WO2017010402A1 - 脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤 - Google Patents

脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤 Download PDF

Info

Publication number
WO2017010402A1
WO2017010402A1 PCT/JP2016/070162 JP2016070162W WO2017010402A1 WO 2017010402 A1 WO2017010402 A1 WO 2017010402A1 JP 2016070162 W JP2016070162 W JP 2016070162W WO 2017010402 A1 WO2017010402 A1 WO 2017010402A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitration catalyst
chemical solution
catalyst
surfactant
water
Prior art date
Application number
PCT/JP2016/070162
Other languages
English (en)
French (fr)
Inventor
増田 具承
米村 将直
昌則 出本
和大 岩本
安武 聡信
誠 横山
Original Assignee
三菱日立パワーシステムズ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社, 三菱重工業株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020187000585A priority Critical patent/KR102112426B1/ko
Priority to CN201680040042.5A priority patent/CN107921420A/zh
Priority to JP2017528647A priority patent/JP6298579B2/ja
Priority to US15/740,554 priority patent/US11045799B2/en
Publication of WO2017010402A1 publication Critical patent/WO2017010402A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • C11D2111/10

Definitions

  • the present invention relates to a denitration catalyst regeneration method, a denitration catalyst regeneration system, and a denitration catalyst cleaning agent, and more particularly, to a regeneration method and regeneration system for a deteriorated denitration catalyst for a coal-fired boiler, and a cleaning agent.
  • Equipment for burning fuels such as fossil fuels and biomass is equipped with denitration equipment for removing nitrogen oxides contained in exhaust gas generated by burning the fuel.
  • Some denitration facilities include a denitration catalyst that promotes removal of nitrogen oxides. The performance of the denitration catalyst deteriorates when used. For this reason, in the denitration facility, the denitration catalyst is replaced or added during maintenance. In order to reuse the denitration catalyst, it has also been proposed to perform regeneration to restore performance.
  • Japanese Patent No. 4870217 in a method for improving catalytic activity in a flue gas denitration apparatus used for boiler exhaust gas, a denitration catalyst whose activity has been reduced by a silica-alumina-calcium sulfate-based poisonous substance is previously washed with water, A method for improving the catalytic activity in a flue gas denitration apparatus is described in which a mixed solution of an organic acid and a fluoride is used to wash and remove the substance at room temperature after it has been hydrated.
  • the concentration of hydrofluoric acid in the cleaning liquid is set to 0.3 to 3% by mass, and the temperature of the cleaning liquid is set to 40 to It is described that the catalyst is washed at 80 ° C.
  • the catalyst performance can be recovered to a high level by using an organic acid and a fluorine compound such as fluoride for cleaning the denitration catalyst.
  • catalyst regeneration components such as calcium may adhere to the catalyst surface due to the regeneration treatment. If calcium, which is a catalyst deterioration component, adheres, the catalyst performance after regeneration may be insufficient. Further, there is a problem that the crushing strength of the denitration catalyst is reduced by the regeneration treatment.
  • the present invention solves the above-described problems, and can remove deposits attached to the surface of the catalyst efficiently, can recover catalyst performance at a high level, and can suppress a decrease in crushing strength. It is an object of the present invention to provide a catalyst regeneration method, a denitration catalyst regeneration system, and a denitration catalyst cleaning agent.
  • a method for regenerating a denitration catalyst includes a prewashing step of washing the denitration catalyst with water, and the denitration catalyst washed with water into a chemical solution containing an inorganic acid and a fluorine compound. It includes at least a chemical solution washing step for immersing, a step for removing the denitration catalyst from the chemical solution, and a final washing step for washing the denitration catalyst taken out from the chemical solution with water or sulfamic acid-containing water as a final washing solution.
  • the chemical solution further includes a surfactant.
  • the surfactant is more preferably a nonionic surfactant or an anionic surfactant. With this surfactant, calcium dissolved in the cleaning liquid and calcium in the dust can be highly dispersed, and there is an effect of suppressing reattachment to the catalyst.
  • the inorganic acid preferably contains hydrochloric acid.
  • hydrochloric acid it is desirable to contain a boric acid in hydrochloric acid as needed.
  • the inorganic acid preferably contains sulfamic acid.
  • the nonionic surfactant is a surfactant mainly composed of polyoxyethylene polyoxypropylene glycol, polyoxyethylene derivative or polyalkylene glycol derivative. Preferably there is.
  • the anionic surfactant is preferably a surfactant mainly composed of a polyoxyalkylene alkyl ether phosphate.
  • the silica concentration on the catalyst surface is 6 mass% or less by immersing the denitration catalyst in the chemical solution.
  • the denitration catalyst is immersed in water in a water tank, the water tank is sealed, and air in the water tank is sucked.
  • the chemical solution is repeatedly used in the chemical solution washing step.
  • a denitration catalyst regeneration system includes a prewash unit for washing the denitration catalyst with water, and a chemical solution containing the washed denitration catalyst with an inorganic acid and a fluorine compound. And a finishing washing section for finishing washing the denitration catalyst taken out from the chemical solution with water or sulfamic acid-containing water as a finishing washing solution.
  • deposits attached to the surface of the catalyst can be efficiently removed, the catalyst performance is highly recovered, and the crushing strength is reduced. Can be suppressed.
  • a cleaning liquid according to another aspect of the present invention is a cleaning liquid for cleaning a deteriorated denitration catalyst for a coal fired boiler, and an aqueous solution containing an inorganic acid and a fluorine compound. At least.
  • the cleaning liquid preferably further contains a surfactant, and the surfactant is preferably a nonionic surfactant or an anionic surfactant.
  • the inorganic acid preferably contains hydrochloric acid.
  • hydrochloric acid it is desirable to contain a boric acid as a rust preventive in hydrochloric acid as needed.
  • the inorganic acid preferably contains sulfamic acid.
  • the nonionic surfactant is a surfactant mainly composed of polyoxyethylene polyoxypropylene glycol, polyoxyethylene derivative or polyalkylene glycol derivative. Preferably there is.
  • the anionic surfactant is preferably a surfactant mainly composed of a polyoxyalkylene alkyl ether phosphate.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a denitration catalyst regeneration system of the first embodiment.
  • FIG. 2 is a flowchart showing an example of the regeneration method of the denitration catalyst according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a regeneration system for a denitration catalyst according to the second embodiment.
  • FIG. 4 is a flowchart showing an example of a method for regenerating a denitration catalyst according to the second embodiment.
  • FIG. 5 is a graph showing the measurement result of the performance recovery rate of the catalyst of the example of the regeneration method.
  • FIG. 6 is a graph showing the measurement result of the catalyst surface silica concentration in the example of the regeneration method.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a denitration catalyst regeneration system of the first embodiment.
  • FIG. 2 is a flowchart showing an example of the regeneration method of the denitration catalyst according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a
  • FIG. 7 is a graph showing measurement results of catalyst surface calcium in an example of the regeneration method.
  • FIG. 8 is a graph showing the measurement result of the performance recovery rate of the catalyst of the example of the regeneration method.
  • FIG. 9 is a graph showing the measurement result of the catalyst surface silica concentration in the example of the regeneration method.
  • FIG. 10 is a graph showing the measurement results of catalyst surface calcium in an example of the regeneration method.
  • FIG. 11 is a graph showing the measurement results of the relationship between the treatment time for chemical washing and the concentration of deposits on the catalyst surface.
  • FIG. 12 is a graph showing the measurement results of the relationship between the treatment time for chemical washing and the performance recovery rate of the denitration catalyst.
  • FIG. 13 is a graph showing measurement results of the relationship between the number of times the chemical solution is used and the performance recovery rate of the denitration catalyst.
  • FIG. 14A is a graph showing a measurement result of the relationship between the number of times the finish cleaning liquid is used and the performance recovery rate of the denitration catalyst.
  • FIG. 14B is a graph showing a measurement result of the relationship between the number of times the finish cleaning liquid is used and the performance recovery rate of the denitration catalyst.
  • FIG. 15A is a graph showing a measurement result of the relationship between the number of times the finish cleaning liquid is used and the performance recovery rate of the denitration catalyst.
  • FIG. 15B is a graph showing a measurement result of the relationship between the number of times the finish cleaning liquid is used and the performance recovery rate of the denitration catalyst.
  • First Embodiment 1-1 Cleaning agent
  • the cleaning agent of 1st Embodiment is demonstrated.
  • the cleaning agent of this embodiment is an aqueous cleaning agent containing at least a fluorine compound and an inorganic acid.
  • the fluorine compound examples include ammonium hydrogen fluoride (NH 4 HF 2 ) and ammonium fluoride (NH 4 F).
  • the fluorine compound is preferably ammonium hydrogen fluoride.
  • the amount of ammonium hydrogen fluoride can be, for example, 1 to 10% by mass relative to the entire cleaning agent, and is preferably in the range of 1 to 5% by mass.
  • inorganic acids examples include sulfamic acid (H 3 NSO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), and boric acid (H 3 BO 3 ).
  • the inorganic acid is preferably hydrochloric acid or hydrochloric acid and boric acid. Boric acid can also function as a rust inhibitor.
  • the amount of boric acid can be, for example, 0.001 to 10% by mass with respect to the cleaning agent.
  • the inorganic acid is also preferably sulfamic acid.
  • the amount of the inorganic acid is preferably added such that the pH value of the cleaning agent is in the range of pH 1 to 6, and more preferably in the range of pH 1 to 3. If the amount of the acid is such that the pH value of the cleaning agent is within the above range, other than the inorganic acid can be added.
  • the cleaning agent preferably further contains a surfactant.
  • a surfactant a nonionic or anionic surfactant is more preferable.
  • the nonionic surfactant is preferably a non-phosphoric surfactant based on polyoxyethylene polyoxypropylene glycol, polyoxyethylene derivative, or polyalkylene glycol derivative.
  • the ethylene oxide (EO) content of polyoxyethylene polyoxypropylene glycol can be, for example, 39% by mass.
  • Non-phosphoric surfactants based on polyoxyethylene polyoxypropylene glycol include Braunon P-101M (Aoki Yushi Kogyo Co., Ltd.), Emulgen PP-220 (Kao Co., Ltd.), New Pole PE-61, New Pole PE-62, New Pole PE-64, New Pole PE-68, New Pole PE-71, New Pole PE-74, New Pole PE-75, New Pole PE-78, New Pole PE-108, etc. (Sanyo Evan 410, Evan 420, Evan 450, Eban 485, Evan 680, Evan 710, Evan 720, Evan 740, Evan 750, Evan 785, Evan U-103, Evan U-105, Evan U-108, etc.
  • Pronon # 056 Pronon # 1 1P, Pronon # 105, Pronon # 124, Pronon # 124P, Pronon # 154, Pronon # 188P, Pronon # 201, Pronon # 202, Pronon # 204, Pronon # 208, Pronon # 235, Pronon # 235P, Pronon # 237P, Pronon # 238, Pronon # 407P, UniLube (registered trademark) 70DP-950B, Uniluve 75DE-2620R, etc.
  • Non-phosphate surfactants mainly composed of a polyalkylene glycol derivative include Master Air 404 (manufactured by BASF), Foam Killer M-14 (manufactured by Aoki Yushi Kogyo Co., Ltd.), Dispanol WI-115 (Japan) Yuryu Co., Ltd.), UniLube 50MB-2, UniLube 50MB-5, UniLube 50MB-11, UniLube 50MB-26, UniLube 50MB-72, UniLube 60MB-2B, UniLube 60MB-16, UniLube 60MB-26, UniLube 75DE-15 , UNILOVE 75DE-25, UNILOVE 75DE-60, UNILOVE 75DE-170, UNILOVE 75DE-2620, UNILOVE 75DE-3800, UNILOVE 80
  • a phosphate ester surfactant mainly composed of a phosphate ester such as polyoxyalkylene alkyl ether phosphate or a salt thereof is preferable.
  • a surfactant mainly composed of a phosphate ester such as polyoxyethylene alkyl ether phosphate ester is preferable, and polyoxyethylene alkyl (C8) ether phosphate ester / monoethanolamine salt Of these, surfactants containing as the main component are more preferred.
  • Examples of phosphate ester surfactants based on phosphate esters or salts thereof include Antox® EHD-PNA, New Coal® 100-FCP, Antox® EHD-400, etc.
  • Prisurf® A208F examples include Plysurf A208N, Plysurf A210D, Plysurf M208F, etc. (manufactured by Daiichi Kogyo Co., Ltd.).
  • the amount of the surfactant can be, for example, 0.001 to 10% by mass with respect to the entire cleaning agent.
  • FIG. 1 shows a schematic configuration of a denitration catalyst regeneration system according to the first embodiment.
  • the denitration catalyst regeneration system 100 shown in FIG. 1 executes a process for recovering the catalyst performance of the denitration catalyst.
  • the target denitration catalyst was poisoned by using it for denitration of exhaust gas containing poisonous substances such as silica, calcium, phosphorus, arsenic, sodium, potassium, etc. produced from coal-fired boilers, and its catalytic performance decreased. Used denitration catalyst.
  • the target denitration catalyst includes a lattice (honeycomb) catalyst, a plate catalyst, and a corrugated catalyst.
  • the denitration catalyst contains, for example, titanium dioxide (TiO 2 ) as a carrier and contains at least one of vanadium (V), tungsten (W), and molybdenum (M réelle) as an active component.
  • the denitration catalyst regeneration system 100 includes a pre-washing unit 102, a chemical solution washing unit 104, a finish washing unit 106, and a drying unit 108.
  • the pre-washing unit 102 is configured to wash the denitration catalyst with water and remove foreign matter, ash, soluble calcium, and the like attached to the denitration catalyst.
  • As the pre-washing unit 102 there can be used a water tank and a mechanism for supplying water to the water tank, in which a denitration catalyst is introduced into the water tank in which water is stored and water is immersed in the denitration catalyst.
  • the pre-washing unit 102 As the pre-washing unit 102, a device that has a shower nozzle or the like, drips water on the denitration catalyst, and immerses water in the denitration catalyst can also be used.
  • the denitration catalyst may be washed with water to remove foreign matters, but a liquid in which components for washing the denitration catalyst are mixed may be used.
  • the chemical solution cleaning unit 104 is configured to immerse the denitration catalyst in a chemical solution (cleaning agent) and remove foreign matters attached to the denitration catalyst.
  • the chemical solution of the present embodiment contains at least an inorganic acid and a fluorine compound. That is, the chemical solution is a mixed solution of an inorganic acid and a fluorine compound, and the cleaning agent of this embodiment can be suitably used.
  • the chemical cleaning unit 104 has a water tank and a mechanism for supplying the chemical solution to the water tank, and a device for introducing the denitration catalyst into the water tank storing the chemical solution and immersing the chemical solution in the denitration catalyst. Can be used.
  • a device that has a shower nozzle or the like applies a chemical solution to the denitration catalyst, and immerses the chemical solution in the denitration catalyst can be used.
  • the finish washing unit 106 is configured to finish and wash the denitration catalyst in which the chemical solution is immersed in the chemical solution washing unit 104 with the finish washing solution, thereby removing and reducing the chemical solution adhering to the denitration catalyst.
  • the finish washing unit 106 has a water tank and a mechanism for supplying the finish cleaning liquid to the water tank.
  • the denitration catalyst is put into the water tank in which the finish cleaning liquid is stored, and the finish washing liquid is immersed in the denitration catalyst and adheres to the denitration catalyst.
  • a device that removes and reduces the chemical solution that is present can be used.
  • As the finish washing section 106 a device that has a shower nozzle or the like, applies a finish washing solution to the denitration catalyst, and removes and reduces the chemical solution adhering to the denitration catalyst can be used.
  • the finish cleaning liquid examples include water (H 2 O), sulfamic acid (H 3 NSO 3 ), and a mixture thereof.
  • the finishing cleaning liquid preferably contains sulfamic acid. That is, the finish cleaning liquid is preferably a mixed liquid of water and sulfamic acid having a predetermined concentration (hereinafter also referred to as sulfamic acid-containing water).
  • the amount of sulfamic acid is, for example, 0.5 mol / l to 5 mol / l with respect to water.
  • the drying unit 108 is configured to remove moisture from the denitration catalyst that has been finished and washed by the finish washing unit 106.
  • the drying unit 108 is configured to remove moisture adhering to the denitration catalyst by ventilating a gas heated to 100 ° C. or higher, for example, 1 ° C. gas, to the denitration catalyst.
  • the drying unit 108 only needs to be able to remove moisture, and the dried air may be sent to the denitration catalyst to blow off the moisture. Further, the drying unit 108 may dry the denitration catalyst in a space heated to 100 ° C. or higher.
  • FIG. 2 is a flowchart showing an example of the regeneration method for the denitration catalyst according to the first embodiment.
  • the denitration catalyst regeneration method shown in FIG. 2 can be realized by executing processing in each part of the denitration catalyst regeneration system 100.
  • the regeneration method of the denitration catalyst of the present embodiment includes a prewashing step, a chemical solution washing step, a step of taking out the denitration catalyst, and a finishing washing step.
