavelength conversion layer 26 of the blue pixel unit 17 and the wavelength conversion material included in the wavelength conversion layer 27 of the green pixel unit 19 are the wavelength conversion material included in the wavelength conversion layer 20 of the red pixel unit 21.
  • the absorptance of light (excitation light) in the blue-green wavelength range from the organic EL unit 15 is low, and the fluorescence intensity is low.
  • the blue pixel part 17 the light of the blue-green wavelength range which is excitation light is permeate
  • the green pixel portion 19 transmits light in the blue-green wavelength range, which is excitation light, and does not emit light in the substantially red wavelength range.
  • the red pixel unit 21 absorbs light in the blue-green wavelength range, which is excitation light, and emits light in the red wavelength range. By doing in this way, the full color display by the organic electroluminescence display 10 is attained.
  • the wavelength conversion layer 26 formed in the blue pixel unit 17 has a transmittance of 90% or more with respect to the peak wavelength of the excitation light in the blue-green wavelength region from the organic EL unit 15, and has a red wavelength.
  • the peak intensity of the light in the region is preferably 1/10 or less of the peak intensity on the short wavelength side of the excitation light in the blue-green wavelength region.
  • the wavelength conversion layer 27 formed in the green pixel portion 19 has a transmittance of 90% or more with respect to the peak wavelength of the excitation light in the blue-green wavelength region from the organic EL portion 15 and is red. It is preferable that the peak intensity of the light in the wavelength range is 1/10 or less of the peak intensity on the short wavelength side in the excitation light in the blue-green wavelength range. In this way, the excitation light in the blue-green wavelength range from the organic EL unit 15 can be efficiently separated and converted into red light emission, green light emission, and blue light emission, thereby reducing power consumption. Is possible.
  • the wavelength conversion material is irradiated with light that is absorbed by the wavelength conversion material, thereby bringing the wavelength conversion material into an excited state, a chemically activated unstable state, and the wavelength conversion material. Absorption rate and fluorescence intensity can be reduced.
  • the power consumption of the organic EL display device 10 can be reduced by using a material containing a phosphorescent material that emits light in a blue-green wavelength region.
  • a material containing a phosphorescent material that emits light in a blue-green wavelength region in a method of using the excitation light from the organic EL unit 15 and passing the excitation light through the wavelength conversion layers 20, 26, 27 to achieve full color, an excitation light source ( Since the light emission efficiency of the organic EL unit 15) is directly connected to the power consumption of the entire device, in order to reduce the power consumption of the device, a phosphorescent material having a light emission efficiency four times that of the fluorescent material is used as the wavelength conversion layers , 27 is very effective.
  • substrate and sealing substrate which are used with the conventional organic EL display apparatus are used.
  • the first substrate 11 and the second substrate 23 include an insulating substrate such as an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbonate, polyimide, etc., a ceramic substrate made of alumina, or the like, or A metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate whose surface is coated with an insulator made of silicon oxide (SiO 2 ) or an organic insulating material, a metal made of aluminum or the like
  • Examples thereof include a substrate obtained by subjecting the surface of the substrate to insulation treatment by a method such as anodization. Among these, it is preferable to use a plastic substrate or a metal substrate because it is possible to form a bent portion and a bent portion without stress.
  • a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are preferable.
  • a substrate coated with such an inorganic material when the plastic substrate is used as the substrate of the organic EL display device 10, the deterioration of the organic EL material due to the permeation of moisture, which is the biggest problem (in particular, the organic EL material is It is known that deterioration occurs even with a small amount of moisture.).
  • leakage (short) due to protrusions on the metal substrate which is the biggest problem when the metal substrate is used as the substrate of the organic EL display device 10 (because the film thickness of the organic layer 14 is very thin, about 100 nm to 200 nm). It is known that leakage (short-circuit) occurs in the current in the pixel portion due to the protrusions).
  • TFTs driving elements
  • substrates that do not melt at a temperature of 500 ° C. or less and do not cause distortion are used. Is preferred.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate using a conventional production apparatus, but the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 /
  • a metal substrate that is an iron-nickel alloy at or below °C and matching the linear expansion coefficient to glass it becomes possible to form TFTs on the metal substrate at low cost using conventional production equipment. .
  • the TFT is transferred and formed on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT on the glass substrate to the plastic substrate.
  • the organic EL section 15 As a driving method of the organic EL section 15, conventional passive matrix driving, active matrix driving, and conventional materials and processes used for them can be used.
  • the peak luminance display can be easily performed, the display quality is excellent, the light emission time can be longer than that of the passive matrix driving, and a desired luminance can be obtained. Therefore, the active matrix driving is preferable because the driving voltage can be reduced and the power consumption can be reduced.
  • the TFTs formed on the first substrate 11 and the second substrate 23 are formed in advance on the first substrate 11 and the second substrate 23 before the organic EL portion 15 is formed, and function as switching and driving.
  • TFT in this embodiment a well-known TFT is mentioned, for example.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT.
  • the TFT that can be used in the organic EL display device 10 can be formed using a known material, structure, and formation method.
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide-
  • oxide semiconductor material such as zinc oxide
  • organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene
  • Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • an active layer forming method for forming a TFT (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD method or The polysilicon layer is formed by ECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • LPCVD low pressure chemical vapor deposition
  • a method of performing ion doping high temperature Process
  • a method of forming an organic semiconductor material by an inkjet method a method of obtaining a single crystal film of the organic semiconductor material.
  • the gate insulating film of the TFT in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, the second drive electrode, and the like of the TFT in this embodiment can be formed using known materials.
  • the material for the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode include tantalum (Ta), aluminum (Al), copper (Cu), and the like.
  • the TFT of the organic EL display device 10 can be formed with the above-described configuration, but this embodiment is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film that can be used in the active drive type organic EL display device 10 can be formed using a known material.
  • a material of the interlayer insulating film for example, inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O 5 ), acrylic resin, resist material Organic materials, etc. are mentioned.
  • the method for forming the interlayer insulating film include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. If necessary, the interlayer insulating film can be patterned by a photolithography method or the like.
  • the interlayer insulating film and the light-shielding insulating film can be used in combination.
  • the material of the light-shielding insulating film include inorganic pigments such as phthalocyanine and quinaclodon dispersed in a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulation such as Ni x Zn y Fe 2 O 4. Materials and the like. However, the present embodiment is not limited to these materials and forming methods.
  • the organic EL display device 10 is an active drive type and a TFT or the like is formed on the first substrate 11 or the second substrate 23, irregularities are formed on the surface, and the irregularities (for example, defects in the organic EL portion 15 (for example, , Defects in the first electrode 12, defects in the organic layer 14, disconnection in the second electrode 13, short circuit between the first electrode 12 and the second electrode 13, reduction in breakdown voltage, and the like may occur.
  • a planarizing film may be provided on the interlayer insulating film.
  • planarization film can be formed using a known material.
  • the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is limited to these materials and the formation method. is not.
  • the planarization film may have either a single layer structure or a multilayer structure.
  • an organic EL unit 15 As the organic EL unit 15, a known organic EL unit is used.
  • an organic light emitting layer 35 including a phosphorescent material that emits light in a blue-green wavelength region is provided between the first electrode 12 and the second electrode 13.
  • the organic layer 14 having at least the organic layer 14 is sandwiched, but is not limited thereto.
  • the first electrode (pixel electrode) 12 and the second electrode (counter electrode) 13 function as a pair as an anode or a cathode of the organic EL unit 15. That is, when the first electrode 12 is an anode, the second electrode 13 is a cathode, and when the first electrode 12 is a cathode, the second electrode 13 is an anode.
  • an electrode material for forming the first electrode 12 and the second electrode 13 a known electrode material can be used.
  • an electrode material for forming the anode gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more is used from the viewpoint of efficiently injecting holes into the organic layer 14.
  • Metals and oxides (ITO) composed of indium (In) and tin (Sn), oxides (SnO 2 ) of tin (Sn), oxides (IZO) composed of indium (In) and zinc (Zn), etc. And transparent electrode materials.
  • metals such as barium (Ba) and aluminum (Al)
  • alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • a thin film of a material having a low work function film thickness of about 0.1 nm to 5 nm
  • an oxide of tin (Sn) A combination of a transparent electrode material such as SnO 2 ), indium (In) and zinc (Zn) (IZO) or the like can be used, and the electron transport layer constituting the organic layer 14 has a donor.
  • the transparent electrode material can also be directly used as a cathode by doping, etc.
  • the first electrode 12 and the second electrode 13 are formed by a known method such as EB vapor deposition, sputtering, ion plating, resistance heating vapor deposition, or ion beam sputtering using the above materials.
  • the present embodiment is not limited to these forming methods.
  • the electrode formed by the photolithographic method and the laser peeling method can also be patterned as needed, and the electrode patterned directly by combining with a shadow mask can also be formed.
  • the film thickness of the first electrode 12 and the second electrode 13 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the first electrode 12 it is preferable to use a reflective electrode that includes a reflective electrode 31 and a transparent electrode 32 and reflects light and has a high reflectance.
  • Examples of the reflective electrode 31 constituting the first electrode 12 include reflective metal electrodes such as aluminum, silver, gold, an aluminum-lithium alloy, an aluminum-neodymium alloy, and an aluminum-silicon alloy.
  • Examples of the transparent electrode 32 constituting the first electrode 12 include the electrode material for forming the anode and the electrode material for forming the cathode.
  • Each of the hole injection layer 33, the hole transport layer 34, the organic light emitting layer 35, the electron transport layer 36, and the electron injection layer 37 constituting the organic layer 14 may have a single layer structure or a multilayer structure.
  • the hole injection layer 33, the hole transport layer 34, the organic light emitting layer 35, the electron transport layer 36, and the electron injection layer 37 may each be an organic thin film or an inorganic thin film.
  • the organic layer 14 is not limited to the above configuration, and may have a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer.
  • Specific examples of the configuration of the organic layer 14 include the following. (1) A configuration in which only the organic light emitting layer is provided between the first electrode 12 and the second electrode 13. (2) The hole transport layer and the organic light emitting layer are laminated in this order from the first electrode 12 side to the second electrode 13 side. (3) The organic light emitting layer and the electron transport layer are laminated in this order from the first electrode 12 side toward the second electrode 13 side. (4) The hole transport layer, the organic light emitting layer, and the electron transport layer are stacked in this order from the first electrode 12 side toward the second electrode 13 side.
  • the hole injection layer, the hole transport layer, the organic light emitting layer, and the electron transport layer are laminated in this order from the first electrode 12 side toward the second electrode 13 side.
  • the hole injection layer, the hole transport layer, the organic light emitting layer, the electron transport layer, and the electron injection layer are stacked in this order from the first electrode 12 side toward the second electrode 13 side.
  • a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, and an electron transport layer are laminated in this order from the first electrode 12 side toward the second electrode 13 side.
  • a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, an electron transport layer, and an electron injection layer were laminated in this order from the first electrode 12 side to the second electrode 13 side. It is a configuration.
  • the hole injection layer, the hole transport layer, the electron blocking layer, the organic light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer are It is the structure laminated
  • Each of the organic light emitting layer, the hole injection layer, the hole transport layer, the hole prevention layer, the electron prevention layer, the electron transport layer and the electron injection layer may have a single layer structure or a multilayer structure.
  • each of the organic light emitting layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer, and electron injection layer may be either an organic thin film or an inorganic thin film.
  • the charge injection transport layer is a charge injection layer (hole injection layer 33, electron injection layer 37) for the purpose of more efficiently injecting charge (holes, electrons) from the electrode and transporting (injection) to the light emitting layer.
  • a charge transport layer (a hole transport layer 34, an electron transport layer 36), and may be composed of only the charge injecting and transporting material exemplified below, optionally including additives (donor, acceptor, etc.)
  • the structure may be such that these materials are dispersed in a polymer material (binding resin) or an inorganic material.
  • charge injecting and transporting material known charge injecting and transporting materials for organic EL elements and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials , Porphyrin compounds, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N ′ -Low molecular nitrogen compounds such as aromatic tertiary amine compounds such as diphenyl-benzidine ( ⁇ -NPD), hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA) ), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivatives
  • V 2 O 5 vanadium oxide
  • MoO 2 molybdenum oxide
  • the hole injecting and transporting material used for the hole injecting layer 33 is higher than the hole injecting and transporting material used for the hole transporting layer 34 from the viewpoint of more efficiently injecting and transporting holes from the anode. It is preferable to use a material having a low energy level of the occupied molecular orbital (HOMO). In addition, as the hole injecting and transporting material used for the hole transporting layer 34, it is preferable to use a material having a higher hole mobility than the hole injecting and transporting material used for the hole injecting layer 33.
  • HOMO occupied molecular orbital
  • the hole injection layer 33 and the hole transport layer 34 may optionally contain additives (donor, acceptor, etc.) and the like.
  • the hole injection layer 33 and the hole transport layer 34 preferably include an acceptor.
  • the acceptor a known acceptor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • the acceptor may be either an inorganic material or an organic material.
  • the inorganic material include gold (Au), platinum (Pt), tungsten (W), iridium (Ir), phosphorus oxychloride (POCl 3 ), hexafluoroarsenate ion (AsF 6 ⁇ ), chlorine (Cl), Examples include bromine (Br), iodine (I), vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and the like.
  • organic materials include 7,7,8,8, -tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF 4 ), tetracyanoethylene (TCNE), hexacyanobutadiene (HCNB), and dicyclohexane.
  • examples thereof include compounds having a cyano group such as dicyanobenzoquinone (DDQ), compounds having a nitro group such as trinitrofluorenone (TNF) and dinitrofluorenone (DNF), fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are preferable because the effect of increasing the carrier concentration is higher.
  • the organic light emitting layer 35 may be composed of only an organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally includes a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included. Moreover, the structure by which these each material was disperse
  • the organic light emitting material a known light emitting material for an organic EL element can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the organic light emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material with high emission efficiency.
  • Low molecular light emitting materials (including host materials) used for the organic light emitting layer 35 include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl Oxadiazole compounds such as -2- [2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenyl) -4-phenyl-5-t- Triazole derivatives such as butylphenyl-1,2,4-triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives , Fluorescent organic materials such as diphenoquinone derivatives and fluorenone derivatives; azomethine zinc complexes, (8- Mud K
  • Polymer light emitting materials used for the organic light emitting layer 35 include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N— Triethylammonium) ethoxy] -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt 3+ ), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4- Phenylenevinylene] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) 1,4-phenylene- (1-cyanovinylene)] (CN-PPV) and other polyphenylene vinylene derivatives; poly (9,9-dioctylfluorene) (PDAF) and other polypheny
  • the organic light emitting material is preferably a low molecular light emitting material, and a phosphorescent material having high light emission efficiency is preferably used from the viewpoint of reducing power consumption.
  • a dopant material having two light emitting components among known dopants for an organic EL element can be used.
  • the dopant material having two light-emitting components means that when the light emission spectrum of the dopant is separated into each light-emitting component, it can be divided into two or more components, and has two peaks in the light emission spectrum of the dopant. , Represented as having a shoulder.
  • the peak wavelength position of the first component is 450 nm to 480 nm
  • the peak wavelength position of the second component is 480 nm to 480 nm. It is preferable that it is 530 nm.
  • the difference in peak wavelength between the first component and the second component is preferably 20 nm to 80 nm.
  • the peak intensity ratio between the first component and the second component is preferably 7: 3 to 5: 5.
  • a dopant for example, bis [(4,6-difluorophenyl) -pyridinato] picolenate iridium (III) (FIrpic) (peak wavelength (intensity ratio) is used as a phosphorescent material that emits light in a blue-green wavelength range.
  • the above low molecular light emitting material As the host material when the above dopant is used, the above low molecular light emitting material, the above high molecular light emitting material, 4,4′-bis (carbazole) biphenyl, 3- (2,7-bis (diphenylphosphine) Foil) -9-phenyl-9H-fluoren-9-yl) -9-phenyl-9H-carbazole (PCF) and the like.
  • Examples of materials for the electron transport layer 36 and the electron injection layer 37 include, for example, inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, Low molecular materials such as fluorenone derivatives and benzodifuran derivatives; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the material for the electron injection layer 37 include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • a material for the electron injection layer 37 a material having a higher energy level of the lowest unoccupied molecular orbital (LUMO) than that of the material for the electron transport layer 36 is used from the viewpoint of more efficiently injecting and transporting electrons from the cathode. Is preferred.
  • a material having higher electron mobility than the material for the electron injection layer 37 is preferably used.
  • the material of the electron transport layer 36 and the material of the electron injection layer 37 preferably include a donor.
  • a donor the well-known donor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • the donor may be either an inorganic material or an organic material.
  • the inorganic material include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as magnesium and calcium; rare earth elements; aluminum (Al); silver (Ag); copper (Cu); It is done.
  • the organic material include a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent such as phenanthrene, pyrene, perylene, anthracene, tetracene and pentacene, tetrathiafulvalene (TTF), Examples include dibenzofuran, phenothiazine, and carbazole.
  • Compounds having an aromatic tertiary amine skeleton include anilines; phenylenediamines; N, N, N ′, N′-tetraphenylbenzidine, N, N′-bis- (3-methylphenyl) -N, N Benzidines such as' -bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine; triphenylamine, 4,4'4 ''-tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3-methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′- Triphenylamines such as tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine; N, N′-di-
  • the above-mentioned condensed polycyclic compound “has a substituent” means that one or more hydrogen atoms in the condensed polycyclic compound are substituted with a group (substituent) other than a hydrogen atom.
  • the number of is not particularly limited, and all hydrogen atoms may be substituted with a substituent.
  • the position of the substituent is not particularly limited. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. An aryloxy group having 6 to 15 carbon atoms, a hydroxyl group, a halogen atom, and the like.
  • the alkyl group may be linear, branched or cyclic.
  • Examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl group.
  • the cyclic alkyl group may be monocyclic or polycyclic, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group Group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group and the like.
  • Examples of the alkoxy group include monovalent groups in which an alkyl group is bonded to an oxygen atom.
  • Examples of the alkenyl group include an alkyl group having 2 to 10 carbon atoms in which one single bond (C—C) between carbon atoms is substituted with a double bond (C ⁇ C).
  • Examples of the alkenyloxy group include a monovalent group in which the alkenyl group is bonded to an oxygen atom.
  • the aryl group may be monocyclic or polycyclic, and the number of ring members is not particularly limited, and preferred examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like.
  • the aryloxy group includes a monovalent group in which an aryl group is bonded to an oxygen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent, and an alkali metal are preferable.
  • the hole injection layer 33, the hole transport layer 34, the organic light emitting layer 35, the electron transport layer 36, and the electron injection layer 37 are formed by using an organic layer forming coating solution in which the above materials are dissolved and dispersed in a solvent.
  • Known wet methods such as coating methods, dipping methods, doctor blade methods, discharge coating methods, spray coating methods, etc., inkjet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as microgravure coating methods, etc.
  • a known dry process such as a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, or an organic vapor deposition (OVPD) method using the above-mentioned materials, or It can be formed by a laser transfer method or the like.
  • the coating liquid for organic layer formation contains the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier. Also good.
  • a low-cost patterning method can be taken.
  • each layer constituting the organic layer 14 is usually about 1 nm to 1000 nm, but preferably 10 nm to 200 nm. If the thickness of each layer constituting the organic layer 14 is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, when the film thickness of each layer constituting the organic layer 14 exceeds 200 nm, the drive voltage increases due to the resistance component of the organic layer 14, and as a result, the power consumption increases.
  • the edge cover 22 prevents leakage between the first electrode 12 and the second electrode 13 at least at the edge portion of the first electrode 12 formed on the first substrate 11 side between each pixel portion. It is provided for the purpose.
  • the edge cover 22 can be formed using an insulating material by a known method such as an electron beam (EB) vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method.
  • EB electron beam
  • the edge cover 22 can be patterned by a known dry method or a wet photolithography method.
  • the formation method of the edge cover 22 is not limited to these formation methods.
  • the material constituting the edge cover 22 is not particularly limited, but a known material is used.
  • a material that transmits light is used, and examples thereof include SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, and LaO.
  • the film thickness of the edge cover 22 is preferably 100 nm to 2000 nm. If the film thickness of the edge cover 22 is less than 100 nm, the insulation is not sufficient, and leakage occurs between the first electrode 12 and the second electrode 13, resulting in an increase in power consumption and non-light emission. On the other hand, when the film thickness of the edge cover 22 exceeds 2000 nm, it takes a long time for the film formation process, resulting in deterioration of productivity and disconnection of the second electrode 13 by the edge cover 22.
  • the organic EL part 15 is not patterned, there is a loss of light that is guided through the organic EL part 15 in the side surface direction. Therefore, as the edge cover 22, in order to prevent leakage between the first electrode 12 and the second electrode 13, and to effectively use the loss of light emission in the side surface direction, light reflectivity or light scattering property is used. These materials can also be used.
  • the light-reflective edge cover 22 may have a structure in which a metal such as aluminum or silver is covered with a transparent insulating material such as silica (SiO 2 ).
  • a material for the light scattering edge cover 22 it is preferable to use a material in which light scattering particles are dispersed in a resin.
  • the particle diameter of the light scattering particles needs to be in the Mie scattering region. The diameter is preferably about 100 nm to 500 nm.
  • particles (inorganic fine particles) made of an inorganic material are used as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (Refractive index anatase type: 2.50, rutile type: 2.70), zirconia bead (refractive index: 2.05), zinc oxide bead (refractive index: 2.00), barium titanate (BaTiO 3 ) ( Refractive index: 2.4) etc. are mentioned.
  • particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic -Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57) Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68) And silicone beads (refractive index: 1.50).
  • polymethyl methacrylate beads reffractive index: 1.49
  • acrylic beads refractive index: 1.50
  • acrylic -Styrene copolymer beads refractive index: 1.54
  • Examples of the resin material used by mixing with light scattering particles include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene ( Refractive index: 1.60), melamine beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.
  • polyvinyl acetate (refractive index: 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium Density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), Polytetrafur Roechiren (refraction index: 1.35) and the like.
  • the organic EL display device 10 is electrically connected to an external drive circuit (scanning line electrode circuit, data signal electrode circuit, power supply circuit) for driving.
  • an insulating material is coated on a glass substrate, more preferably on a metal substrate, on a plastic substrate, and more preferably on a metal substrate or a plastic substrate. A substrate is used.
  • the organic EL display device 10 may be directly connected to an external circuit and driven, or a switching circuit such as a TFT is disposed in a pixel, and the organic EL unit 15 is driven to a wiring to which the TFT or the like is connected. It may be electrically connected to an external driving circuit (scanning line electrode circuit (source driver), data signal electrode circuit (gate driver), power supply circuit).
  • a switching circuit such as a TFT is disposed in a pixel
  • the organic EL unit 15 is driven to a wiring to which the TFT or the like is connected. It may be electrically connected to an external driving circuit (scanning line electrode circuit (source driver), data signal electrode circuit (gate driver), power supply circuit).
  • the active substrate formed in the organic EL unit 15 constituting the organic EL display device 10 is a glass substrate, more preferably a metal substrate, a plastic substrate, More preferably, a TFT circuit is arranged at a plurality of scanning signal lines, data signal lines, and intersections between the scanning signal lines and the data signal lines on a metal substrate or a plastic substrate coated with an insulating material. .
  • the organic EL display device 10 is driven by a voltage-driven digital gradation method, and two TFTs for switching and driving are arranged for each pixel.
  • the driving TFT and the first electrode 12 of the organic EL portion 15 are electrically connected via a contact hole formed in the planarization layer.
  • a capacitor for setting the gate potential of the driving TFT to a constant potential is arranged in one pixel so as to be connected to the gate portion of the driving TFT.
  • a planarization layer is formed on the TFT.
  • the present embodiment is not limited to these, and may be the voltage-driven digital gray scale method described above or the current-driven analog gray scale method.
  • the number of TFTs is not particularly limited, and the organic EL unit 15 may be driven by the two TFTs described above, and the purpose of preventing variations in TFT characteristics (mobility and threshold voltage). Therefore, the organic EL unit 15 may be driven by providing two or more TFTs with a built-in compensation circuit in the pixel.
  • the wavelength conversion layer 20 of the red pixel unit 21 absorbs excitation light (at least one of light in the blue wavelength region and light in the green wavelength region) from the organic EL unit 15, and emits light in the red wavelength region. It is composed of a red wavelength conversion layer.
  • the organic EL display device 10 further has a wavelength conversion layer (yellow wavelength conversion layer) that absorbs excitation light from the organic EL unit 15 and emits light in the yellow wavelength range, if necessary.
  • a pixel portion may be provided.
  • the color purity of the light in the yellow wavelength range from the yellow pixel portion is represented by the point of the color purity of the light in the red wavelength range from the red pixel portion 21 and the color purity from the green pixel portion 19 on the chromaticity diagram.
  • the organic EL display device 10 has a color reproduction range larger than that of the display device using only the red pixel portion 21 and the green pixel portion 19 by being outside the line connecting the color purity points of light in the green wavelength range. It can be further expanded.
  • the wavelength conversion layers 20, 26, and 27 may be composed of only the phosphor materials exemplified below, and may optionally contain additives and the like, and these materials are polymer materials (binding resins). Or the structure disperse
  • a known phosphor material can be used as the phosphor material constituting the wavelength conversion layers 20, 26 and 27, a known phosphor material can be used. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  • the organic EL display device 10 when the organic EL display device 10 is a high-definition display device, it is necessary to make the film thickness of the wavelength conversion layer 20 thinner than the width of the pixel pattern. However, if the film thickness of the wavelength conversion layer 20 is reduced, the amount of absorption of the excitation light is reduced, and the excitation light from the organic EL unit 15 and red color from the wavelength conversion layer 20 are mixed and the color purity is reduced. It is necessary to increase the concentration of the wavelength conversion material contained in the layer 20. When the concentration of the wavelength conversion material is increased, the light emission efficiency is reduced by so-called concentration quenching.
