WO2017007000A1 - 耐部分放電用電気絶縁樹脂組成物 - Google Patents

耐部分放電用電気絶縁樹脂組成物 Download PDF

Info

Publication number
WO2017007000A1
WO2017007000A1 PCT/JP2016/070161 JP2016070161W WO2017007000A1 WO 2017007000 A1 WO2017007000 A1 WO 2017007000A1 JP 2016070161 W JP2016070161 W JP 2016070161W WO 2017007000 A1 WO2017007000 A1 WO 2017007000A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
discharge resistance
resin composition
insulating
resin
Prior art date
Application number
PCT/JP2016/070161
Other languages
English (en)
French (fr)
Inventor
徳之 林坂
加瑞範 川▲崎▼
昌幸 山下
蛯名 武雄
隆弘 石田
知美 服部
Original Assignee
住友精化株式会社
国立研究開発法人産業技術総合研究所
学校法人静岡理工科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, 国立研究開発法人産業技術総合研究所, 学校法人静岡理工科大学 filed Critical 住友精化株式会社
Priority to JP2017527499A priority Critical patent/JP6524229B2/ja
Priority to KR1020187001277A priority patent/KR102600796B1/ko
Priority to CA2991696A priority patent/CA2991696C/en
Priority to US15/742,853 priority patent/US11629270B2/en
Priority to EP16821468.2A priority patent/EP3321941B1/en
Priority to CN201680038905.5A priority patent/CN107710339B/zh
Publication of WO2017007000A1 publication Critical patent/WO2017007000A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters

Definitions

  • the present invention relates to an electrically insulating resin composition for partial discharge resistance excellent in partial discharge resistance, a method for producing the same, and an insulating varnish, an electrodeposition paint, and a cured product using the electrical insulating resin composition for partial discharge resistance.
  • Electric wire rotating electrical machine, insulating film, and insulating coating.
  • Inverter control is a type of control method that performs speed control of an electric motor or the like by a variable voltage / variable frequency AC power source using an inverter.
  • the inverter is an efficient variable speed voltage control device, which is controlled by a high-speed switching element of several kHz to several hundred kHz, and generates a high surge voltage when a voltage is applied.
  • Insulated wires such as enameled wires with insulating coatings on conductors are generally used as materials for forming coils of electrical equipment that performs such inverter control.
  • Partial discharge may occur due to the occurrence of a steep overvoltage (inverter surge) associated with inverter control.
  • Partial discharge means that a weak electrical spark (discharge phenomenon) is generated in a minute void (gap) in an insulator or between a conductor and an insulator. If a partial discharge occurs in an insulated wire, the insulator is destroyed by this, and there is a risk of eventually causing an insulation failure in which the insulation state cannot be maintained, and the life of the insulated wire may be extremely shortened.
  • the causes of the deterioration of the insulator due to such partial discharge are as follows: 1) Degradation of the insulating material due to cutting of the main chain of the resin due to collision of charged particles of the partial discharge, 2) Insulation material due to local temperature rise due to partial discharge It is considered that dissolution and chemical decomposition, and 3) deterioration of insulating materials due to secondary products such as ozone generated by partial discharge.
  • Patent Document 1 discloses the use of spherical silica particles as a filler
  • Non-Patent Document 1 discloses the use of a plate-like layered silicate (cation exchange clay).
  • these methods can suppress 1) but cannot cope with 2) and 3). In particular, when the voltage is high, the effect of suppressing the deterioration of the insulator due to partial discharge is not sufficient.
  • Patent Document 2 and Non-Patent Document 2 metal hydroxide such as magnesium hydroxide is dispersed and mixed as a filler to release water when the filler is exposed to partial discharge, thereby suppressing heat generation due to partial discharge.
  • a method is disclosed. According to this method, 2) can be suppressed, and at the same time, the production of secondary product 3) due to temperature rise can be reduced.
  • the metal hydroxide has a smaller barrier effect than the spherical silica particles of Patent Document 1 and the layered silicate of Non-Patent Document 1, that is, the effect on 1) is inferior. Further, the metal hydroxide has strong alkalinity and may promote deterioration of the mixed resin. Furthermore, in the method using magnesium hydroxide or the like of Non-Patent Document 2, since only agglomerated powder is mixed, there is a bias in the dispersion state, and in order to obtain a sufficient effect, it is necessary to increase the filler filling amount. There is. Moreover, in the method using the metal hydroxide or metal carbonate of Patent Document 2, although an extremely minute filler is used and the dispersion state is improved, aggregation occurs and the effect is not sufficient.
  • the deterioration of the insulator due to partial discharge causes dielectric breakdown, and these problems have not been sufficiently solved at present, and the development of an insulator having better partial discharge resistance is required.
  • the problem of dielectric breakdown due to partial discharge is that not only electric wires but also insulation films such as interphase insulation paper of electric motors; insulating varnishes that cover and fix the outer layer of motor coils; generators, transformers, switchgears, etc. It also exists in electric wires for insulation of power equipment; filling mold insulation members of power equipment such as transformers and switchgears; For this reason, there is a need for the development of excellent materials for partial discharge resistance that can be applied to insulators for a wide range of applications.
  • the dielectric breakdown in the present invention refers to a phenomenon in which when the voltage applied to the insulator exceeds a certain limit, the insulator is electrically broken and loses the insulating property to cause a current to flow.
  • the main object of the present invention is to solve all of the above causes 1) to 3) and to provide an excellent electrical insulating resin composition for partial discharge resistance which can suppress deterioration of the insulator due to partial discharge. To do.
  • the present invention also provides an excellent method for producing an electrical insulating resin composition for partial discharge, and an insulating varnish, an electrodeposition paint, a cured product, an electric wire, a rotating electrical machine, an insulating film, and the like, using the resin composition. It is also an object to provide an insulating coating.
  • the present inventors have found that by including boehmite alumina and a resin, an electrically insulating resin composition for partial discharge resistance having excellent partial discharge resistance is obtained. It was. Moreover, the present inventors have found that the electrical insulating resin composition for partial discharge resistance according to the present invention can suitably suppress deterioration of an insulator due to partial discharge generated by an inverter surge. Furthermore, the present inventors have found that in the production of the electrical insulating resin composition for partial discharge resistance according to the present invention, the partial discharge resistance is further improved by undergoing a pregelling step of boehmite alumina. It was. The present invention has been completed by further studies based on these findings.
  • Item 1 An electrically insulating resin composition for partial discharge resistance containing boehmite alumina and a resin.
  • Item 2. The electrically insulating resin composition for partial discharge resistance according to Item 1, wherein the boehmite alumina is nanoparticles.
  • Item 3. Item 1 is a resin wherein the resin is at least one selected from the group consisting of polyvinyl formal resin, polyurethane resin, polyamide resin, polyester resin, polyimide resin, polyamideimide resin, polyetherimide resin, polyesterimide resin, and epoxy resin. 4. The electrically insulating resin composition for partial discharge resistance according to any one of items 1 to 3. Item 4. Item 4.
  • Item 5. The electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 4, which is for inverter surge resistance.
  • Item 6. The electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 5, which is used for an electric device controlled by an inverter.
  • Item 7. Item 7. An insulating varnish containing the electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 6 and a solvent.
  • Item 8. Item 7.
  • An electrodeposition coating comprising the electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 6 and a solvent.
  • Item 9. A cured product formed from the electrically insulating resin composition for partial discharge resistance according to any one of claims 1 to 6.
  • Item 10. A method for producing an electrical insulating resin composition for partial discharge resistance according to any one of claims 1 to 6, comprising pregelling boehmite alumina and mixing pregelled boehmite alumina with a resin.
  • a process for producing an electrically insulating resin composition for partial discharge resistance comprising: Item 11.
  • An electric wire including a conductor and a single layer or a plurality of layers of insulating coating formed on an outer periphery of the conductor, wherein at least one layer of the insulating coating is any one of Items 1 to 6.
  • An electric wire comprising the electrically insulating resin composition for partial discharge resistance according to 1 or a cured product thereof.
  • Item 12. Item 12.
  • Item 7. An insulating film having an insulating layer comprising the electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 6 or a cured product thereof.
  • An insulating coating comprising an insulating layer comprising the electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 6 or a cured product thereof.
  • Item 15. Use for suppressing deterioration due to partial discharge of a resin composition containing boehmite alumina and a resin.
  • Item 16. An insulating product comprising an electrically insulating resin composition for partial discharge resistance containing boehmite alumina and a resin.
  • an electrical insulating resin composition for partial discharge resistance having excellent partial discharge resistance, and an insulating varnish, an electrodeposition paint, a cured product, an electric wire, a rotating electrical machine, and an insulating film using the resin composition.
  • an insulating coating can be provided.
  • a coil of a rotating electric machine such as a motor or a generator, an insulating film such as interphase insulating paper, an insulating varnish for covering and fixing the outer layer of the motor coil, This makes it possible to extend the life of insulating members of power equipment such as switches and switchgears.
  • the electrically insulating resin composition of the present invention is for partial discharge resistance and is characterized by containing boehmite alumina and a resin.
  • the electrically insulating resin composition for partial discharge resistance of the present invention will be described in detail.
  • Boehmite alumina The electrically insulating resin composition for partial discharge resistance of the present invention contains boehmite alumina.
  • Boehmite alumina is aluminum oxyhydroxide (AlOOH) or alumina hydrate (Al 2 O 3 .H 2 O).
  • Boehmite alumina is largely classified into pseudocrystalline boehmite and microcrystalline boehmite according to the difference in crystallinity, crystal size, and crystal structure, but can be used in the present invention without any limitation.
  • Pseudocrystalline boehmite also called pseudoboehmite or pseudoboehmite
  • Pseudocrystalline boehmite usually has a very large surface area, large pores and pore volume, low specific gravity, small crystal size compared to microcrystalline boehmite, and a crystal unit When compared with, it contains more hydrated water molecules.
  • Microcrystalline boehmite has high crystallinity, relatively large crystal size, very small surface area, and high specific gravity.
  • the boehmite alumina used in the present invention includes both pseudocrystalline boehmite and microcrystalline boehmite without distinction.
  • the electrically insulating resin composition for partial discharge resistance of the present invention contains boehmite alumina and a resin, it exhibits characteristics excellent in partial discharge resistance.
  • the details of this mechanism are not necessarily clear, but can be considered as follows, for example. That is, it is considered that the boehmite alumina contained in the electrically insulating resin composition for partial discharge resistance releases water and efficiently absorbs thermal energy when exposed to partial discharge. For this reason, it is estimated that the deterioration of the resin due to the thermal energy (temperature increase) of the partial discharge is effectively suppressed.
  • boehmite alumina has a feature of releasing water, so it is considered that heat generation due to partial discharge is suppressed. As a result, it is speculated that temperature rise can be suppressed and generation of secondary products such as ozone is also efficiently suppressed.
  • boehmite alumina becomes alumina after releasing water, it is presumed that the high barrier effect is maintained.
  • boehmite alumina aggregates and bonds with adjacent particles when it becomes alumina, the remaining layer is a strong alumina layer even after partial resin components on the surface are eroded by partial discharge. It is estimated that the high barrier effect is maintained.
  • the shape of the boehmite alumina is not particularly limited, and may be a known shape such as a plate shape, a rod shape, or a needle shape, but the partial discharge resistance of the electrically insulating resin composition for partial discharge resistance of the present invention is more excellent. Thus, it is preferably a plate-like particle.
  • the boehmite alumina is preferably nanoparticles. Nanoparticles are nano-sized particles, and specifically mean particles having an average particle diameter of about 1 nm to 1 ⁇ m. The nanoparticles also include, for example, when the boehmite alumina has a plate-like structure, at least one of the lateral direction and the thickness is about 1 nm to 1 ⁇ m.
  • the average particle size of the boehmite alumina is preferably 1 nm to 5 ⁇ m, and more preferably 5 nm to 500 nm, from the viewpoint of improving the partial discharge resistance of the electric insulating resin composition for partial discharge resistance of the present invention.
  • the average particle size is a particle size at an integrated value of 50% in a particle size distribution obtained by measurement using a scattering type particle size measuring device (Microtrack) by laser diffraction.
  • the aspect ratio (major axis / minor axis) of the boehmite alumina is preferably 2 or more, more preferably 4 to 100, still more preferably 5 to 100.
  • the boehmite alumina has an aspect ratio of 2 or more
  • the electrically insulating resin composition for partial discharge resistance of the present invention is applied on a conductor, the boehmite alumina is regularly aligned in a direction opposite to erosion by partial discharge.
  • the area of the covered conductor can be increased, and the effect of partial discharge resistance can be further enhanced.
  • the aspect ratio means the ratio of the major axis to the minor axis (major axis / minor axis) of the particles observed at a magnification of 5000 times using a scanning electron microscope. That is, in the case of boehmite alumina of plate-like particles, the average value of the particle size is divided by the average value of the plate thickness, and the average value of the particle size of at least 100 boehmite alumina plate-like particles is the plate thickness. Divided by the average value of.
  • the particle size of the plate-like particles herein corresponds to a circular diameter having the same area as the area of the main surface at the position of the plate-like particles. In the case of a rod-like or needle-like particle, the length of the needle (bar) is divided by the diameter of the needle (bar).
  • boehmite alumina Commercial products may be used as boehmite alumina in the present invention.
  • Examples of commercially available boehmite alumina that can be applied to the present invention include “Alumina sol 15A”, “Alumina sol 10A”, “Alumina sol 10D” manufactured by Kawaken Fine Chemical Co., Ltd., and AS-520 manufactured by Nissan Chemical.
  • the boehmite alumina may be surface-modified.
  • the surface modification of the boehmite alumina can be performed by a known method such as surface organic treatment with a silane coupling agent or a titanate coupling agent.
  • Preferable surface modifiers include silane coupling agents.
  • the content of the boehmite alumina is preferably 0.1 to 60% by mass, and more preferably 1 to 60% by mass in the electrically insulating resin composition for partial discharge resistance.
  • the content of boehmite alumina is 0.1 to 60% by mass, an electrically insulating resin composition having excellent partial discharge resistance can be obtained.
  • a more preferable lower limit of the content of boehmite alumina is 2% by mass, and still more preferably 5% by mass.
  • the upper limit of the boehmite alumina content is more preferably 50% by mass, and still more preferably 40% by mass.
  • the resin used in the electrically insulating resin composition for partial discharge resistance of the present invention is not particularly limited as long as it is generally used as an insulating material and does not inhibit the dispersion of boehmite alumina in the resin.
  • the resin includes a polyvinyl formal resin, a polyurethane resin, a polyamide resin, a polyester resin, a polyimide resin, and a polyamideimide.
  • a resin selected from the group consisting of a resin, a polyetherimide resin, a polyesterimide resin, and an epoxy resin is preferred, and from a group consisting of a polyamideimide resin, a polyesterimide resin, a polyimide resin, and a polyetherimide resin More preferred are at least one selected resin.
  • the content of the resin is preferably 30 to 99% by mass, and more preferably 60 to 95% by mass in the electrically insulating resin composition for partial discharge resistance.
  • the electrically insulating resin composition for partial discharge resistance of the present invention includes the boehmite alumina and the resin, but may further include other components as necessary.
  • Examples of other components include generally known additives such as other resins and inorganic fillers used in electrical insulating resin compositions.
  • the additive include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, rosin and other tackifiers, brominated flame retardants such as polybromodiphenyl oxide and tetrabromobisphenol A, Chlorinated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphorus flame retardants such as phosphate esters and halogenated phosphate esters, boron flame retardants, oxide flame retardants such as antimony trioxide, phenolic, Phosphorus-based, sulfur-based antioxidants, silica, layered silicate, aluminum oxide, magnesium oxide, boron nitride, silicon nitride, aluminum nitride, and other inorganic fillers, heat stabilizers,
  • the electric insulation resin composition for partial discharge resistance of the present invention is prepared by mixing boehmite alumina, resin, and, if necessary, additives by a generally known method. Can be manufactured. You may heat as needed in the case of mixing.
  • the mixing method include a method of mixing using generally known mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, a twin screw extruder, a rotation and revolution mixer, and a homomixer.
  • Boehmite alumina may be pulverized in advance before mixing with resin. By grinding, the particle size of boehmite alumina is reduced and the particle size is uniform, so when mixed with resin, boehmite alumina can be dispersed well in the resin, and the resulting resin composition has partial discharge resistance. Can be further improved.
  • the pulverization method include methods using generally known pulverization means such as a ball mill, a rod mill, a mass colloider, a dry jet mill, a homogenizer, and a wet jet mill.
  • boehmite alumina may be directly dispersed and mixed in the resin, but after preparing a pregel in which boehmite alumina is dispersed in an organic solvent or water, the resin and dispersion are mixed. It is preferable to mix.
  • the boehmite alumina and the resin can be combined in a form in which boehmite alumina is better dispersed by mixing the resin with the resin after producing the pregel.
  • boehmite alumina Before mixing boehmite alumina and resin, pre-gelation of boehmite alumina allows better dispersion of boehmite alumina in the resin when mixed with resin, and partial discharge resistance of the resulting resin composition The sex can be further improved.
  • step (1) as a method for pregelling boehmite alumina, a method of dispersing boehmite alumina in an organic solvent or water can be mentioned.
  • Examples of the organic solvent in which boehmite alumina is dispersed include polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, methanol, ethanol, and propanol, and polar solvents such as these. Examples thereof include a mixed solvent to which water has been added.
  • boehmite alumina it is preferable to add 1 to 100 parts by mass of boehmite alumina and disperse to 100 parts by mass of an organic solvent, water or a mixed solvent.
  • a dispersion method for example, a known stirring means such as a mixer may be used. The conditions for dispersion such as the stirring speed are appropriately selected depending on the solvent.
  • pregelled boehmite alumina and resin are mixed.
  • means for mixing the pregelled boehmite alumina and the resin include the generally known mixing means described above. Further, defoaming is preferably performed during mixing. The mixing conditions are appropriately selected depending on the solvent.
  • the method for producing an electrically insulating resin composition for partial discharge resistance includes a step of further mixing other components with the pregelled boehmite alumina and resin mixture obtained in step (2). Also good.
  • the electrically insulating resin composition for partial discharge resistance of the present invention is excellent in partial discharge resistance. For this reason, it can be suitably used as an insulating material for an insulator that requires partial discharge resistance. Moreover, especially the electrical insulation resin composition for partial discharge resistance of this invention can suppress suitably the deterioration of the insulator by the partial discharge generate
  • the electrically insulating resin composition for partial discharge resistance according to the present invention is used for an inverter-controlled electric device (such as a motor).
  • an inverter-controlled electric device such as a motor.
  • the cured product formed from the electrically insulating resin composition for partial discharge resistance according to the present invention is also excellent in partial discharge resistance.
  • a curable resin is used as the resin contained in the electrical insulating resin composition for partial discharge of the present invention, and the electrical insulating resin composition of the present invention is cured using a curing agent as necessary. Can be obtained.
  • the curable resin is not particularly limited, and may be a known curable resin such as one that is thermally cured or ultraviolet curable among the resins listed in the section of the resin.
  • the curing agent may be appropriately selected from known curing agents according to the curable resin to be used.
  • the curing method may be appropriately selected from known curing means such as drying, heating, or ultraviolet irradiation according to the curable resin to be used.
  • Examples of application of the electrically insulating resin composition for partial discharge resistance of the present invention include, for example, insulating varnish and electrodeposition paint.
  • insulating varnish and electrodeposition paint For example, by producing an insulating varnish or an electrodeposition paint using the electrically insulating resin composition for partial discharge resistance of the present invention, and coating the surface of a member such as a conductor using these, excellent partial discharge resistance can be obtained. Can be granted.
  • Insulating varnish By including the electrically insulating resin composition for partial discharge resistance of the present invention and a solvent, an insulating varnish excellent in partial discharge resistance can be obtained.
  • the solvent is not particularly limited as long as it is a known organic solvent conventionally used for insulating varnishes.
  • organic solvent for example, water, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N , N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, ⁇ -butyrolactone and other polar organic solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones, methyl acetate, ethyl acetate, butyl acetate , Esters such as diethyl oxalate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol dimethyl ether, tetrahydro Ethers such as
  • the blending ratio of the electrically insulating resin composition for partial discharge resistance of the present invention and the solvent is not particularly limited and can be appropriately selected within a range applicable as an insulating varnish.
