WO2017006719A1 - 三相同期電動機の駆動装置 - Google Patents

三相同期電動機の駆動装置 Download PDF

Info

Publication number
WO2017006719A1
WO2017006719A1 PCT/JP2016/067648 JP2016067648W WO2017006719A1 WO 2017006719 A1 WO2017006719 A1 WO 2017006719A1 JP 2016067648 W JP2016067648 W JP 2016067648W WO 2017006719 A1 WO2017006719 A1 WO 2017006719A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational position
synchronous motor
position detector
phase synchronous
electric power
Prior art date
Application number
PCT/JP2016/067648
Other languages
English (en)
French (fr)
Inventor
崇文 原
安島 俊幸
滋久 青柳
佐々木 光雄
巧 久積
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112016003040.1T priority Critical patent/DE112016003040T5/de
Priority to CN201680036609.1A priority patent/CN107787549B/zh
Priority to KR1020177037679A priority patent/KR20180014075A/ko
Priority to US15/736,233 priority patent/US10411621B2/en
Publication of WO2017006719A1 publication Critical patent/WO2017006719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the present invention controls a drive device for a three-phase synchronous motor including an electric power steering device, and more particularly, controls a three-phase synchronous motor based on an output of a rotational position detector that detects the position of a rotor of the three-phase synchronous motor.
  • the present invention relates to a drive device for a three-phase synchronous motor.
  • a three-phase synchronous motor in general, the rotational position of a rotor provided with a magnet is detected by a magnetic detection element such as a Hall IC, and the armature coil on the stator side is sequentially excited based on the detection result. Is rotating.
  • a resolver, an encoder, a GMR sensor, or the like that is a precise rotational position detector, driving with a sine wave current can be realized, and vibrations such as torque ripple and noise can be reduced.
  • the three-phase synchronous motor will not be able to rotate immediately.
  • a resolver, an encoder, or a GMR sensor is used as the rotational position detector.
  • the failure of the rotational position detector causes a malfunction or abnormal operation in a driving device for a three-phase synchronous motor such as an electric power steering, and therefore, improvement has been demanded.
  • the invention described in Patent Document 1 has a rotational position estimating means for estimating the position from the voltage and current of the three-phase synchronous motor in addition to the rotational position detector when the rotational position detector fails.
  • this rotational position estimating means as an alternative to the output of the rotational position detector, the three-phase synchronous motor can be stably driven even when the rotational position detector is out of order.
  • An object of the present invention is to provide a drive device for a three-phase synchronous motor that improves the reliability of the rotational position detector of the three-phase synchronous motor without increasing the cost of the rotational position detector.
  • a drive device for a three-phase synchronous motor is a drive device that controls the three-phase synchronous motor based on a signal from a rotational position detector that detects the rotational position of the three-phase synchronous motor, wherein the rotational position is
  • the detector has a redundant system configuration including a first rotational position detector and a second rotational position detector, and the drive device controls the three-phase synchronous motor from a zero rotational speed to a rated speed control state.
  • a normal rotational position detector is specified from the first rotational position detector or the second rotational position detector based on the rotational position.
  • the rotational position estimation means determines which of the two rotational position detectors is malfunctioning. By doing so, it is possible to operate without reducing the output of the three-phase synchronous motor due to the failure of one of the two rotational position detectors.
  • FIG. 1 shows the configuration of a driving device 6 for a three-phase synchronous motor.
  • the three-phase synchronous motor drive device 6 is intended to drive the three-phase synchronous motor 4.
  • a driving device 6 for a three-phase synchronous motor according to the present embodiment is configured to include a detection position determination means 1, a rotational position estimation means 2, a power converter 3, a three-phase synchronous motor 4 to be driven, and a control unit 5.
  • a feature of the drive device is that the rotational position estimating means 2 determines a failure (abnormality) of the first rotational position detector 41 and the second rotational position detector 42 and correctly outputs the rotational position. It is to drive the three-phase synchronous motor 4 using a detector.
  • the detection position determination means 1 receives the output ⁇ 1 of the first rotational position detector 41, the output ⁇ 2 of the second rotational position detector 42, and the output ⁇ 3 of the rotational position estimation means 2. The And the detection position determination means 1 outputs rotation position (theta).
  • FIG. 2 is a diagram showing a processing flow of the detection position determination means 1.
  • the detection position determination means 1 first determines whether ⁇ 1 and ⁇ 2 that are the outputs of the two rotational position detectors are substantially the same. When the outputs are substantially matched, ⁇ 1 is used. In the present embodiment, ⁇ 1 is used, but a configuration using ⁇ 2 may be used.
  • ⁇ 1 and ⁇ 2 are different, it can be determined that either the rotational position detector 41 or the rotational position detector 42 is out of order. However, it cannot be determined which of the rotational position detector 41 and the rotational position detector 42 is out of order.
  • the output ⁇ 3 of the rotational position estimating means 2 is used to determine which is outputting correctly. First, it is determined whether ⁇ 1 and ⁇ 3 are substantially the same. If the outputs substantially match, it is determined that ⁇ 1 is an output from a normal rotational position detector, and ⁇ 1 is used. On the other hand, if the outputs of ⁇ 1 and ⁇ 3 are different, it is determined whether ⁇ 2 and ⁇ 3 are substantially the same. If the outputs substantially match, it is determined that ⁇ 2 is an output from a normal rotational position detector, and ⁇ 2 is used. If ⁇ 2 and ⁇ 3 are different, ⁇ 3 is used.