  • the denitration catalyst is washed with water by the prewash unit 102 (step S12).
  • the denitration catalyst is washed with water in the pre-washing unit 102 to remove foreign substances adhering to the surface, so that liquid can easily enter the denitration catalyst.
  • the denitration catalyst regeneration system 100 as the chemical solution cleaning step, when the denitration catalyst is pre-washed, the denitration catalyst washed with water in the chemical solution cleaning unit 104 is immersed in a chemical solution containing an inorganic acid and a fluorine compound (step S14).
  • the denitration catalyst is immersed in a chemical solution for 15 minutes to 60 minutes.
  • a substance attached to the denitration catalyst specifically, silica (SiO 2 ) or the like is removed by immersing the denitration catalyst in a chemical solution.
  • the denitration catalyst regeneration system 100 As the step of taking out the denitration catalyst, in the denitration catalyst regeneration system 100, after the denitration catalyst is immersed in the chemical solution, the denitration catalyst is taken out from the chemical solution. Thereafter, in the denitration catalyst regeneration system 100, as a final washing step, the denitration catalyst taken out from the chemical solution is subjected to final washing using the final washing liquid in the final washing unit 106 (step S16). In the denitration catalyst regeneration system 100, the chemical solution adhering to the denitration catalyst is removed by finishing washing in the finish washing unit 106.
  • the present embodiment by using a mixed solution containing an inorganic acid and a fluorine compound as a chemical solution, it is possible to efficiently remove hardly soluble silica while suppressing the elution of active components such as vanadium from the denitration catalyst. It is possible to increase the recovery rate of the performance of the denitration catalyst. That is, it can be regenerated to a denitration catalyst with high catalytic performance. As a result, the catalyst performance can be improved without performing the treatment of impregnating the active component of the catalyst after the finish washing in the finish washing section.
  • an impregnation step in which eluted vanadium is immersed in a vanadyl sulfate (VOSO 4 ) aqueous solution and supported again. Steps such as a subsequent drying step can be omitted. Thereby, the man-hour increase of the regeneration process by the impregnation process of an active ingredient can be suppressed.
  • NaOH alkaline sodium hydroxide
  • VOSO 4 vanadyl sulfate
  • the chemical solution particularly preferably contains hydrochloric acid as an inorganic acid.
  • hydrochloric acid as the inorganic acid, calcium can be dissolved, and calcium can be prevented from adhering to the denitration catalyst during the regeneration treatment.
  • the chemical solution further contains boric acid in hydrochloric acid as an inorganic acid.
  • boric acid By adding boric acid to the chemical solution, it is possible to suppress the elution of iron from the pack frame of the denitration catalyst, and it is possible to suppress an increase in the SO 2 oxidation rate in the chemical solution.
  • the chemical solution preferably uses ammonium hydrogen fluoride as the fluorine compound.
  • the chemical solution further contains a surfactant.
  • the chemical solution is preferably a mixed solution of an inorganic acid, a fluorine compound, and a surfactant.
  • medical solution can suppress that calcium adheres to a denitration catalyst at the time of a regeneration process by containing surfactant.
  • the recovery rate of the performance of the denitration catalyst can be further increased, and the reduction in the crushing strength of the denitration catalyst can be suppressed. That is, it can be regenerated to a denitration catalyst with higher catalyst performance, that is, the number of times the chemical solution is used can be increased.
  • the temperature required for the chemical washing step can be lowered, and the time required for the chemical washing step can be shortened. As a result, the processing cost of the reproduction process can be reduced.
  • surfactants include phosphate surfactants and non-phosphate surfactants.
  • examples of the phosphoric acid surfactant include phosphate esters such as polyoxyalkylene alkyl ether phosphate esters or salts thereof.
  • examples of the non-phosphate surfactant include polyoxyethylene polyoxypropylene glycol, polyoxyethylene derivatives, and polyoxyethylene derivatives.
  • hydrochloric acid as a mineral acid and a mixed solution of boric acid and ammonium hydrogen fluoride as a fluorine compound
  • sulfamic acid as an inorganic acid and ammonium hydrogen fluoride as a fluorine compound
  • a mixed liquid mixture As a chemical solution containing an inorganic acid and a fluorine compound, hydrochloric acid as a mineral acid and a mixed solution of boric acid and ammonium hydrogen fluoride as a fluorine compound; sulfamic acid as an inorganic acid and ammonium hydrogen fluoride as a fluorine compound A mixed liquid mixture; or a mixed liquid obtained by mixing hydrochloric acid as an inorganic acid and ammonium hydrogen fluoride as a fluorine compound is exemplified.
  • a mixed solution in which sulfamic acid as an inorganic acid, a phosphate ester as a surfactant, and ammonium hydrogen fluoride as a fluorine compound are mixed a mixed solution in which sulfamic acid as an inorganic acid, a phosphate ester as a surfactant, and ammonium hydrogen fluoride as a fluorine compound are mixed; sulfamine as an inorganic acid Mixture of acid, polyoxyethylene derivative as surfactant and ammonium hydrogen fluoride as fluorine compound; hydrochloric acid and boric acid as inorganic acid, phosphate ester as surfactant and ammonium hydrogen fluoride as fluorine compound;
  • the mixed liquid mixture include hydrochloric acid and boric acid as the inorganic acid, a polyoxyethylene derivative as the surfactant, and ammonium hydrogen fluoride as the fluorine compound.
  • the finishing cleaning liquid contains sulfamic acid. That is, the finish cleaning liquid is preferably a mixed liquid of water and sulfamic acid.
  • the finishing cleaning liquid containing sulfamic acid calcium and alumina on the surface of the catalyst after the regeneration treatment can be reduced. For this reason, the recovery rate of catalyst performance can be made higher. Thereby, even if a chemical
  • FIG. 3 shows a schematic configuration of a regeneration system for a denitration catalyst according to the second embodiment.
  • the denitration catalyst regeneration system 100a of the second embodiment shown in FIG. 3 can be combined with the denitration catalyst regeneration system 100 and other embodiments. This point is the same also in other embodiments, each embodiment is an example, and other embodiments can be combined with a part thereof.
  • the denitration catalyst regeneration system 100a includes a pre-washing unit 102a, a chemical solution washing unit 104a, a finishing washing unit 106a, a drying unit 108, and a catalyst transport device 112.
  • the catalyst transport device 112 is a device that removes the denitration catalyst from the denitration facility where the denitration catalyst is installed, and transports the removed denitration catalyst.
  • the catalyst transport device 112 can include a crane that transports the catalyst, a vehicle, a cart that is moved manually, and the like.
  • the pre-washing unit 102a includes a preliminary washing tank 114, a water supply device 116, a waste liquid tank 117, a vacuum tank 118, a waste liquid tank 119, and a vacuum pump 120.
  • the preliminary rinsing tank 114 is a container that is larger than the denitration catalyst to be regenerated and can store liquid.
  • the water supply device 116 has a tank for storing water, a valve for controlling the supply of water, and the like, so that water used for pre-washing and vacuuming is supplied to each of the preliminary washing tank 114 and the vacuuming tank 118. It is configured.
  • the waste liquid tank 117 is a container for storing water discharged from the preliminary flush tank 114.
  • the evacuation tank 118 is a container that is larger than the denitration catalyst to be regenerated and can store liquid.
  • the vacuum evacuation tank 118 of the present embodiment has a lid or the like, is configured so that a denitration catalyst can be taken in and out, and the inside can be sealed.
  • the waste liquid tank 119 is a container for storing water discharged from the vacuum suction tank 118.
  • the pre-washing unit 102a may use the waste liquid tank 117 and the waste liquid tank 119 as one tank.
  • the vacuum pump 120 is configured to suck air in the vacuum chamber 118.
  • the chemical cleaning unit 104a includes a chemical cleaning tank 122, a chemical supply device 123, and a waste liquid tank 129.
  • the chemical washing tank 122 is a container that is larger than the denitration catalyst to be regenerated and can store liquid.
  • the chemical solution supply device 123 includes a tank that stores the chemical solution, a valve that controls supply of the chemical solution, and the like, and is configured to supply the chemical solution used for the chemical solution cleaning to the chemical washing tank 122.
  • the waste liquid tank 129 is a container that stores the chemical liquid discharged from the chemical washing tank 122.
  • the finishing washing section 106 a includes a finishing water washing tank 130, a supply device 132, and a waste liquid tank 134.
  • the finishing water washing tank 130 is a container that is larger than the denitration catalyst to be regenerated and can store liquid.
  • the supply device 132 includes a tank for storing the finishing cleaning liquid described in the present specification, a valve for controlling the supply of the finishing cleaning liquid, and the like, and is configured to supply the finishing cleaning liquid to the finishing water washing tank 130.
  • the waste liquid tank 134 is a container for storing the finishing cleaning liquid discharged from the finishing water washing tank 130.
  • the drying unit 108 has the same configuration as the drying unit 108 of the denitration catalyst regeneration system 100.
  • FIG. 4 is a flowchart showing an example of a regeneration method for the denitration catalyst according to the second embodiment.
  • the denitration catalyst regeneration method shown in FIG. 4 can be realized by executing processing in each part of the denitration catalyst regeneration system 100a.
  • the method for regenerating a denitration catalyst of the present embodiment includes a pre-washing step, a chemical solution washing step, a finishing washing step, and a drying step.
  • the catalyst removal device 112 takes out the denitration catalyst from the denitration facility, and moves the taken out denitration catalyst to the preliminary washing tank 114 (step S22).
  • the denitration catalyst is washed with water in the preliminary washing tank 114 (step S24).
  • water may be supplied to the preliminary flush tank 114 by the water supply device 116, or the preliminary flush tank 114 may be supplied by the water supply device 116.
  • the denitration catalyst may be supplied to the preliminary washing tank 114 in a state where the water is stored.
  • the denitration catalyst is moved to the vacuum drawing tank 118 by the catalyst transfer device 112 (step S26).
  • the vacuum pump 120 sucks the air in the vacuum evacuation tank 118 into a vacuum state (step S28).
  • the vacuum chamber 118 is evacuated so that foreign matter can be sucked when the inside of the denitration catalyst is clogged with foreign matter.
  • the vacuum chamber 118 when the vacuum chamber 118 is in a vacuum state, the vacuum chamber 118 is opened to atmospheric pressure, and the catalyst transport device 112 moves the denitration catalyst from the vacuum chamber 118 to the chemical tank 122 (step). S30).
  • pre-washing is executed by the processing from step S24 to step S28 to remove foreign matter adhering to the surface, so that liquid easily enters the inside of the denitration catalyst.
  • step S32 As the chemical solution washing step, in the denitration catalyst regeneration system 100a, after the denitration catalyst is moved to the chemical washing tank 122, the denitration catalyst is immersed in the chemical solution in the chemical washing tank 122 (step S32).
  • the denitration catalyst regeneration system 100 a after the denitration catalyst is moved to the chemical washing tank 122, the chemical solution is supplied into the chemical washing tank 122 so that the denitration catalyst disposed in the chemical washing tank 122 is immersed in the chemical solution.
  • the denitration catalyst may be moved to the chemical washing tank 122 in which the chemical liquid is stored, and the denitration catalyst disposed in the chemical washing tank 122 may be immersed in the chemical liquid.
  • the processing in step S32 is chemical cleaning.
  • the catalyst removal device 122 is moved from the chemical washing tank 122 to the final water washing tank 130 by the catalyst transport device 112 (step S34).
  • the denitration catalyst regeneration system 100a after the denitration catalyst is moved to the finishing water washing tank 130, the denitration catalyst is washed in the finishing water washing tank 130 (finish washing is performed) (step S36).
  • the finishing cleaning liquid is supplied from the supply device 132 into the finishing water washing tank 130, and the denitration catalyst is cleaned with the finishing cleaning liquid.
  • the finishing cleaning liquid may be stored in the finishing water washing tank 130, or the processing may be performed while discharging the finishing washing liquid in the finishing water washing tank 130.
  • the denitration catalyst is moved to the drying unit 108, and the denitration catalyst is dried by the drying unit 108 (step S38).
  • the denitration catalyst regeneration system 100a sucks air in the vacuum chamber 118 during pre-washing, thereby reducing the air pressure in the vacuum chamber 118 and bringing it closer to vacuum. As a result, the air remaining in the denitration catalyst can be sucked, and the foreign matter blocking the gap of the denitration catalyst can be more reliably removed.
  • the chemical solution can be efficiently used by repeatedly using the chemical solution in the denitration catalyst regeneration system 100a.
  • the chemical solution containing the inorganic acid and the fluorine compound can suppress the reattachment of calcium, so that the silica removal performance can be maintained even when used multiple times.
  • the denitration catalyst is immersed in the chemical solution in the chemical washing tank 122, and the chemical solution in which the denitration catalyst is immersed is removed from the chemical washing tank 122 after that. It is not discharged into 129 but stored in the chemical washing tank 122. Thereafter, the next denitration catalyst is moved to the chemical washing tank 122 in which the chemical solution is stored.
  • the chemical solution can be repeatedly used in the denitration catalyst regeneration system 100a.
  • the denitration catalyst regeneration system 100a may adjust the components of the chemical solution when the second or subsequent chemical solution is used, that is, when the second and subsequent denitration catalysts are immersed.
  • an inorganic acid or a fluorine compound may be additionally added.
  • the denitration catalyst regeneration system 100a maintains the state in which the chemical solution is stored in the waste liquid tank 129 without being discharged from the chemical washing tank 122 even after the denitration catalyst is taken out from the chemical solution.
  • the chemical cleaning unit 104a is provided with a tank for temporarily storing the chemical solution and a circulation mechanism for circulating the chemical solution.
  • the chemical solution is once discharged from the chemical washing tank 122 into the tank, and when used, the chemical solution is put into the chemical washing tank 122 from the tank by the circulation mechanism.
  • the chemical solution may be charged again.
  • a filter or the like may be provided in the circulation mechanism to remove foreign substances in the chemical solution.
  • the finishing cleaning solution is water in the denitration catalyst regeneration system 100a
  • water is used efficiently by repeatedly using the water used for pre-washing and finishing washing. be able to.
  • the amount of waste liquid can be reduced.
  • the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing washing tank 130 After the denitration catalyst that has been washed with water is taken out from the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing washing tank 130, the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing The state where water is stored in the water washing tank 130 may be maintained, and the next denitration catalyst may be moved to perform water washing.
  • the final cleaning solution is sulfamic acid-containing water, and only the sulfamic acid-containing water in the finishing water washing tank 130 is maintained and the state where the sulfamic acid-containing water is stored is maintained. Also good.
  • a tank for temporarily storing water and a circulation mechanism for circulating water are also provided for the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing washing tank 130, and the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing washing tank 130 are provided.
  • the water may be once discharged from the tank into the tank, and when used, the water may be supplied again from the tank to the preliminary washing tank 114, the vacuum drawing tank 118, and the finishing washing tank 130 by the circulation mechanism.
  • a filter or the like may be provided in the circulation mechanism to remove foreign matters contained in the water.
  • the finishing washing liquid is sulfamic acid-containing water, and the tank for temporarily storing the sulfamic acid-containing water or the sulfamic acid-containing water is circulated only to the finishing washing tank 130.
  • a circulation mechanism may be provided so that the sulfamic acid-containing water is once discharged from the finishing water washing tank 130 into the tank, and when used, the sulfamic acid-containing water may be reintroduced from the tank into the pre-finishing washing tank 130 by the circulation mechanism.
  • a filter or the like may be provided in the circulation mechanism to remove foreign matters contained in the sulfamic acid-containing water, and a concentration meter may be provided in the circulation mechanism so that the concentration of sulfamic acid in the finish cleaning liquid Depending on, sulfamic acid-containing water may be added.