  • the electrically insulating resin composition for partial discharge resistance and the solvent may be blended so that the ratio of the nonvolatile component in the insulating varnish is 5 to 60% by mass.
  • Electrodeposition paint By containing the electrically insulating resin composition for partial discharge resistance of the present invention and a solvent, an electrodeposition paint having excellent partial discharge resistance can be obtained.
  • the solvent is not particularly limited as long as it is a known solvent conventionally used for electrodeposition coatings.
  • water N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • Amide solvents such as methanol, ethanol, propanol, butanol, methoxypropanol, benzyl alcohol and other alcohol solvents, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol, dipropylene glycol, methyl propanediol and other polyvalent solvents
  • Alcohol solvents dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, diethylene glycol, diethylene glycol dimethyl ether, triethylene glycol, etc.
  • Ether solvents butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone Ester solvents such as ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, acetophenone, diethyl carbonate Carbonate solvents such as propylene carbonate, hydrocarbon solvents such as hexane, heptane,
  • the blending ratio of the electrically insulating resin composition for partial discharge resistance of the present invention and the solvent is not particularly limited and can be appropriately selected within a range applicable as an electrodeposition coating, and is usually a non-volatile component in the electrodeposition coating.
  • the electric insulation resin composition for partial discharge resistance and a solvent may be blended so that the ratio of 1 to 60% by mass.
  • the electrical insulating resin composition for partial discharge resistance of the present invention was used as a part or all of the insulator.
  • examples thereof include an electric wire, a rotating electric machine, an insulating film, and an insulating coating.
  • this invention is also an insulating product containing the electrical insulating resin composition for partial discharge resistance containing boehmite alumina and resin.
  • Such insulating products include electric wires, rotating electrical machines, insulating films, or insulating coatings.
  • the electrically insulating resin composition for partial discharge resistance of the present invention can be applied to an insulated wire.
  • an electric wire insulator By applying the electrical insulating resin composition for partial discharge resistance of the present invention as an electric wire insulator, an insulated electric wire having excellent partial discharge resistance can be obtained, and the insulation life of the electric wire can be improved.
  • the present invention is also an electric wire including a conductor and an insulating film composed of a single layer or a plurality of layers formed on an outer periphery of the conductor, wherein at least one layer of the insulating film has the partial discharge resistance. It is an electric wire containing the electrically insulating resin composition for use or its hardened material. Examples of the material of the conductor include metal materials such as copper, aluminum, and silver.
  • the insulating coating consists of a single layer or a plurality of layers formed on the outer periphery of the conductor.
  • at least one layer of the insulating coating contains the partial electrical discharge resin composition for partial discharge resistance or a cured product thereof.
  • the layer which consists of polyamideimide resin or polyesterimide resin etc. is mentioned, for example.
  • the electric wire of the present invention is obtained by applying a dispersion containing the above-mentioned electrical insulating resin composition for partial discharge resistance onto the surface of a conductor or another layer coated with a conductor, and applying an insulating film by baking or the like. It can be manufactured by forming.
  • Rotating electrical machine The electrically insulating resin composition for partial discharge resistance of the present invention can be applied to a rotating electrical machine. That is, the rotating electrical machine of the present invention is a rotating electrical machine using the above-described electric wire. Examples of the rotating electric machine include a motor and a generator.
  • Insulating film The electrically insulating resin composition for partial discharge resistance of the present invention can also be applied to an insulating film. That is, the insulating film of the present invention is an insulating film having an insulating layer made of the above-mentioned electrically insulating resin composition for partial discharge resistance or a cured product thereof.
  • the insulating film may be composed of a single layer, or may have a base material and the insulating layer on the base material.
  • the insulating film consisting of one layer is produced, for example, by a method of producing the partially insulating electric insulating resin composition of the present invention by molding into a sheet by extrusion molding, or on a substrate such as polyethylene terephthalate.
  • the electrical insulating resin composition for partial discharge is dissolved or dispersed in a solvent as necessary, applied, and heated, dried or cured as necessary to form an insulating layer, and then the substrate is peeled off. It can be manufactured by a method or the like.
  • the thickness of the insulating film is preferably 2 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. If it is less than 2 ⁇ m, the insulating film may be defective during production. If it exceeds 300 ⁇ m, the flexibility as the insulating film may be impaired.
  • the insulating film having a base material and an insulating layer on the base material may be prepared by, for example, dissolving or dispersing the electrically insulating resin composition for partial discharge resistance of the present invention in a solvent as necessary on the base material.
  • the insulating layer can be produced by coating and, if necessary, heating, drying or curing to form an insulating layer.
  • the substrate include synthetic resins such as polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, and polypropylene.
  • the thickness of the insulating layer is preferably 2 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. If it is less than 2 ⁇ m, the insulating film may be defective during production. If it exceeds 300 ⁇ m, the flexibility as the insulating film may be impaired.
  • the thickness of the substrate is not particularly limited, and examples thereof include 2 to 300 ⁇ m, preferably 5 to 200 ⁇ m.
  • the electrically insulating resin composition for partial discharge resistance of the present invention can also be applied to insulating coatings such as solder resists used for electronic substrates and the like. That is, the insulating coating according to the present invention is an insulating coating having an insulating layer made of the above-mentioned partial insulating electric insulating resin composition or a cured product thereof.
  • the thickness of the insulating coating is preferably 2 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. If it is less than 2 ⁇ m, defects may occur during the production of the insulating coating. If it exceeds 300 ⁇ m, an effect commensurate with the amount of use cannot be obtained and it is not economical.
  • the insulating coating of the present invention is, for example, a method in which the electrically insulating resin composition for partial discharge resistance of the present invention is heated and melted to coat the surface of an object to be coated such as an electronic substrate and molded to form an insulating layer, A method for forming an insulating layer on an object to be coated by electrodeposition using the electrically insulating resin composition for partial discharge resistance of the invention as an electrodeposition paint, or the electrical insulating resin composition for partial discharge resistance of the present invention as required It can be produced by a method in which it is dissolved or dispersed in a solvent, applied to an object to be coated, and heated, dried or cured as necessary to form an insulating layer. Moreover, when it fills with the clearance gap between base materials instead of the surface, it can also be set as a mold member. Examples of the material for the coating object include metal materials such as copper, aluminum, and silver.
  • the electrical insulating resin composition for partial discharge resistance of the present invention has excellent partial discharge resistance, it can be insulated by applying it to an insulator that requires partial discharge resistance. The life of the member can be extended.
  • Boehmite alumina pregel Boehmite alumina aqueous dispersion (“Aluminum Sol 15A” manufactured by Kawaken Chemical Co., Ltd., 14.8% by mass, average particle diameter 20 nm, aspect ratio 50) 10.0 g, and N-methyl-2-pyrrolidone (NMP) 8.5 g Is placed in a plastic sealed container and stirred for 3 minutes in a rotating / revolving mixer (“ARE-310”, manufactured by Sinky Corporation) for 3 minutes, and the pregel whose ratio of boehmite alumina to the pregel is 8.0% by mass is stirred.
  • ARE-310 rotating / revolving mixer
  • the insulating varnish obtained in 1-3 above was applied to a PET film having a rectangular shape and a thickness of 100 ⁇ m using a blade coater having a groove depth of 550 ⁇ m.
  • An insulating film was formed on the PET film by keeping the PET film in a horizontal state and drying in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. .
  • heat treatment was performed in order at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to form an insulating film made of boehmite alumina and polyimide resin. Obtained.
  • content of the boehmite alumina with respect to the whole film was 5.0 mass%, and thickness was 42 micrometers.
  • Example 2> (2-1. Preparation of boehmite alumina pregel) 10.0 g of plate boehmite alumina ethanol dispersion (10.0% by mass, average particle size 20 nm, aspect ratio 4) and 10.0 g of N-methyl-2-pyrrolidone (NMP) are placed in a plastic sealed container and rotated. The mixture was stirred for 3 minutes in a revolving mixer (“ARE-310”, manufactured by Shinky Corporation) for 3 minutes to obtain a pregel having a boehmite alumina ratio of 5.0 mass% with respect to the whole pregel.
  • ARE-310 manufactured by Shinky Corporation
  • the insulating varnish obtained in 2-3 was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 500 ⁇ m.
  • An insulating film was formed on the PET film by keeping the PET film in a horizontal state and drying in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. .
  • heat treatment was performed in order at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to form an insulating film made of boehmite alumina and polyimide resin. Obtained.
  • content of the boehmite alumina with respect to the whole film of the obtained insulating film was 5.0 mass%, and thickness was 45 micrometers.
  • Example 3> (Preparation of insulation film) An insulating film was obtained in the same manner as in Example 2 except that in Example 2 (2-4. Production of insulating film), the groove depth of the blade coater was changed to 470 ⁇ m. In addition, content of the boehmite alumina with respect to the whole film of the obtained insulating film was 5.0 mass%, and thickness was 41 micrometers.
  • Example 4> (Preparation of insulation film) An insulating film was obtained in the same manner as in Example 2 except that in Example 2 (2-4. Preparation of insulating film), the groove depth of the blade coater was changed to 450 ⁇ m. In addition, content of the boehmite alumina with respect to the whole film of the obtained insulating film was 5.0 mass%, and thickness was 38 micrometers.
  • Example 5> Preparation of boehmite alumina pregel
  • 1.0 g of plate boehmite alumina ethanol dispersion (10.0% by mass, average particle size 20 nm, aspect ratio 4) and 19.0 g of ethanol are placed in a plastic airtight container, and an auto-revolution mixer (“ARE”, “ARE” -310 ”) for 3 minutes in a mixed mode (2000 rpm) and stirred to obtain a pregel in which the ratio of boehmite alumina to the whole pregel was 0.5 mass%.
  • ARE auto-revolution mixer
  • the insulating coating with the electrodeposition paint was performed using a stainless steel container as a cathode and a copper plate subjected to nickel plating for forming an electrodeposition film as an anode.
  • the electrodeposition paint prepared in 5-2 was charged into a stainless steel container, electrodeposition was performed with stirring at a voltage of 30 V and an energization time of 60 seconds, and the copper plate was slowly pulled up from the electrodeposition paint.
  • the copper plate was suspended in a forced air oven and dried in order at 100 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 250 ° C. for 10 minutes to obtain an insulating coated copper plate.
  • the obtained insulating coating had a ratio of boehmite alumina to non-volatile components of 0.5% by mass and a thickness of 35 ⁇ m.
  • Example 6> (Production of insulation coating) An insulating varnish was prepared in the same manner as in Example 2 (2-3. Preparation of insulating varnish). Next, in Example 2 (2-4. Production of insulating film), the same as 2-4 above, except that the PET film was not used and the groove depth of the blade coater was 550 ⁇ m on the aluminum foil 280 ⁇ m. Insulating varnish was applied. Then, without removing the insulating film from the aluminum foil, the same heat treatment as in 2-4 was performed to form an insulating coating on the aluminum foil. In addition, content of the boehmite alumina with respect to the whole non volatile component of the obtained insulation coating was 5.0 mass%, and thickness was 50 micrometers.
  • Example 1 (Preparation of polyimide insulation film)
  • the polyamic acid varnish produced in Example 1 was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 500 ⁇ m. While keeping the PET film horizontal, it is dried in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C to form a polyimide film on the PET film. did. After this polyimide film was detached from the PET film, heat treatment was sequentially performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to obtain an insulating film made of polyimide resin. The obtained insulating film had a thickness of 45 ⁇ m.
  • silica-containing insulating film (Preparation of silica-containing insulating film)
  • the obtained silica-containing varnish was applied to a PET film having a rectangular shape with a thickness of 100 ⁇ m using a blade coater with a groove depth of 550 ⁇ m.
  • the PET film held horizontally, it was dried in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. Formed.
  • heat treatment is sequentially performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to obtain an insulating film made of silica and polyimide resin. It was.
  • the content of silica with respect to the entire film was 5.0% by mass, and the thickness was 48 ⁇ m.
  • Comparative Example 3 An insulating film was prepared in the same manner as in Comparative Example 1 except that the groove depth of the blade coater was changed to 550 ⁇ m. The thickness of the obtained film was 50 ⁇ m.
  • Comparative Example 4 An insulating film was prepared in the same manner as in Comparative Example 1, except that the groove depth of the blade coater was 500 ⁇ m. The thickness of the obtained film was 44 ⁇ m.
  • Comparative Example 5 An insulating film was produced in the same manner as in Comparative Example 1 except that the groove depth of the blade coater was changed to 450 ⁇ m. The thickness of the obtained film was 34 ⁇ m.
  • ⁇ Comparative Example 6> (Preparation of colloidal silica pregel) 5 g of colloidal silica (Nissan Chemical Industry Co., Ltd., “Snowtex O”, concentration 20.5%, particle size 10-15 nm) and 5 g of NMP are placed in a plastic sealed container, and a rotating / revolving mixer (“ARE-310”, manufactured by Sinky Corporation). The mixture was stirred in the mixed mode (2000 rpm) for 3 minutes to obtain a pregel having a silica ratio of 10.3 mass% with respect to the whole pregel.
  • ARE-310 rotating / revolving mixer
  • silica-containing insulating film (Preparation of silica-containing insulating film)
  • the obtained silica-containing varnish was applied to a PET film having a rectangular shape with a thickness of 100 ⁇ m using a blade coater with a groove depth of 450 ⁇ m.
  • the PET film held horizontally, it was dried in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. Formed.
  • heat treatment is sequentially performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to obtain an insulating film made of silica and polyimide resin. It was.
  • the content of silica with respect to the entire film was 5.0% by mass, and the thickness was 45 ⁇ m.
  • Comparative Example 7 An insulating film was produced in the same manner as in Comparative Example 6 except that the groove depth of the blade coater was set to 400 ⁇ m. The thickness of the obtained film was 40 ⁇ m.
  • Comparative Example 8 an insulating film was produced in the same manner as in Comparative Example 6, except that the groove depth of the blade coater was 370 ⁇ m. The thickness of the obtained film was 35 ⁇ m.
  • ⁇ Comparative Example 9> (Production of insulation coating) The insulating coating with the electrodeposition paint was performed using a stainless steel container as a cathode and a copper plate subjected to nickel plating for forming an electrodeposition film as an anode. Charge 200g of polyimide electrodeposition paint ("Q-ED-X0809" manufactured by PI Engineering Laboratory, polyimide resin 8.8%) into a stainless steel container, and charge the prepared electrodeposition paint into a stainless steel container and stir. However, electrodeposition was performed under the conditions of a voltage of 30 V and an energization time of 60 seconds, and the copper plate was slowly pulled up from the electrodeposition paint. The copper plate was suspended in a forced air oven and dried in order at 100 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 250 ° C. for 10 minutes to obtain an insulating coated copper plate. The thickness of the obtained insulating coating was 35 ⁇ m.
  • Comparative Example 10 ⁇ Comparative Example 10>
  • an insulating varnish was applied to an aluminum foil of 280 ⁇ m with a groove coater depth of 550 ⁇ m without using a PET film.
  • heat treatment was performed under the same conditions as in Comparative Example 1 to form an insulating coating on the aluminum foil.
  • the thickness of the obtained insulating coating was 50 ⁇ m.
  • Comparative Example 11 In Comparative Example 6, an insulating varnish was applied to an aluminum foil of 280 ⁇ m with a groove coater depth of 500 ⁇ m without using a PET film during the production of the insulating film. In addition, without removing the insulating coating from the aluminum foil, heat treatment was performed under the same conditions as in Example 6 to form an insulating coating on the aluminum foil. The thickness of the obtained insulating coating was 50 ⁇ m.
  • the electrode 5 from the bottom, the electrode 5, the metal plate 4, the insulating film 3 (thickness 50 ⁇ 10 ⁇ m), the 5 mm ⁇ -perforated GAP-forming polyimide film 2 (60 ⁇ m), the electrode
  • the insulating film was sandwiched, a partial discharge was caused in the perforated portion 6 of the GAP-forming polyimide film 2, and the time until the insulating film breaks down was measured.
  • a dielectric breakdown voltage tester manufactured by Yasuda Seiki Seisakusho
  • the voltage was 4 kV which is equal to or higher than the partial discharge start voltage, and the frequency was measured at 60 Hz.
  • Table 1 The results are shown in Table 1.
  • the metal ball 8 was used as a high voltage electrode, and the aluminum plate 11 was used as a low voltage electrode. Thereby, partial discharge was caused between the metal sphere and the insulating film, and the time until the insulating film breaks down was measured.
  • a dielectric breakdown voltage tester No. 175, manufactured by Yasuda Seiki Seisakusho
  • the voltage was 3.5 kV which is equal to or higher than the partial discharge start voltage, and the frequency was measured at 60 Hz. The results are shown in Table 2.
  • the insulating film of the example to which boehmite alumina was added had a longer time to breakdown than the insulating films to which no boehmite alumina was added in Comparative Examples 3 to 5. Furthermore, it was found that the lifetime was longer than that of the silica nanocomposite films to which colloidal silica of Comparative Examples 6 to 8 was added.
  • Example 5 The insulating coating by electrodeposition coating produced in Example 5 and Comparative Example 9 was evaluated by the following test method.
  • a specific test method as shown in FIG. 3, a nickel-plated copper plate 13 having an insulating coating 12 formed by electrodeposition on a stainless steel base 14 was installed from below. From there, a metal ball (2 mm ⁇ ) 8 and a copper tube 7 were placed in this order and pressed by its own weight, and the copper tube 7 was fixed so as not to move. By connecting the copper tube 7 and the nickel plated copper plate 13 to a power source, the metal ball 8 was used as a high voltage electrode, and the nickel plated copper plate 13 was used as a low voltage electrode.
  • the dielectric breakdown voltage tester was used as a measuring device. The voltage was 2.5 kV which is equal to or higher than the partial discharge start voltage, and the frequency was measured at 60 Hz. The results are shown in Table 3.
  • Example 5 From Table 3, it was found that the insulating coating in which boehmite alumina was dispersed in Example 5 had a longer time to breakdown and superior partial discharge resistance as compared with the insulating coating with no filler added in Comparative Example 9. .
  • Example 6 Comparative Example 10 and Comparative Example 11 were evaluated by the following test methods.
  • a specific test method as shown in FIG. 4, an aluminum foil 16 in which an insulating coating 12 was formed on a stainless steel base 14 by casting on an aluminum foil was installed from below. A gap 15 was formed so that the lower end of the metal sphere (2 mm ⁇ ) 8 was 200 ⁇ m above the insulating coating 12.
  • the metal ball 8 was used as a high voltage electrode, and the aluminum foil 16 was used as a low voltage electrode. Thereby, a partial discharge was caused between the gap between the lower end of the metal sphere and the insulating coating, and the time until the insulating coating 12 broke down was measured.
  • the dielectric breakdown voltage tester was used as a measuring device.
  • Example 6 The insulation coating of Example 6 to which boehmite alumina was added could not be observed until dielectric breakdown at an applied voltage of 3 kV. Therefore, by conducting the test at a voltage of 4.06 kV to 5.22 kV, the time to dielectric breakdown estimated when testing at an applied voltage of 3 kV was calculated. The result is shown in FIG. Further, Comparative Example 10 with no filler added and Comparative Example 11 of the nanosilica composite were each subjected to a one-point test at 3 kV. The frequency was measured at 60 Hz. The results are shown in Table 4.
  • the insulating coating of Example 6 to which boehmite alumina was added has a longer partial discharge resistance at a higher applied voltage than the insulating coatings of Comparative Examples 10 and 11, and therefore has superior partial discharge resistance. I understood that. Also, from the graph showing the Vt characteristic as shown in FIG. 4, it was found that the boehmite alumina addition clearly has a longer life compared to the case of no filler addition and silica addition.
  • Electrode 2 GAP formation film 3 Insulation film 4 Metal plate 5 Electrode 6 Perforated part 7 Copper tube 8 Metal sphere (2 mm ⁇ ) 9 Insulating film 10 Conductive grease 11 Aluminum plate 12 Insulating coating 13 Nickel-plated copper plate 14 Stainless steel base 15 Gap 16 Aluminum foil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、部分放電による絶縁体の劣化を抑制し得る、優れた耐部分放電用電気絶縁樹脂組成物を提供することを目的とする。本発明は、ベーマイトアルミナと、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物である。

