WO2023087250A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023087250A1
WO2023087250A1 PCT/CN2021/131769 CN2021131769W WO2023087250A1 WO 2023087250 A1 WO2023087250 A1 WO 2023087250A1 CN 2021131769 W CN2021131769 W CN 2021131769W WO 2023087250 A1 WO2023087250 A1 WO 2023087250A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
micro
emitting diode
color
Prior art date
Application number
PCT/CN2021/131769
Other languages
English (en)
French (fr)
Inventor
王维
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/131769 priority Critical patent/WO2023087250A1/zh
Priority to CN202180003464.6A priority patent/CN116762173A/zh
Publication of WO2023087250A1 publication Critical patent/WO2023087250A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel and a display device.
  • Micro-light-emitting diode (Light-Emitting Diode, LED) display technology is regarded as a very potential direction in the future display development due to its advantages of high color gamut, high contrast, and high response speed.
  • the present disclosure proposes a display panel and a display device.
  • the present disclosure provides a display panel, including: a plurality of light emitting device groups, a plurality of light emitting part groups, and a plurality of optical structural units, wherein,
  • the plurality of light-emitting device groups are arranged on the base substrate, each of the plurality of light-emitting device groups includes a plurality of micro-light-emitting diodes, and the plurality of micro-light-emitting diodes includes a first micro-light-emitting diode tube and a second micro-light-emitting diode, the first micro-light-emitting diode and the second micro-light-emitting diode are both used to emit light of a preset color;
  • the plurality of light-emitting unit groups are arranged on the light-emitting side of the plurality of light-emitting device groups, each of the plurality of light-emitting unit groups includes a plurality of light-emitting units, and the plurality of light-emitting units includes a first color conversion unit and a first color conversion unit.
  • the plurality of optical structural units are arranged between the plurality of light emitting device groups and the plurality of light emitting part groups, and the orthographic projection of each of the plurality of optical structural units on the base substrate covers all Orthographic projection of at least one of the plurality of light emitting device groups on the base substrate, each of the plurality of optical structure groups is used to inject the light emitted by the first micro light emitting diode into the base substrate, each of the plurality of optical structure groups is used to inject the light emitted by the first micro light emitting diode into the The first color conversion part is used to inject the light emitted by the second micro-light-emitting diode into the second color conversion part, and the first color conversion part is used to convert the light of the preset color into The light of the first color, the second color conversion part is used to convert the light of the preset color into light of the second color.
  • the first color light and the second color light have different wavelength ranges.
  • the multiple light emitting devices in the light emitting device group further include: a third micro light emitting diode, the third micro light emitting diode is used to emit light of the preset color,
  • the plurality of light-emitting parts in the group of light-emitting parts further include a light-transmitting part, and the orthographic projection of each of the plurality of optical structural units on the base substrate also covers the third micro light-emitting diode on the orthographic projection on the substrate substrate,
  • Each of the plurality of light-emitting structure units is also used to inject the light emitted by the third micro light-emitting diode into the light-transmitting part.
  • the light of the preset color is blue light
  • the light of the first color is red light
  • the light of the second color is green light
  • the multiple light emitting devices in the light emitting device group further include: a third micro light emitting diode, the third micro light emitting diode is used to emit light of the preset color,
  • the plurality of light outlets in the group of light outlets further includes a third color conversion unit, and the orthographic projection of each of the plurality of optical structural units on the base substrate also covers the third micro light emitting diode. an orthographic projection on the substrate substrate,
  • Each of the plurality of optical structural units is also used to inject the light emitted by the third micro light emitting diode into the third color conversion part, and the third color conversion part is used to convert the preset color The light is converted to the third color light.
  • the light of the preset color is ultraviolet light
  • the light of the first color is red light
  • the light of the second color is green light
  • the light of the third color is blue light
  • the light of the preset color is blue light of the first wavelength
  • the light of the first color is red light
  • the light of the second color is green light
  • the light of the third color is blue light of the second wavelength
  • the display panel further includes light-transmitting carriers one-to-one corresponding to the light-emitting device groups, and the light-transmitting carriers corresponding to different light-emitting device groups are arranged at intervals;
  • a barrier layer is provided on the side of the light-transmitting carrier facing the base substrate, and a plurality of accommodating openings are provided on the barrier layer, and the micro light-emitting diodes in the light-emitting device group are arranged one by one in the accommodating openings. In the mouth.
  • a light-shielding layer is disposed between any two adjacent light-transmitting carriers.
  • the micro light emitting diodes include:
  • a first electrode located on a side of the light-transmitting carrier facing the base substrate;
  • a light-emitting stack located on the side of the first electrode away from the light-transmitting carrier, the light-emitting stack includes: a first-type doped semiconductor layer, a quantum well layer, arranged in sequence along a direction away from the light-transmitting carrier and a second type doped semiconductor layer;
  • the second electrode is located on the side of the light-emitting stack away from the light-transmitting carrier.
  • the display panel also includes:
  • a filling layer located between the encapsulation layer and the plurality of optical structural units
  • a spacer substrate located between the plurality of optical structural units and the plurality of light emitting unit groups;
  • the refractive index of the optical structure unit is greater than that of the filling layer
  • the surface of the optical structure unit facing the filling layer is a convex surface
  • the convex surface of the optical structure is attached to the filling layer.
  • the display panel also includes:
  • a spacer substrate located between the plurality of optical structural units and the plurality of light emitting part groups, the spacer substrate is provided with depressions corresponding to the optical structural units one by one;
  • the surface of the optical structural unit facing the spacer substrate is a convex curved surface
  • the convex curved surface of the optical structure is attached to the depression
  • the refractive index of the optical structural unit is greater than the refractive index of the spacer substrate .
  • the optical structural unit adopts a condensing lens, and the distance between the plurality of micro light-emitting diodes and the optical structural unit is 1-2 times the focal length of the condensing lens.
  • the area of the orthographic projection of the first color conversion portion on the base substrate is larger than the area of the orthographic projection of the first micro light emitting diode on the base substrate;
  • the area of the orthographic projection of the second color conversion portion on the base substrate is larger than the area of the orthographic projection of the second micro light emitting diode on the base substrate.
  • the materials of the first color conversion part and the second color conversion part both include quantum dot material or phosphor material.
  • the display panel further includes: an accommodating structure layer, the accommodating structure layer has a plurality of accommodating grooves, and the light emitting parts are arranged in the accommodating grooves in a one-to-one correspondence.
  • the plurality of light emitting parts in each of the light emitting part groups are arranged sequentially along the first direction, and the plurality of micro light emitting diodes in each of the light emitting device groups are arranged in sequence along the first direction;
  • the light emitted by the i-th micro light-emitting diode passes through the optical structural unit, and then shoots to the m-i+1th light-emitting part in the corresponding light-emitting part group
  • m is the number of light emitting units in the light emitting unit group
  • i is an integer, and 1 ⁇ i ⁇ m.
  • the multiple micro light emitting diodes in the light emitting device group are divided into at least one repeating unit, and each repeating unit includes: the third micro light emitting diodes, the second micro light emitting diodes arranged in sequence along the first direction micro light emitting diodes and the first micro light emitting diodes.
  • the plurality of light exits in each of the light exit groups are divided into n first repeating units arranged along the second direction, each of the first repeating units includes c a plurality of light emitting parts; each of the plurality of micro light emitting diodes in the light emitting device group is divided into n second repeating units arranged along the second direction, and each of the second repeating units includes n second repeating units along the second direction c micro light emitting diodes arranged in one direction; wherein, the first direction intersects with the second direction;
  • the light emitted by the qth micro-light emitting diode in the jth second repeating unit passes through the optical structural unit, and then shoots to the n-j+1th light emitting part group in the corresponding In the c-q+1th light-exiting part of the first repeating unit, n and c are both integers greater than 1, q and j are both integers, and 1 ⁇ q ⁇ c, 1 ⁇ j ⁇ n.
  • the second repeating unit includes: a third micro-light emitting diode, a second micro-light-emitting diode, a first micro-light-emitting diode, a Three micro light emitting diodes, a second micro light emitting diode, a first micro light emitting diode; or,
  • some of the second repeating units include: second micro light emitting diodes, first micro light emitting diodes, third micro light emitting diodes arranged in sequence along the first direction, and the rest of the second micro light emitting diodes
  • the repeating unit includes: the third micro light emitting diode, the second micro light emitting diode, and the first micro light emitting diode arranged in sequence along the first direction; or,
  • some of the second repeating units include: a second micro light emitting diode, a first micro light emitting diode, a second micro light emitting diode and a third micro light emitting diode arranged in sequence along the first direction;
  • the rest of the second repeating units include: the second micro light emitting diode, the third micro light emitting diode, the second micro light emitting diode and the first micro light emitting diode arranged in sequence along the first direction.
  • An embodiment of the present disclosure also provides a display device, which includes the above-mentioned display panel.
  • FIG. 1 is a plan view of a display panel provided in some embodiments of the present disclosure.
  • Fig. 2 is a cross-sectional view along line A-A' in Fig. 1 provided in some embodiments of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a light emitting device group provided in some embodiments of the present disclosure.
  • Fig. 4 is a schematic diagram of the imaging principle of the lens.
  • Fig. 5 is a schematic diagram of the light emitted by the light emitting device group irradiating the light emitting part group provided in some embodiments of the present disclosure.
  • Fig. 6 is a cross-sectional view along line A-A' in Fig. 1 provided in other embodiments of the present disclosure.
