WO2017006910A1 - 走行体およびその制御方法 - Google Patents

走行体およびその制御方法 Download PDF

Info

Publication number
WO2017006910A1
WO2017006910A1 PCT/JP2016/069782 JP2016069782W WO2017006910A1 WO 2017006910 A1 WO2017006910 A1 WO 2017006910A1 JP 2016069782 W JP2016069782 W JP 2016069782W WO 2017006910 A1 WO2017006910 A1 WO 2017006910A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
unit
posture
traveling
crawler unit
Prior art date
Application number
PCT/JP2016/069782
Other languages
English (en)
French (fr)
Inventor
拓真 赤澤
津久井 慎吾
Original Assignee
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トピー工業株式会社 filed Critical トピー工業株式会社
Priority to JP2017527452A priority Critical patent/JP6695877B2/ja
Priority to US15/741,145 priority patent/US10450014B2/en
Priority to GB1801880.4A priority patent/GB2556274B/en
Priority to CN201680047158.1A priority patent/CN107922020B/zh
Publication of WO2017006910A1 publication Critical patent/WO2017006910A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/084Endless-track units or carriages mounted separably, adjustably or extensibly on vehicles, e.g. portable track units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/04Endless track vehicles with tracks and alternative ground wheels, e.g. changeable from endless track vehicle into wheeled vehicle and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks

Definitions

  • the present invention relates to a traveling body capable of traveling in two directions and a method for controlling the traveling body.
  • the robot (running body) disclosed in Patent Document 1 is equipped with a pair of crawler devices extending in the front-rear direction of the body on the left and right sides of the body.
  • Each crawler device is provided with front and rear wheels and a belt (endless strip) spanning these wheels.
  • the robot configured as described above can move forward or backward by driving the left and right crawler devices to rotate in the same direction at the same speed. Further, by changing the speeds of the left and right crawler devices, it is also possible to turn left and right so as to draw a curve. Furthermore, by rotating and driving the left and right crawler devices in different directions, it is also possible to perform super-revolution (turn on the spot without moving).
  • the robot cannot change the direction of the robot by turning around the ground at a corner that makes a right angle in a narrow passage. Further, even in a place with a large unevenness on the ground, rotation of the crawler device is hindered by the resistance of the ground, and the direction cannot be changed due to super-spinning. Furthermore, when the destination is in an oblique direction, the robot cannot move linearly to the destination, and therefore may not reach the destination accurately.
  • Patent Document 2 discloses a robot capable of traveling in two directions that can solve the above-described problems.
  • the robot includes a pair of crawler devices extending in a first direction and spaced apart in a second direction orthogonal to the first direction.
  • Each crawler device has a crawler unit that is rotatable about a rotation axis extending in the first direction.
  • the crawler unit includes a support extending in the first direction and a pair of crawler portions provided on the support and facing each other with the rotation axis therebetween.
  • the robot of Patent Document 2 can travel in the first direction by driving the crawler portions of the pair of crawler units.
  • this traveling mode is referred to as “crawler traveling”.
  • the pair of crawler units rotates about the rotation axis and rolls (rolls) in the second direction, so that the robot can travel in the second direction.
  • this travel mode is referred to as “rolling travel”.
  • the robot of Patent Document 2 can change the traveling direction from the first direction to the second direction and from the second direction to the first direction by selecting the crawler traveling and the rolling traveling without making a super turn. it can. Moreover, it can drive
  • this traveling mode is referred to as “oblique traveling”.
  • the crawler unit of the robot of Patent Document 2 has a travelable zone in which traveling can be performed by driving the pair of crawler units, and a dead zone in which crawler traveling is impossible. For example, when the pair of crawler portions of the crawler unit is substantially horizontal, the crawler unit is grounded in the dead zone, and the crawler traveling cannot be started.
  • the present invention has been made to solve the above problems, and includes a body and a plurality of crawler devices that are supported by the body and extend in the first direction and are spaced apart from each other in a second direction orthogonal to the first direction.
  • a traveling body Each of the plurality of crawler devices includes a crawler unit supported by the body so as to be rotatable around a first rotation axis extending in the first direction, a crawler actuator, and a rolling actuator.
  • Each crawler unit includes a support extending along the first rotation axis, and a pair of crawler portions provided on the support and arranged apart from each other with the first rotation axis interposed therebetween.
  • the crawler unit includes a travelable zone in which at least one of the pair of crawler portions is grounded and the crawler travel is possible by driving the crawler portion, and a dead zone in which the crawler travel is not possible by driving the crawler portion.
  • an attitude detection sensor for detecting the attitude of the crawler unit
  • a control device for controlling the crawler actuator and the rolling actuator
  • the control device drives the rolling actuator based on the posture information of the crawler unit from the posture detection sensor, so that the crawler unit can travel to ground in the travelable zone.
  • the posture control of the crawler unit is executed so as to be in a posture.
  • the crawler unit can be reliably driven by setting the crawler unit to a travelable posture.
  • the control device determines whether or not the crawler unit is in a travelable posture based on posture information from the posture detection sensor when receiving a stop command signal during the rolling travel.
  • the travel is immediately stopped, and when the determination is negative, the crawler unit is rolled in the same direction as the rolling travel until the crawler unit is in a travelable posture.
  • the control device can execute the oblique traveling by simultaneously performing the rolling traveling and the crawler traveling.
  • the control device When receiving a stop command signal during the oblique traveling, the control device immediately stops the crawler traveling, and Based on the posture information from the posture detection sensor, it is determined whether or not the crawler unit is in the travelable posture. Until crawling, the crawler unit is rolled in the same direction as during the oblique running. According to the above configuration, since the posture control of the crawler unit is performed at the end of the oblique traveling, the subsequent crawler traveling can be started smoothly.
  • control device determines whether the crawler unit is in the travelable posture based on posture information from the posture detection sensor when the crawler travel start command signal is received while the traveling body is stopped. If the determination is affirmative, the crawler travel is started immediately. If the determination is negative, the crawler unit is rolled until the crawler unit is in a travelable posture, and then the crawler travel is started.
  • the control device can control the posture of these crawler units by rolling a plurality of crawler units in the same direction at the time of the negative determination.
  • the plurality of crawler units include a pair of crawler units, and when the negative determination is made, the control device rolls the other crawler unit while stopping one of the crawler units, and the attitude of the other crawler unit. After the control is completed, the posture control of the one crawler unit is performed while the other crawler unit is stopped. According to this, even if it performs attitude
  • the plurality of crawler units include a pair of crawler units, and the control device controls the posture of the crawler units by simultaneously rolling the pair of crawler units in the reverse direction when the negative determination is made. According to this, even if posture control of the crawler unit with rolling is performed, the movement of the traveling body can be minimized.
  • the runnable posture of the crawler unit is a reference posture in which the pair of crawler units are grounded. According to this, stable crawler traveling can be started.
  • Each crawler portion of the crawler unit includes a pair of wheels arranged apart in the first rotational axis direction, an endless strip spanning the wheels, and a large number of ground lugs attached to the endless strip. And the pair of wheels are rotatably supported by the support around a second rotation axis that is orthogonal to the first rotation axis and parallel to each other.
  • the support is provided with a pair of grounding structures adjacent to the pair of crawler portions on the outside in the second rotational axis direction, and these grounding structures provide the dead zone.
  • the method of the present invention is a traveling body comprising a body and a plurality of crawler devices supported by the body and extending in a first direction and spaced apart from each other in a second direction orthogonal to the first direction,
  • Each of the plurality of crawler devices includes a crawler unit supported by the body so as to be rotatable around a first rotation axis extending in the first direction, a crawler actuator, and a rolling actuator.
  • Each crawler unit includes a support extending along the first rotation axis, and a pair of crawler portions provided on the support and arranged apart from each other with the first rotation axis interposed therebetween.
  • the crawler unit includes a travelable zone in which at least one of the pair of crawler portions is grounded and the crawler travel is possible by driving the crawler portion, and a dead zone in which the crawler travel is not possible by driving the crawler portion.
  • the crawler unit is in a travelable posture that contacts the ground in the travelable zone. The posture control of the crawler unit is executed.
  • the traveling body can change the direction at a right angle without rubbing the ground, or can go straight in an oblique direction.
  • the crawler travel is reliably started by the attitude control of the crawler unit.
  • FIG. 1 is a plan view of a pair of crawler-equipped robots (running bodies) according to a first embodiment of the present invention, with a part of the configuration omitted. It is a bottom view of the robot.
  • FIG. 2 is a side view of the robot as viewed from the direction A in FIG.
  • FIG. 4 is a side view of the robot shown in a state where the posture of the crawler unit of each crawler device is 90 ° different from that in FIG. 3. It is the side view of the said crawler unit seen from the B direction in FIG. It is a longitudinal cross-sectional view of the said crawler unit. It is a system diagram for the traveling control of the robot.
  • FIG. 6 is a flowchart of posture control of the crawler unit that is executed when a travel stop command signal is received during travel of the robot. It is a flowchart of the attitude
  • the robot has a flat body 1.
  • This body 1 is equipped with an observation instrument such as a video camera, a work arm capable of performing various operations as required, and a transceiver and a battery.
  • the travel control described later is executed by an operation signal from the remote controller 71 (shown only in FIG. 7).
  • a pair of crawler devices 2 and 2 are provided on the lower surface of the body 1. These crawler devices 2 and 2 are separated from each other in the Y direction.
  • Each crawler device 2 includes an elongated crawler unit 5 extending in the X direction. As will be described later, the crawler unit 5 is capable of rolling around a first rotation axis L1 extending in the X direction.
  • the crawler unit 5 includes a support 10, a pair of crawler portions 20 ⁇ / b> A and 20 ⁇ / b> B provided on the support 10, and a pair of grounding structures 30 ⁇ / b> A and 30 ⁇ / b> B provided on the support 10. have.
  • the support 10 is parallel to each other, extends in the X direction (first rotation axis L1 direction), and faces a pair of elongated side plates 11, 11 across the first rotation axis L1, and one end of the side plates 11, 11.
  • a driving side shaft 12 rotatably connected to the part, a driven side shaft 13 connected to the other end of the side plates 11, 11, and a fixed plate 14 fixed to an intermediate portion of the side plates 11, 11. ing.
  • Center axes L2 and L2 ′ of the driving side shaft 12 and the driven side shaft 13 are orthogonal to the first rotation axis L1 and extend in parallel with each other, and rotation axes (second second) of sprocket wheels 21 and 22, which will be described later, respectively. Provided as rotation axis).
  • the pair of crawler portions 20A and 20B are disposed to face each other with the first rotation axis L1 therebetween, and are separated from each other.
  • Each of the crawler portions 20A and 20B includes a pair of a driving sprocket wheel 21 (wheel) and a driven sprocket wheel 22 (wheel) that are separated in the direction of the first rotation axis L1, and a chain that spans the sprocket wheels 21 and 22. 23 (endless strip) and a number of ground lugs 24 made of rubber, for example, fixed to the chain 23 at equal intervals.
  • the driving sprocket wheel 21 of one crawler part 20A is directly fixed to the driving side shaft 12, and the driving sprocket wheel 21 of the other crawler part 20B is fixed to the driving side shaft 12 via a bevel gear 42b described later. Yes.
  • the driven sprocket wheels 22, 22 of the pair of crawler portions 20 ⁇ / b> A, 20 ⁇ / b> B are rotatably supported by the driven shaft 13.
  • the pair of grounding structures 30A and 30B are adjacent to the pair of crawler portions 20A and 20B and are disposed on the outer side in the second rotation axis L2 direction.
  • Each of the crawler portions 20A and 20B has a plurality (five in this embodiment) of ground plates 31 (ground members) arranged at intervals in the direction of the first rotation axis L1.
  • These ground plates 31 are made of, for example, rubber, are fixed to the outer surface of the side plate 11, and project in the second rotation axis L 2, L 2 ′ direction at right angles to the side plate 11.
  • the pair of crawler portions 20A and 20B and the pair of grounding structures 30A and 30B cooperate to give the crawler unit 5 a cylindrical shape.
  • the outer surface of the grounding lug 24 of the crawler portions 20A and 20B and the outer surface of the grounding plate 31 of the grounding structures 30A and 30B have an arc shape, and the first rotation axis L1 is between the sprocket wheels 21 and 22. It is arranged along a virtual cylindrical surface centering on.
  • a cutout 31 a is formed on the outer surface of the ground plate 31.