Description

耐部分放電用電気絶縁樹脂組成物
 本発明は、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物、その製造方法、ならびに、前記耐部分放電用電気絶縁樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングに関する。
 近年、省エネルギー意識の高まりと共に、インバータ制御を行う電気機器(例えば、エアコン、冷蔵庫、蛍光灯、電磁調理器などの家電、自動車、電車、エレベータなど)が増えている。インバータ制御とは、インバータを使った可変電圧・可変周波数の交流電源によって電動モータ等の速度制御を行う制御方式の一種である。インバータは、効率的な可変速電圧制御装置であり、数kHz~数百kHzの高速スイッチング素子によって制御され、電圧印加の際には、高圧のサージ電圧が発生する。
 このようなインバータ制御を行う電気機器のコイルを形成する材料として、導体上に絶縁被覆が設けられたエナメル線などの絶縁電線が一般に使用されている。そのような絶縁電線においては、インバータ制御に伴う急峻な過電圧(インバータサージ)の発生により、部分放電が発生することがある。部分放電とは、絶縁体中、または導体と絶縁体との間における微少なボイド(空隙)で微弱な電気的スパーク(放電現象)が発生することをいう。絶縁電線に部分放電が発生すると、これにより絶縁体が破壊され、最終的に絶縁状態が保てなくなる絶縁破壊に至るおそれがあり、絶縁電線の寿命が極端に短くなる場合がある。
特開2012-204270号 特開2014-040528号
東芝レビューVol.59No.7(2004) 太田司、飯田和生,「エポキシ複合体の耐電圧寿命に及ぼす水酸化マグネシウムの効果, 2014, IEEJ Transactions on Fundamentals and Materials,Vol.134,No.5,pp.327-333
 このような部分放電による絶縁体の劣化の原因としては、1)部分放電の荷電粒子の衝突による樹脂の主鎖の切断による絶縁材料の劣化、2)部分放電による局所的温度上昇による絶縁材料の溶解や化学分解、3)部分放電によって発生するオゾン等の二次生成物による絶縁材料の劣化、が考えられている。
 部分放電による絶縁体の劣化を抑制する方法としては、種々の方法が知られている。
 上述した3つの要因のうち、1)に関しては、フィラーを樹脂に分散混合することで、部分放電による樹脂の主鎖の切断が抑制されること(バリア効果と呼ばれる)が知られている。例えば、特許文献1には、フィラーとして球状のシリカ粒子を用いることが開示されており、非特許文献1には、平板状の層状シリケート(陽イオン交換性粘土)を用いることが開示されている。しかしながら、これらの方法では1)は抑制できるが、2)および3)には対応できない。特に電圧が高い場合には部分放電による絶縁体の劣化を抑制する効果が充分でない。
 特許文献2及び非特許文献2には、水酸化マグネシウム等の金属水酸化物をフィラーとして分散混合することにより、フィラーが部分放電に晒された際に水を放出して部分放電による発熱を抑える方法が開示されている。この方法によれば、2)を抑制でき、同時に温度上昇による3)の二次生成物の生成も低減できる。
 しかしながら、例えば、金属水酸化物は、特許文献1の球状シリカ粒子や、非特許文献1の層状シリケートよりもバリア効果が小さく、すなわち1)への効果が劣る。また金属水酸化物はアルカリ性が強く、混合した樹脂の劣化を促進するおそれがある。さらに、非特許文献2の水酸化マグネシウム等を用いる方法では、凝集した粉体を混合しただけであるため、分散状態に偏りがあり、充分な効果を得るためにはフィラーの充填量を増やす必要がある。また特許文献2の金属水酸化物又は金属炭酸塩を用いる方法では、極微小なフィラーを用い、かつ分散状態を改善してはいるが、凝集が起こっており、効果が充分ではない。
 このように、部分放電による絶縁体の劣化は絶縁破壊を引き起こし、これらの問題は現在もなお十分解決されておらず、より優れた耐部分放電性を有する絶縁体の開発が求められている。また、部分放電による絶縁破壊の問題は、電線のみならず、電動モータの相間絶縁紙等の絶縁フィルム;モータコイルの外層を被覆して固定する絶縁ワニス;発電機、変圧器、開閉装置などの電力機器の絶縁用の電線;変圧器、開閉装置などの電力機器の充填モールド絶縁部材;等においても存在する。このため、幅広い用途の絶縁体に適用可能な、優れた耐部分放電用の材料の開発が求められている。
 なお、本発明における絶縁破壊とは、絶縁体にかかる電圧がある限度以上となった時に、絶縁体が電気的に破壊し絶縁性を失って電流を流すようになる現象のことをいう。
 本発明は、上述の原因1)~3)のすべてを解決し、部分放電による絶縁体の劣化を抑制し得る、優れた耐部分放電用電気絶縁樹脂組成物を提供することを主な目的とする。また、本発明は、優れた耐部分放電用電気絶縁樹脂組成物の製造方法、ならびに、当該樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングを提供することも目的とする。
 本発明者らは、上記の課題に鑑み鋭意研究を重ねた結果、ベーマイトアルミナと樹脂とを含有することにより、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物となることを見出した。また、本発明者らは、本発明の耐部分放電用電気絶縁樹脂組成物が、インバータサージによって発生する部分放電による絶縁体の劣化を好適に抑制できることを見出した。更に、本発明者らは、本発明の耐部分放電用電気絶縁樹脂組成物の製造において、ベーマイトアルミナをプレゲル化する工程を経ることにより、耐部分放電性がより優れたものとなることを見出した。
 本発明は、これらの知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. ベーマイトアルミナと、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物。
項2. 前記ベーマイトアルミナが、ナノ粒子である項1に記載の耐部分放電用電気絶縁樹脂組成物。
項3. 前記樹脂が、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種である項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項4. 前記ベーマイトアルミナの含有量が0.1~60質量%である項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項5. 耐インバータサージ用である項1~4のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項6. インバータ制御の電気機器に使用される項1~5のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項7. 項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する絶縁ワニス。
項8. 項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する電着塗料。
項9. 請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物から形成される硬化物。
項10. 請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物の製造方法であって、ベーマイトアルミナをプレゲル化する工程、及び、プレゲル化したベーマイトアルミナを樹脂と混合する工程を含む、耐部分放電用電気絶縁樹脂組成物の製造方法。
項11.  導体と、前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、前記絶縁被膜の少なくとも一層は、項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる、電線。
項12. 項11に記載の電線を用いた回転電機。
項13. 項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルム。
項14. 項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティング。
項15. ベーマイトアルミナと樹脂とを含有する樹脂組成物の部分放電による劣化を抑制するための使用。
項16. ベーマイトアルミナと樹脂とを含有する耐部分放電用電気絶縁樹脂組成物を含む、絶縁性製品。
 本発明によれば、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物、ならびに、当該樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングを提供することができる。また、当該耐部分放電用電気絶縁樹脂組成物を用いることにより、モータや発電機等の回転電機のコイル、相間絶縁紙等の絶縁フィルム、モータコイルの外層を被覆して固定する絶縁ワニス、変圧器・開閉装置などの電力機器の絶縁部材の長寿命化が可能となる。
実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例6の絶縁コーティングの印加電圧に対する絶縁破壊までの時間を示すグラフである。
1.耐部分放電用電気絶縁樹脂組成物
 本発明の電気絶縁樹脂組成物は、耐部分放電用であり、ベーマイトアルミナと、樹脂とを含有することを特徴とする。以下、本発明の耐部分放電用電気絶縁樹脂組成物について詳述する。
(ベーマイトアルミナ)
 本発明の耐部分放電用電気絶縁樹脂組成物は、ベーマイトアルミナを含む。
ベーマイトアルミナとは、アルミニウムオキシ水酸化物(AlOOH)又はアルミナ水和物(Al23・H2O)である。ベーマイトアルミナは、結晶化度、結晶サイズ、結晶構造の違いにより大きく擬結晶性ベーマイトと微結晶性ベーマイトとに分類されるが、本発明においては、いずれにも限定することなく用いることができる。
 擬結晶性ベーマイトは、擬似ベーマイト又は擬ベーマイトとも呼ばれ、通常、非常に大きい表面積、大きな孔及び孔容積を有し、低比重であり、微結晶性ベーマイトに比べて結晶サイズが小さく、結晶単位で比較した場合、水和水分子をより多く含む。
 微結晶性ベーマイトは、高い結晶化度、比較的大きい結晶サイズ、非常に小さい表面積を有し、高比重である。
 本発明で用いるベーマイトアルミナは、いずれも区別なく、擬結晶性ベーマイトと微結晶性ベーマイトとの両者を含む。
 本発明の耐部分放電用電気絶縁樹脂組成物は、ベーマイトアルミナと樹脂とを含むため、耐部分放電性に優れた特性を発揮する。この機序の詳細は、必ずしも明らかではないが、例えば、次のように考えることができる。
 すなわち、耐部分放電用電気絶縁樹脂組成物に含有されるベーマイトアルミナは、部分放電に晒されると、水を放出して熱エネルギーを効率的に吸収すると考えられる。このため、部分放電の熱エネルギー(温度上昇)による樹脂の劣化が効果的に抑制されていると推測される。
 また、ベーマイトアルミナは水を放出する特徴をもっているため、部分放電による発熱を抑えていると考えられる。その結果、温度上昇を抑えることができ、効率的にオゾン等の二次生成物の発生も抑制していると推測される。
 またベーマイトアルミナは水を放出した後もアルミナとなるので、高いバリア効果を維持し続けると推測される。さらに、ベーマイトアルミナはアルミナとなる際に、近接した粒子と凝集、結合するので、部分放電により表面の一部の樹脂成分が侵食された後であっても、残った層が強固なアルミナの層となり、高いバリア効果を維持し続けると推測される。
 前記ベーマイトアルミナの形状としては、特に限定されず、板状、棒状又は針状等の公知の形状でよいが、本発明の耐部分放電用電気絶縁樹脂組成物の耐部分放電性がより優れる点で、板状粒子であることが好ましい。
 前記ベーマイトアルミナは、ナノ粒子であることが好ましい。ナノ粒子とは、ナノサイズの粒子であり、具体的には、平均粒子径が1nm~1μm程度である粒子をいう。
また、前記ナノ粒子には、例えば、前記ベーマイトアルミナが平板状の構造である場合、横方向又は厚みの少なくとも一方が1nm~1μm程度である粒子も含まれる。
 前記ベーマイトアルミナの平均粒子径としては、本発明の耐部分放電用電気絶縁樹脂組成物の耐部分放電性がより良好となる観点において、1nm~5μmが好ましく、5nm~500nmがより好ましい。前記平均粒子径は、レーザー回折による散乱式粒度測定装置(マイクロトラック)を使用して測定して得られた粒度分布における積算値50%での粒子径である。
 前記ベーマイトアルミナのアスペクト比(長径/短径)としては、2以上であることが好ましく、4~100であることがより好ましく、更に好ましくは5~100である。ベーマイトアルミナのアスペクト比が2以上であると、本発明の耐部分放電用電気絶縁樹脂組成物を導体上に塗布した際に、ベーマイトアルミナを部分放電による侵食に相対する方向に規則正しく整列させることにより、覆われる導体の面積を広くでき、耐部分放電性の効果をより高めることができる。
 なお、本明細書において上記アスペクト比は、走査型電子顕微鏡を用いて、5000倍の倍率で観察した粒子の長径と短径の比率(長径/短径)を意味する。すなわち、板状粒子のベーマイトアルミナの場合は、粒径の平均値を板厚の平均値で除したものであり、少なくとも100個のベーマイトアルミナの板状粒子についての粒径の平均値を板厚の平均値で除したものである。ここでいう板状粒子の粒径は、板状粒子の位置の主面の面積と同一の面積を有する円形状の直径に相当する。また棒状又は針状粒子の場合は、針(棒)の長さを針(棒)の直径で除したものである。
 本発明におけるベーマイトアルミナとして、市販品を用いてもよい。本発明に適用可能なベーマイトアルミナの市販品としては、例えば、川研ファインケミカル社製「アルミナゾル15A」、「アルミナゾル10A」、「アルミナゾル10D」、日産化学製AS-520等を挙げることができる。
 前記ベーマイトアルミナは、表面修飾されたものであってもよい。前記ベーマイトアルミナの表面修飾は、例えば、シランカップリング剤やチタネートカップリング剤による表面有機化処理等の公知の方法により行うことができる。好ましい表面修飾剤としては、シランカップリング剤等が挙げられる。
 前記ベーマイトアルミナの含有量としては、耐部分放電用電気絶縁樹脂組成物中0.1~60質量%であることが好ましく、1~60質量%であることがより好ましい。ベーマイトアルミナの含有量が0.1~60質量%であると、耐部分放電性により優れた電気絶縁樹脂組成物とすることができる。ベーマイトアルミナの含有量の更に好ましい下限は、2質量%であり、更により好ましくは5質量%である。ベーマイトアルミナの含有量の更に好ましい上限は、50質量%であり、更により好ましくは40質量%である。
(樹脂)
 本発明の耐部分放電用電気絶縁樹脂組成物に用いられる樹脂としては、一般的に絶縁材料に用いられ、樹脂中でのベーマイトアルミナの分散を阻害しないものであるならば特に限定されず、例えば、ポリビニルホルマール樹脂、ポリエステルイミド樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、ポリフッ化ビニル樹脂、ポリエチレン樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、エポキシ樹脂、シリコン樹脂、ポリフェニレンサルファイド樹脂、フェノール樹脂、リグニン樹脂、ポリ乳酸樹脂、ポリジシクロペンタジエン樹脂、ポリトリシクロペンタジエン樹脂、又は、これら2種以上の樹脂を組み合わせたものが挙げられる。
 これらのなかでも、ベーマイトアルミナの分散が良好で、耐部分放電性をより向上させることができる観点で、前記樹脂としては、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種の樹脂が好ましく、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、及び、ポリエーテルイミド樹脂からなる群より選択される少なくとも一種の樹脂がさらに好ましい。
 樹脂の含有量としては、耐部分放電用電気絶縁樹脂組成物中30~99質量%が好ましく、60~95質量%がより好ましい。
(他の成分)
 本発明の耐部分放電用電気絶縁樹脂組成物は、前記のベーマイトアルミナと樹脂とを含むが、必要に応じて他の成分を更に含んでいてもよい。