  • the denitration catalyst regeneration system 100a is provided as separate water tanks for performing pre-washing, evacuation, chemical cleaning, and finishing washing, but one water tank capable of performing each step. May be provided. Further, in the above processing method, the case has been described in which the denitration catalyst is removed from the denitration facility, but the denitration catalyst may be regenerated while being installed in the denitration catalyst. In this case, water and chemicals are supplied to the denitration facility, and the waste liquid is recovered from the denitration facility.
  • the denitration catalyst regeneration system 100a may further include a chemical temperature adjusting mechanism for adjusting the temperature of the chemical.
  • a chemical temperature adjusting mechanism for adjusting the temperature of the chemical.
  • the denitration catalyst regeneration method, the denitration catalyst regeneration system, and the denitration catalyst cleaning agent according to the present invention are not limited to the following examples.
  • the denitration catalyst regeneration method is implemented using multiple chemicals with different inorganic acids and fluorine compounds to be mixed, and the catalyst performance recovery rate of the denitration catalyst when each chemical solution is used (catalyst performance after regeneration treatment / new article) Catalyst performance at the time: K / K0), silica concentration (mass%) on the surface of the denitration catalyst, and calcium concentration (mass%) on the surface of the denitration catalyst.
  • the catalyst reaction rate constant was used as an indicator of catalyst performance.
  • Example 1 Preparation of drug solution I
  • HCl hydrochloric acid
  • NH 4 HF 2 ammonium hydrogen fluoride
  • Example 2 0.8% by mass of hydrochloric acid as an inorganic acid, 0.15% by mass of boric acid (H 3 BO 3 ) as an inorganic acid, and ammonium fluoride as a fluorine compound having a hydrogen fluoride content of 0.9%
  • medical solution mixed in the ratio used as the mass% was used.
  • Example 3 a chemical solution in which 3.5% by mass of sulfamic acid as an inorganic acid and ammonium hydrogen fluoride as a fluorine compound at a ratio of 1% by mass of hydrogen fluoride was used.
  • Comparative Example 1 a chemical solution in which oxalic acid (C 2 H 2 O 4 ) is mixed as an organic acid at 2.0% by mass and ammonium fluoride as a fluorine compound at a ratio of 1% by mass is used. It was. In Comparative Example 2, oxalic acid was 2.0% by mass as an organic acid, phosphoric acid ester was 0.05% by mass as a surfactant, and ammonium fluoride was 1% by mass of hydrogen fluoride as a fluorine compound. The chemical solution mixed in was used.
  • Performance I 5 to 7 show the measurement results of the denitration catalyst regenerated in Examples 1 to 3, Comparative Example 1 and Comparative Example 2, a new denitration catalyst, and the denitration catalyst before regeneration.
  • the measurement result of the catalyst performance recovery rate (K / K0) of the catalyst of the Example of a regeneration method is shown.
  • concentration (mass%) of the Example of a regeneration method is shown.
  • concentration (mass%) of the Example of a regeneration method is shown.
  • the measurement result of the catalyst surface calcium concentration (mass%) of the Example of a regeneration method is shown.
  • Example 1 and Example 2 by using hydrochloric acid as the inorganic acid, the performance recovery rate of the catalyst is increased compared to Comparative Examples 1, 2, and Example 3, and the adhesion of calcium is increased. It was found that it can be drastically reduced.
  • Example 4 Preparation of drug solution II
  • 0.8% by mass of hydrochloric acid, 0.15% by mass of boric acid, 0.05% by mass of phosphoric acid ester as a surfactant, and 0.9% by mass of hydrogen fluoride of ammonium hydrogen fluoride A chemical solution mixed at a ratio of% was used.
  • Example 5 a chemical solution prepared by mixing hydrochloric acid with 0.8% by mass, phosphoric acid ester with 0.05% by mass as a surfactant, and ammonium fluoride with a hydrogen fluoride content of 0.9% by mass was mixed. Using.
  • Example 6 0.8% by mass of hydrochloric acid, 0.15% by mass of boric acid, 0.05% by mass of polyoxyethylene derivative as a surfactant, and 0.9% of hydrogen fluoride in hydrogen fluoride were used.
  • medical solution mixed in the ratio used as the mass% was used.
  • Example 7 a chemical solution in which sulfamic acid was mixed at 3.5% by mass, phosphoric acid ester as a surfactant was mixed at 0.05% by mass, and ammonium fluoride was mixed at a ratio of 1% by mass of hydrogen fluoride was used. It was.
  • Example 8 3.5% by mass of sulfamic acid, 0.05% by mass of a phosphoric acid ester different from Example 7 as a surfactant, and 1% by mass of hydrogen fluoride of ammonium hydrogen fluoride
  • medical solution mixed in the ratio used as above was used.
  • Example 9 a chemical solution prepared by mixing sulfamic acid at 3.5% by mass, polyoxyethylene derivative as a surfactant at 0.05% by mass, and ammonium fluoride at a ratio of 1% by mass of hydrogen fluoride. Using.
  • Performance II 8 to 10 show the measurement results of the denitration catalyst regenerated in Examples 4 to 9, Comparative Example 1 and Comparative Example 2, a new denitration catalyst, and the denitration catalyst before regeneration.
  • FIG. 8 the measurement result of the catalyst performance recovery rate of the catalyst of the Example of a regeneration method is shown.
  • FIG. 9 the measurement result of the catalyst surface silica density
  • FIG. 10 the measurement result of the catalyst surface calcium concentration of the Example of a regeneration method is shown.
  • Examples 4 to 9 the surfactant is included in the chemical solution, so that the performance recovery rate of the catalyst is increased as compared with Comparative Examples 1 and 2, and calcium is used. It was found that the adhesion of can be drastically reduced. Further, as shown in Examples 4 to 9, when only hydrochloric acid is used as an inorganic acid, hydrochloric acid and boric acid are used, and sulfamic acid is used in any case, calcium adhesion is dramatically improved. It was found that it can be reduced. That is, when hydrochloric acid is used as the inorganic acid, the adhesion of calcium is dramatically improved in Example 4 using the chemical solution containing the surfactant than in Example 1 not containing the chemical solution containing the surfactant.
  • phosphorus is known to be a deterioration component of the catalyst.
  • the catalyst performance is increased. It was found that the adhesion of calcium can be drastically reduced.
  • treatment time the time for which the denitration catalyst is immersed in the chemical (treatment time: minutes) and the catalyst performance recovery rate of the denitration catalyst (catalyst performance after regeneration treatment / catalyst performance when new: K / K0), the silica concentration (mass%) on the surface of the denitration catalyst, and the calcium concentration (mass%) on the surface of the denitration catalyst were measured.
  • FIGS. 11 and 12 The measurement results are shown in FIGS.
  • FIG. 11 the measurement result of the relationship between processing time and the density
  • FIG. 12 the measurement result of the relationship between processing time and the performance recovery rate of a denitration catalyst is shown.
  • the performance recovery rate of the denitration catalyst is recovered to 0.8, that is, 80% or more of the new product while maintaining the calcium concentration low. I knew it was possible. Moreover, it can suppress that processing time becomes long because processing time shall be 60 minutes or less.
  • Example 10 Examination of the number of times of use Next, the chemical solution was repeatedly used, and the relationship between the number of times of use and the catalyst performance recovery rate of the denitration catalyst (catalyst performance after regeneration treatment / catalyst performance when new: K / K0) was measured. Even when the chemical solution was repeatedly used, an amount of inorganic acid and fluoride corresponding to the amount reacted by the previous regeneration treatment was added each time it was used.
  • Example 10 3.5% by mass of sulfamic acid as an inorganic acid, 0.05% by mass of the same phosphate ester as in Example 8 as a surfactant, and ammonium fluoride as a fluorine compound with a hydrogen fluoride content of 1%.
  • Example 11 The chemical
  • Example 11 the same chemical solution as in Example 10 was used, and the amount of inorganic acid and fluorine compound added each time it was used was doubled.
  • Example 12 hydrochloric acid as an inorganic acid was 0.8% by mass, boric acid as an inorganic acid was 0.15% by mass, ammonium fluoride as a fluorine compound was 0.9% by mass in a hydrogen fluoride content.
  • a mixed chemical was used.
  • FIG. 13 shows the measurement results of the relationship between the number of times the chemical solution is used and the catalyst performance recovery rate of the denitration catalyst for Example 10 to Example 12. As shown in FIG. 13, it was found that the catalyst performance can be recovered to the same level even if the chemical solution is used repeatedly. Therefore, it was found that the amount of chemical solution used and the amount of waste can be reduced.
  • Example 13 a cleaning liquid prepared so as to be 0.5 mol / l of sulfamic acid was used as a final cleaning liquid.
  • Example 13 the same chemical solution as in Example 10 was used as the chemical solution.
  • Example 14 a cleaning solution prepared to be 1 mol / l sulfamic acid was used as the final cleaning solution.
  • Example 14 5.3% by mass of sulfamic acid as the inorganic acid, 0.075% by mass of phosphate ester as the surfactant, and 1.5% by mass of hydrogen fluoride as the fluorine compound and 1.5% by mass of hydrogen fluoride. A chemical solution mixed at a ratio of% was used.
  • FIGS. 14A and 14B show the catalyst performance recovery rate for Example 13 when the cleaning liquid is used twice and eight times, and 1 when the final cleaning liquid is water.
  • FIG. 14B shows the catalyst performance recovery rate of the denitration catalyst when the cleaning liquid is used once and five times for Example 13 and Example 14.
  • the performance recovery of the denitration catalyst can be increased by 15% or more even when the cleaning liquid is used twice more than when the final cleaning liquid is only water. It was found that the performance recovery rate of the denitration catalyst can be maintained at a high level of 10% or more even when the cleaning liquid is repeatedly used 8 times. Further, as shown in FIG.
  • Example 14B it was found that Example 14 containing 1 mol / l of sulfamic acid can maintain the same catalyst performance recovery rate as Example 13 even when the cleaning liquid is used repeatedly five times. From the results, it was found that when the concentration of sulfamic acid in the final cleaning liquid is at least 0.5 mol, the catalyst performance recovery rate of the denitration catalyst can be maintained high even if the cleaning liquid is used repeatedly.
  • a denitration catalyst regeneration method was implemented using multiple chemicals (cleaning agents) with different surfactants, and the crushing strength and performance of the denitration catalyst were restored when each chemical solution was used. The rate was measured.
  • a denitration catalyst a denitration catalyst after denitration treatment for 50,000 hours in an actual power plant was used as a test sample.
  • the denitration catalyst was a honeycomb catalyst in which titanium dioxide (TiO 2 ) was the main component and vanadium pentoxide (V 2 O 5 ) and tungsten oxide (WO 3 ) were supported thereon.
  • Example 15 Preparation of chemical solution III
  • sulfamic acid 3.2% by mass of sulfamic acid, 0.05% by mass of a commercially available surfactant A mainly composed of polyoxyethylene polyoxypropylene glycol as a nonionic surfactant, and ammonium hydrogen fluoride
  • a chemical solution mixed with a hydrogen fluoride content of 1.75% by mass was used.
  • hydrochloric acid was 2.4% by mass
  • boric acid was 0.15% by mass
  • surfactant A as a nonionic surfactant was 0.05% by mass
  • ammonium fluoride was 1% in hydrogen fluoride content.
  • medical solution mixed in the ratio used as .26 mass% was used.
  • Example 17 2.4% by mass of hydrochloric acid, 0.15% by mass of boric acid, 0.05% by mass of a commercially available surfactant B mainly composed of a polyalkylene glycol derivative as a nonionic surfactant, A chemical solution in which ammonium hydrogen fluoride was mixed at a ratio of hydrogen fluoride content of 1.26% by mass was used.
  • Example 18 2.4 mass% hydrochloric acid, 0.15 mass% boric acid, and a commercially available polyoxyethylene alkyl (C8) ether phosphate ester / monoethanolamine salt as an anionic surfactant as main components
  • Comparative Example 3 a chemical solution in which sulfamic acid was mixed at 3.2% by mass and ammonium hydrogen fluoride was mixed at a ratio of hydrogen fluoride content of 1.75% by mass was used.
  • Comparative Example 4 a chemical solution was used in which hydrochloric acid was mixed at 2.4% by mass, boric acid at 0.15% by mass, and ammonium hydrogen fluoride in a proportion of 1.26% by mass of hydrogen fluoride.
  • the reaction rate constant K0 of an unused denitration catalyst was determined by measuring the catalyst performance.
  • each catalyst whose catalytic performance was lowered by the denitration treatment was subjected to a washing treatment using the washing liquid of each example.
  • each catalyst was prewashed for 3 minutes and then immersed in a washing solution for 60 minutes for chemical washing. Thereafter, each catalyst after chemical washing was finished with water for 30 minutes and dried at 110 ° C. overnight.
  • the reaction rate constant K was determined by the same method as the measurement of the catalyst performance.
  • the catalyst performance recovery rate (catalyst performance after regeneration treatment / catalyst performance when new: K / K0) was determined in the same manner as in Examples 1 to 15.
  • Example 15 As shown in Table 3, in Example 15 containing surfactant A, which is a nonionic surfactant, the wall crushing strength was 109.2 N / cm 2 , which was about 74% lower than the unwashed catalyst. It turned out that it can suppress. Moreover, in Example 15, it turned out that the catalyst performance with respect to a new denitration catalyst can be recovered to about 98%. On the other hand, in Comparative Example 3 does not contain a surfactant, the wall direction crush strength and 75.1N / cm 2, was found to decrease to about 51 percent relative to the unwashed catalyst. In Comparative Example 3, it was found that the catalyst performance for a new denitration catalyst was reduced to about 81%.
  • surfactant A which is a nonionic surfactant
  • Example 15 containing surfactant A which is a nonionic surfactant, can improve the reduction in the crushing strength in the wall direction and increase the recovery rate of the catalyst performance as compared with Comparative Example 3. all right.
  • Example 16 containing Surfactant A which is a nonionic surfactant it was found that the wall direction crushing strength was 114.4 N / cm 2, and the decrease could be suppressed to about 77% with respect to the unwashed catalyst.
  • Comparative Example 3 containing hydrochloric acid as an inorganic acid and no surfactant it was found that the wall crushing strength was 94.6 N / cm 2, which was about 64% lower than that of the unwashed catalyst.
  • Example 15 and Example 16 containing surfactant A which is a nonionic surfactant, contain the same inorganic acid and fluorine compound, but compared with Comparative Example 3 and Comparative Example 4 containing no surfactant. Thus, it was found that the reduction in the crushing strength in the wall direction can be improved.
  • Example 17 containing surfactant B which is a nonionic surfactant the wall direction crushing strength is 136.6 N / cm 2, which is about 92% lower than the unwashed catalyst. It turned out that it can suppress. Moreover, in Example 17, it turned out that the catalyst performance with respect to a new denitration catalyst can be recovered to about 108%. Therefore, Example 17 containing Surfactant B, which is a nonionic surfactant, can improve the reduction in the crushing strength in the wall direction as compared with Comparative Example 3 and Comparative Example 4, and recover the catalyst performance. I found that the rate could be high.
  • Example 18 containing Surfactant C which is an anionic surfactant
  • the wall crushing strength was 122.4 N / cm 2 and could be suppressed to about 83% of the unwashed catalyst. Therefore, it was found that Example 18 containing Surfactant C, which is an anionic surfactant, can improve the decrease in the crushing strength in the wall direction as compared with Comparative Example 3 and Comparative Example 4.
  • Example 19 the same finishing cleaning liquid as in Example 14 was used as the finishing cleaning liquid, and the same chemical liquid as in Example 15 was used.
  • FIGS. 15A and 15B show the catalyst performance recovery rate of the denitration catalyst in which the cleaning liquid was used once and five times for Example 19 when the final cleaning liquid was water.
  • FIG. 15B shows the relationship between the number of times the cleaning liquid is used and the catalyst performance recovery rate of the denitration catalyst in Example 19.
  • the catalyst performance recovery rate of the denitration catalyst was improved even when the cleaning solution was repeatedly used five times compared to the case where the final cleaning solution was only water. It was found that it can be increased by 5% or more. Further, as shown in FIG.
  • the catalyst performance recovery rate of the denitration catalyst can be maintained at 90% or higher, and the cleaning liquid is used six times. However, it was found that the catalyst performance recovery rate of the denitration catalyst can be maintained as high as about 90%.
  • the denitration catalyst regeneration method the denitration catalyst regeneration system, and the denitration catalyst cleaning liquid according to the present invention, it is possible to efficiently remove deposits attached to the surface of the catalyst, and to recover the catalyst performance to a high level. And the fall of crushing strength can be suppressed.
  • Pulverized coal fired boiler 50 Denitration equipment 82a, 84a, 86a: Denitration catalyst 100, 100a: Denitration catalyst regeneration system 102, 102a: Pre-washing section 104, 104a: Chemical solution washing section 106, 106a: Finish washing section 108, 108a: Drying unit 112: Catalyst transfer device 114: Preliminary water washing tank 116: Water supply device 118: Vacuum suction tank 120: Vacuum pump 122: Chemical washing tank 130: Finishing water washing tank