  • a crawler actuator 40 for rotating the pair of crawler portions 20 ⁇ / b> A and 20 ⁇ / b> B is built in the crawler unit 5.
  • the crawler actuator 40 includes a motor 41 fixed to the fixing plate 14 of the support 10 and a torque transmission mechanism 42 that transmits the rotational torque of the motor 41 to the driving sprocket wheels 21 and 21 of the crawler portions 20A and 20B. is doing.
  • the torque transmission mechanism 42 has a bevel gear 42 a fixed to the output shaft of the motor 41 and a bevel gear 42 b that meshes with the bevel gear 42 a.
  • the rotational torque of the motor 41 is transmitted to the driving sprocket wheel 21 of the crawler unit 20B through the bevel gears 42a and 42b, and further transmitted to the driving sprocket wheel 21 of the crawler unit 20A through the driving side shaft 12. Thereby, a pair of crawler parts 20A and 20B are simultaneously driven at the same speed in the same direction.
  • the motor 41 can rotate forward and backward.
  • both ends of the crawler unit 5 are supported by the body 1 so as to be rotatable about the first rotation axis L1. Details will be described below.
  • a pair of brackets 51 and 52 that are separated from each other in the direction of the first rotation axis L1 with the crawler unit 5 interposed therebetween are fixed to the lower surface of the body 1.
  • a torque transmission shaft 53 (torque transmission member) disposed on the first rotation axis L1 is rotatably supported by the bracket 51.
  • the torque transmission shaft 53 extends to the inside of the crawler unit 5 through a gap between one end portions of the pair of crawler portions 20 ⁇ / b> A and 20 ⁇ / b> B, and a tip portion thereof is coupled to the driving side shaft 12 of the support 10. In this connection state, rotation about the rotation axis L2 of the driving side shaft 12 is allowed.
  • a support shaft 54 (support member) disposed on the first rotation axis L1 is rotatably supported by the bracket 52.
  • the support shaft 54 extends to the inside of the crawler unit 5 through a gap between the other ends of the pair of crawler portions 20 ⁇ / b> A and 20 ⁇ / b> B, and a tip portion thereof is fixed to the driven side shaft 13 of the support 10.
  • the support shaft 54 may be fixed to the bracket 52 and rotatably connected to the driven side shaft 13.
  • the crawler unit 5 is rotated (rolled) about the first rotation axis L1 by a rolling actuator 60.
  • the rolling actuator 60 includes a motor 61 fixed to the bracket 51 and a torque transmission mechanism 62 that transmits the rotational torque of the motor 61 to the torque transmission shaft 53.
  • the motor 61 can rotate forward and backward.
  • the torque transmission mechanism 62 includes a timing pulley 62a fixed to the output shaft of the motor 61, a timing pulley 62b fixed to the torque transmission shaft 53, and a timing belt 62c spanned between the timing pulleys 62a and 62b. have.
  • the crawler unit 5 changes its posture by rolling.
  • the angle range ⁇ 1 occupied by the crawler portions 20A and 20B is a travelable zone
  • the angle range ⁇ 2 occupied by the ground contact structures 30A and 30B is a dead zone.
  • the crawlable zone is grounded
  • at least one of the crawler units 20A and 20B is grounded, and the crawler travel is possible by driving the crawler units 20A and 20B.
  • the dead zone is grounded, the crawler portions 20A and 20B are not grounded, and even when the crawler actuator 40 is driven, the crawler portions 20A and 20B run idle, and the crawler travel is impossible.
  • the system for traveling control of the robot having the above-described configuration includes a control device 70, a remote controller 71, and a rotary encoder 72 as shown in FIG.
  • the control device 70 is provided on the body 1.
  • the rotary encoder 72 is provided on the bracket 51, detects the rotation angle of the torque transmission shaft 53, and consequently detects the attitude of the crawler unit 5.
  • the rotary encoder 72 may detect the rotation angle of the support shaft 54.
  • each crawler apparatus 2 when the motor 41 of the crawler actuator 40 is driven in a state where the pair of crawler portions 20A and 20B is grounded or one of the crawler portions is grounded as shown in FIG.
  • the driving sprocket wheels 21 and 21 of the portions 20A and 20B are simultaneously rotated in the same direction, whereby the crawler device 2 can travel in the X direction (crawler traveling).
  • the robot can go straight in the X direction.
  • the crawler unit 5 rotates (rolls) around the first rotation axis L1. As the pair of crawler devices 2 simultaneously rolls in the same direction, the robot can go straight in the Y direction (rolling running).
  • the ground lugs 24 of the crawler portions 20A and 20B and the ground plates 31 of the ground structures 30A and 30B alternately contact the ground and bear a load.
  • the traveling direction can be changed to a right angle without turning the body 1 on the spot.
  • the robot can also travel linearly in an oblique direction (oblique traveling).
  • oblique traveling the upper and lower portions of the crawler portions 20A and 20B are frequently reversed by rolling of the crawler unit 5, but while the dead zone of the crawler unit 5 is grounded (the ground plate 31 of the ground structure 30 is grounded).
  • the robot can surely run in an oblique direction.
  • crawler traveling is possible only when the crawler unit 5 is grounded in the travelable zone.
  • crawlerable posture of the crawler unit 5 particularly when the pair of crawler portions 20A and 20B are in contact with the ground as shown in FIG.
  • the posture of the crawler unit 5 in FIG. 3 is referred to as a reference posture.
  • FIG. 8 shows control executed when the control device 70 receives a travel stop command signal from the remote controller 71 during traveling of the robot.
  • step 101 the currently executed control mode is determined.
  • the process proceeds to step 102 and the motor 41 is stopped to stop the crawler travel.
  • step 103 it is determined in step 103 whether or not the pair of crawler units 5 is in the reference posture. If a negative determination is made here, the rolling travel is continued. That is, rolling is continued in the same direction as the rolling travel before receiving the travel stop signal.
  • step 103 the motor 61 is stopped and the rolling travel is stopped.
  • step 101 When it is determined in step 101 that the vehicle is traveling obliquely, the crawler traveling is stopped in step 105 and the process proceeds to step 106, where it is determined whether or not the pair of crawler units 5 is in the reference posture. If a negative determination is made here, the rolling travel is continued. That is, rolling is continued in the same direction as before the travel stop signal is received. When an affirmative determination is made at step 106, the routine proceeds to step 107, where the rolling travel is stopped.
  • the posture control of the crawler unit 5 is performed as the final stage of travel after receiving the travel stop command signal, and the crawler unit 5 is set to the reference posture, so that the next crawler travel and oblique travel are not hindered.
  • posture control of the crawler unit 5 is performed in response to the travel stop command signal. As shown in FIG. 9, immediately after the crawler travel start command signal is received when the robot is stopped, the crawler travel is started.
  • the posture control of the pair of crawler units 5 may be performed. More specifically, in step 111, it is determined whether or not the crawler unit 5 is in the reference posture. If a negative determination is made here, the routine proceeds to step 112, where the pair of crawlers 5 are rolled in the same direction.
  • the rolling direction may be a predetermined direction, or a direction that easily reaches the reference position from the current posture of the crawler unit 5 may be selected.
  • the starting point of the crawler traveling is the amount of rolling for the posture control of the crawler unit 5, so that the robot moves in the Y direction and the traveling start point is shifted.
  • the control of FIG. 10 can suppress this deviation.
  • step 121 When a negative determination is made in step 121, the process proceeds to step 122 to cause one of the crawler units 5 to roll. At this time, since the other crawler unit 5 is in a stopped state, movement of the robot due to rolling can be suppressed.
  • step 123 When it is determined in step 123 that the one crawler unit 5 has reached the reference posture, the process proceeds to step 124, and rolling of the one crawler unit 5 is stopped. Next, in step 125, the other crawler unit 5 is caused to roll. At this time, since the one crawler unit 5 is stopped, the movement of the robot due to rolling can be suppressed.
  • step 126 when it is determined in step 126 that the other crawler unit 5 has reached the reference posture, rolling of the other crawler unit 5 is stopped in step 127 and crawler running is started in step 128.
  • step 11 can further reduce the deviation of the travel start point due to the posture control of the pair of crawler units 5. More specifically, when the crawler travel start command signal is received while the robot is stopped, it is determined in step 131 whether or not the crawler unit 5 is in the reference posture. When an affirmative determination is made here, the routine proceeds to step 137, where crawler traveling is immediately started.
  • step 131 When a negative determination is made in step 131, the process proceeds to step 132 and both crawler units 5 are rolled in opposite directions. Therefore, the robot hardly moves.
  • step 133 it is determined whether any one of the crawler units 5 is in the reference posture. If the determination is affirmative, the process proceeds to step 134, and the rolling of the one crawler unit 5 is stopped.
  • step 135 it is determined whether or not the other crawler unit 5 is in the reference posture. When a negative determination is made here, the other crawler unit 5 continues to roll, and when an affirmative determination is made, the process proceeds to step 136. Rolling of the other crawler unit 5 is stopped, and crawler running is started in step 137. In the control of FIG. 11, when the pair of crawler units 5 receives a crawler running start command in the posture shown in FIG. 4, the pair of crawler units 5 simultaneously reaches the reference posture and simultaneously stops the rolling of the pair of crawler units 5.
  • the robot includes two pairs of flipper type crawler devices 2 '.
  • one end of the crawler unit 5 ′ is cantilevered by a box-shaped support 80 so as to be rotatable about the first rotation axis L1, and the other end is a free end.
  • the support 80 is provided with a rolling actuator 60 ′. More specifically, a motor 61 ′ of a rolling actuator 60 ′ is fixed on the upper surface of the support 80, and a torque transmission mechanism 62 ′ is accommodated in the support 80. The rotational torque of the motor 61 ′ is transmitted to the crawler unit 5 ′ via the torque transmission mechanism 62 ′ and the torque transmission shaft 53, and the crawler unit 5 ′ rolls.
  • the support 80 is supported by a flipper actuator 90 provided on the body 1 so as to be rotatable about the third rotation axis L3.
  • the third rotation axis L3 extends in the Y direction.
  • the third rotation axis L3 of the crawler device 2 'paired in the Y direction is on the same straight line.
  • the support 80 is rotated in the forward and reverse directions around the third rotation axis L3 by the motor 91 of the flipper actuator 90.
  • the crawler unit 5 ′ is rotated 180 degrees in the vertical direction as indicated by arrows in FIG.
  • the control shown in FIGS. 8 to 11 can be executed.
  • the two crawler devices 2 ′ located on one side in the Y direction are regarded as one crawler device 2 in the first embodiment, and the two crawler devices 2 ′ located on the other side in the Y direction are the first implementation.
  • the control is executed in consideration of the other crawler device 2 in the form.
  • the posture of the crawler unit is controlled so as to be the reference posture of FIG. 3 as the travelable posture, but the travelable posture may be any posture in which the travelable zone in the angle range ⁇ 1 is grounded.
  • the travelable posture may be any posture in which the travelable zone in the angle range ⁇ 1 is grounded.
  • the control of FIGS. 8 to 11 in the step of determining whether or not the crawler unit is in the reference posture, it may be determined whether or not the crawler unit 5 is grounded in the travelable zone.
  • a signal from an inclination sensor provided on the support 10 may be used instead of the rotary encoder.
  • the crawler portion may be constituted by a pair of wheels and a belt that is stretched over the wheels and frictionally or pin-engaged with the outer periphery of the wheels.
  • the crawler unit 5 may be supported at one end so as to be cantilevered and rotatable.
  • “oblique traveling” may be omitted and only “crawler traveling” and “rolling traveling” may be performed.
  • the remote controller may be omitted.
  • the control device of the robot automatically selects a travel control mode, starts travel, and stops travel based on information from various sensors, and performs posture control of the crawler unit.
  • the crawler actuator motor may be disposed outside the crawler unit in the same manner as the rolling actuator.
  • the motor 41 is fixed to the bracket 52 outside the crawler unit 5
  • the support shaft 54 extends long inside the crawler unit 5, and the inner end thereof is fixed to the bevel gear 42a.
  • the outer end of the support shaft 54 is connected to the motor 41.
  • the present invention can be applied to a traveling body such as a robot capable of traveling in two directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