 他の成分としては、例えば、一般に公知の、他の樹脂や無機フィラー等、電気絶縁用樹脂組成物に使用される添加剤等が挙げられる。前記添加剤としては、例えば、アルキルフェノール樹脂、アルキルフェノール-アセチレン樹脂、キシレン樹脂、クマロン-インデン樹脂、テルペン樹脂、ロジンなどの粘着付与剤、ポリブロモジフェニルオキサイド、テトラブロモビスフェノールAなどの臭素系難燃剤、塩素化パラフィン、パークロロシクロデカンなどの塩素系難燃剤、リン酸エステル、含ハロゲンリン酸エステルなどのリン系難燃剤、ホウ素系難燃剤、三酸化アンチモンなどの酸化物系難燃剤、フェノール系、リン系、硫黄系の酸化防止剤、シリカ、層状ケイ酸塩、酸化アルミ、酸化マグネシウム、窒化硼素、窒化珪素、又は窒化アルミニウムなどを含む無機フィラー、熱安定剤、光安定剤、紫外線吸収剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤、チタネートカップリング剤などの一般的なプラスチック用配合成分、芳香族ポリアミド繊維などが挙げられる。これら添加剤は、電気絶縁用樹脂組成物に、例えば0.1~10質量%含まれ得る。
2.耐部分放電用電気絶縁樹脂組成物の製造方法
 本発明の耐部分放電用電気絶縁樹脂組成物は、前記したベーマイトアルミナ、樹脂、及び、必要に応じて添加剤を一般的に公知の方法によって混合することによって製造することができる。混合の際、必要に応じて加熱してもよい。混合方法としては、例えば、ニーダー、加圧ニーダー、混練ロール、バンバリーミキサー、二軸押し出し機、自転公転ミキサー、ホモミキサーなどの一般的に公知の混合手段を用いて混合する方法が挙げられる。
 ベーマイトアルミナは、樹脂と混合する前に、予め粉砕してもよい。粉砕することによってベーマイトアルミナの粒径が小さくなり、また粒径が揃うので樹脂と混合した際、樹脂中でベーマイトアルミナの分散を良好にすることができ、得られる樹脂組成物の耐部分放電性をより向上させることができる。粉砕する方法としては、例えば、ボールミル、ロッドミル、マスコロイダー、乾式ジェットミル、ホモジナイザー、湿式ジェットミルなどの一般的に公知の粉砕手段を用いる方法が挙げられる。
 ベーマイトアルミナと樹脂とを混合し、複合化する方法としては、樹脂にベーマイトアルミナを直接分散混合してもよいが、ベーマイトアルミナを有機溶媒又は水に分散させたプレゲルを作製した後に、樹脂と分散混合することが好ましい。
 前記プレゲルを作製した後に樹脂と混合することにより、ベーマイトアルミナと樹脂とを、ベーマイトアルミナがよりよく分散した形で複合化することができる。
 すなわち、本発明の耐部分放電用電気絶縁樹脂組成物を製造する方法としては、
ベーマイトアルミナをプレゲル化する工程(1)、及び、
プレゲル化したベーマイトアルミナを樹脂と混合する工程(2)、
を有することが好ましい。
 ベーマイトアルミナと樹脂とを混合する前に、予めベーマイトアルミナをプレゲル化することにより、樹脂と混合した際、樹脂中でベーマイトアルミナをよりよく分散させることができ、得られる樹脂組成物の耐部分放電性をより向上させることができる。
 工程(1)において、ベーマイトアルミナをプレゲル化する方法としては、ベーマイトアルミナを有機溶媒又は水中に分散させる方法が挙げられる。
 ベーマイトアルミナを分散させる有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、メタノール、エタノール、プロパノール等の極性溶媒や、これらの極性溶媒に水を加えた混合溶媒等が挙げられる。
 プレゲル化する場合、有機溶媒、水又は混合溶媒100質量部に対し、ベーマイトアルミナを1~100質量部を添加して分散させることが好ましい。分散方法としては、例えば、ミキサー等の公知の撹拌手段により行うとよい。なお、撹拌速度等、分散の条件は、溶媒によって適宜選択される。
 次に、工程(2)において、プレゲル化したベーマイトアルミナと樹脂とを混合する。プレゲル化したベーマイトアルミナと樹脂とを混合する手段としては、前記した一般に公知の混合手段が挙げられる。また、混合の際、脱泡を行うことが好ましい。なお、混合の条件は、溶媒によって、適宜選択される。
 本発明の耐部分放電用電気絶縁樹脂組成物の製造方法においては、工程(2)で得られたプレゲル化したベーマイトアルミナと樹脂の混合物に、更に他の成分を混合する工程を有していてもよい。
3.用途
 本発明の耐部分放電用電気絶縁樹脂組成物は、耐部分放電性に優れる。このため、耐部分放電性が要求される絶縁体の絶縁材料として好適に使用することができる。また、本発明の耐部分放電用電気絶縁樹脂組成物は、特に、インバータサージによって発生する部分放電による絶縁体の劣化を好適に抑制することができる。このため、本発明の耐部分放電用電気絶縁樹脂組成物は、耐インバータサージ用に好ましく用いられる。
 また、本発明の耐部分放電用電気絶縁樹脂組成物は、インバータ制御の電気機器(モータなど)に使用されることが好ましい。本発明の耐部分放電用電気絶縁樹脂組成物をインバータ制御の電気機器に使用する方法としては、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を用いて導体を被覆した絶縁電線や、本発明の耐部分放電用電気絶縁樹脂組成物を用いて形成した絶縁シートを電気機器に適用する方法などが挙げられる。
 本発明の耐部分放電用電気絶縁樹脂組成物から形成される硬化物も、同様に、耐部分放電性に優れる。硬化物は、例えば、本発明の耐部分放電用電気絶縁樹脂組成物に含まれる樹脂として硬化性樹脂を用い、必要に応じて硬化剤を用いて、本発明の電気絶縁樹脂組成物を硬化させることにより得られる。
 前記硬化性樹脂としては、特に限定されず、前記の樹脂の項で挙げられた樹脂のうち、熱硬化するもの、又は、紫外線硬化するもの等、公知の硬化性樹脂が挙げられる。硬化剤としては、使用する硬化性樹脂に合わせて公知の硬化剤から適宜選択するとよい。硬化方法は、使用する硬化性樹脂に応じて、乾燥、加熱、又は、紫外線照射等の公知の硬化手段から適宜選択するとよい。
 本発明の耐部分放電用電気絶縁樹脂組成物の適用例としては、例えば、絶縁ワニスや電着塗料などが挙げられる。例えば、本発明の耐部分放電用電気絶縁樹脂組成物を用いて絶縁ワニスや電着塗料を作製し、これらを用いて導体等の部材の表面を被覆することにより、優れた耐部分放電性を付与することができる。
4.絶縁ワニス
 本発明の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有することにより耐部分放電性に優れた絶縁ワニスとすることができる。
 溶媒としては、絶縁ワニスに従来用いられている公知の有機溶媒であれば、特に限定されず、具体的には、例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類、ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類、クレゾール、クロルフェノールなどのフェノール類、ピリジンなどの第三級アミン類、メタノール、エタノール、プロパノールなどのアルコール類等が挙げられる。これらの溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。
 本発明の耐部分放電用電気絶縁樹脂組成物と溶媒との配合割合としては、特に限定されず、絶縁ワニスとして適用可能な範囲で適宜選択することができる。通常、絶縁ワニスにおける不揮発性成分の割合が5~60質量%となるように、耐部分放電用電気絶縁樹脂組成物と溶媒を配合すればよい。
5.電着塗料
 本発明の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有することにより耐部分放電性に優れた電着塗料とすることができる。
 溶媒としては、電着塗料に従来用いられている公知の溶媒であれば、特に限定されず、例えば、水、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド系溶媒、メタノール、エタノール、プロパノール、ブタノール、メトキシプロパノール、ベンジルアルコールなどのアルコール系溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、ジプロピレングリコール、メチルプロパンジオールなどの多価アルコール系溶媒、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジエチレングリコール、ジエチレングリコールジメチルエーテル、トリエチレングリコールなどのエーテル系溶媒、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどのエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、アセトフェノン等のケトン系溶媒、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、フェノール、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、その他、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、スルホラン、ジメチルスターペン、ミネラルスピリット、石油ナフサ系溶媒などが挙げられる。これらの溶媒はそれぞれ単独あるいは2種以上を混合して用いられる。
 本発明の耐部分放電用電気絶縁樹脂組成物に含まれる樹脂として、電着塗料に従来用いられている公知の樹脂を用いるとよい。
 本発明の耐部分放電用電気絶縁樹脂組成物と溶媒の配合割合としては、特に限定されず、電着塗料として適用可能な範囲で適宜選択することができ、通常、電着塗料における不揮発性成分の割合が1~60質量%となるように、耐部分放電用電気絶縁樹脂組成物と溶媒を配合すればよい。
 また、本発明の耐部分放電用電気絶縁樹脂組成物の他の適用例としては、本発明の耐部分放電用電気絶縁樹脂組成物又はその硬化物を、絶縁体の一部又は全部として用いた電線、回転電機、絶縁フィルム、又は、絶縁コーティング等が挙げられる。すなわち、本発明はまた、ベーマイトアルミナと樹脂とを含有する耐部分放電用電気絶縁樹脂組成物を含む、絶縁性製品である。そのような絶縁性製品として、電線、回転電機、絶縁フィルム、又は、絶縁コーティングが挙げられる。
6.電線
 本発明の耐部分放電用電気絶縁樹脂組成物は、絶縁電線に適用することができる。本発明の耐部分放電用電気絶縁樹脂組成物を電線の絶縁体として適用することで、耐部分放電性に優れた絶縁電線とすることができ、電線の絶縁寿命を向上させることができる。
 すなわち、本発明はまた、導体と、前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、前記絶縁被膜の少なくとも一層は、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物を含む、電線である。
 前記導体の材料としては、例えば、銅、アルミ、銀等の金属材料が挙げられる。
 前記絶縁被膜は、前記導体の外周上に形成される単層又は複数層からなる。本発明の電線では、前記絶縁被膜の少なくとも一層は、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物を含む。
 前記絶縁被膜における他の層としては、例えば、ポリアミドイミド樹脂又はポリエステルイミド樹脂等からなる層が挙げられる。
 本発明の電線は、例えば、前記の耐部分放電用電気絶縁樹脂組成物を含む分散液等を導体の表面上、又は、導体を被覆した他の層上に塗布し、焼き付け等により絶縁被膜を形成することにより製造することができる。
7.回転電機
 本発明の耐部分放電用電気絶縁樹脂組成物は、回転電機に適用することができる。
すなわち、本発明の回転電機は、前述の電線を用いた回転電機である。
回転電機としては、例えば、モータ、発電機(ジェネレータ)などが挙げられる。
8.絶縁フィルム
 本発明の耐部分放電用電気絶縁樹脂組成物はまた、絶縁フィルムに適用することができる。すなわち、本発明の絶縁フィルムは、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルムである。
 絶縁フィルムは、一層からなるものであってもよいし、基材と、前記基材上に前記絶縁層とを有するものであってもよい。
 一層からなる絶縁フィルムは、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を押出成形によりシート状に成形して製造する方法、又は、ポリエチレンテレフタレート等の基材上に、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解し又は分散させ、塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成した後、前記基材を剥離する方法等により、製造することができる。
 前記絶縁フィルムの厚さとしては、好ましくは2μm~300μm、より好ましくは5μ~200μmが挙げられる。2μm未満では絶縁フィルムを製造時に欠陥が生じるおそれがある。300μmを超えると、絶縁フィルムとしての柔軟性を損なうおそれがある。
 また、基材と、前記基材上に絶縁層とを有する絶縁フィルムは、例えば、基材上に、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解又は分散し、塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成することにより、製造することができる。
 前記基材としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエステル、ポリエチレン、ポリプロピレン等の合成樹脂等が挙げられる。
 基材と絶縁層とを有する絶縁フィルムの場合、絶縁層の厚さとしては、好ましくは2μm~300μm、より好ましくは5μm~200μmが挙げられる。2μm未満では絶縁フィルムを製造時に欠陥が生じるおそれがある。300μmを超えると、絶縁フィルムとしての柔軟性を損なうおそれがある。
 基材の厚さとしては、特に限定されないが、例えば2~300μm、好ましくは5~200μmが挙げられる。
9.絶縁コーティング
 本発明の耐部分放電用電気絶縁樹脂組成物はまた、電子基板等に用いられるソルダーレジスト等の絶縁コーティングに適用することができる。すなわち、本発明の絶縁コーティングは、前記した耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティングである。
 前記絶縁コーティングの厚さは、好ましくは2μm~300μm、より好ましくは5μm~200μmである。2μm未満では絶縁コーティングの製造時に欠陥が生じるおそれがある。300μmを超えると、使用量に見合う効果が得られず経済的でない。
 本発明の絶縁コーティングは、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を加熱溶融させて電子基板等のコーティング対象物の表面にコーティングし、成形して絶縁層を形成する方法、本発明の耐部分放電用電気絶縁樹脂組成物を電着塗料として、電着によりコーティング対象物に絶縁層を形成する方法、又は、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解又は分散し、コーティング対象物に塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成する方法等により、製造することができる。
 また表面ではなく、基材の隙間に充填した場合は、モールド部材とすることもできる。
 前記コーティング対象物の材料としては、銅、アルミ、銀等の金属材料が挙げられる。
 以上のように、本発明の耐部分放電用電気絶縁樹脂組成物は、優れた耐部分放電性を有するものであるため、耐部分放電性が必要とされる絶縁体に適用することにより、絶縁部材の長寿命化が可能になる。
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(1-1.ベーマイトアルミナプレゲルの作製)
 ベーマイトアルミナ水分散液(川研ケミカル社製「アルミゾル15A」、14.8質量%、平均粒子径20nm、アスペクト比50)10.0g、および、N-メチル-2-ピロリドン(NMP)8.5gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するベーマイトアルミナの割合が8.0質量%のプレゲルを得た。
(1-2.ポリアミド酸ワニスの作製)