  • the comparison target ⁇ 1, ⁇ 2, and ⁇ 3 are corrected at the same time by correcting the three positions by correcting the detection timing of the rotational position detector. By doing in this way, since the rotation position at the same timing can be detected appropriately, it is possible to prevent erroneous detection of a failure of the rotation position detector when comparing the rotation positions.
  • the detection position determination means 1 By configuring the detection position determination means 1 as shown in FIG. 2, even if the first rotational position detector 41 or the second rotational position detector 42 fails, a normal rotational position detector can be used. It is possible to select and output the torque of the three-phase synchronous motor similar to that in the normal state. Furthermore, even if both the first rotational position detector 41 and the second rotational position detector 42 fail, the rotational position estimation means 2 is used to maintain the drive of the three-phase synchronous motor. Therefore, redundancy can be ensured.
  • FIG. 3 shows the configuration of the rotational position estimating means 2.
  • the rotational position estimation means 2 estimates the rotational position estimated value ⁇ 3 from the virtual neutral point Vn. There are known techniques for estimating the rotational position estimation value ⁇ 3 from the detected virtual neutral point Vn at this time, and one of them will be introduced.
  • the rotational position estimation means 2 includes a neutral point potential detection unit 21, a sample / hold unit 22, and a rotational position estimation unit 23.
  • the neutral point potential detector 21 detects the virtual neutral point potential Vn0 according to the pulse width modulation signal output from the pulse width modulation signal output means 33. At this time, there is a known technique for detecting the virtual neutral point potential Vn0 from the three-phase synchronous motor 4, and it is omitted because it is not a main part of the present invention.
  • the sample / hold unit 22 is an A / D converter for sampling and quantizing the analog signal output of the neutral point potential detection unit 21.
  • the sample / hold unit 22 samples this Vn0 in synchronization with the pulse width modulation signal output from the pulse width modulation signal output means 33.
  • the sample / hold unit 22 outputs the sampled result (Vn0h) to the rotational position estimation unit 23 as a digital signal.
  • the rotational position estimation unit 23 calculates an estimated value ⁇ 3 of the rotational position of the three-phase synchronous motor 4 based on the neutral point potential sampled by the sample / hold unit 22. This estimation result is output as the output ⁇ 3 of the rotational position estimation means 2.
  • the feature of the rotational position estimating means 2 is that torque can be generated when the rotational speed of the three-phase synchronous motor is zero.
  • a means for estimating the rotational position estimated value ⁇ 3 from the virtual neutral point Vn has been introduced.
  • a method based on the magnetic saturation electromotive force a difference in saliency of the three-phase synchronous motor 4 is introduced.
  • the three-phase winding connection point neutral point
  • the rotational position estimating means 2 can detect the rotational position and output torque.
  • an abnormality of the first rotational position detector 41 and the second rotational position detector 42 is detected by comparing the output ⁇ 3 of the rotational position estimation means 2 with ⁇ 1 and ⁇ 2. Thereby, the three-phase synchronous motor 4 can be started from the stopped state using the output ⁇ 3 of the normal rotational position estimating means 2.
  • the control unit 5 generates a pulse width modulation signal from the output ⁇ of the detection position determination unit 1.
  • the power converter 3 applies a voltage to the three-phase synchronous motor 4 based on the pulse width modulation signal output from the control unit 5.
  • the power converter 3 includes a DC power supply 31, a power conversion circuit 32, a pulse width modulation signal output means 33, a virtual neutral point potential detection circuit 34, a three-phase current detector 35, and a shunt current detector 36.
  • the DC power supply 31 is a DC power supply that supplies current to the power conversion circuit 32.
  • the power conversion circuit 32 is a power conversion circuit including six switching elements Sup to Swn.
  • the pulse width modulation signal output means 33 is a driver that inputs the pulse width modulation signal output from the control unit 5 to the power converter 32.
  • the neutral point potential detector 34 detects a virtual neutral point Vn used for the rotational position estimating means. Instead of the virtual neutral point Vn, the neutral point potential of the three-phase synchronous motor 4 may be directly detected.
  • the three-phase current detector 35 is a current detector that detects three-phase currents Iu, Iv, and Iw flowing through the three-phase synchronous motor 4.
  • the current detection of the three-phase synchronous motor 4 it is desirable to directly detect the three-phase current supplied from the power conversion circuit 32 to the three-phase synchronous motor 4 like the current detector 35.
  • the currents Iu, Iv, and Iw in which the DC current Idc flowing through the resistor 36 is detected and the three-phase current is reproduced may be used. There are known techniques regarding a method for reproducing the three-phase currents Iu, Iv, and Iw from the direct current Idc.
  • the rotational position estimation means determines which of the two rotational position detectors is malfunctioning. By doing so, even if one of the two rotational position detectors fails, the operation can be continued without lowering the output of the three-phase synchronous motor. Since the rotational position estimating means as shown in the present embodiment can be realized without adding hardware such as a rotational position detector, the three-phase synchronous motor can be realized without increasing the cost of the rotational position detector. The reliability of the rotational position detector can be improved.
  • FIG. 5 shows the configuration of the electric power steering device 8.