クローラ走行とローリング走行により、二方向に走行可能な走行体は、ボデイ1と、回転軸線L1を中心に回転可能にしてボデイ1に支持された一対のクローラユニット5と、クローラアクチュエータ40と、ローリングアクチュエータ60とを備えている。クローラアクチュエータ40がクローラユニット5の一対のクローラ部20A,20Bを駆動することにより、走行体は回転軸線L1方向にクローラ走行する。ローリングアクチュエータ60がクローラユニット5を回転軸線L1を中心にローリングさせることにより、走行体は回転軸線L1と直交する方向にローリング走行する。クローラ走行の準備のために、ロータリーエンコーダ72からのクローラユニット5の姿勢情報に基づきクローラユニット5をローリングさせることにより、クローラユニット5が走行可能姿勢になる。

Description

走行体およびその制御方法
 本発明は、二方向に走行可能な走行体およびこの走行体の制御方法に関する。
 特許文献1に開示されているロボット(走行体)は、ボデイの左右に、ボデイの前後方向に延びる一対のクローラ装置を装備している。各クローラ装置は、前後のホイールと、これらホイールに架け渡されたベルト(無端条体)を備えている。
 上記構成のロボットは、左右のクローラ装置を同方向に同速度で回転駆動することにより、前進または後退することができる。また、左右のクローラ装置の速度を違えることにより、曲線を描くようにして左右に旋回することもできる。さらに、左右のクローラ装置を異なる方向に回転駆動することにより、超信地旋回(移動せずにその場で旋回)することもできる。
 上記ロボットは、狭い通路での直角をなす曲がり角では、超信地旋回によってロボットの方向を転換することができない。また、地面の凹凸の大きい場所でも、地面の抵抗によりクローラ装置の回転駆動が妨げられ、超信地旋回による方向転換ができない。
 さらに上記ロボットは、目的地が斜め方向にある場合、目的地まで直線的に移動できず、そのために正確に目的地に到達できないことがある。
 特許文献2は、上記課題を解決できる二方向に走行可能なロボットを開示している。このロボットは、第1方向に延びるとともに第1方向と直交する第2方向に離間した一対のクローラ装置を備えている。各クローラ装置は、上記第1方向に延びる回転軸線を中心にして回転可能なクローラユニットを有している。このクローラユニットは、第1方向に延びるサポートと、このサポートに設けられ、上記回転軸線を挟んで対峙する一対のクローラ部とを備えている。
 特許文献2のロボットは、上記一対のクローラユニットのクローラ部の駆動により第1方向に走行することができる。以下、この走行モードを「クローラ走行」と言う。
 さらに、上記一対のクローラユニットが上記回転軸線を中心に回転し、第2方向に転がる(ローリングする)ことにより、ロボットは第2方向に走行することができる。以下、この走行モードを「ローリング走行」と言う。
 特許文献2のロボットは超信地旋回せずに、クローラ走行とローリング走行を選択することにより、第1方向から第2方向へ、第2方向から第1方向へと進行方向を転換することができる。また、クローラ走行とローリング走行を同時に実行することにより、任意の斜め方向に直線的に走行することができる。以下、この走行モードを「斜め走行」と言う。
特開2007-191153号公報 特開2009-241916号公報
 特許文献2のロボットのクローラユニットは、上記一対のクローラ部の駆動により走行可能な走行可能ゾーンと、クローラ走行が不可能なデッドゾーンがある。例えば、クローラユニットの一対のクローラ部が略水平をなしている場合には、クローラユニットがデッドゾーンで接地しており、クローラ走行を開始することができない。
 本発明は上記課題を解決するためになされたもので、ボデイと、このボデイに支持され第1方向に延びるとともにこの第1方向と直交する第2方向に互いに離間する複数のクローラ装置とを備えた走行体であって、
 上記複数のクローラ装置の各々は、上記第1方向に延びる第1回転軸線を中心に回転可能にして上記ボデイに支持されたクローラユニットと、クローラアクチュエータと、ローリングアクチュエータとを備え、
 各クローラユニットは、上記第1回転軸線に沿って延びるサポ―トと、上記サポ―トに設けられるとともに上記第1回転軸線を挟んで互いに離間して配置された一対のクローラ部とを有し、
 上記クローラアクチュエータが上記一対のクローラ部を駆動することにより、上記走行体が上記第1方向に沿ってクローラ走行し、上記ローリングアクチュエータが上記クローラユニットを上記第1回転軸線を中心にローリングさせることにより、上記走行体が上記第2方向に沿ってローリング走行し、
 上記クローラユニットは、上記一対のクローラ部のうち少なくとも一方が接地し上記クローラ部の駆動により上記クローラ走行が可能な走行可能ゾーンと、上記クローラ部の駆動による上記クローラ走行が不可能なデッドゾーンを有し、
 さらに、上記クローラユニットの姿勢を検出する姿勢検出センサと、上記クローラアクチュエータと上記ローリングアクチュエータを制御するコントロール装置とを備え、
 上記コントロール装置は、上記クローラ走行の準備のために、上記姿勢検出センサからの上記クローラユニットの姿勢情報に基づき上記ローリングアクチュエータを駆動させることにより、上記クローラユニットが上記走行可能ゾーンで接地する走行可能姿勢になるように、上記クローラユニットの姿勢制御を実行することを特徴とする。
 上記構成によれば、クローラユニットを走行可能姿勢にすることにより、確実にクローラ走行することができる。
 一態様では、上記コントロール装置は、上記ローリング走行中に停止指令信号を受けた時に、上記姿勢検出センサからの姿勢情報に基づき、上記クローラユニットが走行可能姿勢にあるか否かを判断し、肯定判断の時には走行を即座に停止させ、否定判断の時には上記クローラユニットが走行可能姿勢になるまで、ローリング走行中と同方向に上記クローラユニットをローリングさせる。
 上記構成によれば、ローリング走行の最後にクローラユニットの姿勢制御を行うので、その後のクローラ走行を円滑に開始することができる。
 上記コントロール装置は、上記ローリング走行と上記クローラ走行を同時に行うことにより斜め走行を実行することができ、上記斜め走行中に停止指令信号を受けた時には、上記クローラ走行を即座に停止させるとともに、上記姿勢検出センサからの姿勢情報に基づき上記クローラユニットが上記走行可能姿勢にあるか否かを判断し、肯定判断の時にはローリング走行を即座に停止させ、否定判断の時には上記クローラユニットが上記走行可能姿勢になるまで、上記斜め走行中と同方向に上記クローラユニットをローリングさせる。
 上記構成によれば、斜め走行の最後にクローラユニットの姿勢制御を行うので、その後のクローラ走行を円滑に開始することができる。
 他の態様では、上記コントロール装置は、走行体の停止状態で上記クローラ走行の開始指令信号を受けた時に、上記姿勢検出センサからの姿勢情報に基づき上記クローラユニットが上記走行可能姿勢にあるか否かを判断し、肯定判断の時にはクローラ走行を即座に開始させ、否定判断の時には上記クローラユニットが走行可能姿勢になるまで上記クローラユニットをローリングさせた後で、上記クローラ走行を開始させる。
 上記コントロール装置は、上記否定判断の時に、複数のクローラユニットを同方向にローリングさせることにより、これらクローラユニットの姿勢制御を行うことができる。
 複数のクローラユニットは対をなすクローラユニットを含んでおり、上記コントロール装置は、上記否定判断の時に、一方のクローラユニットを停止させたまま他方のクローラユニットをローリングさせ、上記他方のクローラユニットの姿勢制御が終了した後、上記他方のクローラユニットを停止させたまま上記一方のクローラユニットの姿勢制御を行う。これによれば、ローリングを伴うクローラユニットの姿勢制御を行っても、走行体の移動を抑えることができる。
 複数のクローラユニットは対をなすクローラユニットを含んでおり、上記コントロール装置は、上記否定判断の時に、対をなすクローラユニットを同時に逆方向へローリングさせることにより、上記クローラユニットの姿勢制御を行う。これによれば、ローリングを伴うクローラユニットの姿勢制御を行っても、走行体の移動を最小限にすることができる。
 好ましくは、上記クローラユニットの上記走行可能姿勢が、上記一対のクローラ部が接地している基準姿勢である。これによれば、安定したクローラ走行を開始できる。
 上記クローラユニットの各クローラ部は、上記第1回転軸線方向に離れて配置された一対のホイールと、これらホイールに架け渡された無端条体と、この無端条体に取り付けられた多数の接地ラグとを有し、上記一対のホイールは、上記第1回転軸線と直交するとともに互いに平行をなす第2回転軸線を中心として、上記サポ―トに回転可能に支持されており、上記クローラユニットの上記サポ―トには、上記一対のクローラ部に対して第2回転軸線方向の外側に隣接する一対の接地構造が取り付けられており、これら接地構造が、上記デッドゾーンを提供する。
 本発明方法は、ボデイと、このボデイに支持され第1方向に延びるとともにこの第1方向と直交する第2方向に互いに離間する複数のクローラ装置とを備えた走行体であって、
 上記複数のクローラ装置の各々は、上記第1方向に延びる第1回転軸線を中心に回転可能にして上記ボデイに支持されたクローラユニットと、クローラアクチュエータと、ローリングアクチュエータとを備え、
 各クローラユニットは、上記第1回転軸線に沿って延びるサポ―トと、上記サポ―トに設けられるとともに上記第1回転軸線を挟んで互いに離間して配置された一対のクローラ部とを有し、
 上記クローラアクチュエータが上記一対のクローラ部を駆動させることにより、上記走行体が上記第1方向に沿ってクローラ走行し、上記ローリングアクチュエータ(60,60’)が上記クローラユニットを上記第1回転軸線を中心にローリングさせることにより、上記走行体が上記第2方向に沿ってローリング走行し、
 上記クローラユニットは、上記一対のクローラ部のうち少なくとも一方が接地し上記クローラ部の駆動により上記クローラ走行が可能な走行可能ゾーンと、上記クローラ部の駆動による上記クローラ走行が不可能なデッドゾーンを有する走行体において、