  • the wavelength conversion layer 20 contains two kinds of phosphor materials (first wavelength conversion material and second wavelength conversion material) mainly responsible for light absorption and light emission, respectively, as the wavelength conversion material.
  • first wavelength conversion material and second wavelength conversion material mainly responsible for light absorption and light emission, respectively.
  • the first wavelength conversion material included in the wavelength conversion layer 20 absorbs the excitation light from the organic EL unit 15 and enters an excited state
  • the first wavelength conversion material is more than the energy transfer between the first wavelength conversion materials.
  • Energy transfer from the wavelength conversion material to the second wavelength conversion material having a lower energy level than the first wavelength conversion material is more likely to occur. Therefore, most of the excitation energy of the first wavelength conversion material moves to the second wavelength conversion material without being lost (concentration quenching) due to movement between the first wavelength conversion materials, and the second wavelength conversion material emits light. It is thought that it can contribute to.
  • the wavelength conversion layer 20 can achieve both a thin film thickness and high light emission efficiency.
  • the function of absorbing the excitation light from the organic EL unit 15 and the function of emitting light in a desired wavelength region are separated, and each function is assigned to the first wavelength conversion material and the second wavelength conversion material.
  • each function is assigned to the first wavelength conversion material and the second wavelength conversion material.
  • the sufficient absorption of the excitation light is preferably 80% or more, more preferably 90% or more, at an excitation wavelength.
  • the wavelength conversion layer 20 is a phosphor material (first wavelength conversion material) that absorbs the excitation light from the organic EL unit 15 and a phosphor material that emits a desired color (for example, red) (for example, red).
  • the first wavelength conversion material absorbs the incident light to the wavelength conversion layer 20, transfers the energy to the second wavelength conversion material, and the second wavelength.
  • the wavelength conversion layer 20 can emit light having a spectrum different from that of the original incident light.
  • the first wavelength conversion material is a wavelength conversion material that can absorb excitation light from the organic EL portion incident on the wavelength conversion layer 20 and transfer the absorbed energy to the second wavelength conversion material. Therefore, it is preferable that the absorption spectrum of the first wavelength conversion material overlaps the spectrum of the excitation light from the organic EL unit 15. Moreover, it is more preferable that the absorption maximum of the first wavelength conversion material and the maximum of the spectrum of the excitation light from the organic EL unit 15 match. Moreover, it is preferable that the emission spectrum of the first wavelength conversion material overlaps with the absorption spectrum of the second wavelength conversion material. Furthermore, it is more preferable that the maximum of the emission spectrum of the first wavelength conversion material matches the absorption maximum of the second wavelength conversion material. Here, it is preferable that the difference between the maximum wavelengths is 20% or less, and more preferably 10% or less that the maximums of the spectra match.
  • the position of the absorption peak wavelength of the first wavelength conversion material is preferably 450 nm to 480 nm, and the position of the absorption peak wavelength of the second wavelength conversion material is preferably 480 nm to 530 nm.
  • the position of the emission peak wavelength of the emission spectrum of the first wavelength conversion material is preferably 480 nm to 530 nm, and the position of the emission peak wavelength of the emission spectrum of the second wavelength conversion material is preferably 580 nm to 680 nm. If it does in this way, the function which absorbs the excitation light from the organic EL part 15 efficiently by the 1st wavelength conversion material and the 2nd wavelength conversion material, and the function which light-emits the light of a desired wavelength range with high luminous efficiency. Can be separated, and both high light absorption and high light emission efficiency can be achieved.
  • the absorption peak wavelength of the incident light by the first wavelength conversion material and the second wavelength conversion are realized by realizing the absorption and emission of the excitation light from the organic EL unit 15 by different wavelength conversion materials.
  • the difference from the emission peak wavelength after wavelength conversion by the material can be increased.
  • materials used as the first wavelength conversion material and the second wavelength conversion material can be spread.
  • organic phosphor material As an organic phosphor material, as a fluorescent dye that converts excitation light in the ultraviolet region into light emission in a blue wavelength region, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4, 4'-diphenylstilbenzene, coumarin dyes: 7-hydroxy-4-methylcoumarin and the like.
  • An organic fluorescent dye that converts excitation light in the blue to green wavelength range into light emission in the red wavelength range is a cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostil Ril) -4H-pyran, pyridine dyes: 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G , Rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
  • Examples of the inorganic phosphor material include Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+.
  • the inorganic phosphor may be subjected to surface modification treatment as necessary, and as a method thereof, by chemical treatment such as a silane coupling agent or by addition of fine particles of submicron order.
  • chemical treatment such as a silane coupling agent or by addition of fine particles of submicron order.
  • the thing by physical processing and the thing by those combined use etc. are mentioned.
  • the wavelength conversion material when an inorganic phosphor material is used as the wavelength conversion material, its concentration is not particularly limited, but a higher concentration is preferable in terms of absorption rate of excitation light and luminous efficiency. Therefore, the wavelength conversion material may be composed of 100% inorganic phosphor material. On the other hand, when an organic phosphor material is used as the wavelength conversion material, it is preferable that the wavelength conversion material does not cause concentration quenching. This is because if the wavelength conversion material undergoes concentration quenching, the light emission efficiency decreases.
  • the concentration of the wavelength conversion material contained in the wavelength conversion layer 20 is preferably 10% by mass or less, more preferably based on the total amount of materials constituting the wavelength conversion layer 20 on the condition that concentration quenching does not substantially occur. Is in the range of 0.01% to 10% by weight, more preferably 0.1% to 5% by weight. By using the wavelength conversion material within such a concentration range, concentration quenching can be suitably prevented and sufficient luminous efficiency can be suitably obtained.
  • the content of the first wavelength conversion material is based on the total amount of materials constituting the wavelength conversion layer 20.
  • the content is preferably in the range of 30% by mass to 99.99% by mass.
  • the concentration of the second wavelength conversion material contained in the wavelength conversion layer 20 is the second wavelength conversion material. It is preferable that the wavelength conversion material is within a range that does not cause concentration quenching. This is because if the second wavelength conversion material undergoes concentration quenching, the light emission efficiency of the wavelength conversion layer 20 decreases.
  • the upper limit of the concentration of the second wavelength conversion material contained in the wavelength conversion layer 20 varies depending on the types of the first wavelength conversion material and the second wavelength conversion material, provided that the concentration quenching does not substantially occur. obtain.
  • the lower limit of the concentration of the second wavelength conversion material contained in the wavelength conversion layer 20 is the kind of the first wavelength conversion material and the second wavelength conversion material, or the purpose, provided that sufficient emission intensity is obtained. It can vary depending on the application.
  • the concentration of the second wavelength conversion material contained in the wavelength conversion layer 20 is preferably 10% by mass or less, more preferably 0.01% by mass to 10% by mass relative to the total amount of the materials constituting the wavelength conversion layer 20. More preferably, it is in the range of 0.1% by mass to 5% by mass.
  • the film thickness of the wavelength conversion layer 20 is usually about 100 nm to 100 ⁇ m, but preferably 1 ⁇ m to 100 ⁇ m. If the film thickness of the wavelength conversion layer 20 is less than 100 nm, the light emission from the organic EL unit 15 cannot be sufficiently absorbed. Therefore, the light emission efficiency is lowered, and the color purity of the required color is mixed with the excitation light. Problems such as deterioration occur. Furthermore, in order to increase the absorption of light emitted from the organic EL unit 15 and reduce the transmitted light of the excitation light to such an extent that the color purity is not adversely affected, the film thickness of the wavelength conversion layer 20 should be 1 ⁇ m or more. preferable. On the other hand, when the film thickness of the wavelength conversion layer 20 exceeds 100 ⁇ m, the light emission from the organic EL unit 15 is already sufficiently absorbed, so that the light emission efficiency is not increased and only the material is consumed. This leads to an increase in cost.
  • the wavelength conversion layer 20 is a spin coating method, a dipping method, a doctor blade method, a discharge coating method, using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent.
  • Known wet processes such as coating methods such as spray coating, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as micro gravure coating methods, and resistance heating vapor deposition methods using the above materials , An electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor phase vapor deposition (OVPD) method, or the like.
  • EB electron beam
  • MBE molecular beam epitaxy
  • OVPD organic vapor phase vapor deposition
  • the wavelength conversion layer 20 that emits light in the red wavelength region is formed only in the red pixel portion 21 using light emitted from the organic EL portion 15 as excitation light. That's fine. That is, the wavelength conversion layer 26 of the blue pixel portion 17 and the wavelength conversion layer 27 of the green pixel portion 19 are exposed at a wavelength that is absorbed by the wavelength conversion layers 26 and 27 and decreases the fluorescence intensity. Since a very simple method of simply blocking light of the above-mentioned wavelength can be applied, only one exposure is required and only one mask is required, so that low-cost patterning is possible.
  • the green pixel portion 19 is exposed with light of a wavelength that reduces only the fluorescence intensity of the wavelength conversion layer 20 of the red pixel portion 21.
  • the fluorescence intensity of the wavelength conversion layer 27 of the green pixel portion 19 is also reduced by light having a wavelength that only reduces the fluorescence intensity of the wavelength conversion layer 20 of the red pixel portion 21. It does n’t happen.
  • the photobleach method it is not necessary to reduce the fluorescence intensity only by the desired red wavelength conversion material and not to change the fluorescence intensity of other green wavelength conversion materials, and it is possible to completely reduce (eliminate) the fluorescence intensity.
  • the blue pixel portion 17 and the green pixel portion 19 it is possible to eliminate a decrease in color purity due to light emission from the wavelength conversion layer 20 of the red pixel portion 21.
  • the photobleaching method in the present embodiment is a high-energy light (electromagnetic wave) in a wavelength region in which the wavelength conversion layers 20, 26, 27 such as ultraviolet rays are absorbed in the wavelength conversion material constituting the wavelength conversion layers 20, 26, 27. Is irradiated with a photomask to partially modify the wavelength conversion layers 20, 26, 27, thereby reducing the fluorescence intensity (excitation light absorption intensity) of the wavelength conversion layers 20, 26, 27. It is.
  • the modification of the wavelength conversion material includes any mode (formation of an aggregate) in which the color conversion pigment is decomposed, oxidized, or other light emission intensity of the wavelength conversion material is decreased (light transmittance with respect to excitation light is decreased). .
  • a lamp such as a high pressure UV lamp, an ultra high pressure UV lamp, a low pressure UV lamp, a deep UV lamp, a metal halide lamp, an excimer lamp, a xenon lamp, or a halogen lamp is usually used.
  • the wavelength of the light source is not particularly limited as long as it is an absorption wavelength of the wavelength conversion material, and is preferably in a wavelength range in which part or all of the wavelength conversion material can be modified.
  • the illuminance of the light source is not particularly limited, and it is better to reduce the process time.
  • a color filter, an organic EL unit, and the like are provided between the wavelength conversion layer and the substrate during exposure. In this case, the irradiation intensity should not be so high for the purpose of preventing deterioration of the color filter and the organic EL part, and is preferably about 10 mW / cm 2 to 100 mW / cm 2 .
  • a photomask is used to irradiate the wavelength conversion layers 20, 26 and 27 with high energy light to partially modify the color conversion dye.
  • other means may be used in the present embodiment.
  • a method of partially modifying the wavelength conversion layers 20, 26, and 27 a method of irradiating the entire surface of the wavelength conversion layers 20, 26, and 27 while changing the irradiation intensity (for example, a black and white negative).
  • a filter such as a film having a partially different transmittance
  • a method of scanning while changing the irradiation intensity of light emitted from a minute light source a method of partially irradiating electromagnetic waves by masking, etc.
  • the wavelength conversion layer 20 may be formed at least in the red pixel portion 21, and therefore, the wavelength conversion layer 20 can be formed by one transfer. Therefore, the problem of high cost and low productivity associated with three times of patterning (transfer) of red, green, and blue, which has been a problem in the conventional color filter formation and organic EL light emitting layer formation, is overcome. be able to.
  • the wavelength conversion layers 20, 26, and 27 can be patterned by photolithography using a photosensitive resin as the polymer resin.
  • a photosensitive resin having a reactive vinyl group such as an acrylic resin, a methacrylic resin, a polyvinyl cinnamate resin, or a hard rubber resin is used.
  • a photosensitive resin photo-curable resist material having a reactive vinyl group such as an acrylic resin, a methacrylic resin, a polyvinyl cinnamate resin, or a hard rubber resin.
  • Wet process such as inkjet method, letterpress printing method, intaglio printing method, screen printing method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic
  • EB electron beam
  • MBE molecular beam epitaxy
  • sputtering method organic
  • phosphor material can also be directly patterned by a known dry process such as vapor phase deposition (OVPD) or a laser transfer method.
  • the blue color filter 16 is provided between the first substrate 11 and the wavelength conversion layer 26.
  • the green color filter 18 is provided between the first substrate 11 and the wavelength conversion layer 27.
  • the red color filter 28 is provided between the first substrate 11 and the wavelength conversion layer 20.
  • conventional color filters can be used as the blue color filter 16, the green color filter 18, and the red color filter 28, conventional color filters can be used.
  • the color filter by providing the color filter, the color purity of the red pixel unit 21, the green pixel unit 19, and the blue pixel unit 17 can be increased, and as a result, the color reproduction range of the organic EL display device 10 can be expanded. .
  • the red color filter 28 provided on 20 absorbs excitation light that excites each wavelength conversion material among external light, and thus reduces and prevents light emission of the wavelength conversion layers 20, 26, and 27 due to external light. Therefore, it is possible to reduce or prevent a decrease in contrast of the display of the organic EL display device 10.
  • the blue color filter 16, the green color filter 18, and the red color filter 28 are not absorbed by the wavelength conversion layers 20, 26, 27, and the excitation light transmitted through the wavelength conversion layers 20, 26, 27 leaks to the outside. Therefore, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the wavelength conversion layers 20, 26 and 27 and the excitation light.
  • the light absorption layer (low reflection layer) 29 is disposed between the blue color filter 16 and the green color filter 18, between the green color filter 18 and the red color filter 28, and on the first substrate 11 side. And the blue color filter 16.
  • the light absorption layer 29 can prevent light emission from each pixel unit from being mixed and improve the display contrast of the organic EL display device 10.
  • the film thickness of the light absorption layer 29 is usually about 100 nm to 100 ⁇ m, preferably 100 nm to 10 ⁇ m. Further, in order to efficiently extract light emitted from the side surfaces of the wavelength conversion layers 20, 26, and 27 to the outside, the film thickness of the light absorption layer 29 should be smaller than the film thickness of the wavelength conversion layers 20, 26, and 27. preferable.
  • the low refractive index layer 30 is provided between the blue color filter 16 and the wavelength conversion layer 26, between the green color filter 18 and the wavelength conversion layer 27, and between the red color filter 28 and the wavelength conversion layer 20. .
  • the refractive index of the low refractive index layer 30 is lower than the refractive index of the first substrate 11. Thereby, the light emission loss caused by the light emission from the wavelength conversion layers 20, 26 and 27 being guided through the first substrate 11 and guided to the side surface of the first substrate 11 can be reduced.
  • the refractive index of the first substrate 11 between the first substrate 11 and the organic EL unit 15, or between the blue color filter 16, the green color filter 18 and the red color filter 28, and the organic EL unit 15, It is preferable to provide a low refractive index layer 30 having a refractive index lower than that of the organic EL portion 15.
  • a gas such as nitrogen
  • the first substrate 11 provided with the blue color filter 16, the green color filter 18, the red color filter 28, the wavelength conversion layers 20, 26, 27, the organic EL unit 15, and the like and the second substrate 23 are well-known sealing It can be bonded by the material and the sealing method.
  • the first substrate 11 provided with the blue color filter 16, the green color filter 18, the red color filter 28, the wavelength conversion layers 20, 26, 27, the organic EL unit 15, and the like is provided with a spin coating method, ODF, A sealing film 24 for sealing the blue color filter 16, the green color filter 18, the red color filter 28, the wavelength conversion layers 20, 26, 27, the organic EL unit 15, etc. by applying a resin using a lamination method or the like.
  • an adhesive is applied to the entire surface of the first substrate 11 so as to cover the sealing film 24 by using a spin coat method, an ODF, a laminate method, or the like, and an adhesion layer 25 is formed.
  • the first substrate 11 and the second substrate 23 are bonded together via the layer 25.
  • the sealing film 24 covers the blue color filter 16, the green color filter 18, the red color filter 28, the wavelength conversion layers 20, 26 and 27, the organic EL unit 15, and the like provided on the first substrate 11.
  • an inorganic film made of SiO, SiON, SiN, etc. by plasma CVD method, ion plating method, ion beam method, sputtering method, etc., spin coating method, ODF, It can also be formed by applying a resin using a lamination method or the like, or by bonding a resin film so as to cover the inorganic film.
  • the sealing film 24 can prevent oxygen and moisture from being mixed into the organic EL unit 15 from the outside, and thus the life of the organic EL unit 15 can be improved.
  • Examples of the adhesive used for the adhesive layer 25 include an ultraviolet curable resin and a thermosetting resin.
  • An inert gas such as nitrogen gas or argon gas may be enclosed.
  • a polarizing plate 38 is preferably provided on the light extraction side substrate (first substrate 11).
  • the polarizing plate 38 is preferably a combination of a conventional linear polarizing plate and a ⁇ / 4 plate. By providing the polarizing plate 38, the display contrast of the organic EL display device 10 can be improved.
  • FIG. 2 is a schematic sectional view showing a second embodiment of the organic EL display device.
  • the organic EL display device 40 of the present embodiment is different from the organic EL display device 10 of the first embodiment described above in that a light scattering layer 41 is provided in the blue pixel portion 17 instead of the wavelength conversion layer 26, and The light scattering layer 41 is provided instead of the wavelength conversion layer 27 in the green pixel portion 19.
  • the organic EL display device 40 uses light emitted from the wavelength conversion layer 20 and the blue pixel unit 17 and the green pixel unit 19 that directly use anisotropic light emission from the organic EL unit 15 having a microcavity structure. Since the pixel unit having the light distribution characteristic different from that of the red pixel unit 21 is provided, the light distribution characteristic of the light distribution characteristic depending on the viewing angle is obtained by combining the light distribution characteristic of the light emission from the organic EL unit 15 and the light emission from the wavelength conversion layer 20.
  • a light scattering layer 41 is provided in the blue pixel portion 17 and the green pixel portion 19 in order to reduce luminance and color changes due to deviation.
  • the material of the light scattering layer 41 it is preferable to use a material in which light scattering particles are dispersed in a resin.
  • the light scattering particles are composed of an organic material or an inorganic material, but are preferably composed of an inorganic material. Thereby, light having directivity from the outside (for example, a light emitting element) can be diffused or scattered more isotropically and effectively.
  • the light-scattering layer 41 stable to light and heat can be formed by using an inorganic material.
  • a light-scattering particle a thing with high transparency is preferable.
  • the light scattering particles are preferably particles in which fine particles having a higher refractive index than the base material are dispersed in a low refractive index base material.
  • the particle size of the light scattering particles needs to be in the Mie scattering region.
  • the diameter is preferably about 100 nm to 500 nm.
  • the inorganic material is, for example, an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony And the like (particles) containing as a main component.
  • particles (inorganic fine particles) made of an inorganic material include silica beads (refractive index: 1.44) and alumina beads (refractive index: 1 ..
  • titanium oxide beads (refractive index anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), titanic acid barium (BaTiO 3) (refractive index: 2.4), and the like.
  • organic fine particles made of an organic material
  • examples of the organic fine particles include polymethyl methacrylate beads (refractive index: 1.49) and acrylic beads (refractive index: 1.. 50), acrylic-styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), silicone beads (refractive index: 1.50) and the like.
  • the resin material used by mixing with the light-scattering particles is preferably a translucent resin material.
  • the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine.
  • Beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index) : 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53).
  • High density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1). .3 ), And the like.
  • FIG. 3 is a schematic sectional view showing a third embodiment of the organic EL display device. 3, the same components as those of the organic EL display device 10 shown in FIG. 1 and the organic EL display device 40 shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 50 is provided on the first substrate 11 and one surface 11 a of the first substrate 11, and the organic EL 14 is formed by sandwiching the organic layer 14 between the first electrode 12 and the second electrode 13.
  • a blue pixel portion 17 having a blue color filter 16 provided on the one surface 23a of the second substrate 23, the second substrate 23 disposed opposite to the first substrate 11 via the portion 15, the adhesive layer 25,
  • And is provided on one surface 23a of the second substrate 23, and surrounds the side surfaces of the blue color filter 16, the green color filter 18 and the red color filter 28, It is schematically configured from the bank 51. for partitioning element.
  • a sealing film 24 that seals the organic EL portion 15 provided on the one surface 11 a of the first substrate 11 is provided. Further, in order to seal the blue color filter 16, the green color filter 18, and the red color filter 28 provided on the one surface 23 a of the second substrate 23, a sealing film 24 covers the wavelength conversion layer 20. Is provided. Furthermore, the sealing film 24 on the first substrate 11 side and the sealing film 24 on the second substrate 23 side are arranged so as to face each other, and an adhesive layer 25 provided so as to cover these sealing films 24 is interposed therebetween. Thus, the first substrate 11 and the second substrate 23 are bonded.
  • a wavelength conversion layer 20 made of a continuous film that extends over the display region of the organic EL display device 50 is provided with a blue color filter 16, a green color filter 18, and a red color. It is provided so as to cover the filter 28. Further, between the blue color filter 16 and the green color filter 18, between the green color filter 18 and the red color filter 28, and between the red color filter 28 and the blue color filter 16, a light absorbing layer (low A reflective layer 29 is provided. Further, between the blue color filter 16 and the wavelength conversion layer 20, between the green color filter 18 and the wavelength conversion layer 20, and between the red color filter 28 and the wavelength conversion layer 20, the refractive index of the second substrate 23. A low refractive index layer 30 having a low refractive index is provided.
  • a polarizing plate 38 is laminated on the other surface 23 b of the second substrate 23. Further, the low refractive index layer 30 provided between the low refractive index layer 30 and the wavelength conversion layer 20 provided on the blue color filter 16 in the blue pixel portion 17 and on the green color filter 18 in the green pixel portion 19. A light scattering layer 41 is provided between the wavelength conversion layer 20 and the wavelength conversion layer 20.
  • an isotropy from the wavelength conversion layer 20 is provided by providing a bank 51 surrounding the side surfaces of the blue color filter 16, the green color filter 18 and the red color filter 28 and partitioning pixels.
  • a bank 51 surrounding the side surfaces of the blue color filter 16, the green color filter 18 and the red color filter 28 and partitioning pixels.
  • light emission in the side surface direction of the wavelength conversion layer 20 can be prevented, and deterioration of color purity due to light emission leakage to other than a desired pixel can be prevented. Can do.
  • the light emission from the wavelength conversion layer 20 is reflected in the pixels by the bank 51, the light emission from the wavelength conversion layer 20 can be used effectively, so that the power consumption of the organic EL display device 10 can be reduced. .
  • the material of the bank 51 is not particularly limited, and the same material as that of the edge cover 22 described above can be used. Further, unlike the edge cover 22, the bank 51 does not require insulation, so that a reflective film such as a metal can be used.
  • the sealing film 24 on the one surface 23a side of the second substrate 23 is provided so as to cover the wavelength conversion layer 20, but the surface of the wavelength conversion layer 20 on the side facing the first substrate 11 is sealed. It is preferable to planarize with the film 24. Thereby, the adhesiveness and adhesive strength of the 1st board
  • FIG. 4 is a schematic sectional view showing a fourth embodiment of the organic EL display device.
  • the organic EL display device 60 of the present embodiment is different from the organic EL display device 50 of the above-described third embodiment in that the wavelength conversion layer 20 is red like the organic EL display device 40 of the above-described second embodiment.
  • the light scattering layer 41 is provided in place of the wavelength conversion layer 20 in the blue pixel portion 17, and the light scattering layer 41 is provided in the green pixel portion 19 in place of the wavelength conversion layer 20.
  • the bank 51 is provided.
  • the adhesive layer 25 so that the portion covering the surface contacts the sealing film 24 provided for sealing the organic EL portion 15 on the one surface 11a of the first substrate 11.
  • One board 1 and the second substrate 23 is that it is bonded.
  • FIG. 5 is a schematic sectional view showing a fifth embodiment of the organic EL display device. 5, the same components as those of the organic EL display device 50 shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference between the organic EL display device 70 of the present embodiment and the organic EL display device 50 of the third embodiment described above is that the second electrode of the organic EL section 15 provided on the one surface 11a of the first substrate 11.
  • a wavelength conversion layer 20 is provided at a position opposite to the blue color filter 16, the green color filter 18, and the red color filter 28 provided on one surface 23 a of the second substrate 23.
  • the low refractive index layer 30 is provided at a position facing each of the green color filter 18 and the red color filter 28, and one surface 23a of the second substrate 23.
  • the portion of the sealing film 24 provided on the cover 51 covering the bank 51 is in contact with the sealing film 24 provided for sealing the organic EL portion 15 via the adhesive layer 25.
  • the first substrate 11 and the second substrate 23 are bonded.
  • FIG. 6 is a schematic cross-sectional view showing a sixth embodiment of the organic EL display device.
  • the same components as those of the organic EL display device 50 shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 80 of the present embodiment is different from the organic EL display device 50 of the third embodiment described above in that the second electrode of the organic EL section 15 provided on the one surface 11a of the first substrate 11.
  • the wavelength conversion layer 20 is provided only at a position facing the red color filter 28 provided on one surface 23a of the second substrate 23, the blue color filter 16 and the green color filter 18
  • the light scattering layer 41 is provided on the sealing film 24 provided on the one surface 23a of the second substrate 23, and the blue color filter 16, the green color filter 18 and the red color filter 28 are provided.
  • the bank 51 is covered among the sealing films 24 provided on the one surface 23a of the second substrate 23 in that the low refractive index layer 30 is provided at positions facing each of the second substrate 23.