  • the torque sensor 82 detects the rotational torque of the steering wheel 81. Torque detected by the torque sensor 82 is input to the driving device 6 and the three-phase synchronous motor 4 outputs torque based on a command corresponding to the torque. The output torque of the three-phase synchronous motor 4 assists the steering force via the steering assist mechanism 83 and is output to the steering mechanism 84. Then, the tire 85 is steered by the steering mechanism 84.
  • FIG. 6 shows the configuration of the drive device 6 for a three-phase synchronous motor according to the present embodiment.
  • this embodiment has the 1st rotation position estimation means 2 and the 2nd rotation position estimation means 2 as a rotation position estimation means.
  • the second embodiment is different from the first embodiment in that the second rotational position estimating means 7 is provided.
  • the first rotational position estimating means 2 and the second rotational position estimating means 7 include a method based on the virtual neutral point Vn introduced in the first embodiment, a method based on the magnetic saturation electromotive voltage, and a three-phase synchronous motor. Any two of the methods using a saliency of 4 may be used.
  • the feature of these three rotational position estimating means is that the drive control of the three-phase synchronous motor is possible even when the rotational speed of the three-phase synchronous motor is 0, and torque can be output. In the electric power steering apparatus provided with such a rotational position estimating means, torque can be output even when the rotational speed of the three-phase synchronous motor is 0. For example, even when the tire of the vehicle runs on a step, the handle of the driver Can be assisted.
  • the first rotational position estimation means 2 can estimate the rotational position even when the three-phase synchronous motor 4 is stopped. Therefore, the first rotational position is detected by comparing ⁇ 3 with ⁇ 1 and ⁇ 2.
  • the abnormality of the detector 41 and the second rotational position detector 42 can be detected. Further, even when the speed of the automobile is equal to or lower than the predetermined speed and the three-phase synchronous motor 4 is stopped, the first rotational position estimating means 2 can estimate the rotational position. Therefore, by comparing ⁇ 3 with ⁇ 1 and ⁇ 2.
  • the abnormality of the first rotational position detector 41 and the second rotational position detector 42 can be detected.
  • the first rotational position detection is performed by comparing the output ⁇ 3 of the first rotational position estimating means 2 with ⁇ 1 and ⁇ 2.
  • the three-phase synchronous motor 4 can be continuously driven and the steering force can be assisted using the normal output ⁇ 3 of the first rotational position estimating means 2. .
  • FIG. 7 shows the processing of the detection position selection means 9, which is a feature of the second embodiment.
  • the detection position selection means 9 receives ⁇ 1 to ⁇ 4 which are outputs of the first rotation position detector 41, the second rotation position detector 42, the first rotation position estimation means 2 and the second rotation position estimation means 7. Then, the estimated rotational position value ⁇ is output.
  • the detection position selection means 9 first determines whether ⁇ 1 and ⁇ 2 that are the outputs of the two rotational position detectors are substantially the same. When the outputs are substantially matched, ⁇ 1 is used. However, when ⁇ 1 and ⁇ 2 are different, it cannot be determined which rotational position detector is out of order. Therefore, the output ⁇ 3 of the rotational position estimating means 2 is used to determine which is outputting correctly.
  • ⁇ 1 and ⁇ 3 substantially match. If the outputs substantially match, ⁇ 1 is used. If the outputs of ⁇ 1 and ⁇ 3 are different, it is determined whether ⁇ 2 and ⁇ 3 are substantially the same. When the outputs are almost the same, ⁇ 2 is used. If ⁇ 2 and ⁇ 3 are different, it is determined whether ⁇ 3 and ⁇ 4 are substantially the same. When the outputs are almost the same, ⁇ 3 is used. When the outputs of ⁇ 3 and ⁇ 4 are different, ⁇ 4 is used.
  • the detection position selection means 9 By configuring the detection position selection means 9 as shown in FIG. 7, even if either the first rotational position detector 41 or the second rotational position detector 42 fails, the normal one Rotational position detectors can be used. Thereby, the steering force can be assisted as usual in the electric power steering.
  • the steering force can be assisted by using the first rotational position estimation means 2.
  • the second rotational position estimating means 7 can be used, so that a quadruple redundant system can be provided at low cost.
  • the detection position selection means 9 uses the first rotational position estimation means 2 and the first rotational position estimation means 2. ⁇ 3 and ⁇ 4, which are the outputs of the rotational position estimating means 7 of No. 2, are used. At this time, the driver is notified of the failure, and the output of the three-phase synchronous motor is gradually decreased. In this way, even when the electric power steering system fails, the driver can safely stop the vehicle.
  • the comparison targets ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are corrected at the same time by correcting the three positions by correcting the detection timing of the rotational position detector. By doing in this way, since the rotation position at the same timing can be detected appropriately, erroneous detection can be prevented when comparing the rotation positions.
  • 1 detection position determination means
  • 2 rotation position estimation means (first rotation position estimation means), 21: neutral point potential detection section, 22: sample / hold section, 23: rotation position estimation section
  • 3 power conversion , 31: DC power supply, 32: Power conversion circuit, 33: Pulse width modulation signal output means, 34: Virtual neutral point potential detection circuit, 35: Three-phase current detector, 36: Shunt current detector, 4: Three Phase synchronous motor, 41: first rotational position detector, 42: second rotational position detector, 5: control unit, 6: driving device for three-phase synchronous motor, 7: second rotational position estimating means, 8 : Electric power steering device, 81: steering wheel, 82: torque sensor, 83: steering assist mechanism, 84: steering mechanism, 85: tire, 9: detection position selection means