 上記クローラ走行の準備のために、姿勢検出センサからの上記クローラユニットの姿勢情報に基づき上記ローリングアクチュエータを駆動させることにより、上記クローラユニットが上記走行可能ゾーンで接地する走行可能姿勢になるように、上記クローラユニットの姿勢制御を実行することを特徴とする。
 本発明によれば、走行体は地面を擦らずに直角に方向転換したり、斜め方向に直進することができる。しかも、クローラユニットの姿勢制御により、クローラ走行を確実に開始する。
本発明の第1実施形態に係る一対のクローラ装置付きロボット(走行体)の平面図であり、一部構成を省略して示す。 上記ロボットの底面図である。 図1においてA方向から見た上記ロボットの側面図であり、一部構成を省略して示す。 各クローラ装置のクローラユニットの姿勢が図3とは90°異なる状態で示す上記ロボットの側面図である。 図1においてB方向から見た上記クローラユニットの側面図である。 上記クローラユニットの縦断面図である。 上記ロボットの走行制御のためのシステム図である。 ロボット走行中に走行停止指令信号を受けた時に実行されるクローラユニットの姿勢制御のフローチャートである。 ロボット停止状態でクローラ走行の開始指令信号を受けた時に実行されるクローラユニットの姿勢制御のフローチャートである。 ロボット停止状態でクローラ走行の開始指令信号を受けた時に実行されるクローラユニットの姿勢制御の他の態様を示すフローチャートである。 ロボット停止状態でクローラ走行の開始指令信号を受けた時に実行されるクローラユニットの姿勢制御のさらに他の態様を示すフローチャートである。 本発明の第2実施形態に係るフリッパ式のクローラ装置を装備したロボット(走行体)の平面図である。 同第2実施形態のロボットの側面図である。
 以下、本発明の第1実施形態をなすロボット(走行体)について図面を参照しながら説明する。図1、図2において互いに直交するX方向(第1方向)とY方向(第2方向)を定める。
 図1~図3に示すように、ロボットは平板形状のボデイ1を有している。このボデイ1には、ビデオカメラ等の観測器材や必要に応じて種々の作業が可能な作業アーム等が搭載されるとともに、送受信器、バッテリも搭載されている。リモートコントローラ71(図7にのみ示す)からの操作信号により、後述の走行制御が実行される。
 上記ボデイ1の下面には、一対のクローラ装置2,2が設けられている。これらクローラ装置2,2は互いにY方向に離間している。
 各クローラ装置2は、X方向に延びる細長い形状のクローラユニット5を備えている。このクローラユニット5は、後述するようにX方向に延びる第1回転軸線L1を中心としてローリング可能である。
 図6に示すように、クローラユニット5は、サポ―ト10と、サポ―ト10に設けられた一対のクローラ部20A,20Bと、サポ―ト10に設けられた一対の接地構造30A,30Bを有している。
 上記サポ―ト10は、互いに平行をなしX方向(第1回転軸線L1方向)に延びるとともに第1回転軸線L1を挟んで対峙する一対の細長い側板11,11と、これら側板11,11の一端部に回転可能に連結された原動側シャフト12と、側板11、11の他端部に連結された従動側シャフト13と、側板11、11の中間部に固定された固定板14とを有している。
 原動側シャフト12と従動側シャフト13の中心軸線L2,L2’は、上記第1回転軸線L1と直交し互いに平行をなして延びており、それぞれ後述するスプロケットホイール21,22の回転軸線(第2回転軸線)として提供される。
 上記一対のクローラ部20A,20Bは、第1回転軸線L1を挟んで対向配置され、互いに離間している。これらクローラ部20A,20Bの各々は、第1回転軸線L1方向に離れた一対の原動スプロケットホイール21(ホイール)および従動スプロケットホイール22(ホイール)と、これらスプロケットホイール21,22に掛け渡されたチェーン23(無端条体)と、このチェーン23に等間隔をなして固定された例えばゴムからなる多数の接地ラグ24とを有している。
 一方のクローラ部20Aの原動スプロケットホイール21は原動側シャフト12に直接固定されており、他方のクローラ部20Bの原動スプロケットホイール21は、後述の傘歯車42bを介して原動側シャフト12に固定されている。
 一対のクローラ部20A,20Bの従動スプロケットホイール22、22は、従動側シャフト13に回転可能に支持されている。
 上記一対の接地構造30A,30Bは、一対のクローラ部20A,20Bに隣接し、第2回転軸線L2方向の外側に配置されている。クローラ部20A,20Bの各々は、第1回転軸線L1方向に間隔をおいて配置された複数(本実施形態では5個)の接地板31(接地部材)を有している。これら接地板31は、例えばゴムからなり、側板11の外面に固定され、側板11と直角をなして第2回転軸線L2,L2’方向に突出している。
 図3に示すように、上記一対のクローラ部20A,20Bと上記一対の接地構造30A,30Bは、協働してクローラユニット5に円筒形状を付与している。具体的には、クローラ部20A,20Bの接地ラグ24の外面および接地構造30A,30Bの接地板31の外面は、円弧形状をなし、上記スプロケットホイール21,22間において、上記第1回転軸線L1を中心とする仮想円筒面に沿って配置されている。接地板31の外面には、切欠31aが形成されている。
 本実施形態では図6に示すように、上記一対のクローラ部20A,20Bを回転駆動させるためのクローラアクチュエータ40が、クローラユニット5に内蔵されている。
 クローラアクチュエータ40は、サポ―ト10の固定板14に固定されたモータ41と、このモータ41の回転トルクをクローラ部20A,20Bの原動スプロケットホイール21,21に伝達するトルク伝達機構42とを有している。このトルク伝達機構42は、モータ41の出力軸に固定された傘歯車42aと、この傘歯車42aと噛み合う傘歯車42bとを有している。モータ41の回転トルクは、傘歯車42a,42bを介してクローラ部20Bの原動スプロケットホイール21に伝達され、さらに原動側シャフト12を介してクローラ部20Aの原動スプロケットホイール21にも伝達される。これにより、一対のクローラ部20A,20Bが同時に同方向に同速度で駆動される。モータ41は正逆回転可能である。
 図2,図6に示すように、クローラユニット5の両端部は、第1回転軸線L1を中心にボデイ1に回転可能に支持されている。以下、詳述する。
 ボデイ1の下面には、クローラユニット5を挟んで第1回転軸線L1方向に離れた一対のブラケット51,52が固定されている。
 ブラケット51には、第1回転軸線L1上に配置されたトルク伝達シャフト53(トルク伝達部材)が回転可能に支持されている。トルク伝達シャフト53は、一対のクローラ部20A,20Bの一端部間の間隙を通ってクローラユニット5の内部まで延びており、その先端部がサポート10の原動側シャフト12に連結されている。なお、この連結状態において、原動側シャフト12の回転軸線L2を中心とする回転は許容されている。
 ブラケット52には、第1回転軸線L1上に配置された支持シャフト54(支持部材)が回転可能に支持されている。支持シャフト54は一対のクローラ部20A,20Bの他端部間の間隙を通ってクローラユニット5の内部まで延びており、その先端部がサポート10の従動側シャフト13に固定されている。支持シャフト54は、ブラケット52に固定され、従動側シャフト13に回転可能に連結されていてもよい。
 図2に示すように、上記クローラユニット5は、ローリングアクチュエータ60により、第1回転軸線L1を中心に回転(ローリング)される。ローリングアクチュエータ60は、上記ブラケット51に固定されたモータ61と、このモータ61の回転トルクを上記トルク伝達シャフト53に伝達するトルク伝達機構62とを有している。モータ61は正逆回転可能である。
 上記トルク伝達機構62は、モータ61の出力軸に固定されたタイミングプーリ62aと、上記トルク伝達シャフト53に固定されたタイミングプーリ62bと、これらタイミングプーリ62a,62bに架け渡されたタイミングベルト62cとを有している。
 図3、図4に示すように、クローラユニット5はローリングにより姿勢が変化する。クローラユニット5の外周において、クローラ部20A,20Bが占める角度範囲Θ1は走行可能ゾーンであり、接地構造30A,30Bが占める角度範囲Θ2はデッドゾーンである。走行可能ゾーンが接地されている状況では、クローラ部20A,20Bの少なくとも一方が接地されており、クローラ部20A,20Bの駆動によりクローラ走行が可能である。デッドゾーンが接地されている状況では、クローラ部20A,20Bは接地されておらず、クローラアクチュエータ40を駆動してもクローラ部20A,20Bは空回りし、クローラ走行が不可能である。
 上記構成をなすロボットの走行制御のためのシステムは、図7に示すように、コントロール装置70と、リモートコントローラ71と、ロータリーエンコーダ72とを備えている。コントロール装置70はボデイ1に設けられている。ロータリーエンコーダ72は、図6に示すように、ブラケット51に設けられ、トルク伝達シャフト53の回転角度を検出し、ひいてはクローラユニット5の姿勢を検出する。なお、ロータリーエンコーダ72は、支持シャフト54の回転角度を検出してもよい。
 上記一対のクローラ装置2,2によるロボットの走行について説明する。各クローラ装置2において、図3に示すように一対のクローラ部20A,20Bが接地された状態またはいずれか一方のクローラ部が接地された状態で、クローラアクチュエータ40のモータ41を駆動させると、クローラ部20A,20Bの原動スプロケットホイール21,21が同方向に同時に回転駆動し、これにより、クローラ装置2はX方向に走行することができる(クローラ走行)。一対のクローラ装置2、2のモータ41,41を同一方向に同一速度で回転することにより、ロボットはX方向に直進することができる。