  • the first substrate 11 and the second substrate 23 are bonded via the adhesive layer 25 so that the portion comes into contact with the sealing film 24 provided for sealing the organic EL portion 15. .
  • FIG. 7 is a schematic sectional view showing a seventh embodiment of the organic EL display device.
  • the organic EL display device 90 of the present embodiment is different from the organic EL display device 50 of the third embodiment described above in that the organic EL unit 15 provided on the one surface 11a of the first substrate 11 is sealed.
  • a wavelength conversion layer 20 is provided on the sealing film 24 at a position facing the blue color filter 16, the green color filter 18, and the red color filter 28 provided on one surface 23 a of the second substrate 23.
  • a sealing film 24 is further provided so as to cover the wavelength conversion layer 20, a light scattering layer 41 is provided on the blue color filter 16 and the green color filter 18, and second Of the sealing film 24 provided on the one surface 23 a of the substrate 23, a portion covering the bank 51 is in contact with the sealing film 24 provided for sealing the wavelength conversion layer 20. Via an adhesive layer 25, the first substrate 11 and the second substrate 23 is that it is bonded.
  • FIG. 8 is a schematic sectional view showing an eighth embodiment of the organic EL display device.
  • the organic EL display device 100 of the present embodiment is different from the organic EL display device 50 of the third embodiment described above in that the organic EL unit 15 provided on the one surface 11a of the first substrate 11 is sealed.
  • the wavelength conversion layer 20 is provided only on the sealing film 24 at a position facing the red color filter 28 provided on the one surface 23a of the second substrate 23.
  • a point where a sealing film 24 is further provided so as to cover, a point where a light scattering layer 41 is provided on the blue color filter 16 and the green color filter 18, and provided on one surface 23 a of the second substrate 23.
  • the portion covering the bank 51 is in contact with the sealing film 24 provided for sealing the wavelength conversion layer 20 with the first adhesive layer 25 interposed therebetween.
  • Substrate 11 and second substrate 23 are in contact It is that it is.
  • FIG. 9 is a schematic sectional view showing a ninth embodiment of the organic EL display device. 9, the same components as those of the organic EL display device 50 shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 110 of this embodiment is different from the organic EL display device 50 of the third embodiment described above in that a TFT (driving element) 111 is formed on one surface 11a of the first substrate 11. It is a point. That is, the gate electrode 112 is formed on one surface 11 a of the first substrate 11, and the gate insulating film 113 is formed on the one surface 11 a of the first substrate 11 so as to cover the gate electrode 112.
  • An active layer (not shown) is formed on the gate insulating film 113, and the source electrode 114, the drain electrode 115, and the wiring 116 are formed on the active layer so as to cover the source electrode 114, the drain electrode 115, and the wiring 116.
  • a planarizing film 117 is formed on the surface. Note that the planarization film 117 may not have a single-layer structure, and may have a structure in which another interlayer insulating film and a planarization film are combined. Further, a contact hole 118 that reaches the drain electrode 115 through the planarizing film or the interlayer insulating film is formed, and the organic EL portion electrically connected to the drain electrode 115 through the contact hole 118 on the planarizing film 117. Fifteen first electrodes 12 are formed.
  • the organic EL display device 110 of the present embodiment is different from the organic EL display device 50 of the third embodiment described above in that it is between the blue color filter 16 and the wavelength conversion layer 20 and between the green color filter 18 and the wavelength. Between the conversion layer 20, the low refractive index layer is not provided, and between the sealing film 24 provided on the first substrate 11 side and the sealing film 24 provided on the second substrate 23 side. The filler 119 is filled, and the first substrate 11 and the second substrate 23 are bonded by the adhesive layer 25 through the filler 119. Furthermore, the organic EL display device 110 of the present embodiment is different from the organic EL display device 50 of the third embodiment described above in that the organic layer 14 of the organic EL unit 15 is an insulating layer in order from the first substrate 11 side.
  • FIG. 10 is a schematic cross-sectional view showing a tenth embodiment of the organic EL display device. 10, the same components as those of the organic EL display device 50 shown in FIG. 3 and the organic EL display device 110 shown in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 130 according to the present embodiment is different from the organic EL display device 110 according to the ninth embodiment described above in a position facing the red color filter 28 provided on one surface 23a of the second substrate 23.
  • the wavelength conversion layer 20 is provided only in the above.
  • FIG. 11 is a schematic sectional view showing an eleventh embodiment of an organic EL display device. 11, the same components as those of the organic EL display device 50 shown in FIG. 3 and the organic EL display device 110 shown in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 140 of the present embodiment is different from the organic EL display device 110 of the ninth embodiment described above in that a red color filter 28 and a green color filter provided on one surface 23a of the second substrate 23.
  • the wavelength conversion layer 20 is provided so as to cover the organic EL portion 15 provided on one surface 11a of the first substrate 11 at a position facing the 18 and the blue color filter 16, and the red color
  • the low refractive index layer 30 is provided on one surface 23 a of the second substrate 23 so as to cover the filter 28, the green color filter 18, and the blue color filter 16.
  • FIG. 12 is a schematic sectional view showing a twelfth embodiment of the organic EL display device. 12, the same components as those of the organic EL display device 50 shown in FIG. 3 and the organic EL display device 110 shown in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 150 according to the present embodiment is different from the organic EL display device 110 according to the ninth embodiment described above in that only the red color filter 28 provided on one surface 23a of the second substrate 23 is opposed.
  • the wavelength conversion layer 20 is provided so as to cover the organic EL portion 15 provided on the one surface 11a of the first substrate 11, and the red color filter 28, the green color filter 18, and the blue color
  • the low refractive index layer 30 is provided on one surface 23 a of the second substrate 23 so as to cover the color filter 16.
  • FIG. 13 is a block diagram showing a circuit configuration of the organic EL display device of the first to twelfth embodiments.
  • the organic EL display devices of the first to twelfth embodiments have an AD conversion circuit 201, an image processing circuit 202, a control circuit 203, a scanning line driving circuit 204, A line driving circuit 205 and a power supply circuit 206 are provided.
  • the pixel portion 207 of the liquid crystal cell includes a plurality of scanning lines 208, a plurality of signal lines 209, and a plurality of power supply lines 210.
  • each pixel corresponding to each scanning line 208, each signal line 209, and each power supply line 210 is provided with a switching transistor 211, a driving transistor 212, an organic EL element 213, and a capacitor 214.
  • the power supply circuit 206 that drives the organic EL element 213 sequentially selects the scanning line 208 of the pixel portion 207 by the scanning line driving circuit 204, and outputs a signal to each pixel arranged along the selected scanning line 208.
  • Pixel data is written by the line driver circuit 205. That is, the scanning line driving circuit 204 sequentially drives the scanning line 208, and the signal line driving circuit 205 outputs pixel data to the signal line 209, whereby the driven scanning line 208 and the signal line 209 from which data is output Pixels arranged at the intersecting positions are driven.
  • the power supply circuit 206 that drives the backlight unit supplies a constant voltage and current to light the backlight unit with a constant luminance while displaying an image. Furthermore, the power consumption can be reduced by controlling the brightness of the backlight unit in synchronization with the image.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, the ceiling light (illumination device) 220 shown in FIG.
  • a ceiling light 220 shown in FIG. 14 is an illuminating device including a light emitting unit 221, a hanging line 222, and a power cord 223.
  • the light emitting unit 221 includes any of the organic EL display devices of the first to twelfth embodiments described above.
  • the ceiling light 220 includes the organic EL display devices according to the first to twelfth embodiments described above as the light emitting unit 221, thereby providing a lighting device with excellent luminous efficiency.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, the illumination stand (illumination device) 230 shown in FIG.
  • An illumination stand 230 shown in FIG. 15 is an illumination device including a light emitting unit 231, a stand 232, a main switch 233, and a power cord 234.
  • the light emitting unit 231 includes any of the organic EL display devices of the first to twelfth embodiments described above.
  • the illumination stand 230 of the present embodiment is an illumination device with excellent luminous efficiency by including the organic EL display device of the first to twelfth embodiments as the light emitting unit 231.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to various electronic devices.
  • electronic devices including the organic EL display devices of the first to twelfth embodiments will be described with reference to FIGS.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, the mobile phone shown in FIG.
  • a cellular phone 240 illustrated in FIG. 16 includes a voice input unit 241, a voice output unit 242, an antenna 243, an operation switch 244, a display unit 245, a housing 246, and the like.
  • the organic EL display devices of the first to twelfth embodiments described above can be suitably applied.
  • the organic EL display devices of the above-described first to twelfth embodiments can be applied to, for example, a thin television shown in FIG.
  • a thin television 250 illustrated in FIG. 17 includes a display portion 251, a speaker 252, a cabinet 253, a stand 254, and the like.
  • the organic EL display devices of the first to twelfth embodiments described above can be suitably applied as the display unit 251.
  • an image can be displayed with good luminous efficiency.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, the portable game machine shown in FIG.
  • a portable game machine 260 illustrated in FIG. 18 includes operation buttons 261 and 262, an external connection terminal 263, a display portion 264, a housing 265, and the like.
  • the organic EL display devices of the first to twelfth embodiments described above can be suitably applied.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, a notebook computer shown in FIG.
  • a notebook computer 270 illustrated in FIG. 19 includes a display portion 271, a keyboard 272, a touch pad 273, a main switch 274, a camera 275, a recording medium slot 276, a housing 277, and the like.
  • the organic EL display devices of the first to twelfth embodiments described above can be suitably applied as the display unit 271.
  • an image can be displayed with good luminous efficiency.
  • the organic EL display devices of the first to twelfth embodiments described above can be applied to, for example, the tablet terminal shown in FIG.
  • a tablet terminal 280 illustrated in FIG. 20 includes a display unit (touch panel) 281, a camera 282, a housing 283, and the like.
  • the organic EL display devices of the first to twelfth embodiments described above can be suitably applied as the display unit 281.
  • Example 1 A glass substrate having a size of 25 mm ⁇ 25 mm square and a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. First, a black partition material (BK resist, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to one surface of a glass substrate by spin coating. Then, the glass substrate which apply
  • BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the coating film is covered with a mask capable of forming a desired image pattern (four 2 mm square openings provided as pixel areas), and i-line (100 mJ / cm 2 ) is applied to the coating film. Irradiated and exposed.
  • the coating film was developed using a sodium carbonate aqueous solution as a developing solution, and rinsed with pure water to obtain a light absorption layer (low reflection layer).
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent. Next, this positive resist was applied on one surface of the glass substrate by spin coating, and a light-reflective bank having a thickness of 2 ⁇ m was formed on the light absorption layer. Next, a red color filter having a film thickness of 1 ⁇ m, a green color filter, a blue color filter, and a color filter non-formed region were formed by patterning in the four regions partitioned by the bank.
  • polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a wavelength conversion layer.
  • a wavelength conversion layer forming coating solution was applied onto the color filter of the glass substrate by a spin coating method to form a wavelength conversion layer having a thickness of 2 ⁇ m. The above process was performed in dry air.
  • the substrate on which the wavelength conversion layer is formed is transferred to a glove box (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less) and heated at 80 ° C. for 1 hour. Was removed.
  • a gas barrier layer made of a SiON film having a thickness of 2 ⁇ m was formed on the wavelength conversion layer by sputtering.
  • a transparent electrode IZO (indium-zinc oxide) having a film thickness of 150 nm was patterned as a first electrode in the four regions partitioned by the bank by a mask vapor deposition method using a shadow mask.
  • a reflective electrode Al having a film thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) having a film thickness of 180 nm are stacked by sputtering, and corresponding to a green pixel by conventional photolithography. Patterned into shape.
  • the film thickness of the transparent electrode of the blue pixel and the green pixel it is possible to enhance the color purity by the interference (microcavity) effect between the reflective electrode and the semitransparent electrode.
  • the area of the first electrode was 180 ⁇ m ⁇ 540 ⁇ m.
  • a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
  • a photosensitive resin containing rutile-type titanium oxide is laminated to a thickness of 200 nm on the first electrode in the same manner as the bank material by a spin coating method, and then by a conventional photolithography method. The photosensitive resin was patterned so as to cover the edge portion of the first electrode.
  • an edge cover is formed as a structure covering the edge portion of the first electrode.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • a hole injection layer having a thickness of 20 nm is formed on the first electrode by resistance heating vapor deposition using 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) as a hole injection material. Formed.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer having a thickness of 0.5 nm was formed on the electron transport layer using lithium fluoride (LiF).
  • a second electrode having a thickness of 100 nm was formed on the electron injection layer.
  • the second electrode was formed by co-evaporation of magnesium and silver at a rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec by vacuum evaporation.
  • the glass substrate on which the respective portions were formed and the sealing substrate were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • an ultraviolet curable adhesive (trade name: 30Y-437, manufactured by ThreeBond Co., Ltd.) in which a spacer of 20 ⁇ m is dispersed is applied to the outer peripheral portion of the sealing substrate using a dispenser. did. Further, a desiccant was pasted on the sealing substrate inside the outer peripheral sealing material.
  • the glass substrate on which each of the above parts is formed and the sealing substrate are bonded together, and the outer peripheral sealing material is irradiated with ultraviolet rays using a UV lamp to cure the outer peripheral sealing material. A stop layer was formed.
  • Example 1 a portion of the first electrode and the second electrode that protrudes from the sealing substrate was wired and connected to an external power source to obtain the organic EL display device of Example 1.
  • the light emission characteristics of the organic EL display device were evaluated by applying a desired current to each pixel from an external power source. The results are shown in Table 1.
  • Example 2 An organic EL display device of Example 2 was produced in the same manner as Example 1 except that FIrtaz was used as the organic light emitting material for forming the organic light emitting layer. Further, in the same manner as in Example 1, the light emission characteristics of the organic EL display device of Example 2 were evaluated. The results are shown in Table 1.
  • Example 3 An organic EL display device of Example 3 was produced in the same manner as Example 1 except that FIrN4 was used as the organic light emitting material for forming the organic light emitting layer. Further, the light emission characteristics of the organic EL display device of Example 3 were evaluated in the same manner as Example 1. The results are shown in Table 1.
  • Example 4 An organic EL display device of Example 4 was produced in the same manner as in Example 1 except that Fir6 was used as the organic light emitting material for forming the organic light emitting layer. Further, in the same manner as in Example 1, the light emission characteristics of the organic EL display device of Example 4 were evaluated. The results are shown in Table 1.
  • Example 5 An organic EL display device of Example 5 was produced in the same manner as Example 1 except that Ir (F4ppy) 3 was used as the organic light emitting material for forming the organic light emitting layer. Further, in the same manner as in Example 1, the light emission characteristics of the organic EL display device of Example 5 were evaluated. The results are shown in Table 1.
  • Comparative Example 2 An organic EL display device of Comparative Example 2 was produced in the same manner as Example 1 except that Ir (dfpypy) 3 was used as the organic light emitting material for forming the organic light emitting layer. Further, in the same manner as in Example 1, the light emission characteristics of the organic EL display device of Comparative Example 2 were evaluated. The results are shown in Table 1.
  • Example 6 An organic EL display device of Example 6 was produced in the same manner as in Example 1 except that the organic EL layer had the following tandem structure. Further, the light emission characteristics of the organic EL display device of Example 6 were evaluated in the same manner as Example 1. The results are shown in Table 1. Using N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) as a hole transport material Then, a 20 nm-thick hole transport layer was formed by resistance heating vapor deposition. Next, a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • NPD N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and (dfbmb) 2 Ir (fptz) (blue phosphorescent light-emitting dopant) are deposited at different deposition rates.
  • the blue organic light emitting layer was formed by co-evaporation at 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation.
  • This electron transport layer was formed.
  • dipyrazino [2,3-f: 2 ′, 3′-h] quinosaline-2,3,6,7,10,11-hexacarbonitrile (HAT— CN) was used to form a 20 nm thick hole injection layer by resistance heating vapor deposition.
  • N N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4
  • a hole transport layer having a thickness of 20 nm was formed by resistance heating vapor deposition using 4′-diamine (NPD).
  • NPD 4′-diamine
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 4,4′-N, N′-dicarbazole-biphenyl (CBP) (host material) and Ir (ppy) 3 (green light emitting dopant) are deposited at a rate of 1.5% by vacuum deposition.
  • the blue organic light emitting layer was formed by co-evaporation at / sec and 0.2 liter / sec.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation. This electron transport layer was formed.
  • Example 7 A glass substrate having a size of 100 ⁇ 100 mm square and a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. First, a black partition material (BK resist, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to one surface of a glass substrate by spin coating. Then, the glass substrate which apply
  • BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the coating film was covered with a mask (pixel pitch 200 ⁇ m, line width 20 ⁇ m) capable of forming a desired image pattern, and the coating film was irradiated with i-line (100 mJ / cm 2 ) and exposed.
  • the coating film was developed using a sodium carbonate aqueous solution as a developing solution, and rinsed with pure water to obtain a light absorption layer (low reflection layer).
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent. Next, this positive resist is applied on one surface of the glass substrate by spin coating, a pattern is formed with a pixel pitch of 200 ⁇ m and a line width of 20 ⁇ m, and light having a thickness of 5 ⁇ m is formed on the light absorption layer. A reflective bank was formed.
  • a red color filter, a green color filter, and a blue color filter having a film thickness of 1 ⁇ m were formed by patterning in an area defined by the bank by a conventional method.
  • a blue light scattering layer was formed on the blue pixel, and a green light scattering layer was formed on the green pixel.
  • the coating solution for forming the light scattering layer was applied to the region where the low reflection layer on the glass substrate was not formed by screen printing. Then, it heat-dried on 200 degreeC and 10 mmHg conditions for 4 hours with the vacuum oven, and formed the light-scattering layer.
  • polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a wavelength conversion layer.
  • a wavelength conversion layer forming coating solution was applied onto the color filter of the glass substrate by a spin coating method to form a wavelength conversion layer having a thickness of 2 ⁇ m.
  • a portion corresponding to the blue pixel and the green pixel transmits light, and a portion corresponding to the red pixel is shielded with a glass substrate with respect to the wavelength conversion layer.
  • Ultra-high pressure UV lamp was irradiated from the opposite side. Thereby, in the blue pixel and the green pixel, the absorption in the blue region and the green region of the wavelength conversion layer was reduced, the red wavelength conversion function was lowered, and the red light emission was denatured into the non-light emission.
  • the light emitted from the organic EL part can be efficiently transmitted as it is, and the decrease in color purity due to the color mixture of the red component light emission can be prevented.
  • the above process was performed in dry air.
  • the substrate on which the wavelength conversion layer is formed is transferred to a glove box (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less) and heated at 80 ° C. for 1 hour. Was removed.
  • a gas barrier layer made of a SiON film having a thickness of 2 ⁇ m was formed on the wavelength conversion layer by sputtering.
  • a 100 ⁇ 100 mm square glass substrate having a thickness of 0.7 mm was used as the substrate, and an amorphous silicon semiconductor film was formed on the glass substrate by PECVD. Next, the amorphous silicon semiconductor film was crystallized to form a polycrystalline silicon semiconductor film. Next, a polycrystalline silicon semiconductor film was patterned into a plurality of islands by photolithography. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and pattern formation was performed by a photolithography method. Thereafter, the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was fabricated.
  • an impurity element such as phosphorus
  • planarizing film As the planarizing film, a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were collectively etched to form a contact hole that leads to the source or drain region, and then a source wiring was formed. Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, thereby obtaining an active matrix substrate. The function as a planarizing film is realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
  • the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
  • the first electrode is formed by stacking a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by sputtering, and has a shape corresponding to a blue pixel and a red pixel. Then, pattern formation was performed by a conventional photolithography method.
  • a conventional photolithography method is used to form a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a film thickness of 180 nm by sputtering to form a shape corresponding to a green pixel.
  • pattern formation was performed.
  • the film thickness of the transparent electrode of the blue pixel and the green pixel it is possible to enhance the color purity by the interference (microcavity) effect between the reflective electrode and the semitransparent electrode.
  • the area of the first electrode was 180 ⁇ m ⁇ 540 ⁇ m.
  • a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
  • a photosensitive resin containing rutile-type titanium oxide is laminated to a thickness of 200 nm on the first electrode in the same manner as the bank material by a spin coating method, and then by a conventional photolithography method.
  • the photosensitive resin was patterned so as to cover the edge portion of the first electrode.
  • the edge cover is formed as a structure that covers four sides by 10 ⁇ m from the end of the first electrode.
  • the active substrate was cleaned.
  • the cleaning of the active substrate for example, using acetone, isopropyl alcohol (IPA) or the like, ultrasonic cleaning was performed for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • a hole injection material using dipyrazino [2,3-f: 2 ′, 3′-h] quinosaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN), A hole injection layer having a thickness of 20 nm was formed on the first electrode by resistance heating vapor deposition.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation.
  • This electron transport layer was formed.
  • dipyrazino [2,3-f: 2 ′, 3′-h] quinosaline-2,3,6,7,10,11-hexacarbonitrile (HAT— CN) was used to form a 20 nm thick hole injection layer by resistance heating vapor deposition.
  • N N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4
  • a hole transport layer having a thickness of 20 nm was formed by resistance heating vapor deposition using 4′-diamine (NPD).
  • NPD 4′-diamine
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation. This electron transport layer was formed.
  • a second electrode having a thickness of 100 nm was formed on the electron transport layer.
  • a glass substrate on which each of the above parts was formed was fixed in a film forming chamber of an ion beam sputtering apparatus.
  • the film formation conditions plasma beam power: 4.0 kW, the beam cross-sectional area SB2: 12.56cm 2, the beam energy density: 319W / cm 2, NarumakumakuAtsu: 200 nm, Ar: 20 sccm and O 2 : 10 sccm are introduced as film forming gases
  • source material sintered body of IZO (ZnO 2 is 10 mass%)
  • source density relative density of 99% or more
  • the true density of this material is In since the true density true density of 7.18g / cm 3, SnO 2 of 2 O 3 is 6.95 g / cm 3, a 7.156g / cm 3.) in forming the second electrode (transparent electrode) did.
  • an active drive type organic EL substrate was produced.
  • the active drive type organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • an ultraviolet curable adhesive (trade name: 30Y-437, manufactured by ThreeBond Co., Ltd.) in which a spacer of 20 ⁇ m was dispersed was applied to the outer peripheral portion of the wavelength conversion substrate using a dispenser to obtain an outer peripheral sealing material.
  • a transparent silicone resin (trade name: TSE3051, manufactured by Toshiba Silicone) was applied as a filler to the outer peripheral sealing material using a dispenser.
  • the active drive type organic EL substrate and the wavelength conversion substrate were transferred into a vacuum chamber, and the pressure in the vacuum chamber was reduced to 1 Pa. Then, while performing primary alignment using an alignment marker, the active drive type organic EL substrate and the wavelength conversion substrate were temporarily bonded and fixed.
  • the temporarily bonded active drive type organic EL substrate and the wavelength conversion substrate were transferred to a glove box, and secondary alignment was performed using a CCD.
  • the outer peripheral sealing material was irradiated with ultraviolet rays using a UV lamp, and the outer peripheral sealing material was cured to form an outer peripheral sealing layer.
  • a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and an 80 ⁇ 80 mm square display unit is provided.
  • An active drive organic EL display device was obtained.
  • the light emission characteristics of the active drive organic EL display device were evaluated by applying a desired current to each pixel from an external power source.
  • the blue-green phosphorescent organic EL part is used as an arbitrarily switchable excitation light source, and blue light is emitted from the blue-green phosphorescent organic EL part by the microcavity effect in the red fluorescence wavelength conversion layer.
  • the color purity can be improved by converting the red light into red light and transmitting the red light through the red color filter.
  • blue light emission from the blue-green phosphorescent organic EL part is converted from blue light to green light by the microcavity effect, and further, the green light is transmitted through the green color filter to improve color purity. I was able to.
  • the blue pixel it was possible to improve the color purity by transmitting the blue light emitted from the blue-green phosphorescent organic EL part, the blue light emitted by the microcavity effect, and the blue color filter.
  • the light scattering layer allows isotropic light emission with directivity due to the microcavity effect, enabling full color display, wide color reproduction range (NTSC ratio: 90%), field of view. An image with good angular characteristics could be obtained.
  • Example 8 An active drive organic EL display device was produced in the same manner as in Example 7 except that the wavelength conversion layer was formed on the red pixel by the transfer method.
  • a 200 nm thick heat conversion layer made of chromium was formed on a glass substrate by a sputtering method to obtain a transfer substrate.
  • the wavelength conversion layer forming coating solution used in Example 1 is applied onto the transfer substrate by spin coating to form a wavelength conversion layer having a thickness of 5 ⁇ m.
  • a substrate was produced.
  • the transfer substrate for forming the wavelength conversion layer was disposed on the substrate on which the color filter was formed, and the red wavelength conversion layer was transferred and formed on a predetermined red pixel by a diode laser.
  • the organic EL display device thus produced can also display full color, and can obtain an image with a wide color reproduction range (NTSC ratio: 90%) and a good viewing angle characteristic.
  • Example 9 As the substrate, a 100 mm ⁇ 100 mm square, 0.7 mm thick glass substrate was used. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. First, a black partition material (BK resist, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to one surface of a glass substrate by spin coating. Then, the glass substrate which apply
  • BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the coating film was covered with a mask (pixel pitch 200 ⁇ m, line width 20 ⁇ m) capable of forming a desired image pattern, and the coating film was irradiated with i-line (100 mJ / cm 2 ) and exposed.
  • the coating film was developed using a sodium carbonate aqueous solution as a developing solution, and rinsed with pure water to obtain a light absorption layer (low reflection layer).
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent. Next, this positive resist is applied on one surface of the glass substrate by spin coating, a pattern is formed with a pixel pitch of 200 ⁇ m and a line width of 20 ⁇ m, and light having a thickness of 5 ⁇ m is formed on the light absorption layer. A reflective bank was formed.