Abstract

触媒の表面に着いた付着物を効率よく除去することができ、かつ触媒性能を高く回復することができる脱硝触媒の再生方法及び脱硝触媒の再生システム並びに脱硝触媒の洗浄剤を提供する。前記再生方法は、脱硝触媒を水洗いする予洗いステップ(S12)と、水洗いをした前記脱硝触媒を無機酸とフッ素化合物とを含む薬液に浸漬させる薬液洗浄ステップ(S14)と、前記薬液から前記脱硝触媒を取り出すステップと、前記薬液から取り出した前記脱硝触媒を、水又はスルファミン酸含有水を仕上げ洗浄液として洗う仕上げ洗いステップ(S16)とを含む。

Description

脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤
 本発明は、脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤に関し、特に、石炭焚きボイラ用の劣化した脱硝触媒の再生方法及び再生システム、並びに洗浄剤に関する。本出願は、2015年7月10日に出願した日本国特願2015-138939号に基づく優先権を主張し、その全ての記載内容を援用する。
 化石燃料、バイオマス等の燃料を燃焼させる設備は、燃料を燃焼させることで生じる排ガスに含まれる窒素酸化物を除去する脱硝設備を備えている。脱硝設備には、窒素酸化物の除去を促進させる脱硝触媒を備えている設備がある。脱硝触媒は、使用することで性能が劣化する。このため、脱硝設備は、メンテナンスの際に脱硝触媒の交換や、追加が行われている。また、脱硝触媒を再利用するために、性能を回復するための再生を行うことも提案されている。
 日本国特許第4870217号公報には、ボイラの排ガスに使用する排煙脱硝装置における触媒活性改良方法において、シリカ・アルミナ・硫酸カルシウム系の被毒物質で活性が低下した脱硝触媒を予め水洗いし、含水させた後に有機酸とフッ化物との混液を用いて同物質を常温で洗浄除去する排煙脱硝装置における触媒活性改良方法が記載されている。日本国特開平10-235209号公報には、触媒性能が低下した脱硝触媒の再生の際に、洗浄液中のフッ化水素酸濃度を0.3~3質量%とし、前記洗浄液の温度を40~80℃に維持して触媒を洗浄することが記載されている。
 上記特許文献に記載されているように、脱硝触媒の洗浄に有機酸とフッ化物等のフッ素化合物を用いることで触媒性能を高く回復させることができる。しかしながら、再生処理により、触媒表面にカルシウム等の触媒劣化成分が付着する場合がある。触媒劣化成分であるカルシウムが付着すると、再生処理後の触媒性能が不十分である虞がある。また、再生処理により脱硝触媒の圧壊強度が低下するという問題がある。
 本発明は、上述した課題を解決するものであり、触媒の表面に着いた付着物を効率よく除去することができ、触媒性能を高く回復することができ、かつ圧壊強度の低下を抑制できる脱硝触媒の再生方法及び脱硝触媒の再生システム並びに脱硝触媒の洗浄剤を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る、脱硝触媒の再生方法は、脱硝触媒を水洗いする予洗いステップと、水洗いをした前記脱硝触媒を無機酸とフッ素化合物とを含む薬液に浸漬させる薬液洗浄ステップと、前記薬液から前記脱硝触媒を取り出すステップと、前記薬液から取り出した前記脱硝触媒を、水又はスルファミン酸含有水を仕上げ洗浄液として洗う仕上げ洗いステップとを少なくとも含む。
 前記薬液は、界面活性剤をさらに含むことが好ましい。また、界面活性剤は、ノニオン系界面活性剤またはアニオン系界面活性剤であることがより好ましい。この界面活性剤により、洗浄液中に溶解しているカルシウムや、ダスト中のカルシウムを高分散させることができ、触媒への再付着抑制効果がある。
 また、前記無機酸は、塩酸を含むことが好ましい。前記無機酸は、必要に応じて塩酸にホウ酸を含むことが望ましい。また、無機酸は、スルファミン酸を含むことが好ましい。
 また、前記界面活性剤がノニオン系界面活性剤である場合、前記ノニオン系界面活性剤は、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体またはポリアルキレングリコール誘導体を主成分とする界面活性剤であることが好ましい。また、前記界面活性剤がアニオン系界面活性剤である場合、前記アニオン系界面活性剤は、ポリオキシアルキレンアルキルエーテルリン酸エステルを主成分とする界面活性剤であることが好ましい。
 また、前記薬液洗浄ステップは、前記脱硝触媒を前記薬液に浸漬させることにより、触媒表面のシリカ濃度を6質量%以下にすることが好ましい。
 また、前記予洗いステップは、前記脱硝触媒を水槽内の水に浸漬させ、前記水槽を密閉して前記水槽内の空気を吸引することが好ましい。
 また、前記薬液洗浄ステップは、前記薬液を繰り返し使用することが好ましい。
 上記目的を達成するために、本発明の別の一態様に係る脱硝触媒の再生システムは、脱硝触媒を水洗いする予洗い部と、水洗いをした前記脱硝触媒を無機酸とフッ素化合物とを含む薬液に浸漬させる薬液洗浄部と、前記薬液から取り出した前記脱硝触媒を、水又はスルファミン酸含有水を仕上げ洗浄液として仕上げ洗いする仕上げ洗い部とを少なくとも備える。
 少なくとも一態様に係る脱硝触媒の再生方法及び脱硝触媒の再生システムによれば、触媒の表面に付いた付着物を効率よく除去することができ、触媒性能を高く回復し、かつ圧壊強度の低下を抑制することができる。
 また、上記目的を達成するために、本発明の別の一態様に係る、洗浄液は、石炭焚きボイラ用の劣化した脱硝触媒を洗浄する洗浄液であって、無機酸とフッ素化合物とを含有する水溶液を少なくとも含む。
 前記洗浄液は、界面活性剤をさらに含み、前記界面活性剤は、ノニオン系界面活性剤またはアニオン系界面活性剤であることが好ましい。
 また、前記無機酸は、塩酸を含むことが好ましい。前記無機酸は、必要に応じて塩酸に防錆剤としてホウ酸を含むことが望ましい。また、塩酸以外では、無機酸は、スルファミン酸を含むことが好ましい。
 また、前記界面活性剤がノニオン系界面活性剤である場合、前記ノニオン系界面活性剤は、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体またはポリアルキレングリコール誘導体を主成分とする界面活性剤であることが好ましい。また、前記界面活性剤がアニオン系界面活性剤である場合、前記アニオン系界面活性剤は、ポリオキシアルキレンアルキルエーテルリン酸エステルを主成分とする界面活性剤であることが好ましい。
図1は、第1実施形態の脱硝触媒の再生システムの概略的な構成を示す模式図である。 図2は、第1実施形態の脱硝触媒の再生方法の一例を示すフローチャートである。 図3は、第2実施形態の脱硝触媒の再生システムの概略的な構成を示す模式図である。 図4は、第2実施形態の脱硝触媒の再生方法の一例を示すフローチャートである。 図5は、再生方法の実施例の触媒の性能回復率の計測結果を示すグラフである。 図6は、再生方法の実施例の触媒表面シリカ濃度の計測結果をグラフである。 図7は、再生方法の実施例の触媒表面カルシウムの計測結果を示すグラフである。 図8は、再生方法の実施例の触媒の性能回復率の計測結果を示すグラフである。 図9は、再生方法の実施例の触媒表面シリカ濃度の計測結果をグラフである。 図10は、再生方法の実施例の触媒表面カルシウムの計測結果を示すグラフである。 図11は、薬洗洗浄の処理時間と触媒表面の付着物の濃度との関係の計測結果を示すグラフである。 図12は、薬洗洗浄の処理時間と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。 図13は、薬液の使用回数と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。 図14Aは、仕上げ洗浄液の使用回数と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。 図14Bは、仕上げ洗浄液の使用回数と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。 図15Aは、仕上げ洗浄液の使用回数と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。 図15Bは、仕上げ洗浄液の使用回数と脱硝触媒の性能回復率との関係の計測結果を示すグラフである。
 以下に添付図面を参照して、好適な実施形態を詳細に説明する。この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせや一部置換して構成するものも含む。
1.第1実施形態
1-1.洗浄剤
 第1実施形態の洗浄剤について説明する。本実施形態の洗浄剤は、フッ素化合物と無機酸とを少なくとも含有する水溶液の洗浄剤である。
 フッ素化合物として、フッ化水素アンモニウム(NH4HF2)、フッ化アンモニウム(NH4F)が例示される。フッ素化合物は、フッ化水素アンモニウムであることが好ましい。フッ化水素アンモニウムの量は、例えば、洗浄剤全体に対して1~10質量%とすることができ、1~5質量%の範囲が好ましい。
 無機酸として、スルファミン酸(H3NSO3)、塩酸(HCl)、硫酸(H2SO4)、ホウ酸(H3BO3)が例示される。無機酸は、塩酸または塩酸とホウ酸であることが好ましい。ホウ酸は、防錆剤としても機能することができる。ホウ酸の量は、例えば洗浄剤に対して0.001~10質量%とすることができる。また、無機酸は、スルファミン酸であることも好ましい。
 無機酸の量は、例えば、洗浄剤のpH値がpH1~6の範囲になるように添加することが好ましく、pH1~3の範囲がより好ましい。酸の量が洗浄剤のpH値が前記範囲内となるような量であれば、上記無機酸以外も添加することができる。
 洗浄剤は、さらに界面活性剤を含有することが好ましい。界面活性剤としては、ノニオン系またはアニオン系界面活性剤がより好ましい。
 ノニオン系界面活性剤としては、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体、ポリアルキレングリコール誘導体を主成分とする非リン酸系界面活性剤が好ましい。ポリオキシエチレンポリオキシプロピレングリコールのエチレンオキサイド(EO)含有量は、例えば39質量%とすることができる。ポリオキシエチレンポリオキシプロピレングリコールを主成分とする非リン酸系界面活性剤としては、ブラウノンP-101M(青木油脂工業社製)、エマルゲンPP-220(花王社製)、ニューポールPE-61、ニューポールPE-62、ニューポールPE-64、ニューポールPE-68、ニューポールPE-71、ニューポールPE-74、ニューポールPE-75、ニューポールPE-78、ニューポールPE-108等(三洋化成社製)、エバン410、エバン420、エバン450、エバン485、エバン680、エバン710、エバン720、エバン740、エバン750、エバン785、エバンU-103、エバンU-105、エバンU-108等(第一工業製薬社製)、プロノン(登録商標)#056、プロノン#101P、プロノン#105、プロノン#124、プロノン#124P、プロノン#154、プロノン#188P、プロノン#201、プロノン#202、プロノン#204、プロノン#208、プロノン#235、プロノン#235P、プロノン#237P、プロノン#238、プロノン#407P、ユニルーブ(登録商標)70DP-950B、ユニルーブ75DE-2620R等(日油株式会社製)、プリストールEM-440、プリストールEM-640、プリストールRM-183等(ミヨシ油脂社製)が例示される。また、ポリアルキレングリコール誘導体を主成分とする非リン酸系界面活性剤としては、マスターエア404(BASF社製)、フォームキラーM-14(青木油脂工業社製)、ディスパノールWI-115(日油株式会社製)、ユニルーブ50MB-2、ユニルーブ50MB-5、ユニルーブ50MB-11、ユニルーブ50MB-26、ユニルーブ50MB-72、ユニルーブ60MB-2B、ユニルーブ60MB-16、ユニルーブ60MB-26、ユニルーブ75DE-15、ユニルーブ75DE-25、ユニルーブ75DE-60、ユニルーブ75DE-170、ユニルーブ75DE-2620、ユニルーブ75DE-3800、ユニルーブ80DE-40U、ユニセーフAX-22、ユニルーブMB-7、ユニルーブMB-19、ユニルーブMB-700、ユニルーブMB-7X、ユニルーブMB-11X、ユニルーブ10MS-250KB等(日油株式会社製)、トリミンDF-300、トリミン610等(ミヨシ油脂社製)、リケーRK-95(理系化学工業社製)が挙げられる。
 アニオン系界面活性剤としては、ポリオキシアルキレンアルキルエーテルリン酸エステル等のリン酸エステルまたはその塩を主成分とするリン酸エステル系界面活性剤が好ましい。リン酸エステル系界面活性剤としては、ポリオキシエチレンアルキルエーテルリン酸エステル等のリン酸エステルを主成分とする界面活性剤が好ましく、ポリオキシエチレンアルキル(C8)エーテルリン酸エステル・モノエタノールアミン塩を主成分とする界面活性剤がより好ましい。リン酸エステルまたはその塩を主成分とするリン酸エステル系界面活性剤としては、アントックス EHD-PNA、ニューコール 100-FCP、アントックス EHD-400等(日本乳化剤社製)、プライサーフ A208F、プライサーフ A208N、プライサーフA210D、プライサーフM208F等(第一工業社製)等が挙げられる。
 界面活性剤の量は、例えば、洗浄剤全体に対して0.001~10質量%とすることができる。
1-2.再生システム
 図1に、第1実施形態の脱硝触媒の再生システムの概略的な構成を示す。図1に示す脱硝触媒の再生システム100は、脱硝触媒の触媒性能を回復させる処理を実行する。対象となる脱硝触媒は、例えば、石炭焚きボイラから生じたシリカ、カルシウム、リン、砒素、ナトリウム、カリウム等の被毒物質を含む排ガスの脱硝に使用して被毒し、その触媒性能が低下した使用済みの脱硝触媒である。対象となる脱硝触媒は、格子状(ハニカム状)触媒、板状触媒、コルゲート状触媒を含む。また、脱硝触媒は、例えば、二酸化チタン(TiO2)を担体とし、活性成分としてバナジウム(V)、タングステン(W)、モリブデン(Mо)の少なくとも1つを含有する。
 図1に示すように、脱硝触媒の再生システム100は、予洗い部102と、薬液洗浄部104と、仕上げ洗い部106と、乾燥部108とを備える。予洗い部102は、脱硝触媒を水洗いし、脱硝触媒に付着した異物、灰や可溶性のカルシウム等を除去するように構成されている。予洗い部102としては、水槽と水槽に水を供給する機構とを有し、水を溜めた水槽に脱硝触媒を投入し、脱硝触媒に水を浸漬させる装置を用いることができる。予洗い部102としては、シャワーノズル等を有し、脱硝触媒に水をかけて、脱硝触媒に水を浸漬させる装置を用いることもできる。予洗い部102では、水で脱硝触媒を洗い異物を除去すればよいが、脱硝触媒を洗浄する成分が混合された液体を用いてもよい。
 薬液洗浄部104は、脱硝触媒を薬液(洗浄剤)に浸漬させて、脱硝触媒に付着した異物を除去するように構成されている。本実施形態の薬液は、無機酸とフッ素化合物とを少なくとも含有する。つまり、薬液は、無機酸とフッ素化合物の混合液であり、本実施形態の洗浄剤を好適に採用できる。
 薬液洗浄部104としては、予洗い部102と同様に、水槽と水槽に薬液を供給する機構とを有し、薬液を溜めた水槽に脱硝触媒を投入し、脱硝触媒に薬液を浸漬させる装置を用いることができる。また、薬液洗浄部104としては、シャワーノズル等を有し、脱硝触媒に薬液をかけて、脱硝触媒に薬液を浸漬させる装置を用いることもできる。
 仕上げ洗い部106は、薬液洗浄部104で薬液が浸漬された脱硝触媒を仕上げ洗浄液により仕上げ洗いして、脱硝触媒に付着している薬液を除去、低減するように構成されている。仕上げ洗い部106としては、水槽と水槽に仕上げ洗浄液を供給する機構とを有し、仕上げ洗浄液を溜めた水槽に脱硝触媒を投入し、脱硝触媒に仕上げ洗浄液を浸漬させて、脱硝触媒に付着している薬液を除去、低減する装置を用いることができる。仕上げ洗い部106としては、シャワーノズル等を有し、脱硝触媒に仕上げ洗浄液をかけて、脱硝触媒に付着している薬液を除去、低減する装置を用いることもできる。
 仕上げ洗浄液としては、水(H2O)、スルファミン酸(H3NSO3)、これらの混合液が例示される。仕上げ洗浄液は、スルファミン酸を含有することが好ましい。つまり、仕上げ洗浄液は、水と所定の濃度のスルファミン酸との混合液(以降、スルファミン酸含有水ともいう。)が好ましい。スルファミン酸の量は、例えば、水に対して0.5mоl/l~5mоl/lである。