 一対のクローラ装置2のローリングアクチュエータ60のモータ61を駆動させると、クローラユニット5が第1回転軸線L1を中心に回転(ローリング)する。一対のクローラ装置2が同時に同方向にローリングすることにより、ロボットはY方向に直進することができる(ローリング走行)。
 なお、上記クローラユニット5がローリングする際に、クローラ部20A,20Bの接地ラグ24と、接地構造30A,30Bの接地板31が交互に地面に接し、荷重を負担する。
 上記モータ41,61の一方の駆動から他方の駆動への切り替えにより、ボデイ1をその場で旋回することなく、進行方向を直角に転換することもできる。
 両モータ41,61を同時に駆動し、その回転速度、回転方向を制御することにより、ロボットは斜め方向へも直線的に走行することもできる(斜め走行)。この斜め走行では、クローラユニット5のローリングによってクローラ部20A,20Bの上下部が頻繁に逆転するが、クローラユニット5のデッドゾーンが接地している間(接地構造30の接地板31が接地している間)に、モータ41の回転方向の切り替えを行なうことにより、ロボットは確実に斜め方向に走行することができる。
 前述したように、クローラユニット5が走行可能ゾーンで接地している時のみ、クローラ走行が可能である。このクローラユニット5の走行可能姿勢において、特に図3に示すように一対のクローラ部20A,20Bが接地しているときに、良好なクローラ走行ができる。この図3のクローラユニット5の姿勢を基準姿勢という。
 以下、クローラ走行を確実に開始できるようにクローラユニット5を走行可能姿勢にする(本実施形態では基準姿勢にする)ための制御について詳述する。
 図8は、ロボット走行中に、コントロール装置70がリモートコントローラ71から走行停止指令信号を受けた時に実行される制御である。
 ステップ101で、現在実行している制御モードを判断する。ここでクローラ走行であると判断した時には、ステップ102に進みモータ41を停止させてクローラ走行を停止させる。
 ステップ101でローリング走行であると判断した時には、ステップ103で、一対のクローラユニット5が基準姿勢か否かを判断する。ここで否定判断した時には、ローリング走行を継続させる。すなわち、走行停止信号を受ける前のローリング走行と同じ方向でローリングを継続させる。ステップ103で肯定判断した時には、モータ61を停止し、ローリング走行を停止させる。
 ステップ101で斜め走行であると判断した時には、ステップ105でクローラ走行を停止させてステップ106に進み、ここで一対のクローラユニット5が基準姿勢か否かを判断する。ここで否定判断した時には、ローリング走行を継続させる。すなわち、走行停止信号を受ける前と同じ方向でローリングを継続させる。ステップ106で肯定判断した時には、ステップ107に進み、ローリング走行を停止させる。
 上述のように、走行停止指令信号を受けた後に走行の最終段階としてクローラユニット5の姿勢制御を行ない、クローラユニット5を基準姿勢にするので、次回のクローラ走行、斜め走行に支障をきたさない。
 上記制御では、走行停止指令信号を受けてクローラユニット5の姿勢制御を行うが、図9に示すように、ロボット停止状態でクローラ走行開始の指令信号を受けた時に、クローラ走行を開始する直前に一対のクローラユニット5の姿勢制御を行ってもよい。具体的に述べると、ステップ111でクローラユニット5が基準姿勢にあるか否かを判断する。ここで否定判断した時には、ステップ112に進み、一対のクローラ5を同方向にローリングさせる。このローリング方向は予め決められた方向でもよいし、クローラユニット5の現在の姿勢から基準位置に到達し易い方向を選択してもよい。そして、ステップ111で肯定判断した時には、ステップ113でローリングを停止させ、ステップ114でクローラ走行を開始させる。
 図9の制御では、クローラ走行の出発点がクローラユニット5の姿勢制御のためのローリングの分だけ、ロボットはY方向に移動し、走行開始点がずれる。図10の制御は、このずれを抑えることができる。
 ロボット停止状態でクローラ走行開始の指令信号を受けた時に、ステップ121で一対のクローラユニット5が基準姿勢にあるか否かを判断する。ここで肯定判断した時にはステップ128に進み、即座にクローラ走行を開始させる。
 ステップ121で否定判断した時には、ステップ122に進み一方のクローラユニット5のローリングを実行させる。この時、他方のクローラユニット5は停止状態にあるので、ローリングによるロボットの移動を抑えることができる。
 ステップ123で、上記一方のクローラユニット5が基準姿勢に達したと判断した時には、ステップ124に進み、一方のクローラユニット5のローリングを停止させる。
 次に、ステップ125で他方のクローラユニット5のローリングを実行させる。この時上記一方のクローラユニット5は停止しているので、ローリングによるロボットの移動を抑えることができる。
 次にステップ126で上記他方のクローラユニット5が基準姿勢に達したと判断した時には、ステップ127で上記他方のクローラユニット5のローリングを停止させ、ステップ128でクローラ走行を開始させる。
 図11の制御は、一対のクローラユニット5の姿勢制御による走行開始点のずれをより一層少なくすることができる。詳述すると、ロボット停止状態でクローラ走行開始の指令信号を受けた時に、ステップ131でクローラユニット5が基準姿勢にあるか否かを判断する。ここで肯定判断した時にはステップ137に進み、即座にクローラ走行を開始させる。
 ステップ131で否定判断した時には、ステップ132に進み両方のクローラユニット5を互いに逆方向にローリングさせる。そのため、ロボットは殆ど動かない。
 次に、ステップ133でいずれか一方のクローラユニット5が基準姿勢になったか否かを判断する。肯定判断した時には、ステップ134に進み、当該一方のクローラユニット5のローリングを停止させる。次に、ステップ135で他方のクローラユニット5が基準姿勢になったか否かを判断し、ここで否定判断した時には他方のクローラユニット5のローリングを継続させ、肯定判断した時には、ステップ136に進み当該他方のクローラユニット5のローリングを停止させ、ステップ137でクローラ走行を開始させる。
 図11の制御において、一対のクローラユニット5が図4に示す姿勢でクローラ走行開始の指令を受けた時には、一対のクローラユニット5は同時に基準姿勢に達し、一対のクローラユニット5のローリングを同時に停止させる。
 次に、本発明の第2実施形態について、図12、図13を参照しながら説明する。本実施形態において、第1実施形態に対応する構成部には同番号または類似番号を付してその詳細な説明を省略する。
 ロボットは、二対のフリッパ式クローラ装置2’を備えている。
 本実施形態のクローラ装置2’では、クローラユニット5’の一端部がボックス形状のサポート80により、片持ちで第1回転軸線L1を中心に回転可能に支持され、他端部は自由端となっている。
 上記サポート80には、ローリングアクチュエータ60’が設けられている。詳述すると、サポート80の上面にはローリングアクチュエータ60’のモータ61’が固定され、サポート80の内部にはトルク伝達機構62’が収容されている。モータ61’の回転トルクはトルク伝達機構62’およびトルク伝達シャフト53を介してクローラユニット5’に伝達され、クローラユニット5’がローリングする。
 上記サポート80は、ボデイ1に設けられたフリッパアクチュエータ90により、第3回転軸線L3を中心に回転可能に支持されている。第3回転軸線L3は、Y方向に延びている。Y方向に対をなすクローラ装置2’の第3回転軸線L3は、同一直線上にある。
 サポート80は、フリッパアクチュエータ90のモータ91により第3回転軸線L3を中心として正逆方向に回転され、その結果、図13に矢印で示すように、クローラユニット5’が上下方向に180度回転される。ロボットが前進して障害物に遭遇した時に、クローラユニット5’が上下方向に回動することにより、障害物を容易に乗り越えることができる。
 上記第2実施形態でも、図8~図11に示す制御を実行することができる。その場合、Y方向の一方側に位置する2つのクローラ装置2’を、第1実施形態の一方のクローラ装置2に見立て、Y方向の他方側に位置する2つのクローラ装置2’を第1実施形態の他方のクローラ装置2に見立てて制御を実行する。
 本発明は上記実施形態に制約されず、種々の形態を採用可能である。
 上記実施形態では、走行可能姿勢として図3の基準姿勢になるようにクローラユニットの姿勢を制御したが、走行可能姿勢としては角度範囲Θ1の走行可能ゾーンが接地する姿勢であればよい。この場合、図8~図11の制御において、クローラユニットが基準姿勢か否かの判断ステップでは、「クローラユニット5が走行可能ゾーンで接地しているか否か」を判断してもよい。
 クローラユニットの姿勢制御のためのフィードバック信号として、ロータリーエンコーダの代わりにサポ―ト10に設けた傾斜センサからの信号を用いてもよい。
 クローラ部は、一対のホイールと、このホイールに架け渡されてホイールの外周に摩擦係合またはピン係合されるベルトにより構成してもよい。
 第1実施形態においてクローラユニット5をその一端において片持ち式で回転可能に支持してもよい。
 ロボットの走行制御において、「斜め走行」を省き、「クローラ走行」と「ローリング走行」だけを行なってもよい。
 リモートコントローラは省略してもよい。この場合、ロボットのコントロール装置が種々のセンサからの情報に基づき、自動的に走行制御モードの選択、走行開始、走行停止を実行し、クローラユニットの姿勢制御を実行する。
 クローラアクチュエータおよびローリングアクチュエータの配置は、上記実施形態に制約されず、種々の態様を採用可能である。例えばクローラアクチュエータのモータは、ローリングアクチュエータと同様にクローラユニットの外に配置してもよい。この配置を例えば第1実施形態に適用すると、モータ41がクローラユニット5の外においてブラケット52に固定され、支持シャフト54がクローラユニット5内を長く延びてその内端が傘歯車42aに固定され、支持シャフト54の外端がモータ41に接続される。
 本発明は、二方向に走行可能なロボット等の走行体に適用することができる。