  • Fig. 7 is a cross-sectional view along line A-A' in Fig. 1 provided in some other embodiments of the present disclosure.
  • Fig. 8 is one of the schematic distribution diagrams of the light emitting device group and the light emitting part group provided in some embodiments of the present disclosure.
  • Fig. 9 is the second schematic diagram of the distribution of the light emitting device group and the light outlet group provided in some embodiments of the present disclosure.
  • Fig. 10 is one of the schematic distribution diagrams of the light emitting device group and the light output part group provided in some other embodiments of the present disclosure.
  • Fig. 11 is the second schematic diagram of the distribution of the light-emitting device group and the light-emitting part group provided in some other embodiments of the present disclosure.
  • Fig. 12 is the third schematic diagram of the distribution of the light emitting device group and the light outlet group provided in other embodiments of the present disclosure.
  • Words such as “comprises” or “comprising” and similar terms mean that the elements or items listed before “comprising” or “comprising” include the elements or items listed after “comprising” or “comprising” and their equivalents, and do not exclude other component or object.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right” and so on are only used to indicate relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the display panel includes a plurality of micro light emitting diodes disposed on a substrate, and the plurality of micro light emitting diodes include red micro light emitting diodes, green micro light emitting diodes and blue micro light emitting diodes.
  • the electro-optical conversion efficiencies of the three types of micro-light emitting diodes are inconsistent, and it is difficult to achieve white balance. To achieve white balance, it is necessary to increase the driving current of the red micro-light-emitting diode, thereby increasing power consumption.
  • the cost of red micro-light emitting diodes is higher, and the mixing process of three-color micro-light-emitting diodes is complicated, and the yield rate is lower than that of single-color micro-light-emitting diodes, especially when the size of micro-light-emitting diodes is reduced.
  • the yield rate of micro-light-emitting diodes has further declined.
  • FIG. 1 is a plan view of a display panel provided in some embodiments of the present disclosure
  • FIG. 2 is a cross-sectional view along line AA' in FIG. 1 provided in some embodiments of the present disclosure.
  • the display panel includes : a base substrate 11, a plurality of light emitting device groups 20, a plurality of light emitting part groups and a plurality of optical structural units.
  • the substrate 11 can be a glass substrate, or a flexible substrate made of flexible materials such as polyimide (PI), which is beneficial to realize flexible display.
  • PI polyimide
  • the light emitting device groups 20 are arranged on the base substrate 11, and each light emitting device group 20 includes a plurality of micro light emitting diodes 21, and the micro light emitting diodes 21 are used for emitting light of a preset color.
  • the plurality of micro light emitting diodes 21 in each light emitting device group 20 may include a first micro light emitting diode 21r and a second micro light emitting diode 21g.
  • a driving structure layer may also be disposed on the base substrate 11, and the driving structure layer is used to provide a driving signal for each micro-LED 21 to drive each micro-LED 21 to emit light.
  • a plurality of light-emitting unit groups 70 are arranged on the light-emitting side of the light-emitting device group 20, each light-emitting unit group 70 includes a plurality of light-emitting units 71, and the plurality of light-emitting units 71 in each light-emitting unit group 70 includes a first color conversion unit 71r and The second color conversion part 71g.
  • the first color conversion part 71r is used for converting the light of the preset color into light of the first color when receiving the light of the preset color;
  • the second color conversion part 71g is used for converting the light of the preset color The light of the preset color is converted into light of the second color.
  • Multiple optical structural units 60 are arranged between multiple light emitting device groups 20 and multiple light emitting part groups 70, and the orthographic projection of each optical structural unit 60 on the base substrate 11 covers at least one light emitting device group 20 on the base substrate 11 , the orthographic projections of different optical structural units 60 on the base substrate 11 do not overlap.
  • Each optical structure unit 60 is used for injecting the light emitted by the first micro light emitting diode 21r into the first color conversion part 71r, so that the first color conversion part 71r converts the light of the preset color into the first color light and inject the light emitted by the second micro-light-emitting diode 21g into the second color conversion part 71g, so that the second color conversion part 71g converts the light of the preset color into the second color light.
  • each light-emitting device in the light-emitting device group 20 emits light of a preset color
  • an optical structural unit 60 is arranged between the light-emitting device group 20 and a plurality of light-emitting part groups 70, and the first micro light-emitting diode 21r
  • the light emitted by the optical structure unit 60 can be irradiated to the first color conversion part 71r, and the light emitted by the second micro light emitting diode 21g can be irradiated to the second color conversion part 71g after passing through the optical structure unit 60 .
  • each light-emitting device emits the same color, the electro-optical conversion efficiency of each light-emitting device is consistent, so that white balance can be achieved without increasing power consumption.
  • the light-emitting device group 20 in the embodiment of the present disclosure can use single-color micro-light-emitting diodes 21, thereby simplifying the manufacturing process and improving product yield.
  • the wavelength ranges of the first color light and the second color light may be different.
  • the first color light is red light
  • the second color light is green light.
  • the multiple light emitting devices in the light emitting device group 20 may also include: a third micro light emitting diode 21b , the third micro light emitting diode 21b is used to emit light of a preset color.
  • Each light emitting part group 70 also includes a light-transmitting part 71t, and the orthographic projection of each optical structural unit on the base substrate 11 also covers the orthographic projection of the third micro light emitting diode 21b on the base substrate 11, and each light emitting structural unit It is also used to inject the light emitted by the third micro-light emitting diode 21b into the light-transmitting portion 71t.
  • the preset color light may be blue light
  • the first color light may be red light
  • the second color light may be green light.
  • the first color conversion part 71r emits red light after receiving the blue light emitted by the first micro-light emitting diode 21r; the second color conversion part 71g emits green light after receiving the blue light emitted by the second micro-light emitting diode 21g; The light part 71t does not change the color of the light it receives.
  • the materials of the first color conversion portion 71r and the second color conversion portion 71g both include quantum dot materials, for example, the material of the first color conversion portion 71r includes red quantum dot materials, and the material of the second color conversion portion 71g includes As for the green quantum dot material, the material of the light-transmitting portion 71t includes scattering particle material.
  • the red quantum dot material is used to emit red light when excited by light of a preset color; the green quantum dot material is used to emit green light when excited by light of a preset color.
  • both the red quantum dot material and the green quantum dot material can be indium phosphide (InP), zinc oxide (ZnO), graphene, cadmium selenide (CdSe), cadmium sulfide (CdS), cadmium telluride (CdTe), At least one of zinc selenide (ZnSe), zinc telluride (ZnTe) or zinc sulfide (ZnS).
  • the luminescent color of the quantum dot material can be controlled by controlling the particle size of the quantum dot material.
  • the material of the light-transmitting portion 71t includes scattering particle material, so as to scatter the received blue light.
  • first color conversion part 71r and the second color conversion part 71g may also be doped with scattering particles, so as to increase the emission angles of the first color conversion part 71r and the second color conversion part 71g.
  • fluorescent powder materials can also be used in the first color conversion part 71r and the second color conversion part 71g.
  • the display panel further includes a light-transmitting carrier 22 corresponding to the light-emitting device groups 20 one-to-one, and the light-transmitting carrier 22 may be a sapphire substrate.
  • the light-transmitting carriers 22 corresponding to different light-emitting device groups 20 are arranged at intervals. Multiple micro light emitting diodes 21 in the same light emitting device group 20 are arranged on the same light-transmitting carrier 22 .
  • the micro light emitting diodes 21 can be fixed on the driving structure layer of the base substrate 11 through transfer, crystal bonding and other processes, and multiple micro light emitting diodes 21 in the same light emitting device group 20 are arranged on the same light-transmitting carrier 22 , can improve transfer efficiency and yield.
  • FIG. 3 is a schematic structural view of a light emitting device group provided in some embodiments of the present disclosure.
  • a plurality of receiving openings are provided, and the receiving openings on the barrier layer 23 correspond one-to-one to the micro LEDs 21 in the corresponding light emitting device group 20, and each micro LED 21 is arranged in a corresponding receiving opening.
  • the insulating material of the barrier layer 23 may include transparent insulating materials such as resin, photoresist material, silicon oxide and silicon nitride.
  • the cross-sectional area of the receiving opening can gradually increase.
  • the light emitting device group 20 includes three micro light emitting diodes 21 as an example for illustration. In fact, the light emitting device group 20 may include other numbers of micro light emitting diodes 21 .
  • each micro light emitting diode 21 includes: a first electrode 211 , a light emitting stack 213 and a second electrode 212 .
  • the first electrode 211 is located on a side of the light-transmitting carrier 22 facing the base substrate 11 .
  • the light emitting stack 213 is located on a side of the first electrode 211 away from the transparent carrier 22 .
  • the second electrode 212 is located on a side of the light emitting stack 213 away from the transparent carrier 22 .
  • the light-emitting stack 213 includes a first-type doped semiconductor layer 213 a , a quantum well layer 213 c and a second-type doped semiconductor layer 213 b arranged in sequence along the direction away from the light-transmitting carrier 22 .
  • the first-type doped semiconductor layer 213a may be an N-type doped semiconductor material, such as N-GaN;
  • the second-type doped semiconductor layer 213b may be a P-type doped semiconductor material, such as p-GaN.
  • the material of the first electrode 211 may be the same as that of the first type doped semiconductor layer 213a.