 乾燥部108は、仕上げ洗い部106で仕上げ洗いされた脱硝触媒から水分を除去するように構成されている。乾燥部108は、脱硝触媒へ100℃以上に加熱したガス、例えば1 30℃のガスを通気させることで、脱硝触媒に付着した水分を除去するように構成されている。乾燥部108では、水分を除去できればよく、脱硝触媒に乾燥された空気を送り、水分を吹き飛ばしてもよい。また、乾燥部108では、100℃以上に加熱された空間にて脱硝触媒を乾燥してもよい。
1-3.再生方法
 図2に、第1実施形態の脱硝触媒の再生方法の一例をフローチャートで示す。図2に示す脱硝触媒の再生方法は、脱硝触媒の再生システム100の各部で処理を実行することで、実現することができる。本実施形態の脱硝触媒の再生方法は、予洗いステップと、薬液洗浄ステップと、脱硝触媒を取り出すステップと、仕上げ洗いステップとを含む。
 図2に示すように、予洗いステップとして、脱硝触媒の再生システム100では、予洗い部102で脱硝触媒を水洗いする(ステップS12)。脱硝触媒の再生システム100では、予洗い部102内で脱硝触媒を水洗いすることで、表面に付着した異物を除去し、脱硝触媒の内部に液体が侵入しやすい状態にする。
 薬液洗浄ステップとして、脱硝触媒の再生システム100では、脱硝触媒を予洗いしたら、薬液洗浄部104内で水洗いをした脱硝触媒を無機酸とフッ素化合物とを含有する薬液に浸漬させる(ステップS14)。脱硝触媒の再生システム100では、脱硝触媒を薬液に15分以上60分以下浸漬させる。脱硝触媒の再生システム100では、脱硝触媒を薬液に浸漬させることで、脱硝触媒に付着している物質、具体的には、シリカ(SiO2)等を除去する。
 脱硝触媒を取り出すステップとして、脱硝触媒の再生システム100では、脱硝触媒を薬液に浸漬させたら、薬液から脱硝触媒を取り出す。その後、仕上げ洗いステップとして、脱硝触媒の再生システム100では、薬液から取り出した脱硝触媒を仕上げ洗い部106内で仕上げ洗浄液を用いて仕上げ洗いを行う(ステップS16)。脱硝触媒の再生システム100では、仕上げ洗い部106で仕上げ洗いすることで、脱硝触媒に付着している薬液を除去する。
 次に、脱硝触媒の再生システム100では、仕上げ洗い部106内で仕上げ洗浄液を用いて仕上げ洗いを行った後、乾燥部108内で脱硝触媒に付着している水を蒸発させ、脱硝触媒を乾燥させる。
 本実施形態によれば、薬液として、無機酸とフッ素化合物とを含有する混合液を用いることで、バナジウム等活性成分が脱硝触媒から溶出することを抑制しつつ、難溶性のシリカを効率よく除去することができ、脱硝触媒の性能の回復率を高くすることができる。つまり、高い触媒性能の脱硝触媒に再生することができる。これにより、仕上げ洗い部で仕上げ洗いを行った後に、触媒の活性成分を含浸させる処理を行わなくても触媒性能を高くすることができる。例えば、薬液としてアルカリ性の水酸化ナトリウム(NaOH)を用いる再生方法と比較すると、硫酸等による中和工程、溶出したバナジウムを硫酸バナジル(VOSO4)水溶液に浸漬して再度担持させる含浸工程、含浸工程後の乾燥工程等の工程を省略することができる。これにより、活性成分の含浸処理による再生処理の工数増加を抑制できる。
 また、再生処理時に付着するカルシウム等を少なくすることができる。これにより、再生処理時に薬液を繰り返し使用しても、脱硝触媒の性能の回復率を高くすることができる。つまり、薬液を複数回使用することができる。
 薬液は、無機酸として塩酸を含有することが特に好ましい。無機酸として塩酸を用いることで、カルシウムを溶解させることができ、再生処理時にカルシウムが脱硝触媒に付着することを抑制できる。
 薬液は、さらに無機酸として、塩酸にホウ酸を含有することが特に好ましい。薬液にホウ酸を加えることで、脱硝触媒のパック枠から鉄が溶出することを抑制することができ、薬液中のSO2酸化率の上昇を抑制することができる。
 薬液は、フッ素化合物として、フッ化水素アンモニウムを用いることが好ましい。これにより、毒物であるフッ化水素水溶液を用いずに、脱硝触媒の触媒性能の回復率を高くすることができる。
 また、本実施形態によれば、薬液は、さらに、界面活性剤を含有することが好ましい。薬液は、無機酸とフッ素化合物と界面活性剤の混合液であることが好ましい。薬液は、界面活性剤を含有することで、再生処理時にカルシウムが脱硝触媒に付着することを抑制できる。その結果、脱硝触媒の性能の回復率をより高くし、かつ脱硝触媒の圧壊強度の低下を抑制することができる。つまり、より高い触媒性能の脱硝触媒に再生することができ、つまり、薬液の使用回数を増やすことができる。また、薬洗工程に要する温度を低くしたり、薬洗工程に要する時間も短縮したりできる。その結果、再生処理の処理コストを削減できる。
 界面活性剤としては、リン酸系界面活性剤、非リン酸系界面活性剤、が例示される。リン酸系界面活性剤としては、ポリオキシアルキレンアルキルエーテルリン酸エステル等のリン酸エステルまたはその塩が例示される。非リン酸界面活性剤としては、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体、ポリオキシエチレン誘導体が例示される。
 無機酸とフッ素化合物とを含有する薬液としては、無機酸として塩酸及びホウ酸とフッ素化合物としてフッ化水素アンモニウムとを混合した混合液;無機酸としてスルファミン酸とフッ素化合物としてフッ化水素アンモニウムとを混合した混合液;または無機酸として塩酸とフッ素化合物としてフッ化水素アンモニウムとを混合した混合液が例示される。
 また、無機酸とフッ素化合物と界面活性剤を含有する薬液としては、無機酸としてスルファミン酸と界面活性剤としてリン酸エステルとフッ素化合物としてフッ化水素アンモニウムとを混合した混合液;無機酸としてスルファミン酸と界面活性剤としてポリオキシエチレン誘導体とフッ素化合物としてフッ化水素アンモニウムとを混合した混合液;無機酸として塩酸及びホウ酸と界面活性剤としてリン酸エステルとフッ素化合物としてフッ化水素アンモニウムとを混合した混合液;または無機酸として塩酸及びホウ酸と界面活性剤としてポリオキシエチレン誘導体とフッ素化合物としてフッ化水素アンモニウムとを混合した混合液とが例示される。
 さらに、本実施形態によれば、仕上げ洗浄液は、スルファミン酸を含有することが好ましい。つまり、仕上げ洗浄液は、水とスルファミン酸との混合液が好ましい。スルファミン酸を含有する仕上げ洗浄液を用いることで、再生処理後の触媒表面上のカルシウム、アルミナを低減することができる。このため、触媒性能の回復率をより高くすることができる。これにより、薬液や仕上げ洗浄液を繰り返し使用しても、脱硝触媒の性能の高い回復率を維持することができる。つまり、薬液の使用回数を増やすことができる。
2.第2実施形態
2-1.再生システム
 図3に、第2実施形態の脱硝触媒の再生システムの概略的な構成を示す。図3に示す第2実施形態の脱硝触媒の再生システム100aは、脱硝触媒の再生システム100や他の実施形態と組み合わせることができる。この点は他の実施形態も同様であり、各実施形態は一例であり、その一部に他の実施形態を組み合わせることができる。
 図3に示すように、脱硝触媒の再生システム100aは、予洗い部102aと、薬液洗浄部104aと、仕上げ洗い部106aと、乾燥部108と、触媒搬送装置112とを備える。触媒搬送装置112は、脱硝触媒が設置されている脱硝設備から、脱硝触媒を取り外し、取り外した脱硝触媒を搬送する装置である。触媒搬送装置112は、触媒を搬送するクレーン、車両、人力で移動させる台車等を含むことができる。
 予洗い部102aは、予備水洗槽114と、水供給装置116と、廃液タンク117と、真空引き槽118と、廃液タンク119と、真空ポンプ120とを備える。予備水洗槽114は、再生処理対象の脱硝触媒よりも大きく、液体が貯留可能な容器である。水供給装置116は、水を貯留するタンク及び水の供給を制御する弁等を有し、予洗い、真空引きに使用する水を予備水洗槽114、真空引き槽118のそれぞれに供給するように構成されている。廃液タンク117は、予備水洗槽114から排出される水を貯留する容器である。真空引き槽118は、再生処理対象の脱硝触媒よりも大きく、液体が貯留可能な容器である。本実施形態の真空引き槽118は、蓋等を有し、脱硝触媒を出し入れ可能であり、かつ、内部を密閉状態にすることができるように構成されている。廃液タンク119は、真空引き槽118から排出される水を貯留する容器である。予洗い部102aは、廃液タンク117と廃液タンク119とを1つのタンクとしてもよい。真空ポンプ120は、真空引き槽118内の空気を吸引するように構成されている。
 薬液洗浄部104aは、薬洗槽122と、薬液供給装置123と、廃液タンク129とを備える。薬洗槽122は、再生処理対象の脱硝触媒よりも大きく、液体が貯留可能な容器である。薬液供給装置123は、薬液を貯留するタンク及び薬液の供給を制御する弁等を有し、薬液洗浄に使用する薬液を薬洗槽122に供給するように構成されている。廃液タンク129は、薬洗槽122から排出される薬液を貯留する容器である。
 仕上げ洗い部106aは、仕上げ水洗槽130と、供給装置132と、廃液タンク134とを備える。仕上げ水洗槽130は、再生処理対象の脱硝触媒よりも大きく、液体が貯留可能な容器である。供給装置132は、本明細書に記載の仕上げ洗浄液を貯留するタンク及び仕上げ洗浄液の供給を制御する弁等を有し、仕上げ水洗槽130に仕上げ洗浄液を供給するように構成されている。廃液タンク134は、仕上げ水洗槽130から排出される仕上げ洗浄液を貯留する容器である。
 乾燥部108は、脱硝触媒の再生システム100の乾燥部108と同様の構成である。
2-2.再生方法
 図4に、第2実施形態の脱硝触媒の再生方法の一例をフローチャートで示す。図4に示す脱硝触媒の再生方法は、脱硝触媒の再生システム100aの各部で処理を実行することで、実現することができる。本実施形態の脱硝触媒の再生方法は、予洗いステップと、薬液洗浄ステップと、仕上げ洗いステップと、乾燥ステップとを含む。
 図4に示すように、予洗いステップとして、脱硝触媒の再生システム100aでは、触媒搬送装置112で脱硝設備から脱硝触媒を取り出し、取り出した脱硝触媒を予備水洗槽114に移動させる(ステップS22)。次に、脱硝触媒の再生システム100aでは、脱硝触媒を予備水洗槽114内で水洗浄する(ステップS24)。脱硝触媒の再生システム100aでは、脱硝触媒を空の予備水洗槽114に搬送した後、水供給装置116で予備水洗槽114に水を供給してもよいし、水供給装置116で予備水洗槽114に水を供給して、水が貯留された状態の予備水洗槽114に脱硝触媒を投入してもよい。
 次に、脱硝触媒の再生システム100aでは、脱硝触媒を予備水洗槽114内で水洗浄したら、触媒搬送装置112で脱硝触媒を真空引き槽118に移動させる(ステップS26)。脱硝触媒の再生システム100aでは、真空引き槽118に脱硝触媒を移動させたら、真空ポンプ120で真空引き槽118内の空気を吸引して真空状態とする(ステップS28)。脱硝触媒の再生システム100aでは、真空引き槽118内を真空状態とすることで、脱硝触媒の内部が異物で詰まっている場合、異物を吸引することができる。脱硝触媒の再生システム100aでは、真空引き槽118内を真空状態としたら、真空引き槽118を大気圧開放し、触媒搬送装置112で脱硝触媒を真空引き槽118から薬液槽122に移動させる(ステップS30)。脱硝触媒の再生システム100aでは、ステップS24からステップS28までの処理で予洗いを実行し、表面に付着した異物を除去し、脱硝触媒の内部に液体が侵入しやすい状態にする。
 薬液洗浄ステップとして、脱硝触媒の再生システム100aでは、脱硝触媒を薬洗槽122に移動させたら、薬洗槽122内で脱硝触媒を薬液に浸漬させる(ステップS32)。脱硝触媒の再生システム100aでは、脱硝触媒を薬洗槽122に移動させた後、薬洗槽122内に薬液を供給することで、薬洗槽122内に配置された脱硝触媒を薬液に浸漬させても、薬液を貯留させた薬洗槽122に脱硝触媒を移動させて、薬洗槽122内に配置された脱硝触媒を薬液に浸漬させてもよい。脱硝触媒の再生システム100aでは、ステップS32の処理が薬液洗浄となる。
 仕上げ洗いステップとして、脱硝触媒の再生システム100aでは、脱硝触媒を薬液に浸漬させたら、触媒搬送装置112で脱硝触媒を薬洗槽122から仕上げ水洗槽130に移動させる(ステップS34)。脱硝触媒の再生システム100aでは、脱硝触媒を仕上げ水洗槽130に移動させたら、仕上げ水洗槽130内で脱硝触媒を洗浄する(仕上げ洗いを行う)(ステップS36)。具体的には、供給装置132から仕上げ水洗槽130内に仕上げ洗浄液を供給し、仕上げ洗浄液で脱硝触媒を洗浄する。この時、脱硝触媒の再生システム100aでは、仕上げ水洗槽130内の仕上げ洗浄液を排出しながら処理をおこなっても、仕上げ水洗槽130内に仕上げ洗浄液を貯留させてもよい。
 次に、脱硝触媒の再生システム100aでは、脱硝触媒の仕上げ洗浄を行ったら、乾燥部108に移動させ、乾燥部108で脱硝触媒を乾燥させる(ステップS38)。
 本実施形態によれば、脱硝触媒の再生システム100aにて、予洗い時に真空引き槽118内の空気を吸引することで、真空引き槽118内の空気圧を下げて、真空に近づける。これにより、脱硝触媒内に残った空気を吸引し、脱硝触媒の隙間を塞いでいる異物をより確実に除去することができる。脱硝触媒の再生システム100aにて、予洗い時に真空引き槽118内の空気を吸引することで、真空引き槽118内の空気圧を-600mmHg以下まで低下させることが好ましい。水槽内の空気圧を-600mmHg以下まで低下させることで、脱硝触媒を塞いでいる異物を除去することができ、脱硝触媒の全域を水に浸漬させることができる。
 本実施形態によれば、脱硝触媒の再生システム100aにて、薬液を繰返し使用することで、薬液を効率よく使用することができる。また、上述したように、無機酸とフッ素化合物を含有する薬液は、カルシウムの再付着を抑制できるため、複数回使用してもシリカの除去性能を維持することができる。具体的には、脱硝触媒の再生システム100aでは、薬洗槽122で脱硝触媒を薬液に浸漬させ、その後薬洗槽122から脱硝触媒を取り出した後も、脱硝触媒を浸漬させた薬液を廃液タンク129に排出せず、薬洗槽122に貯留する。その後、薬液を貯留した薬洗槽122に次の脱硝触媒を移動させる。これにより、脱硝触媒の再生システム100aでは、薬液を繰り返し使用することができる。脱硝触媒の再生システム100aは、薬液を繰り返し使用する場合、2回目以降の薬液の使用時、つまり、2つ目以降の脱硝触媒を浸漬させる際に、薬液の成分を調整してもよい。例えば、無機酸やフッ素化合物を追加投入してもよい。
 本実施形態によれば、脱硝触媒の再生システム100aにて、脱硝触媒を薬液から取り出した後も、薬洗槽122から廃液タンク129に薬液を排出せずに貯留した状態を維持し、次の脱硝触媒を投入することで薬液を繰り返し使用したが、繰り返し使用する方法はこれに限定されない。薬液洗浄部104aは、薬液を一時貯留するタンクや薬液を循環させる循環機構を設け、薬洗槽122から薬液を一度タンクに排出し、使用する際に循環機構によりタンクから薬洗槽122内に薬液を再度投入してもよい。また、この場合、循環機構にフィルタ等を設け、薬液中の異物を除去するようにしてもよい。
 また、本実施形態によれば、脱硝触媒の再生システム100aにて、仕上げ洗浄液を水とした場合、予洗いや仕上げ洗いを行う際に使用する水を繰返し使用することで、水も効率よく使用することができる。水を効率よく利用することで、廃液の量を減少させることができる。具体的には、薬液洗浄部104aと同様に、水洗いをした脱硝触媒を予備水洗槽114、真空引き槽118、仕上げ水洗槽130から取り出した後も、予備水洗槽114、真空引き槽118、仕上げ水洗槽130に水を貯留した状態を維持し、次の脱硝触媒を移動させ、水洗いを行うようにしてもよい。さらに、再生処理時の触媒性能の回復率をより高くするために仕上げ洗浄液をスルファミン酸含有水とし、仕上げ水洗槽130内だけスルファミン酸含有水として、スルファミン酸含有水を貯留した状態を維持してもよい。また、予備水洗槽114、真空引き槽118、仕上げ水洗槽130に対しても水を一時貯留するタンクや水を循環させる循環機構を設け、予備水洗槽114、真空引き槽118、仕上げ水洗槽130から水を一度タンクに排出し、使用する際に循環機構によりタンクから予備水洗槽114、真空引き槽118、仕上げ水洗槽130に水を再度投入してもよい。また、この場合、循環機構にフィルタ等を設け、水の中に含まれる異物を除去するようにしてもよい。さらに、再生処理時の触媒性能の回復率をより高くするために仕上げ洗浄液をスルファミン酸含有水とし、仕上げ水洗槽130に対してだけスルファミン酸含有水を一時貯留するタンクやスルファミン酸含有水を循環させる循環機構を設け、仕上げ水洗槽130からスルファミン酸含有水を一度タンクに排出し、使用する際に循環機構によりタンクから予仕上げ水洗槽130にスルファミン酸含有水を再度投入してもよい。また、この場合も、循環機構にフィルタ等を設け、スルファミン酸含有水の中に含まれる異物を除去するようにしてもよく、循環機構に濃度計を設けて、仕上げ洗浄液中のスルファミン酸の濃度に応じてスルファミン酸含有水を追加してもよい。