  • a red color filter, a green color filter, and a blue color filter having a film thickness of 1 ⁇ m were formed by patterning in an area partitioned by the bank by a conventional method.
  • the glass substrate on which each of the color filters is formed is transferred to a glove box (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less) and heated at 80 ° C. for 1 hour. Water and oxygen were removed.
  • a gas barrier layer made of a SiON film having a thickness of 2 ⁇ m was formed on each color filter by a sputtering method to obtain a color filter substrate.
  • a glass substrate having a size of 100 mm ⁇ 100 mm square and a thickness of 0.7 mm was used as a substrate, and an amorphous silicon semiconductor film was formed on the glass substrate by PECVD. Next, the amorphous silicon semiconductor film was crystallized to form a polycrystalline silicon semiconductor film. Next, a polycrystalline silicon semiconductor film was patterned into a plurality of islands by photolithography. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and pattern formation was performed by a photolithography method. Thereafter, the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was fabricated.
  • an impurity element such as phosphorus
  • planarizing film As the planarizing film, a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were collectively etched to form a contact hole that leads to the source or drain region, and then a source wiring was formed. Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, thereby obtaining an active matrix substrate. The function as a planarizing film is realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
  • the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
  • the first electrode is formed by laminating a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by sputtering, and has a shape corresponding to a blue pixel. Pattern formation was performed by photolithography.
  • the reflection electrode Al (aluminum) is formed by laminating 150 nm and the transparent electrode IZO (indium oxide-zinc oxide) with a film thickness of 180 nm by sputtering, and the shape corresponding to the green pixel and the red pixel is formed. Pattern formation was performed by photolithography. Thereby, by changing the film thickness of the transparent electrode of the blue pixel and the green pixel, it is possible to enhance the color purity by the interference (microcavity) effect between the reflective electrode and the semitransparent electrode.
  • the area of the first electrode was 180 ⁇ m ⁇ 540 ⁇ m.
  • a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
  • a photosensitive resin containing rutile-type titanium oxide is laminated to a thickness of 200 nm on the first electrode in the same manner as the bank material by a spin coating method, and then by a conventional photolithography method.
  • the photosensitive resin was patterned so as to cover the edge portion of the first electrode.
  • the edge cover is formed as a structure that covers four sides by 10 ⁇ m from the end of the first electrode.
  • the active substrate was cleaned.
  • the cleaning of the active substrate for example, using acetone, isopropyl alcohol (IPA) or the like, ultrasonic cleaning was performed for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • a hole injection material using dipyrazino [2,3-f: 2 ′, 3′-h] quinosaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN), A hole injection layer having a thickness of 20 nm was formed on the first electrode by resistance heating vapor deposition.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition. Next, a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-depositing (III) (FIrpic) (blue phosphorescent light-emitting dopant) at 1.5 ⁇ ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation.
  • This electron transport layer was formed.
  • dipyrazino [2,3-f: 2 ′, 3′-h] quinosaline-2,3,6,7,10,11-hexacarbonitrile (HAT— CN) was used to form a 20 nm thick hole injection layer by resistance heating vapor deposition.
  • N N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4
  • a hole transport layer having a thickness of 20 nm was formed by resistance heating vapor deposition using 4′-diamine (NPD).
  • NPD 4′-diamine
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li).
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) and lithium (Li) are vapor-deposited at a rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec by vacuum evaporation. This electron transport layer was formed.
  • a second electrode having a thickness of 100 nm was formed on the electron transport layer.
  • a glass substrate on which each of the above parts was formed was fixed in a film forming chamber of an ion beam sputtering apparatus.
  • the film formation conditions plasma beam power: 4.0 kW, the beam cross-sectional area SB2: 12.56cm 2, the beam energy density: 319W / cm 2, NarumakumakuAtsu: 200 nm, Ar: 20 sccm and O 2 : 10 sccm are introduced as film forming gases
  • source material sintered body of IZO (ZnO 2 is 10 mass%)
  • source density relative density of 99% or more
  • the true density of this material is In since the true density true density of 7.18g / cm 3, SnO 2 of 2 O 3 is 6.95 g / cm 3, a 7.156g / cm 3.) in forming the second electrode (transparent electrode) did.
  • a portion corresponding to the blue pixel and the green pixel transmits light, and a portion corresponding to the red pixel is shielded with a glass substrate with respect to the wavelength conversion layer.
  • Ultra-high pressure UV lamp was irradiated from the opposite side.
  • the absorption in the blue region and the green region of the wavelength conversion layer is reduced, the red wavelength conversion function is lowered, and the red light emission is denatured into the non-light emission.
  • the light emitted from the organic EL part can be efficiently transmitted as it is, and the decrease in color purity due to the color mixture of the red component light emission can be prevented.
  • an active drive type organic EL substrate was produced.
  • the active drive type organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • the active drive type organic EL substrate and the wavelength conversion substrate were aligned using an alignment marker formed outside the display unit.
  • a thermosetting resin is applied in advance to the outer periphery of the active drive organic EL substrate, and both substrates are brought into close contact with each other through the thermosetting resin and heated at 90 ° C. for 2 hours. The thermosetting resin was cured.
  • the bonding step was performed in a dry air environment (water content: ⁇ 60 ° C.) in order to prevent deterioration of the organic layer due to water.
  • a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and the display unit has an 80 mm ⁇ 80 mm square.
  • An active drive organic EL display device was obtained.
  • the light emission characteristics of the active drive organic EL display device were evaluated by applying a desired current to each pixel from an external power source.
  • the blue-green phosphorescent organic EL part is used as an excitation light source that can be arbitrarily switched, and the green light emitted from the blue-green phosphorescent organic EL part is converted into green light by the microcavity effect in the red fluorescent wavelength conversion layer.
  • the color purity can be improved by converting the red light into red light and transmitting the red light through the red color filter.
  • the blue pixel In the blue pixel, the blue light emission from the blue-green phosphorescent organic EL part, the blue light due to the microcavity effect, and the blue color filter were further transmitted to improve the color purity.
  • the light scattering layer allows isotropic light emission with directivity due to the microcavity effect, enabling full color display, wide color reproduction range (NTSC ratio: 90%), field of view. An image with good angular characteristics could be obtained.
  • Example 10 An active drive organic EL display device was produced in the same manner as in Example 9 except that the wavelength conversion layer was formed on the red pixel by the transfer method.
  • the wavelength conversion layer first, a 200 nm thick heat conversion layer made of chromium was formed on a glass substrate by a sputtering method to obtain a transfer substrate.
  • coumarin 6 and 4- (dicyanomethylene) -2-tertiarybutyl-6- (1,1,7,7, -tetramethyljunolidine (DCJTB) are deposited on the transfer substrate by resistance heating vapor deposition.
  • the organic EL display device thus produced can also display full color, and an image having a wide color reproduction range (NTSC ratio: 92%) and a good viewing angle characteristic can be obtained.
  • the present invention can be applied to an organic EL display device.
  • Organic EL display apparatus 11 1st board

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

 有機EL表示装置は、第一電極と第二電極の間に、有機発光層を少なくとも有する有機層が挟持されてなる有機EL部と、有機EL部からの発光のうち、青色の波長域の光を主に透過する青色カラーフィルターを有する青色画素部と、有機EL部からの発光のうち、緑色の波長域の光を主に透過する緑色カラーフィルターを有する緑色画素部と、有機EL部からの発光のうち、青色の波長域の光および緑色の波長域の光の少なくとも一方を吸収し、赤色の波長域の光を発光する波長変換層有する赤色画素部と、を備える。

Description

有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
 本発明は、有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法に関する。
 本願は、2011年11月18日に、日本に出願された特願2011-252734号に基づき優先権を主張し、その内容をここに援用する。
有機エレクトロルミネセンス(以下「有機EL」又は「有機LED」とも言う。)ディスプレイは、自発光の点で高画質な映像が得られることから、注目されている。また、有機ELディスプレイは、液晶ディスプレイとは異なり、高精細化に伴う開口率の減少による消費電力の上昇がないことから、今後、さらなる高精細化が加速するスマートフォン、タブレット端末の分野で、注目されている。
カラー表示可能な有機ELディスプレイを実現するためには、青色、緑色、赤色の光の三原色を発光する画素を作製する必要がある。有機ELディスプレイの場合、一般的に、シャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の画素が形成されている。
この従来の画素の形成方法は、マスクの加工精度、マスクのアライメント精度、マスクの大型化などの課題があるだけでなく、マスクの撓みや、熱変形による混色の問題があった。
そのため、有機発光層の塗り分けを行うことなく、カラー表示可能な方法として、白色発光有機ELとカラーフィルターを組み合わせる方法が知られている。
しかしながら、この方法では、カラーフィルターのパターニングだけでカラー表示が可能となるため、高精細化が容易であるものの、白色光を赤色、緑色、青色の発光成分にカラーフィルターで分けるため、消費電力が高くなるという問題があった。
製造が容易で、かつ、高精細化が可能な有機ELディスプレイとしては、青緑色発光の有機ELと、その有機ELからの発光を赤色に変換する波長変換層とを組み合わせたものが知られている(例えば、特許文献1参照)。
国際公開2010/084587号パンフレット
しかしながら、青緑色発光の有機ELと、その有機ELからの発光を赤色に変換する波長変換層とを組み合わせた有機ELディスプレイでは、有機ELからの発光をカラーフィルターにより青色画素と、緑色画素とに分けるため、青色画素と緑色画素のそれぞれにおいて、色純度と輝度がトレードオフの関係にある。したがって、この有機ELディスプレイでは、高色再現範囲で、かつ、低消費電力を実現することが難しかった。
本発明は、上記の事情に鑑みてなされたものであり、フルカラー表示が可能で、広色再現範囲および視野角特性に優れ、低コストで高精細化可能な有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法を提供することを目的とする。
本発明の有機エレクトロルミネッセンス表示装置は、第一電極と第二電極の間に、2つの発光成分を有する有機発光層を少なくとも有する有機層が挟持されてなる有機エレクトロルミネッセンス部と、前記有機エレクトロルミネッセンス部からの発光のうち、青色の波長域の光を主に透過する青色カラーフィルターを有する青色画素部と、前記有機エレクトロルミネッセンス部からの発光のうち、緑色の波長域の光を主に透過する緑色カラーフィルターを有する緑色画素部と、前記有機エレクトロルミネッセンス部からの発光のうち、青色の波長域の光および緑色の波長域の光の少なくとも一方を吸収し、赤色の波長域の光を発光する波長変換層を有する赤色画素部と、を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置において、さらに第一基板を有し、前記第一基板上に、前記有機エレクトロルミネッセンス部が設けられ、前記第一基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、さらに第一基板と第二基板を有し、前記第一基板と第二基板の間に、前記有機エレクトロルミネッセンス部が設けられ、前記第一基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、さらに第一基板と第二基板を有し、前記第一基板と第二基板の間に、前記有機エレクトロルミネッセンス部が設けられ、前記第二基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記赤色画素部は、さらに、赤色の波長域の光を主に透過する赤色カラーフィルターを有していてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機発光層に含まれる2つの発光成分のうち、第一成分のピーク波長の位置が450nm~480nm、第二成分のピーク波長の位置が480nm~530nmであることが好ましい。
本発明の有機エレクトロルミネッセンス表示装置において、前記第一成分と前記第二成分のピーク波長の差が、20nm~80nmであることが好ましい。
本発明の有機エレクトロルミネッセンス表示装置において、前記第一成分と前記第二成分のピーク強度比が、7:3~5:5であることが好ましい。
本発明の有機エレクトロルミネッセンス表示装置において、前記波長変換層は、表示領域に亘って展開する連続膜であってもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機エレクトロルミネッセンス部はタンデム構造をなし、かつ、前記第一電極または前記第二電極の一方は反射性の電極であり、前記第一電極または前記第二電極の他方は光透過性の電極であってもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機エレクトロルミネッセンス部のタンデム構造は、前記有機発光層として、青緑色の波長域の光を発光する有機発光層を有していてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機エレクトロルミネッセンス部のタンデム構造は、前記有機発光層として、前記第一成分を含有する第一有機層を有する第一有機エレクトロルミネッセンス部と、前記有機発光層として、前記第二成分を含有する第二有機層を有する第二有機エレクトロルミネッセンス部と、を有していてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機エレクトロルミネッセンス部の各画素間に対応した位置に、少なくとも前記有機エレクトロルミネッセンス部からの発光を反射または散乱する隔壁が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、少なくとも前記赤色画素部の周辺に、前記波長変換層からの発光および前記有機エレクトロルミネッセンス部からの発光の少なくとも一方を反射または散乱する隔壁が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、少なくとも光取出し側に配置された基板と前記波長変換層の間に、前記光取出し側に配置された基板の屈折率よりも低い屈折率を有する低屈折率層が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記青色画素部および前記緑色画素部の少なくとも一方は、配光変換層を有していてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記青色画素部および前記緑色画素部の少なくとも一方に設けられた配光変換層の画素間に、前記有機エレクトロルミネッセンス部からの発光および/または前記有機エレクトロルミネッセンス部からの発光の散乱光を反射または散乱する隔壁が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、光取出し側に配置された基板と前記有機エレクトロルミネッセンス部の間に、前記光取出し側に配置された基板の屈折率よりも低い屈折率を有する低屈折率層が設けられていてもよい。
本発明の有機エレクトロルミネッセンス表示装置において、前記有機エレクトロルミネッセンス部を駆動するアクティブ素子をさらに備えていてもよい。
本発明の電子機器は、本発明の有機エレクトロルミネッセンス表示装置を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置の製造方法は、第一基板上の青色画素部に青色カラーフィルターを形成するとともに、前記第一基板上の緑色画素部に緑色カラーフィルターを形成する工程と、前記青色カラーフィルターおよび前記緑色カラーフィルター上と、前記第一基板上の赤色画素部とに、波長変換材料を含む波長変換層を形成する工程と、前記波長変換材料が吸収する光を用いて、前記青色カラーフィルターおよび前記緑色カラーフィルター上に形成した前記波長変換層を露光する工程と、前記波長変換層上に、第一電極、2つの発光成分を含む有機発光層を少なくとも有する有機層、および、第二電極をこの順に備えた有機エレクトロルミネッセンス部を形成する工程と、前記第一基板の外周部に、環状の外周封止剤を塗布する工程と、水分および酸素濃度を管理した環境下、前記第一基板と前記第二基板の一次アラインメントを行うとともに、前記第一基板と前記第二基板を貼り合わせて集成体を形成する工程と、前記集成体を、水分および酸素濃度を管理した大気圧の環境に取り出す工程と、前記水分および酸素濃度を管理した大気圧の環境下、前記集成体に紫外線を照射して前記外周封止剤を硬化させる工程と、を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置の製造方法は、第一基板上に、第一電極、2つの発光成分を含む有機発光層を少なくとも有する有機層、および、第二電極をこの順に備えた有機エレクトロルミネッセンス部を形成する工程と、第二基板上の青色画素部に青色カラーフィルターを形成するとともに、前記第二基板上の緑色画素部に緑色カラーフィルターを形成する工程と、前記青色カラーフィルターおよび前記緑色カラーフィルター上と、前記第二基板上の赤色画素部とに、波長変換材料を含む波長変換層を形成する工程と、前記波長変換材料が吸収する光を用いて、前記青色カラーフィルターおよび前記緑色カラーフィルター上に形成した前記波長変換層を露光する工程と、前記有機エレクトロルミネッセンス部が形成された前記第一基板と、前記波長変換層が形成された前記第二基板とを、水分および酸素濃度を管理した環境下に配置する工程と、前記第二基板における、前記波長変換層の外周部に、環状の外周封止剤を塗布する工程と、水分および酸素濃度を管理した環境下、前記第一基板と前記第二基板の一次アラインメントを行うとともに、前記第一基板と前記第二基板を貼り合わせて集成体を形成する工程と、前記集成体を、水分および酸素濃度を管理した大気圧の環境に取り出す工程と、前記水分および酸素濃度を管理した大気圧の環境下、前記集成体に紫外線を照射して前記外周封止剤を硬化させる工程と、を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置の製造方法は、第一基板上の青色画素部に青色カラーフィルターを形成するとともに、前記第一基板上の緑色画素部に緑色カラーフィルターを形成する工程と、前記青色カラーフィルターおよび前記緑色カラーフィルター上と、前記第一基板上の赤色画素部とに、転写法により、波長変換材料を含む波長変換層を形成する工程と、前記波長変換層上に、第一電極、2つの発光成分を含む有機発光層を少なくとも有する有機層、および、第二電極をこの順に備えた有機エレクトロルミネッセンス部を形成する工程と、前記第一基板の外周部に、環状の外周封止剤を塗布する工程と、水分および酸素濃度を管理した環境下、前記第一基板と前記第二基板の一次アラインメントを行うとともに、前記第一基板と前記第二基板を貼り合わせて集成体を形成する工程と、前記集成体を、水分および酸素濃度を管理した大気圧の環境に取り出す工程と、前記水分および酸素濃度を管理した大気圧の環境下、前記集成体に紫外線を照射して前記外周封止剤を硬化させる工程と、を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置の製造方法は、第一基板上に、第一電極、2つの発光成分を含む有機発光層を少なくとも有する有機層、および、第二電極をこの順に備えた有機エレクトロルミネッセンス部を形成する工程と、第二基板上の青色画素部に青色カラーフィルターを形成するとともに、前記第二基板上の緑色画素部に緑色カラーフィルターを形成する工程と、前記青色カラーフィルターおよび前記緑色カラーフィルター上と、前記第二基板上の赤色画素部とに、転写法により、波長変換材料を含む波長変換層を形成する工程と、前記有機エレクトロルミネッセンス部が形成された前記第一基板と、前記波長変換層が形成された前記第二基板とを、水分および酸素濃度を管理した環境下に配置する工程と、前記第二基板における、前記波長変換層の外周部に、環状の外周封止剤を塗布する工程と、水分および酸素濃度を管理した環境下、前記第一基板と前記第二基板の一次アラインメントを行うとともに、前記第一基板と前記第二基板を貼り合わせて集成体を形成する工程と、前記集成体を、水分および酸素濃度を管理した大気圧の環境に取り出す工程と、前記水分および酸素濃度を管理した大気圧の環境下、前記集成体に紫外線を照射して前記外周封止剤を硬化させる工程と、を備えたことを特徴とする。
本発明の有機エレクトロルミネッセンス表示装置の製造方法において、前記外周封止剤の内部に、充填剤を塗布する工程と、前記第一基板と前記第二基板、または、前記第二基板を真空チャンバ内に移送し、該真空チャンバ内を減圧する工程を備えていてもよい。
本発明によれば、フルカラー表示が可能で、広色再現範囲および視野角特性に優れ、低コストで高精細化可能な有機EL表示装置、および、それを用いた電子機器を提供することができる。
有機EL表示装置の第一実施形態を示す概略断面図である。 有機EL表示装置の第二実施形態を示す概略断面図である。 有機EL表示装置の第三実施形態を示す概略断面図である。 有機EL表示装置の第四実施形態を示す概略断面図である。 有機EL表示装置の第五実施形態を示す概略断面図である。 有機EL表示装置の第六実施形態を示す概略断面図である。 有機EL表示装置の第七実施形態を示す概略断面図である。 有機EL表示装置の第八実施形態を示す概略断面図である。 有機EL表示装置の第九実施形態を示す概略断面図である。 有機EL表示装置の第十実施形態を示す概略断面図である。 有機EL表示装置の第十一実施形態を示す概略断面図である。 有機EL表示装置の第十二実施形態を示す概略断面図である。 第一~第十二実施形態の有機EL表示装置の回路構成を示すブロック図である。 第一~第十二実施形態の有機EL表示装置の一適用例であるシーリングライトを示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例である照明スタンドを示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例である携帯電話を示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例である薄型テレビを示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例である携帯型ゲーム機を示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例であるノートパソコンを示す外観図である。 第一~第十二実施形態の有機EL表示装置の一適用例であるタブレット端末を示す外観図である。