  • the sum of the thicknesses of the first electrode 211 and the first-type doped semiconductor layer 213a may be between 1-3 ⁇ m
  • the thickness of the quantum well layer may be between 0.2-0.5 ⁇ m
  • the second-type doped semiconductor layer The thickness of 213b may be between 0.05-0.3 ⁇ m.
  • the first electrodes 211 of a plurality of micro light emitting diodes 21 in the same light emitting device group 20 may be connected into an integrated structure, and the second electrodes 212 of different micro light emitting diodes 21 are insulated from each other.
  • the integrally connected first electrode 211 can be connected to the driving structure layer through the lead wire 25, and each second electrode 212 can be connected to the driving structure layer, and the driving structure layer can provide the first electrode 211 of each micro light emitting diode 21 with a first signal, and provide a second signal to the second electrode 212 of each micro light emitting diode 21, thereby driving a plurality of micro light emitting diodes 21 to emit light.
  • a buffer layer 24 may be provided between the light-transmitting carrier 22 and the micro-LEDs 21, so as to avoid the lattice mismatch that occurs in each film layer of the micro-light-emitting diodes 21 directly epitaxially grown on the light-transmitting carrier 22. question.
  • a light-shielding layer 30 is disposed between the light-transmitting carriers 22 corresponding to any two adjacent light-emitting device groups 20 to prevent crosstalk of light from different light-emitting device groups 20 .
  • the light-shielding layer 30 can be made of black light-absorbing material.
  • the display panel further includes: an encapsulation layer 40 and a filling layer 81 .
  • the encapsulation layer 40 is located on a side of the plurality of light emitting device groups 20 away from the base substrate 11 , and is used for encapsulating the plurality of light emitting device groups 20 .
  • the plurality of optical structural units 60 are located on a side of the encapsulation layer 40 away from the base substrate 11 , and the filling layer 81 is located between the plurality of optical structural units 60 and the encapsulation layer 40 .
  • the optical structure unit 60 adopts a condenser lens, and the surface of the optical structure unit 60 facing the filling layer 81 is a convex surface, and the convex surface of the optical structure unit 60 is attached to the filling layer 81 .
  • the refractive index of the optical structure unit 60 needs to be greater than that of the filling layer 81 .
  • the display panel further includes: a spacer substrate 50 , and the spacer substrate 50 is located between the plurality of optical structural units 60 and the plurality of light emitting portion groups 70 .
  • the spacer substrate 50 may be a glass substrate, or may be a flexible substrate made of resin material.
  • the arrangement of the spacer substrate 50 makes the light emitting part group 70 and the light emitting device group 20 have a certain distance, prevents crosstalk between different light emitting parts 71, and can prevent the heat generated by the micro light emitting diodes 21 from affecting the life of the light emitting part 71.
  • the optical structure unit 60 can be formed as an integral structure with the spacer substrate 50 .
  • the spacer substrate 50 is made of a resin material, and the optical structural unit 60 can be formed by hot pressing, injection molding, or photolithography.
  • the embodiment of the present disclosure is described by taking the optical structural unit 60 as an example of a single-curved condenser lens.
  • the optical structural unit 60 may also use a hyperbolic condenser lens, or a Optical structures such as diffractive lenses and metasurface lenses on the base substrate 50 .
  • the side of the spacer substrate 50 away from the base substrate 11 is provided with an accommodating structure layer 72 , the accommodating structure layer 72 has a plurality of accommodating grooves, and the light emitting portions 71 are arranged in the accommodating grooves one by one.
  • the containing structure layer 72 is made of opaque material.
  • a protective layer 80 may also be provided on the side of the containing structure layer 72 away from the base substrate 11 for protecting the light emitting portion 71 .
  • the protection layer 80 can be a glass layer, or a flexible film layer made of resin material.
  • the optical structural unit 60 adopts a condenser lens.
  • a convex lens For example a convex lens.
  • FIG. 4 is a schematic diagram of the principle of lens imaging. As shown in FIG. 4 , the mark F is the focus position of the convex lens 91 , and the mark 2F is twice the focal length of the convex lens 91 .
  • the light source 90 is on one side of the convex lens 91 and between one focal length and two focal lengths of the convex lens 91 , an inverted image can be formed on the other side of the convex lens 91 .
  • the optical structural unit 60 adopts a condenser lens, and the distance between the plurality of micro light emitting diodes 21 and the optical structural unit 60 is 1 to 2 times the focal length of the condenser lens.
  • FIG. 5 is a schematic diagram of the light emitted by the light-emitting device group provided in some embodiments of the present disclosure irradiating the light-emitting part group.
  • the medium between the light emitting part group 70 is an air layer
  • f is the focal length of the condensing lens
  • the size of the first color conversion part 71r, the second color conversion part 71g, and the light transmission part 71t are all p'
  • the size of the micro light emitting diode is p.
  • p' can be determined according to the required resolution.
  • the relationship between the micro-light emitting diode 21 and the condensing lens can be determined according to p, f, the magnification formula of the condensing lens, and the lens imaging formula.
  • the equivalent air distance between the lenses, and the equivalent air distance between the condenser lens and the light exit unit group 70 are the equivalent air distance between the lenses, and the equivalent air distance between the condenser lens and the light exit unit group 70 .
  • the equivalent air distance refers to the distance between the two structures when the medium between the two structures is air. Because the above-mentioned lens imaging formula and the magnification formula of the condensing lens are all established under the condition that the solution medium is air, and in the display panel, between the condensing lens and the micro light emitting diode 21, between the condensing lens and the light exit portion The medium between the groups 70 is not air.
  • each medium layer is determined by the refractive index of the medium between the light emitting unit group 70 .
  • the optical structure unit 60 is a condensing lens with a magnification greater than 1.
  • the orthographic projection area of the first color conversion part 71r on the base substrate 11 is larger than that of the first micro light emitting diode 21r.
  • the area of the orthographic projection on the base substrate 11; the area of the orthographic projection of the second color conversion part 71g on the base substrate 11 is greater than the area of the orthographic projection of the second micro light-emitting diode 21g on the base substrate 11; the transparent part 71t
  • the area of the orthographic projection on the base substrate 11 is larger than the area of the orthographic projection of the second micro light emitting diode 21g on the base substrate 11 .
  • the magnification of the condenser lens is between greater than 1 and less than 5.
  • FIG. 6 is a cross-sectional view along line AA' in FIG. 1 provided in other embodiments of the present disclosure.
  • the display panel shown in FIG. 6 is similar to the display panel shown in FIG. In the display panel in 6, each light emitting part group 70 no longer includes a light-transmitting part 71t, but includes a third color converting part 71b.
  • the light emitted by the diode 21b enters the third color conversion part 71b, and the third color conversion part 71b is used to convert the light of a preset color into light of a third color.
  • the preset color light may be ultraviolet light
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light.
  • the light of the preset color can be blue light of the first wavelength
  • the first color light can be red light
  • the second color light can be green light
  • the third color light can be blue light of the second wavelength
  • the first wavelength light can be blue light. less than the second wavelength.
  • the third color converting portion 71b may use quantum dot material or phosphor material.
  • the optical structural unit 60 includes a condenser lens and the condenser lens faces the base substrate 11 as an example for illustration.
  • the condenser The convex curved surface of the optical lens faces the spacer substrate 50 .
  • 7 is a cross-sectional view along line AA' in FIG. 1 provided in some other embodiments of the present disclosure. The only difference between the display panel in FIG. 7 and the display panel in FIG. 2 is that in FIG.
  • the spacer The substrate 50 is provided with depressions corresponding to the optical structural unit 60 one by one, the plane of the optical structural unit 60 can be attached to the encapsulation layer 40, the convex curved surface of the optical structural unit 60 is attached to the depression, and the refractive index of the optical structural unit 60 is larger than the refractive index of the spacer substrate 50 .
  • Fig. 8 is one of the distribution schematic diagrams of the light emitting device group and the light outlet group provided in some embodiments of the present disclosure
  • Fig. 9 is the second distribution schematic diagram of the light emitting device group and the light outlet group provided in some embodiments of the present disclosure.
  • multiple optical device groups 20 are arranged in multiple rows and multiple columns, and multiple micro light emitting diodes 21 in each optical device group 20 are arranged in sequence along the first direction.
  • the multiple light-emitting unit groups 70 are arranged in multiple rows and multiple columns, and the multiple light-emitting units 71 in each light-emitting unit group 70 are arranged sequentially along the first direction.
  • the light emitting part group 70 corresponds to the optical device group 20 one by one, and the orthographic projection of each optical structural unit 60 on the base substrate 11 covers the orthographic projection of one optical device group 20 on the base substrate 11 .
  • the orthographic projection of the optical structure unit 60 on the substrate 11 may coincide with the dotted box in FIG. 9 , or be tangent to the dotted box.
  • the light emitted by the i-th micro-light emitting diode 21 passes through the optical structural unit 60, and then shoots to the m-i+1-th light-emitting part in the corresponding light-emitting part group 70, m is the number of light emitting units 71 of the light emitting unit group 70, i is an integer, and 1 ⁇ i ⁇ m. It should be noted that the "i-th" refers to the i-th one arranged along the first direction.
  • Fig. 8 take (a) the light emitting part group 70 in the upper left corner in the figure and (b) the light emitting device group 20 in the upper left corner in the figure as examples;
  • the light-emitting part group 70 and the light-emitting device group 20 in the upper left corner of the figure (b) are examples marked with letters. 71.