Abstract

三相同期電動機の駆動装置において、2つある回転位置検出器の一方が故障した時、回転位置検出器の出力が異常であり故障している状態の回転位置検出器を特定するために、3つ以上の回転位置検出器が必要となり、回転位置検出器のコストが増大するという課題がある。2つある回転位置検出器(41、42)の出力を比較することで、回転位置検出器の異常を検出する。そして、回転位置推定手段(2)により、異常である回転位置検出器を特定する。第1と第2のいずれか一方の正常な回転位置検出器の出力θを用いて、三相同期電動機の駆動を制御する。

Description

三相同期電動機の駆動装置
 本発明は、電動パワーステアリング装置を始めとする三相同期電動機の駆動装置、特に、三相同期電動機の回転子の位置を検出する回転位置検出部の出力に基づいて三相同期電動機を制御する三相同期電動機の駆動装置に関する。
 産業、家電、自動車等の様々な分野において、小型・高効率の三相同期電動機が幅広く用いられている。しかし、三相同期電動機では一般に、磁石を備えた回転子の回転位置をホールICなどの磁気検出素子で検出し、その検出結果に基づき、固定子側の電機子コイルを順次励磁して回転子を回転させている。加えて、精密な回転位置検出器であるレゾルバやエンコーダ、GMRセンサなどを用いることで、正弦波電流での駆動を実現でき、トルクリプルなどの振動や騒音の低減を図っているものもある。
 しかし、この回転位置検出器が故障すると、三相同期電動機はすぐに回転できなくなる。これは、回転位置検出器にレゾルバやエンコーダ、GMRセンサを用いた場合も同様である。このように、回転位置検出器の故障は、電動パワーステアリングなどの三相同期電動機の駆動装置において作動不良や異常運転の原因となるため、改善が求められてきた。
 特許文献1に記載された発明は、この回転位置検出器の故障に際して回転位置検出器以外に、三相同期電動機の電圧と電流から位置を推定する回転位置推定手段を有している。この回転位置推定手段を回転位置検出器の出力の代替として使用することで、回転位置検出器の故障時にも三相同期電動機を安定して駆動することができる。
特開2010-22196号公報
 特許文献1のように、回転位置検出器の故障に際して回転位置検出器の代わりに回転位置推定手段を使用した場合、三相同期電動機の駆動は継続して行うことができる。しかし、実際の回転子の位置と推定の回転子の位置との間に差が発生し、三相同期電動機の出力が低下する。そこで、回転位置検出精度が高いレゾルバやエンコーダ,GMRセンサなどの回転位置検出器を2つにすることで、一方の回転位置検出器の故障に際してもう一方の回転位置検出器を使用することが考えられる。しかし、この方法だと2つの回転位置検出器のうちどちらが故障しているか判別できないため、回転位置検出器を3つ以上とする必要があり、回転位置検出器のコストの増大が課題となっていた。
 本発明の目的は、回転位置検出器のコストを増大させることなく、三相同期電動機の回転位置検出器の信頼性を向上させる三相同期電動機の駆動装置を提供することにある。
 本発明に係る三相同期電動機の駆動装置は、三相同期電動機の回転位置を検出する回転位置検出器からの信号に基づいて当該三相同期電動機を制御する駆動装置であって、前記回転位置検出器は、第1の回転位置検出器および第2の回転位置検出器を含む冗長系の構成であり、前記駆動装置は、前記三相同期電動機の回転速度が零から定格速度の制御状態を用い回転位置を演算する回転位置推定手段を有し、前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、前記回転位置推定手段が演算した回転位置に基づいて、前記第1の回転位置検出器または前記第2の回転位置検出器のうち正常な回転位置検出器を特定することを特徴とする。
 本発明の望ましい実施の形態に係る三相同期電動機の駆動装置によれば、2つの回転位置検出器のうちいずれが故障しているかを回転位置推定手段により判定する。そうすることで、2つのうち1つの回転位置検出器の故障により、三相同期電動機の出力を低下させることなく動作できる。
 本発明のその他の目的と特徴は、以下に述べる実施例で明らかにする。
第1の実施の形態に係る三相同期電動機の駆動装置の構成図である。 検出位置判定手段1の処理である。 中性点電位に基づく位置推定手段2を示したブロック図である。 電流検出にシャント電流検出部36を用いた三相同期電動機の駆動装置の構成図である。 第2の実施の形態に係る電動パワーステアリング装置の構成図である。 第2の実施の形態に関わる三相同期電動機の駆動装置の構成を示すブロック図である。 検出位置選択手段9の処理である。
 以下、図面を参照して、本発明に係る電力変換装置の実施の形態について説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
 (第1の実施形態)
 図1から図4を用いて、本発明に関わる三相同期電動機の駆動装置における第1の実施の形態について説明する。
 図1は、三相同期電動機の駆動装置6の構成である。三相同期電動機の駆動装置6は、三相同期電動機4の駆動を目的とするものである。本実施形態に係る三相同期電動機の駆動装置6は、検出位置判定手段1、回転位置推定手段2、電力変換器3および駆動対象である三相同期電動機4、制御部5を含んで構成される。
 本実施形態に係る駆動装置の特徴は、第1の回転位置検出器41と第2の回転位置検出器42の故障(異常)を回転位置推定手段2によって判定し、正しく出力している回転位置検出器を使用して三相同期電動機4を駆動することである。
 図1に示されるように、検出位置判定手段1は、第1の回転位置検出器41の出力θ1、第2の回転位置検出器42の出力θ2および回転位置推定手段2の出力θ3が入力される。そして、検出位置判定手段1は、回転位置θを出力する。