 撹拌機と温度計を備えた1Lの4つ口フラスコに、4,4’-ジアミノジフェニルエーテル73.2gとNMP832gを仕込み、撹拌しながら50℃に昇温して溶解させた。次に、溶解物に、無水ピロメリット酸40gとビフェニルテトラカルボン酸ジ無水物51gを徐々に添加した。添加終了後1時間撹拌し、第1の液体であるNMPに、下記式(I)で表される芳香族ポリアミド酸が16.4質量%の濃度で溶解されてなるポリアミド酸ワニスを得た。
Figure JPOXMLDOC01-appb-C000001
(1-3.絶縁ワニスの作製)
 前記1-1で作製したベーマイトアルミナプレゲル(ベーマイトアルミナ8.0質量%)4.9g、及び、前記1-2で作製したポリアミド酸ワニス45.0g(芳香族ポリアミド酸7.4g、NMP37.6g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、耐部分放電用電気絶縁樹脂組成物を含有する絶縁ワニスを得た。得られた絶縁ワニスは、分散液全体に対する不揮発性成分の割合が15.6質量%であり、前記不揮発性成分全体に対するベーマイトアルミナの割合が5.0質量%であった。
(1-4.絶縁フィルムの作製)
 前記1-3で得られた絶縁ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを550μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥してPETフィルム上に絶縁フィルムを形成した。この絶縁フィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ベーマイトアルミナとポリイミド樹脂からなる絶縁フィルムを得た。なお、フィルム全体に対するベーマイトアルミナの含有量は5.0質量%であり、厚さは42μmであった。
<実施例2>
(2-1.ベーマイトアルミナプレゲルの作製)
 板状ベーマイトアルミナエタノール分散液(10.0質量%、平均粒子径20nm、アスペクト比4)10.0g、および、N-メチル-2-ピロリドン(NMP)10.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するベーマイトアルミナの割合が5.0質量%のプレゲルを得た。
(2-2.ポリアミド酸ワニスの作製)
 撹拌機と温度計を備えた1Lの4つ口フラスコに、4,4’-ジアミノジフェニルエーテル400gとNMP4104gを仕込み、撹拌しながら50℃に昇温して溶解させた。次に、溶解物に、無水ピロメリット酸220gとビフェニルテトラカルボン酸ジ無水物280gを徐々に添加した。添加終了後1時間撹拌し、第1の液体であるNMPに、前記式(I)で表される芳香族ポリアミド酸が18.0質量%の濃度で溶解されてなるポリアミド酸ワニスを得た。
(2-3.絶縁ワニスの作製)
 前記2-1で作製したベーマイトアルミナプレゲル(ベーマイトアルミナ5.0質量%)7.6g、及び、前記2-2で作製したポリアミド酸ワニス40.0g(芳香族ポリアミド酸7.2g、NMP32.8g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、耐部分放電用電気絶縁樹脂組成物を含有する絶縁ワニスを得た。得られた絶縁ワニスは、分散液全体に対する不揮発性成分の割合が15.9質量%であり、前記不揮発性成分全体に対するベーマイトアルミナの割合が5.0質量%であった。
(2-4.絶縁フィルムの作製)
 前記2-3で得られた絶縁ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを500μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥してPETフィルム上に絶縁フィルムを形成した。この絶縁フィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ベーマイトアルミナとポリイミド樹脂からなる絶縁フィルムを得た。なお、得られた絶縁フィルムのフィルム全体に対するベーマイトアルミナの含有量は5.0質量%であり、厚さは45μmであった。
<実施例3>
(絶縁フィルムの作製)
 実施例2の(2-4.絶縁フィルムの作製)において、ブレードコーターの溝の深さを470μmとした以外は、実施例2と同様の方法で絶縁フィルムを得た。なお、得られた絶縁フィルムのフィルム全体に対するベーマイトアルミナの含有量は5.0質量%であり、厚さは41μmであった。
<実施例4>
(絶縁フィルムの作製)
 実施例2の(2-4.絶縁フィルムの作製)において、ブレードコーターの溝の深さを450μmとした以外は、実施例2と同様の方法で絶縁フィルムを得た。なお、得られた絶縁フィルムのフィルム全体に対するベーマイトアルミナの含有量は5.0質量%であり、厚さは38μmであった。
<実施例5>
(5-1.ベーマイトアルミナプレゲルの作製)
 板状ベーマイトアルミナエタノール分散液(10.0質量%、平均粒子径20nm、アスペクト比4)1.0g、および、エタノール19.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するベーマイトアルミナの割合が0.5質量%のプレゲルを得た。
(5-2.電着塗料の作製)
 撹拌機と温度計を備えた300mLの4つ口フラスコに、ポリイミド電着塗料((株)ピーアイ技術研究所製「Q-ED-X0809」、ポリイミド樹脂8.8%)200gを仕込み、撹拌しながら前記5-1で調整したベーマイトアルミナプレゲル(0.5質量%)17.8gを10分間掛けてマイクロシリンジにより注入し、耐部分放電用電気絶縁樹脂組成物を含有する電着塗料を得た。得られた電着塗料は、全不揮発成分全体に対するベーマイトアルミナの割合が0.5質量%であった。
(5-3.絶縁コーティングの作製)
 電着塗料による絶縁コーティングは、ステンレス製容器を陰極とし、電着被膜を形成するニッケルメッキ処理を施した銅板を陽極として行った。ステンレス製容器に前記5-2で調製した電着塗料を仕込み、攪拌しながら電圧30V、通電時間60秒の条件で電着を行い、銅板をゆっくりと電着塗料から引き上げた。前記銅板を、強制送風式オーブン中に吊るし順に100℃で10分、200℃で10分、250℃で10分の温度条件で乾燥して、絶縁コーティングした銅板を得た。得られた絶縁コーティングは、不揮発性成分に対するベーマイトアルミナの割合が0.5質量%であり、厚さは35μmであった。
<実施例6>
(絶縁コーティングの作製)
 実施例2の(2-3.絶縁ワニスの作製)と同様の方法で絶縁ワニスを作製した。次いで、実施例2の(2-4.絶縁フィルムの作製)において、PETフィルムを用いずにアルミ箔280μmにブレードコーターの溝の深さを550μmとしたこと以外は、前記2-4と同様にして絶縁ワニスを塗布した。そして、アルミ箔から絶縁被膜を離脱させずに、前記2-4と同様の熱処理を行い、アルミ箔上に絶縁コーティングを形成した。なお、得られた絶縁コーティングの全不揮発成分全体に対するベーマイトアルミナの含有量は5.0質量%であり、厚さは50μmであった。
<比較例1>
(ポリイミド絶縁フィルムの作製)
 実施例1で作製したポリアミド酸ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを500μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥して、PETフィルム上にポリイミドフィルムを形成した。このポリイミドフィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ポリイミド樹脂からなる絶縁フィルムを得た。なお、得られた絶縁フィルムの厚さは45μmであった。
<比較例2>
(コロイダルシリカプレゲルの作製)
 コロイダルシリカ(日産化学工業社製、「スノーテックスN」、濃度20.4%、平均粒子径13nm)2.1gとNMP1.7gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するシリカの割合が11.4質量%のプレゲルを得た。
(シリカ含有ワニスの作製)
 作製したコロイダルシリカプレゲル(シリカ11.4質量%)3.8g、及び、実施例1の(1-2.ポリアミド酸ワニスの作製)と同様の方法で合成したポリアミド酸ワニス50.0g(ポリアミド酸8.2g、NMP41.8g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、均一なシリカ含有ワニスを得た。得られたワニスは、不揮発性成分全体に対するシリカの割合が5.0質量%であり、分散液全体に対する不揮発性成分の割合が16.0質量%であった。
(シリカ含有絶縁フィルムの作製)
 得られたシリカ含有ワニスを、形状が長方形である厚み100μmのPETフィルムに、溝の深さを550μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥して、PETフィルム上にシリカ含有フィルムを形成した。このフィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、シリカとポリイミド樹脂とからなる絶縁フィルムを得た。得られた絶縁フィルムにおいて、フィルム全体に対するシリカの含有量は5.0質量%であり、厚さは48μmであった。
<比較例3>
 比較例1において、ブレードコーターの溝の深さを550μmとした以外は、比較例1と同様の方法で絶縁フィルムを作成した。得られたフィルムの厚さは50μmであった。
<比較例4>
比較例1において、ブレードコーターの溝の深さを500μmとした以外は、比較例1と同様の方法で絶縁フィルムを作成した。得られたフィルムの厚さは44μmであった。
<比較例5>
比較例1において、ブレードコーターの溝の深さを450μmとした以外は、比較例1と同様の方法で絶縁フィルムを作製した。得られたフィルムの厚さは34μmであった。
<比較例6>
(コロイダルシリカプレゲルの調製)
 コロイダルシリカ(日産化学工業社製、「スノーテックスO」、濃度20.5%、粒子径10~15nm、)5gとNMP5gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するシリカの割合が10.3質量%のプレゲルを得た。
(シリカ含有ワニスの調製)
 前記で調整したコロイダルシリカプレゲル(シリカ10.3質量%)5.52g、及び、実施例2の(2-2.ポリアミド酸ワニスの作製)と同様の方法で作製したポリアミド酸ワニス60.0g(ポリアミド酸10.8g、NMP49.2g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、均一なシリカ含有ワニスを得た。得られたワニスは、不揮発性成分全体に対するシリカの割合が5.0質量%であり、分散液全体に対する不揮発性成分の割合が17.3質量%であった。
(シリカ含有絶縁フィルムの作製)
 得られたシリカ含有ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを450μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥して、PETフィルム上にシリカ含有フィルムを形成した。このフィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、シリカとポリイミド樹脂とからなる絶縁フィルムを得た。得られた絶縁フィルムにおいて、フィルム全体に対するシリカの含有量は5.0質量%であり、厚さは45μmであった。
<比較例7>
 比較例6において、ブレードコーターの溝の深さを400μmとした以外は、比較例6と同様の方法で絶縁フィルムを作製した。得られたフィルムの厚さは40μmであった。
<比較例8>
 比較例6において、ブレードコーターの溝の深さを370μmとした以外は、比較例6と同様の方法で絶縁フィルムを作製した。得られたフィルムの厚さは35μmであった。
<比較例9>
(絶縁コーティングの作製)
 電着塗料による絶縁コーティングは、ステンレス製容器を陰極とし、電着被膜を形成するニッケルメッキ処理を施した銅板を陽極として行った。ステンレス製容器にポリイミド電着塗料((株)ピーアイ技術研究所製「Q-ED-X0809」、ポリイミド樹脂8.8%)200gを仕込み、ステンレス製容器に調整した電着塗料を仕込み、攪拌しながら電圧30V、通電時間60秒の条件で電着を行い、銅板をゆっくりと電着塗料から引き上げた。前記銅板を、強制送風式オーブン中に吊るし、順に100℃で10分、200℃で10分、250℃で10分の温度条件で乾燥して絶縁コーティングした銅板を得た。得られた絶縁コーティングの厚さは35μmであった。
<比較例10>
 比較例1において、絶縁フィルム作製時、PETフィルムを用いずにアルミ箔280μmにブレードコーターの溝の深さを550μmとして絶縁ワニスを塗布した。また、アルミ箔から絶縁被膜を離脱させずに、比較例1と同様の条件で熱処理を行い、アルミ箔上に絶縁コーティングを形成した。得られた絶縁コーティングの厚さは50μmであった。
<比較例11>
 比較例6において、絶縁フィルム作製時、PETフィルムを用いずにアルミ箔280μmにブレードコーターの溝の深さを500μmとして絶縁ワニスを塗布した。また、アルミ箔から絶縁被膜を離脱させずに、実施例6と同様の条件で熱処理を行い、アルミ箔上に絶縁コーティングを形成した。得られた絶縁コーティングの厚さは50μmであった。
<耐部分放電性の評価1>
(絶縁フィルムの耐部分放電性試験)
 実施例1及び比較例1及び2で作製した絶縁フィルムを、「放電ハンドブック」(電気学会放電ハンドブック出版委員会編、2003年)の「3枚重ね電極系試料」を参考にした以下の試験方法で評価した。
 具体的な試験方法としては、図1に示すように、下から、電極5、金属板4、絶縁フィルム3(厚さ50±10μm)、5mmφ穴空きGAP形成用ポリイミドフィルム2(60μm)、電極1の順で、絶縁フィルムを挟み込み、GAP形成用ポリイミドフィルム2の穴空き部6で部分放電を起こし、絶縁フィルムが絶縁破壊するまでの時間を測定した。測定装置は、絶縁破壊耐電圧試験機(安田精機製作所製)を用いた。電圧は部分放電開始電圧以上の4kVとし、周波数は60Hzで測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例の絶縁フィルムは、比較例の絶縁フィルムと比較して、絶縁破壊までの時間が長く、耐部分放電性が優れることがわかった。
<耐部分放電性の評価2>
(絶縁フィルムの耐部分放電性試験)
 実施例2~4及び比較例3~4で作製した厚さの異なる絶縁フィルムを、以下の試験方法で評価した。厚さにより絶縁破壊までの時間は変化するため、厚さのファクターを考慮した。
 具体的な試験方法としては、図2に示すように、下から、アルミ板11に導電性グリス10を少量塗布し、絶縁フィルム9を貼り付けた。さらに金属球(1mmφ)8と絶縁フィルム9を銅管7の自重で押さえ、銅管7を動かないように固定した。銅管7とアルミ板11を電源に接続することで、金属球8を高電圧電極、アルミ板11を低電圧電極とした。それにより金属球と絶縁フィルム間で部分放電を起こし、絶縁フィルムが絶縁破壊するまでの時間を測定した。測定装置は、絶縁破壊耐電圧試験機(No.175、安田精機製作所製)を用いた。
 電圧は部分放電開始電圧以上の3.5kVとし、周波数は60Hzで測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2より、ベーマイトアルミナを添加した実施例の絶縁フィルムは、比較例3~5のベーマイトアルミナを添加しない絶縁フィルムと比較して、絶縁破壊までの時間が長かった。さらに、比較例6~8のコロイダルシリカを添加したシリカナノコンポジットフィルムと比較しても長寿命であることが分かった。
<耐部分放電性の評価3>
(電着塗料による絶縁コーティングの耐部分放電性試験)
 実施例5及び比較例9で作製した電着塗装による絶縁コーティングを、以下の試験方法で評価した。具体的な試験方法としては、図3に示すように、下から、ステンレス製土台14上に電着により絶縁コーティング12を形成したニッケルメッキ処理銅板13を設置した。その上から金属球(2mmφ)8、銅管7の順にのせて自重で押さえ、銅管7を動かないように固定した。銅管7とニッケルメッキ処理銅板13を電源に接続することで、金属球8を高電圧電極、ニッケルメッキ処理銅板13を低電圧電極とした。それにより金属球と絶縁コーティング間で部分放電を起こし、絶縁コーティングが絶縁破壊するまでの時間を測定した。測定装置は、前記絶縁破壊耐電圧試験機を用いた。電圧は部分放電開始電圧以上の2.5kVとし、周波数は60Hzで測定した。結果を表3に示す。