  • the plurality of micro light emitting diodes 21 in the light emitting device group 20 are divided into at least one repeating unit 70a, and each repeating unit 70a includes: first micro light emitting diodes arranged in sequence along the first direction 21r, the second micro light emitting diode 21g and the third micro light emitting diode 21b.
  • a plurality of micro-LEDs 21 in the light-emitting device group 20 form a repeating unit 70a, specifically including: a third micro-LED 21b, a second micro-LED 21g and a first micro-LED 21r.
  • a repeating unit 70a specifically including: a third micro-LED 21b, a second micro-LED 21g and a first micro-LED 21r.
  • a plurality of micro light emitting diodes 21 in the light emitting device group 20 form two repeating units 70a, specifically including: a third micro light emitting diode 21b, a second micro light emitting diode 21g arranged along the first direction , the first micro light emitting diode 21r, the third micro light emitting diode 21b, the second micro light emitting diode 21g and the first micro light emitting diode 21r.
  • the orthographic projection area of each micro light emitting diode 21 on the base substrate 11 may be the same.
  • FIG. 10 is one of the schematic distribution diagrams of the light emitting device group and the light exit group provided in other embodiments of the present disclosure
  • Fig. 11 is one of the distribution schematic diagrams of the light emitting device group and the light exit group provided in other embodiments of the present disclosure
  • FIG. 12 is the third schematic diagram of the distribution of the light emitting device group and the light outlet group provided in other embodiments of the present disclosure. As shown in FIGS.
  • a plurality of optical device groups 20 are arranged in multiple rows and multiple columns, and correspondingly, a plurality of light output unit groups 70 are arranged in multiple rows and multiple columns, and the light output unit groups 70 are in one-to-one correspondence with the optical device groups 20
  • the orthographic projection of each optical structure unit 60 on the base substrate 11 covers the orthographic projection of one optical device group 20 on the base substrate 11 .
  • the orthographic projection of the optical structural unit 60 on the base substrate 11 may coincide with the dotted line frame in (b) of Fig.
  • the orthographic projection of the optical structure unit 60 on the base substrate 11 can coincide with the dotted line frame in (b) of FIG. 11, or be tangent to the dotted line frame;
  • the orthographic projection of the optical structural unit 60 on the base substrate 11 may coincide with the dotted line frame in (b) of FIG. 12 , or be tangent to the dotted line frame.
  • the plurality of light emitting parts 71 in each light emitting part group 70 are divided into n first repeating units 701 arranged along the second direction, and each first repeating unit 701 includes c light emitting parts arranged along the first direction;
  • the plurality of micro light emitting diodes 21 in each light emitting device group 20 are divided into n second repeating units 201 arranged along the second direction, and each second repeating unit 201 includes c micro light emitting diodes arranged along the first direction Diode 21; wherein, the first direction intersects the second direction.
  • Both n and c are integers greater than 1.
  • the second repeating unit 201 includes: a third micro-light emitting diode 21b, a second micro-light-emitting diode 21g, a first micro-light-emitting diode Diode 21r, third micro light emitting diode 21b, second micro light emitting diode 21g, first micro light emitting diode 21r.
  • the 12 micro light emitting diodes 21 of the two second repeating units 201 can be arranged in two rows and six columns.
  • part of the second repeating unit 201 includes: the second micro light emitting diode 21g, the first micro light emitting diode 21r, the third micro light emitting diode 21b, and the rest of the first micro light emitting diode
  • the two repeating units include: the third micro light emitting diode 21b, the second micro light emitting diode 21g, and the first micro light emitting diode 21r arranged in sequence along the first direction.
  • the micro light emitting diodes 21 of the two second repeating units 201 can be arranged alternately.
  • each light emitting device group 20 part of the second repeating unit 201 includes: second micro light emitting diodes 21g, first micro light emitting diodes 21r, second micro light emitting diodes arranged in sequence along the first direction.
  • the eight micro light emitting diodes 21 of the two repeating units can be arranged in two rows and four columns.
  • the orthographic projection areas of different micro-light emitting diodes 21 on the substrate 11 may be the same; in FIG. 12 , the orthographic projection areas of different micro-light-emitting diodes on the substrate 11 may not be completely the same.