 図2は、検出位置判定手段1の処理フローを示す図である。検出位置判定手段1では、最初に2つある回転位置検出器の出力であるθ1とθ2が略一致しているかを判定する。出力が略一致した場合、θ1を用いる。なお、本実施形態ではθ1を用いているが、θ2を用いる構成としてもよい。
 θ1とθ2が異なる場合、回転位置検出器41または回転位置検出器42のいずれか一方が故障していると判断することができる。しかし、回転位置検出器41または回転位置検出器42のうちいずれの回転位置検出器が故障しているかを判定することはできない。
 そこで、回転位置推定手段2の出力θ3を使用し、どちらが正しい出力をしているか判定する。まず、θ1とθ3が略一致しているかを判定する。出力が略一致した場合、θ1を正常な回転位置検出器による出力であると判断し、θ1を用いる。一方、θ1とθ3の出力が異なる場合、θ2とθ3が略一致しているかを判定する。出力が略一致した場合、θ2を正常な回転位置検出器による出力であると判断し、θ2を用いる。そして、θ2とθ3が異なる場合は、θ3を用いる。
 比較対象のθ1、θ2およびθ3は、回転位置検出器の検出タイミングを補正することで、3つの位置を補正し同一時間での比較を行う。このようにすることで、適切に同じタイミングでの回転位置を検出することができるため、回転位置を比較するときに回転位置検出器の故障の誤検知を防止できる。
 検出位置判定手段1を図2のような構成とすることで、第1の回転位置検出器41もしくは第2の回転位置検出器42が故障した場合であっても、正常な回転位置検出器を選択し、正常時と同様の三相同期電動機のトルクを出力することができる。さらに、第1の回転位置検出器41および第2の回転位置検出器42が共に故障した場合であっても、回転位置推定手段2を使用することで、三相同期電動機の駆動を維持することが可能となり、冗長性を確保することができる。
 図3は、回転位置推定手段2の構成である。回転位置推定手段2は、仮想中性点Vnから回転位置推定値θ3を推定する。この際の、検出された仮想中性点Vnから回転位置推定値θ3を推定する手法については公知の技術があるが、そのうちの1つを紹介する。回転位置推定手段2は、中性点電位検出部21、サンプル/ホールド部22および回転位置推定部23から構成される。
 中性点電位検出部21は、パルス幅変調信号出力手段33の出力のパルス幅変調信号に応じて仮想中性点電位Vn0を検出する。この際の、三相同期電動機4から仮想中性点電位Vn0を検出する手法については公知の技術があり、また本発明の主要な部分ではないので省略する。
 サンプル/ホールド部22は、中性点電位検出部21のアナログ信号出力を標本化量子化(サンプリング)するためのA-D変換器である。サンプル/ホールド部22は、このVn0をパルス幅変調信号出力手段33の出力のパルス幅変調信号に同期してサンプリングする。サンプル/ホールド部22は、このサンプリングされた結果(Vn0h)を回転位置推定部23に対してデジタル信号として出力する。
 回転位置推定部23は、サンプル/ホールド部22によってサンプリングされた中性点電位に基づき、三相同期電動機4の回転位置の推定値θ3を演算する。この推定結果は、回転位置推定手段2の出力θ3として出力される。
 回転位置推定手段2の特徴は、三相同期電動機の回転速度が0のときにトルクを出せることである。回転位置推定手段2として、本実施の形態では仮想中性点Vnにより回転位置推定値θ3を推定する手段を紹介したが、磁気飽和起電圧に基づく方法、三相同期電動機4の突極性の差を利用する方法が知られており、このうちのいずれかの方法を用いてもよい。また、仮想中性点の代わりに三相巻線接続点(中性点)を直接引き出して検出してもよい。三相同期電動機4が停止状態でも、回転位置推定手段2は回転位置を検出できトルクを出力できる。
 また、回転位置推定手段2の出力θ3と、θ1とθ2と比較することで、第1の回転位置検出器41および第2の回転位置検出器42の異常を検出する。これにより、正常な回転位置推定手段2の出力θ3を用い、停止状態から三相同期電動機4を始動できる。
 図1に戻って説明する。制御部5は、検出位置判定手段1の出力θからパルス幅変調信号を生成する。電力変換器3は、制御部5の出力のパルス幅変調信号に基づいて、三相同期電動機4に電圧を与える。電力変換器3は直流電源31、電力変換回路32、パルス幅変調信号出力手段33、仮想中性点電位検出回路34、三相電流検出器35およびシャント電流検出器36から構成される。
 直流電源31は、電力変換回路32に電流を供給する直流電源である。電力変換回路32は、6個のスイッチング素子Sup~Swnで構成される電力変換回路である。パルス幅変調信号出力手段33は制御部5の出力のパルス幅変調信号を電力変換器32に入力するドライバである。中性点電位検出部34は、回転位置推定手段に使用する仮想中性点Vnを検出する。仮想中性点Vnの代わりに、三相同期電動機4の中性点電位を直接検出してもよい。三相電流検出器35は、三相同期電動機4を流れる三相の電流Iu、Iv、Iwを検出する電流検出器である。三相同期電動機4の電流検出は、電流検出器35のように電力変換回路32から三相同期電動機4に供給される三相の電流を直接検出することが望ましいが、図4のようにシャント抵抗36を流れる直流電流Idcを検出し三相電流を再現した電流Iu、Iv、Iwを用いてもよい。直流電流Idcから三相の電流Iu、Iv、Iwを再現する方法に関しては公知の技術があり、また本発明の主要な部分ではないので省略する。
 上述した本実施形態に係る三相同期電動機の駆動装置によれば、2つの回転位置検出器のうちいずれが故障しているかを回転位置推定手段により判定する。そうすることで、2つのうち1つの回転位置検出器が故障しても、三相同期電動機の出力を低下させることなく動作を継続させることができる。本実施形態に示した様な回転位置推定手段は、回転位置検出器のようなハードを追加することなく実現することができるため、回転位置検出器のコストを増大させることなく、三相同期電動機の回転位置検出器の信頼性を向上させることができる。