 また、脱硝触媒の再生システム100aは、予洗いと、真空引きと、薬液洗浄と、仕上げ洗いの処理を行う水槽として別々の水槽として備えているが、それぞれの工程を行うことができる1つの水槽を設けてもよい。また、上記処理方法では、脱硝設備から脱硝触媒を取り外して処理を行う場合として説明したが、脱硝触媒に設置した状態のまま、脱硝触媒の再生処理を行ってもよい。この場合、脱硝設備に水や薬液を供給し、脱硝設備から廃液を回収する。
 また、脱硝触媒の再生システム100aには、さらに薬液の温度を調整する薬液温度調整機構を設けてもよい。薬液温度調整機構を設けることで、脱硝触媒に含浸させた薬液洗浄の温度を制御することができる。これにより、脱硝触媒に含浸させた薬液洗浄の温度を薬液温度調整機構で常温に維持することも、薬液を加熱し常温よりも高くすることができる。
 以下、実施例によって本発明をより具体的に説明する。本発明に係る脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤は、以下の実施例によって限定されるものではない。
1.薬液の検討I
 先ず、混合する無機酸とフッ素化合物を変化させた複数の薬液で脱硝触媒の再生方法を実施し、それぞれの薬液を用いた場合の脱硝触媒の触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能:K/K0)、脱硝触媒の表面のシリカ濃度(質量%)、脱硝触媒の表面のカルシウム濃度(質量%)を計測した。触媒性能の指標として、触媒の反応速度定数を用いた。また、比較のために、有機酸とフッ素化合物を混合させた薬液で再生処理を行った例(比較例1)、有機酸とフッ素化合物と界面活性剤を混合させた薬液で再生処理を行った例(比較例2)についても、同様の計測を行った。また、比較のために、新品、再生前の脱硝触媒についても各値を計測した。
1-1.薬液の調製I
 実施例1では、無機酸として塩酸(HCl)を0.8質量%、フッ素化合物としてフッ化水素アンモニウム(NH4HF2)をフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。実施例2では、無機酸として塩酸を0.8質量%、無機酸としてホウ酸(H3BO3)を0.15質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。実施例3では、無機酸としてスルファミン酸を3.5質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。
 比較例1では、有機酸としてシュウ酸(C224)を2.0質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。比較例2では、有機酸としてシュウ酸を2.0質量%、界面活性剤としてリン酸エステルを0.05質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。
1-2.性能I
 図5から図7に、実施例1から実施例3、比較例1及び比較例2で再生した脱硝触媒、新品の脱硝触媒、再生前の脱硝触媒について計測した結果を示す。図5には、再生方法の実施例の触媒の触媒性能回復率(K/K0)の計測結果を示す。図6には、再生方法の実施例の触媒表面シリカ濃度(質量%)の計測結果を示す。図7には、再生方法の実施例の触媒表面カルシウム濃度(質量%)の計測結果を示す。
 図5に示すように、実施例1から実施例3、比較例1及び比較例2のいずれの場合も、再生前と比較して触媒の性能回復率は高くなっている。つまり、再生前と比較して触媒性能が高くなっていることがわかった。また、図6に示すように、実施例1から実施例3、比較例1及び比較例2のいずれの場合も、再生前と比較して脱硝触媒の表面のシリカ濃度が低くなっており、再生処理でシリカを除去できていることがわかった。また、図7に示すように、実施例1から実施例3の薬液を用いることで、比較例1及び比較例2の薬液を用いるよりもカルシウム濃度を低くできている。これにより、カルシウムの再付着を抑制できていることがわかった。
 さらに、実施例1及び実施例2に示すように、無機酸として塩酸用いることで、比較例1、2及び実施例3に比べて、触媒の性能回復率を高くし、かつ、カルシウムの付着を飛躍的に低減させることができることがわかった。
2.薬液の検討II
 次に、界面活性剤を混合した複数の薬液を用いた脱硝触媒の再生方法を実施し、それぞれの薬液を用いた場合の脱硝触媒の触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能:K/K0)、脱硝触媒の表面のシリカ濃度([質量%])、脱硝触媒の表面のカルシウム濃度(質量%)を計測した。
2-1.薬液の調製II
 実施例4では、塩酸を0.8質量%、ホウ酸を0.15質量%、界面活性剤としてリン酸エステルを0.05質量%、フッ化水素アンモニウムをフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。実施例5では、塩酸を0.8質量%、界面活性剤としてリン酸エステルを0.05質量%、フッ化水素アンモニウムをフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。 実施例6では、塩酸を0.8質量%、ホウ酸を0.15質量%、界面活性剤としてポリオキシエチレン誘導体を0.05質量%、フッ化水素アンモニウムをフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。実施例7では、スルファミン酸を3.5質量%、界面活性剤としてリン酸エステルを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。実施例8では、スルファミン酸を3.5質量%、界面活性剤として実施例7とは別の種類のリン酸エステルを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。実施例9では、スルファミン酸を3.5質量%、界面活性剤としてポリオキシエチレン誘導体を0.05質量%、フッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。
2-2.性能II
 図8から図10に、実施例4から実施例9、比較例1及び比較例2で再生した脱硝触媒、新品の脱硝触媒、再生前の脱硝触媒について計測した結果を示す。図8には、再生方法の実施例の触媒の触媒性能回復率の計測結果を示す。図9には、再生方法の実施例の触媒表面シリカ濃度の計測結果を示す。図10には、再生方法の実施例の触媒表面カルシウム濃度の計測結果を示す。
 図8から図10に示すように、実施例4から実施例9では、界面活性剤を薬液に含めることで、比較例1、2に比べて、触媒の性能回復率を高くし、かつ、カルシウムの付着を飛躍的に低減できることがわかった。また、実施例4から実施例9に示すように、無機酸として、塩酸のみを用いた場合、塩酸とホウ酸を用いた場合、スルファミン酸を用いたいずれの場合も、カルシウムの付着を飛躍的に低減できることがわかった。つまり、無機酸として塩酸を用いた場合、界面活性剤を含有する薬液を含まない実施例1よりも、界面活性剤を含有する薬液を用いた実施例4の方がカルシウムの付着を飛躍的に低減できることがわかった。また、無機酸として塩酸とホウ酸を用いた場合、界面活性剤を含有する薬液を含まない実施例2よりも、界面活性剤を含有する薬液を用いた実施例5の方がカルシウムの付着を飛躍的に低減できることがわかった。また、無機酸としてスルファミン酸を用いた場合、界面活性剤を含有する薬液を含まない実施例3よりも、界面活性剤を含有する薬液を用いた実施例6、7、8の方がカルシウムの付着を飛躍的に低減できることがわかった。以上より、界面活性剤を用いることで、無機酸の種類によらずカルシウムの付着を飛躍的に低減できることがわかった。また、リンは触媒の劣化成分であることが知られているが、実施例4、5、7、8に示すように界面活性剤にリンを含有する薬剤を用いても、触媒性能を高くすることができ、カルシウムの付着を飛躍的に低減できることがわかった。
3.処理時間の検討
 次に、1回の再生処理において、脱硝触媒を薬液に浸漬させる時間(処理時間:分)と脱硝触媒の触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能:K/K0)、脱硝触媒の表面のシリカ濃度(質量%)、脱硝触媒の表面のカルシウム濃度(質量%)との関係を計測した。
3-1.性能IV
 計測結果を図11及び図12に示す。図11には、処理時間と触媒表面の付着物の濃度との関係の計測結果を示す。図12には、処理時間と脱硝触媒の性能回復率との関係の計測結果を示す。図11及び図12に示すように、処理時間を15分以上とすることで、カルシウムの濃度を低く維持しつつ、脱硝触媒の性能回復率を0.8、つまり新品の80%以上に回復するできることがわかった。また、処理時間を60分以下とすることで、処理時間が長くなることを抑制することができる。また、触媒に含まれるガラス繊維の溶出を抑制でき、触媒の強度低下を抑制できることがわかった。以上より、処理時間を15分以上60分以下とすることで、処理時間が長くなりすぎることを抑制し、触媒表面シリカ濃度を6質量%以下となることにより、脱硝触媒の性能回復率を高くできることがわかった。
4.使用回数の検討
 次に、薬液を繰り返し使用し、使用回数と脱硝触媒の触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能:K/K0)との関係を計測した。繰り返し薬液を利用する場合も、使用するごとに前回の再生処理によって反応した分に相当する量の無機酸及びフッ素化物を追加した。実施例10では、無機酸としてスルファミン酸を3.5質量%、界面活性剤として実施例8と同じリン酸エステルを0.05質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が1質量%となる割合で混合した薬液を用いた。実施例11では、実施例10と同じ薬液を用い、使用するごとに追加する無機酸及びフッ素化合物の量を2倍とした。実施例12では、無機酸として塩酸を0.8質量%、無機酸としてホウ酸を0.15質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が0.9質量%となる割合で混合した薬液を用いた。
4-1.性能V
 計測結果を図13に示す。図13には、実施例10から実施例12について、薬液の使用回数と脱硝触媒の触媒性能回復率との関係の計測結果を示す。図13に示すように、薬液を繰り返し使用しても、触媒性能を同じ程度まで回復できることがわかった。従って、薬液の使用量及び廃棄量の低減が可能であることがわかった。
5.仕上げ洗浄液の検討I
 次に、実機スケールにて、界面活性剤を含有した薬液を用い、成分を変化させた複数の仕上げ洗浄液で脱硝触媒の再生方法を繰り返し実施し、洗浄液の繰返し使用回数と脱硝触媒の触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能)との関係を計測した。実施例13では、仕上げ洗浄液としてスルファミン酸0.5mоl/lとなるように調製した洗浄液を用いた。また、実施例13では、薬液として実施例10と同様の薬液を用いた。実施例14では、仕上げ洗浄液としてスルファミン酸1mоl/lとなるように調製した洗浄液を用いた。また、実施例14では、無機酸としてスルファミン酸を5.3質量%、界面活性剤としてリン酸エステルを0.075質量%、フッ素化合物としてフッ化水素アンモニウムをフッ化水素分が1.5質量%となる割合で混合した薬液を用いた。
5-1.性能VI
 計測結果を図14A及び図14Bに示す。図14Aには、実施例13について、洗浄液を2回と8回繰り返し使用した場合の触媒性能回復率を、仕上げ洗浄液を水とした場合を1として示す。図14Bには、実施例13及び実施例14について、洗浄液を1回と5回繰り返し使用した場合の脱硝触媒の触媒性能回復率を示す。図14Aに示すように、スルファミン酸を含有する実施例13の方が、仕上げ洗浄液を水のみとした場合よりも、洗浄液を2回繰り返し使用しても脱硝触媒の性能回復を15%以上高くでき、洗浄液を8回繰り返し使用しても脱硝触媒の性能回復率を10%以上高く維持できることがわかった。また、図14Bに示すように、スルファミン酸1mоl/lを含有する実施例14で、洗浄液を5回繰り返し使用しても、実施例13と同程度の触媒性能回復率を維持できることがわかった。結果より、仕上げ洗浄液中のスルファミン酸の濃度が少なくとも0.5mоlであれば、洗浄液を繰り返し使用したとしても、脱硝触媒の触媒性能回復率を高く維持できることがわかった。
6.薬液の検討III
 次に、ラボスケールにて、界面活性剤を変化させた複数の薬液(洗浄剤)を用いて脱硝触媒の再生方法を実施し、それぞれの薬液を用いた場合の脱硝触媒の圧壊強度と性能回復率を計測した。脱硝触媒として、実機発電プラントで50,000時間脱硝処理した後の脱硝触媒を供試試料とした。また、脱硝触媒は、二酸化チタン(TiO2)を主成分として、これに五酸化バナジウム(V25)と酸化タングステン(WO3)とを担持させたハニカム触媒とした。
6-1.薬液の調製III
 実施例15では、スルファミン酸を3.2質量%、ノニオン系界面活性剤としてポリオキシエチレンポリオキシプロピレングリコールを主成分とする市販の界面活性剤Aを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1.75質量%となる割合で混合した薬液を用いた。実施例16では、塩酸を2.4質量%、ホウ酸を0.15質量%、ノニオン系界面活性剤として界面活性剤Aを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1.26質量%となる割合で混合した薬液を用いた。実施例17では、塩酸を2.4質量%、ホウ酸を0.15質量%、ノニオン系界面活性剤としてポリアルキレングリコール誘導体を主成分とする市販の界面活性剤Bを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1.26質量%となる割合で混合した薬液を用いた。実施例18では、塩酸を2.4質量%、ホウ酸を0.15質量%、アニオン系界面活性剤としてポリオキシエチレンアルキル(C8)エーテルリン酸エステル・モノエタノールアミン塩を主成分とする市販の界面活性剤Cを0.05質量%、フッ化水素アンモニウムをフッ化水素分が1.26質量%となる割合で混合した薬液を用いた。
 比較例3では、スルファミン酸を3.2質量%、フッ化水素アンモニウムをフッ化水素分が1.75質量%となる割合で混合した薬液を用いた。比較例4では、塩酸を2.4質量%、ホウ酸を0.15質量%、フッ化水素アンモニウムをフッ化水素分が1.26質量%となる割合で混合した薬液を用いた。
6-2.触媒性能の計測
 各触媒の触媒性能について、管式流通反応試験装置を用いて下記表1に示す性状のガスで計測した。
Figure JPOXMLDOC01-appb-T000001
 先ず、上記触媒性能の計測により、実機で未使用の脱硝触媒(新品時の脱硝触媒)の反応速度定数K0を求めた。 次に、脱硝処理により触媒性能が低下した各触媒について、各例の洗浄液を用いた洗浄処理を行った。洗浄処理は、各触媒を3分間予洗いした後、洗浄液に60分間浸漬して薬洗した。その後、薬洗後の各触媒を30分間仕上げ水洗し、110℃で一晩乾燥させた。乾燥後の再生処理後の各触媒について、上記触媒性能の計測と同様の方法により反応速度定数Kを求めた。そして、各触媒について、実施例1から実施例15と同様に、触媒性能回復率(再生処理後の触媒性能/新品時の触媒性能:K/K0)を求めた。
6-3.圧壊強度の計測
 洗浄処理後の各触媒について、木屋式硬度計により圧壊強度を下記表2の要領で計測した。表2に示すように、触媒の壁方向の圧壊強度の値については、それぞれ5個の同様の触媒を準備して圧壊強度を計測し、それらの平均値(N/cm2)とした。触媒の壁方向の圧壊強度は、ハニカム形状の触媒のうちの流通孔のない壁面側から圧縮した強度とした。
Figure JPOXMLDOC01-appb-T000002
           