以下、図面を参照して、本発明に係る有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法の実施形態について説明する。
なお、以下に示す実施形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
また、以下の説明で用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
(1)第一実施形態
図1は、有機エレクトロルミネッセンス表示装置(以下、「有機EL表示装置」と言う。)の第一実施形態を示す概略断面図である。
有機EL表示装置10は、第一基板11と、第一基板11の一方の面11a上に設けられ、第一電極12と第二電極13の間に、有機層14が挟持されてなる有機エレクトロルミネッセンス部(以下、「有機EL部」と言う。)15と、青色カラーフィルター16を有する青色画素部17と、緑色カラーフィルター18を有する緑色画素部19と、波長変換材料を含む波長変換層20を有する赤色画素部21と、第一基板11の一方の面11a上に設けられ、有機EL部15の側面を囲み、画素を区画するエッジカバー(隔壁)22と、エッジカバー22を介して有機EL部15と対向配置された第二基板(封止基板)23とから概略構成されている。
第一基板11の一方の面11a上に設けられた有機EL部15を封止する封止膜24が設けられている。
また、第一基板11の一方の面11a上に設けられた封止膜24を覆うように接着層25が設けられ、この接着層25を介して、第一基板11と第二基板23が接着されている。
また、青色画素部17は波長変換材料を含む波長変換層26を有し、緑色画素部19は波長変換材料を含む波長変換層27を有している。
赤色画素部21は、赤色カラーフィルター28を有している。
また、青色カラーフィルター16と緑色カラーフィルター18との間、緑色カラーフィルター18と赤色カラーフィルター28との間、および、赤色カラーフィルター28と青色カラーフィルター16との間には、光吸収層(低反射層)29が設けられている。
さらに、青色カラーフィルター16と波長変換層26の間、緑色カラーフィルター18と波長変換層27の間、および、赤色カラーフィルター28と波長変換層20との間に、第一基板11の屈折率よりも低い屈折率を有する低屈折率層30が設けられている。
第一電極12は、第一基板11の一方の面11a側に設けられ、反射電極31と、反射電極31上に設けられた透明電極32とから構成されている。
有機層14は、第一電極12側から第二電極13側に向かって順に積層された、正孔注入層33、正孔輸送層34、有機発光層35、電子輸送層36および電子注入層37から構成されている。
さらに、第一基板11の他方の面11bには、偏光板38が積層されている。
有機EL表示装置10では、有機EL部15からの青緑色の波長域の発光を励起光源とし、青色画素部17においては、有機EL部15からの青緑色の波長域の発光を直接使用し、その青緑色の波長域の発光を、青色の波長域の光を主に透過する青色カラーフィルター16を通すことによって、青色の発光を実現している。また、緑色画素部19においては、有機EL部15からの青緑色の波長域の発光を、緑色の波長域の光を主に透過する緑色カラーフィルター18を通すことによって、緑色の発光を実現している。さらに、赤色画素部21においては、有機EL部15からの青色の波長域の光および緑色の波長域の光の少なくとも一方を吸収し、赤色の波長域の光を発光する波長変換層20を通すことによって、赤色の発光を実現している。
このように、各画素部における三原色の発光を実現することにより、有機EL表示装置10による表示のフルカラー化を実現することができる。
青色画素部17の波長変換層26に含まれる波長変換材料、および、緑色画素部19の波長変換層27に含まれる波長変換材料は、赤色画素部21の波長変換層20に含まれる波長変換材料よりも、有機EL部15からの青緑色の波長域の光(励起光)の吸収率が低くなっているとともに、蛍光強度が低くなっている。これにより、青色画素部17では、励起光である青緑色の波長域の光を透過し、かつ、実質的に赤色の波長域の光を発光しない。また、緑色画素部19では、励起光である青緑色の波長域の光を透過し、かつ、実質的に赤色の波長域の光を発光しない。そして、赤色画素部21では、励起光である青緑色の波長域の光を吸収し、かつ、赤色の波長域の光を発光する。このようにすることにより、有機EL表示装置10によるフルカラー表示が可能となる。
青色画素部17に形成された波長変換層26は、有機EL部15からの青緑色の波長域の励起光のピーク波長に対して、90%以上の透過率を有し、かつ、赤色の波長域の光のピーク強度が、青緑色の波長域の励起光のうち、短波長側のピーク強度に対し1/10以下であることが好ましい。また、緑色画素部19に形成された波長変換層27は、有機EL部15からの青緑色の波長域の励起光のピーク波長に対して、90%以上の透過率を有し、かつ、赤色の波長域の光のピーク強度が、青緑色の波長域の励起光のうち、短波長側のピーク強度に対し1/10以下であることが好ましい。このようにすれば、有機EL部15からの青緑色の波長域の励起光を効率良く、赤色の発光、緑色の発光、青色の発光に、分離、変換することが可能となり、低消費電力化が可能となる。
波長変換層20,26,27の透過率や蛍光強度を調整する方法としては、一般的に、励起状態にある物質が基底状態のときに比べて化学的に活性化され、不安定になる現象を利用する方法が用いられる。この方法によれば、波長変換材料に、その波長変換材料が吸収する光を照射して、波長変換材料を励起状態である、化学的に活性化された不安定な状態にし、波長変換材料の吸収率や蛍光強度を低下させることができる。
有機EL部15を構成する有機発光層35としては、青緑色の波長域の光を発光する燐光材料を含むものを用いることにより、有機EL表示装置10の低消費電力化を図ることができる。特に、有機EL表示装置10のように、有機EL部15からの励起光を用い、その励起光を、波長変換層20,26,27を通すことによって、フルカラー化を行う方式では、励起光源(有機EL部15)の発光効率が、装置全体の消費電力に直結するため、装置の低消費電力化を図るには、蛍光材料の4倍の発光効率を有する燐光材料を波長変換層20,26,27に用いることが非常に有効である。
以下、有機EL表示装置10を構成する各構成部材およびその形成方法について具体的に説明するが、本実施形態はこれら構成部材および形成方法に限定されるものではない。
第一基板11、第二基板23としては、特に限定されるものではないが、従来の有機EL表示装置で使用される基板および封止基板が用いられる。第一基板11、第二基板23としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド等からなるプラスチック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、または、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、これらの基板の表面に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、アルミニウム等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられる。これらのなかでも、ストレスなく湾曲部、折り曲げ部を形成することが可能となる点から、プラスチック基板または金属基板を用いることが好ましい。
さらに、プラスチック基板に無機材料をコーティングした基板、金属基板に無機絶縁材料をコーティングした基板が好ましい。このような無機材料をコーティングした基板を用いることにより、プラスチック基板を有機EL表示装置10の基板として用いた場合に最大の問題となる水分の透過による有機EL材料の劣化(有機EL材料は、特に少量の水分に対しても劣化が起こることが知られている。)を解消することが可能となる。また、金属基板を有機EL表示装置10の基板として用いた場合の最大の問題となる、金属基板の突起によるリーク(ショート)(有機層14の膜厚は、100nm~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消することが可能となる。
また、アクティブマトリックス駆動するためのTFT(駆動素子)を形成する場合には、第一基板11、第二基板23としては、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置を用いて金属基板上にTFTを形成することは困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込むことにより、金属基板上にTFTを、従来の生産装置を用いて安価に形成することが可能となる。
また、プラスチック基板の場合は、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスチック基板にガラス基板上のTFTを転写することにより、プラスチック基板上にTFTを転写形成する。
第一基板11、第二基板23としては、特に制限がなく、上記の基板を用いることができるが、有機EL部15および波長変換層20からの発光を第一基板11側から取り出す場合、第一基板11としては、透明または半透明の基板が用いられる。一方、有機EL部15および波長変換層20からの発光を第二基板23側から取り出す場合、第二基板23としては、透明または半透明の基板が用いられる。
有機EL部15の駆動方法としては、従来のパッシブマトリックス駆動、アクティブマトリックス駆動、および、それらに用いられる従来の材料、プロセス等を用いることができる。
ここで、有機EL部15の駆動方法としては、容易にピーク輝度表示が可能であり、表示品位が優れており、パッシブマトリックス駆動に比べて発光時間を長くすることができ、所望の輝度を得るための駆動電圧を低減することが可能となり、低消費電力化が可能となることから、アクティブマトリックス駆動が好ましい。
第一基板11、第二基板23に形成されるTFTは、有機EL部15を形成する前に、予め第一基板11、第二基板23上に形成され、スイッチング用および駆動用として機能する。
本実施形態におけるTFTとしては、例えば、公知のTFTが挙げられる。また、TFTの代わりに、金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
有機EL表示装置10に用いることが可能なTFTは、公知の材料、構造および形成方法を用いて形成することができる。TFTの活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料、または、ポリチオフェン誘導体、チオフェンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型等が挙げられる。
TFTを構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法またはSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法またはPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。
本実施形態におけるTFTのゲート絶縁膜は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiOまたはポリシリコン膜を熱酸化して得られるSiO等が挙げられる。
また、本実施形態におけるTFTの信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極等は、公知の材料を用いて形成することができる。これら信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極等の材料としては、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。有機EL表示装置10のTFTは、上記のような構成で形成することができるが、本実施形態は、これらの材料、構造および形成方法に限定されるものではない。
アクティブ駆動型の有機EL表示装置10に用いることが可能な層間絶縁膜は、公知の材料を用いて形成することができる。層間絶縁膜の材料としては、例えば、酸化シリコン(SiO)、窒化シリコン(SiNまたはSi)、酸化タンタル(TaOまたはTa)等の無機材料、または、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。
また、層間絶縁膜の形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じて、フォトリソグラフィー法等により、層間絶縁膜をパターニングすることもできる。
有機層14からの発光を第二基板23側(第二電極13側)から取り出す場合には、外光が第二基板23上に形成されたTFTに入射して、TFTの特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を形成することが好ましい。また、上記の層間絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。
遮光性絶縁膜の材料としては、例えば、フタロシアニン、キナクロドン等の顔料または染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態は、これらの材料および形成方法に限定されるものではない。
有機EL表示装置10をアクティブ駆動型とし、第一基板11または第二基板23上にTFT等を形成した場合には、その表面に凹凸が形成され、この凹凸によって有機EL部15の欠陥(例えば、第一電極12の欠損、有機層14の欠損、第二電極13の断線、第一電極12と第二電極13の短絡、耐圧の低下等)等が発生するおそれがある。これらの欠陥を防止するために、層間絶縁膜上に平坦化膜を設けてもよい。
このような平坦化膜は、公知の材料を用いて形成することができる。平坦化膜の材料としては、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、例えば、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセス等が挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜は、単層構造または多層構造のいずれであってもよい。
有機EL部15としては、公知の有機EL部が用いられ、例えば、第一電極12と第二電極13の間に、青緑色の波長域の光を発光する燐光材料を含む有機発光層35を少なくとも有する有機層14が挟持されてなるものが挙げられるが、これに限定されるものではない。
第一電極(画素電極)12および第二電極(対向電極)13は、有機EL部15の陽極または陰極として対で機能する。つまり、第一電極12を陽極とした場合、第二電極13は陰極となり、第一電極12を陰極とした場合、第二電極13は陽極となる。
第一電極12および第二電極13を形成する電極材料としては、公知の電極材料を用いることができる。
陽極を形成する電極材料としては、有機層14への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、および、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)、インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等の透明電極材料等が挙げられる。
また、陰極を形成する電極材料としては、有機層14への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、または、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。
さらに、陰極としては、仕事関数の低い材料の薄膜(膜厚0.1nm~5nm程度)と、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)、インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等の透明電極材料とを組合せたものを用いることもできるし、また、有機層14を構成する電子輸送層にドナー等をドープすることにより、前記の透明電極材料を直接陰極とすることもできる。
第一電極12および第二電極13は、上記の材料を用いて、例えば、EB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法、イオンビームスパッタ法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により形成した電極をパターニングすることもでき、シャドーマスクと組み合わせることで直接パターニングした電極を形成することもできる。
第一電極12および第二電極13の膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。
第一電極12としては、反射電極31と透明電極32からなり、光を反射する反射率の高い反射電極を用いることが好ましい。
第一電極12を構成する反射電極31としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金およびアルミニウム-シリコン合金等の反射性金属電極が挙げられる。
第一電極12を構成する透明電極32としては、上記の陽極を形成する電極材料や陰極を形成する電極材料が挙げられる。
有機層14を構成する正孔注入層33、正孔輸送層34、有機発光層35、電子輸送層36および電子注入層37は、それぞれ単層構造または多層構造のいずれであってもよい。
また、正孔注入層33、正孔輸送層34、有機発光層35、電子輸送層36および電子注入層37は、それぞれ有機薄膜または無機薄膜のいずれであってもよい。
なお、有機層14は上記の構成に限定されるものではなく、有機発光層の単層構造であっても、有機発光層と電荷輸送層の多層構造であってもよい。有機層14の構成としては、具体的に、下記のものが挙げられる。
(1)第一電極12と第二電極13の間に、有機発光層のみが設けられた構成である。
(2)第一電極12側から第二電極13側に向かって、正孔輸送層および有機発光層がこの順に積層された構成である。
(3)第一電極12側から第二電極13側に向かって、有機発光層および電子輸送層がこの順に積層された構成である。
(4)第一電極12側から第二電極13側に向かって、正孔輸送層、有機発光層および電子輸送層がこの順に積層された構成である。
(5)第一電極12側から第二電極13側に向かって、正孔注入層、正孔輸送層、有機発光層および電子輸送層がこの順に積層された構成である。
(6)第一電極12側から第二電極13側に向かって、正孔注入層、正孔輸送層、有機発光層、電子輸送層および電子注入層がこの順に積層された構成である。
(7)第一電極12側から第二電極13側に向かって、正孔注入層、正孔輸送層、有機発光層、正孔防止層および電子輸送層がこの順に積層された構成である。
(8)第一電極12側から第二電極13側に向かって、正孔注入層、正孔輸送層、有機発光層、正孔防止層、電子輸送層および電子注入層がこの順に積層された構成である。
(9)第一電極12側から第二電極13側に向かって、正孔注入層、正孔輸送層、電子防止層、有機発光層、正孔防止層、電子輸送層および電子注入層がこの順に積層された構成である。
これら有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層および電子注入層の各層は、単層構造または多層構造のいずれであってもよい。また、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層および電子注入層の各層は、それぞれ有機薄膜または無機薄膜のいずれであってもよい。
電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層33、電子注入層37)と電荷輸送層(正孔輸送層34、電子輸送層36)に分類され、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。
電荷注入輸送材料としては、有機EL素子用、有機光導電体用の公知の電荷注入輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料および電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
正孔注入層33および正孔輸送層34の材料としては、公知のものが用いられ、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子含窒素化合物、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子化合物等が挙げられる。
正孔注入層33に用いられる正孔注入輸送材料としては、陽極からの正孔の注入および輸送をより効率よく行う観点から、正孔輸送層34に用いられる正孔注入輸送材料よりも、最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましい。
また、正孔輸送層34に用いられる正孔注入輸送材料としては、正孔注入層33に用いられる正孔注入輸送材料よりも、正孔の移動度が高い材料を用いることが好ましい。
正孔注入層33および正孔輸送層34は、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよい。
そして、正孔の注入性および輸送性をより向上させるためには、正孔注入層33および正孔輸送層34は、アクセプターを含むことが好ましい。アクセプターとしては、有機EL素子向けの公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
アクセプターは、無機材料または有機材料のいずれであってもよい。
無機材料としては、金(Au)、白金(Pt)、タングステン(W)、イリジウム(Ir)、オキシ塩化リン(POCl)、六フッ化ヒ酸イオン(AsF )、塩素(Cl)、臭素(Br)、ヨウ素(I)、酸化バナジウム(V)、酸化モリブデン(MoO)等が挙げられる。
有機材料としては、7,7,8,8,-テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF)、テトラシアノエチレン(TCNE)、ヘキサシアノブタジエン(HCNB)、ジシクロジシアノベンゾキノン(DDQ)等のシアノ基を有する化合物、トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等が挙げられる。
これらの中でも、キャリア濃度を増加させる効果がより高いことから、TCNQ、TCNQF、TCNE、HCNB、DDQ等のシアノ基を有する化合物が好ましい。
有機発光層35は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよい。また、これらの各材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。発光効率および寿命の観点からは、有機発光層35の材質は、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
有機発光材料としては、有機EL素子用の公知の発光材料を用いることができる。
このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
また、有機発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。
有機発光層35に用いられる低分子発光材料(ホスト材料を含む)としては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体等の蛍光性有機材料;アゾメチン亜鉛錯体、(8-ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光発光有機金属錯体;BeBq(ビス(ベンゾキノリノラト)ベリリウム錯体);4,4’-ビス-(2,2-ジ-p-トリル-ビニル)-ビフェニル(DTVBi);トリス(1,3-ジフェニル-1,3-プロパンジオノ)(モノフェナントロリン)Eu(III)(Eu(DBM)(Phen));ジフェニルエチレン誘導体;トリス[4-(9-フェニルフルオレン-9-イル)フェニル]アミン(TFTPA)等のトリフェニルアミン誘導体;ジアミノカルバゾール誘導体;ビススチリル誘導体;芳香族ジアミン誘導体;キナクリドン系化合物;ペリレン系化合物;クマリン系化合物;ジスチリルアリーレン誘導体(DPVBi);オリゴチオフェン誘導体(BMA-3T);4,4’-ジ(トリフェニルシリル)-ビフェニル(BSB)、ジフェニル-ジ(o-トリル)シラン(UGH1)、1,4-ビストリフェニルシリルベンゼン(UGH2)、1,3-ビス(トリフェニルシリル)ベンゼン(UGH3)、トリフェニル-(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン(TPSi-F)等のシラン誘導体;9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル(CDBP)、N,N-ジカルバゾリル-3,5-ベンゼン(m-CP)、3-(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO1)、3,6-ジ(9-カルバゾリル)-9-(2-エチルヘキシル)カルバゾール(TCz1)、9,9’-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)(SimCP)、ビス(3,5-ジ(9H-カルバゾール-9-イル)フェニル)ジフェニルシラン(SimCP2)、3-(ジフェニルホスホリル)-9-(4-ジフェニルホスホリル)フェニル)-9H-カルバゾール(PPO21)、2,2-ビス(4-カルバゾリルフェニル)-1,1-ビフェニル(4CzPBP)、3,6-ビス(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO2)、9-(4-tert-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール(CzSi)、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニル-カルバゾール(CzTP)、9-(4-tert-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール(CzC)、9-(4-tert-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール(DFC)、2,2’-ビス(4-カルバゾール-9-イル)フェニル)-ビフェニル(BCBP)、9,9’-((2,6-ジフェニルベンゾ[1,2-b:4,5-b’]ジフラン-3,7-ジイル)ビス(4,1-フェニレン))ビス(9H-カルバゾール)(CZBDF)等のカルバゾール誘導体;4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体;1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン(DMFL-CBP)、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(BDAF)、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(BSBF)、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン(BPPF)、2,2’-ジピレニル-9,9-スピロビフルオレン(Spiro-Pye)、2,7-ジピレニル-9,9-スピロビフルオレン(2,2’-Spiro-Pye)、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(TDAF)、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(TSBF)、9,9-スピロビフルオレン-2-イル-ジフェニル-フォスフィンオキサイド(SPPO1)等のフルオレン誘導体;1,3-ジ(ピレン-1-イル)ベンゼン(m-Bpye)等のピレン誘導体;プロパン-2,2’-ジイルビス(4,1-フェニレン)ジベンゾエ-ト(MMA1)等のベンゾエート誘導体;4,4’-ビス(ジフェニルフォスフィンオキサイド)ビフェニル(PO1)、2,8-ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン(PPT)等のフォスフィンオキサイド誘導体;4,4”-ジ(トリフェニルシリル)-p-タ-フェニル(BST)等のタ-フェニル誘導体;2,4-ビス(フェノキシ)-6-(3-メチルジフェニルアミノ)-1,3,5-トリアジン(BPMT)等トリアジン誘導体等が挙げられる。
有機発光層35に用いられる高分子発光材料としては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニルレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2’-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン](MPS-PPV)、ポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)](CN-PPV)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体;ポリ(N-ビニルカルバゾール)(PVK)等のカルバゾール誘導体等が挙げられる。
有機発光材料は、低分子発光材料が好ましく、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。
有機発光層35に用いられる発光性のドーパントとしては、有機EL素子用の公知のドーパントのうち、2つの発光成分を持つドーパント材料を用いることができる。ここで、2つの発光成分を持つドーパント材料とは、ドーパントの発光スペクトルを各発光成分に分離したとき、2つ以上の成分に分けられるものを意味し、ドーパントの発光スペクトルに2つのピークを有する、ショルダーを持つものとして表される。
ここで、ドーパント材料が有する2つの発光成分のうち、第一成分(短波長側成分)のピーク波長の位置が450nm~480nm、第二成分(長波長側成分)のピーク波長の位置が480nm~530nmであることが好ましい。
また、第一成分と第二成分のピーク波長の差が、20nm~80nmであることが好ましい。
さらに、第一成分と第二成分のピーク強度比が、7:3~5:5であることが好ましい。
このようにすれば、効率良く波長変換材料を励起可能(波長変換材料を励起するために必要な波長領域に発光の最もエネルギーの高い領域があるため、波長変換材料により、高エネルギーを与えることが可能となるため)で、かつ、青色カラーフィルター、緑色カラーフィルターと組み合わせたとき、高輝度で色純度の優れた発光を取り出すことが可能となる。
このようなドーパントとしては、例えば、青緑色の波長域の光を発光する燐光材料として、ビス[(4,6-ジフルオロフェニル)-ピリジナト]ピコレネート イリジウム(III)(FIrpic)(ピーク波長(強度比):470nm(1)、494nm(0.8))、ビス[(4,6-ジフルオロフェニル)-ピリジナト]-3-(トリフルオロメチル)-5-(ピリジン-2-イル)-1,2,4-トリアゾレート イリジウム(III)(FIrtaz)(ピーク波長(強度比):460nm(1)、489nm(0.84))、ビス[(4,6-ジフルオロフェニル)-ピリジナト]-5-(ピリジン-2-イル)-1H-テトラゾレート イリジウム(III)(FIrN4)(ピーク波長(強度比):459nm(1)、489nm(0.79))、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)(ピーク波長(強度比):461nm(1)、490nm(0.83))等の有機金属錯体等が挙げられる。
また、上記のドーパントを用いるときのホスト材料としては、上記の低分子発光材料、上記の高分子発光材料、4,4’-ビス(カルバゾール)ビフェニル、3-(2,7-ビス(ジフェニルフォスフォイル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール(PCF)等のカルバゾール誘導体等が挙げられる。
電子輸送層36および電子注入層37の材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入層37の材料としては、フッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。
電子注入層37の材料としては、陰極からの電子の注入および輸送をより効率よく行う観点から、電子輸送層36の材料よりも最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましい。また、電子輸送層36の材料としては、電子注入層37の材料よりも、電子の移動度が高い材料を用いることが好ましい。
また、電子の輸送性および注入性をより向上させるためには、電子輸送層36の材料および電子注入層37の材料は、ドナーを含むことが好ましい。ドナーとしては、有機EL素子用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
ドナーは、無機材料または有機材料のいずれであってもよい。
無機材料としては、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等のアルカリ土類金属;希土類元素;アルミニウム(Al);銀(Ag);銅(Cu);インジウム(In)等が挙げられる。
有機材料としては、芳香族3級アミン骨格を有する化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の置換基を有していてもよい縮合多環化合物、テトラチアフルバレン(TTF)類、ジベンゾフラン、フェノチアジン、カルバゾール等が挙げられる。
芳香族3級アミン骨格を有する化合物としては、アニリン類;フェニレンジアミン類;N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等のベンジジン類;トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等のトリフェニルアミン類;N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン等のトリフェニルジアミン類等が挙げられる。
上記の縮合多環化合物が「置換基を有する」とは、縮合多環化合物中の1つ以上の水素原子が、水素原子以外の基(置換基)で置換されていることを指し、置換基の数は特に限定されず、全ての水素原子が置換基で置換されていてもよい。そして、置換基の位置も特に限定されない。
置換基としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~10のアルケニルオキシ基、炭素数6~15のアリール基、炭素数6~15のアリールオキシ基、水酸基、ハロゲン原子等が挙げられる。
アルキル基は、直鎖状、分岐鎖状または環状のいずれであってもよい。
直鎖状または分枝鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基等が挙げられる。
環状のアルキル基は、単環状または多環状のいずれであってもよく、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
アルコキシ基としては、アルキル基が酸素原子に結合した一価の基が挙げられる。
アルケニル基としては、炭素数が2~10のアルキル基において、炭素原子間の1つの単結合(C-C)が二重結合(C=C)に置換されたものが挙げられる。