 (第2の実施の形態)
 図5から図7を用いて、本発明に関わる電動パワーステアリングに係る第2の実施の形態について説明する。
 図5は、電動パワーステアリング装置8の構成である。運転者がステアリングホイール81を操作すると、ステアリングホイール81の回転トルクをトルクセンサ82が検知する。トルクセンサ82が検知したトルクは駆動装置6に入力され、当該トルクに応じた指令に基づいて三相同期電動機4がトルクを出力する。三相同期電動機4の出力トルクは、ステアリングアシスト機構83を介して操舵力をアシストし、ステアリング機構84へ出力される。そして、ステアリング機構84により、タイヤ85を転舵する。
 図6は、本実施形態に係る三相同期電動機の駆動装置6の構成である。本実施形態では、回転位置推定手段として、第1の回転位置推定手段2と第2の回転位置推定手段2を有する。第1の実施形態とは、第2の回転位置推定手段7を備える点で相違する。
 第1の回転位置推定手段2および第2の回転位置推定手段7には、第1の実施の形態で紹介した仮想中性点Vnに基づく方法、磁気飽和起電圧に基づく方法、三相同期電動機4の突極性を用いる方法のいずれか2つを使用してよい。これら3つの回転位置推定手段の特徴は、三相同期電動機の回転速度が0のときにも三相同期電動機の駆動制御が可能であり、トルクを出力できることである。このような回転位置推定手段を備えた電動パワーステアリング装置では、三相同期電動機の回転速度が0でもトルクを出力できるため、例えば車両のタイヤが段差に乗り上げたような場合などでも、ドライバのハンドルをアシスト駆動できる。
 上記の特徴より、三相同期電動機4が停止状態でも、第1の回転位置推定手段2は回転位置を推定できるため、θ3と、θ1およびθ2とを比較することで、第1の回転位置検出器41および第2の回転位置検出器42の異常を検出できる。また、自動車の速度が所定の速度以下で三相同期電動機4が停止状態においても、第1の回転位置推定手段2は回転位置を推定できるため、θ3と、θ1およびθ2とを比較することで、第1の回転位置検出器41および第2の回転位置検出器42の異常を検出できる。
 三相同期電動機4の回転速度が0で、自動車が所定の速度以下の場合も、第1の回転位置推定手段2の出力θ3と、θ1とθ2と比較することで、第1の回転位置検出器41および第2の回転位置検出器42の異常を検出することで、正常な第1の回転位置推定手段2の出力θ3を用い、三相同期電動機4を継続駆動でき、操舵力をアシストできる。
 図7は、第2の実施の形態の特徴である検出位置選択手段9の処理である。検出位置選択手段9は第1の回転位置検出器41、第2の回転位置検出器42、第1の回転位置推定手段2および第2の回転位置推定手段7の出力であるθ1からθ4が入力され、回転位置推定値θを出力する。検出位置選択手段9では、まず2つある回転位置検出器の出力であるθ1とθ2が略一致しているかを判定する。出力が略一致した場合、θ1を用いる。しかし、θ1とθ2が異なる場合、どちらの回転位置検出器が故障しているか判定できない。そこで、回転位置推定手段2の出力θ3を使用し、どちらが正しい出力をしているか判定する。次に、θ1とθ3が略一致しているかを判定し、出力が略一致した場合、θ1を用いる。θ1とθ3の出力が異なる場合、θ2とθ3が略一致しているかを判定する。出力が略一致した場合、θ2を用いる。そして、θ2とθ3が異なる場合は、θ3とθ4が略一致しているかを判定する。出力が略一致した場合、θ3を用いる。θ3とθ4の出力が異なる場合、θ4を用いる。
 検出位置選択手段9を図7のような構成とすることで、第1の回転位置検出器41もしくは第2の回転位置検出器42のいずれか一方が故障した場合であっても、正常な方の回転位置検出器を使用することができる。これにより、電動パワーステアリングにおいて通常と変わらず操舵力をアシストできる。
 第1の回転位置検出器41もしくは第2の回転位置検出器42が共に故障した場合は、第1の回転位置推定手段2を使用することで、操舵力をアシストできる。加えて、第1の回転位置推定手段2の出力が異常の場合も、第2の回転位置推定手段7を用いることができるため、四重の冗長系を低コストで提供できる。
 第1の回転位置検出器41の出力θ1と第2の回転位置検出器41の出力θ2が共に異常となり故障している場合、検出位置選択手段9では、第1の回転位置推定手段2および第2の回転位置推定手段7の出力であるθ3およびθ4を使用する。このとき、故障であることをドライバへ知らせ、三相同期電動機の出力を漸減させる。このようにすることで、電動パワーステアリングシステムが故障した場合でも、ドライバ自身で安全に自動車を停止させることができる。
 比較対象のθ1、θ2、θ3およびθ4は、回転位置検出器の検出タイミングを補正することで、3つの位置を補正し同一時間での比較を行う。このようにすることで、適切に同じタイミングでの回転位置を検出することができるため、回転位置を比較するときに誤検知を防止できる。
1:検出位置判定手段,2:回転位置推定手段(第1の回転位置推定手段),21:中性点電位検出部,22:サンプル/ホールド部,23:回転位置推定部,3:電力変換器,31:直流電源,32:電力変換回路,33:パルス幅変調信号出力手段,34:仮想中性点電位検出回路,35:三相電流検出器,36:シャント電流検出器,4:三相同期電動機,41:第1の回転位置検出器,42:第2の回転位置検出器,5:制御部,6:三相同期電動機の駆動装置,7:第2の回転位置推定手段,8:電動パワーステアリング装置,81:ステアリングホイール,82:トルクセンサ,83:ステアリングアシスト機構,84:ステアリング機構,85:タイヤ,9:検出位置選択手段