  • the orthographic projection area of the first micro light emitting diode 21r on the base substrate 11 and the orthographic projection area of the third micro light emitting diode 21b on the base substrate 11 are larger than that of the second micro light emitting diode 21g on the base substrate 11 orthographic area of .
  • n and c are both integers greater than 1
  • q and j are both integers, 1 ⁇ q ⁇ c, 1 ⁇ j ⁇ n.
  • the jth second repeating unit 201 refers to the jth second repeating unit 201 arranged along the second direction;
  • the n-j+1th first repeating unit refers to the jth second repeating unit 201 arranged along the second direction The n-j+1th first repeating unit 701 of .
  • the qth micro-light-emitting diode 21 refers to the q-th micro-light-emitting diode 21 arranged along the first direction;
  • the c-q+1 light-emitting part refers to the c-q+1-th light-emitting part arranged along the first direction Section 71.
  • the light emitted by any micro-LED 21 marked with a letter passes through a condenser lens, and then radiates to the light-emitting portion 71 marked with the same letter.
  • Embodiments of the present disclosure also provide a display device, including the display panel in the above embodiments.
  • the display device can be: electronic paper, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator and any other product or component with display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种显示面板和显示装置,衬底基板(11)包括:多个发光器件组(20)、多个出光部组(70)和多个光学结构单元(60),多个发光器件组(20)设置在衬底基板(11)上,多个发光器件组(20)中的每个包括多个微发光二极管(21),多个微发光二极管(21)包括第一微发光二极管(21r)和第二微发光二极管(21g),第一微发光二极管(21r)和第二微发光二极管(21g)均用于发射预设颜色的光;多个出光部组(70)中的每个包括多个出光部(71),多个出光部(71)包括第一色转换部(71r)和第二色转换部(71g);多个光学结构单元(60)中的每个用于将第一微发光二极管(21r)发射的光射入第一色转换部(71r),将第二微发光二极管(21g)所发射的光射入第二色转换部(71g),第一色转换部(71r)用于将预设颜色的光转换为第一颜色光,第二色转换部(71g)用于将预设颜色的光转换为第二颜色光。

Description

显示面板和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种显示面板和显示装置。
背景技术
微发光二极管(Light-Emitting Diode,LED)显示技术由于其高色域、高对比度、高响应速度的优势,被视为未来显示发展中极具潜力的方向。
发明内容
本公开提出了一种显示面板和显示装置。
本公开提供一种显示面板,包括:多个发光器件组、多个出光部组和多个光学结构单元,其中,
所述多个发光器件组设置在衬底基板上,所述多个发光器件组中的每个包括多个微发光二级管,所述多个微发光二级管包括第一微发光二级管和第二微发光二级管,所述第一微发光二级管和所述第二微发光二级管均用于发射预设颜色的光;
所述多个出光部组设置在所述多个发光器件组的出光侧,所述多个出光部组中的每个包括多个出光部,所述多个出光部包括第一色转换部和第二色转换部;
所述多个光学结构单元设置在所述多个发光器件组和所述多个出光部组之间,所述多个光学结构单元中的每个在所述衬底基板上的正投影覆盖所述多个发光器件组中的至少一个在所述衬底基板上的正投影,所述多个光学结构组中的每个用于将所述第一微发光二级管发射的光射入所述第一色转换部,将所述第二微发光二级管所发射的光射入所述第二色转换部,所述第一色转换部用于将所述预设颜色的光转换为第一颜色光,所述第二色转换部用于将所述预设颜色的光转换为第二颜色光。
在一些实施例中,所述第一颜色光与所述第二颜色光的波长范围不同。
在一些实施例中,所述发光器件组中的多个发光器件还包括:第三微发光二极管,所述第三微发光二极管用于发射所述预设颜色的光,
所述出光部组中的多个出光部还包括透光部,所述多个光学结构单元中的每个在所述衬底基板上的正投影还覆盖所述第三微发光二极管在所述衬底基板上的正投影,
所述多个发光结构单元中的每个还用于将所述第三微发光二极管发射的光射入所述透光部。
在一些实施例中,所述预设颜色的光为蓝光,所述第一颜色光为红光,所述第二颜色光为绿光。
在一些实施例中,所述发光器件组中的多个发光器件还包括:第三微发光二极管,所述第三微发光二极管用于发射所述预设颜色的光,
所述出光部组中的多个出光部还包括第三色转换部,所述多个光学结构单元中的每个在所述衬底基板上的正投影还覆盖所述第三微发光二极管在所述衬底基板上的正投影,
所述多个光学结构单元中的每个还用于将所述第三微发光二极管发射的光射入所述第三色转换部,所述第三色转换部用于将所述预设颜色的光转换为第三颜色光。
在一些实施例中,所述预设颜色的光为紫外光,所述第一颜色光为红光,所述第二颜色光为绿光,所述第三颜色光为蓝光;
或者,所述预设颜色的光为第一波长的蓝光,所述第一颜色光为红光,所述第二颜色光为绿光,所述第三颜色光为第二波长的蓝光,所述第一波长小于所述第二波长。
在一些实施例中,所述显示面板还包括与所述发光器件组一一对应的透光载体,不同所述发光器件组所对应的透光载体间隔设置;
所述透光载体朝向所述衬底基板的一侧设置有阻隔层,所述阻隔层上 设置有多个容纳开口,所述发光器件组中的微发光二极管一一对应地设置在所述容纳开口中。
在一些实施例中,任意相邻两个所述透光载体之间设置有遮光层。
在一些实施例中,所述微发光二极管包括:
第一电极,位于所述透光载体朝向所述衬底基板的一侧;
发光叠层,位于所述第一电极远离所述透光载体的一侧,所述发光叠层包括沿远离所述透光载体的方向依次设置的:第一类型掺杂半导体层、量子阱层和第二类型掺杂半导体层;
第二电极,位于所述发光叠层远离所述透光载体的一侧。
在一些实施例中,所述显示面板还包括:
封装层,位于所述多个发光器件组远离所述衬底基板的一侧;
填充层,位于所述封装层与所述多个光学结构单元之间;
隔垫基板,位于所述多个光学结构单元与所述多个出光部组之间;
其中,所述光学结构单元的折射率大于所述填充层的折射率,所述光学结构单元朝向所述填充层的表面为凸曲面,所述光学结构的凸曲面与所述填充层贴合。
在一些实施例中,所述显示面板还包括:
封装层,位于所述多个发光器件组远离所述衬底基板的一侧,所述光学结构单元设置在所述封装层远离所述衬底基板的表面上;
隔垫基板,位于所述多个光学结构单元与所述多个出光部组之间,所述隔垫基板上设置有与所述光学结构单元一一对应的凹陷;
其中,所述光学结构单元朝向所述隔垫基板的表面为凸曲面,所述光学结构的凸曲面与所述凹陷贴合,所述光学结构单元的折射率大于所述隔垫基板的折射率。
在一些实施例中,所述光学结构单元采用聚光透镜,所述多个微发光二极管到所述光学结构单元之间的距离为所述聚光透镜的焦距的1~2倍。
在一些实施例中,所述第一色转换部在所述衬底基板上的正投影面积大于所述第一微发光二极管在所述衬底基板上的正投影的面积;
所述第二色转换部在所述衬底基板上的正投影面积大于所述第二微发光二极管在所述衬底基板上的正投影的面积。
在一些实施例中,所述第一色转换部和所述第二色转换部的材料均包括量子点材料或荧光粉材料。
在一些实施例中,所述显示面板还包括:容纳结构层,所述容纳结构层具有多个容纳槽,所述出光部一一对应地设置在所述容纳槽中。
在一些实施例中,每个所述出光部组中的多个出光部沿第一方向依次排列,每个所述发光器件组中的多个微发光二极管沿所述第一方向依次排列;
其中,对于任一所述发光器件组,第i个所述微发光二极管所发射的光线经过所述光学结构单元后,射向相应的出光部组中的第m-i+1个出光部,m为所述出光部组中的出光部的数量,i为整数,且1≤i≤m。
在一些实施例中,所述发光器件组中的多个微发光二极管划分为至少一个重复单元,每个重复单元包括沿第一方向依次排列的:所述第三微发光二极管、所述第二微发光二极管和所述第一微发光二极管。
在一些实施例中,每个所述出光部组中的多个出光部划分为沿第二方向排列的n个第一重复单元,每个所述第一重复单元包括沿第一方向排列的c个所述出光部;每个所述发光器件组中的多个微发光二极管划分为沿所述第二方向排列的n个第二重复单元,每个所述第二重复单元包括沿所述第一方向排列的c个所述微发光二极管;其中,所述第一方向与所述第二方向交叉;
对于任一所述发光器件组,第j个第二重复单元中的第q个微发光二极管所发射的光线经过所述光学结构单元后,射向相应的出光部组中第n-j+1个第一重复单元中的第c-q+1个出光部,n、c均为大于1的整数,q、j均 为整数,且1≤q≤c,1≤j≤n。
在一些实施例中,在每个所述发光器件组中,所述第二重复单元包括沿第一方向依次排列的:第三微发光二极管、第二微发光二极管、第一微发光二极管、第三微发光二极管、第二微发光二极管、第一微发光二极管;或者,
在每个所述发光器件组中,部分所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第一微发光二极管、第三微发光二极管,其余的所述第二重复单元包括沿第一方向依次排列的:第三微发光二极管、第二微发光二极管、第一微发光二极管;或者,
在每个所述发光器件组中,部分所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第一微发光二极管、第二微发光二极管和第三微发光二极管;其余的所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第三微发光二极管、第二微发光二极管和第一微发光二极管。
本公开实施例还提供一种显示装置,其中,包括上述显示面板。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开的一些实施例中提供的显示面板的平面图。
图2为本公开的一些实施例中提供的沿图1中A-A’线的剖视图。
图3为本公开的一些实施例中提供的发光器件组的结构示意图。
图4为透镜成像原理的示意图。
图5为本公开的一些实施例中提供的发光器件组发射的光线照射至出光部组的示意图。
图6为本公开的另一些实施例中提供的沿图1中A-A’线的剖视图。