Figure JPOXMLDOC01-appb-T000004
 表3より、実施例5のベーマイトアルミナを分散した絶縁コーティングは、比較例9のフィラー未添加の絶縁コーティングと比較して、絶縁破壊までの時間が長く、耐部分放電性が優れることがわかった。
<耐部分放電性の評価4(V-t特性評価)>
(絶縁被膜の耐部分放電性試験)
 実施例6、比較例10及び比較例11で作製した絶縁コーティングを、以下の試験方法で評価した。
 具体的な試験方法としては、図4に示すように、下から、ステンレス製土台14上にアルミ箔上にキャスト法により絶縁コーティング12を形成したアルミ箔16を設置した。絶縁コーティング12から200μm上方に金属球(2mmφ)8の下端がくるようにし、ギャップ15を形成した。銅管7とアルミ箔16を電源に接続することで、金属球8を高電圧電極、アルミ箔16を低電圧電極とした。それにより金属球下端と絶縁コーティングのギャップ間で部分放電を起こし、絶縁コーティング12が絶縁破壊するまでの時間を測定した。測定装置は、前記絶縁破壊耐電圧試験機を用いた。
 ベーマイトアルミナを添加した実施例6の絶縁コーティングは、3kVの印加電圧では絶縁破壊まで観測することができなかった。そのため、4.06kV~5.22kVの電圧で試験を行うことにより、3kVの印加電圧で試験した場合に推定される絶縁破壊までの時間を算出した。その結果を図5に示す。また、フィラー未添加の比較例10とナノシリカコンポジットの比較例11は3kVでそれぞれ1点試験を行った。周波数は60Hzで測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4より、ベーマイトアルミナを添加した実施例6の絶縁コーティングは、比較例10、11の絶縁コーティングと比較して、高い印加電圧で絶縁破壊までの時間が長いことから、耐部分放電性が優れることが分かった。また、図4のようにV-t特性を表すグラフからも、ベーマイトアルミナ添加の場合は、フィラー未添加、シリカ添加の場合と比較して明らかに長寿命であることが分かった。
1 電極
2 GAP形成用フィルム
3 絶縁フィルム
4 金属板
5 電極
6 穴空き部
7 銅管
8 金属球(2mmφ)
9 絶縁フィルム
10 導電性グリス
11 アルミ板
12 絶縁コーティング
13 ニッケルメッキ処理銅板
14 ステンレス製土台
15 ギャップ
16 アルミ箔