Claims (20)

  1.  三相同期電動機の回転位置を検出する回転位置検出器からの信号に基づいて当該三相同期電動機を制御する駆動装置であって、
     前記回転位置検出器は、第1の回転位置検出器および第2の回転位置検出器を含む冗長系の構成であり、
     前記駆動装置は、前記三相同期電動機の回転速度が零から定格速度の制御状態を用い回転位置を演算する回転位置推定手段を有し、
     前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、前記回転位置推定手段が演算した回転位置に基づいて、前記第1の回転位置検出器または前記第2の回転位置検出器のうち正常な回転位置検出器を特定することを特徴とする三相同期電動機の駆動装置。
  2.  請求項1に記載の三相同期電動機の駆動装置において、
     前記第1の回転位置検出器の出力信号と前記第2の回転位置検出器の出力信号とが略一致している場合、前記第1の回転位置検出器の出力信号または前記第2の回転位置検出器の出力信号のいずれか一方の信号に基づいて前記三相同期電動機を制御することを特徴とする三相同期電動機の駆動装置。
  3.  請求項1に記載の三相同期電動機の駆動装置において、
     前記三相同期電動機の回転速度が零の場合、前記回転位置推定手段の出力信号に基づいて前記三相同期電動機を制御することを特徴とする三相同期電動機の駆動装置。
  4.  請求項1に記載の三相同期電動機の駆動装置において、
     前記第1の回転位置検出器の出力信号と前記第2の回転位置検出器の出力信号とが異なる場合に、前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常として検出することを特徴とする三相同期電動機の駆動装置。
  5.  請求項1に記載の三相同期電動機の駆動装置において、
     前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、正常な方の回転位置検出器の信号に基づいて前記三相同期電動機の駆動を継続することを特徴とする三相同期電動機の駆動装置。
  6.  請求項5に記載の三相同期電動機の駆動装置において、
     正常と判断された前記回転位置検出器の出力信号と前記回転位置推定手段の出力信号とを比較し、前記正常と判断された前記回転位置検出器の異常を判断することを特徴とする三相同期電動機の駆動装置。
  7.  請求項1に記載の三相同期電動機の駆動装置において、
     前記第1および第2の回転位置検出器の検出タイミングと前記回転位置推定手段の検出タイミングの差を補正することを特徴とする三相同期電動機の駆動装置。
  8.  三相同期電動機の回転位置を検出する回転位置検出器からの信号に基づいて当該三相同期電動機を制御する駆動装置と、
     前記三相同期電動機により操舵トルクをアシストするステアリングアシスト機構と、を備えたパワーステアリング装置であって、
     前記回転位置検出器は、第1の回転位置検出器および第2の回転位置検出器を含む冗長系の構成であり、
     前記駆動装置は、前記三相同期電動機の回転速度が零から定格速度の制御状態を用い回転位置を演算する回転位置推定手段を有し、
     前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、前記回転位置推定手段が演算した回転位置に基づいて、前記第1の回転位置検出器または前記第2の回転位置検出器のうち正常な回転位置検出器を特定することを特徴とする電動パワーステアリング装置。
  9.  請求項8に記載の電動パワーステアリング装置において、
     前記第1の回転位置検出器の出力信号と前記第2の回転位置検出器の出力信号とが略一致している場合、前記第1の回転位置検出器の出力信号または前記第2の回転位置検出器の出力信号のいずれか一方の信号に基づいて前記三相同期電動機を制御することを特徴とする電動パワーステアリング装置。
  10.  請求項8に記載の電動パワーステアリング装置において、
     前記三相同期電動機の回転速度が零の場合、前記回転位置推定手段の出力信号に基づいて前記三相同期電動機を制御することを特徴とする電動パワーステアリング装置。
  11.  請求項10の電動パワーステアリング装置において、
     前記三相同期電動機が停止している状態で、前記第1と第2の回転位置検出器の出力が定常範囲に入っていないことで異常を検出することを特徴とする電動パワーステアリング装置。
  12.  請求項11の電動パワーステアリング装置において、
     車両の速度が所定の速度以下のときに、前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出することを特徴とする電動パワーステアリング装置。
  13.  請求項8に記載の電動パワーステアリング装置において、
     前記第1の回転位置検出器の出力信号と前記第2の回転位置検出器の出力信号とが異なる場合に、前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常として検出することを特徴とする電動パワーステアリング装置。
  14.  請求項8に記載の電動パワーステアリング装置において、
     前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、正常な方の回転位置検出器の信号に基づいて前記三相同期電動機の駆動を継続することを特徴とする電動パワーステアリング装置。
  15.  請求項14に記載の電動パワーステアリング装置において、
     正常と判断された前記回転位置検出器の出力信号と前記回転位置推定手段の出力信号とを比較し、前記正常と判断された前記回転位置検出器の異常を判断することを特徴とする電動パワーステアリング装置。
  16.  請求項14に記載の電動パワーステアリング装置において、
     前記第1の回転位置検出器または前記第2の回転位置検出器のいずれか一方の異常を検出した場合に、前記三相同期電動機の出力トルクを前記第1の回転位置検出器および前記第2の回転位置検出器のいずれも正常である場合と同等のトルクとすることを特徴とする電動パワーステアリング装置。
  17.  請求項15に記載の電動パワーステアリング装置において、
     前記第1の回転位置検出器及び第2の回転位置検出器のいずれもが異常であると判断された場合に、前記回転位置推定手段の出力信号に基づいて前記三相同期電動機の駆動を継続することを特徴とする電動パワーステアリング装置。
  18.  請求項17に記載の電動パワーステアリング装置において、
     前記回転位置推定手段は、第1の回転位置推定手段および第2の回転位置推定手段を有し、
     前記回転位置推定手段の出力信号に基づいて前記三相同期電動機の駆動を継続している場合において、前記第1の回転位置推定手段の出力と前記第2の回転位置推定手段の出力とを比較することで前記回転位置推定手段の異常を判断することを特徴とする電動パワーステアリング装置
  19.  請求項17に記載の電動パワーステアリング装置において、
     前記回転位置推定手段の出力信号に基づいて前記三相同期電動機の駆動を継続している場合において、前記三相同期電動機の出力を徐々に減少させる又は零とすることを特徴とする電動パワーステアリング装置。
  20.  請求項8に記載の電動パワーステアリング装置において、
     前記第1および第2の回転位置検出器の検出タイミングと前記回転位置推定手段の検出タイミングの差を補正することを特徴とする電動パワーステアリング装置。
PCT/JP2016/067648 2015-07-03 2016-06-14 三相同期電動機の駆動装置 WO2017006719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016003040.1T DE112016003040T5 (de) 2015-07-03 2016-06-14 Antriebsvorrichtung für Dreiphasensynchronmotor
CN201680036609.1A CN107787549B (zh) 2015-07-03 2016-06-14 电动助力转向装置
KR1020177037679A KR20180014075A (ko) 2015-07-03 2016-06-14 삼상 동기 전동기의 구동 장치
US15/736,233 US10411621B2 (en) 2015-07-03 2016-06-14 Drive device for three-phase synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134031A JP6530654B2 (ja) 2015-07-03 2015-07-03 電動パワーステアリング装置
JP2015-134031 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006719A1 true WO2017006719A1 (ja) 2017-01-12

Family

ID=57685113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067648 WO2017006719A1 (ja) 2015-07-03 2016-06-14 三相同期電動機の駆動装置

Country Status (6)