Claims (10)

  1.  ボデイ(1)と、このボデイに支持され第1方向に延びるとともにこの第1方向と直交する第2方向に互いに離間する複数のクローラ装置(2;2’)とを備えた走行体であって、
     上記複数のクローラ装置(2;2’)の各々は、上記第1方向に延びる第1回転軸線(L1)を中心に回転可能にして上記ボデイに支持されたクローラユニット(5;5’)と、クローラアクチュエータ(40)と、ローリングアクチュエータ(60;60’)とを備え、
     各クローラユニット(5;5’)は、上記第1回転軸線(L1)に沿って延びるサポ―ト(10)と、上記サポ―トに設けられるとともに上記第1回転軸線を挟んで互いに離間して配置された一対のクローラ部(20A,20B)とを有し、
     上記クローラアクチュエータ(40)が上記一対のクローラ部(20A,20B)を駆動することにより、上記走行体が上記第1方向に沿ってクローラ走行し、上記ローリングアクチュエータ(60,60’)が上記クローラユニット(5,5’)を上記第1回転軸線(L1)を中心にローリングさせることにより、上記走行体が上記第2方向に沿ってローリング走行し、
     上記クローラユニット(5;5’)は、上記一対のクローラ部(20A,20B)のうち少なくとも一方が接地し上記クローラ部の駆動により上記クローラ走行が可能な走行可能ゾーンと、上記クローラ部の駆動による上記クローラ走行が不可能なデッドゾーンを有し、
     さらに、上記クローラユニット(5;5’)の姿勢を検出する姿勢検出センサ(72)と、上記クローラアクチュエータ(40)と上記ローリングアクチュエータ(60;60’)を制御するコントロール装置(70)とを備え、
     上記コントロール装置(70)は、上記クローラ走行の準備のために、上記姿勢検出センサ(72)からの上記クローラユニット(5;5’)の姿勢情報に基づき上記ローリングアクチュエータ(60;60’)を駆動させることにより、上記クローラユニットが上記走行可能ゾーンで接地する走行可能姿勢になるように、上記クローラユニットの姿勢制御を実行することを特徴とする走行体。
  2.  上記コントロール装置(70)は、上記ローリング走行中に停止指令信号を受けた時に、上記姿勢検出センサ(72)からの姿勢情報に基づき、上記クローラユニット(5;5’)が走行可能姿勢にあるか否かを判断し、肯定判断の時には走行を即座に停止させ、否定判断の時には上記クローラユニットが走行可能姿勢になるまで、ローリング走行中と同方向に上記クローラユニットをローリングさせることを特徴とする請求項1に記載の走行体。
  3.  上記コントロール装置(70)は、上記ローリング走行と上記クローラ走行を同時に行うことにより斜め走行を実行することができ、上記斜め走行中に停止指令信号を受けた時には、上記クローラ走行を即座に停止させるとともに、上記姿勢検出センサ(72)からの姿勢情報に基づき上記クローラユニット(5;5’)が上記走行可能姿勢にあるか否かを判断し、肯定判断の時にはローリング走行を即座に停止させ、否定判断の時には上記クローラユニットが上記走行可能姿勢になるまで、上記斜め走行中と同方向に上記クローラユニットをローリングさせることを特徴とする請求項1に記載の走行体。
  4.  上記コントロール装置(70)は、走行体の停止状態で上記クローラ走行の開始指令信号を受けた時に、上記姿勢検出センサ(72)からの姿勢情報に基づき上記クローラユニット(5;5’)が上記走行可能姿勢にあるか否かを判断し、肯定判断の時にはクローラ走行を即座に開始させ、否定判断の時には上記クローラユニットが走行可能姿勢になるまで上記クローラユニットをローリングさせた後で、上記クローラ走行を開始させることを特徴とする請求項1に記載の走行体。
  5.  上記コントロール装置(70)は、上記否定判断の時に、複数のクローラユニット(5;5’)を同方向にローリングさせることにより、これらクローラユニットの姿勢制御を行うことを特徴とする請求項4に記載の走行体。
  6.  複数のクローラユニット(5;5’)は対をなすクローラユニットを含んでおり、
     上記コントロール装置(70)は、上記否定判断の時に、一方のクローラユニット(5;5’)を停止させたまま他方のクローラユニット(5;5’)をローリングさせ、上記他方のクローラユニットの姿勢制御が終了した後、上記他方のクローラユニットを停止させたまま上記一方のクローラユニットの姿勢制御を行うことを特徴とする請求項4に記載の走行体。
  7.  複数のクローラユニット(5;5’)は対をなすクローラユニットを含んでおり、
     上記コントロール装置(70)は、上記否定判断の時に、対をなすクローラユニット(5:5’)を同時に逆方向へローリングさせることにより、上記クローラユニットの姿勢制御を行うことを特徴とする請求項4に記載の走行体。
  8.  上記クローラユニット(5;5’)の上記走行可能姿勢が、上記一対のクローラ部(20A,20B)が接地している基準姿勢であることを特徴とする請求項1~7のいずれかに記載の走行体。
  9.  上記クローラユニット(5;5’)の各クローラ部(20A、20B)は、上記第1回転軸線(L1)方向に離れて配置された一対のホイール(21,22)と、これらホイールに架け渡された無端条体(23)と、この無端条体に取り付けられた多数の接地ラグ(24)とを有し、上記一対のホイールは、上記第1回転軸線と直交するとともに互いに平行をなす第2回転軸線(L2,L2’)を中心として、上記サポ―トに回転可能に支持されており、
     上記クローラユニットの上記サポ―ト(10)には、上記一対のクローラ部(20A,20B)に対して第2回転軸線(L2,L2’)方向の外側に隣接する一対の接地構造(30A,30B)が取り付けられており、これら接地構造が、上記デッドゾーンを提供することを特徴とする請求項1~8のいずれかに記載の走行体。
  10.  ボデイ(1)と、このボデイに支持され第1方向に延びるとともにこの第1方向と直交する第2方向に互いに離間する複数のクローラ装置(2;2’)とを備えた走行体であって、
     上記複数のクローラ装置(2;2’)の各々は、上記第1方向に延びる第1回転軸線(L1)を中心に回転可能にして上記ボデイに支持されたクローラユニット(5;5’)と、クローラアクチュエータ(40)と、ローリングアクチュエータ(60;60’)とを備え、
     各クローラユニット(5;5’)は、上記第1回転軸線(L1)に沿って延びるサポ―ト(10)と、上記サポ―トに設けられるとともに上記第1回転軸線を挟んで互いに離間して配置された一対のクローラ部(20A,20B)とを有し、
     上記クローラアクチュエータ(40)が上記一対のクローラ部(20A,20B)を駆動させることにより、上記走行体が上記第1方向に沿ってクローラ走行し、上記ローリングアクチュエータ(60,60’)が上記クローラユニット(5,5’)を上記第1回転軸線(L1)を中心にローリングさせることにより、上記走行体が上記第2方向に沿ってローリング走行し、
     上記クローラユニット(5;5’)は、上記一対のクローラ部(20A,20B)のうち少なくとも一方が接地し上記クローラ部の駆動により上記クローラ走行が可能な走行可能ゾーンと、上記クローラ部の駆動による上記クローラ走行が不可能なデッドゾーンを有する走行体において、
     上記クローラ走行の準備のために、姿勢検出センサ(72)からの上記クローラユニット(5;5’)の姿勢情報に基づき上記ローリングアクチュエータ(60;60’)を駆動させることにより、上記クローラユニットが上記走行可能ゾーンで接地する走行可能姿勢になるように、上記クローラユニットの姿勢制御を実行することを特徴とする走行体の制御方法。
PCT/JP2016/069782 2015-07-06 2016-07-04 走行体およびその制御方法 WO2017006910A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017527452A JP6695877B2 (ja) 2015-07-06 2016-07-04 走行体およびその制御方法
US15/741,145 US10450014B2 (en) 2015-07-06 2016-07-04 Traveling apparatus and control method therefor
GB1801880.4A GB2556274B (en) 2015-07-06 2016-07-04 Traveling apparatus and control method therefor
CN201680047158.1A CN107922020B (zh) 2015-07-06 2016-07-04 行进设备及其控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015135592 2015-07-06
JP2015-135592 2015-07-06
JP2015255852 2015-12-28
JP2015-255852 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017006910A1 true WO2017006910A1 (ja) 2017-01-12