Claims (14)

  1.  ベーマイトアルミナと、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物。
  2.  前記ベーマイトアルミナが、ナノ粒子である請求項1に記載の耐部分放電用電気絶縁樹脂組成物。
  3.  前記樹脂が、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種である請求項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  4.  前記ベーマイトアルミナの含有量が0.1~60質量%である請求項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  5.  耐インバータサージ用である請求項1~4のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  6.  インバータ制御の電気機器に使用される請求項1~5のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する絶縁ワニス。
  8.  請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する電着塗料。
  9.  請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物から形成される硬化物。
  10.  請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物の製造方法であって、
    ベーマイトアルミナをプレゲル化する工程、及び、
    プレゲル化したベーマイトアルミナを樹脂と混合する工程
    を含む、耐部分放電用電気絶縁樹脂組成物の製造方法。
  11. 導体と、
    前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、
    前記絶縁被膜の少なくとも一層は、請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる、電線。
  12. 請求項11に記載の電線を用いた回転電機。
  13. 請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルム。
  14. 請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティング。
PCT/JP2016/070161 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物 WO2017007000A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017527499A JP6524229B2 (ja) 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物
KR1020187001277A KR102600796B1 (ko) 2015-07-09 2016-07-07 내부분방전용 전기 절연 수지 조성물
CA2991696A CA2991696C (en) 2015-07-09 2016-07-07 Partial discharge-resistant electrical insulating resin composition
US15/742,853 US11629270B2 (en) 2015-07-09 2016-07-07 Electrical insulating resin composition for partial-discharge resistance
EP16821468.2A EP3321941B1 (en) 2015-07-09 2016-07-07 Electrical insulating resin composition for partial-discharge resistance
CN201680038905.5A CN107710339B (zh) 2015-07-09 2016-07-07 耐局部放电用电绝缘树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138128 2015-07-09
JP2015138128 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017007000A1 true WO2017007000A1 (ja) 2017-01-12

Family

ID=57685110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070161 WO2017007000A1 (ja) 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物

Country Status (8)

Country Link
US (1) US11629270B2 (ja)
EP (1) EP3321941B1 (ja)
JP (1) JP6524229B2 (ja)
KR (1) KR102600796B1 (ja)
CN (1) CN107710339B (ja)
CA (1) CA2991696C (ja)
TW (1) TWI716419B (ja)
WO (1) WO2017007000A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151488A1 (ja) * 2018-02-05 2019-08-08 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP2019140094A (ja) * 2018-02-05 2019-08-22 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP6567797B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
JP6567796B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049783A1 (ja) 2018-09-03 2020-03-12 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049784A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
WO2020059689A1 (ja) * 2018-09-20 2020-03-26 住友精化株式会社 電着塗料及び絶縁被膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240823A1 (ja) * 2019-05-31 2020-12-03 昭和電工マテリアルズ株式会社 電気絶縁樹脂組成物、及び電気絶縁体
EP4008749B1 (en) * 2020-12-02 2024-05-01 SHPP Global Technologies B.V. Composition, method for the manufacture thereof, and articles prepared therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329409A (ja) * 1986-07-22 1988-02-08 株式会社東芝 絶縁材料用充填剤およびその製造法
JP2006328352A (ja) * 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法
JP2014070168A (ja) * 2012-09-28 2014-04-21 Kaneka Corp 新規な絶縁膜用樹脂組成物及びその利用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168434A (ja) * 1987-12-25 1989-07-03 Nkk Corp Frp製積層曲り管の成形方法
JP3663369B2 (ja) * 2001-06-18 2005-06-22 河合石灰工業株式会社 六角板状ベーマイト及び六角板状アルミナの製造方法
JP2008075069A (ja) * 2006-08-23 2008-04-03 Toshiba Corp 注型樹脂組成物およびそれを用いた絶縁材料、絶縁構造体
WO2009103430A2 (en) * 2008-02-19 2009-08-27 Albemarle Europe S P R L A process for the production of nanodispersible boehmite
KR20100012583A (ko) * 2008-07-29 2010-02-08 전남도립대학산학협력단 폴리머 나노복합체 및 이를 이용한 전기 절연체
TWI501865B (zh) * 2009-07-24 2015-10-01 Mitsubishi Gas Chemical Co 樹脂複合電解銅箔、銅箔積層板以及印刷配線板
CN102634167B (zh) * 2011-02-10 2014-05-07 台光电子材料股份有限公司 树脂组合物
JP5556720B2 (ja) 2011-03-28 2014-07-23 日立金属株式会社 絶縁電線
TWI447166B (zh) 2012-03-13 2014-08-01 Elite Material Co Ltd Resin composition for insulating film
CN103319853B (zh) * 2012-03-23 2016-01-13 台光电子材料股份有限公司 绝缘膜用树脂组成物及含有其的绝缘膜、电路板
JP2014040528A (ja) 2012-08-22 2014-03-06 Nitto Denko Corp 電気絶縁用樹脂組成物及びシート材
KR102020066B1 (ko) * 2013-02-01 2019-09-10 엘에스전선 주식회사 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
JP6343885B2 (ja) * 2013-08-02 2018-06-20 味の素株式会社 多層プリント配線板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329409A (ja) * 1986-07-22 1988-02-08 株式会社東芝 絶縁材料用充填剤およびその製造法
JP2006328352A (ja) * 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法
JP2014070168A (ja) * 2012-09-28 2014-04-21 Kaneka Corp 新規な絶縁膜用樹脂組成物及びその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIRO KOZAKO ET AL.: "Fundamental Investigation of Preparation and Characteristics of Nano-scale Boehmite Alumina Filled Silicone Rubber for Outdoor Insulation", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN A, vol. 132, no. 3, 2012, pages 257 - 262, XP009508183 *
MASAHIRO KOZAKO ET AL.: "Preliminary Discussion of Thermal Conductivity and Electrical Insulation Properties of Epoxy Resin Filled with Nano/Micro Mixed Fillers", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, 2008, pages 103 - 107, XP009508196 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151488A1 (ja) * 2018-02-05 2019-08-08 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP2019140094A (ja) * 2018-02-05 2019-08-22 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP6567797B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
JP6567796B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049783A1 (ja) 2018-09-03 2020-03-12 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049784A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
US11955258B2 (en) 2018-09-03 2024-04-09 Sumitomo Seika Chemicals Co., Ltd. Laminate of conductor and insulating coating, coil, rotating electric machine, insulating paint, and insulating film
WO2020059689A1 (ja) * 2018-09-20 2020-03-26 住友精化株式会社 電着塗料及び絶縁被膜
JP7449867B2 (ja) 2018-09-20 2024-03-14 住友精化株式会社 電着塗料及び絶縁被膜

Also Published As

Publication number Publication date
CA2991696A1 (en) 2017-01-12
CA2991696C (en) 2023-09-12
KR20180028453A (ko) 2018-03-16
KR102600796B1 (ko) 2023-11-13
TWI716419B (zh) 2021-01-21
EP3321941A4 (en) 2019-01-16
US20180201804A1 (en) 2018-07-19
CN107710339B (zh) 2020-10-16
EP3321941A1 (en) 2018-05-16
JPWO2017007000A1 (ja) 2018-06-14
EP3321941B1 (en) 2024-05-15
TW201710342A (zh) 2017-03-16
US11629270B2 (en) 2023-04-18
CN107710339A (zh) 2018-02-16
JP6524229B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2017007000A1 (ja) 耐部分放電用電気絶縁樹脂組成物
WO2017006999A1 (ja) 耐部分放電用電気絶縁樹脂組成物
TWI523049B (zh) Insulated wire, electrical / electronic machine and insulated wire manufacturing method
CN103650066A (zh) 绝缘线、电气设备及绝缘线的制造方法
Hui et al. Preparation and characterization of Polyimide/Al2O3 nanocomposite film with good corona resistance
JP7449867B2 (ja) 電着塗料及び絶縁被膜
KR102661175B1 (ko) 도체와 절연 피막의 적층체, 코일, 회전 전기, 절연 도료, 및 절연 필름
JP4131168B2 (ja) 耐部分放電性絶縁塗料及び絶縁電線
WO2020049783A1 (ja) 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
JP6567796B1 (ja) 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
JP7367759B2 (ja) 電気絶縁樹脂組成物、及び電気絶縁体
WO2022165301A1 (en) Magnet wire with high partial discharge inception voltage (pdiv)
CN115699223A (zh) 导体与绝缘被膜的层叠体、线圈、旋转电机、绝缘涂料及绝缘膜
KR20220161548A (ko) 플라렌 유도체 함유 수지 조성물의 제법, 이에 의해 얻어지는 플라렌 유도체 함유 수지 조성물, 수지 도료, 수지 도막 및 에나멜 선
CN117043891A (zh) 导体与绝缘被膜的层叠体、线圈以及旋转电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2991696

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15742853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016821468

Country of ref document: EP