Country Link
US (1) US10411621B2 (ja)
JP (1) JP6530654B2 (ja)
KR (1) KR20180014075A (ja)
CN (1) CN107787549B (ja)
DE (1) DE112016003040T5 (ja)
WO (1) WO2017006719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034013A (zh) * 2017-08-10 2020-04-17 日立汽车系统株式会社 三相同步电动机的控制装置和使用其的电动助力转向装置
WO2021166682A1 (ja) * 2020-02-18 2021-08-26 日立Astemo株式会社 回転角センサの校正方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039988A1 (en) * 2016-08-31 2018-03-08 SZ DJI Technology Co., Ltd. Methods and systems for brushless motor control
JP6932063B2 (ja) * 2017-10-31 2021-09-08 日立Astemo株式会社 モータ制御装置、並びにブレーキ制御装置
JP6961096B2 (ja) * 2018-08-30 2021-11-05 日立Astemo株式会社 インバータ装置
JP7242399B2 (ja) * 2019-04-24 2023-03-20 日立Astemo株式会社 モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法
CN112436783B (zh) * 2020-11-16 2022-08-09 深圳市海浦蒙特科技有限公司 一种编码器卡上电自检电路
TWI783740B (zh) * 2021-10-21 2022-11-11 陞達科技股份有限公司 馬達系統及馬達控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336299A (ja) * 1995-06-08 1996-12-17 Hitachi Ltd 電気車の制御装置及び制御方法
JP2006273155A (ja) * 2005-03-29 2006-10-12 Showa Corp 電動パワーステアリング装置
JP2007209105A (ja) * 2006-02-01 2007-08-16 Sawafuji Electric Co Ltd 電気自動車運転駆動装置
JP2010156451A (ja) * 2008-12-04 2010-07-15 Aisin Aw Co Ltd シフトバイワイヤ装置およびこれを搭載する変速機装置
JP2011188683A (ja) * 2010-03-10 2011-09-22 Ntn Corp 電気自動車のモータ駆動システム
WO2013153657A1 (ja) * 2012-04-12 2013-10-17 株式会社 日立製作所 三相同期電動機駆動装置
JP2014087078A (ja) * 2012-10-19 2014-05-12 Panasonic Corp モータ駆動装置およびこれを用いた冷蔵庫

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404160B2 (ja) * 2008-01-21 2010-01-27 ダイキン工業株式会社 モータ駆動制御装置
JP4968312B2 (ja) 2008-01-21 2012-07-04 ダイキン工業株式会社 モータ駆動制御装置
WO2012108525A1 (ja) * 2011-02-10 2012-08-16 株式会社ジェイテクト 電動パワーステアリング装置およびセンサ異常検出装置
JP5893498B2 (ja) * 2012-04-26 2016-03-23 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
CN106063096B (zh) * 2014-02-19 2018-11-06 三菱电机株式会社 马达旋转角度检测装置及使用该装置的电动助力转向装置
JP6283737B2 (ja) * 2014-03-19 2018-02-21 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336299A (ja) * 1995-06-08 1996-12-17 Hitachi Ltd 電気車の制御装置及び制御方法
JP2006273155A (ja) * 2005-03-29 2006-10-12 Showa Corp 電動パワーステアリング装置
JP2007209105A (ja) * 2006-02-01 2007-08-16 Sawafuji Electric Co Ltd 電気自動車運転駆動装置
JP2010156451A (ja) * 2008-12-04 2010-07-15 Aisin Aw Co Ltd シフトバイワイヤ装置およびこれを搭載する変速機装置
JP2011188683A (ja) * 2010-03-10 2011-09-22 Ntn Corp 電気自動車のモータ駆動システム
WO2013153657A1 (ja) * 2012-04-12 2013-10-17 株式会社 日立製作所 三相同期電動機駆動装置
JP2014087078A (ja) * 2012-10-19 2014-05-12 Panasonic Corp モータ駆動装置およびこれを用いた冷蔵庫

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034013A (zh) * 2017-08-10 2020-04-17 日立汽车系统株式会社 三相同步电动机的控制装置和使用其的电动助力转向装置
CN111034013B (zh) * 2017-08-10 2023-06-02 日立安斯泰莫株式会社 三相同步电动机的控制装置和使用其的电动助力转向装置
WO2021166682A1 (ja) * 2020-02-18 2021-08-26 日立Astemo株式会社 回転角センサの校正方法
JP7329466B2 (ja) 2020-02-18 2023-08-18 日立Astemo株式会社 回転角センサの校正方法

Also Published As

Publication number Publication date
CN107787549A (zh) 2018-03-09
KR20180014075A (ko) 2018-02-07
CN107787549B (zh) 2020-05-26
JP6530654B2 (ja) 2019-06-12
US10411621B2 (en) 2019-09-10
DE112016003040T5 (de) 2018-03-22
US20180183366A1 (en) 2018-06-28
JP2017017910A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2017006719A1 (ja) 三相同期電動機の駆動装置
US10266198B2 (en) Motor control device
US11325641B2 (en) Control device for electric power steering apparatus and electric power steering apparatus
CN108372881B (zh) 用于电动助力转向的故障容错场定向控制
US20180175779A1 (en) Controller and control method for electric motor
CN110417314B (zh) 马达控制装置及电动助力转向装置
US10298165B2 (en) Rotary electric machine system
CN108290605B (zh) 电动助力转向装置
CN109195859B (zh) 电子控制装置及其动作控制方法
US10411574B2 (en) Motor controller
JP2007274849A (ja) 電動式パワーステアリング装置
WO2018038021A1 (ja) 電動モータ装置
WO2018030209A1 (ja) モータ制御方法、モータ制御システムおよび電動パワーステアリングシステム
US11290036B2 (en) Control device
US20070273314A1 (en) Method for Braking an Electromotor and Electrical Drive
JP6493046B2 (ja) 電流センサ異常診断装置
JP6730488B2 (ja) 三相同期電動機の制御装置および駆動装置、並びに電動パワーステアリング装置
JP4348897B2 (ja) 電動パワーステアリング装置のモータ制御装置
US9227658B2 (en) Rotary electric machine control apparatus having abnormality detection function
JP6655159B2 (ja) 三相同期電動機の制御装置および制御方法、駆動装置並びに電動パワーステアリング装置
JP6451533B2 (ja) 電流センサ異常診断装置
JP2006033928A (ja) ブラシレスモータ
US11228271B2 (en) Control device for three-phase synchronous motor and electric power steering device using the same
WO2019163382A1 (ja) モータ制御装置
KR20230174347A (ko) 모터 제어 시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15736233

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177037679

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003040

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821189

Country of ref document: EP

Kind code of ref document: A1