アルケニルオキシ基としては、アルケニル基が酸素原子に結合した一価の基が挙げられる。
アリール基は、単環状または多環状のいずれであってもよく、環員数は特に限定されず、好ましいものとしては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
アリールオキシ基としては、アリール基が酸素原子に結合した一価の基が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
これらのなかでも、ドナーとしては、キャリア濃度を増加させる効果がより高いことから、芳香族3級アミン骨格を有する化合物、置換基を有していてもよい縮合多環化合物、アルカリ金属が好ましい。
正孔注入層33、正孔輸送層34、有機発光層35、電子輸送層36および電子注入層37は、上記の材料を溶剤に溶解、分散させた有機層形成用塗液を用いた、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセスや、上記の材料を用いた、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等により形成することができる。
なお、ウエットプロセスにより有機層14を構成する各層を形成する場合には、有機層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。但し、本実施形態では、有機層14をパターン化する必要がないため、低コストのパターニング方法を取ることができる。
有機層14を構成する各層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmであることが好ましい。
有機層14を構成する各層の膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得なれない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。一方、有機層14を構成する各層の膜厚が200nmを超えると、有機層14の抵抗成分により駆動電圧が上昇し、結果として、消費電力が上昇する。
エッジカバー22は、少なくとも各画素部間の一部の第一基板11側に形成された第一電極12のエッジ部において、第一電極12と第二電極13の間でリークを起こすことを防止する目的で設けられている。
エッジカバー22は、絶縁材料を用いて、電子線(EB)蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができる。
また、エッジカバー22は、公知のドライ法またはウエット法のフォトリソグラフィー法によりパターン化することができる。なお、エッジカバー22の形成方法は、これらの形成方法に限定されるものではない。
また、エッジカバー22を構成する材料としては、特に限定されるものではないが、公知の材料が用いられる。エッジカバー22を構成する材料としては、光を透過するものが用いられ、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。
また、エッジカバー22の膜厚は、100nm~2000nmであることが好ましい。
エッジカバー22の膜厚が100nm未満であると、絶縁性が十分ではなく、第一電極12と第二電極13との間でリークが起こり、消費電力の上昇、非発光の原因となる。一方、エッジカバー22の膜厚が2000nmを超えると、成膜プロセスに時間が掛り、生産性の悪化、エッジカバー22による第二電極13の断線の原因となる。
さらに、本実施形態では、有機EL部15をパターン化していないため、有機EL部15を通して側面方向に導波する発光の損失が存在する。そこで、エッジカバー22としては、第一電極12と第二電極13の間でリークを起こすことを防止するとともに、側面方向への発光の損失を有効利用するために、光反射性または光散乱性の材料を用いることもできる。
光反射性のエッジカバー22としては、アルミニウム、銀等の金属を、シリカ(SiO)等の透明な絶縁性の材料で覆った構造を取ることができる。
光散乱性のエッジカバー22の材料としては、樹脂中に光散乱性粒子を分散したものを用いることが好ましい。また、光散乱性のエッジカバー22によって、青色光が効果的に散乱するためには、光散乱性粒子の粒径がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径は100nm~500nm程度が好ましい。
光散乱性粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。
光散乱性粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。
光散乱性粒子と混合して用いる樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。
有機EL表示装置10は、駆動するために外部駆動回路(走査線電極回路、データ信号電極回路、電源回路)に電気的に接続される。
ここで、有機EL表示装置10を構成する第一基板11としては、ガラス基板上、より好ましくは、金属基板上、プラスチック基板上、さらに好ましくは、金属基板もしくはプラスチック基板上に絶縁材料をコートした基板が用いられる。
また、有機EL表示装置10は、直接、外部回路に接続され、駆動してもよいし、TFT等のスイッチング回路を画素内に配置し、TFT等が接続される配線に有機EL部15を駆動するための外部駆動回路(走査線電極回路(ソースドライバ)、データ信号電極回路(ゲートドライバ)、電源回路)に電気的に接続されていてもよい。
有機EL表示装置10がアクティブマトリックス駆動型である場合、有機EL表示装置10を構成する有機EL部15に形成されるアクティブ基板は、ガラス基板上、より好ましくは、金属基板上、プラスチック基板上、さらに好ましくは、金属基板もしくはプラスチック基板上に絶縁材料をコートした基板上に、複数の走査信号線、データ信号線、および、走査信号線とデータ信号線との交差部にTFT回路が配置される。
有機EL表示装置10は、電圧駆動デジタル階調方式によって駆動され、画素毎にスイッチング用および駆動用の2つのTFTが配置されている。そして、駆動用のTFTと有機EL部15の第一電極12とが、平坦化層に形成されるコンタクトホールを介して電気的に接続されている。
また、一画素中に、駆動用のTFTのゲート電位を定電位にするためのコンデンサーが、駆動用のTFTのゲート部分に接続されるように配置されている。また、TFT上には、平坦化層が形成されて構成されている。
しかしながら、本実施形態は、これらに限定されるものではなく、上記の電圧駆動デジタル階調方式でもよく、また、電流駆動アナログ階調方式でもよい。また、TFTの数も、特に限定されるものではなく、上記の2つのTFTにより、有機EL部15を駆動してもよいし、TFTの特性(移動度、閾値電圧)のバラツキを防止する目的で、画素内に補償回路を内蔵した2つ以上のTFTを設けて、有機EL部15を駆動してもよい。
赤色画素部21の波長変換層20は、有機EL部15からの励起光(青色の波長域の光および緑色の波長域の光の少なくとも一方)を吸収し、赤色の波長域の光を発光する赤色波長変換層から構成されている。
また、有機EL表示装置10には、必要に応じて、さらに、有機EL部15からの励起光を吸収し、黄色の波長域の光を発光する波長変換層(黄色波長変換層)を有する黄色画素部を設けてもよい。
ここで、黄色画素部からの黄色の波長域の光の色純度を、色度図上において、赤色画素部21からの赤色の波長域の光の色純度の点と、緑色画素部19からの緑色の波長域の光の色純度の点とを結ぶ線より外側にすることにより、有機EL表示装置10は、赤色画素部21および緑色画素部19のみを使用する表示装置よりも色再現範囲をさらに広げることができる。
波長変換層20,26,27は、以下に例示する蛍光体材料のみから構成されていてもよく、任意に添加剤等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。
波長変換層20,26,27を構成する蛍光体材料としては、公知の蛍光体材料を用いることができる。このような蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
特に、有機EL表示装置10が高精細な表示装置である場合には、画素のパターンの幅よりも、波長変換層20の膜厚を薄くする必要がある。
しかしながら、波長変換層20の膜厚を薄くすると、励起光の吸収量が低下し、有機EL部15からの励起光と波長変換層20から赤色が混色し、色純度が低下するため、波長変換層20に含まれる波長変換材料の濃度を上げる必要がある。波長変換材料の濃度を上げると、いわゆる濃度消光による発光効率の低下が起こる。そこで、波長変換層20が、波長変換材料として、光吸収と発光をそれぞれ主に担う2種類の蛍光体材料(第一波長変換材料、第二波長変換材料)を含有することが好ましい。これにより、薄膜で励起光を十分に吸収し、かつ、高発光効率を両立することが可能となる。
すなわち、波長変換層20に含まれる第一波長変換材料が、有機EL部15からの励起光を吸収して励起状態となった場合、第一波長変換材料間でのエネルギー移動よりも、第一波長変換材料から、第一波長変換材料よりもエネルギー準位の低い第二波長変換材料へのエネルギー移動の方が起こりやすい。そのため、第一波長変換材料の励起エネルギーは、第一波長変換材料間での移動による消失(濃度消光)を受けずに、ほとんどが第二波長変換材料へ移動し、第二波長変換材料の発光に寄与することができると考えられる。そして、波長変換層20に含まれる第一波長変換材料の濃度を、実質的に濃度消光を起こす高い濃度にすることにより、第一波長変換材料の吸収率を上げることで、第一波長変換材料において、有機EL部15からの励起光を十分に吸収し、第一波長変換材料から第二波長変換材料にエネルギーを移動させる。さらに、波長変換層20に含まれる第二波長変換材料の濃度を、実質的に濃度消光を起こさない低い濃度にすることにより、第二波長変換材料において、第一波長変換材料から移動してきた励起エネルギーを効率よく利用して波長変換を行い、所望の波長域の光を発光することができる。
このようにして、波長変換層20において、薄い膜厚と高い発光効率とを両立することが可能となる。換言すれば、有機EL部15からの励起光を吸収する機能と、所望の波長域の光を発光する機能とを分離し、それぞれの機能を第一波長変換材料と第二波長変換材料に分担させることによって、波長変換層20の膜厚を増加させることなく、波長変換層20において、好適に、高い吸収率と高い発光効率を維持することができる。さらに、第一波長変換材料と第二波長変換材料がともに有機EL部15からの励起光を吸収して励起されてもよい。
ここで、励起光の十分な吸収とは、励起波長における吸収率が80%以上であることが好ましく、90%以上であることがより好ましい。
さらに、ここで、波長変換層20が、有機EL部15からの励起光を吸収する蛍光体材料(第一波長変換材料)、および、所望の色(例えば、赤色)を発光する蛍光体材料(第二波長変換材料)を含有することによって、第一波長変換材料が、波長変換層20への入射光を吸収して、そのエネルギーを第二波長変換材料へとエネルギーを移動させ、第二波長変換材料が、第一波長変換材料から、そのエネルギーを受容することにより、波長変換層20が、当初の入射光とは異なるスペクトルの光を放射することができる。
すなわち、第一波長変換材料は、波長変換層20へ入射する有機EL部からの励起光を吸収し、吸収したエネルギーを第二波長変換材料に移動させることできる波長変換材料である。したがって、第一波長変換材料の吸収スペクトルは、有機EL部15からの励起光のスペクトルと重なっていることが好ましい。また、第一波長変換材料の吸収極大と、有機EL部15からの励起光のスペクトルの極大とが一致していることがより好ましい。また、第一波長変換材料の発光スペクトルが、第二波長変換材料の吸収スペクトルと重なっていることが好ましい。さらに、第一波長変換材料の発光スペクトルの極大と、第二波長変換材料の吸収極大とが一致していることがより好ましい。ここで、スペクトルの極大が一致しているとは、極大波長の差が20%以下であることが好ましく、10%以下であることがより好ましい。
また、第一波長変換材料の吸収ピーク波長の位置は、450nm~480nm、第二波長変換材料の吸収ピーク波長の位置は、480nm~530nmであることが好ましい。
また、第一波長変換材料の発光スペクトルの発光ピーク波長の位置は480nm~530nm、第二波長変換材料の発光スペクトルの発光ピーク波長の位置は580nm~680nmであることが好ましい。
このようにすれば、第一波長変換材料と第二波長変換材料によって、有機EL部15からの励起光を効率良く吸収する機能と、所望の波長域の光を、高発光効率に発光する機能とを分離することができ、高光吸収・高発光効率の両立を行うことが可能となる。
また、波長変換層20において、有機EL部15からの励起光の吸収と発光とを異なる波長変換材料によって実現することによって、第一波長変換材料による入射光の吸収ピーク波長と、第二波長変換材料による波長変換後の発光ピーク波長との差を大きくすることができる。さらに、有機EL部15からの励起光を吸収する機能と、所望の波長域の光を発光する機能とを分離したことによって、第一波長変換材料および第二波長変換材料として用いる材料の選択肢を広げることができる。
有機系蛍光体材料としては、紫外域の励起光を、青色の波長域の発光に変換する蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4’-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。
また、青色~緑色の波長域の励起光を、赤色の波長域の発光に変換する有機系蛍光色素としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。
また、無機系蛍光体材料としては、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、NaEu2.5(MoO6.25等が挙げられる。
また、上記無機系蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としては、シランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、さらにそれらの併用によるもの等が挙げられる。
励起光による劣化、発光による劣化等の安定性を考慮すると、波長変換材料としては、無機系蛍光体材料を用いることが好ましい。
ここで、波長変換材料として、無機系蛍光体材料を用いる場合、その濃度は特に限定されるものではないが、濃度は高い方が、励起光の吸収率、発光効率の点で好ましい。したがって、波長変換材料が無機系蛍光体材料100%から構成されていてもよい。
一方、波長変換材料として、有機系蛍光体材料を用いる場合には、波長変換材料が濃度消光を起こさないことが好ましい。なぜならば、波長変換材料が濃度消光を起こすと、発光効率が低下するからである。
波長変換層20に含まれる波長変換材料の濃度は、実質的に濃度消光を起こさないことを条件として、波長変換層20を構成する材料の総量に対して、好ましくは10質量%以下、より好ましくは0.01質量%~10質量% 、さらに好ましくは0.1質量%~5質量%の範囲内である。このような濃度範囲内で波長変換材料を用いることによって、濃度消光を好適に防止することができるとともに、十分な発光効率を好適に得ることができる。
さらに、波長変換層20に、第一波長変換材料と第二波長変換材料を組み合わせて用いる場合には、第一波長変換材料の含有量は、波長変換層20を構成する材料の総量に対して、30質量%~99.99質量%の範囲内であることが好ましい。このような濃度範囲で第一波長変換材料を用いることによって、有機EL部15からの波長変換層20への入射光を、第一波長変換材料が十分に吸収し、吸収した光エネルギーを、第一波長変換材料から第二波長変換材料に移動することができるとともに、励起光の漏れによる色純度の低下を防止することができる。
また、このような波長変換層20において、所望の波長域の光を発する波長変換材料は第二波長変換材料であるので、波長変換層20に含まれる第二波長変換材料の濃度は、第二波長変換材料が濃度消光を起こさない範囲内であることが好ましい。なぜならば、第二波長変換材料が濃度消光を起こすと、波長変換層20の発光効率が低下するからである。
波長変換層20に含まれる第二波長変換材料の濃度の上限は、実質的に濃度消光を起こさないことを条件として、第一波長変換材料および第二波長変換材料の種類に依存して変化し得る。
一方、波長変換層20に含まれる第二波長変換材料の濃度の下限は、十分な発光強度が得られることを条件として、第一波長変換材料および第二波長変換材料の種類、あるいは、目的とする用途に依存して変化し得る。
波長変換層20に含まれる第二波長変換材料の濃度は、波長変換層20を構成する材料の総量に対して、好ましくは10質量%以下、より好ましくは0.01質量%~10質量% 、さらに好ましくは0.1質量%~5質量%の範囲内である。このような濃度範囲内で第二波長変換材料を用いることによって、濃度消光を好適に防止することができるとともに、十分な発光効率を好適に得ることができる。
波長変換層20の膜厚は、通常100nm~100μm程度であるが、1μm~100μmであることが好ましい。
波長変換層20の膜厚が100nm未満であると、有機EL部15からの発光を十分吸収することができないため、発光効率の低下、必要とされる色に励起光が混じることによる色純度の悪化といった問題が生じる。さらに、有機EL部15からの発光の吸収を高め、色純度に悪影響を及ぼさない程度に励起光の透過光を低減するためには、波長変換層20の膜厚が、1μm以上であることが好ましい。一方、波長変換層20の膜厚が100μmを超えると、有機EL部15からの発光を既に十分に吸収することから、発光効率の上昇には繋がらずに、材料を消費するだけに留まり、材料コストの上昇に繋がる。
また、波長変換層20は、上記の蛍光体材料と樹脂材料を溶剤に溶解、分散させた蛍光体層形成用塗液を用いた、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセスや、上記の材料を用いた、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス等により形成することができる。さらに、フォトブリーチ法、転写法(レーザー転写法、熱転写法)を用いることにより、低コストで高精細化できる。
本実施形態では、フォトブリーチ法をパターニング方法として用いることにより、赤色画素部21のみに有機EL部15からの発光を励起光とし、赤色の波長域の光を発光する波長変換層20を形成すればよい。すなわち、青色画素部17の波長変換層26と緑色画素部19の波長変換層27を、波長変換層26,27が吸収し、蛍光強度を低下させる波長で露光し、赤色画素部21には、前記の波長の光を遮光するだけの非常にシンプルな方法を適用できるため、露光が1回で済み、かつ、マスクも1枚でよいので、低コストのパターン化が可能となる。
さらに、従来の方法のように緑色と赤色の波長変換層を必要とする場合には、緑色画素部19を、赤色画素部21の波長変換層20の蛍光強度のみを低下させる波長の光で露光する必要があるが、赤色画素部21の波長変換層20の蛍光強度のみを低下させる波長の光によって、緑色画素部19の波長変換層27の蛍光強度も低下させてしまうという問題も本方式では、起こらない。
さらに、フォトブリーチ法では、所望の赤色波長変換材料だけ蛍光強度を低下させ、その他の緑色波長変換材料の蛍光強度を変化させないという必要がなく、完全に蛍光強度を低下させること(なくすこと)が可能となり、青色画素部17と緑色画素部19において、赤色画素部21の波長変換層20からの発光による色純度の低下をなくすことも可能となる。
本実施形態におけるフォトブリーチ法とは、波長変換層20,26,27を構成する波長変換材料に、紫外線などの波長変換層20,26,27が吸収を持つ波長領域の高エネルギー光(電磁波)を、フォトマスクを用いて照射して、波長変換層20,26,27を部分的に変性することによって、波長変換層20,26,27の蛍光強度(励起光の吸収強度)を低下させる方法である。
なお、波長変換材料の変性とは、色変換色素の分解、酸化、その他の波長変換材料の発光強度が低下(励起光に対する光透過率が低下)する任意の態様(会合体の形成)を含む。特に、本実施形態では、有機EL部15からの励起光による蛍光強度の低下、有機EL部15の発光極大での波長における励起光に対する光透過率が低下を意味する。
波長変換材料を変性させるための光源としては、通常、高圧UVランプ、超高圧UVランプ、低圧UVランプ、Deep UVランプ、メタルハライドランプ、エキシマランプ、キセノンランプ、ハロゲンランプ等のランプが用いられる。
なお、光源の波長は、波長変換材料の吸収波長であればよく、特に限定されるものではなく、波長変換材料の一部または全部を変性できる波長範囲であることが好ましい。
光源の照度は、特に限定されるものではなく、プロセスの時間を短縮するためには大きい方がよいが、露光時に波長変換層と基板の間にカラーフィルター、有機EL部等が設けられている場合、カラーフィルター、有機EL部の劣化を防止する目的で照射強度は、あまり高くない方がよく、10mW/cm~100mW/cm程度が好ましい。
波長変換層20,26,27を部分的に変性させる手段として、フォトマスクを用いて、波長変換層20,26,27に高エネルギー光を照射し、色変換色素を部分的に変性させる場合について説明したが、本実施形態では、他の手段を用いてもよい。例えば、波長変換層20,26,27を部分的に変性させる方法としては、照射強度を変化させながら、波長変換層20,26,27の全面に対して電磁波を照射する方法(例えば、白黒ネガフィルムのような部分的に透過度の異なるフィルタを通して電磁波を露光する方法、微小な光源が発する光の照射強度を変化させながら走査させる方法 、マスキングにより部分的に電磁波を照射する方法等)が挙げられる。波長変換層20,26,27を部分的に露光する場合には、例えば、フォトマスクを用いて密着露光したり、投影露光(レンズで集光した光、または、微小な光源から発光する光を用いて部分的に露光する方法、あるいは、これらの方法にフォトマスクを併用する方法等)したりすることによって実施することができる。
また、本実施形態では、少なくとも赤色画素部21に波長変換層20を形成すればよいので、1回の転写で波長変換層20を形成することが可能である。したがって、従来、カラーフィルターの形成、有機ELの発光層の形成で課題となっていた、赤色、緑色、青色の3回のパターニング(転写)に伴う、高コスト、低生産性の課題を克服することができる。
また、波長変換層20,26,27は、前記の高分子樹脂として、感光性の樹脂を用いることにより、フォトリソグラフィー法により、パターン化することができる。
ここで、感光性の樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の1種類または複数種類の混合物を用いることができる。
また、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法等ウエットプロセス、シャドーマスクを用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等により蛍光体材料を直接、パターニングすることもできる。
青色カラーフィルター16は、第一基板11と波長変換層26の間に設けられている。
また、緑色カラーフィルター18は、第一基板11と波長変換層27の間に設けられている。また、赤色カラーフィルター28は、第一基板11と波長変換層20の間に設けられている。
青色カラーフィルター16、緑色カラーフィルター18、赤色カラーフィルター28としては、従来のカラーフィルターを用いることができる。ここで、カラーフィルターを設けることによって、赤色画素部21、緑色画素部19、青色画素部17の色純度を高めることができ、ひいては、有機EL表示装置10の色再現範囲を拡大することができる。
また、波長変換層(青色波長変換層)26上に設けられた青色カラーフィルター16、波長変換層(緑色波長変換層)27上に設けられた緑色カラーフィルター18、波長変換層(赤色波長変換層)20上に設けられた赤色カラーフィルター28は、外光のうち、各波長変換材料を励起する励起光を吸収するため、外光による波長変換層20,26,27の発光を低減・防止することができ、有機EL表示装置10表示のコントラストの低下を低減・防止することができる。一方、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28によって、波長変換層20,26,27に吸収されず、波長変換層20,26,27を透過する励起光が外部に漏れ出すことを防止できるので、波長変換層20,26,27からの発光と励起光による混色による発光の色純度の低下を防止することができる。
光吸収層(低反射層)29は、第一基板11側において、青色カラーフィルター16と緑色カラーフィルター18との間、緑色カラーフィルター18と赤色カラーフィルター28との間、および、赤色カラーフィルター28と青色カラーフィルター16との間に設けられている。この光吸収層29により、各画素部からの発光が混色するのを防止し、有機EL表示装置10の表示のコントラストを向上することができる。
光吸収層29の膜厚は、通常100nm~100μm程度であるが、100nm~10μmであることが好ましい。また、波長変換層20,26,27の側面への発光を効率よく外部に取り出すためには、光吸収層29の膜厚は、波長変換層20,26,27の膜厚よりも薄いことが好ましい。
低屈折率層30は、青色カラーフィルター16と波長変換層26の間、緑色カラーフィルター18と波長変換層27の間、および、赤色カラーフィルター28と波長変換層20との間に設けられている。低屈折率層30の屈折率は、第一基板11の屈折率よりも低くなっている。
これにより、波長変換層20,26,27からの発光が、第一基板11を導波して、第一基板11の側面に導波することによって生じる発光の損失を低減することができる。すなわち、低屈折率層30と第一基板11との屈折率差を利用し、第一基板11から空気層(外部)へ取り出すことができない臨界角以上の光を、波長変換層20,26,27と低屈層30との屈折率差で反射させ、再度、有機EL部15の、半透明電極(第二電極13)または反射電極(第一電極12)で反射させ、その反射光を、第一基板11方向に出射させることにより、第一基板11を導波する発光ロスを低減することができ、有機EL表示装置10の消費電力を低減するとともに、輝度を向上することができる。
さらに、第一基板11と有機EL部15との間、または、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28と、有機EL部15との間に、第一基板11の屈折率、有機EL部15の屈折率よりも低い屈折率を有する低屈折率層30を設けることが好ましい。
これにより、有機EL部15からの発光が、第一基板11を導波して、第一基板11の側面に導波することによって生じる発光の損失を低減することができ、有機EL表示装置10の消費電力を低減するとともに、輝度を向上することができる。
低屈折率層30に用いることができる材料としては、特に限定されるものではない。低屈折率層30は、例えば、フッ素系樹脂(Poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate):n=1.375、Poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate):n=1.383、Poly(2,2,3,3,3-pentafluoroproyl methacrylate):n=1.395、Poly(2,2,2-trifluoroethyl methacrylate):n=1.418、メソポーラスシリカ(n=1.2)、エアロゲル(n=1.05)等の膜で形成されてもよく、第一基板11と有機EL部15との間の空間、または、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28と、有機EL部15との間の空間に導入されたドライエアー、窒素等の気体で形成されていてもよく、前記の空間を減圧状態にして形成されていてもよい。
青色カラーフィルター16、緑色カラーフィルター18、赤色カラーフィルター28、波長変換層20,26,27、有機EL部15などが設けられた第一基板11と、第二基板23とは、公知の封止材料および封止方法によって貼り合わせることができる。
具体的には、青色カラーフィルター16、緑色カラーフィルター18、赤色カラーフィルター28、波長変換層20,26,27、有機EL部15などが設けられた第一基板11に、スピンコート法、ODF、ラミレート法等を用いて樹脂を塗布することにより、青色カラーフィルター16、緑色カラーフィルター18、赤色カラーフィルター28、波長変換層20,26,27、有機EL部15などを封止する封止膜24を形成した後、スピンコート法、ODF、ラミレート法等を用いて、その封止膜24を覆うように、第一基板11の全面に接着剤を塗布して接着層25を形成し、その接着層25を介して、第一基板11と第二基板23を貼り合わせる。
なお、封止膜24は、第一基板11上に設けられた青色カラーフィルター16、緑色カラーフィルター18、赤色カラーフィルター28、波長変換層20,26,27、有機EL部15などを覆うように、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等からなる無機膜を形成した後、さらに、その無機膜を覆うように、スピンコート法、ODF、ラミレート法等を用いて樹脂を塗布するか、または、無機膜を覆うように樹脂膜を貼り合わせることによって形成することもできる。
封止膜24により、外部から有機EL部15内へ酸素や水分が混入するのを防止することができ、ひいては、有機EL部15の寿命を向上することができる。
接着層25に用いられる接着剤としては、紫外線硬化樹脂、熱硬化樹脂等が挙げられる。
また、第一基板11と第二基板23の周縁部に紫外線硬化樹脂、熱硬化樹脂等を塗布して、第一基板11と第二基板23を貼り合わせた後、これらの基板の間に、窒素ガス、アルゴンガス等の不活性ガスを封入してもよい。
有機EL表示装置10には、光取り出し側の基板(第一基板11)に偏光板38を設けることが好ましい。
偏光板38としては、従来の直線偏光板とλ/4板とを組み合わせたものが好ましい。
偏光板38を設けることによって、有機EL表示装置10の表示のコントラストを向上することができる。
(2)第二実施形態
図2は、有機EL表示装置の第二実施形態を示す概略断面図である。図2において、図1に示した有機EL表示装置10と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置40が、上述の第一実施形態の有機EL表示装置10と異なる点は、青色画素部17に波長変換層26の代わりに光散乱層41が設けられ、かつ、緑色画素部19に波長変換層27の代わりに光散乱層41が設けられている点である。
有機EL表示装置40は、マイクロキャビティー構造を有する有機EL部15からの異方性の発光を直接、使用する青色画素部17および緑色画素部19と、波長変換層20からの発光を使用する赤色画素部21との異なる配光特性を有する画素部を備えているので、有機EL部15からの発光と波長変換層20からの発光の配光特性を合わせて、視野角による配光特性のズレによる輝度、色変化を低減するために、青色画素部17および緑色画素部19には光散乱層41が設けられている。
光散乱層41の材料としては、樹脂中に光散乱性粒子を分散したものを用いることが好ましい。光散乱性粒子は、有機材料または無機材料から構成されるが、無機材料から構成されることが好ましい。
これにより、外部(例えば、発光素子)からの指向性を有する光を、より等方的かつ効果的に拡散または散乱させることができる。また、無機材料を使用することにより、光および熱に安定な光散乱層41を形成することができる。また、光散乱性粒子としては、透明度が高いものが好ましい。また、光散乱性粒子としては、低屈折率の母材中に、母材よりも高屈折率の微粒子を分散したものが好ましい。
また、青色の波長域の光が光散乱層41によって効果的に散乱するためには、光散乱性粒子の粒径がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径は100nm~500nm程度が好ましい。
光散乱性粒子として、無機材料を用いる場合、その無機材料としては、例えば、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、およびアンチモンからなる群より選ばれる少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。
また、光散乱性粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合、その無機微粒子としては、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。
光散乱性粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合、その有機微粒子としては、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。
光散乱性粒子と混合して用いられる樹脂材料は、透光性の樹脂材料であることが好ましい。樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。
(3)第三実施形態
図3は、有機EL表示装置の第三実施形態を示す概略断面図である。図3において、図1に示した有機EL表示装置10および図2に示した有機EL表示装置40と同一の構成要素には同一符号を付して、その説明を省略する。
有機EL表示装置50は、第一基板11と、第一基板11の一方の面11a上に設けられ、第一電極12と第二電極13の間に、有機層14が挟持されてなる有機EL部15と、接着層25を介して第一基板11と対向配置された第二基板23と、第二基板23の一方の面23a上に設けられ、青色カラーフィルター16を有する青色画素部17、緑色カラーフィルター18を有する緑色画素部19、および、波長変換材料を含む波長変換層20を有する赤色画素部21と、第一基板11の一方の面11a上に設けられ、有機EL部15の側面を囲み、画素を区画するエッジカバー22と、第二基板23の一方の面23a上に設けられ、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28の側面を囲み、画素を区画するバンク51とから概略構成されている。
第一基板11の一方の面11a上に設けられた有機EL部15を封止する封止膜24が設けられている。
また、第二基板23の一方の面23a上に設けられた青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28を封止するために、波長変換層20を覆うように封止膜24が設けられている。
さらに、第一基板11側の封止膜24と、第二基板23側の封止膜24とが対向するように配置され、これら封止膜24を覆うように設けられた接着層25を介して、第一基板11と第二基板23が接着されている。
また、第二基板23の一方の面23a側には、有機EL表示装置50の表示領域に亘って展開する連続膜からなる波長変換層20が、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28を覆うように設けられている。
また、青色カラーフィルター16と緑色カラーフィルター18との間、緑色カラーフィルター18と赤色カラーフィルター28との間、および、赤色カラーフィルター28と青色カラーフィルター16との間には、光吸収層(低反射層)29が設けられている。
さらに、青色カラーフィルター16と波長変換層20の間、緑色カラーフィルター18と波長変換層20の間、および、赤色カラーフィルター28と波長変換層20との間に、第二基板23の屈折率よりも低い屈折率を有する低屈折率層30が設けられている。