Family

ID=57685712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069782 WO2017006910A1 (ja) 2015-07-06 2016-07-04 走行体およびその制御方法

Country Status (5)

Country Link
US (1) US10450014B2 (ja)
JP (1) JP6695877B2 (ja)
CN (1) CN107922020B (ja)
GB (1) GB2556274B (ja)
WO (1) WO2017006910A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043257A (ja) * 2017-08-31 2019-03-22 トピー工業株式会社 クローラ装置および走行体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848585B (zh) * 2015-07-06 2019-11-19 都美工业股份有限公司 履带牵引装置和行走设备
WO2018008060A1 (ja) * 2016-07-04 2018-01-11 トピー工業株式会社 走行体
CN114834552B (zh) * 2022-06-09 2023-04-07 北京理工大学 一种可变形轮履转换机构及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270B2 (ja) * 1980-03-29 1988-01-06 Tokyo Shibaura Electric Co
JP2009241916A (ja) * 2008-03-31 2009-10-22 Kenjiro Tadakuma 円状断面を有する無限軌道機構
JP2014051221A (ja) * 2012-09-07 2014-03-20 Toyota Motor East Japan Inc 全方向車輪、全方向車輪ユニット及び移動体
JP2014193707A (ja) * 2012-05-26 2014-10-09 Ryukoku Univ クローラ型ロボット及びそれを連結した走行ロボット連結体。

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270A (ja) * 1986-06-18 1988-01-05 Nitta Zerachin Kk ゼラチンチューイングゼリー
JP3985870B2 (ja) 2003-11-20 2007-10-03 財団法人理工学振興会 クローラベルト,クローラ装置及びクローラベルトの製造方法
CN101863292B (zh) * 2010-05-20 2011-12-14 常州华通焊丝有限公司 履带式永磁爬行机
CN104443085B (zh) * 2014-11-18 2017-03-15 上海大学 履带式六自由度移动机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270B2 (ja) * 1980-03-29 1988-01-06 Tokyo Shibaura Electric Co
JP2009241916A (ja) * 2008-03-31 2009-10-22 Kenjiro Tadakuma 円状断面を有する無限軌道機構
JP2014193707A (ja) * 2012-05-26 2014-10-09 Ryukoku Univ クローラ型ロボット及びそれを連結した走行ロボット連結体。
JP2014051221A (ja) * 2012-09-07 2014-03-20 Toyota Motor East Japan Inc 全方向車輪、全方向車輪ユニット及び移動体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043257A (ja) * 2017-08-31 2019-03-22 トピー工業株式会社 クローラ装置および走行体

Also Published As

Publication number Publication date
CN107922020A (zh) 2018-04-17
JP6695877B2 (ja) 2020-05-20
JPWO2017006910A1 (ja) 2018-04-19
GB2556274B (en) 2021-03-31
GB2556274A (en) 2018-05-23
US20180186414A1 (en) 2018-07-05
CN107922020B (zh) 2020-02-21
US10450014B2 (en) 2019-10-22
GB201801880D0 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
WO2017006910A1 (ja) 走行体およびその制御方法
JP4759323B2 (ja) クローラ型走行装置
JP6695876B2 (ja) クローラ装置および走行体
KR20030046325A (ko) 자주식청소장치 및 자주식청소방법
JP6695974B2 (ja) 走行体
WO2012008005A1 (ja) 倒立振子型移動体および移動ロボット
JP5346480B2 (ja) 無人搬送車の走行モード切替制御装置及び切替制御方法
JP2017100531A (ja) 走行体
JP4953359B2 (ja) 無人搬送車
JP7162449B2 (ja) 走行体
KR101489512B1 (ko) 주행방향 전환 기능이 개선된 로봇청소기 및 그 주행방법
JP7162452B2 (ja) 移動体
JP2009083660A (ja) 走行台車
JPH02249769A (ja) 移動体の全方向走行装置
JP5344826B2 (ja) 運搬車
JP6890506B2 (ja) クローラ装置および走行体
JP2002355205A (ja) 移動作業ロボット
JPH11301508A (ja) 無人搬送車
JP3241182B2 (ja) 自立走行車
CN117177892A (zh) 行走车
JP5569489B2 (ja) 管内走行装置
JP2001130459A (ja) 移動台車
JP2022030117A (ja) 隅肉溶接台車
JP2007087145A (ja) 移動装置
JP2021062691A (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201801880

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160704

122 Ep: pct application non-entry in european phase

Ref document number: 16821379

Country of ref document: EP

Kind code of ref document: A1