6-3.性能VI
 計測結果を下記表3に示す。また、表中には、参照例として、上記洗浄処理を実施する前の使用済触媒(未洗浄触媒)の壁方向圧壊強度および触媒性能回復率を表中に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ノニオン系界面活性剤である界面活性剤Aを含む実施例15では、壁方向圧壊強度が109.2N/cm2と、未洗浄触媒に対して74%程度に低下を抑制できることがわかった。また、実施例15では、新品の脱硝触媒に対する触媒性能が98%程度まで回復できることがわかった。一方、界面活性剤を含まない比較例3では、壁方向圧壊強度が75.1N/cm2と、未洗浄触媒に対して51%程度まで低下することがわかった。また、比較例3では、新品の脱硝触媒に対する触媒性能が81%程度まで低下することがわかった。従って、ノニオン系界面活性剤である界面活性剤Aを含む実施例15は、比較例3と比べて、壁方向圧壊強度の低下を改善することができ、かつ触媒性能の回復率も高くできることがわかった。また、ノニオン系界面活性剤である界面活性剤Aを含む実施例16では、壁方向圧壊強度が114.4N/cm2と、未洗浄触媒に対して77%程度に低下を抑制できることがわかった。一方、無機酸として塩酸を含み、界面活性剤を含まない比較例3では、壁方向圧壊強度が94.6N/cm2と、未洗浄触媒に対して64%程度まで低下することがわかった。従って、ノニオン系界面活性剤である界面活性剤Aを含む実施例15及び実施例16は、同様の無機酸とフッ素化合物を含むものの、界面活性剤を含まない比較例3および比較例4と比べて、壁方向圧壊強度の低下を改善できることがわかった。
 また、ノニオン系界面活性剤である界面活性剤Bを含む実施例17では、壁方向圧壊強度が136.6N/cm2と、未洗浄触媒に対して壁方向圧壊強度を92%程度に低下を抑制できることがわかった。また、実施例17では、新品の脱硝触媒に対する触媒性能を108%程度まで回復できることがわかった。従って、ノニオン系界面活性剤である界面活性剤Bを含む実施例17は、比較例3および比較例4に比べて、壁方向圧壊強度の低下を改善することができ、かつ、触媒性能の回復率も高くできることがわかった。
 アニオン系界面活性剤である界面活性剤Cを含む実施例18では、壁方向圧壊強度が122.4N/cm2と、未洗浄触媒に対して83%程度に低下を抑制できることがわかった。従って、アニオン系界面活性剤である界面活性剤Cを含む実施例18は、比較例3および比較例4に比べて、壁方向圧壊強度の低下を改善できることがわかった。
7.仕上げ洗浄液の検討II
 次に、同一の薬液と同一の仕上げ洗浄液を用いて脱硝触媒の再生方法を繰り返し実施し、洗浄液の使用回数と脱硝触媒の触媒性能回復率(K/K0)との関係を計測した。実施例19では、仕上げ洗浄液として実施例14と同様の仕上げ洗浄液を用い、実施例15と同様の薬液を用いた。
7-1.性能VII
 計測結果を図15A及び図15Bに示す。図15Aには、実施例19について、洗浄液を1回と5回繰り返し使用した脱硝触媒の触媒性能回復率を、仕上げ洗浄液を水とした場合を1として示す。図15Bには、実施例19について、洗浄液の使用回数と脱硝触媒の触媒性能回復率との関係を示す。図15Aに示すように、スルファミン酸を含有する実施例19の方が、仕上げ洗浄液を水のみとした場合と比較して、洗浄液を5回繰り返し使用しても、脱硝触媒の触媒性能回復率を5%以上高くできることがわかった。また、図15Bに示すように、測定数値に誤差があるものの、洗浄液を3回繰り返し使用しても、脱硝触媒の触媒性能回復率を90%以上まで高く維持でき、洗浄液を6回繰り返し使用しても、脱硝触媒の触媒性能回復率を90%程度まで高く維持できることがわかった。
 本発明に係る脱硝触媒の再生方法及び脱硝触媒の再生システム並びに脱硝触媒の洗浄液によれば、触媒の表面に着いた付着物を効率よく除去することができ、触媒性能を高く回復することができ、かつ圧壊強度の低下を抑制することができる。
 10:微粉炭焚きボイラ
 50:脱硝設備
 82a、84a、86a:脱硝触媒
 100、100a:脱硝触媒の再生システム
 102、102a:予洗い部
 104、104a:薬液洗浄部
 106、106a:仕上げ洗い部
 108、108a:乾燥部
 112:触媒搬送装置
 114:予備水洗槽
 116:水供給装置
 118:真空引き槽
 120:真空ポンプ
 122:薬洗槽
 130:仕上げ水洗槽

Claims (16)

  1.  脱硝触媒を水洗いする予洗いステップと、
     水洗いをした前記脱硝触媒を無機酸とフッ素化合物とを含む薬液に浸漬させる薬液洗浄ステップと、
     前記薬液から前記脱硝触媒を取り出すステップと、
     前記薬液から取り出した前記脱硝触媒を、水又はスルファミン酸含有水を仕上げ洗浄液として洗う仕上げ洗いステップと
    を含む脱硝触媒の再生方法。
  2.  前記薬液は、界面活性剤をさらに含み、
     前記界面活性剤は、ノニオン系界面活性剤またはアニオン系界面活性剤である請求項1に記載の脱硝触媒の再生方法。
  3.  前記ノニオン系界面活性剤は、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体またはポリアルキレングリコール誘導体を主成分とする界面活性剤である請求項2に記載の脱硝触媒の再生方法。
  4.  前記アニオン系界面活性剤は、ポリオキシアルキレンアルキルエーテルリン酸エステルを主成分とする界面活性剤である請求項2に記載の脱硝触媒の再生方法。
  5.  前記無機酸は、塩酸を含む、または塩酸及びホウ酸を含む請求項1~4のいずれか一項に記載の脱硝触媒の再生方法。
  6.  前記無機酸は、スルファミン酸を含む請求項1~4のいずれか一項に記載の脱硝触媒の再生方法。
  7.  前記脱硝触媒再生後の表面シリカ濃度を6質量%以下にする請求項1~6のいずれか一項に記載の脱硝触媒の再生方法。
  8.  前記予洗いステップでは、前記脱硝触媒を水槽内の水に浸漬させ、前記水槽を密閉して前記水槽内の空気を吸引する請求項1~7のいずれか一項に記載の脱硝触媒の再生方法。
  9.  前記薬液洗浄ステップでは、前記薬液を繰り返し使用する請求項1~8のいずれか一項に記載の脱硝触媒の再生方法。
  10.  脱硝触媒を水洗いする予洗い部と、
     水洗いをした前記脱硝触媒を無機酸とフッ素化合物とを含む薬液に浸漬させる薬液洗浄部と、
     前記薬液から取り出した前記脱硝触媒を、水又はスルファミン酸含有水を仕上げ洗浄液として仕上げ洗いする仕上げ洗い部と
    を備える脱硝触媒の再生システム。
  11.  石炭焚きボイラ用の劣化した脱硝触媒を洗浄する洗浄剤であって、無機酸とフッ素化合物とを含有する水溶液を含む洗浄剤。
  12.  界面活性剤をさらに含み、
     前記界面活性剤は、ノニオン系界面活性剤またはアニオン系界面活性剤である請求項11に記載の洗浄剤。
  13.  前記ノニオン系界面活性剤は、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン誘導体またはポリアルキレングリコール誘導体を主成分とする界面活性剤である請求項12に記載の洗浄剤。
  14.  前記アニオン系界面活性剤は、ポリオキシアルキレンアルキルエーテルリン酸エステルを主成分とする界面活性剤である請求項12に記載の洗浄剤。
  15.  前記無機酸は、塩酸を含む、または塩酸及びホウ酸を含む請求項11~14のいずれか一項に記載の洗浄剤。
  16.  前記無機酸は、スルファミン酸を含む請求項11~14のいずれか一項に記載の洗浄剤。
PCT/JP2016/070162 2015-07-10 2016-07-07 脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤 WO2017010402A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187000585A KR102112426B1 (ko) 2015-07-10 2016-07-07 탈질 촉매의 재생 방법 및 탈질 촉매의 재생 시스템, 및 탈질 촉매의 세정제
CN201680040042.5A CN107921420A (zh) 2015-07-10 2016-07-07 脱硝催化剂的再生方法和脱硝催化剂的再生系统、以及脱硝催化剂的清洗剂
JP2017528647A JP6298579B2 (ja) 2015-07-10 2016-07-07 脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤
US15/740,554 US11045799B2 (en) 2015-07-10 2016-07-07 Denitration catalyst regeneration method, denitration catalyst regeneration system, and cleaning agent for denitration catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138939 2015-07-10
JP2015138939 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010402A1 true WO2017010402A1 (ja) 2017-01-19

Family

ID=57757316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070162 WO2017010402A1 (ja) 2015-07-10 2016-07-07 脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤

Country Status (6)

Country Link
US (1) US11045799B2 (ja)
JP (1) JP6298579B2 (ja)
KR (1) KR102112426B1 (ja)
CN (1) CN107921420A (ja)
TW (1) TWI640360B (ja)
WO (1) WO2017010402A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004123A1 (ja) * 2017-06-30 2019-01-03 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
JP2019010635A (ja) * 2017-06-30 2019-01-24 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
WO2020194851A1 (ja) * 2019-03-28 2020-10-01 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
WO2021261477A1 (ja) * 2020-06-24 2021-12-30 三菱パワー株式会社 触媒の再生方法、触媒の再生装置及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316219A1 (en) * 2014-05-01 2015-11-05 CoreLed Systems, LLC High-pass filter for led lighting
CN109126904A (zh) * 2018-09-27 2019-01-04 重庆师范大学 一种用于高效清洗脱硝催化剂的再生清洗液及其清洗方法
CN110252420B (zh) * 2019-07-09 2022-01-18 河北工业大学 一种中毒蜂窝催化剂的再生方法以及一种中毒蜂窝催化剂的再生装置
CN110559707B (zh) * 2019-09-11 2021-10-01 上海丰信环保科技有限公司 一种砂罐线上再生方法
CN110743628A (zh) * 2019-10-21 2020-02-04 河北冀研能源科学技术研究院有限公司 一种恢复火电厂钒钛基scr脱硝催化剂活性的活化再生剂
CN113842954A (zh) * 2020-06-28 2021-12-28 富利康科技股份有限公司 脱硫、硝的触媒和触媒装置,及其制备、活化、再生方法
TWI757916B (zh) * 2020-10-14 2022-03-11 中國鋼鐵股份有限公司 廢棄選擇性催化還原反應觸媒的再利用方法、選擇性催化還原反應觸媒與其製作方法
JP2022130991A (ja) * 2021-02-26 2022-09-07 三菱重工業株式会社 脱硝装置の触媒配置決定方法及び脱硝装置のメンテナンス方法並びに脱硝装置、ボイラ、及び発電プラント

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293051A (ja) * 1989-05-09 1990-12-04 Nippon Shokubai Kagaku Kogyo Co Ltd 排ガス浄化用触媒の再生方法
JPH0596177A (ja) * 1991-10-03 1993-04-20 Idemitsu Kosan Co Ltd 失活触媒の再生方法
JPH10235209A (ja) * 1997-02-27 1998-09-08 Mitsubishi Heavy Ind Ltd 脱硝触媒の再生方法
JP2006505386A (ja) * 2002-09-05 2006-02-16 エンヴィカ ゲゼルシャフト ミット ベシュレンクテル ハフツング 鉄負荷されたdeNOx触媒の再生方法
JP2011031237A (ja) * 2009-07-10 2011-02-17 Kyuden Sangyo Co Inc 排煙脱硝装置における脱硝触媒活性改良方法
JP2012024669A (ja) * 2010-07-21 2012-02-09 Kobe Steel Ltd 脱硝触媒の再生方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242081A1 (de) * 2002-09-11 2004-03-25 Envica Gmbh Verfahren zur Regeneration von phosphorbelasteten Denox-Katalysatoren
CN103055963B (zh) * 2013-01-25 2015-02-04 龙净科杰环保技术(上海)有限公司 一种移动式scr脱硝催化剂集成再生系统及方法
CN104190477A (zh) * 2014-09-09 2014-12-10 华电高科(高碑店)环保技术有限公司 一种钛基钒系scr脱硝催化剂再生的方法
CN104289258A (zh) * 2014-10-08 2015-01-21 於承志 一种用于脱硝催化剂的酸洗再生液及再生方法
CN104437673B (zh) * 2014-11-27 2016-08-24 华南理工大学 一种去除失活scr脱硝催化剂表面铁化合物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293051A (ja) * 1989-05-09 1990-12-04 Nippon Shokubai Kagaku Kogyo Co Ltd 排ガス浄化用触媒の再生方法
JPH0596177A (ja) * 1991-10-03 1993-04-20 Idemitsu Kosan Co Ltd 失活触媒の再生方法
JPH10235209A (ja) * 1997-02-27 1998-09-08 Mitsubishi Heavy Ind Ltd 脱硝触媒の再生方法
JP2006505386A (ja) * 2002-09-05 2006-02-16 エンヴィカ ゲゼルシャフト ミット ベシュレンクテル ハフツング 鉄負荷されたdeNOx触媒の再生方法
JP2011031237A (ja) * 2009-07-10 2011-02-17 Kyuden Sangyo Co Inc 排煙脱硝装置における脱硝触媒活性改良方法
JP2012024669A (ja) * 2010-07-21 2012-02-09 Kobe Steel Ltd 脱硝触媒の再生方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004123A1 (ja) * 2017-06-30 2019-01-03 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
JP2019010635A (ja) * 2017-06-30 2019-01-24 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
JP7013258B2 (ja) 2017-06-30 2022-01-31 三菱パワー株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
WO2020194851A1 (ja) * 2019-03-28 2020-10-01 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
JP2020163242A (ja) * 2019-03-28 2020-10-08 三菱日立パワーシステムズ株式会社 脱硝触媒の再生方法及び脱硝触媒の再生システム
WO2021261477A1 (ja) * 2020-06-24 2021-12-30 三菱パワー株式会社 触媒の再生方法、触媒の再生装置及びプログラム

Also Published As

Publication number Publication date
CN107921420A (zh) 2018-04-17
JP6298579B2 (ja) 2018-03-20
KR20180017103A (ko) 2018-02-20
TW201716138A (zh) 2017-05-16
US20180185834A1 (en) 2018-07-05
US11045799B2 (en) 2021-06-29
JPWO2017010402A1 (ja) 2017-08-31
KR102112426B1 (ko) 2020-05-19
TWI640360B (zh) 2018-11-11

Similar Documents

Publication Publication Date Title
JP6298579B2 (ja) 脱硝触媒の再生方法及び脱硝触媒の再生システム、並びに脱硝触媒の洗浄剤
JP7013258B2 (ja) 脱硝触媒の再生方法及び脱硝触媒の再生システム
KR101282748B1 (ko) 표면의 오염제거를 위한 진공흡입가능한 겔과 그 용도
EP2259872B1 (en) Method of regeneration of scr catalyst poisoned by phosphorous components in flue gas
US9272265B2 (en) Method for suppressing increase in SO2 oxidation rate of NOx removal catalyst
US7723251B2 (en) Method of regeneration of SCR catalyst
US20110172083A1 (en) METHOD FOR THE REGENERATION OF PHOSPHOR-LADEN DeNOx CATALYSTS
JP4870217B2 (ja) 排煙脱硝装置における脱硝触媒活性改良方法
CN110354914A (zh) 一种失活scr脱硝催化剂再利用方法
TW200403104A (en) Method for regenerating NOx removal catalyst
WO2019004123A1 (ja) 脱硝触媒の再生方法及び脱硝触媒の再生システム
JP2012024669A (ja) 脱硝触媒の再生方法
WO2020194851A1 (ja) 脱硝触媒の再生方法及び脱硝触媒の再生システム
CN104826494B (zh) 烟气scr脱硝催化过滤元件的再生方法
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
KR101819283B1 (ko) Scr 촉매의 재생 방법
CN115445436B (zh) 废旧触媒陶瓷纤维滤管再生处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528647

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000585

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824382

Country of ref document: EP

Kind code of ref document: A1