第二基板23の他方の面23bには、偏光板38が積層されている。
また、青色画素部17における青色カラーフィルター16上に設けられた低屈折率層30と波長変換層20の間、および、緑色画素部19における緑色カラーフィルター18上に設けられた低屈折率層30と波長変換層20の間に、光散乱層41が設けられている。
第二基板23の一方の面23a上において、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28の側面を囲み、画素を区画するバンク51を設けることにより、波長変換層20からの等方発光のうち、波長変換層20の側面方向への発光(波長変換層20を通しての導波成分)を防止することができ、所望の画素以外への発光の漏れによる色純度の低下を防止すことができる。さらに、波長変換層20からの発光が、バンク51にて画素内に反射されるので、波長変換層20からの発光を有効利用できるので、有機EL表示装置10の消費電力を低減することができる。
バンク51の材料としては、特に限定されるものではなく、上述のエッジカバー22の材料と同様のものを用いることができる。さらに、バンク51としては、エッジカバー22とは異なり、絶縁性が必要とされないので、金属等の反射膜を用いることもできる。
また、第二基板23の一方の面23a側の封止膜24は、波長変換層20を覆うように設けられるが、波長変換層20の第一基板11と対向する側の面を、封止膜24で平坦化することが好ましい。これにより、有機EL部15が設けられた第一基板11と、波長変換層20が設けられた第二基板23との密着性および接着強度を向上することができる。
(4)第四実施形態
図4は、有機EL表示装置の第四実施形態を示す概略断面図である。図4において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置60が、上述の第三実施形態の有機EL表示装置50と異なる点は、上述の第二実施形態の有機EL表示装置40と同様に、波長変換層20が赤色画素部21のみに設けられている点、青色画素部17に波長変換層20の代わりに光散乱層41が設けられ、かつ、緑色画素部19に波長変換層20の代わりに光散乱層41が設けられている点、第二基板23の一方の面23a上において、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28を封止するために設けられた封止膜24のうち、バンク51を覆っている部分が、第一基板11の一方の面11a上において、有機EL部15を封止するために設けられた封止膜24に当接するように、接着層25を介して、第一基板11と第二基板23が接着されている点である。
(5)第五実施形態
図5は、有機EL表示装置の第五実施形態を示す概略断面図である。図5において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置70が、上述の第三実施形態の有機EL表示装置50と異なる点は、第一基板11の一方の面11a上に設けられた有機EL部15の第二電極13上であって、第二基板23の一方の面23a上に設けられた青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28に対向する位置に波長変換層20が設けられている点、青色カラーフィルター16および緑色カラーフィルター18上に光散乱層41が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24上であって、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28のそれぞれに対向する位置に低屈折率層30が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24のうち、バンク51を覆っている部分が、有機EL部15を封止するために設けられた封止膜24に当接するように、接着層25を介して、第一基板11と第二基板23が接着されている点である。
(6)第六実施形態
図6は、有機EL表示装置の第六実施形態を示す概略断面図である。図6において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置80が、上述の第三実施形態の有機EL表示装置50と異なる点は、第一基板11の一方の面11a上に設けられた有機EL部15の第二電極13上であって、第二基板23の一方の面23a上に設けられた赤色カラーフィルター28に対向する位置にのみ波長変換層20が設けられている点、青色カラーフィルター16および緑色カラーフィルター18上に光散乱層41が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24上であって、青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28のそれぞれに対向する位置に低屈折率層30が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24のうち、バンク51を覆っている部分が、有機EL部15を封止するために設けられた封止膜24に当接するように、接着層25を介して、第一基板11と第二基板23が接着されている点である。
(7)第七実施形態
図7は、有機EL表示装置の第七実施形態を示す概略断面図である。図7において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置90が、上述の第三実施形態の有機EL表示装置50と異なる点は、第一基板11の一方の面11a上に設けられた有機EL部15を封止する封止膜24上であって、第二基板23の一方の面23a上に設けられた青色カラーフィルター16、緑色カラーフィルター18および赤色カラーフィルター28に対向する位置に、波長変換層20が設けられている点、その波長変換層20を覆うように、さらに封止膜24が設けられている点、青色カラーフィルター16および緑色カラーフィルター18上に光散乱層41が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24のうち、バンク51を覆っている部分が、波長変換層20を封止するために設けられた封止膜24に当接するように、接着層25を介して、第一基板11と第二基板23が接着されている点である。
(8)第八実施形態
図8は、有機EL表示装置の第八実施形態を示す概略断面図である。図8において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置100が、上述の第三実施形態の有機EL表示装置50と異なる点は、第一基板11の一方の面11a上に設けられた有機EL部15を封止する封止膜24上であって、第二基板23の一方の面23a上に設けられた赤色カラーフィルター28に対向する位置にのみ波長変換層20が設けられている点、その波長変換層20を覆うように、さらに封止膜24が設けられている点、青色カラーフィルター16および緑色カラーフィルター18上に光散乱層41が設けられている点、第二基板23の一方の面23a上に設けられた封止膜24のうち、バンク51を覆っている部分が、波長変換層20を封止するために設けられた封止膜24に当接するように、接着層25を介して、第一基板11と第二基板23が接着されている点である。
(9)第九実施形態
図9は、有機EL表示装置の第九実施形態を示す概略断面図である。図9において、図3に示した有機EL表示装置50と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置110が、上述の第三実施形態の有機EL表示装置50と異なる点は、第一基板11の一方の面11a上に、TFT(駆動素子)111が形成されている点である。すなわち、第一基板11の一方の面11aに、ゲート電極112が形成され、このゲート電極112を覆うように第一基板11の一方の面11a上に、ゲート絶縁膜113が形成されている。ゲート絶縁膜113上には、活性層(図示略)が形成され、活性層上にソース電極114、ドレイン電極115および配線116が形成され、これらソース電極114、ドレイン電極115および配線116を覆うように平坦化膜117が形成されている。なお、平坦化膜117は、単層構造でなくてもよく、他の層間絶縁膜と平坦化膜を組み合わせた構成としてもよい。また、平坦化膜もしくは層間絶縁膜を貫通してドレイン電極115に達するコンタクトホール118が形成され、平坦化膜117上にコンタクトホール118を介してドレイン電極115と電気的に接続された有機EL部15の第一電極12が形成されている。
また、本実施形態の有機EL表示装置110が、上述の第三実施形態の有機EL表示装置50と異なる点は、青色カラーフィルター16と波長変換層20の間、および、緑色カラーフィルター18と波長変換層20の間に、低屈折率層が設けられていない点、第一基板11側に設けられた封止膜24と、第二基板23側に設けられた封止膜24との間に充填剤119が充填され、この充填剤119を介して、接着層25により、第一基板11と第二基板23が接着されている点である。
さらに、本実施形態の有機EL表示装置110が、上述の第三実施形態の有機EL表示装置50と異なる点は、有機EL部15の有機層14が、第一基板11側から順に、絶縁層120、正孔注入層33、正孔輸送層34、有機発光層35、正孔防止層121、電子輸送層36、電子注入層37、絶縁層120、正孔注入層33、正孔輸送層34、有機発光層35、正孔防止層121、電子輸送層36、電子注入層37から構成されている点である。
(10)第十実施形態
図10は、有機EL表示装置の第十実施形態を示す概略断面図である。図10において、図3に示した有機EL表示装置50および図9に示した有機EL表示装置110と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置130が、上述の第九実施形態の有機EL表示装置110と異なる点は、第二基板23の一方の面23a上に設けられた赤色カラーフィルター28に対向する位置にのみ波長変換層20が設けられている点である。
(11)第十一実施形態
図11は、有機EL表示装置の第十一実施形態を示す概略断面図である。図11において、図3に示した有機EL表示装置50および図9に示した有機EL表示装置110と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置140が、上述の第九実施形態の有機EL表示装置110と異なる点は、第二基板23の一方の面23a上に設けられた赤色カラーフィルター28、緑色カラーフィルター18および青色カラーフィルター16に対向する位置であって、第一基板11の一方の面11a上に設けられた有機EL部15を覆うように、波長変換層20が設けられている点、赤色カラーフィルター28、緑色カラーフィルター18および青色カラーフィルター16を覆うように、第二基板23の一方の面23a上に低屈折率層30が設けられている点である。
(12)第十二実施形態
図12は、有機EL表示装置の第十二実施形態を示す概略断面図である。図12において、図3に示した有機EL表示装置50および図9に示した有機EL表示装置110と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の有機EL表示装置150が、上述の第九実施形態の有機EL表示装置110と異なる点は、第二基板23の一方の面23a上に設けられた赤色カラーフィルター28のみに対向する位置であって、第一基板11の一方の面11a上に設けられた有機EL部15を覆うように、波長変換層20が設けられている点、赤色カラーフィルター28、緑色カラーフィルター18および青色カラーフィルター16を覆うように、第二基板23の一方の面23a上に低屈折率層30が設けられている点である。
「有機EL表示装置の回路構成」
図13は、第一~第十二実施形態の有機EL表示装置の回路構成を示すブロック図である。
第一~第十二実施形態の有機EL表示装置は、図13に示すように、回路構成としてAD変換回路201と、画像処理回路202と、制御回路203と、走査線駆動回路204と、信号線駆動回路205と、電源回路206と、を備えている。
また、液晶セルの画素部207には複数の走査線208と、複数の信号線209と、複数の電源線210と、が備えられている。
さらに、各走査線208、各信号線209および各電源線210に対応する各画素にスイッチングトランジスタ211と、駆動トランジスタ212と、有機EL素子213と、キャパシタ214と、が備えられている。
有機EL素子213を駆動する電源回路206は、走査線駆動回路204により画素部207の走査線208を順次選択し、選択されている走査線208に沿って配置されている各画素に対し、信号線駆動回路205により画素データを書き込む。すなわち、走査線駆動回路204が走査線208を順次駆動し、信号線駆動回路205が信号線209に画素データを出力することで、駆動された走査線208とデータが出力された信号線209との交差する位置に配置された画素が駆動される。
さらに、バックライトユニットを駆動する電源回路206は、画像を表示する間、バックライトユニットを一定の輝度で点灯するために一定の電圧、電流を供給する。さらに、画像と同期してバックライトユニットの輝度をコントロールすることで、低消費電力化が可能となる。
「照明装置」
また、上述の第一~第十二実施形態の有機EL表示装置は、えば、図14に示すシーリングライト(照明装置)220にも適用できる。
図14に示すシーリングライト220は、発光部221と、吊下線222と、電源コード223とを備えてなる照明装置である。
シーリングライト220において、発光部221は、上述の第一~第十二実施形態の有機EL表示装置のいずれかから構成されている。
本実施形態のシーリングライト220は、上述の第一~第十二実施形態の有機EL表示装置を発光部221として備えることにより、発光効率に優れる照明装置となる。
また、上述の第一~第十二実施形態の有機EL表示装置は、えば、図15に示す照明スタンド(照明装置)230にも適用できる。
図15に示す照明スタンド230は、発光部231と、スタンド232と、メインスイッチ233と、電源コード234とを備えてなる照明装置である。
照明スタンド230において、発光部231は、上述の第一~第十二実施形態の有機EL表示装置のいずれかから構成されている。
本実施形態の照明スタンド230は、上述の第一~第十二実施形態の有機EL表示装置を発光部231として備えることにより、発光効率に優れる照明装置となる。
「電子機器」
上述の第一~第十二実施形態の有機EL表示装置は、各種電子機器に適用することができる。
以下、上述の第一~第十二実施形態の有機EL表示装置を備えた電子機器について、図16~19を用いて説明する。
上述の第一~第十二実施形態の有機EL表示装置は、例えば、図16に示す携帯電話に適用できる。
図16に示す携帯電話240は、音声入力部241、音声出力部242、アンテナ243、操作スイッチ244、表示部245および筐体246等を備えている。
そして、表示部245として上述の第一~第十二実施形態の有機EL表示装置を好適に適用できる。上述の第一~第十二実施形態の有機EL表示装置を携帯電話240の表示部245に適用することによって、良好な発光効率で映像を表示することができる。
また、上述の第一~第十二実施形態の有機EL表示装置は、例えば、図17に示す薄型テレビに適用できる。
図17に示す薄型テレビ250は、表示部251、スピーカ252、キャビネット253およびスタンド254等を備えている。
そして、表示部251として上述の第一~第十二実施形態の有機EL表示装置を好適に適用できる。上述の第一~第十二実施形態の有機EL表示装置を薄型テレビ250の表示部251に適用することによって、良好な発光効率で映像を表示することができる。
また、上述の第一~第十二実施形態の有機EL表示装置は、例えば、図18に示す携帯型ゲーム機に適用できる。
図18に示す携帯型ゲーム機260は、操作ボタン261、262、外部接続端子263、表示部264および筐体265等を備えている。
そして、表示部264として上述の第一~第十二実施形態の有機EL表示装置を好適に適用できる。上述の第一~第十二実施形態の有機EL表示装置を携帯型ゲーム機260の表示部264に適用することによって、良好な発光効率で映像を表示することができる。
また、上述の第一~第十二実施形態の有機EL表示装置は、例えば、図19に示すノートパソコンに適用できる。
図19に示すノートパソコン270は、表示部271、キーボード272、タッチパッド273、メインスイッチ274、カメラ275、記録媒体スロット276および筐体277等を備えている。
そして、表示部271として上述の第一~第十二実施形態の有機EL表示装置を好適に適用できる。上述の第一~第十二実施形態の有機EL表示装置をノートパソコン270の表示部271に適用することによって、良好な発光効率で映像を表示することができる。
さらに、上述の第一~第十二実施形態の有機EL表示装置は、例えば、図20に示すタブレット端末に適用できる。
図20に示すタブレット端末280は、表示部(タッチパネル)281、カメラ282および筐体283等を備えている。
そして、表示部281として上述の第一~第十二実施形態の有機EL表示装置を好適に適用できる。上述の第一~第十二実施形態の有機EL表示装置をタブレット端末280の表示部281に適用することによって、良好な発光効率で映像を表示することができる。
以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記の実施形態に限定されないことは言うまでもない。上記の実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
その他、表示装置、照明装置の各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
基板として、25mm×25mm角、厚さ0.7mmのガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
まず、ガラス基板の一面に、スピンコート法により、黒色隔壁材料(BKレジスト、東京応化社製)を塗布した。
その後、黒色隔壁材料を塗布したガラス基板を、70℃にて15分間プリベークして、膜厚1μmの塗膜を形成した。
次に、その塗膜に、所望の画像パターンが形成できるマスク(画素領域として2mm角の開口部が4ヵ所設けられたもの。)を被せて、塗膜にi線(100mJ/cm)を照射し、露光した。
次に、現像液として炭酸ナトリウム水溶液を用いて、塗膜を現像し、純水でリンス処理を行い、光吸収層(低反射層)を得た。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、前記のガラス基板の一面上に、スピンコート法により、このポジ型レジストを塗布し、前記の光吸収層上に、膜厚2μmの光反射性バンクを形成した。
次に、前記のバンクによって区画された4ヵ所の領域に、従来の方法により、膜厚1μmの赤色カラーフィルター、緑色カラーフィルター、青色カラーフィルター、カラーフィルター未形成領域をパターン形成した。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンレッド(0.1g)とを溶解し、波長変換層形成用塗液を調製した。
次に、前記のガラス基板のカラーフィルター上に、スピンコート法により、波長変換層形成用塗液を塗布し、膜厚2μmの波長変換層を形成した。
上記プロセスを、ドライエアー中で行った。
次に、上記の波長変換層が形成された基板を、グローブボックス(水分濃度:1ppm以下、酸素濃度:1ppm以下)に移し、80℃にて1時間加熱し、波長変換層中の水分、酸素を除去した。
次に、波長変換層上に、スパッタリング法により、膜厚2μmのSiON膜からなるガスバリア層を形成した。
次に、前記のバンクによって区画された4ヵ所の領域に、シャドーマスクを用いたマスク蒸着法により、第一電極として、膜厚150nmの透明電極IZO(酸化インジウム-酸化亜鉛)をパターン形成した。さらに、スパッタリング法により、膜厚150nmの反射電極Al(アルミニウム)と膜厚180nmの透明電極IZO(酸化インジウム-酸化亜鉛)を積層して形成し、従来のフォトリソグラフィー法により、緑色画素に対応した形状にパターン形成した。これにより、青色画素と緑色画素の透明電極の膜厚を変えることによって、反射電極と半透明電極の間での干渉(マイクロキャビティー)効果による色純度の強調を行うことが可能となる。
ここでは、第一電極の面積を、180μm×540μmとした。また、画素が形成される表示部の上下左右に幅2mmの封止エリアを設け、さらに、短辺側における封止エリアの外に、長さ2mmの端子取出し部を設け、長辺側における折り曲げを行う方に、長さ2mm端子取出し部を設けた。
次に、第一電極上に、スピンコート法により、前記のバンク材料と同様にルチル型酸化チタンを含有する感光性樹脂を、厚さ200nmとなるように積層した後、従来のフォトリソグラフィー法により、第一電極のエッジ部を覆うように感光性樹脂をパターン形成した。ここでは、第一電極のエッジ部を覆う構造としてエッジカバーを形成した。
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用いて、抵抗加熱蒸着法により、第一電極上に、厚さ20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、正孔注入層上に、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート 
イリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて、厚さ10nmの電子輸送層を形成した。
次に、電子輸送層上に、フッ化リチウム(LiF)を用いて、厚さ0.5nmの電子注入層を形成した。
この後、電子注入層上に、厚さ100nmの第二電極を形成した。ここでは、真空蒸着法により、マグネシウムと銀を、それぞれの蒸着速度を0.1Å/sec、0.9Å/secとし、共蒸着することにより、この第二電極を形成した。
次に、前記の各部位が形成されたガラス基板と、封止用基板とを、貼り合わせ用のグローブボックス内(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
次に、封止用基板の外周部に、ディスペンサーを用いて、20μmのスペーサーを分散させた紫外線硬化型接着剤(商品名:30Y-437、スリーボンド社製) を塗布し、外周封止材とした。さらに、その外周封止材の内側において、封止用基板上に乾燥材を張り付けた。
次に、前記の各部位が形成されたガラス基板と、封止基板とを貼り合わせ、外周封止材に、UVランプを用いて紫外線を照射し、外周封止材を硬化させて、外周封止層を形成した。
最後に、第一電極と第二電極のうち、封止用基板からはみ出している部分に配線を施して、外部電源に接続し、実施例1の有機EL表示装置を得た。
ここで、外部電源により、所望の電流を各画素に印加することによって、有機EL表示装置の発光特性を評価した。結果を表1に示す。
[実施例2]
有機発光層を形成する有機発光材料として、FIrtazを用いた以外は、実施例1と同様にして、実施例2の有機EL表示装置を作製した。
また、実施例1と同様にして、実施例2の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[実施例3]
有機発光層を形成する有機発光材料として、FIrN4を用いた以外は、実施例1と同様にして、実施例3の有機EL表示装置を作製した。
また、実施例1と同様にして、実施例3の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[実施例4]
有機発光層を形成する有機発光材料として、Fir6を用いた以外は、実施例1と同様にして、実施例4の有機EL表示装置を作製した。
また、実施例1と同様にして、実施例4の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[実施例5]
有機発光層を形成する有機発光材料として、Ir(F4ppy)3を用いた以外は、実施例1と同様にして、実施例5の有機EL表示装置を作製した。
また、実施例1と同様にして、実施例5の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[比較例1]
有機発光層を形成する有機発光材料として、4,4’-ビス[2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を用いた以外は、実施例1と同様にして、比較例1の有機EL表示装置を作製した。
また、実施例1と同様にして、比較例1の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[比較例2]
有機発光層を形成する有機発光材料として、Ir(dfpypy)3を用いた以外は、実施例1と同様にして、比較例2の有機EL表示装置を作製した。
また、実施例1と同様にして、比較例2の有機EL表示装置の発光特性を評価した。結果を表1に示す。
[実施例6]
有機EL層を、次のようなタンデム構造としたこと以外は、実施例1と同様にして、実施例6の有機EL表示装置を作製した。
また、実施例1と同様にして、実施例6の有機EL表示装置の発光特性を評価した。結果を表1に示す。
正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)と(dfbmb)Ir(fptz)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
さらに、電子輸送層上に、正孔注入材料として、ジピラジノ[2,3-f:2’,3’-h]キノザリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔注入層を形成した。
次に、正孔注入層上に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’ -ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、4,4’-N,N’-ジカルバゾール-ビフェニル(CBP)(ホスト材料)とIr(ppy)(緑光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
Figure JPOXMLDOC01-appb-T000001

[実施例7]
基板として、100×100mm角、厚さ0.7mmのガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
まず、ガラス基板の一面に、スピンコート法により、黒色隔壁材料(BKレジスト、東京応化社製)を塗布した。
その後、黒色隔壁材料を塗布したガラス基板を、70℃にて15分間プリベークして、膜厚1μmの塗膜を形成した。
次に、その塗膜に、所望の画像パターンが形成できるマスク(画素ピッチ200μm、線幅20μm)を被せて、塗膜にi線(100mJ/cm)を照射し、露光した。
次に、現像液として炭酸ナトリウム水溶液を用いて、塗膜を現像し、純水でリンス処理を行い、光吸収層(低反射層)を得た。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、前記のガラス基板の一面上に、スピンコート法により、このポジ型レジストを塗布し、画素ピッチ200μm、線幅20μmでパターン形成し、前記の光吸収層上に、膜厚5μmの光反射性バンクを形成した。
次に、前記のバンクによって区画された領域に、従来の方法により、膜厚1μmの赤色カラーフィルター、緑色カラーフィルター、青色カラーフィルターをパターン形成した。
次に、青色画素には青色光散乱層を、緑色画素には緑色光散乱層を形成した。ここで、光散乱層を形成するには、まず、平均粒径1.5μmのシリカ粒子(屈折率:1.65)20gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)に溶解されたポリビニルアルコール30gを加え、分散機により攪拌して、光散乱層形成用塗液を調製した。
次に、前記のガラス基板上の低反射層が形成されていない領域に、スクリーン印刷法により、その光散乱層形成用塗液を塗布した。引き続き、真空オーブンにより、200℃、10mmHgの条件で4時間加熱乾燥し、光散乱層を形成した。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンレッド(0.1g)とを溶解し、波長変換層形成用塗液を調製した。
次に、前記のガラス基板のカラーフィルター上に、スピンコート法により、波長変換層形成用塗液を塗布し、膜厚2μmの波長変換層を形成した。
次に、青色画素、緑色画素に対応する部分は、光を透過し、赤色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、前記波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより、青色画素、緑色画素においては、波長変換層の青色領域、緑色領域での吸収を低下させ、かつ、赤色波長変換機能を低下させ、赤色発光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率良く透過させ、かつ、赤色成分の発光の混色による色純度の低下を防止することができた。
上記プロセスは、ドライエアー中で行った。
次に、上記の波長変換層が形成された基板を、グローブボックス(水分濃度:1ppm以下、酸素濃度:1ppm以下)に移し、80℃にて1時間加熱し、波長変換層中の水分、酸素を除去した。
次に、波長変換層上に、スパッタリング法により、膜厚2μmのSiON膜からなるガスバリア層を形成した。
基板として、100×100mm角、厚さ0.7mmのガラス基板を用い、このガラス基板上に、PECVD法により、アモルファスシリコン半導体膜を形成した。
次に、アモルファスシリコン半導体膜の結晶化処理を施すことにより、多結晶シリコン半導体膜を形成した。
次に、フォトリソグラフィー法により、多結晶シリコン半導体膜を複数の島状にパターン形成した。続いて、パターン形成した多結晶シリコン半導体層上に、ゲート絶縁膜およびゲート電極層をこの順番で形成し、フォトリソグラフィー法により、パターン形成を行った。
その後、パターン形成した多結晶シリコン半導体膜に、リン等の不純物元素をドーピングすることにより、ソースおよびドレイン領域を形成し、TFT素子を作製した。
その後、平坦化膜を形成した。平坦化膜としては、PECVD法により形成した窒化シリコン膜、スピンコート法により形成したアクリル系樹脂層を、この順で積層し、形成した。
まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることによりソースまたはドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成することにより、アクティブマトリクス基板を得た。
平坦化膜としての機能は、アクリル系樹脂層で実現される。
なお、TFT素子のゲート電位を定電位にするためのコンデンサーは、スイッチング用TFT素子のドレインと、駆動用TFT素子のソースとの間に、層間絶縁膜等の絶縁膜を介することで形成した。
アクティブマトリクス基板上に、平坦化膜を貫通して駆動用TFT素子と、第一電極とをそれぞれ電気的に接続するコンタクトホールを設けた。
次に、各画素を駆動するためのTFT素子と接続した平坦化膜を貫通して設けられたコンタクトホールに電気的に接続するように、スパッタリング法により、各画素の第一電極(陽極)を形成した。
第一電極は、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を90nmの膜厚で積層して形成し、青色画素、赤色画素に対応した形状に、従来のフォトリソグラフィー法により、パターン形成を行った。
さらに、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を180nmの膜厚で積層して形成し、緑色画素に対応した形状に、従来のフォトリソグラフィー法により、パターン形成を行った。
これにより、青色画素と緑色画素の透明電極の膜厚を変えることで、反射電極と半透明電極の間での干渉(マイクロキャビティー)効果による色純度の強調を行うことが可能となる。
ここでは、第一電極の面積を、180μm×540μmとした。また、画素が形成される表示部の上下左右に幅2mmの封止エリアを設け、さらに、短辺側における封止エリアの外に、長さ2mmの端子取出し部を設け、長辺側における折り曲げを行う方に、長さ2mm端子取出し部を設けた。
次に、第一電極上に、スピンコート法により、前記のバンク材料と同様にルチル型酸化チタンを含有する感光性樹脂を、厚さ200nmとなるように積層した後、従来のフォトリソグラフィー法により、第一電極のエッジ部を覆うように感光性樹脂をパターン形成した。ここでは、第一電極の端から10μm分だけ4辺を覆う構造としてエッジカバーを形成した。
次に、前記のアクティブ基板を洗浄した。アクティブ基板の洗浄としては、例えば、アセトン、イソプロピルアルコール(IPA)などを用いて、超音波洗浄を10分間行い、続いて、UV-オゾン洗浄を30分間行った。
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、ジピラジノ[2,3-f:2’,3’-h]キノザリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いて、抵抗加熱蒸着法により、第一電極上に、厚さ20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、正孔注入層上に、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネ-トイリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
さらに、電子輸送層上に、正孔注入材料として、ジピラジノ[2,3-f:2’,3’-h]キノザリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔注入層を形成した。
次に、正孔注入層上に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’ -ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネ-トイリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
この後、電子輸送層上に、厚さ100nmの第二電極を形成した。
まず、イオンビームスパッタリング装置の成膜チャンバに、前記の各部位が形成されたガラス基板を固定した。
次に、ターゲットとしてIZO焼結体を用い、成膜条件(プラズマビームパワー:4.0kW、ビーム断面積SB2:12.56cm、ビームエネルギー密度:319W/cm、成膜膜厚:200nm、成膜ガスとして、Ar:20sccm、O:10sccmを導入、ソース材質:IZO(ZnOが10質量%)の焼結体、ソース密度:相対密度99%以上、この材料の真密度は、Inの真密度が7.18g/cm、SnOの真密度が6.95g/cmであるから、7.156g/cmとなる。)で第二電極(透明電極)を形成した。
次に、プラズマCVD法により、膜厚3μmのSiOからなる無機保護層を形成した後、シャドーマスクを用いて、表示部の端から上下左右2mmの封止エリアまで、無機保護層をパターン形成した。
以上により、アクティブ駆動型有機EL基板を作製した。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、貼り合わせ用のグローブボックス内(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
次に、波長変換基板の外周部に、ディスペンサーを用いて、20μmのスペーサーを分散させた紫外線硬化型接着剤(商品名:30Y-437、スリーボンド社製) を塗布し、外周封止材とした。さらに、その外周封止材の中に、ディスペンサーを用いて、充填剤として、透明シリコーン樹脂(商品名:TSE3051、東芝シリコーン社製) を塗布した。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、真空チャンバ内に移送し、真空チャンバ内を1Paまで減圧した。そして、アライメントマーカーを用いて、一次アライメントを行いながら、アクティブ駆動型有機EL基板と波長変換基板を仮接着し、固定した。