图7为本公开的再一些实施例中提供的沿图1中A-A’线的剖视图。
图8为本公开的一些实施例中提供的发光器件组和出光部组的分布示意图之一。
图9为本公开的一些实施例中提供的发光器件组和出光部组的分布示意图之二。
图10为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之一。
图11为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之二。
图12为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之三。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不表示任 何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
在下面的描述中,当元件或层被称作“在”另一元件或层“上”或“连接到”另一元件或层时,该元件或层可以直接在所述另一元件或层上、直接连接到所述另一元件或层,或者可以存在中间元件或中间层。然而,当元件或层被称作“直接在”另一元件或层“上”、“直接连接到”另一元件或层时,不存在中间元件或中间层。术语“和/或”包括一个或更多个相关列出项的任意和全部组合。
在一些示例中,显示面板包括设置在基底上的多个微发光二极管,多个微发光二极管包括红色微发光二极管、绿色微发光二极管和蓝色微发光二极管。但是,三种微发光二极管的电光转换效率不一致,难以实现白平衡,如果要实现白平衡,则需要增大红色微发光二极管的驱动电流,从而增大功耗。并且,红色微发光二极管的成本更高,三种颜色的微发光二极管混合打件工艺复杂,且比单色微发光二极管的打件良率低,尤其是当微发光二极管的尺寸减小后,微发光二极管的打件良率进一步下降。
图1为本公开的一些实施例中提供的显示面板的平面图,图2为本公开的一些实施例中提供的沿图1中A-A’线的剖视图,如图1所示,显示面板包括:衬底基板11、多个发光器件组20、多个出光部组和 多个光学结构单元。
衬底基板11可以为玻璃衬底,也可以为诸如聚酰亚胺(PI)等柔性材料制作的柔性基底,从而有利于实现柔性显示。
发光器件组20设置在衬底基板11上,每个发光器件组20包括多个微发光二极管21,微发光二极管21用于发射预设颜色的光线。其中,每个发光器件组20中的多个微发光二极管21可以包括第一微发光二极管21r和第二微发光二极管21g。衬底基板11上还可以设置有驱动结构层,该驱动结构层用于为每个微发光二极管21提供驱动信号,以驱动每个微发光二极管21发光。
多个出光部组70设置在发光器件组20的出光侧,每个出光部组70包括多个出光部71,每个出光部组70中的多个出光部71包括第一色转换部71r和第二色转换部71g。第一色转换部71r用于在接收到预设颜色的光线时,将预设颜色的光转换为第一颜色光;第二色转换部71g用于在接收到预设颜色的光时,将预设颜色的光转换为第二颜色光。
多个光学结构单元60设置在多个发光器件组20与多个出光部组70之间,每个光学结构单元60在衬底基板11上的正投影覆盖至少一个发光器件组20在衬底基板11上的正投影,不同的光学结构单元60在衬底基板11上的正投影无重叠。每个光学结构单元60用于将第一微发光二级管21r所发射的光线射入第一色转换部71r,从而使第一色转换部71r将预设颜色的光转换为第一颜色光;并将第二微发光二级管21g所发射的光线射入第二色转换部71g,从而使第二色转换部71g将预设颜色的光转换为第二颜色光。
在本公开实施例中,发光器件组20中的每个发光器件发射预设颜色的光线,发光器件组20与多个出光部组70之间设置有光学结构单元60,第一微发光二极管21r所发射的光线经过光学结构单元60后,可以照射至第一色转换部71r,第二微发光二极管21g所发射的光线经过光学结 构单元60后,可以照射至第二色转换部71g。由于每个发光器件的发光颜色相同,因此,各发光器件的电光转换效率一致,从而可以在不增加功耗的情况下实现白平衡。并且,与采用多种颜色的微发光二极管相比,本公开实施例中的发光器件组20可以采用单色的微发光二极管21,从而简化制作工艺,并提高产品良率。
在一些实施例中,第一颜色光和第二颜色光的波长范围可以不同。例如,第一颜色光为红光,第二颜色光为绿光。
在一些实施例中,如图2所示,发光器件组20中的多个发光器件除了包括第一微发光二极管21r、第二微发光二极管21g之外,还可以包括:第三微发光二极管21b,第三微发光二极管21b用于发射预设颜色的光。每个出光部组70还包括透光部71t,每个光学结构单元在衬底基板11上的正投影还覆盖第三微发光二极管21b在衬底基板11上的正投影,每个发光结构单元还用于将第三微发光二极管21b发射的光线射入透光部71t。其中,预设颜色的光可以为蓝光,第一颜色光可以为红光,第二颜色光可以为绿光。此时,第一色转换部71r接收到第一微发光二极管21r发射的蓝光后,发出红光;第二色转换部71g接收到第二微发光二极管21g发射的蓝光后,发出绿光;透光部71t不改变其接收到的光线颜色。
其中,第一色转换部71r和第二色转换部71g的材料均包括量子点材料,例如,例如,第一色转换部71r的材料包括红色量子点材料,第二色转换部71g的材料包括绿色量子点材料,透光部71t的材料包括散射粒子材料。红色量子点材料用于在预设颜色的光的激发下发射红光;绿色量子点材料用于在预设颜色的光的激发下发射绿光。其中,红色量子点材料和绿色量子点材料均可以为磷化铟(InP)、氧化锌(ZnO)、石墨烯、硒化镉(CdSe)、硫化镉(CdS)、碲化镉(CdTe)、硒化锌(ZnSe)、碲化锌(ZnTe)或硫化锌(ZnS)中的至少一种。其中,可 以通过控制量子点材料的粒径来控制量子点材料的发光颜色。透光部71t的材料包括散射粒子材料,从而对接收到的蓝光进行散射。
另外,第一色转换部71r和第二色转换部71g中也可以掺杂有散射粒子,从而提高第一色转换部71r和第二色转换部71g的出射角度。
当然,第一色转换部71r和第二色转换部71g中也可以采用荧光粉材料。
如图2所示,显示面板还包括与发光器件组20一一对应的透光载体22,该透光载体22可以为蓝宝石衬底。不同发光器件组20所对应的透光载体22间隔设置。同一个发光器件组20中的多个微发光二极管21设置在同一个透光载体22上。其中,微发光二极管21可以通过转移、固晶等工艺固定在衬底基板11的驱动结构层上,将同一个发光器件组20中的多个微发光二极管21设置在同一个透光载体22上,可以提高转移效率和良率。
图3为本公开的一些实施例中提供的发光器件组的结构示意图,结合图2和图3所示,透光载体22朝向衬底基板11的一侧设置有阻隔层23,阻隔层23上设置有多个容纳开口,阻隔层23上的容纳开口与相应的发光器件组20中的微发光二极管21一一对应,每个微发光二极管21设置在相应的容纳开口中。其中,阻隔层23的绝缘材料可以包括诸如树脂、光致抗蚀剂材料、氧化硅和氮化硅的透明绝缘材料。沿靠近透光载体22的方向,容纳开口的横截面积可以逐渐增大。需要说明的是,图3中是以发光器件组20包括三个微发光二极管21为例进行示意的,实际上,发光器件组20可以包括其他数量的微发光二极管21。
如图3所示,每个微发光二极管21包括:第一电极211、发光叠层213和第二电极212。其中,第一电极211位于透光载体22朝向衬底基板11的一侧。发光叠层213位于第一电极211远离透光载体22的一侧。第二电极212位于发光叠层213远离透光载体22的一侧。发光叠层213 包括沿远离透光载体22依次设置的第一类型掺杂半导体层213a、量子阱层213c和第二类型掺杂半导体层213b。在一些示例中,第一类型掺杂半导体层213a可以为N型掺杂半导体材料,例如N-GaN;第二类型掺杂半导体层213b可以为P型掺杂半导体材料,例如为p-GaN。第一电极211的材料可以与第一类型掺杂半导体层213a的材料相同。
可选地,第一电极211和第一类型掺杂半导体层213a的厚度之和可以在1~3μm之间,量子阱层的厚度可以在0.2~0.5μm之间,第二类型掺杂半导体层213b的厚度可以在0.05~0.3μm之间。
可选地,同一个发光器件组20中的多个微发光二极管21的第一电极211可以连接为一体结构,不同的微发光二极管21的第二电极212相互绝缘。连接为一体的第一电极211可以通过引线25与驱动结构层连接,每个第二电极212可以与驱动结构层连接,驱动结构层可以为每个微发光二极管21的第一电极211提供第一信号,并为每个微发光二极管21的第二电极212提供第二信号,从而驱动多个微发光二极管21发光。
如图3所示,透光载体22与微发光二极管21之间可以设置有缓冲层24,从而可以避免直接在透光载体22上外延生长微发光二极管21各膜层出现的晶格失配的问题。
继续参阅图2,任一相邻两个发光器件组20对应的透光载体22之间设置有遮光层30,用于防止不同发光器件组20的光线发生串扰。遮光层30可以采用黑色吸光材料制成。
显示面板还包括:封装层40、填充层81。其中,封装层40位于多个发光器件组20远离衬底基板11的一侧,用于对多个发光器件组20进行封装。多个光学结构单元60位于封装层40远离衬底基板11的一侧,填充层81位于多个光学结构单元60与封装层40之间。在一些实施例中,光学结构单元60采用聚光透镜,光学结构单元60朝向填充层81的表面为凸曲面,光学结构单元60的凸曲面与填充层81贴合。在这种情况下, 光学结构单元60的折射率需要大于填充层81的折射率。
显示面板还包括:隔垫基板50,隔垫基板50位于多个光学结构单元60与多个出光部组70之间。隔垫基板50可以为玻璃基板,也可以为树脂材料制成的柔性基板。隔垫基板50的设置,使出光部组70与发光器件组20具有一定间距,防止不同的出光部71之间发生串扰,并且可以防止微发光二极管21产生的热量影响出光部71的寿命。其中,光学结构单元60可以与隔垫基板50形成为一体结构。例如,隔垫基板50采用树脂材料制成,可以通过热压、注塑、或光刻等工艺形成光学结构单元60。
需要说明的是,本公开实施例是以光学结构单元60为单曲面的聚光透镜为例进行说明的,当然,光学结构单元60也可以采用双曲面的聚光透镜,或者采用设置在隔垫基板50上的衍射透镜、超表面透镜等光学结构。
隔垫基板50远离衬底基板11的一侧设置有容纳结构层72,容纳结构层72具有多个容纳槽,出光部71一一对应地设置在容纳槽中。容纳结构层72采用不透光材料制成。容纳结构层72远离衬底基板11的一侧还可以设置有保护层80,用于对出光部71进行保护。保护层80可以为玻璃层,也可以为采用树脂材料制成的柔性膜层。
在一些实施例中,光学结构单元60采用聚光透镜。例如凸透镜。图4为透镜成像原理的示意图,如图4所示,标记F为凸透镜91的焦点位置,标记2F为凸透镜91的两倍焦距处。当光源90处于凸透镜91的一侧,并处于凸透镜91的1倍焦距至2倍焦距之间时,可以在凸透镜91的另一侧呈倒立的像。因此,为了使每个第一微发光二极管21r的光线能够照射至第一色转换部71r,第二微发光二极管21g的光线能够照射至第二色转换部71g,在本公开的一些实施例中,光学结构单元60采用聚光透镜,多个微发光二极管21到光学结构单元60之间的距离为聚光 透镜的焦距的1~2倍。
图5为本公开的一些实施例中提供的发光器件组发射的光线照射至出光部组的示意图,如图5所示,当微发光二极管21与光学结构单元60之间的介质、光学结构单元与出光部组70之间的介质为空气层时,微发光二极管21与光学结构单元60之间的距离Lo、光学结构单元60与出光部组70之间的距离Li满足透镜成像公式:1/Lo+1/Li=1/f,聚光透镜的放大倍率M=p’/p=Li/Lo。其中,f为聚光透镜的焦距,第一色转换部71r、第二色转换部71g、透光部71t的尺寸均为p’,微发光二极管的尺寸为p。在实际应用中,可以根据所需要的分辨率,确定p’,当p’确定后,可以根据p、f、聚光透镜的放大倍率公式、透镜成像公式,来确定微发光二极管21与聚光透镜之间的等效空气距离、聚光透镜与出光部组70之间的等效空气距离。
需要说明的是,等效空气距离是指,两个结构之间的介质为空气时,该两个结构之间的距离。由于上述透镜成像公式、聚光透镜的放大倍率公式,均是在解介质为空气的情况下成立的,而在显示面板中,聚光透镜与微发光二极管21之间、聚光透镜与出光部组70之间的介质均不是空气,因此,根据上述公式确定出等效空气距离后,需要根据等效空气距离、以及聚光透镜与微发光二极管21之间的介质的折射率、聚光透镜与出光部组70之间的介质的折射率,来确定各介质层的厚度。
在本公开的一些实施例中,光学结构单元60为放大倍率大于1的聚光透镜,此时,第一色转换部71r在衬底基板11上的正投影面积大于第一微发光二极管21r在衬底基板11上的正投影的面积;第二色转换部71g在衬底基板11上的正投影面积大于第二微发光二极管21g在衬底基板11上的正投影的面积;透光部71t在衬底基板11上的正投影面积大于第二微发光二极管21g在衬底基板11上的正投影面积。
在一个示例中,聚光透镜的放大倍率在大于1且小于5之间。
图6为本公开的另一些实施例中提供的沿图1中A-A’线的剖视图,图6中所示的显示面板与图2中所示的显示面板类似,区别仅在于,在图6中的显示面板中,每个出光部组70不再包括透光部71t,而是包括第三色转换部71b,此时,每个光学结构单元60还用于将所述第三微发光二极管21b发射的光线射入所述第三色转换部71b,所述第三色转换部71b用于将预设颜色的光转换为第三颜色光。
这种情况下,预设颜色的光可以为紫外光,第一颜色光可以为红光,所述第二颜色光可以为绿光,第三颜色光可以为蓝光。或者,预设颜色的光可以为第一波长的蓝光,第一颜色光可以为红光,所述第二颜色光可以为绿光,第三颜色光可以为第二波长的蓝光,第一波长小于第二波长。其中,第三色转换部71b可以采用量子点材料或荧光粉材料。
需要说明的是,在图2和图6中,均是以光学结构单元60包括聚光透镜,且聚光透镜朝向衬底基板11为例进行说明的,在其他实施例中,也可以使得聚光透镜的凸曲面朝向隔垫基板50。图7为本公开的再一些实施例中提供的沿图1中A-A’线的剖视图,图7中的显示面板与图2中的显示面板的区别仅在于,在图7中,隔垫基板50上设置有与光学结构单元60一一对应的凹陷,光学结构单元60的平面可以与封装层40贴合,光学结构单元60的凸曲面与凹陷相贴合,光学结构单元60的折射率大于隔垫基板50的折射率。
图8为本公开的一些实施例中提供的发光器件组和出光部组的分布示意图之一,图9为本公开的一些实施例中提供的发光器件组和出光部组的分布示意图之二。如图8和图9所示,多个光学器件组20排成多行多列,每个光学器件组20中的多个微发光二极管21沿第一方向依次排列。相应地,多个出光部组70排成多行多列,每个出光部组70中的多个出光部71沿第一方向依次排列。出光部组70与光学器件组20一一对应,每个光学结构单元60在衬底基板11上的正投影覆盖一个光学器件 组20在衬底基板11上的正投影。例如,光学结构单元60在衬底基板11上的正投影可以与图9中的虚线框重合,或者,与虚线框相切。其中,对于任一所述发光器件组20,第i个微发光二极管21所发射的光线经过光学结构单元60后,射向相应的出光部组70中的第m-i+1个出光部,m为出光部组70的出光部71的数量,i为整数,且1≤i≤m。需要说明的是,“第i个”是指沿第一方向排列的第i个。
例如,在图8中,以(a)图中左上角的出光部组70和(b)图中左上角的发光器件组20为例;在图9中,以(a)图中左上角的出光部组70和(b)图中左上角的发光器件组20为例标有字母标记的任一微发光二极管21所发射的光经过聚光透镜后,射向标有相同字母标记的出光部71。其中,如图8和图9所示,发光器件组20中的多个微发光二极管21划分为至少一个重复单元70a,每个重复单元70a包括沿第一方向依次排列的:第一微发光二极管21r、第二微发光二极管21g和第三微发光二极管21b。
例如,如图8所示,发光器件组20中的多个微发光二极管21构成一个重复单元70a,具体包括:第三微发光二极管21b、第二微发光二极管21g和第一微发光二极管21r。又例如,如图9所示,发光器件组20中的多个微发光二极管21构成两个重复单元70a,具体包括沿第一方向排列的:第三微发光二极管21b、第二微发光二极管21g、第一微发光二极管21r、第三微发光二极管21b、第二微发光二极管21g和第一微发光二极管21r。在图8和图9中,每个微发光二极管21在衬底基板11上的正投影面积可以相同。
图10为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之一,图11为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之二,图12为本公开的另一些实施例中提供的发光器件组和出光部组的分布示意图之三。如图10至图12所示,多个光 学器件组20排成多行多列,相应地,多个出光部组70排成多行多列,出光部组70与光学器件组20一一对应,每个光学结构单元60在衬底基板11上的正投影覆盖一个光学器件组20在衬底基板11上的正投影。例如,当采用图10的排布方式时,光学结构单元60在衬底基板11上的正投影可以与图10的(b)图中的虚线框重合,或者,与虚线框相切;当采用图11的排布方式时,光学结构单元60在衬底基板11上的正投影可以与图11的(b)图中的虚线框重合,或者,与虚线框相切;当采用图12的排布方式时,光学结构单元60在衬底基板11上的正投影可以与图12的(b)图中的虚线框重合,或者,与虚线框相切。
其中,每个出光部组70中的多个出光部71划分为沿第二方向排列的n个第一重复单元701,每个第一重复单元701包括沿第一方向排列的c个出光部;每个发光器件组20中的多个微发光二极管21划分为沿所述第二方向排列的n个第二重复单元201,每个第二重复单元201包括沿第一方向排列的c个微发光二极21管;其中,所述第一方向与所述第二方向交叉。n、c均为大于1的整数。图10至图12中均是以n=2为例进行说明的。
在图10所示的示例中,在每个发光器件组20中,第二重复单元201包括沿第一方向依次排列的:第三微发光二极管21b、第二微发光二极管21g、第一微发光二极管21r、第三微发光二极管21b、第二微发光二极管21g、第一微发光二极管21r。以每个发光器件组20包括两个第二重复单元201为例,两个第二重复单元201的12个微发光二极管21可以排成两行六列。
在图11所示的示例中,部分第二重复单元201包括沿第一方向依次排列的:第二微发光二极管21g、第一微发光二极管21r、第三微发光二极管21b,其余的所述第二重复单元包括沿第一方向依次排列的:第三微发光二极管21b、第二微发光二极管21g、第一微发光二极管21r。以 每个发光器件组20包括两个第二重复单元201为例,两个第二重复单元201的微发光二极管21可以交错设置。
在图12所示的示例中,在每个发光器件组20中,部分第二重复单元201包括沿第一方向依次排列的:第二微发光二极管21g、第一微发光二极管21r、第二微发光二极管21g和第三微发光二极管21b;其余的第二重复单元201包括沿第一方向依次排列的:第二微发光二极管21g、第三微发光二极管21b、第二微发光二极管21g和第一微发光二极管21r。以每个发光器件组20包括两个第二重复单元201为例,两个重复单元的8个微发光二极管21可以排成两行四列。
在图10至图11中,不同微发光二极管21在衬底基板11上的正投影面积可以相同;在图12中,不同的微发光二极管在衬底基板11上的正投影面积可以不完全相同,例如,第一微发光二极管21r在衬底基板11上的正投影面积和第三微发光二极管21b在衬底基板11上的正投影面积均大于第二微发光二极管21g在衬底基板11上的正投影面积。
在图10至图12中,对于任一发光器件组20,第j个第二重复单元201中的第q个微发光二极管21所发射的光线经过光学结构单元60后,射向相应的出光部组70中第n-j+1个第一重复单元中的第c-q+1个出光部,n、c均为大于1的整数,q、j均为整数,1≤q≤c,1≤j≤n。
需要说明的是,第j个第二重复单元201是指,沿第二方向排列的第j个第二重复单元201;第n-j+1个第一重复单元是指,沿第二方向排列的第n-j+1个第一重复单元701。第q个微发光二极管21是指,沿第一方向排列的q第个微发光二极管21;第c-q+1个出光部是指,沿第一方向排列的第c-q+1个出光部71。
例如,如图10至图12中,标有字母标记的任一微发光二极管21所发射的光经过聚光透镜后,射向标有相同字母标记的出光部71。
本公开实施例还提供一种显示装置,包括上述实施例中的显示面板。 显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示面板,包括:多个发光器件组、多个出光部组和多个光学结构单元,其中,
    所述多个发光器件组设置在衬底基板上,所述多个发光器件组中的每个包括多个微发光二级管,所述多个微发光二级管包括第一微发光二级管和第二微发光二级管,所述第一微发光二级管和所述第二微发光二级管均用于发射预设颜色的光;
    所述多个出光部组设置在所述多个发光器件组的出光侧,所述多个出光部组中的每个包括多个出光部,所述多个出光部包括第一色转换部和第二色转换部;
    所述多个光学结构单元设置在所述多个发光器件组和所述多个出光部组之间,所述多个光学结构单元中的每个在所述衬底基板上的正投影覆盖所述多个发光器件组中的至少一个在所述衬底基板上的正投影,所述多个光学结构组中的每个用于将所述第一微发光二级管发射的光射入所述第一色转换部,将所述第二微发光二级管所发射的光射入所述第二色转换部,所述第一色转换部用于将所述预设颜色的光转换为第一颜色光,所述第二色转换部用于将所述预设颜色的光转换为第二颜色光。
  2. 根据权利要求1所述的显示面板,其中,所述第一颜色光与所述第二颜色光的波长范围不同。
  3. 根据权利要求1所述的显示面板,其中,所述发光器件组中的多个发光器件还包括:第三微发光二极管,所述第三微发光二极管用于发射所述预设颜色的光,
    所述出光部组中的多个出光部还包括透光部,所述多个光学结构单元中的每个在所述衬底基板上的正投影还覆盖所述第三微发光二极管在 所述衬底基板上的正投影,
    所述多个发光结构单元中的每个还用于将所述第三微发光二极管发射的光射入所述透光部。
  4. 根据权利要求3所述的显示面板,其中,所述预设颜色的光为蓝光,所述第一颜色光为红光,所述第二颜色光为绿光。
  5. 根据权利要求1所述的显示面板,其中,所述发光器件组中的多个发光器件还包括:第三微发光二极管,所述第三微发光二极管用于发射所述预设颜色的光,
    所述出光部组中的多个出光部还包括第三色转换部,所述多个光学结构单元中的每个在所述衬底基板上的正投影还覆盖所述第三微发光二极管在所述衬底基板上的正投影,
    所述多个光学结构单元中的每个还用于将所述第三微发光二极管发射的光射入所述第三色转换部,所述第三色转换部用于将所述预设颜色的光转换为第三颜色光。
  6. 根据权利要求5所述的显示面板,其中,所述预设颜色的光为紫外光,所述第一颜色光为红光,所述第二颜色光为绿光,所述第三颜色光为蓝光;
    或者,所述预设颜色的光为第一波长的蓝光,所述第一颜色光为红光,所述第二颜色光为绿光,所述第三颜色光为第二波长的蓝光,所述第一波长小于所述第二波长。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板还包括与所述发光器件组一一对应的透光载体,不同所述发光器件组所对应的透 光载体间隔设置;
    所述透光载体朝向所述衬底基板的一侧设置有阻隔层,所述阻隔层上设置有多个容纳开口,所述发光器件组中的微发光二极管一一对应地设置在所述容纳开口中。
  8. 根据权利要求7所述的显示面板,其中,任意相邻两个所述透光载体之间设置有遮光层。
  9. 根据权利要求7所述的显示面板,其中,所述微发光二极管包括:
    第一电极,位于所述透光载体朝向所述衬底基板的一侧;
    发光叠层,位于所述第一电极远离所述透光载体的一侧,所述发光叠层包括沿远离所述透光载体的方向依次设置的:第一类型掺杂半导体层、量子阱层和第二类型掺杂半导体层;
    第二电极,位于所述发光叠层远离所述透光载体的一侧。
  10. 根据权利要求1至9中任意一项所述的显示面板,其中,所述显示面板还包括:
    封装层,位于所述多个发光器件组远离所述衬底基板的一侧;
    填充层,位于所述封装层与所述多个光学结构单元之间;
    隔垫基板,位于所述多个光学结构单元与所述多个出光部组之间;
    其中,所述光学结构单元的折射率大于所述填充层的折射率,所述光学结构单元朝向所述填充层的表面为凸曲面,所述光学结构的凸曲面与所述填充层贴合。
  11. 根据权利要求1至9中任意一项所述的显示面板,其中,所述显示面板还包括:
    封装层,位于所述多个发光器件组远离所述衬底基板的一侧,所述光学结构单元设置在所述封装层远离所述衬底基板的表面上;
    隔垫基板,位于所述多个光学结构单元与所述多个出光部组之间,所述隔垫基板上设置有与所述光学结构单元一一对应的凹陷;
    其中,所述光学结构单元朝向所述隔垫基板的表面为凸曲面,所述光学结构的凸曲面与所述凹陷贴合,所述光学结构单元的折射率大于所述隔垫基板的折射率。
  12. 根据权利要求1至9中任意一项所述的显示面板,其中,所述光学结构单元采用聚光透镜,所述多个微发光二极管到所述光学结构单元之间的距离为所述聚光透镜的焦距的1~2倍。
  13. 根据权利要求1至9中任意一项所述的显示面板,其中,所述第一色转换部在所述衬底基板上的正投影面积大于所述第一微发光二极管在所述衬底基板上的正投影的面积;
    所述第二色转换部在所述衬底基板上的正投影面积大于所述第二微发光二极管在所述衬底基板上的正投影的面积。
  14. 根据权利要求1至9中任意一项所述的显示面板,其中,所述第一色转换部和所述第二色转换部的材料均包括量子点材料或荧光粉材料。
  15. 根据权利要求1至9中任意一项所述的显示面板,其中,所述显示面板还包括:容纳结构层,所述容纳结构层具有多个容纳槽,所述出光部一一对应地设置在所述容纳槽中。
  16. 根据权利要求1至9中任意一项所述的显示面板,其中,每个所述出光部组中的多个出光部沿第一方向依次排列,每个所述发光器件组中的多个微发光二极管沿所述第一方向依次排列;
    其中,对于任一所述发光器件组,第i个所述微发光二极管所发射的光线经过所述光学结构单元后,射向相应的出光部组中的第m-i+1个出光部,m为所述出光部组中的出光部的数量,i为整数,且1≤i≤m。
  17. 根据权利要求16所述的显示面板,其中,所述发光器件组中的多个微发光二极管划分为至少一个重复单元,每个重复单元包括沿第一方向依次排列的:所述第三微发光二极管、所述第二微发光二极管和所述第一微发光二极管。
  18. 根据权利要求1至9中任意一项所述的显示面板,其中,每个所述出光部组中的多个出光部划分为沿第二方向排列的n个第一重复单元,每个所述第一重复单元包括沿第一方向排列的c个所述出光部;每个所述发光器件组中的多个微发光二极管划分为沿所述第二方向排列的n个第二重复单元,每个所述第二重复单元包括沿所述第一方向排列的c个所述微发光二极管;其中,所述第一方向与所述第二方向交叉;
    对于任一所述发光器件组,第j个第二重复单元中的第q个微发光二极管所发射的光线经过所述光学结构单元后,射向相应的出光部组中第n-j+1个第一重复单元中的第c-q+1个出光部,n、c均为大于1的整数,q、j均为整数,且1≤q≤c,1≤j≤n。
  19. 根据权利要求18所述的显示面板,其中,在每个所述发光器件组中,所述第二重复单元包括沿第一方向依次排列的:第三微发光二极管、第二微发光二极管、第一微发光二极管、第三微发光二极管、第二 微发光二极管、第一微发光二极管;或者,
    在每个所述发光器件组中,部分所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第一微发光二极管、第三微发光二极管,其余的所述第二重复单元包括沿第一方向依次排列的:第三微发光二极管、第二微发光二极管、第一微发光二极管;或者,
    在每个所述发光器件组中,部分所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第一微发光二极管、第二微发光二极管和第三微发光二极管;其余的所述第二重复单元包括沿第一方向依次排列的:第二微发光二极管、第三微发光二极管、第二微发光二极管和第一微发光二极管。
  20. 一种显示装置,其中,包括权利要求1至19中任意一项所述的显示面板。
PCT/CN2021/131769 2021-11-19 2021-11-19 显示面板和显示装置 WO2023087250A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/131769 WO2023087250A1 (zh) 2021-11-19 2021-11-19 显示面板和显示装置
CN202180003464.6A CN116762173A (zh) 2021-11-19 2021-11-19 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131769 WO2023087250A1 (zh) 2021-11-19 2021-11-19 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023087250A1 true WO2023087250A1 (zh) 2023-05-25

Family

ID=86395976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131769 WO2023087250A1 (zh) 2021-11-19 2021-11-19 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN116762173A (zh)
WO (1) WO2023087250A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151880A (ja) * 2008-12-24 2010-07-08 Sony Corp カラー液晶表示装置組立体及び光変換装置
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置
CN108766273A (zh) * 2018-08-15 2018-11-06 南方科技大学 一种微型发光二极管显示面板及显示装置
CN110928021A (zh) * 2019-11-05 2020-03-27 深圳市华星光电半导体显示技术有限公司 量子点显示面板增亮膜及透镜阵列
CN112510076A (zh) * 2020-12-21 2021-03-16 深圳扑浪创新科技有限公司 一种量子点显示装置及其应用
CN214672621U (zh) * 2020-12-11 2021-11-09 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151880A (ja) * 2008-12-24 2010-07-08 Sony Corp カラー液晶表示装置組立体及び光変換装置
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置
CN108766273A (zh) * 2018-08-15 2018-11-06 南方科技大学 一种微型发光二极管显示面板及显示装置
CN110928021A (zh) * 2019-11-05 2020-03-27 深圳市华星光电半导体显示技术有限公司 量子点显示面板增亮膜及透镜阵列
CN214672621U (zh) * 2020-12-11 2021-11-09 京东方科技集团股份有限公司 显示面板和显示装置
CN112510076A (zh) * 2020-12-21 2021-03-16 深圳扑浪创新科技有限公司 一种量子点显示装置及其应用

Also Published As

Publication number Publication date
CN116762173A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN111710770B (zh) 一种显示面板及其制备方法和显示装置
TWI631395B (zh) 光學構件與具有其之顯示裝置及其製造方法
EP3568727B1 (en) Backlight and manufacturing method thereof, light guide plate and manufacturing method thereof, and display device
JP6357349B2 (ja) 表示装置
US10707275B2 (en) Display apparatus and method of manufacturing the same
WO2021238444A1 (zh) 显示面板及其制作方法、显示装置
KR101660163B1 (ko) 광 변환 부재, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
US10120114B2 (en) Light conversion member, and backlight unit and display device including the same
TW202009580A (zh) 畫素陣列封裝結構及顯示面板
CN106501994B (zh) 一种量子点发光器件、背光模组及显示装置
WO2021184914A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
TW201241536A (en) Optical member and display device including the same
JP2011507287A (ja) 照明装置
JP2018180505A (ja) マイクロledパネルを用いたプロジェクション装置及びその内の第3マイクロledディスプレイ装置の製造方法
CN104155803A (zh) 背光模块及液晶显示装置
CN112582441B (zh) 一种显示面板、显示装置及显示面板的制备方法
WO2020080056A1 (ja) 発光デバイスおよび画像表示装置
CN113437052B (zh) 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN115016213B (zh) 一种实现Micro-LED彩色化投影的光学引擎
WO2023087250A1 (zh) 显示面板和显示装置
KR20160049082A (ko) 액정 표시 장치
KR101641266B1 (ko) 발광소자 패키지를 구비하는 디스플레이 장치
US20240222575A1 (en) Display panel and display apparatus
US20220352416A1 (en) High color gamut photoluminescence wavelength converted white light emitting devices
CN111129271B (zh) 显示面板以及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003464.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17920837

Country of ref document: US