次に、仮接着したアクティブ駆動型有機EL基板と波長変換基板をグローブボックスに移送し、CCDを用いて二次アライメントを行った。
次に、外周封止材に、UVランプを用いて紫外線を照射し、外周封止材を硬化させて、外周封止層を形成した。
次に、80℃にて1時間加熱し、前記の透明シリコーン樹脂をゲル化させた。
次に、光取り出し側の基板に、偏光板を貼り合わせ、アクティブ駆動型有機EL表示装置を得た。
最後に、短辺側に形成した端子を、ソースドライバを介して電源回路に、長辺側に形成した端子を、ゲートドライバを介して外部電源に接続し、80×80mm角の表示部を持つアクティブ駆動型有機EL表示装置を得た。
ここで、外部電源により、所望の電流を各画素に印加することによって、アクティブ駆動型有機EL表示装置の発光特性を評価した。
赤色画素において、青緑色燐光発光有機EL部を任意にスイッチング可能な励起光源として用い、赤色蛍波長変換層にて、青緑色燐光有機EL部からの青色の発光を、マイクロキャビティー効果により青色光から赤色光に変換し、さらに、その赤色光を、赤色カラーフィルターを透過させることによって色純度を向上させることができた。
緑色画素において、青緑色燐光有機EL部からの青色の発光を、マイクロキャビティー効果により青色光から緑色光に変換し、さらに、その緑色光を、緑色カラーフィルターを透過させることによって色純度を向上させることができた。
青色画素において、青緑色燐光有機EL部からの青色の発光を、マイクロキャビティー効果による青色光の発光を、さらに、青色カラーフィルターを透過させることによって色純度を向上させることができた。
また、緑色画素と青色画素では、光散乱層にて、マイクロキャビティー効果による指向性を有する光を等方発光として、フルカラー表示が可能で、広色再現範囲(NTSC比:90%)、視野角特性の良い画像を得ることができた。
[実施例8]
赤色画素に、転写法により、波長変換層を形成したこと以外は、実施例7と同様にして、アクティブ駆動型有機EL表示装置を作製した。
波長変換層の形成では、まず、ガラス基板上に、スパッタリング法により、クロムからなる厚さ200nmの熱変換層を形成し、転写用基板とした。
次に、転写用基板上に、スピンコート法により、実施例1で使用した波長変換層形成用塗液を塗布し、厚さ5μmの波長変換層を形成し、波長変換層形成用の転写用基板を作製した。
次に、カラーフィルターが形成された基板上に、前記の波長変換層形成用の転写基板を配置し、所定の赤色画素上に、ダイオードレーザーにより、赤色波長変換層を転写形成した。
このように作製した有機EL表示装置においてもフルカラー表示が可能で、広色再現範囲(NTSC比:90%)、視野角特性の良い画像を得ることができた。
[実施例9]
基板として、100mm×100mm角、0.7mm厚のガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
まず、ガラス基板の一面に、スピンコート法により、黒色隔壁材料(BKレジスト、東京応化社製)を塗布した。
その後、黒色隔壁材料を塗布したガラス基板を、70℃にて15分間プリベークして、膜厚1μmの塗膜を形成した。
次に、その塗膜に、所望の画像パターンが形成できるマスク(画素ピッチ200μm、線幅20μm)を被せて、塗膜にi線(100mJ/cm)を照射し、露光した。
次に、現像液として炭酸ナトリウム水溶液を用いて、塗膜を現像し、純水でリンス処理を行い、光吸収層(低反射層)を得た。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、前記のガラス基板の一面上に、スピンコート法により、このポジ型レジストを塗布し、画素ピッチ200μm、線幅20μmでパターン形成し、前記の光吸収層上に、膜厚5μmの光反射性バンクを形成した。
次に、前記のバンクによって区画された領域に、従来の方法により、膜厚1μmの赤色カラーフィルター、緑色カラーフィルター、青色カラーフィルターをパタ-ン形成した。
次に、前記の各カラーフィルターが形成されたガラス基板を、グロ-ブボックス(水分濃度:1ppm以下、酸素濃度:1ppm以下)に移し、80℃にて1時間加熱し、各カラーフィルター中の水分、酸素を除去した。
次に、各カラーフィルター上に、スパッタリング法により、膜厚2μmのSiON膜からなるガスバリア層を形成し、カラーフィルター基板を得た。
基板として、100mm×100mm角、厚さ0.7mmのガラス基板を用い、このガラス基板上に、PECVD法により、アモルファスシリコン半導体膜を形成した。
次に、アモルファスシリコン半導体膜の結晶化処理を施すことにより、多結晶シリコン半導体膜を形成した。
次に、フォトリソグラフィー法により、多結晶シリコン半導体膜を複数の島状にパターン形成した。続いて、パターン形成した多結晶シリコン半導体層上に、ゲート絶縁膜およびゲート電極層をこの順番で形成し、フォトリソグラフィー法により、パターン形成を行った。
その後、パターン形成した多結晶シリコン半導体膜に、リン等の不純物元素をドーピングすることにより、ソースおよびドレイン領域を形成し、TFT素子を作製した。
その後、平坦化膜を形成した。平坦化膜としては、PECVD法により形成した窒化シリコン膜、スピンコート法により形成したアクリル系樹脂層を、この順で積層し、形成した。
まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることによりソースまたはドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成することにより、アクティブマトリクス基板を得た。
平坦化膜としての機能は、アクリル系樹脂層で実現される。
なお、TFT素子のゲート電位を定電位にするためのコンデンサーは、スイッチング用TFT素子のドレインと、駆動用TFT素子のソースとの間に、層間絶縁膜等の絶縁膜を介することで形成した。
アクティブマトリクス基板上に、平坦化膜を貫通して駆動用TFT素子と、第一電極とをそれぞれ電気的に接続するコンタクトホールを設けた。
次に、各画素を駆動するためのTFT素子と接続した平坦化膜を貫通して設けられたコンタクトホールに電気的に接続するように、スパッタリング法により、各画素の第一電極(陽極)を形成した。
第一電極は、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を90nmの膜厚で積層して形成し、青色画素に対応した形状に、従来のフォトリソグラフィー法により、パターン形成を行った。
さらに、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を180nmの膜厚で積層して形成し、緑色画素、赤色画素に対応した形状に、従来のフォトリソグラフィー法により、パターン形成を行った。
これにより、青色画素と緑色画素の透明電極の膜厚を変えることで、反射電極と半透明電極の間での干渉(マイクロキャビティー)効果による色純度の強調を行うことが可能となる。
ここでは、第一電極の面積を、180μm×540μmとした。また、画素が形成される表示部の上下左右に幅2mmの封止エリアを設け、さらに、短辺側における封止エリアの外に、長さ2mmの端子取出し部を設け、長辺側における折り曲げを行う方に、長さ2mm端子取出し部を設けた。
次に、第一電極上に、スピンコート法により、前記のバンク材料と同様にルチル型酸化チタンを含有する感光性樹脂を、厚さ200nmとなるように積層した後、従来のフォトリソグラフィー法により、第一電極のエッジ部を覆うように感光性樹脂をパターン形成した。ここでは、第一電極の端から10μm分だけ4辺を覆う構造としてエッジカバーを形成した。
次に、前記のアクティブ基板を洗浄した。アクティブ基板の洗浄としては、例えば、アセトン、イソプロピルアルコール(IPA)などを用いて、超音波洗浄を10分間行い、続いて、UV-オゾン洗浄を30分間行った。
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、ジピラジノ[2,3-f:2’,3’-h]キノザリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いて、抵抗加熱蒸着法により、第一電極上に、厚さ20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、正孔注入層上に、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
さらに、電子輸送層上に、正孔注入材料として、ジピラジノ[2,3-f:2’,3’-h]キノザリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔注入層を形成した。
次に、正孔注入層上に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’ -ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、厚さ20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を用いて、厚さ10nmの電子輸送層を形成した。ここでは、真空蒸着法により、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)とリチウム(Li)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この電子輸送層を形成した。
この後、電子輸送層上に、厚さ100nmの第二電極を形成した。
まず、イオンビームスパッタリング装置の成膜チャンバに、前記の各部位が形成されたガラス基板を固定した。
次に、ターゲットとしてIZO焼結体を用い、成膜条件(プラズマビームパワー:4.0kW、ビーム断面積SB2:12.56cm、ビームエネルギー密度:319W/cm、成膜膜厚:200nm、成膜ガスとして、Ar:20sccm、O:10sccmを導入、ソース材質:IZO(ZnOが10質量%)の焼結体、ソース密度:相対密度99%以上、この材料の真密度は、Inの真密度が7.18g/cm、SnOの真密度が6.95g/cmであるから、7.156g/cmとなる。)で第二電極(透明電極)を形成した。
次に、プラズマCVD法により、膜厚3μmのSiOからなる無機保護層を形成した後、シャドーマスクを用いて、表示部の端から上下左右2mmの封止エリアまで、無機保護層をパターン形成した。
次に、表示部全体に、抵抗加熱蒸着法により、クマリン6と4-(ジシアノメチレン)-2-ターシャリーブチル-6-(1,1,7,7,-テトラメチルジュノリジン(DCJTB)を、それぞれの蒸着速度を10nm/sec、0.5nm/secとし、共蒸着することにより、厚さ400nmの波長変換層を形成した。
次に、青色画素、緑色画素に対応する部分は、光を透過し、赤色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、前記波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより青色画素、緑色画素においては、波長変換層の青色領域、緑色領域での吸収を低下させ、かつ、赤色波長変換機能を低下させ、赤色発光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率良く透過させ、かつ、赤色成分の発光の混色による色純度の低下を防止することができた。
以上により、アクティブ駆動型有機EL基板を作製した。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、貼り合わせ用のグローブボックス内(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。
なお、アクティブ駆動型有機EL基板の外周部には、予め熱硬化性樹脂が塗布されており、その熱硬化性樹脂を介して両基板を密着し、90℃にて2時間加熱することにより、熱硬化性樹脂を硬化させた。また、前記の貼り合わせ工程は、有機層の水分による劣化を防止するために、ドライエアー環境下(水分量:-60℃)で行った。
次に、光取り出し側の基板に、偏光板を貼り合わせ、アクティブ駆動型有機EL表示装置を得た。
最後に、短辺側に形成した端子を、ソースドライバを介して電源回路に、長辺側に形成した端子を、ゲートドライバを介して外部電源に接続し、80mm×80mm角の表示部を持つアクティブ駆動型有機EL表示装置を得た。
ここで、外部電源により、所望の電流を各画素に印加することによって、アクティブ駆動型有機EL表示装置の発光特性を評価した。
赤色画素において、青緑色燐光発光有機EL部を任意にスイッチング可能な励起光源として用い、赤色蛍波長変換層にて、青緑色燐光有機EL部からの緑色の発光を、マイクロキャビティー効果により緑色光から赤色光に変換し、さらに、その赤色光を、赤色カラーフィルターを透過させることによって色純度を向上させることができた。
緑色画素において、青緑色燐光有機EL部からの緑色の発光を、マイクロキャビティー効果による緑色光を、さらに、緑色カラーフィルターを透過させることによって色純度を向上させることができた。
青色画素において、青緑色燐光有機EL部からの青色の発光を、マイクロキャビティー効果による青色光を、さらに、青色カラーフィルターを透過させることによって色純度を向上させることができた。
また、緑色画素と青色画素では、光散乱層にて、マイクロキャビティー効果による指向性を有する光を等方発光として、フルカラー表示が可能で、広色再現範囲(NTSC比:90%)、視野角特性の良い画像を得ることができた。
[実施例10]
赤色画素に、転写法により、波長変換層を形成したこと以外は、実施例9と同様にして、アクティブ駆動型有機EL表示装置を作製した。
波長変換層の形成では、まず、ガラス基板上に、スパッタリング法により、クロムからなる厚さ200nmの熱変換層を形成し、転写用基板とした。
次に、転写用基板上に、抵抗加熱蒸着法により、クマリン6と4-(ジシアノメチレン)-2-ターシャリーブチル-6-(1,1,7,7,-テトラメチルジュノリジン(DCJTB)を、それぞれの蒸着速度を10nm/sec、0.5nm/secとし、共蒸着することにより、厚さ400nmの波長変換層を形成し、波長変換層形成用の転写用基板を作製した。
次に、カラーフィルターが形成された基板上に、前記の波長変換層形成用の転写基板を配置し、所定の赤色画素上に、ダイオードレーザーにより、赤色波長変換層を転写形成した。
このように作製した有機EL表示装置においてもフルカラー表示が可能で、広色再現範囲(NTSC比:92%)、視野角特性の良い画像を得ることができた。
本発明は、有機EL表示装置に適用することができる。
10 有機EL表示装置
11 第一基板
12 第一電極
13 第二電極
14 有機層
15 有機エレクトロルミネッセンス部(有機EL部)
16 青色カラーフィルター
17 青色画素部
18 緑色カラーフィルター
19 緑色画素部
20 波長変換層
21 赤色画素部
22 エッジカバー(隔壁)
23 第二基板
24 封止膜
25 接着層
26 波長変換層
27 波長変換層
28 赤色カラーフィルター
29 光吸収層(低反射層)
30 低屈折率層
31 反射電極
32 透明電極
33 正孔注入層
34 正孔輸送層
35 有機発光層
36 電子輸送層
37 電子注入層
38 偏光板
40 有機EL表示装置
41 光散乱層
50 有機EL表示装置
51 バンク
60 有機EL表示装置
70 有機EL表示装置
80 有機EL表示装置
90 有機EL表示装置
100 有機EL表示装置
110 有機EL表示装置
111 TFT(駆動素子)
112 ゲート電極
113 ゲート絶縁膜
114 ソース電極
115 ドレイン電極
116 配線
117 平坦化膜
118 コンタクトホール
119 充填剤
120 絶縁層
121 正孔防止層
130 有機EL表示装置
140 有機EL表示装置
201 AD変換回路
202 画像処理回路
203 制御回路
204 走査線駆動回路
205 信号線駆動回路
206 電源回路
207 画素部
208 走査線
209 信号線
210 電源線
211 スイッチングトランジスタ
212 駆動トランジスタ
213 有機EL素子
214 キャパシタ
220 シーリングライト(照明装置)
221 発光部
222 吊下線
223 電源コード
230 照明スタンド(照明装置)
231 発光部
232 スタンド
233 メインスイッチ
234 電源コード
240 携帯電話
241 音声入力部
242 音声出力部
243 アンテナ
244 操作スイッチ
245 表示部
246 筐体
250 薄型テレビ
251 表示部
252 スピーカ
253 キャビネット
254 スタンド
260 携帯型ゲーム機
261,262 操作ボタン
263 外部接続端子
264 表示部
265 筐体
270 ノートパソコン
271 表示部
272 キーボード
273 タッチパッド
274 メインスイッチ
275 カメラ
276 記録媒体スロット
277 筐体
280 タブレット端末
281 表示部(タッチパネル)
282 カメラ
283 筐体

Claims (20)

  1. 第一電極と第二電極の間に、2つの発光成分を有する有機発光層を少なくとも有する有機層が挟持されてなる有機エレクトロルミネッセンス部と、
    前記有機エレクトロルミネッセンス部からの発光のうち、青色の波長域の光を主に透過する青色カラーフィルターを有する青色画素部と、
    前記有機エレクトロルミネッセンス部からの発光のうち、緑色の波長域の光を主に透過する緑色カラーフィルターを有する緑色画素部と、
    前記有機エレクトロルミネッセンス部からの発光のうち、青色の波長域の光および緑色の波長域の光の少なくとも一方を吸収し、赤色の波長域の光を発光する波長変換層を有する赤色画素部と、を備えたことを特徴とする有機エレクトロルミネッセンス表示装置。
  2. さらに第一基板を有し、
    前記第一基板上に、前記有機エレクトロルミネッセンス部が設けられ、
    前記第一基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられたことを特徴とする請求項1に記載の有機エレクトロルミネッセンス表示装置。
  3. さらに第一基板と第二基板を有し、
    前記第一基板と前記第二基板の間に、前記有機エレクトロルミネッセンス部が設けられ、
    前記第一基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられたことを特徴とする請求項1に記載の有機エレクトロルミネッセンス表示装置。
  4. さらに第一基板と第二基板を有し、
    前記第一基板と前記第二基板の間に、前記有機エレクトロルミネッセンス部が設けられ、
    前記第二基板と前記有機エレクトロルミネッセンス部の間に、前記青色画素部、前記緑色画素部および前記赤色画素部が設けられたことを特徴とする請求項1に記載の有機エレクトロルミネッセンス表示装置。
  5. 前記赤色画素部は、さらに、赤色の波長域の光を主に透過する赤色カラーフィルターを有することを特徴とする請求項1ないし4のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  6. 前記有機発光層に含まれる2つの発光成分のうち、第一成分のピーク波長の位置が450nm~480nm、第二成分のピーク波長の位置が480nm~530nmであることを特徴とする請求項1ないし5のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  7. 前記第一成分と前記第二成分のピーク波長の差が、20nm~80nmであることを特徴とする請求項6に記載の有機エレクトロルミネッセンス表示装置。
  8. 前記第一成分と前記第二成分のピーク強度比が、7:3~5:5であることを特徴とする請求項6または7に記載の有機エレクトロルミネッセンス表示装置。
  9. 前記波長変換層は、表示領域に亘って展開する連続膜からなることを特徴とする請求項1ないし8のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  10. 前記有機エレクトロルミネッセンス部はタンデム構造をなし、かつ、前記第一電極または前記第二電極の一方は反射性の電極であり、前記第一電極または前記第二電極の他方は光透過性の電極であることを特徴とする請求項1ないし9のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  11. 前記有機エレクトロルミネッセンス部のタンデム構造は、前記有機発光層として、青緑色の波長域の光を発光する有機発光層を有することを特徴とする請求項10に記載の有機エレクトロルミネッセンス表示装置。
  12. 前記有機エレクトロルミネッセンス部のタンデム構造は、前記有機発光層として、前記第一成分を含有する第一有機層を有する第一有機エレクトロルミネッセンス部と、前記有機発光層として、前記第二成分を含有する第二有機層を有する第二有機エレクトロルミネッセンス部と、を有することを特徴とする請求項10に記載の有機エレクトロルミネッセンス表示装置。
  13. 前記有機エレクトロルミネッセンス部の各画素間に対応した位置に、少なくとも前記有機エレクトロルミネッセンス部からの発光を反射または散乱する隔壁が設けられたことを特徴とする請求項1ないし12のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  14. 少なくとも前記赤色画素部の周辺に、前記波長変換層からの発光および前記有機エレクトロルミネッセンス部からの発光の少なくとも一方を反射または散乱する隔壁が設けられたことを特徴とする請求項1ないし13のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  15. 少なくとも光取出し側に配置された基板と前記波長変換層の間に、前記光取出し側に配置された基板の屈折率よりも低い屈折率を有する低屈折率層が設けられたことを特徴とする請求項2ないし14のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  16. 前記青色画素部および前記緑色画素部の少なくとも一方は、配光変換層を有することを特徴とする請求項1ないし15のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  17. 前記青色画素部および前記緑色画素部の少なくとも一方に設けられた前記配光変換層の画素間に、前記有機エレクトロルミネッセンス部からの発光および前記有機エレクトロルミネッセンス部の少なくとも一方からの発光の散乱光を反射または散乱する隔壁が設けられたことを特徴とする請求項16に記載の有機エレクトロルミネッセンス表示装置。
  18. 光取出し側に配置された基板と前記有機エレクトロルミネッセンス部の間に、前記光取出し側に配置された基板の屈折率よりも低い屈折率を有する低屈折率層が設けられたことを特徴とする請求項17に記載の有機エレクトロルミネッセンス表示装置。
  19. 前記有機エレクトロルミネッセンス部を駆動するアクティブ素子をさらに備えたことを特徴とする請求項1ないし18のいずれか1項に記載の有機エレクトロルミネッセンス表示装置。
  20. 請求項1ないし19のいずれか1項に記載の有機エレクトロルミネッセンス表示装置を備えたことを特徴とする電子機器。
PCT/JP2012/079362 2011-11-18 2012-11-13 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法 WO2013073521A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-252734 2011-11-18
JP2011252734A JP2015026417A (ja) 2011-11-18 2011-11-18 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2013073521A1 true WO2013073521A1 (ja) 2013-05-23

Family

ID=48429578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079362 WO2013073521A1 (ja) 2011-11-18 2012-11-13 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法

Country Status (2)

Country Link
JP (1) JP2015026417A (ja)
WO (1) WO2013073521A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181678A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device
CN109494238A (zh) * 2017-09-13 2019-03-19 上海自旭光电科技有限公司 有机发光二极管显示器件
EP3761369A1 (en) * 2019-07-02 2021-01-06 Samsung Display Co., Ltd. Color conversion substrate and display device including the same
EP3955307A1 (en) * 2020-08-14 2022-02-16 Samsung Display Co., Ltd. Display device
US11398531B2 (en) * 2019-05-30 2022-07-26 Samsung Display Co., Ltd. Plurality of light conversion layers between first and second substrates
WO2023206349A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102587215B1 (ko) * 2016-12-21 2023-10-12 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
WO2018230453A1 (ja) * 2017-06-14 2018-12-20 日東電工株式会社 光学積層体
KR20220023892A (ko) 2020-08-21 2022-03-03 삼성디스플레이 주식회사 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177895A (ja) * 1996-12-18 1998-06-30 Tdk Corp 有機elカラーディスプレイ
JPH1167451A (ja) * 1997-08-20 1999-03-09 Idemitsu Kosan Co Ltd 有機el発光装置及び多色発光装置
JP2005123088A (ja) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd 色変換フィルタおよびそれを用いた有機elディスプレイ
WO2006022123A1 (ja) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. 有機el表示装置
JP2007109518A (ja) * 2005-10-13 2007-04-26 Fuji Electric Holdings Co Ltd 有機el発光ディスプレイの製造方法
JP2008511108A (ja) * 2004-08-25 2008-04-10 ノヴァレッド・アクチエンゲゼルシャフト 有機発光ダイオードに基づいたディスプレイおよびその製造方法
JP2010192366A (ja) * 2009-02-20 2010-09-02 Sony Corp 有機電界発光素子および有機電界発光素子の製造方法
WO2011125363A1 (ja) * 2010-04-07 2011-10-13 シャープ株式会社 有機el素子、有機elディスプレイおよび有機el表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177895A (ja) * 1996-12-18 1998-06-30 Tdk Corp 有機elカラーディスプレイ
JPH1167451A (ja) * 1997-08-20 1999-03-09 Idemitsu Kosan Co Ltd 有機el発光装置及び多色発光装置
JP2005123088A (ja) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd 色変換フィルタおよびそれを用いた有機elディスプレイ
JP2008511108A (ja) * 2004-08-25 2008-04-10 ノヴァレッド・アクチエンゲゼルシャフト 有機発光ダイオードに基づいたディスプレイおよびその製造方法
WO2006022123A1 (ja) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. 有機el表示装置
JP2007109518A (ja) * 2005-10-13 2007-04-26 Fuji Electric Holdings Co Ltd 有機el発光ディスプレイの製造方法
JP2010192366A (ja) * 2009-02-20 2010-09-02 Sony Corp 有機電界発光素子および有機電界発光素子の製造方法
WO2011125363A1 (ja) * 2010-04-07 2011-10-13 シャープ株式会社 有機el素子、有機elディスプレイおよび有機el表示装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022130451A (ja) * 2014-05-30 2022-09-06 株式会社半導体エネルギー研究所 発光装置
JP2016006768A (ja) * 2014-05-30 2016-01-14 株式会社半導体エネルギー研究所 発光装置、表示装置及び電子機器
CN106465507A (zh) * 2014-05-30 2017-02-22 株式会社半导体能源研究所 发光装置、显示装置及电子设备
WO2015181678A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device
US10777762B2 (en) 2014-05-30 2020-09-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
US10790462B2 (en) 2014-05-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
US11545642B2 (en) 2014-05-30 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
CN109494238A (zh) * 2017-09-13 2019-03-19 上海自旭光电科技有限公司 有机发光二极管显示器件
US11398531B2 (en) * 2019-05-30 2022-07-26 Samsung Display Co., Ltd. Plurality of light conversion layers between first and second substrates
EP3761369A1 (en) * 2019-07-02 2021-01-06 Samsung Display Co., Ltd. Color conversion substrate and display device including the same
US11943987B2 (en) 2019-07-02 2024-03-26 Samsung Display Co., Ltd. Color conversion substrate
EP3955307A1 (en) * 2020-08-14 2022-02-16 Samsung Display Co., Ltd. Display device
US11930684B2 (en) 2020-08-14 2024-03-12 Samsung Display Co., Ltd. Display device
WO2023206349A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
JP2015026417A (ja) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2013073611A1 (ja) 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
US9091415B2 (en) Light-emitting device, and display apparatus, which can efficiently emit, to outside, fluorescence generated in fluorescent layer and can realize high-luminance light emission and in which generation of blurriness and fuzziness of display is suppressed
WO2013073521A1 (ja) 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
WO2013137052A1 (ja) 蛍光体基板およびこれを備えた表示装置
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
WO2014084012A1 (ja) 散乱体基板
WO2013154133A1 (ja) 光散乱体、光散乱体膜、光散乱体基板、光散乱体デバイス、発光デバイス、表示装置、および照明装置
WO2012090786A1 (ja) 発光デバイス、表示装置、及び照明装置
WO2013183751A1 (ja) 蛍光体基板、発光デバイス、表示装置、及び照明装置
WO2012108384A1 (ja) 蛍光体基板、およびこれを用いた表示装置、照明装置
WO2013183696A1 (ja) 蛍光体基板、表示装置および照明装置
JP2014052606A (ja) 蛍光体基板、発光デバイス、表示装置、及び照明装置
WO2013133139A1 (ja) 波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
WO2013038971A1 (ja) 発光デバイス、表示装置、及び照明装置
JP2016164855A (ja) 発光装置並びにこれを備えた表示装置、照明装置および電子機器
JP2016218151A (ja) 波長変換基板、発光装置並びにこれを備えた表示装置、照明装置および電子機器
WO2015174464A1 (ja) 有機エレクトロルミネッセンス表示装置
WO2012091018A1 (ja) 有機el表示ユニット、有機el表示装置、及び有機el表示ユニットの製造方法
JP2014038702A (ja) 波長変換基板およびそれを用いた表示装置、電子機器
WO2012043611A1 (ja) 有機el表示装置、及びその製造方法
WO2011145418A1 (ja) 蛍光体表示装置および蛍光体層
JP2016143658A (ja) 発光素子および表示装置
WO2013065649A1 (ja) 有機発光素子
US8547013B2 (en) Organic EL display device with a color converting layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP